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Abstract—There has been significant interest in leveraging
limited look-ahead to achieve low competitive ratios for online
convex optimization (OCO). However, existing online algorithms
(such as Averaging Fixed Horizon Control (AFHC)) that can
leverage look-ahead to reduce the competitive ratios still produce
competitive ratios that grow unbounded as the coefficient ratio
(i.e., the maximum ratio of the switching-cost coefficient and
the service-cost coefficient) increases. On the other hand, the
regularization method can attain a competitive ratio that remains
bounded when the coefficient ratio is large, but it does not benefit
from look-ahead. In this paper, we propose a new algorithm,
called Regularization with Look-Ahead (RLA), that can get
the best of both AFHC and the regularization method, i.e., its
competitive ratio decreases with the look-ahead window size when
the coefficient ratio is small, and remains bounded when the
coefficient ratio is large. Moreover, we provide a matching lower
bound for the competitive ratios of all online algorithms with
look-ahead, which differs from the achievable competitive ratio
of RLA within a factor that only depends on the problem size.
Further, the competitive analysis of RLA involves a non-trivial
generalization of online primal-dual analysis to the case with
look-ahead.

Index Terms—Competitive analysis, look-ahead, online convex
optimization, regularization, switching costs.

I. INTRODUCTION

NLINE convex optimization (OCQO) problem with

switching costs has many applications in the context
of networking [2]-[6], cloud or edge computing [7]-[12],
cyber-physical systems [13]-[16], machine learning [17]-[21]
and beyond [22]-[24]. Typically, a decision maker and the
adversary (or environment) interact sequentially over time. At
each time t, after receiving the current input, the decision
maker must make a decision. This decision incurs a service
cost (that is a function of the current decision) and a switching
cost (that depends on the difference between the current
decision and the previous decision). In competitive OCO, the
goal is to design online algorithms with low competitive ratios.
The competitive ratio is defined as, over all possible input
sequences, the worst-case ratio between the total cost of an
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online algorithm and that of the optimal offline algorithm, who
knows the entire input sequence in advance [25, p. 3].

As a more concrete example (based on which we will
conduct a case study in Sec. VIII), the importance of online
decisions and switching costs can be seen in serverless com-
puting [26], [27]. In serverless computing, customers can dy-
namically invoke serverless functions on demand. Thus, from
the service provider’s point of view (who needs to manage,
i.e., start/stop, the actual instances executing these serverless
functions), the decision must be made in an online manner
without knowing the future demands. Further, whenever the
number of active instances is smaller than the requested
number, there will be a cold-start delay, which degrades
end-user experience and thus corresponds to switching costs.
Therefore, the online decisions of the service provider must
balance the service costs (of running the actual instances)
with the switching costs. Similar examples could also be
found in network functions virtualization (NFV) [5], online
geographical load balancing [2] and dynamic right-sizing in
data centers [3].

In the literature, many online algorithms with guaranteed
competitive ratios have been provided for OCO. For ex-
ample, [3], [13]-[15] provide online algorithms with con-
stant competitive ratios for some limited settings, e.g., 1-
dimensional OCO problems. However, for more general set-
tings and under no future information, the competitive ratios of
existing online algorithms [23], [28]-[30] depend on problem
parameters and can usually be quite large. This is not surpris-
ing because, when there is absolutely no future information, it
would be difficult to choose one online decision that is good
for all possible future inputs.

To overcome this difficulty, a recent line of work has
focused on how to utilize limited look-ahead information to
improve the competitive ratios of online algorithms [2], [9],
[31]-[33]. Here, look-ahead means that, at each time ¢, the
decision maker knows not only the current input, but also
the inputs of the immediately following K time-slots (i.e., a
look-ahead window of size K). Intuitively, as K increases, the
competitive ratios of online algorithms should become smaller.
The Averaging Fixed Horizon Control (AFHC) algorithm,
which was proposed in [2], achieves exactly that. Specifically,
assume that the service cost for each decision variable z,,(t)
is linear, i.e., ¢, (t)z,(t), and the switching cost for z,(t) is
in the form of wy, |2, (t) — 2, (t — 1)|, where ¢, (t) and w,, are
the service-cost and switching-cost coefficients, respectively.
Then, the competitive ratio of AFHC is 1 4+ max W

{n,t} “»
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In the rest of this paper, we define the “coefficient ratio” r.,

to be the maximum ratio of the switching-cost and service-

cost coefficients, i.e., Tco = inax c“’—(“t) Thus, for any fixed
n,t} "

coefficient ratio, the competitive }atio of AFHC decreases with
the look-ahead window size K.

However, what remains unsatisfactory is that the compet-
itive ratio of AFHC still grows with the coefficient ratio.
In other words, regardless of the size K of the look-ahead
window, as the coefficient ratio increases (e.g., some service-
cost coefficients ¢, (t) may be very close to 0), the competitive
ratio of AFHC will go to infinity. In a similar manner, the
competitive ratio of a related algorithm in [33] could also be
arbitrarily large when the coefficient ratio increases.

The above performance degradation when the coefficient
ratio is large leaves much to be desired. Indeed, even with
no look-ahead information, the regularization method [23]
can achieve a competitive ratio that is independent of the
coefficient ratio r,. Of course, the downside of the regu-
larization method of [23] is that it cannot leverage look-
ahead. Therefore, it would be much more desirable if we
can get the best of both worlds, i.e., achieve a competitive
ratio that both decreases with K when 7., is small (similar
to AFHC), and remains bounded when 7, is large (similar to
the regularization method). Our previous work [34] claimed
to achieve this by providing a (1 + %)-competitive online
algorithm. Unfortunately, there appears to be an error in the
proof so that the claimed competitive ratio does not hold.
(Indeed, as we show in Sec. III in this paper, no algorithms
can achieve a competitive ratio that low.) To the best of our
knowledge, it remains an open question how to combine the
strengths of both AFHC and the regularization method.

In this paper, we present new results that answer this open
question. We first focus on a more restrictive setting, where the
service cost is linear in the decision variables and the feasible
decisions are chosen from a convex set formed by fractional
covering constraints (see (1) for the specific form). While we
begin with this model for simplicity and ease of exposition, it
still captures the key features of practical problems [12], [22],
[23], [25], [28], [29], [35], [36] (i.e., the allocated resources
must meet the incoming demand).

Under this simplified model, our first contribution is to
provide a lower bound on the competitive ratio for all online
algorithms. Specifically, we show that, there exists instances
such that the competitive ratio cannot be lower than 1 +

logy, N .
2 L (K +1) log, N11)] where IV is the total number of the

decision variables. To the best of our knowledge, this is the
first such lower bound in the literature for OCO problems
with look-ahead. This lower bound reveals several important
insights. First, it is larger than 1 + % when r., is large,
indicating that the competitive results reported in [34] were
incorrect. Second, it reveals how the coefficient ratio r., affects
the fundamental limit that online decisions can benefit from
look-ahead. Specifically, if the size of the look-ahead window
K is much larger than the coefficient ratio r.,, the lower bound
will be driven to 1 as K increases (similar to AFHC). On the
other hand, if the size of the look-ahead window is much
smaller than the coefficient ratio, the lower bound will not be

close to 1. However, unlike AFHC, even when ., approaches
infinity, the lower bound remains at l—l—% logy N. This suggests
that one may indeed design online algorithms that can get the
best of both AFHC and the regularization method.

