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ABSTRACT
Fine-tuning pre-trained models with task-specific data can produce
customized models effective for downstream tasks. However, op-
erating large-scale such fine-tuning tasks in real time in the data
center faces non-trivial challenges, including unpredictable task ar-
rival and system environment dynamics, complex deadline-driven
fine-tuning scheduling, and intertwined task pricing and cost man-
agement. In this paper, targeting the popular Low-Rank Adaptation
(LoRA) fine-tuning technique, we present the design and study of
a novel auction-based mechanism to jointly schedule and price
LoRA tasks in an online manner. We first model the social welfare
maximization problem as an integer program for the fine-tuning
service provider, capturing all the aforementioned challenges. Then,
to solve this NP-hard problem online, we equivalently reformulate
this original problem into a schedule selection problem, where each
schedule corresponds to a concrete pre-specified operation plan
over time for a task. We can thus design a polynomial-time online
approximation algorithm via the online primal-dual method to de-
termine the schedule, and with the dual variables, also determine
the pricing for each admitted task. We rigorously prove the compet-
itiveness of our online approach against the offline optimum, and
prove the economic properties of truthfulness and individual ratio-
nality regarding pricing. Finally, we conduct extensive experiments
and have validated the substantial advantages of our approach
compared to existing methods.
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1 INTRODUCTION
Fine-tuning refers to the process of using relatively small task-
specific datasets to adapt a large model pre-trained on extensive
datasets to downstream tasks. This approach retains the rich knowl-
edge encapsulated within the pre-trained model while avoiding the
design of new models and training from scratch, thus saving signif-
icant time and costs. For instance, one can fine-tune the pre-trained
Large Language Model (LLM) Bert or GPT to machine transla-
tion and semantic question answering via corresponding datasets
[23, 31]. Low-Rank Adaption (LoRA) [2, 6, 15, 29] is among the most
widely employed fine-tuning methods, as exemplified by the more
than 1100 LLaMA-related models fine-tuned by LoRA on Hugging
Face [9]. LoRA injects an “adapter” composed of two low-rank ma-
trices into each “transformer layer” [24] of the pre-trained model,
where only parameters in the adapters need to be updated and other
parameters stay unchanged. For example, for GPT3, compared to
fine-tuning the entire model, LoRA reduces the number of trainable
parameters from 175B to 37M and the GPU memory consumption
from 1.2TB to 350GB, while achieving a similar accuracy [6].

It is yet non-trivial for the cloud fine-tuning service to operate and
manage large-scale LoRA-based fine-tuning tasks from the users,
due to the following unique and fundamental challenges.

First, as the fine-tuning tasks arrive unpredictably, it is difficult
to continuously schedule them for execution in real time in a dy-
namic data center environment whose operational cost can also be
constantly changing [5, 21, 27]. Each task needs to be controlled
to potentially suspend and resume execution alternately, while en-
suring sufficient fine-tuning with minimum incurred cost in the
long term before a pre-specified deadline that may exist. Some
tasks may require data pre-processing (e.g., labeling, and clean-
ing) which also needs to be coordinated and completed before the
fine-tuning process starts, especially when the fine-tuning service
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allows outsourcing such efforts [17]. LoRA tasks can actually share
the parameters of the pre-trained model [28] and only fine-tune
an individual adapter for each task, demanding careful inter-task
management for high training throughput and resource utilization.
All of these factors need to be comprehensively handled for the
cloud data center which often has heterogeneous GPUs equipped.

Second, it is not straightforward to appropriately price the re-
ceived fine-tuning tasks while ensuring the profitability and the
agile adaptability to the ever-changing market demand and supply.
The de facto fixed pricing, as adopted by some providers [10], often
fail to meet these requirements. Auction can be a more effective
approach, with the fine-tuning service as the auctioneer and each
fine-tuning task as a bid. Yet, existing auction design cannot be
directly used in this scenario, where the bids arrive sequentially
and need to be processed irrevocably on the fly, unlike a typical
auction setting where all bids often come simultaneously; further,
the winning-bid selection is intrinsically intertwined with the corre-
sponding task execution, e.g., a particular task may bid a high price,
but it may be impossible to schedule it for the best performance
with the minimum cost if it is admitted, and vice versa. This also
lifts the difficulty for designing novel auction mechanisms with
desired economic properties such as truthfulness (e.g., a bid has no
motivation to lie about its bidding price) and individual rationality
(e.g., a bid incurs no loss to itself even when it loses in the auction).

To the best of our knowledge, none of the existing work has ad-
dressed both of the aforementioned challenges for fine-tuning tasks.
Titan [4] is a scheduler tailored for fine-tuning tasks; however, it tar-
gets the offline scenario and ignores the pricing, deadline, and data
pre-processing issues. Other conventional deep learning task sched-
ulers [11, 14, 16, 19, 20, 22, 25, 30, 32] focus on traditional metrics in-
cluding time efficiency, training throughput efficiency, fairness, and
hence are not suitable for solving our problem. Eris [18] prices and
schedules deep learning tasks based on auction mechanisms, which
could be the most similar to the problem we are investigating. Yet,
it ignores the performance improvement brought by multi-LoRA
pre-trained model sharing, the ever-changing operational cost, and
the data pre-processing decisions in the marketplace.

In this paper, we demonstrate a rigorous algorithmic study of
the auction-based, online joint scheduling and pricing mechanism
tailored to the fine-tuning service. We make several contributions:

• We model and formulate a long-term optimization problem
to maximize the social welfare of the entire system, i.e., the
utilities of both the cloud fine-tuning service and the LoRA
fine-tuning tasks. This problem is an integer program, prov-
ably intractable even in the offline setting. Our formulation
grasps all the aforementioned challenges and is general, with
only mild or almost no assumption on all the inputs such as
the input dynamics and heterogeneities.

• We design a smart reformulation to equivalently transform
the original problem into a schedule selection problem,where
a schedule is a concrete pre-specified operation plan of a
fine-tuning task over time. To solve this new problem, we
further design an online primal-dual algorithm to dynami-
cally conduct the admission control and decide the schedule
for each task as it arrives at the service.

• We also design the pricing mechanism for each admitted
task, i.e., the payment that each winning bid needs to make
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Figure 2: Multi-LoRA.

to the fine-tuning service, using the dual variables that are
carefully and continuously updated as tasks arrive and the
relevant inputs obtained from the primal problem.

• We rigorously characterize and prove multiple theoretical
guarantees, including the NP-hardness of the problem, the
polynomial-time complexity of our algorithms, the competi-
tive performance of our online algorithms against the offline
optimum, and the auction properties of truthfulness and
individual rationality of our pricing mechanism.

• We conduct extensive trace-driven experiments. Our pro-
posed approach consistently outperforms baselines in vari-
ous settings. Specifically, in the high workload scenario, our
approach improves social welfare by 48.99%, 151.57%, and
184.94% compared to three baseline algorithms.

2 MODELING AND FORMULATION

2.1 System Settings and Models
Cloud System: We consider a service provider that operates a
cloud data center or a GPU cluster of a set [𝐾] = {1, 2, · · · ,𝐾} of
GPU compute nodes for executing fine-tuning tasks submitted by
the end users. Without loss of generality, we consider the entire
system operating in slotted time [𝑇 ] = {1, 2, · · · ,𝑇 }. Each compute
node 𝑘 ∈ [𝐾] in the cloud has its computation capacity𝐶𝑘𝑝 in terms
of the maximum number of data samples that can be processed per
single time slot, and has its GPU memory capacity 𝐶𝑘𝑚 in GB.

Fine-Tuning Tasks: A LoRA [6] fine-tuning task, as shown in
Figure 1, uses two low-rankmatrices to approximate the parameters
that need to be updated for the dense layer when fine-tuning pre-
trained neural networks. That is, for each “transformer layer” [24],
let𝑊0 ∈ R𝑑×𝑘 be the parameters on the pre-trained dense layer, and
Δ𝑊 be the parameter update (i.e., the adapter). Then, the resulting
fine-tuned parameters can be represented as𝑊 =𝑊0 + Δ𝑊 . LoRA
approximates the update by Δ𝑊 = 𝐵𝐴, where 𝐵 ∈ R𝑑×𝑟 ,𝐴 ∈ R𝑟×𝑘 ,
and the rank 𝑟 ≪ min(𝑑,𝑘). During fine-tuning, the forward result
of the dense layer is calculated as ℎ =𝑊0𝑥 + Δ𝑊𝑥 =𝑊0𝑥 + 𝐵𝐴𝑥 ,
and the pre-trained weights𝑊0 can stay unchanged and only the
gradient updates of the matrices 𝐴 and 𝐵 need to be computed
during the backward propagation. Since 𝑟 ≪ min(𝑑,𝑘), LoRA sig-
nificantly reduces the number of trainable parameters. As shown
in Figure 2, if multiple tasks fine-tune the same pre-trained model,
then these tasks can share the pre-trained model and just have
their own separate adapters [28], in order to further reduce GPU
memory usage and improve training efficiency.
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We use [𝐼 ] = {1, 2, ..., 𝐼 } to refer to the set of fine-tuning tasks.
The fine-tuning task 𝑖 can be represented as {𝑎𝑖 ,𝑑𝑖 ,D𝑖 , 𝑟𝑖 ,𝑀𝑖 , 𝑓𝑖 ,𝑏𝑖 },
where 𝑎𝑖 is the arrival time of the task 𝑖; 𝑑𝑖 is the deadline no later
than which the task 𝑖 needs to be finished; D𝑖 refers to the training
dataset used for fine-tuning; 𝑟𝑖 is the GPU memory requirement
for the task 𝑖; 𝑀𝑖 is the total cumulative amount of computation
required for sufficiently fine-tuning the task 𝑖; 𝑓𝑖 indicates whether
the task 𝑖 needs data pre-processing; and 𝑏𝑖 is the bidding price for
the task 𝑖 . Data pre-processing and bidding will be further elabo-
rated next. When executing the fine-tuning task 𝑖 on the compute
node 𝑘 , we denote by 𝑠𝑖𝑘 the amount of computation that can be
done per single time slot, and denote by 𝑒𝑖𝑘𝑡 the operational cost
(e.g., energy consumption) at the time slot 𝑡 . In this paper, we focus
on the case where every task fine-tunes the same pre-trained model
whose size is 𝑟𝑏 , and up to one replica of this pre-trained model
needs to be kept on each compute node, as in the LoRA weight-
sharing situation. Different “zones” within the cloud data center
can be set up for tasks fine-tuning different pre-trained models.