Inspired by the lower bound, our second important contribu-
tion is to provide a new online algorithm, called Regularization
with Look-Ahead (RLA), whose competitive ratio matches
with the lower bound up to a factor that only depends on the
problem size N and is independent of the coefficient ratio
Teo. Specifically, let n £ ln(Nje), where € is a positive
value chosen by RLA. We show that, when [r.,| < K + 1,
the competitive ratio of RLA is 1 + %, which
approaches 1 as the look-ahead window size K decreases.
When [r,,| > K + 1, the competitive ratio of RLA is
1+ 2n(1 + €), which remains upper-bounded even when the
coefficient ratio r., increases to infinity. We can show that
the competitive ratio of RLA differs from the lower bound

4n(1+¢)[§ +logy N]
W . To the best

of our knowledge, RLA is the first such online algorithm in
the literature that can get the best of both AFHC and the
regularization method, i.e., achieve a competitive ratio that
both decreases with K when the coefficient ratio is small, and
remains upper-bounded when the coefficient ratio is large.
Such an improved competitive ratio of RLA is achieved by
carefully modifying the objective function that RLA optimizes
in each episode of K + 1 time-slots (see Section IV). Note
that within each such episode, AFHC [2] directly optimizes the
total cost. However, as shown in the counter-example in [34],
simply optimizing the total cost may produce poor decisions
at the end of the episode, leading to poor competitive ratios.
Instead, RLA replaces the switching cost in the first time-
slot of each episode by two specially-chosen regularization
terms at the beginning and the end of the episode. These
two regularization terms avoid poor decisions at the boundary
between episodes, so that the switching costs will not be
excessively high. These regularization terms were inspired by
that of [23], but are different because we need to leverage
look-ahead. To the best of our knowledge, this way of adding
regularization terms for problems with look-ahead is also new.

by a factor max {3617(1 +e),

The competitive ratio of RLA is shown via an online primal-
dual analysis [28]. However, there arise two new technical
difficulties. First, we need to verify that the online dual vari-
ables from different episodes are feasible for the offline dual
optimization problem. Second, we need to carefully bound the
gap between the online primal cost and the online dual cost
induced by the two regularization terms. We resolve these
difficulties by providing a new competitive analysis, which
extends the primal-dual analysis [28] to the case with look-
ahead. This analysis is also a key contribution of this paper
and of independent interest.

Furthermore, while the above results are stated for OCO
problems with fractional covering constraints, we show in
Sec. VII that these results can be extended to more general
demand-supply balance constraints and capacity constraints,
which are more useful for computing and networking appli-
cations.

Our work is also related to regret minimization for OCO
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problems with constraints [37], [38]. In particular, [37] shows
that one cannot simultaneously obtain sub-linear regret in
both the objective and the constraint violation. However, our
study of competitive OCO is different as the competitive ratio
focuses on the relative ratio to the cost of the best offline
dynamic decision, while [37], [38] focus on the absolute
difference from the cost of the best static decision. Thus, even
if sub-linear regret is not attainable, it is still possible to attain
a low competitive ratio.

Finally, our work is related to the convex body/function
chasing (CBC) problem [39]-[41]. Although their results can
be applied to our problem, their competitive ratios are looser
as they do not exploit the particular structure of our problem.
For example, the dependency of our competitive ratio on the
problem size is O (In N), which is significantly smaller than
the O(IV) dependency attained in [41]. Moreover, our results
show how the size K of the look-ahead window and the
coefficient ratio r., affect the competitive ratios, which are
not captured by existing work for CBC.

A preliminary version of the results was published in
IEEE INFOCOM 2021 [1]. This journal version substantially
enhances the conference version by (i) adding a case study on
serverless computing (in Sec. VIII), (ii) providing new results
on tightening the competitive ratio of our RLA algorithm when
K =0 (in Sec. VI), and (iii) including key proofs of our main
results (in Sec. III and appendices).

II. PROBLEM FORMULATION

A. OCO with Switching Costs

The decision maker and the adversary (or environment)
interact in 7 time-slots. At each time ¢ = 1,...,7, first a
feasible convex set X(t) and service-cost coefficients C/(¢) =
[en(t),n =1,..., N]T € RY*" are revealed, where [-]T denotes
the transpose of a vector, R, represents the set of non-
negative real numbers. For now, we restrict the set X(¢) to be
a polyhedron formed by fractional covering constraints, i.e.,

> aa(t) 21, forallm = 1,.., M(t), (1)
nESm(t)

where Sy, (t) is a subset of {1,2,...,N} and could change
over time. The number M(t) of such constraints at each
time ¢ could also change over time. The fractional covering
constraints have been widely used to model many important
practical problems [22], [25], [35], [36], [42], [43]. Although
the right-hand-side of (1) must be 1, which simplifies our
exposition, such constraints capture the essential feature of
practical constraints that the amount of resource allocated must
be no smaller than the incoming demand. Further, note that
there is no upper-bound constraint on the decision variable
Zn(t). In Sec. VII, we will extend our results to the case with
more general constraints.

After receiving the input X(¢) and C(t), the decision maker
must choose a decision X (t) = [z,(t),n = 1,..,N]T €
Rf *! from the convex set X(t). Then, it incurs a service cost
(C(t), X (t)) for the current decision X (¢) and a switching

cost (W, [X (t)— X (t—1)]*) for the increment' of X (t) from
the last decision X (t — 1), where W = [w,,n = 1,...,N|T €
Rf %1 is the switching-cost coefficient. We assume that the
coefficient ratio r, £ maxg, ¢} #) satisfies 7., > 1.

In an offline setting, at time ¢ = 1, the current and all the
future inputs X(1 : 7) and C(1 : T) are known. Thus, the
optimal offline solution can be obtained by solving a standard

convex optimization problem as follows,

min ) {éT(t))?(t) + T [)?(t) Xt - 1)r} (2a)

sub. to: X (t) >0, for all ¢t € [1, 7], (2b)

0,
> an(t) =1, forallm € [1,M(t)], t € [1,T], (2)
neESm, (t)

where [a,b] denotes the set {a,a + 1,...,b}. As typically in
many OCO problems [2], [5], [10], [23], we assume X(O) =0.
For ease of exposition, we use X (t; : t3) to collect X (t)
from time ¢ = ¢, to ty, i.e., X (t; : to) 2 {)?(t), for all t €
[t1,t2]}. Define Cl(ty : ty) and X(t; : to) similarly.

B. Look-Ahead Model and Performance Metric

A recent line of work has focused on how to use look-
ahead to improve competitive online algorithms [2], [9], [32],
[33], [44]. Let the look-ahead window size be K > 1. Then, at
each time ¢, the decision maker not only knows the exact input
(X(t), C(t)), but also knows the near-term future (X(t 4 1 :
t+ K),C(t+1:t+ K)). Note that at time ¢ the decision
maker still does not know the future inputs beyond time ¢+ K.

For an online algorithm =, let X7 (¢) be the decision at
time t. Then, its cost from time ¢ = t¢; to t2 is given as
follows,

ta
Cost™(ty 1 1) 2 Y CT(#)X™ (1)
t=t,
to . . R +
+3 W {X”(t) _Xa-1| . 3

t=t,

Let XOPT(1:7) be the optimal offline solution to the optimiza-
tion problem (2), whose total cost is Cost®?T(1 : 7). Different
from the offline setting, in an online setting, the decision maker

—

only knows the current input (X(¢), C(t)) and the look-ahead
information (X(t+1:¢+ K),C(t +1:t+ K)). Moreover,
the decision X (¢) made at each time is irrevocable. Then, the

competitive ratio of the online algorithm 7 is defined as,

i Cost™(1:T) @

CR™ £
B : 5 Cost®T(1:7)’
{all possible (X(I:T),C(I:T))} 0s :
i.e., the worst-case ratio of its total cost to that of the optimal
offline solution, over all possible inputs.

!Note that, as shown in [29], our results assuming this type of the switching
cost also imply a competitive ratio for the case when the switching cost
penalizes the absolute difference | X (¢) — X (¢t — 1)| [5], [14].
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Fig. 1: Compare the lower bound of the competitive ratio
(CR'®) and the competitive ratios of AFHC (CRATHC) the
regularization method (CRREC) and RLA (CRRM).