Auction-Based Pricing: The cloud fine-tuning service acts as
the auctioneer and each fine-tuning task acts as a bid. Note that
we consider each user (bidder) submitting only one task (bid); a
user that submits multiple tasks can be essentially considered as
multiple virtual users. For the task 𝑖 , the bidding price 𝑏𝑖 refers
to the money that the corresponding user is willing to pay to the
service for executing this task. For each bid, the service decides
whether to choose the bid as a winning bid. If it is a winning bid, it
means that the the service provider admits the task for execution
and the user makes the payment 𝑝𝑖 (note that 𝑝𝑖 is determined by
the service provider and may not equal 𝑏𝑖 ); if not, then the service
provider declines the task and the user makes no payment. Thus,
𝑝𝑖 is the service provider’s pricing for the task 𝑖 . We also define
and analyze the desired economic properties of truthfulness and
individual rationality for our auction later in this paper.

Data Pre-Processing: Each fine-tuning task contains its dataset,
and real-world cloud fine-tuning services [17] often allow outsourc-
ing the data pre-processing (e.g., labeling, and cleaning) to third-
party labor vendors. Sometimes, such pre-processing is a must as the
cloud fine-tuning service may have strict format requirements for
the training data [8]. We consider a marketplace of multiple labor
vendors indexed by [𝑁 ] = {1, 2, ...,𝑁 }. As the fine-tuning task 𝑖 is
admitted and requests data pre-processing, the service will firstly
check the price 𝑞𝑖𝑛 that each labor vendor 𝑛 charges and the pro-
cessing delay ℎ𝑖𝑛 that each labor vendor 𝑛 takes for pre-processing
the task 𝑖’s data, and then select and use one and only one labor
vendor for this task. The service will pay the selected labor vendor
correspondingly. The data pre-processing needs to be completed
before the corresponding fine-tuning task starts to execute.

Control Decisions:As each fine-tuning task 𝑖 arrives at the time
slot 𝑎𝑖 , the service provider responds immediately and makes the
following control decisions online: (i) Whether or not to admit the
task 𝑖 for execution (i.e., select the bid 𝑖 as a winning bid), denoted
by 𝑢𝑖 ; (ii) Whether or not to execute the task 𝑖 on the compute
node 𝑘 at the time slot 𝑡 , ∀𝑡 ≥ 𝑎𝑖 , denoted by 𝑥𝑖𝑘𝑡 ; (iii) Whether
or not to choose and use the labor vendor 𝑛 for the task 𝑖’s data
pre-processing, denoted by 𝑧𝑖𝑛 ; (iv) Payment 𝑝𝑖 that the user needs
to make to the cloud fine-tuning service.
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Figure 3: Fine-tuning service workflow.

SystemWorkflow: Overall, the system workflow is shown in
Figure 3, consisting of multiple steps: (i) Users submit fine-tuning
tasks as bids, where different bids may arrive at different moments;
(ii) As soon as each bid arrives, the fine-tuning service decides
whether the bid is a winning bid; (iii) Jointly with the winning-bid
determination, the service also decides the labor vendor for data
pre-processing (if requested by the bid), the execution plan of the
task, and the payment to charge; (iv) The user makes the payment
to the service; (v) The service executes the data pre-processing
and the fine-tuning process as planned, and returns the result to
the user at completion. Depending on the agreement between the
service and the users, “(iv)” may occur before or after “(v)”.

2.2 Problem Formulation
Social Welfare:We define the social welfare as our optimization
objective, which is the sum of each user’s utility and the service
provider’s utility, following the conventions as in a typical auction.
A user’s utility is her true valuation of her fine-tuning task minus
her payment to the fine-tuning service. Thus, all users’ utility is

𝑈𝑟 =
∑

𝑖𝑈𝑖 =
∑

𝑖 (𝑏𝑖 − 𝑝𝑖 )𝑢𝑖 . (1)

Note that 𝑏𝑖 also represents the true valuation, as we will prove
the truthfulness of our mechanism later. The service provider’s
utility is the payment received from the users minus the sum of
the expense it pays to the data pre-processing labor vendors and
its own operational cost of executing the fine-tuning tasks. That is

𝑈𝑐 =
∑

𝑖𝑝𝑖𝑢𝑖 −
∑

𝑖
∑

𝑛𝑞𝑖𝑛𝑧𝑖𝑛 −
∑

𝑖
∑

𝑘
∑

𝑡𝑒𝑖𝑘𝑡𝑥𝑖𝑘𝑡 . (2)

Based on these, we have the social welfare as

𝑈 = 𝑈𝑟 +𝑈𝑐 =
∑

𝑖𝑏𝑖𝑢𝑖 −
∑

𝑖
∑

𝑛𝑞𝑖𝑛𝑧𝑖𝑛 −
∑

𝑖
∑

𝑘
∑

𝑡𝑒𝑖𝑘𝑡𝑥𝑖𝑘𝑡 . (3)

Note that the payment is canceled out, aligned with existing auction
research; yet, in our algorithms, we still need to decide the payment
for each winning bid as part of our auction outcome.

Problem Formulation: We formulate our multi-LoRA fine-
tuning scheduling and pricing problem that is to be solved by the
fine-tuning service provider as follows:

𝑃 : max
∑

𝑖𝑏𝑖𝑢𝑖 −
∑

𝑖
∑

𝑛𝑞𝑖𝑛𝑧𝑖𝑛 −
∑

𝑖
∑

𝑘
∑

𝑡𝑒𝑖𝑘𝑡𝑥𝑖𝑘𝑡 (4)

s.t. 𝑓𝑖𝑢𝑖 ≤
∑

𝑛𝑧𝑖𝑛 ≤ 1,∀𝑖, (4a)
∑

𝑘𝑥𝑖𝑘𝑡 ≤ 1, ∀𝑖, 𝑡, (4b)

(𝑎𝑖 + 𝑓𝑖
∑

𝑛ℎ𝑖𝑛𝑧𝑖𝑛)𝑥𝑖𝑘𝑡 ≤ 𝑥𝑖𝑘𝑡 𝑡,∀𝑖,𝑘, 𝑡 (4c)

𝑥𝑖𝑘𝑡 𝑡 ≤ 𝑑𝑖 ,∀𝑖,𝑘, 𝑡, (4d)



ICPP ’24, August 12–15, 2024, Gotland, Sweden Ying Zheng et al.

∑

𝑡
∑

𝑘𝑠𝑖𝑘𝑥𝑖𝑘𝑡 ≥ 𝑀𝑖𝑢𝑖 ,∀𝑖, (4e)
∑

𝑖𝑠𝑖𝑘𝑥𝑖𝑘𝑡 ≤ 𝐶𝑘𝑝 ,∀𝑘, 𝑡, (4f)
∑

𝑖𝑟𝑖𝑥𝑖𝑘𝑡 + 𝑟𝑏 ≤ 𝐶𝑘𝑚,∀𝑘, 𝑡, (4g)

𝑢𝑖 ∈ {0, 1}, 𝑥𝑖𝑘𝑡 ∈ {0, 1}, 𝑧𝑖𝑛 ∈ {0, 1},∀𝑖,𝑘, 𝑡,𝑛. (4h)

We maximize the social welfare. Constraint (4a) ensures that for
each task, up to one labor vendor is selected if the task is admitted
and needs data pre-processing. Constraint (4b) ensures that each
task at each time slot runs on no more than one compute node.
Constraint (4c) ensures that each task is only executed after it ar-
rives at the system and finishes its data pre-processing. Constraint
(4d) ensures that each task is only executed before its deadline.
Constraint (4e) guarantees enough computation cumulatively to
complete the task. Constraints (4f) and (4g) enforce the compu-
tation capacity and the memory capacity on each compute node,
respectively. Constraint (4h) specifies the domains of the control
variables. Unless otherwise noted, the scopes for our indices are
𝑖 ∈ [𝐼 ],𝑘 ∈ [𝐾], 𝑡 ∈ [𝑇 ] and 𝑛 ∈ [𝑁 ]. Our problem is provably
intractable; see Section 4.1 for details.

3 ALGORITHM DESIGN

3.1 Overview and Rationale
Our idea is to firstly reformulate the original problem 𝑃 equiva-
lently into a schedule selection problem 𝑃1. Rather than dynamically
determining when to execute a task on which compute note, we
generate a series of static schedules for the task as it arrives, where
each schedule is a concrete plan of executing the task on a particu-
lar compute node at a particular (and unnecessarily consecutive)
set of time lots, and then select the best schedule for the task. The
schedules of a task can cover all the possibilities of how to execute
this task, while respecting the constraints. Each schedule of a task
uniquely determines task admission, labor vendor selection, and
task execution; and vice versa. We can thus solve the schedule
selection problem and then recover the corresponding solution
to the original problem. This method simplifies our formulation,
and enables us to just focus on dynamically making one type of
decision—schedule selection—instead of simultaneously making
the multiple types of decisions as in the original problem.

Then, we note that, to design an online algorithm for the sched-
ule selection problem 𝑃1 with provably-guaranteed performance,
we can derive its Lagrange dual problem 𝐷1 and design an online
primal-dual algorithm [1]. That is, as a task arrives, i,e., the con-
straints of the primal problem (5) and the dual problem (6) appear
dynamically, we always carefully maintain a feasible solution for
the primal problem and a feasible solution for the dual problem, so
that the changes in the corresponding objective function values in-
curred by the two feasible solutions possess a certain “relationship”.
According to weak duality, the objective function value of the dual
problem is always an upper bound of the optimal objective function
value of the primal problem, and hence we can guarantee the theo-
retical performance of the online algorithm by firstly connecting
our online solutions to the dual objective via the aforementioned
relationship and then further to the (offline) primal optimum.

With such a primal-dual algorithm, we further design pricing
to ensure the economic properties of truthfulness and individual
rationality, as typically desired in auctions. Truthfulness ensures

that every bid has no motivation to lie about its bidding price, and
individual rationality ensures that every bid has no loss regardless
of the auction outcome. To that end, we design the payment of a
winning bid in our auction using the values of the dual variables.
Dual variables can be considered as “shadow prices" [3] for the com-
putation and the memory resources indicated in the constraints
of the primal problem, where the shadow price represents the in-
crease of the dual problem’s objective value per unit increase in
the amount of the resource. Intuitively, we set the payment based
on the consumed resources, which is independent of its bidding
price, thereby achieving the desired economic properties (while the
winning-bid selection still depends on the bidding prices).