III. A LOWER BOUND

Although OCO with look-ahead has been extensively stud-
ied, e.g., in [2], [9], [44], most existing results in the literature
focus on achievable competitive ratios, but do not provide
lower bounds on the competitive ratio. Such lower bounds
are important because they can reveal the fundamental limit
that one can hope to reach with online decisions. Note that the
lower bounds in [28] and [44] are for different settings ({s-
norm switching costs and online packing problems). Further,
they do not consider look-ahead. Next, we provide a new
lower bound for our OCO formulation, which reveals how
the relationship between the coefficient ratio 7, and the size
K of the look-ahead window will affect the competitive ratio.
(Note that Theorem 1 holds not only for K > 1, but also
for K = 0, i.e., the case without look-ahead, which we will
discuss in Sec. VI.)

Theorem 1. Consider the OCO problem in Sec. II-A. With a
look-ahead window of size K > 0, the competitive ratio of
any online algorithm is lower-bounded by

logy N

CRM =1+ .
2 1+i((K+1)log2N+1)}

(&)

Theorem 1 reveals important insights on how the com-
petitive ratio is impacted by the look-ahead window size K
relative to the coefficient ratio 7.

(i) The lower bound CR™ in (5) is always increasing in
Teo and decreasing in K. Further, we have

CR™ <14 -2

T

Note that the right-hand-side is close to the competitive ratio
of AFHC [2].

(ii)) When the look-ahead window size K is large, in
particular when K + 1 > 7., CR™ will not be far away
from (6) and the competitive ratio of AFHC. Indeed, we have

logy N

CR" > 1+ =1
6-—(K +1)logy N

(6)

Tco

+6(K+1)’

T (N
Tco
where the first inequality is because (K + 1)log, N > 1 and
L (K +1)log, N > 1. This behavior is illustrated by the two

solid curves in Fig. 1 (for two coefficient ratios r¢, 1 < 7co,2),
which decrease to 1 as K increases beyond 7,1 and 7 2.
Notice that this is also the range where AFHC [2] will produce
a low competitive ratio (see the dashed curves in Fig. 1). In
contrast, the competitive ratio of the regularization method
(REG) of [23] does not decrease with K (see the dotted line
in Fig. 1).

(iii)) When the look-ahead window size K is small, e.g.,
when K + 1 < 1y, (5) could be quite far away from (6)
and the competitive ratio of AFHC. Specifically, for small K,
the competitive ratio of AFHC increases to infinity when the
coefficient ratio increases, which can be seen in Fig. 1 by
comparing the two dashed curves at small K. In contrast,
the lower bound CR™® and the competitive ratio of the
regularization method CRR¥C are upper-bounded by a function
of the problem size N. Indeed, even when r., increases to
infinity, the lower bound in (5) still satisfies that

LB 1
CR §1+§log2N, )]
which suggests room for improvement for AFHC. Please see
below for the proof of Theorem 1.

Proof of Theorem I: Lower bound instance: We first
present the problem instance leading to the lower bound in (5).
Let ¢, (t) = ¢ > 0 and w,, = w > 0 for all n and ¢. Moreover,
let the total number of decision variables be N = 2%, where
« is a positive integer. Consider a total of 7 = (K + 1)a+ 1
time-slots, which is divided into o + 1 episodes. Specifically,
each of the first o episodes contains K + 1 consecutive time-
slots, while the last episode contains the last time-slot.

Our key idea of the proof is to let the adversary reveal
new inputs based on the decisions of the online algorithm,
so that the online algorithm has to switch at least once in
each episode. Specifically, there is only M (t) = 1 constraint
with S (t) for every episode. In the first episode, i.e., for any
t € [1, K 4 1], the constraint is ny:l zn(t) > 1, 1., S1(t) =
[1, N].

The constraint in the second episode is based on the decision
X™(1). (Note that the online algorithm must choose X™ (1)
without knowing the constraint in the second episode.) (i)
If Zgﬁ xr(1) < ny:N/QH a7 (1), the adversary chooses
Si(t) = [1, &]. and the constraint becomes ngl za(t) > 1
in the second episode, i.e., for all ¢t € [K + 2,2K + 2]. (ii)
Otherwise, the adversary chooses Si(t) = [§ + 1, N], and
the constraint becomes S0 /241 %n(t) = 1 in the second
episode. Intuitively, assuming that the online algorithm 7 does
not over-provision in the first time-slot (i.e., ZTILI (1) =
1), we must have 3, ¢ ;)27 (1) < 1/2 for Si(t) chosen in
the second episode. This choice of S (¢) then forces the online
algorithm 7 to increase z7 (¢) for n € S1(¢) during the second
episode (in order to meet the new constraint), and therefore
the online algorithm has to incur a large switching cost as we
will show below.

In a similar way, the constraint in the ¢-th episode (2 <4 <
o + 1) will always be on the half of the previous constraint
set, for which the decision variables at the beginning of the
(i — 1)-th episode add up to a smaller sum. Following these
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steps, at the last time ¢ = (K 4 1)a+ 1, the constraint set will
reduce to a singleton Sy (t) = {7} for some 7 € {1,..., N}.
Total cost of the optimal offline solution: The offline
solution can simply choose, for all time-slots, z9FF(1: 7) = 1
for n = 7, and 29 (1 : T) = 0 for n # 7. It only incurs a

switching cost of w at time ¢ = 1. Thus, the optimal offline
cost is upper-bounded as follows,

CostT(1:T) <w+c((K+1a+1). )

Total cost of any online algorithm 7: First, at each time
t € [1,T], to satisfy the constraint, at least a service cost of ¢
is incurred. Next, we show that the total switching cost of any
online algorithm 7 is at least %wa + w. To see this, consider
any decision variable z,, that last saw a constraint in episode
in < a, whose first time-slot is ¢/ (i, ) = (K +1)(i,, — 1) + 1.
It must be because the decision variable z,, is one of those
that are in the constraint in episode i,, but are excluded
from the constraint in episode 4, + 1. Let S’(i,,) be the set
of all such decision variables in episode i,. Because (i) in
episode i,, the constraint must be met, and (ii) the adversary
chooses the half of the decision variables whose sum are
smaller to form the constraint in episode i, + 1, we must
have 3~ cor(; ) 2 (t'(in)) = 1. Across a episodes, there are
a such sets S’(i,,), which are non-overlapping. Finally, in the
last time-slot, the decision =% (7 ) > 1. Together, we have
ZT]:[:I w7 (t'(in)) > §-+1. Finally, note that the total switching
cost associated with x,,(-) is at least w2, (¢'(i,)). Therefore,
the total cost of any online algorithm 7 is lower-bounded as
follows,

Cost™(1: T) Zc((K—l—l)a—i-l)—i—w—i-%. (10)
The result then follows by dividing the right-hand-side of
(10) by the right-hand-side of (9). O]

IV. REGULARIZATION WITH LOOK-AHEAD (RLA)

Inspired by Fig. 1, a nature question is then: can we
develop an online algorithm that gets the best of both AFHC
and the regularization method? In this section, we present a
new online algorithm, called Regularization with Look-Ahead
(RLA), which achieves exactly that, i.e., a competitive ratio
that not only remains upper-bounded when 7, is large, but
also decreases with K when 7, is small.

Specifically, let 7 be an integer from 0 to K. RLA runs K+1
versions of a subroutine, called Regularization-Fixed Horizon
Control (R-FHC), indexed by 7. We denote the 7-th version of
R-FHC by R-FHC(™). R-FHC(™) divides the time horizon into
episodes. Each episode starts from time (™) to (") + K, where

t) =74+ (K+1)uand u = —1,0, ..., [KLH-‘ Recall that at

time #(), the inputs (X(t(T) ) 4 K, G 1) K))
at the current time and in the look-ahead window have
been revealed. R-FHC(™) then computes the solution to the
following problem,

tV4+K N
. rnin { Z ZCH(S)IH(S)
XMt +K)

s=t(7) n=1

(11a)

N w 1+ %
on () N
t1K N
+ Z Z Wy [Tn(s) — zp(s —1)]T (11¢)

s=t(")4+1n=1

+ nzjj:l % l (2at™ + K) + )

" ("””(tm HE) +

1+ <

) - a:n(t(T) + K)] }
(11d)

sub. to: Z Zn(s) > 1, for all m € [1, M (s)],

neESm(s)
setD D+ K], (lle)
Zn(s) >0, foralln e [1,N],s € [t 1) 4+ K],
(11£)
where 7 = In (2£<), € > 0 and the decision gRFHC (3(7) _
1) were given by the solution of the previous episode of
R-FHC™) from time ¢V — K — 1 to t(™ — 1.

According to (11), in each episode from time t) to
t(7) + K, RLA does not simply optimize the corresponding
service costs and switching costs, but instead adds additional
regularization terms similar to [23]. Next, we explain the intu-
ition behind these regularization terms. Note that since there is
no look-ahead in [23], it suffices to use a single regularization
term that is based directly on the current decision ., (t) and

N+e

the last decision z,(t — 1), i.e.,

W, € Tn(t) + <

— |z, (t +—}ln N):L'nt 4+, (t—1).
77[ B+ 5 (a:n(rf—l)JrfV )+ zalt=1)

(12)

Using this regularization term for every time ¢ produces the

Wn

online dual variables equal to 6, (t + 1) = = In (znl(;r)ii),
which is crucial for the online primal-dual proof in [153].
Unfortunately, for RLA we cannot use a term like (12) at
every time. The reason is that, when there is look ahead (i.e.,
K > 0), the decisions inside the look-ahead window of size K
should be as close to the offline optimal solution as possible.
Using the term (12) at those time-slots distorts the objective
function too much that it will lead to sub-optimal decisions.
Due to this reason, we cannot use (12) directly in our algorithm
for K > 0. Instead, in our RLA algorithm, we can think of
each look-ahead window as a single super-time-slot. Naturally,
the regularization term should only involve decisions around
time ¢ and time ¢+ K, but its impact to other time-slots inside
the look-ahead window should be as little as possible. This
motivates us to construct our regularization term as the sum
of two terms: the part related to the decision z,, (¢t + K) at the
end of the look-ahead window (which is similar to the role
of x,(t) in (12)) and the part related to the previous decision
Zn(t—1). Moreover, in order to still guarantee dual feasibility,
we need the dual variables 6,,(¢) at these two boundaries of
each look-ahead window to be of a similar form as in [23].
Thus, we replace the switching cost in the first time-slot ¢(7) of
the current episode by the regularization term (11b), and adds
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Algorithm 1 Regularization with Look-Ahead (RLA)

Parameters: € > 0 and n = In (2€).
fort=—K+1:7 do
Step 1: 7+t mod (K +1) and t(7) < ¢,
Step 2: Solve (11) to get XRFHCT (+(1) + (1) 4 ). (If
(™) <0, remove (11b). If t(7) > T — K, remove (11d).)
Step 3:
if 1 <t <7 then

K

XRLA( ) K:_ 1 ZXR—FHC(T) (t) (13)

end if
end for

another regularization term (11d) for the decision variables in
the last time-slot ¢(7) + K of the current episode.

Similar to [23], the regularization term (11d) makes the
objective function strictly convex in z,,(t(”) + K), and thus
discourages it from taking extreme values. More specifically,
without (11d), it is possible that the decision in the last time-
slot goes down to zero if the associated service-cost coefficient
is high or if there is no constraint. However, if the next input
at time ¢(7) + K + 1 requires the next decision to be high,
the algorithm will incur a high switching cost. In contrast,
(11d) is decreasing and strictly convex in z,(t(7) + K), so
it discourages the decision in the last time-slot t(7) + K
to be too low. When combined with the regularization term
(11b), they together ensure that the switching cost at the
boundary between two episodes is not too high (see details in
our analysis in Sec. V). Thus, unlike AFHC, the competitive
ratio of RLA can be upper-bounded even if r., is large.
Readers familiar with [23] will recognize that, when the size
of the look-ahead window K = 0, these two regularization
terms combined reduce to the original regularization term
in [23]. However, our formulation of the regularization terms
for K > 1 is new and has not been reported in the literature.

Finally, at each time ¢ € [1,7], RLA takes the average of
XRFHCT 4y for all 7 as the final decision XRUA(¢) at time
t. As K increases, since R-FHC(™ optimizes the real service
costs and switching costs in the middle of each episode, more
and more decision variables are close to optimal. Thus, by tak-
ing the average of all versions of R-FHC™, the performance
of RLA should improve with K. The details of RLA are given
in Algorithm 1. Note that for any version of R-FHC(™) whose
first episode starts at time t™ <0, (11b) can be removed.
Similarly, for any version of R-FHC(") whose last episode
ends at time +(7) + K > T, (11d) can be removed.

V. COMPETITIVE ANALYSIS

Theorem 2 below provides the theoretical competitive ratio
of RLA. Recall that n = In (2£¢) and r, > 1.

Theorem 2. Consider the OCO problem introduced in
Sec. II-A. With a look-ahead window of size K > 1, the

6
competitive ratio of RLA is upper-bounded as follows,
1 co .
CRFA <1+ % if [reo] <K+1; (14a)
CRFA <14 2n(1+e€), if [reo] > K + 1. (14b)

It is easy to see that the competitive ratio of RLA in (14)
matches the lower bound (5) within a factor that only depends
on the problem size N (see the two dash-dot curves in Fig. 1).
Specifically, (i) when re, < [reo] < K + 1, both (14a) and
(14b) differ from (7) (and thus (5)) by at most 36n(1 + ).
Note that CR®Y decreases to 1 as K increases. (i) When
Teo > K + 1, we can show that the lower bound (5) is larger
than 1+ % Thus, the gap between (14b) and (5) is at

% Further, when r,, > (K + 1)logy, N,

the gap between (14b) and (5) is at most mlf\f), which is
upper-bounded by a constant 10(1 4 ¢) In( 2+6) for all N > 2.
Note that in all cases (even when r, increases to infinity),
CR®* is upper-bounded. Therefore, RLA gets the best of
both AFHC and the regularization method. To the best of our
knowledge, RLA is the first algorithm in the literature that can
utilize look-ahead to attain a competitive ratio that matches the
lower bound (5).