3.2 Problem Reformulation
Schedule Selection: We reformulate the problem (4) equivalently
into a schedule selection problem (5). Here, we define a schedule
𝑙 of the task 𝑖 as an assignment of a set of concrete values to the
decision variables {𝑢𝑖 , {𝑥𝑖𝑘𝑡 }𝑘,𝑡 , {𝑧𝑖𝑛}𝑛} for the task 𝑖 , satisfying
Constraints (4a)-(4e). Then, the problem (4) is rewritten as

𝑃1 : max
∑

𝑖
∑

𝑙∈𝜁𝑖𝑏𝑖𝑙𝑥𝑖𝑙 (5)

s.t.
∑

𝑙𝑥𝑖𝑙 ≤ 1,∀𝑖, (5a)
∑

𝑖
∑

𝑙 :𝑡 ∈𝑙𝑠𝑘𝑡 (𝑖𝑙)𝑥𝑖𝑙 ≤ 𝐶𝑘𝑝 ,∀𝑘, 𝑡, (5b)
∑

𝑖
∑

𝑙 :𝑡 ∈𝑙𝑟𝑘𝑡 (𝑖𝑙)𝑥𝑖𝑙 + 𝑟𝑏 ≤ 𝐶𝑘𝑚,∀𝑘, 𝑡, (5c)

𝑥𝑖𝑙 ∈ {0, 1},∀𝑖, 𝑙 ∈ 𝜁𝑖 , (5d)

where the binary variable 𝑥𝑖𝑙 represents whether the task 𝑖 is sched-
uled for execution using the schedule 𝑙 , and 𝜁𝑖 is the set of all the
feasible schedules for the task 𝑖 satisfying Constraints (4a)-(4e).

We introduce some additional notations. We use 𝑏𝑖𝑙 to denote the
increment of the objective value of the problem (4) when using the
schedule 𝑙 to execute the task 𝑖 . Formally, 𝑏𝑖𝑙 = 𝑏𝑖𝑢𝑖 −

∑

𝑛𝑞𝑖𝑛𝑧𝑖𝑛 −
∑

𝑘
∑

𝑡𝑒𝑖𝑘𝑡𝑥𝑖𝑘𝑡 , where values of the variables are taken from the
schedule 𝑙 . Also, denote 𝑠𝑘𝑡 (𝑖𝑙) and 𝑟𝑘𝑡 (𝑖𝑙) as the computation and
the memory consumption on the compute node 𝑘 at the time slot 𝑡 ,
incurred by using the schedule 𝑙 to execute the task 𝑖 , which are
calculated as 𝑠𝑘𝑡 (𝑖𝑙) = 𝑠𝑖𝑘𝑥𝑖𝑘𝑡 and 𝑟𝑘𝑡 (𝑖𝑙) = 𝑟𝑖𝑥𝑖𝑘𝑡 with 𝑥𝑖𝑘𝑡 ∈ 𝑙 ,
respectively. For the ease of representation, we also use 𝑡 ∈ 𝑙 to
indicate that the time slot 𝑡 is one of the time slots as specified in
schedule 𝑙 , i.e.,

∑

𝑘𝑥𝑖𝑘𝑡 = 1. We inevitably note that the problem (4)

has a solution space of the size 2𝐼+𝐼𝐾𝑇+𝐼𝑁 , while the the problem (5)

has a solution space of the size 2𝐼 ·2
1+𝐾𝑇+𝑁

; fortunately, by carefully
designing our online algorithm, we can control the algorithm to
run in polynomial time as shown and proved later.

Dual Problem: To design the online algorithm, we adopt the
primal-dual idea. The domain of the decision variable 𝑥𝑖𝑙 is then
relaxed to 𝑥𝑖𝑙 ∈ [0, 1]. We thus write the Lagrange dual problem of
the primal problem (5) as

𝐷1 : min
∑

𝑖𝜇𝑖 +
∑

𝑘
∑

𝑡𝐶𝑘𝑝𝜆𝑘𝑡 +
∑

𝑘
∑

𝑡 (𝐶𝑘𝑚 − 𝑟𝑏 )𝜑𝑘𝑡 (6)

s.t. 𝜇𝑖 ≥ 𝑏𝑖𝑙 −
∑

𝑘
∑

𝑡 :𝑡 ∈𝑙 (𝑠𝑘𝑡 (𝑖𝑙)𝜆𝑘𝑡 + 𝑟𝑘𝑡 (𝑖𝑙)𝜑𝑘𝑡 ),∀𝑖, 𝑙 ∈ 𝜁𝑖 ,
(6a)

𝜇𝑖 ≥ 0, 𝜆𝑘𝑡 ≥ 0,𝜑𝑘𝑡 ≥ 0,∀𝑖,𝑘, 𝑡, (6b)

where 𝜇𝑖 , 𝜆𝑘𝑡 and 𝜑𝑘𝑡 are the dual variables associated with Con-
straints (5a), (5b), and (5c), respectively.
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3.3 Online Scheduling
Online Primal-Dual Algorithm:We define the values of the dual
variables 𝜆𝑘𝑡 and 𝜑𝑘𝑡 as

𝜆
(𝑖 )
𝑘𝑡

= 𝜆
(𝑖−1)
𝑘𝑡

(1 +
𝑠𝑘𝑡 (𝑖𝑙)

𝐶𝑘𝑝
) + 𝛼 (

𝑏𝑖𝑙𝑠𝑘𝑡 (𝑖𝑙)

𝐶𝑘𝑝
), (7)

𝜑
(𝑖 )
𝑘𝑡

= 𝜑
(𝑖−1)
𝑘𝑡

(1 +
𝑟𝑘𝑡 (𝑖𝑙)

𝐶𝑘𝑚 − 𝑟𝑏
) + 𝛽 (

𝑏𝑖𝑙𝑟𝑘𝑡 (𝑖𝑙)

𝐶𝑘𝑚 − 𝑟𝑏
), (8)

where 𝑏𝑖𝑙 =
𝑏𝑖𝑙

∑

𝑘
∑

𝑡𝑠𝑘𝑡 (𝑖𝑙 )+𝑟𝑘𝑡 (𝑖𝑙 )
. Intuitively, 𝑏𝑖𝑙 can be expressed as

the social welfare improvement incurred by using per unit resource

per single time slot. We use 𝜆 (𝑖 )
𝑘𝑡

and 𝜑 (𝑖 )
𝑘𝑡

to represent the value of

𝜆𝑘𝑡 and 𝜑𝑘𝑡 after the online algorithm handles the task 𝑖 . Such 𝜆 (𝑖 )
𝑘𝑡

and 𝜑 (𝑖 )
𝑘𝑡

have the following properties: (i) They are initialized to
zero and then increase as the resource consumption increases; (ii)
If a schedule decision causes the cumulative usage of resources to
exceed the capacity, i.e., to violate Constraint (4f) or (4g), then no
more tasks will be scheduled on the compute node 𝑘 at the time
slot 𝑡 , as shown in Lemma 2 in Appendix; (iii) They are carefully
designed so that our online algorithms can achieve provably-good
performance, as shown later in Theorem 5.

We select the schedule for the task 𝑖 as

𝑙𝑖 = argmax
𝑙∈𝜁𝑖

{𝐹 (𝑖𝑙)}, (9)

where 𝐹 (𝑖𝑙) is defined as

𝐹 (𝑖𝑙) = 𝑏𝑖𝑙 − max
(𝑘,𝑡 )∈𝑙

{𝜆
(𝑖−1)
𝑘𝑡

}
∑

𝑘
∑

𝑡𝑠𝑘𝑡 (𝑖𝑙) − max
(𝑘,𝑡 )∈𝑙

{𝜑
(𝑖−1)
𝑘𝑡

}
∑

𝑘
∑

𝑡𝑟𝑘𝑡 (𝑖𝑙).

(10)

Here, (𝑘, 𝑡) ∈ 𝑙 refers to the compute node 𝑘 and the time slot 𝑡
where 𝑥𝑖𝑘𝑡 = 1 in schedule 𝑙 . Note that there may exist multiple
pairs of (𝑘, 𝑡) that make 𝑥𝑖𝑘𝑡 = 1 in the schedule 𝑙 , as a task may
execute at multiple time slots. We set the dual variable 𝜇𝑖 as

𝜇𝑖 = max{0, 𝐹 (𝑖𝑙)}. (11)

This means that if the schedule 𝑙𝑖 returned by (9) leads to a negative
value of 𝐹 (𝑖𝑙), then we just reject the task and set 𝜇𝑖 to zero; in
contrast, if 𝜇𝑖 > 0, then the service admits the task 𝑖 and executes
it according to the control decisions as specified in the schedule 𝑙𝑖 .

Algorithm 1 is our online schedule selection algorithm. Line 1
initializes the dual variables 𝜆𝑘𝑡 and 𝜑𝑘𝑡 to zero. Upon the arrival
of each task 𝑖 , Line 3 checks whether the task 𝑖’s dataset needs
pre-processing, and if so, Line 4 collects the expense and the delay
of each labor vendor. Line 5 invokes Algorithm 2, which will be
described next, to find the schedule 𝑙𝑖 consisting of all the control
decisions for the task 𝑖 . Lines 6-7 indicate that if 𝐹 (𝑖𝑙) > 0, then we
update the dual variables 𝜆𝑘𝑡 and 𝜑𝑘𝑡 ; otherwise, we reject the task
𝑖 in Line 13. Line 8 checks whether there are sufficient resources
to execute the task 𝑖 . Formally, we check whether the condition
∑𝑖
𝑖′=1

∑

𝑙𝑥𝑖′𝑙𝑠𝑘𝑡 (𝑖
′𝑙) ≤ 𝐶𝑘𝑝 and

∑𝑖
𝑖′=1

∑

𝑙𝑥𝑖′𝑙𝑟𝑘𝑡 (𝑖
′𝑙) + 𝑟𝑏 ≤ 𝐶𝑘𝑚,∀𝑘, 𝑡

holds. If there are sufficient resources, then Line 9 admits the task
𝑖 and executes it according to the schedule 𝑙𝑖 ; otherwise, it rejects
the task 𝑖 in Line 12. Line 10 pays 𝑞𝑖𝑛 to the labor vendor 𝑛 if it is
selected. Line 11 charges the user 𝑖 at the payment in (14).

Algorithm 1: Online Task Scheduling Algorithm

Input: {{𝑎𝑖 ,𝑑𝑖 ,D𝑖 , 𝑟𝑖 ,𝑀𝑖 , 𝑓𝑖 ,𝑏𝑖 }}𝑖 , 𝑟𝑏 ,𝐶𝑘𝑚,𝐶𝑘𝑝

1 Initialize 𝜆 (0)
𝑘𝑡

= 0,𝜑
(0)
𝑘𝑡

= 0,∀𝑘, 𝑡 ;

2 for task 𝑖 do
3 if 𝑓𝑖 > 0 then
4 Collect {𝑞𝑖𝑛,ℎ𝑖𝑛}𝑛 of each labor vendor;

5 Invoke Algorithm 2 to generate 𝑙𝑖 = {{𝑥𝑖𝑘𝑡 }𝑘,𝑡 , {𝑧𝑖𝑛}𝑛}

and 𝐹 (𝑖𝑙);

6 if 𝐹 (𝑖𝑙) > 0 then
7 Update 𝜆𝑘𝑡 and 𝜑𝑘𝑡 according to (7) and (8);

8 if enough resources then
9 Admit task 𝑖 , i.e., set 𝑢𝑖 = 1, and execute it using

𝑙𝑖 ;

10 Pay 𝑞𝑖𝑛 to labor vendor 𝑛 with 𝑧𝑖𝑛 = 1 ;

11 Charge 𝑝𝑖 from task 𝑖 according to (14);

12 else Reject task 𝑖 , i.e., set 𝑢𝑖 = 0;

13 else Reject task 𝑖 , i.e., set 𝑢𝑖 = 0;

Optimal Schedule: The next issue is how to find the optimal
schedule defined in (9) for a single task. From a high-level perspec-
tive, the essence of (9) is to determine the labor vendor (if the task
𝑖 needs data-processing) and the concrete time slots to execute the
task 𝑖 , given the value of the dual variables 𝜆𝑘𝑡 and 𝜑𝑘𝑡 after our al-
gorithm handles the task 𝑖 −1while satisfying Constraints (4a)-(4e).
Therefore, for each pair of the expense 𝑝𝑖𝑛 and the delay ℎ𝑖𝑛 of the
labor vendor 𝑛, finding the optimal schedule can be formulated as
the following optimization problem:

min
∑

𝑘
∑

𝑡𝑥𝑖𝑘𝑡 (𝑠𝑖𝑘𝜆 + 𝑟𝑖𝜑 + 𝑒𝑖𝑘𝑡 ) (12)

s.t.
∑

𝑘
∑

𝑡𝑠𝑖𝑘𝑥𝑖𝑘𝑡 ≥ 𝑀𝑖 , (12a)
∑

𝑘𝑥𝑖𝑘𝑡 ≤ 1,∀𝑡, (12b)

𝜆 ≥ 𝑥𝑖𝑘𝑡𝜆𝑘𝑡 ,∀𝑘, 𝑡, (12c)

𝜑 ≥ 𝑥𝑖𝑘𝑡𝜑𝑘𝑡 ,∀𝑘, 𝑡, (12d)

𝑥𝑖𝑘𝑡 ∈ {0, 1}, 𝑡 ∈ [𝑎𝑖 + ℎ𝑖𝑛,𝑑𝑖 ], 𝜆 ≥ 0,𝜑 ≥ 0,∀𝑘, 𝑡, (12e)

where 𝑥𝑖𝑘𝑡 , and 𝑡 are integer decision variables. Note that the sub-
script 𝑖 is given and fixed here, as we only target the task 𝑖 . For
each labor vendor 𝑛, we solve the problem (12) to obtain the task
execution decision {𝑥𝑖𝑘𝑡 }, and then select the labor vendor that
achieves the lowest objective value of the problem (12) to obtain
the labor vendor selection decision {𝑧𝑖𝑛}.

We use dynamic programming to find the optimal solution to the
problem (12). When scheduling task 𝑖 , for a labor vendor 𝑛 with 𝑝𝑖𝑛
andℎ𝑖𝑛 , let 𝑑𝑝 [𝑡,𝑤] be the minimum objective value of the problem
(12) achieved by allocating a total amount of𝑤 computation for the
task 𝑖 until the time slot 𝑡 , where 𝑡 ∈ [𝑎𝑖 + ℎ𝑖𝑛,𝑑𝑖 ],𝑤 ∈ [0,𝑊𝑖 ],𝑊𝑖
is the computation amount required by task 𝑖 . The update rule is

𝑑𝑝 [𝑡,𝑤] = min
{

𝑑𝑝 [𝑡 − 1,𝑤],min
𝑘

{

𝑑𝑝 [𝑡 − 1,𝑤 − 𝑠𝑖𝑘 ] + Δ𝑘𝑡 }
}

,

(13)

where Δ𝑘𝑡 is the increment of the objective value of the problem
(12) incurred by executing the task 𝑖 on the compute node 𝑘 at 𝑡 .
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Algorithm 2: Per-Task Schedule Selection Algorithm

Input: {𝑎𝑖 ,𝑑𝑖 ,D𝑖 , 𝑟𝑖 ,𝑀𝑖 , 𝑓𝑖 ,𝑏𝑖 }, {𝜆
(𝑖−1)
𝑘𝑡

}, {𝜑
(𝑖−1)
𝑘𝑡

}

Output: 𝑙 = {{𝑥𝑖𝑘𝑡 }𝑘,𝑡 , {𝑧𝑖𝑛}𝑛}, 𝐹 (𝑖𝑙)

1 Initialize 𝜇𝑖 = 0, 𝑥𝑖𝑘𝑡 = 0, 𝑧𝑖𝑛 = 0,∀𝑘, 𝑡,𝑛;

2 for labor vendor 𝑛 ∈ [𝑁 ] do

3 𝑙𝑛 = findSchedule(𝑎𝑖 ,𝑑𝑖 ,ℎ𝑖𝑛, {𝜆
(𝑖−1)
𝑘𝑡

}, {𝜑
(𝑖−1)
𝑘𝑡

},𝑊𝑖 ) ;

4 Calculate 𝐹 (𝑖𝑙𝑛) according to (10);

5 𝑛∗ = argmax𝑛{𝐹 (𝑖𝑙𝑛)}, 𝑧𝑖𝑛∗ = 1, 𝐹 (𝑖𝑙) = max𝑛{𝐹 (𝑖𝑙𝑛)};

6 Function

findSchedule(𝑎𝑖 ,𝑑𝑖 ,ℎ𝑖𝑛, {𝜆
(𝑖−1)
𝑘𝑡

}, {𝜑
(𝑖−1)
𝑘𝑡

},𝑊𝑖):

7 Initialize 𝑑𝑝 [𝑡,𝑤] = ∞,∀𝑡 ∈ [𝑎𝑖 + ℎ𝑖𝑛,𝑑𝑖 ],𝑤 ∈ [1,𝑊𝑖 ];

𝑑𝑝 [𝑡, 0] = 0,∀𝑡 ∈ [𝑎𝑖 + ℎ𝑖𝑛,𝑑𝑖 ]; 𝜆𝑘𝑡 = 0, 𝜑𝑘𝑡 = 0, ∀𝑘, 𝑡 ;

8 for𝑤 ∈ [1,𝑊𝑖 ] do
9 for 𝑡 ∈ [𝑎𝑖 + ℎ𝑖𝑛 + 1,𝑑𝑖 ] do
10 for 𝑘 ∈ [𝐾] do

11 Calculate Δ𝑘𝑡 = 𝑠𝑖𝑘𝜆𝑘𝑡 + 𝑟𝑖𝜑𝑘𝑡 + 𝑒𝑖𝑘𝑡 based

on 𝑑𝑝 [𝑡 − 1,𝑤 − 𝑠𝑖𝑘 ] and 𝜆
(𝑖−1)
𝑘𝑡

,𝜑
(𝑖−1)
𝑘𝑡

;

12 𝑑𝑝 [𝑡,𝑤] = min
{

𝑑𝑝 [𝑡 − 1,𝑤],min𝑘
{

𝑑𝑝 [𝑡 −

1,𝑤 − 𝑠𝑖𝑘 ] + Δ𝑘𝑡 }
}

13 return schedule that achieves 𝑑𝑝 [𝑑𝑖 ,𝑊𝑖 ]

14 return 𝑙𝑖𝑛∗ and 𝐹 (𝑖𝑙);

Algorithm 2 is the dynamic programming process for finding the
best schedule for a given task, and is invoked by Algorithm 1. Specif-
ically, Line 1 is the initialization. Lines 2-4 find the optimal task
execution plan for each feasible labor vendor selection. Line 5 indi-
cates we select the labor vendor that achieves the maximum 𝐹 (𝑖𝑙𝑛).
Lines 6-13 describe the specific steps of dynamic programming. Re-
call that we use 𝑑𝑝 [𝑡,𝑤] to represent the minimum objective value
of the problem (12) achieved by a total amount of𝑤 computation
for the task 𝑖 until the time slot 𝑡 . Line 7 initializes the values in the
dynamic programming (DP) table. Lines 11 calculates Δ𝑘𝑡 for each
labor vendor 𝑛. Line 12 describes the update rule of 𝑑𝑝 [𝑡,𝑤]. Line
13 returns the task execution plan that achieves 𝑑𝑝 [𝑑𝑖 ,𝑊𝑖 ]. Line
14 returns the optimal task execution plan across all labor vendors
and the corresponding value of 𝐹 (𝑖𝑙).