The rest of this section is devoted to the proof of Theorem 2.
We first give the high-level idea, starting from a typical online
primal-dual analysis [28]. For the offline problem (2), by
introducing an auxiliary variable y,,(¢) for the switching term
[0 (t) — 2, (t — 1)], together with a new constraint

Yn(t) > xn(t) — zp(t — 1), for all n € [1, N],

most

5)

we can get an equivalent formulation of the offline optimiza-
tion problem (2). Then, let 3(t) = [Bm(t),m = 1, ..., M(t)]"
and () = [0,(t),n = 1,..., N]T be the Lagrange multipliers
for constraints (2¢) and (15), respectively. We have the offline
dual optimization problem as follows,

T M(t

o };mzlﬁm (16a)
sub. to: ¢, (t) — Z B (t) + 0, (t) — 0, (t+ 1) >0,

m:n€Sm (t)
foralln € [1,N], t € [1, 7],  (16b)
wp, —0,(t) >0, foralln € [1,N], t € [1,T], (16c)
Bm(t) >0, forallm € [1, M(t)],t € [1,T], (16d)
0,(t) >0, forallm € [1,N], t € [1,T]. (16e)

Let BOPT(¢) and #9PT(¢) be the optimal solution to (16). Then,

the optimal offline dual cost is,

T M(t)

DOPT]. 7— Z Z OPT

Let DREA(1 : T) be the total dual cost of RLA. Then, we can
prove the competitive performance of RLA by establishing the
following inequalities,

a7)

(a)
Cost®™(1:7) < CR-DRA(1:7)
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(2 CR-D"T(1:7) (é) CR-Cost?’T(1:7). (18)
In (18), step (c¢) simply follows from standard duality [45,
p- 225]. Step (b) is established by showing that RLA produces
a set of online dual variables that are also feasible for
the offline dual optimization problem (16). Since (16) is a
maximization problem, step (b) then holds. Finally, step (a)
is related to the regularization terms (11b) and (11d) added to
the objective function of R-FHC, which leads to a gap between
Cost*“*(1:7) and DR (1:T). This gap needs to be carefully
bounded to establish (a). Below, we will address (b) and (a).

Step-1 (Checking the dual feasibility): We now focus on
one version 7 of R-FHC. For simplicity, in the rest of this
section, we use (7) instead of R-FHC() in the superscript,
e.g., use X(M(¢) to denote XRFHC (). We now show that
the decisions produced by all episodes of R-FHC(™) generate
a feasible set of dual variables for (16). Focus on one episode
from time ¢ to t(7) + K. As in (16), we introduce the
variable y,(t) and the constraint (15) to (11). We can then
form the dual problem of the equivalent form of (11). As in
(16), we let B, )(t) and 9,@(15) be the corresponding online
dual solution of (11). However, note that the objective function
of (11) does not contain the switching cost of the first time-
slot #(7), Therefore, we are still missing the dual variables
057 (). To remediate this, for all n € [1, N], we let

) . (19)
~

Lemma 1 below shows that we have constructed a feasible
dual solution for the offline dual optimization problem (16).

Lemma 1. The 37 (1 : T) and 07)(1 : T) constructed
above from (19) and the online dual solution of R-FHC(™)
are feasible for the offline dual optimization problem (16).

U] oy (4T — 1) +

Lemma 1 can be proved by verifying that the Karush-Kuhn-
Tucker (KKT) conditions [45, p. 243] of (11) satisfies the dual
constraints (16b)-(16e). (16¢) to (16e) are easy to verify, so
is (16b) for t = t(7) 4+ 1 to t(7) + K — 1, because the KKT
conditions for (11) in those time-slots are exactly the same
as that of (16). Thus, it only remains to verify (16b) at time
t =t and t = t(7) + K. At time t(7), by examining the
KKT conditions for (11), we have,

>

m:n€ Sy (£(7)

14 £
Jr&ln o) TN
n ay (H) = 1)+ 5

en(t') — B ()

) — 0 1) > 0.

Using (19), (16b) at time ¢ = () is verified. We can verify
(16b) at time t(7) + K similarly. Lemma 1 then follows. Please
see Appendix A for the proof of Lemma 1.

Step-2 (Quantifying the gap between the online primal
cost and the online dual cost): As before, we focus on one
episode (from time t() to () + K) of version 7 of R-FHC.

We define the primal cost Cost(™ (¢£(7) :
and the online dual cost

t) + K) as in (3)

t<*)+K M(3)

£ 2 AW

t=t(t) m=1

DO () (1) 1K) (20)

However, note that (11) contains additional terms (11b) and
(11d) in the primal objective function. Thus, there will be some
gap between Cost(™) (¢+(7) : t() 4 K') and D™ (¢(7) : (V) 1K),
Lemma 2 below captures this gap. Define the tail-terms as

+
QO (D) 2 4y, [:cgj)(t(ﬂ) — e 1)] , 21)
S 2 Oy o TR )
U 2D~ 1)+ &
(22)

n

1+ ~
2D+ K)+ 5 )
(23)
Lemma 2. For each version T of R-FHC, we have,
Cost(f)( (T) . ¢(7) +K) < D(T)( (™.

+ZQT) ) +Z¢>

n=1

t) + K)

N
(0) + 3 U0 ). @

n=1

Lemma 2 captures the gap between the online pri-
mal cost and the online dual cost of each version 7 of
R-FHC. In (24), the first tail-term Q%T)(tm) is because
R-FHC(™) does not optimize over the real switching cost
Wy, (25, (E7)) — 2, (¢ — 1)]+ in the first time-slot. The sec-
ond and third tail-terms, ¢\ (t(7) and ¥ (+(7)), are because
of the regularization terms (11b) and (11d) added to the primal
objective function in the first time-slot and the last time-slot.
Lemma 2 can be shown via the duality theorem [45, p.225].
Please see Appendix B for the proof of Lemma 2.

Recall that, to establish step (a) in (18), the main difficulty
is to bound the gap due to the tail-terms in Lemma 2. We
resolve this difficulty by designing two important steps as
follows. The ideas we propose in these two steps are novel
and critical for online primal-dual analysis. This non-trivial
generalization of online primal-dual analysis to the case with
look-ahead is of independent interest.

Step 2-1 (Bounding the tail-terms): Next, we show in
Lemma 3 that, with a factor that will appear in the final com-
petitive ratio, the tail-terms (21)-(23) from the same version 7
of R-FHC are actually bounded by a carefully-chosen portion
of the online dual costs. We let A = min{ K, [r,] — 1}.

Lemma 3. For each version T of R-FHC, the following holds,

Z S > o) <1 +e)

u=0 (") =74(K+1)un=1

|—K+1

DD

u=0 t(M)=74(K+1)u

DO ) LAY, (25)
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K+1

N
@Y Y Y [Ee) )
u=—1 t(N) =74 (K+1)un=1
[ |
<n(+e) Y > DOEILE-A:tT+K), (26)

(M) =1
+(K+1)u

u=—1

where D7) (t) = 0 for all t <0 and t > T.

To interpret (25), the tail-term Q%T) (t(T)) are bounded by
the right-hand-side of (25), which corresponds to a partial sum
of online dual costs over sub-intervals of length A + 1 at the
beginning of each episode. (Note that when [r¢,] is large, A =
K and thus this sub-interval will contain the whole episode.)
Expression (26) has a similar interpretation, while the partial
sum is over sub-intervals at the end of each episode. Due to
page limits, we only provide a sketch of proof of Lemma 3
below. Please see our technical report [46] for the complete
proof.

Sketch of Proof of Lemma 3: We focus on the proof of (25),
and (26) follows along a similar line. Consider any ¢(™) and
n such that Q) (tM) > 0, ie., 27 (tM) > 270 — 1),
First, since a — b < alngb) for all a,b > 0 and z,(t) < 1,

we can show that each Q) (t(7)) /n is upper-bounded by

wy, 1+ 5

(1) (4(7) £
2Dt + ]n .@D

Let (T)( t) = Zm:nesm(t) 5;?(15)_ Consider any t' > ()

such that x(T)() > 0 for all t € [t{7),#]. Using KKT
conditions of (11), we can show that (27) is equal to

S B0 + 1500+ [ () + 00 + 1)

=Y a®EDO+ G- Y w0 @8)

t=t(7) t=t(T) 41
Next, we show that
(M LA
Q(T)(t(T)) s € .~
v < (28) < (@) + =185 (¢ 29
S 3 BP0+ A0 e

by considering the following two cases. (i) If there exists a
time-slot ¢ < ¢ + A, such that ng)(t +1) < acg)(t),
we take t' as the first such ¢ after (7). Then, we must
have 97(: )(t’ + 1) = 0 (from complementary slackness)
and (29) follows. (ii) If no such time-slot ¢ exists, we let
t' = t(7) 4 A. There are two sub-cases. (ii-a) If [re,] — 1 <
K then we con51der the last three terms in (28). Since

S = il u () = 27 (t0) (because o (1)
does not decrease before time t') and 6 T)(t’ +1) < wy,
the second and fourth term in (28) can be upper-bounded by
w2 (¢ D) + <. Then, since 27 ) > 27 (™) for all
t € [t(7),#] and Z;lzt(f) cn(t) = 72(A+1) > wpy, the last

three terms in (28) are upper-bounded by 0, and (29) then
follows. (ii-b) If [re] — 1 > K, we can show that

1
sw[£:><t<f>>+fv1l<m A )
U " -1+ %
_ Wn () 0y 4 £ 1+ 5
i (¢7) + ) )

27 () + £
(29) can then be verified similarly by combining (28) and (30).
Finally, (25) follows by taking the sum of (29) over all n
and all episodes, and applying complementary slackness (i.e.,

N )y @ )
/2=:1 Tn (t) Zm:nesm(t) Brn (t) = ,21 Bm (t)) H

Step 2-2 (Bounding the portions of the online dual costs):
Lemma 4 below connects the online dual cost on the right-
hand-side of (25) and (26) to the optimal offline dual cost,
which follows from standard duality [45, p. 225]. Please see
our technical report [46] for the complete proof of Lemma 4.

Qi (1)

(30)

Lemma 4. In any interval from time t = tg to t1, we have

D(T) (tO tl) < DOPT tO tl Z GOPT OPT tO _ 1)
N N
09 (8 + 1)l (t) + Y 0 (t) 2 (ko — 1)
n=1 n=1
N
= 00 (41 + )29 (1), (31)
n=1

where z9PT(t) and 09FT(t) are optimal offline primal and
dual solutions, respectively, and a:(T)( t) and (97(17 )(t) are online
primal and dual solutions, respectively.

We can now prove Theorem 2.

Proof of Theorem 2: The total cost of RLA can be calculated
as in (3), where the decision XRA(¢) is calculated as in (13).
Then, applying Jensen’s Inequality, we have that

K
1
Cost™A(1:T) < ——> Cost(1:7).  (32)
K+14

Then, applying Lemma 2 to (32), we have that the total cost
Cost® (1 : T) of RLA is upper-bounded by

K+1

ZZZ

7=0 u=-1 t(T)—T+(K+1)u

Z Q0 (1) + Z¢<r> () + Zw(f) )

n=1 n=1 n=1

{D(T)(t(T) ) LK)

}. (33)

According to Lemma 1, the online dual costs in (33) add up
0 7 z D1 : T) < DT(1

bound the three tail-terms in (33). We divide into two cases,
ie, [reo| < K+1and [re,| > K+ 1.

=

: 7). It only remains to
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i. When [re] < K +1, we have A = [rq| — 1. According
to Lemma 3, the sum of the tail-terms in (33) can be upper-
bounded by

K+1

D ID>

{D(T) Tt 4 [ree] — 1)
7=0 u=—1 t(D=74+(K+1)u

DO L K~ [re] +1: ¢t + K)} n(l+e). (34)

Applying Lemma 4 to (34), we can replace D(™) by DOFT,
with additional tail-terms as shown in (31). When we sum
these tail- terms over 7 and t(7), note that the sum of the tail-

Z OOPT (¢0)2OPT (to—1) and Z OPT (t1+1)20FT(¢1)
get cancelled across all versions and eplsodes and thus
Z o (1 +

1)z9%T(#1) is upper-bounded by 0. Moreover, smce the tail-
term 657 (t0)2%%T (tg — 1) < w,z%T(to — 1), the sum of
N

the tail-terms 3 657 (to)xOPT (to — 1) over all versions and
n=1
( ) - Cost?T(1 :

episodes can be upper-
T) < [reo] Cost?T(1 : T). Together, the total cost of RLA is
upper-bounded as follows,

terms —

can be upper-bounded by 0. The tail-term

RLA /1 . OPT 1 . n(l+e)
Cost™*(1: 7)< D (1.T)—|-7K+1

{2 [reo] DPT(1: T) + [reo] Cost®™ (1 : 7))}

< {1 n MHW} CostT(1: 7). (35)

K+1
This shows (14a).
ii. When [re| > K + 1, we have A = K. Similar to the
first case, by applying Lemma 3 and Lemma 4, we can show
that the total cost of RLA is upper-bounded as follows,

RLA PT n(l+e)
Cost"™(1:7) < D° (1:T)+K7H
|—K+1-|
Z > > 2D (7 () 4 K)
7=0 u=—1 ¢t =74(K+1)u
< {1+ 2n(1 + €)} Cost®®T(1: 7). (36)
(14b) then follows. O

VI. TIGHTENING THE COMPETITIVE RATIO WHEN K = 0

Readers may notice that the gap between the competitive
ratio of RLA in (14) and the lower bound in (5) grows with
7, which is of the order of © (In V) when the problem size is
large. It would be of interest to see whether this dependency on
N can be eliminated. In this section, we show that when K =
0, i.e., without look-ahead, this gap can be further tightened
to a small constant factor that is independent of not only the
coefficient ratio r.,, but also the problem size N. Note that
as a side product of this result, we also tighten the known
competitive ratio of the regularization method [23] and provide
a new matching lower bound on the competitive ratio without

look-ahead. We leave for future work whether such tightening
of the gap can be attained for K > 1.

First, according to Theorem 1, the lower bound of the
competitive ratio when K = 0 is

logy N

CREE , =1+ .
2 [14— %(logQN—t- 1)

(37

(37) suggests that, when K = 0, the competitive ratio should
remain upper-bounded for any value of the coefficient ratio
Teo and the problem size N. In particular, for any value of the
problem size N, the lower bound (37) remains upper-bounded
as follows,

CREE, <1+ %rco, for all N > 2. (38)
In contrast, the competitive ratio 1 + In(1 + %)(1 +¢€) of
the regularization method obtained in [23] could increase to
infinity as N increases. This significant gap thus motivates
us to further study whether the competitive ratio of the
regularization method can also be improved.

Indeed in Theorem 3 below, we show that the competitive
ratio of RLA in the case without look-ahead (i.e., K = 0)
also remains upper-bounded for any value of N. Recall that

=In (%£€) and € > 0 are parameters of RLA.

Theorem 3. Consider the OCO problem introduced in

Sec. II-A. When there is no look-ahead, ie., K = 0, the
competitive ratio of RLA is upper-bounded as follows,
RLA n(l+e)
CREZ, <1+ Ty (39)

Tco

Note that for any value of the problem size N, the compet-
itive ratio of RLA in (39) keeps upper-bounded as follows,

CRRLA <1+ 7re(1+e¢), forall N > 2. (40)

Comparing (38) and (40), we can see that the competitive ratio
of RLA in (39) matches the lower bound (37) within a small
constant factor that is independent of not only the coefficient
ratio r.,, but also the problem size N. To the best of our
knowledge, this is the first such result in the literature for
OCO problems. Note that when K = 0, our RLA algorithm
reduces back to the regularization method in [23]. Therefore,
as a side product, we have also tightened the competitive ratio
of the regularization method to match the lower bound in (37).

Next, we provide a sketch of proof of Theorem 3 below.
Please see our technical report [46] for the complete proof.

Sketch of Proof of Theorem 3: First of all, by letting K =0
in our proofs of Lemma 1 and Lemma 2 in the appendices,
it is not difficult to show that Lemma 1 and Lemma 2 hold
for K = 0. That is, (i) the online dual solution of RLA when
K = 0 is feasible for the offline dual optimization problem
(16), and (ii) the primal online cost at each time can be upper-
bounded as in (24) with K = 0.