3.4 Online Pricing
If a task 𝑖 is admitted and executed using a schedule 𝑙 , i.e., 𝐹 (𝑖𝑙) > 0,
then the user 𝑖 needs to pay 𝑝𝑖 to the service.We design the payment
𝑝𝑖 as

𝑝𝑖 =
∑

𝑛𝑧𝑖𝑛𝑝𝑖𝑛 + max
(𝑘,𝑡 )∈𝑙

{𝜆
(𝑖−1)
𝑘𝑡

}
∑

𝑘
∑

𝑡𝑠𝑖𝑘𝑥𝑖𝑘𝑡

+ max
(𝑘,𝑡 )∈𝑙

{𝜑
(𝑖−1)
𝑘𝑡

}
∑

𝑘
∑

𝑡𝑟𝑖𝑥𝑖𝑘𝑡 , (14)

where the values of 𝑥𝑖𝑘𝑡 and 𝑧𝑖𝑛 are taken from the schedule 𝑙 . Recall
that (𝑘, 𝑡) ∈ 𝑙 refers those 𝑘 and 𝑡 with 𝑥𝑖𝑘𝑡 = 1 in the schedule 𝑙 . We

treat max(𝑘,𝑡 )∈𝑙 {𝜆
(𝑖−1)
𝑘𝑡

} and max(𝑘,𝑡 )∈𝑙 {𝜑
(𝑖−1)
𝑘𝑡

} as the marginal
price of computation and memory resources after handling the task
𝑖 − 1, respectively. The bidding price affects whether a bid wins in
the auction or not, and if it wins, we set the corresponding payment

for this bid as only based on its consumed resources, not depending
on the bidding price any more. We note that the payment can also

be written as 𝑝𝑖 =
∑

𝑛𝑧𝑖𝑛𝑝𝑖𝑛 + max(𝑘,𝑡 )∈𝑙 {𝜆
(𝑖−1)
𝑘𝑡

}
∑

𝑘
∑

𝑡𝑠𝑘𝑡 (𝑖𝑙) +

max(𝑘,𝑡 )∈𝑙 {𝜑
(𝑖−1)
𝑘𝑡

}
∑

𝑘
∑

𝑡𝑟𝑘𝑡 (𝑖𝑙). As shown in Theorems 3 and 4,
this payment design ensures the expected economic properties of
truthfulness and individual rationality.

4 PERFORMANCE ANALYSIS

4.1 Intractability
Theorem 1. Our problem (4) is NP-hard.

Proof. Our problem contains the well-known 0-1 knapsack
problem, and is thus NP-hard. To see this, we focus on the de-
cision variables 𝑢𝑖 , ∀𝑖 . Joining Constraints (4e) and (4f), we get
∑

𝑖𝑀𝑖𝑢𝑖 ≤ 𝑇 ·
∑

𝑘𝐶𝑘𝑝 . That is, for the “item” 𝑖 , we consider 𝑀𝑖 as
the “weight” and 𝑏𝑖 in the objective function as the “value”; we also
consider𝑇 ·

∑

𝑘𝐶𝑘𝑝 as the capacity of the “knapsack” in terms of the
total tolerable weight. Therefore, we have the 0-1 knapsack prob-
lem of selecting and placing items into the knapsack to maximize
the total value while respecting the knapsack’s capacity, after we
ignore all other terms and constraints. !

4.2 Time Complexity
Theorem 2. Our algorithms finish in polynomial time.

Proof. Our approach consists of two algorithms, where Algo-
rithm 1 invokes Algorithm 2. We consider the key steps for each
algorithm. For the “findSchedule” function in Algorithm 2, the “for"
loop in Line 8, Line 9, and Line 10 iterates at most𝑊 ,𝑇 , and 𝐾
times, respectively. Line 12 runs in 𝑂 (𝐾). Then, the “findSched-
ule” function runs in 𝑂 (𝑊𝑇𝐾). Line 3 in Algorithm 2 invokes the
“findSchedule” function for each labor vendor 𝑛. Thus, overall, the
Algorithm 2 runs in 𝑂 (𝑁𝑊𝑇𝐾). Algorithm 1 invokes Algorithm
2 for each task, and thus the time complexity of Algorithm 1 is
𝑂 (𝐼𝑁𝑊𝑇𝐾). !

4.3 Truthfulness and Individual Rationality
We formally define the utility of a bid, based on which we further
formally define and prove the economic properties of truthfulness
and individual rationality achieved by our proposed algorithms.

Definition 1. Utility: The utility of a bid 𝑖 is

𝑈𝑖 (𝑏𝑖 ) =

{

𝑣𝑖 − 𝑝𝑖 , if 𝑢𝑖 = 1

0, if 𝑢𝑖 = 0
(15)

where 𝑏𝑖 is the bidding price; 𝑣𝑖 is the true valuation of the bid 𝑖 ;
𝑝𝑖 is the payment made to the auctioneer if the bid 𝑖 is a winning
bid; 𝑢𝑖 represents whether the bid 𝑖 is chosen as a winning bid by the
auctioneer. Note that 𝑢𝑖 is ultimately a function of 𝑏𝑖 .

Definition 2. Truthfulness: An auction is truthful if every bid
maximizes its utility by bidding the true valuation, i.e., for all 𝑏𝑖 ≠ 𝑣𝑖 ,
𝑈𝑖 (𝑣𝑖 ) ≥ 𝑈𝑖 (𝑏𝑖 ), ∀𝑖 .

Theorem 3. Our online auction is truthful.
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Proof. Each task (or bid) 𝑖 can be either admitted (i.e., chosen
as a winning bid) or rejected (i.e., not chosen as a winning bid). We
analyze these two cases respectively as follows.

When the task 𝑖 is rejected with a bidding price 𝑣𝑖 , i.e., all sched-
ules make 𝐹 (𝑖𝑙) as in (10) less than 0, we have 𝑢𝑖 = 0 and𝑈𝑖 (𝑣𝑖 ) = 0.
Recall that 𝐹 (𝑖𝑙) is essentially 𝑏𝑖 −𝑝𝑖 , thus this rejected task 𝑖 makes
𝑣𝑖 − 𝑝𝑖 < 0. Now, if the task 𝑖 bids 𝑏𝑖 < 𝑣𝑖 , it is obvious that 𝐹 (𝑖𝑙)
remains less than 0 and we have 𝑢𝑖 = 0 and 𝑈𝑖 (𝑏𝑖 ) = 0. If the
task 𝑖 bids 𝑏𝑖 > 𝑣𝑖 , then there could be a chance for this task to be
admitted; yet,𝑈𝑖 (𝑏𝑖 ) decreases due to 𝑣𝑖 − 𝑝𝑖 < 0.

When the task 𝑖 is admitted with a bidding price of 𝑣𝑖 , i.e., the
optimal schedule generated by our algorithms makes 𝐹 (𝑖𝑙) greater
than 0, then we have 𝑣𝑖 − 𝑝𝑖 > 0, 𝑢𝑖 = 1, and𝑈𝑖 (𝑣𝑖 ) = 𝑣𝑖 − 𝑝𝑖 . Now,
if the task 𝑖 bids 𝑏𝑖 < 𝑣𝑖 ,𝑈𝑖 (𝑏𝑖 ) would not increase. Even worse, it
may lead to the task 𝑖 being rejected and reducing𝑈𝑖 (𝑏𝑖 ) to zero. If
the task 𝑖 bids 𝑏𝑖 > 𝑣𝑖 , 𝐹 (𝑖𝑙) would still be greater than 0 and thus
we continue to have 𝑢𝑖 = 1, and𝑈𝑖 (𝑏𝑖 ) = 𝑣𝑖 − 𝑝𝑖 .

In both cases as analyzed above, we have𝑈𝑖 (𝑣𝑖 ) ≥ 𝑈𝑖 (𝑏𝑖 ), ∀𝑖 . !

Definition 3. Individual Rationality: An auction is individu-
ally rational if every bid always has non-negative utility regardless of
the auction outcome, i.e., for any 𝑏𝑖 , we always have𝑈𝑖 (𝑏𝑖 ) ≥ 0, ∀𝑖 .

Theorem 4. Our online auction is individually rational.

Proof. Recall that 𝐹 (𝑖𝑙) is essentially𝑏𝑖−𝑝𝑖 . From Theorem 3we
know that all bids bid truthfully, and thus 𝐹 (𝑖𝑙) = 𝑣𝑖 −𝑝𝑖 . Algorithm
1 ensures that for each admitted task 𝑖 , 𝐹 (𝑖𝑙) > 0. Therefore, we
have the bid 𝑖’s utility as𝑈𝑖 (𝑣𝑖 ) = 𝑣𝑖 −𝑝𝑖 > 0. If the task 𝑖 is rejected,
then the utility is always set to zero. Therefore, a bid always has
non-negative utility regardless of the auction outcome. !

4.4 Competitive Ratio
The competitive ratio characterizes the multiplicative gap between
the objective function value evaluated with the online solutions and
that evaluated with the offline optimal solutions. Online solutions
are produced by online algorithms on the fly as time goes as the
inputs are gradually observed, and the offline optimal solutions are
computed by solving the problem optimally at hindsight assuming
all the inputs over the entire time horizon are observed all at once.

Definition 4. Competitive Ratio: Let𝑂𝑃𝑇 be the offline optimal
objective value of the problem 𝑃 . Let 𝑃 𝐼 be the objective value of 𝑃
from our online approach after it handles all the 𝐼 tasks. Our online
approach has the competitive ratio 𝛾 if there exits a constant 𝛾 ≥ 1 so
that 𝑃 𝐼 ≥ 1

𝛾𝑂𝑃𝑇 always holds regardless of the inputs to 𝑃 .

Theorem 5. Our proposed online approach has the competitive
ratio 𝛾 = 𝜌 (1 +max{𝛼, 𝛽}) for the problem 𝑃 , i.e., the problem (4).

Proof. We place all the related lemmas and the details of this
proof in the Appendix. We actually follow the roadmap below:

𝑃 𝐼 = 𝑃 𝐼1 ≥
1

𝜌
𝑃 𝐼1 ≥

1

𝜌

1

1 +max{𝛼, 𝛽}
𝐷𝐼1 ≥

1

𝜌 (1 +max{𝛼, 𝛽})
𝑂𝑃𝑇 .

(16)

𝑃 𝐼 , 𝑃 𝐼1 , and 𝐷
𝐼
1 are the objective values of the problems 𝑃 , 𝑃1 and

𝐷1, respectively, after handling all 𝐼 tasks. We use 𝑃 𝐼1 to represent
the objective value of a virtual almost-feasible problem, which

assists this proof. The equality in (16) holds since the problem 𝑃 is
equivalent to the problem 𝑃1. The first inequality in (16) is due to
Lemma 3. The second inequality in (16) is due to Lemma 1. Lemma 4
indicates that the value of 𝐷𝐼 is attained by a dual feasible solution.
The last inequality in (16) holds due to weak duality. !

5 EXPERIMENTAL EVALUATIONS

5.1 Evaluation Settings
Cloud Service Settings: We consider the entire system operating
in one day, which is 144 time slots with each time slot lasting
for 10 minutes. We investigate a cloud data center of different
scales from 50 to 200 compute nodes. Regarding the compute node
capacity of nodes, we use two types of compute nodes, including
the A100(80GB) and A40(48GB). In addition, we also considered
the scenario where a mix of these two types of GPUs forms a
heterogeneous computing environment. We implement the trace-
driven fine-tuning task scheduling simulation system using Python
on a server with Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz
running Ubuntu 20.04.6 LTS.

Fine-Tuning Tasks: To obtain the values of experimental pa-
rameters, including 𝑟𝑖 , 𝑟𝑏 , 𝑠𝑖𝑘 , 𝐶𝑘𝑝 and 𝐶𝑘𝑚 , we finetune GPT-2
model using LoRA on the NVIDIA A100(80GB) GPU and A40(48GB)
GPU, respectively. We record the amount of computation (num-
ber of data samples) within a time slot that the GPU can process
under different batch size values. For each time slot, the number
of fine-tuning tasks arrived online is based on three public real-
world traces, including MLaaS[26], Philly[12], and Helios[7], and
our synthetic traces. The number of epochs of each task is gener-
ated randomly between 1 and 5. Note that in fine-tuning tasks, we
usually only need a few epochs to obtain a satisfactory downstream
model. Referring to publicly available datasets such as Samsum, we
randomly generate the number of training data for each user based
on a uniform distribution between [5,20]k.

Algorithms for Comparison: We implement and compare
our approach, pdFTSP (Online primal-dual based Fine-Tuning
Task Scheduling and Pricing), against the following alternatives:
(i) Titan[4]: Titan schedules fine-tuning tasks based on solving an
offline MILP problem, and thus only works in offline scenarios. To
adapt it to our online scenario, we solve the MILP via Gurobi at the
beginning of each time slot for the tasks arrived at the beginning
of the time slot. Additionally, we allow Titan to select the labor
vendor in the marketplace randomly; (ii) EFT (Earliest Finish
Time): For each task, EFT chooses the labor vendor with the lowest
delay for data pre-processing in the marketplace. EFT allocates
the computation of the incoming task to the compute nodes at the
time slots where the task can be finished as soon as possible; (iii)
NTM (No Task Merging): For each task, NTM chooses the labor
vendor in the marketplace randomly. In NTM, there is only one
task can be executed on each compute node at each time. NTM also
allocates the computation to the compute nodes so that the task
can be finished as soon as possible.

5.2 Evaluation Results
Impact of System Scale: Figure 4 illustrates the impact of the
number of compute nodes on normalized social welfare. As the
number of computing nodes increases, more tasks can be processed,
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Figure 4: Impact of Data Cen-
ter Scale

Figure 5: Impact of Number of
Labor Vendors

Figure 6: Impact of Per-Node
Capacity

Figure 7: Impact of Real-World
Task Traces

Figure 8: Impact of Task Dy-
namics

Figure 9: Impact of Task Dead-
lines

Figure 10: Truthfulness Figure 11: Individual Rational-
ity

Figure 12: Competitiveness Figure 13: Running time

and thus social welfare grows accordingly. When the tested num-
ber of compute nodes is 50, the performance improvements over
Titan, EFT, and NTM are 30.78%, 137.35%, and 155.84%, respectively.
Additionally, in Figure 5, we vary the number of labor vendors in
the marketplace. The social welfare value increases slightly as the
number of labor vendors increases, since we have more choices for
data pre-processing for the fine-tuning tasks. Figure 6 describes
the social welfare values of four algorithms when we change the
resource capacity of compute nodes. The resource capacities for
these compute nodes in the first two sets of experiments are based
on the NVIDIA A100(80GB)GPU and A40(48GB) GPU, respectively.
Due to the stronger computation capacity of the A100, the first
set of experiments achieve higher social welfare values than the
second. In the third set of experiments of mixed GPUs, pdFTSP
consistently achieves the best social welfare.

Impact of Task Dynamics and Deadlines:We simulate the
task dynamics by using both real-world and synthetic traces, and
the results are shown in Figures 7 and 8, respectively. We can
observe that our proposed pdFTSP consistently outperforms three
baseline algorithms when tested with three real-world traces. For
the synthetic traces, we generate the number of arrived tasks at the
beginning of each time slot following the Poisson process. The light,
medium, and high workload correspond to the Poisson process with
average value 30, 50 and 80, respectively. The proposed pdFTSP
achieves more performance improvement as workload increases.

Specifically, in high workload scenario, the improvement is 48.99%,
151.57%, and 184.94% when compared to Titan, EFT, and NTM,
respectively. Figure 9 depicts the algorithms’ performance with
different methods for generating deadlines, and the pdFTSP still
achieves the best performance.

Truthfulness and Individual Rationality: Figure 10 confirms
the truthfulness of the proposed approach, where we consider a
bid randomly drawn from our experiments. The true valuation is
15, and the optimal schedule returned by Algorithm 2 incurs a total
expanse of 10. As shown, the bidding price only affects the auction
outcome of whether a bid wins, while bidding the true valuation
always yields the maximum utility. In Figure 11, we randomly
sample 10 tasks, and illustrate the users’ bids and their payments.
We see that the bid is always higher than its payment, indicating
the non-negative utility and thus the individual rationality.

Competitive Ratio: Figure 12 evaluates the empirical competi-
tive ratio, which is the ratio of the social welfare achieved by offline
optimum to that achieved by our online solution. We obtain the
offline optimum via Gurobi solver. Results demonstrate that the
proposed algorithm pdFTSP achieves empirical competitive ratios
of no more than 3 in the various settings.

Algorithm Runtime: Figure 13 demonstrates the runtime of
pdFTSP and Titan when scheduling a single fine-tuning task in the
scenario of 100 compute nodes. Since Titan solves a MILP that in-
cludes multiple tasks at the beginning of each time slot, we average
the Gurobi solver’s runtime over the number of tasks. This figure
shows that pdFTSP has a shorter algorithm runtime, and Titan’s
runtime becomes worse as the problem size grows.

6 RELATEDWORK
To the best of our knowledge, Titan [4] is currently the only sched-
uler tailored for fine-tuning tasks in the GPU clusters. Titan formu-
lates the fine-tuning task scheduling problem as a Mixed Integer
Linear Program (MILP), and uses an MILP solver. However, it takes
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relatively long time to find the solution as the problem scales up.
Titan assumes the jobs’ arrival information is known in prior, and
thus cannot perform well in the online scenario. It also ignores the
pricing issue and cannot achieve joint pricing and scheduling.

As for existing conventional deep learning job schedulers in data
centers, AFS [11] leverages elastic resource sharing to reduce the
average job completion time. However, the gain comes from the
long processing time (e.g., up to 2.8 days), which is not suitable for
our LoRA-based fine-tuning tasks that can be completed within
hours. Optimus [19] uses online fitting to estimate training speed,
minimizing the job completion time by joint resource allocation
and task placement. Themis [16] targets fairness scheduling based
on the sharing incentive metric and uses an auction to allocate
resources. These works, as well as other existing schedulers [14, 20,
22, 25, 30, 32], focus on traditional metrics such as time efficiency,
training throughput, and fairness, ignoring the important joint
pricing and scheduling problem and the challenges brought by task
deadlines. Eris [18] prices and schedules deep learning tasks in edge
networks based on auctions, which could be the most similar to our
work. But it ignores the multi-LoRA paradigm, the ever-changing
operational cost, and the data pre-processing decisions.

7 CONCLUSION
Scheduling and pricing fine-tuning tasks with large pre-trained
models is an increasingly important issue that needs to be addressed
by cloud services in the AI era. This paper presents our mathemati-
cal study toward this direction. We conduct auction-based social
welfare optimization and propose online algorithms from the cloud
service’s perspective to schedule and price each fine-tuning task as
it arrives. Our work features the provable optimization guarantees
and economic properties, and the thorough numerical evaluations
that validate our design. For future work, we intend to extend our
study to serving fine-tuning tasks with paradigms beyond LoRA.
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A APPENDIX
Lemma 1. (Relationship between Almost-Feasible problem and

dual problem.) 𝑃 𝐼1 ≥ 1
1+max{𝛼,𝛽 }𝐷

𝐼
1.

Proof. We first define two types of conditions for each task 𝑖 to
assist in the proof: (i) Almost-Feasible Condition: 𝐹 (𝑖𝑙) > 0;
(ii) Feasible Condition: (𝐹 (𝑖𝑙) > 0) ∧ (

∑𝑖
𝑖′=1

∑

𝑙𝑥𝑖′𝑙𝑠𝑘𝑡 (𝑖
′𝑙) ≤

𝐶𝑘𝑝 ,∀𝑘, 𝑡) ∧ (
∑𝑖
𝑖′=1

∑

𝑙𝑥𝑖′𝑙𝑟𝑘𝑡 (𝑖
′𝑙) + 𝑟𝑏 ≤ 𝐶𝑘𝑚,∀𝑘, 𝑡). In Algorithm

1, line 6 checks Almost-Feasible Condition , while line 6 and line
8 together check Feasible Condition. We refer to the solution gen-
erated by the Almost-Feasible Condition as the almost-feasible
primal solution. Likewise, the solution generated by the Feasi-
ble Condition is called the feasible primal solution. An almost-
feasible primal solution can be easily transformed into a feasible
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primal solution by simply not executing tasks that satisfy line 6
but not line 8 in Algorithm 1. Let 𝑃𝑖1 denote the objective func-
tion value of problem 𝑃1 after processing task 𝑖 achieved by the
almost-feasible primal solution. Denote𝐷𝑖1 as the objective function
value of dual problem 𝐷1 after processing task 𝑖 . In this lemma,
we will specify the relationship between 𝑃 𝐼1 and 𝐷𝐼1. Let 𝑆𝑎 ⊂
[𝐼 ] be the set of tasks that satisfy the Almost-Feasible Condition,
i.e., 𝐹 (𝑖𝑙) > 0,∀𝑖 ∈ 𝑆𝑎 . Let 𝑆𝑟 = [𝐼 ]\𝑆𝑎 be the set of tasks that
the Almost-Feasible Condition directly rejects. For task 𝑖 ∈ 𝑆𝑟 ,
𝑃𝑖1 − 𝑃