Moreover, when K = 0, the sum of the tail-terms ¢R-4(¢)
and YRMA(t) in (24) can be upper-bounded as follows,

Z Z {¢RLA

t=1n=1

_|_ ¢RLA( )}
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Sy -

T RLA()+N >

RLA(t) In (
RLA €
t=1n=1 T (t 1) + N
T N €
ZZ n[RLA(t)_i_E}ln( aRA () + & )
i n N aRA(E— 1) + &
T N ZRLA
w, € (t) + &

+ZZnN1n(xRLA(t_ 1)+ >’

where the first equality is according to the definition of the

tail-terms in (22) and (23). Next, because of aIn(§) > a —b
for any a,b > 0 and the telescoping sum, we have

,_.
3
Il
-

tzanI{QSRLA +,(/}RLA( )}
35 (BT

Then, because —a + <= ln (G+N> < 0 for any a > 0 and
N
€ > 0, we have

Z Z {¢RLA

t=1n=1

t)+nA(t)} <. (41)

Finally, to prove (39), we only need to upper-bound the sum
of the remaining tail-term QRLA(¢) as follows,

T N
1

SO>S ot < M pra ),

1+ ;L

t=1n=1 Tco
When zRMA(#) < 2REA(: — 1), QRLA(#) < 0. Then, (42) is
obviously true. Thus in the following, we only need to focus
on the case when zRUA(t) > zRLA(¢ — 1), which implies that

QRLA (1) = w, [ RLA(4) — aRLA (¢ — 1)] We consider the fol-

(42)

lowing two sub-cases. Sub-case 1: if 5. s BuA(t) <
cn(t) + 42, we have

wn [an A () — 2t (- 1)]

< w, (xELA(t) + %) wl Z BREA(L) — en(t)
" \m:n€Sm, (t)
(204 L) Y s (1 - ﬁ)
m:n€Sy (t) n n

=L S (#r0+ <) Y e, @

nen (t)

1+ Wn min€Sm (t)
where the first inequality is because a —b < aln (%) for any
a,b > 0 and the optimality condition of the KKT conditions
(see (58b) with K = 0), and the second inequality is because
of the condition 3=, cs B (t) < ca(t) + %= of this
case. Sub-case 2: if 37, o ) BRIA() > ¢ (t) + “e, we
have

RLA() —

aRA(E—1)]

€ 7win< > ﬁfyifA(t)*Cn(t)>
7) 1— e m:n€Sm (t)
N

Wy, [x

= w, (foLA(t) +

B A (2)
: Sm ()
< wp (xl;LA t) + i) mne r
B O+ N) e+ =
_ n RLA € RLA
R (R0 + ) | GZS: . (@), (44

where the first equality is according to the optimality condition
of the KKT conditions (see (58b) with K = 0), and the
first inequality is because 1 — e™ < 1 for any x > 0
and the condition 3°, . o () B2 (t) > ca(t) + %2 of this
case. Finally, by taking the sum of (43) and (44) over all n
and ¢, according to the complementary slackness of the KKT
conditions (see (56a) with K = 0), we will have (42). This
concludes the proof. O

Remark 1. Notice that when K > 1, (41) and (42) may not
hold. This is exactly where the difficulty lies to tighten the
competitive ratio of RLA when K > 1. However, according to
our numerical results in Sec. VIII-C, we conjecture that the
competitive ratio of RLA when K > 1 is also upper-bounded
for any value of N. Thus, we believe the true competitive ratio
of RLA when K > 1 may also match the lower bound (5) by
a constant factor independent of not only r., and K, but also
N. This requires a new competitive analysis method, which
we leave for future work.

VII. GENERALIZATION

The fractional covering constraint in (1) corresponds to
a demand a,,(t) that is either 1 (when the constraint is
present) or 0 (when the constraint is not present). Further,
the coefficients on the left-hand-side of (1) must always be
1. Both assumptions are restrictive in practice. In this section,
we will extend our results to the more general case, where the
decision variables must meet constraints of the type,

> bpn(t)za(t)

NESm (t)

> ap(t), for allm € [1, M(¢)], (45)

where b, (t) and a,,(t) can be any positive integers as
in [12], [23], [47]. Moreover, we allow capacity constraints
that each decision variable must be upper-bounded, i.e.,

xp(t) < XS® for alln € [1, N,

n
where X, * are positive integers. (We do not consider con-
straints such that the sum of some decision variables needs to
be upper-bounded, which will be a subject for future work.)
For this type of OCO problem, with minor modifications,
the Regularization with Look-Ahead (RLA) algorithm still
works. Specifically, we only need to change 1 + & term in

the two regularization terms (11b) and (11d) to X3* + £,
Xory o

(46)

and change 7 to be 7, £ In (

N
each time (") € [~K + 1, 7], R-FHC(") now calculates the
solution to the following problem,

tD4K N
min o (D (1
X(t(f);t(f)+K){ Z Z n( ) n( )

t=t(7) n=1

N cap
Yn ] Xn” + N
+ Z 0 xn(t ) n (LE%»FHC( )(t( T) _ 1) + %

n=1 """

) for each n. Thus, at
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t+K N

+ > wn[za(t)

t=t(1) 41 n=1

+Zw"[( (0 +K)+ )

xn( (T)+K) £ -
n( X o N) —an(t7) + ) } (47a)

sub. to: (11f), (45), (46), for all t € [tV ¢(7) + K]. (47b)

z(t—1)]7"

In the analysis, we similarly change 6 T)(t(T ) in (19) to
wy, X+~

M o) (¢ —1)+ %
variables satisfy the dual constraints. The rest of the analysis
then follows the same line, by changing 1+ to X"+ and
by using the knapsack cover (KC) inequalities [48]. Finally,
in Theorem 4, we provide the competitive ratio of RLA for
this case. Please see our technical report [46] for the complete
proof of Theorem 4.

, which ensures that the online dual

Theorem 4. Given a look-ahead window of size K > 1,
for the OCO problem with constraints (45) and (46), the
competitive ratio of Regularization with Look-Ahead (RLA)
is, (with n & max and B & {maﬁ} bn (1))

CRM = {

In this section, we demonstrate our theoretic results using
numerical experiments. We will mainly focus on the more
general OCO problem formulation in Sec. VII with general
demand-supply balance constraints (45). Please see our IEEE
INFOCOM 2021 paper [1] for numerical results for the less-
general OCO problem introduced in Sec. II with fractional
covering constraints (1). We choose € = 1 for both Regulariza-
tion with Look-Ahead (RLA) that we propose in Sec. VII and
the regularization method (REG) that was proposed in [23].
First, we show the impact of the coefficient ratio 7., and the
look-ahead window size K on the empirical competitive ratios
(ECRs) of RLA, AFHC [2] and REG [23]. Second, we show
the impact of the problem size N on the gap between the ECR
of RLA and the lower bound (5).

1+ LI [reo] < K41
1+2n(1+e€B), if [re] > K+ 1.

dn(1+eB [7Teo]
K+1 (48)

VIII. NUMERICAL RESULTS

A. The Simulation Setting for Serverless Computing

Background: We perform a case study on serverless com-
puting [26], [27]. Serverless computing, e.g., Microsoft Azure
Serverless Computing and Amazon Lambda, has been a promi-
nent way for customers to deploy applications without the
need of worrying about the management of the infrastructure.
With serverless computing, customers can dynamically invoke
serverless functions on demand, but the service provider has to
manage (i.e., starting/stopping) the actual instances executing
these functions. Specifically, suppose that there are /N func-
tions. At each time ¢, the customer requests the number a,, ()
of instances needed for function n. Thus, the number z,,(t) of
active instances of function n must be no smaller than a,,(t),

which corresponds to the demand-supply constraint (45). Let
Zn(t — 1) denote the number of instances that are already
active. If a,(t) > z,(t — 1), a cold-start delay [26], [27]
will be incurred to start new instances, which corresponds to
the switching cost w,,. To avoid such cold-start delay, some
instances may be kept active by the service provider even when
the demand a,, (t) goes down, which then incurs higher service
costs. Thus, the service provider can use the online algorithms
in this paper to balance the service cost and the switching cost.