𝑖−1
1 = 0, 𝐷𝑖1 − 𝐷

𝑖−1
1 = 0. For task 𝑖 ∈ 𝑆𝑎 , suppose that the op-

timal schedule generated by the online approach (Algorithm 2) is 𝑙 ,

then 𝑃𝑖1−𝑃
𝑖−1
1 = 𝑏𝑖𝑙 . We also have𝐷𝑖1−𝐷

𝑖−1
1 = 𝜇𝑖 +

∑

𝑘
∑

𝑡𝐶𝑘𝑝 (𝜆
(𝑖 )
𝑘𝑡

−

𝜆
(𝑖−1)
𝑘𝑡

)+
∑

𝑘
∑

𝑡 (𝐶𝑘𝑚−𝑟𝑏 ) (𝜑
(𝑖 )
𝑘𝑡

−𝜑
(𝑖−1)
𝑘𝑡

). Equation (11) indicates that
for the selected optimal schedule 𝑙 and 𝐹 (𝑖𝑙) > 0, 𝜇𝑖 = 𝐹 (𝑖𝑙) ≤ 𝑏𝑖𝑙 −
∑

𝑘
∑

𝑡 :𝑡 ∈𝑙 (𝑠𝑘𝑡 (𝑖𝑙)𝜆
(𝑖−1)
𝑘𝑡

+ 𝑟𝑘𝑡 (𝑖𝑙)𝜑
(𝑖−1)
𝑘𝑡

) . Additionally, from equa-

tion (7) and (8) we have 𝜆 (𝑖 )
𝑘𝑡

−𝜆
(𝑖−1)
𝑘𝑡

= 𝜆
(𝑖−1)
𝑘𝑡

𝑠𝑘𝑡 (𝑖𝑙 )
𝐶𝑘𝑝

+𝛼 (
𝑏𝑖𝑙𝑠𝑘𝑡 (𝑖𝑙 )
𝐶𝑘𝑝

),

𝜑
(𝑖 )
𝑘𝑡

− 𝜑
(𝑖−1)
𝑘𝑡

= 𝜑
(𝑖−1)
𝑘𝑡

𝑟𝑘𝑡 (𝑖𝑙 )
𝐶𝑘𝑚−𝑟𝑏

+ 𝛽 (
𝑏𝑖𝑙𝑟𝑘𝑡 (𝑖𝑙 )
𝐶𝑘𝑚−𝑟𝑏

). Next, we substitute

𝜇𝑖 , 𝜆
(𝑖 )
𝑘𝑡

− 𝜆
(𝑖−1)
𝑘𝑡

and 𝜑 (𝑖 )
𝑘𝑡

− 𝜑
(𝑖−1)
𝑘𝑡

in 𝐷𝑖1 − 𝐷
𝑖−1
1 with the above

results. Then we get 𝐷𝑖1−𝐷
𝑖−1
1 ≤ 𝑏𝑖𝑙 +

∑

𝑘
∑

𝑡𝛼 ·𝑏𝑖𝑙 ·𝑠𝑘𝑡 (𝑖𝑙) +
∑

𝑘
∑

𝑡 𝛽 ·

𝑏𝑖𝑙 · 𝑟𝑘𝑡 (𝑖𝑙). Recall that 𝑏𝑖𝑙 =
𝑏𝑖𝑙

∑

𝑘
∑

𝑡𝑠𝑘𝑡 (𝑖𝑙 )+𝑟𝑘𝑡 (𝑖𝑙 )
. Thus 𝐷𝑖1 − 𝐷

𝑖−1
1 ≤

𝑏𝑖𝑙+max{𝛼, 𝛽}𝑏𝑖𝑙 = (1+max{𝛼, 𝛽})𝑏𝑖𝑙 = (1+max{𝛼, 𝛽})(𝑃𝑖1−𝑃
𝑖−1
1 ).

The initial values 𝑃01 = 𝐷0
1 = 0. Therefore, 𝑃 𝐼1 = 𝑃01 +

∑

𝑖∈𝑆𝑎 (𝑃
𝑖
1 −

𝑃𝑖−11 ) =
∑

𝑖∈𝑆𝑎 (𝑃
𝑖
1 − 𝑃𝑖−11 ) ≥

∑

𝑖∈𝑆𝑎
1

(1+max{𝛼,𝛽 }) (𝐷
𝑖
1 − 𝐷𝑖−11 ) =

1
(1+max{𝛼,𝛽 }) (𝐷

𝐼
1 − 𝐷

0
1) =

1
(1+max{𝛼,𝛽 })𝐷

𝐼
1.

!

Lemma 2. (Capacity control.) Assume𝑏𝑖𝑙 ≥ 1,∀𝑖, 𝑙 , let𝛼 = max𝑖 {
𝑏𝑖
𝑀𝑖

}

and 𝛽 = max𝑖 {
𝑏𝑖
𝑟𝑖
}, then for any task 𝑖 and its corresponding optimal

schedule 𝑙 generated by Algorithm 2, if there exists a pair of (𝑘, 𝑡)
resulting in

∑𝑖
𝑖′=1

∑

𝑙𝑥𝑖′𝑙𝑠𝑘𝑡 (𝑖
′𝑙) ≥ 𝐶𝑘𝑝 or

∑𝑖
𝑖′=1

∑

𝑙𝑥𝑖′𝑙𝑟𝑘𝑡 (𝑖
′𝑙) + 𝑟𝑏 ≥

𝐶𝑘𝑚 , then no future task would be scheduled to execute on compute
node 𝑘 at time 𝑡 .

Proof. Since𝑏𝑖𝑙 =
𝑏𝑖𝑙

∑

𝑘
∑

𝑡𝑠𝑘𝑡 (𝑖𝑙 )+𝑟𝑘𝑡 (𝑖𝑙 )
, then the assumption𝑏𝑖𝑙 ≥

1 is equivalent to say that there is a lower bound on the min-
imum wage, which is commonly used as in [13], since we can
scale the units of 𝑏𝑖𝑙 , 𝑠𝑘𝑡 (𝑖𝑙) and 𝑟𝑘𝑡 (𝑖𝑙). According to (7), we have

𝜆
(𝑖 )
𝑘𝑡

+ 𝛼 = 𝜆
(𝑖−1)
𝑘𝑡

(1 +
𝑠𝑘𝑡 (𝑖𝑙 )
𝐶𝑘𝑝

) + 𝛼 (
𝑏𝑖𝑙𝑠𝑘𝑡 (𝑖𝑙 )
𝐶𝑘𝑝

) + 𝛼 = 𝜆
(𝑖−1)
𝑘𝑡

(1 +

𝑠𝑘𝑡 (𝑖𝑙 )
𝐶𝑘𝑝

) + 𝛼 (1 +
𝑏𝑖𝑙𝑠𝑘𝑡 (𝑖𝑙 )
𝐶𝑘𝑝

). Since 𝑏𝑖𝑙 ≥ 1, we can obtain 𝜆 (𝑖 )
𝑘𝑡

+ 𝛼 ≥

(𝜆
(𝑖−1)
𝑘𝑡

+ 𝛼) (1 +
𝑠𝑘𝑡 (𝑖𝑙 )
𝐶𝑘𝑝

) ≥ (𝜆
(𝑖−1)
𝑘𝑡

+ 𝛼)2
𝑠𝑘𝑡 (𝑖𝑙 )

𝐶𝑘𝑝 , where the last

inequality is due to 1 + 𝑥 ≥ 2𝑥 for 𝑥 ∈ [0, 1]. Using the above
formula recursively until we reach the initial status, then we get

𝜆
(𝑖 )
𝑘𝑡

+𝛼 ≥ (𝜆
(0)
𝑘𝑡

+𝛼)2

∑𝑖
𝑖′=1

∑

𝑙 𝑥𝑖′𝑙 𝑠𝑘𝑡 (𝑖𝑙 )

𝐶𝑘𝑝 . Likewise, according to (8), we

have 𝜑 (𝑖 )
𝑘𝑡

+ 𝛽 ≥ (𝜑
(0)
𝑘𝑡

+ 𝛽)2

∑𝑖
𝑖′=1

∑

𝑙 𝑥𝑖′𝑙 𝑟𝑘𝑡 (𝑖𝑙 )

𝐶𝑘𝑚−𝑟𝑏 . If a task 𝑖 with sched-
ule 𝑙 makes the allocation results exceed the resource capacity, i.e.,
∑𝑖
𝑖′=1

∑

𝑙𝑥𝑖′𝑙𝑠𝑘𝑡 (𝑖
′𝑙) ≥ 𝐶𝑘𝑝 or

∑𝑖
𝑖′=1

∑

𝑙𝑥𝑖′𝑙𝑟𝑘𝑡 (𝑖
′𝑙) + 𝑟𝑏 ≥ 𝐶𝑘𝑚 , then

we have either
∑𝑖
𝑖′=1

∑

𝑙𝑥𝑖′𝑙𝑠𝑘𝑡 (𝑖
′𝑙 ′ )

𝐶𝑘𝑝
≥ 1 or

∑𝑖
𝑖′=1

∑

𝑙𝑥𝑖′𝑙𝑟𝑘𝑡 (𝑖
′𝑙 ′ )

𝐶𝑘𝑚−𝑟𝑏
≥ 1. Thus

we have either 𝜆 (𝑖 )
𝑘𝑡

+ 𝛼 ≥ (𝜆
(0)
𝑘𝑡

+ 𝛼) · 2 or 𝜑 (𝑖 )
𝑘𝑡

+ 𝛽 ≥ (𝜑
(0)
𝑘𝑡

+ 𝛽) · 2.

Recall that the initial values 𝜆 (0)
𝑘𝑡

= 𝜑
(0)
𝑘𝑡

= 0. Then we have

either 𝜆 (𝑖 )
𝑘𝑡

≥ 𝛼 or 𝜑 (𝑖 )
𝑘𝑡

≥ 𝛽 . Recall that 𝛼 = max𝑖 {
𝑏𝑖
𝑀𝑖

} and

𝛽 = max𝑖 {
𝑏𝑖
𝑟𝑖
}. When 𝜆 (𝑖 )

𝑘𝑡
≥ 𝛼 , for any future task 𝑖 , if a schedule

𝑙 contains executing the task 𝑖 on compute node 𝑘 at time slot 𝑡 ,

then the resource pricemax(𝑘,𝑡 )∈𝑙 {𝜆
(𝑖 )
𝑘𝑡

} ≥ 𝜆
(𝑖 )
𝑘𝑡

= 𝛼 . Thus we have

𝐹 (𝑖𝑙) = 𝑏
𝑖𝑙
− 𝑀𝑖 max(𝑘,𝑡 )∈𝑙 {𝜆

(𝑖 )
𝑘𝑡

} ≤ 𝑏𝑖 − 𝑀𝑖𝜆
(𝑖 )
𝑘𝑡

= 𝑏𝑖 − 𝑀𝑖𝛼 < 0.

Therefore, we have 𝐹 (𝑖𝑙) < 0, and hence, the future task 𝑖 would not

be allocated to compute node 𝑘 at time slot 𝑡 . Likewise,𝜑 (𝑖 )
𝑘𝑡

≥ 𝛽 and

𝛽 = max𝑖 {
𝑏𝑖
𝑟𝑖
} also incurs the future task 𝑖 would not be allocated

to compute node 𝑘 at time slot 𝑡 . !

Lemma 3. (Relationship between primal problem and Almost-Feasible

problem.) 𝑃 𝐼1 ≥ 1
𝜌 𝑃

𝐼
1 , where 𝜌 = 1+max{

𝑏𝑖𝑙 ,𝑚𝑎𝑥
𝑏𝑖𝑙 ,𝑚𝑖𝑛

𝑠𝑖𝑘,𝑚𝑎𝑥
𝑠𝑖𝑘,𝑚𝑖𝑛

,
𝑏𝑖𝑙 ,𝑚𝑎𝑥
𝑏𝑖𝑙 ,𝑚𝑖𝑛

𝑟𝑖,𝑚𝑎𝑥
𝑟𝑖,𝑚𝑖𝑛

}.

Proof. Let 𝑆𝑎 and 𝑆𝑐 be the set of accepted tasks filtered by
Almost-Feasible Condition and Feasible Condition, respectively.
Then we have 𝑆𝑐 ⊂ 𝑆𝑎 . Note that we can convert the almost-feasible
solution to the feasible solution by simply not executing the tasks in
𝑆𝑎 \𝑆𝑐 . We use 𝑃 𝐼1 and 𝑃

𝐼
1 to represent the objective value of problem

𝑃1 after processing all 𝐼 incurred by almost-feasible solution and
feasible solution, respectively. Then
𝑃 𝐼1
𝑃 𝐼1

=

∑

𝑖∈𝑆𝑎
∑

𝑙𝑥𝑖𝑙𝑏𝑖𝑙
∑

𝑖∈𝑆𝑐
∑

𝑙𝑥𝑖𝑙𝑏𝑖𝑙
=

∑

𝑖∈𝑆𝑐
∑

𝑙𝑥𝑖𝑙𝑏𝑖𝑙+
∑

𝑖∈𝑆𝑎\𝑆𝑐
∑

𝑙𝑥𝑖𝑙𝑏𝑖𝑙
∑

𝑖∈𝑆𝑐
∑

𝑙𝑥𝑖𝑙𝑏𝑖𝑙
= 1+

∑

𝑖∈𝑆𝑎\𝑆𝑐
∑

𝑙𝑥𝑖𝑙𝑏𝑖𝑙
∑

𝑖∈𝑆𝑐
∑

𝑙𝑥𝑖𝑙𝑏𝑖𝑙

= 1 +
∑

𝑖∈𝑆𝑎\𝑆𝑐
∑

𝑙𝑥𝑖𝑙𝑏𝑖𝑙
∑

𝑘
∑

𝑡 (𝑠𝑘𝑡 (𝑖𝑙 )+𝑟𝑘𝑡 (𝑖𝑙 ) )
∑

𝑖∈𝑆𝑐
∑

𝑙𝑥𝑖𝑙𝑏𝑖𝑙
∑

𝑘
∑

𝑡 :𝑡 ∈𝑙 (𝑠𝑘𝑡 (𝑖𝑙 )+𝑟𝑘𝑡 (𝑖𝑙 ) )

= 1 +
∑

𝑘
∑

𝑡
∑

𝑖∈𝑆𝑎\𝑆𝑐
∑

𝑙𝑥𝑖𝑙𝑏𝑖𝑙 (𝑠𝑘𝑡 (𝑖𝑙 )+𝑟𝑘𝑡 (𝑖𝑙 ) )
∑

𝑘
∑

𝑡
∑

𝑖∈𝑆𝑐
∑

𝑙𝑥𝑖𝑙𝑏𝑖𝑙 (𝑠𝑘𝑡 (𝑖𝑙 )+𝑟𝑘𝑡 (𝑖𝑙 ) )
. From Lemma 2 we know

that for any given 𝑘 and 𝑡 , the online algorithm ensures there is
at most only one task that would exceed the resource capacity.
Let 𝐻 (𝑘, 𝑡) represent the last task executed on compute node 𝑘

at time 𝑡 . Then,
𝑃 𝐼1
𝑃 𝐼1

≤ 1 +
∑

𝑘
∑

𝑡
∑

𝑙𝑥𝑖𝑙𝑏𝐻 (𝑘,𝑡 )𝑙 (𝑠𝑘𝑡 (𝑖𝑙 )+𝑟𝑘𝑡 (𝑖𝑙 ) )
∑

𝑘
∑

𝑡
∑

𝑖∈𝑆𝑐
∑

𝑙𝑥𝑖𝑙𝑏𝑖𝑙 (𝑠𝑘𝑡 (𝑖𝑙 )+𝑟𝑘𝑡 (𝑖𝑙 ) )
≤ 1 +

max(𝑘,𝑡 ) {max{
∑

𝑙𝑥𝑖𝑙𝑏𝐻 (𝑘,𝑡 )𝑙𝑠𝑘𝑡 (𝑖𝑙 )
∑

𝑖∈𝑆𝑐
∑

𝑙𝑥𝑖𝑙𝑏𝑖𝑙𝑠𝑘𝑡 (𝑖𝑙 )
,

∑

𝑙𝑥𝑖𝑙𝑏𝐻 (𝑘,𝑡 )𝑙𝑟𝑘𝑡 (𝑖𝑙 )
∑

𝑖∈𝑆𝑐
∑

𝑙𝑥𝑖𝑙𝑏𝑖𝑙𝑟𝑘𝑡 (𝑖𝑙 )
}} ≤

1+max{
𝑏𝑖𝑙 ,𝑚𝑎𝑥
𝑏𝑖𝑙 ,𝑚𝑖𝑛

𝑠𝑖𝑘,𝑚𝑎𝑥
𝑠𝑖𝑘,𝑚𝑖𝑛

,
𝑏𝑖𝑙 ,𝑚𝑎𝑥
𝑏𝑖𝑙 ,𝑚𝑖𝑛

𝑟𝑖,𝑚𝑎𝑥
𝑟𝑖,𝑚𝑖𝑛

}, where𝑏𝑖𝑙,𝑚𝑎𝑥 = max(𝑖,𝑙 ) {𝑏𝑖𝑙 }

and 𝑏𝑖𝑙,𝑚𝑖𝑛 = min(𝑖,𝑙 ) {𝑏𝑖𝑙 } are the maximum and minimum so-
cial welfare increment incurred by utilizing per unit of resource
per time slot; 𝑠𝑖𝑘,𝑚𝑎𝑥 = max(𝑖,𝑘 ) {𝑠𝑖𝑘 } and 𝑠𝑖𝑘,𝑚𝑖𝑛 = min(𝑖,𝑘 ) {𝑠𝑖𝑘 };
𝑟𝑖,𝑚𝑎𝑥 = max𝑖 {𝑟𝑖 } and 𝑟𝑖,𝑚𝑖𝑛 = min𝑖 {𝑟𝑖 }. Note that when the re-
source requirement of a task is far less than capacity, we have

𝑠𝑘𝑡 (𝑖𝑙 )
∑

𝑖∈𝑆𝑐
∑

𝑙𝑥𝑖𝑙𝑏𝑖𝑙𝑠𝑘𝑡 (𝑖𝑙 )
→ 0, and 𝑟𝑘𝑡 (𝑖𝑙 )

∑

𝑖∈𝑆𝑐
∑

𝑙𝑥𝑖𝑙𝑏𝑖𝑙𝑟𝑘𝑡 (𝑖𝑙 )
→ 0, then 𝜌 →

1. !

Lemma 4. (Dual Feasibility Guarantee.) 𝐷𝐼1 is the objective value
achieved by a dual feasible solution.

Proof. Suppose that ({𝜇𝑖 }𝑖 , {𝜆𝑘𝑡 }𝑘,𝑡 , {𝜑𝑘𝑡 }𝑘,𝑡 ) is a solution to
problem 𝐷1. We next determine the specific values of the above
variables while satisfying all the constraints of problem 𝐷1. Let

𝜆𝑘𝑡 = 𝜆
(𝐼 )
𝑘𝑡

,𝜑𝑘𝑡 = 𝜑
(𝐼 )
𝑘𝑡

,∀𝑘, 𝑡 . For each job 𝑖 , since we select the
schedule that achieves the maximum 𝐹 (𝑖𝑙), combining with 𝜆𝑘𝑡 and
𝜑𝑘𝑡 are monotonically increasing functions, i.e., 𝜆𝑖

𝑘𝑡
≤ 𝜆𝐼

𝑘𝑡
,𝜑𝑖
𝑘𝑡

≤

𝜑𝐼
𝑘𝑡
,∀𝑖,𝑘, 𝑡 , then the constraint (6a) is satisfied. Therefore, 𝐷𝐼1 is

the objective value achieved by the designed dual feasible solution

𝜇̃𝑖 = 𝜇𝑖 , 𝜆𝑘𝑡 = 𝜆
(𝐼 )
𝑘𝑡

, 𝜑𝑘𝑡 = 𝜑
(𝐼 )
𝑘𝑡

,∀𝑖,𝑘, 𝑡 . !
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