To allow more flexibility in dynamically managing active
instances, one possibility is to use the concept of composite
functions [49]. A composite function corresponds to an in-
stance that loads the code of multiple functions in memory, and
therefore can easily shift the processing across these functions
(e.g., by adjusting CPU allocation) without significant switch-
ing costs. As an example, let us consider a composite function
n1o for the non-composite functions n; and ns. Recall that
without composite function 712, the number of instances needs
to satisfy, for all time ¢,

Ty (B) = ap, () and @, () > an, (t).

Thus, if a,, (t) increases, but a,,(t) decreases by the same
amount, a switching cost on x,,(t) may be incurred. In
contrast, with composite function nis, these demand-supply
balance constraints become, for all time ¢,

Ty (8) + Ty (B) 2 any (), Ty (B) + gy (B) > an, (1),
and Ty, (1) + T, (1) + Tnyy (1) > @y (1) + any ().

Then, in the same scenario where a,,, (t) increases and a,,, ()
decreases by the same amount, the use of x.,,, () of composite
functions may eliminate the need of changing x,,(¢) or
Zn,(t). Our goal is therefore to evaluate the performance of
our proposed online algorithm for serverless computing with
and without composite functions.

Simulation setups: For our simulation, we use the Mi-
crosoft’s Azure serverless-function traces [26]. Each datum
in the trace represents the number of invocations of a function
in one minute. There are 7 = 1440 time-slots, i.e., 1440
minutes for a one-day trace. We discard those functions whose
invocation numbers are very small (e.g., 0) or do not change
for most time-slots, since they do not contribute much to
the performance comparison of the online decisions. We then
randomly pick 20 non-composite serverless functions whose
variances of the invocation numbers are not too small, e.g.,
larger than 100. Then, we randomly divide them into 10
pairs. We assign a composite function to each pair of non-
composite functions. Therefore, there are 30 functions in total,
ie., N = 30.

Further, we generate the cost coefficient as follows. The
service-cost coefficient ¢, (t) of each non-composite function
is randomly generated in the range [1, 2], which represents the
resource (e.g., CPU and memory) costs [26]. Then, for each
pair of non-composite functions n; and ns, the service-cost
coefficient ¢,,, (t) of the composite function is set to be

Cnyo (1) =max {cp, (), cny (1)}

+ 0.1+ [en, () + ¢n,y (8) — max {cn, (1), ¢n, (1) }] -
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In this way, the service cost of the composite function is
higher than both of the two non-composite functions, which
models the inherent overhead due to the use of composite
functions. To simulate different values of the coefficient ratio
Teo, the switching-cost coefficient w,, of each non-composite
function n is randomly generated in the range [0.97¢o, 7'co),
which models the performance loss due to cold-start [26].
Then, for each pair of non-composite functions n; and no,
the switching-cost coefficient of the composite function is set
to be w,,,, = max{w,,,w,,}. That is, the cold-start cost of
the composite function is equal to the larger cold-start cost of
the two non-composite functions.

B. The Impact of v, and K on the ECRs

The numerical results are shown in Fig. 2 and Fig. 3. First,
in Fig. 2a, we fix 7, = 50 and vary K from 1 to 100. We can
see that, as the look-ahead window size K increases, the ECRs
of RLA and AFHC decrease quickly to a value close to 1 and
become much smaller than the ECR of REG. Second, note
that the relation between the switching cost w,, and the cold-
start time could be affected by various practical factors, e.g.,
the platform provider and how much the customers dislike the
cold-start delay. As a result, the coefficient ratio r, could vary
significantly across different scenarios. Therefore, in Fig. 2b,
we fix K = 10 and vary r,, from 5 to 500. We can see that, as
the coefficient ratio r., increases, the ECR of AFHC increases
to be very large. In contrast, the ECRs of RLA and REG
remain at a low value. Fig. 2a and Fig. 2b confirm our analytic
results that the competitive ratio of RLA not only decreases
with K when r, is small, but also remains upper-bounded for
any large value of r.,. Moreover, to show the value of using
the composite function, we compare in Fig. 3 the total costs
of RLA for the case with and without composite functions,
labeled as “RLA-composite” and “RLA-no-com”, respectively.
we can see that when using the composite functions, the total

1 20 40 60 80 100 5
K Teo

(a) Cost vs. look-ahead. (b) Cost vs. coefficient ratio.

Fig. 3: The value of using the composite function.

costs of serverless computing are indeed lower than the case
when no composite function is used.

C. The Impact of N on the ECRs

Recall that in Sec. VI, we tighten the competitive ratio
(39) of RLA when K = 0, so that the gap from the
lower bound (37) remains upper-bounded for any value of
problem size N. However, when K > 1, due to the analytical
difficulty that we mentioned in Remark 1, the gap between
the proved competitive ratio (14) of RLA and the lower bound
(5) increases with ©(log, N). Interestingly, according to our
simulation results in Fig. 4, we find that the gap between the
empirical competitive ratios (ECRs) of RLA and the lower
bound (5) remains upper-bounded for any value of N. In
the simulation, we use three different traces: the lower-bound
trace we designed in Sec. IIl, an ii.d. random trace and
the Microsoft’s Azure Virtual-Machine (VM) trace [50]. In
Fig. 4, we show the gaps between the ECRs of RLA and
the lower bound (5) for different values of the problem size
N. Specifically, we evaluate the gap by dividing the ECRs
of RLA by the lower bound (5). To show the impact of NV,
we change N from 4 to 128 so that log, IV increases linearly
from 2 to 6. Remember that the theoretical competitive ratio
of RLA in (14) depends on the relation between K and 7.
To simulate the case when [re] < K + 1, we let reo = 5
and K = 20 (please see Fig. 4a). To simulate the case when
[reo| > K+1, we let e, = 20 and K = 5 (please see Fig. 4b).
Fig. 4 shows that the gap does not increase much when log, N
increases. Thus, we conjecture that the true competitive ratio of
RLA may remain upper-bounded for any value of the problem
size N.

IX. CONCLUSION AND FUTURE WORK

In this paper, we study competitive online convex optimiza-
tion (OCO) with look-ahead. We develop a new online algo-
rithm RLA that can utilize look-ahead to achieve a competitive
ratio that not only remains bounded when the coefficient ratio
is large, but also decreases with the size of the look-ahead
window when the coefficient ratio is small. In this way, the
new online algorithm gets the best of both AFHC [2] and the
regularization method [23]. To prove the competitive ratio of
RLA, we extend the online primal-dual method analysis [28]
to the case with look-ahead, which is of independent interest.
We also provide a lower bound of the competitive ratio, which
matches with the competitive ratio of RLA up to a factor that
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only depends on the problem size N. Finally, we generalize
RLA to OCO problems with more general constraints.

There are several directions of future work. First, from the
experiment results for K > 1, we observe that the empirical
competitive ratio of RLA is only a constant factor (independent
of the problem size N) away from the lower bound. Thus, we
will study ways to tighten the competitive ratio of RLA when
K > 1. Second, we have not allowed constraints of the form
that the sum of some decision variables is upper-bounded.
Third, it would be interesting to study whether regularization
helps for online maximization problems with packing con-
straints and study the case with convex service costs. We note
that the regularization method in [23] has not been extended to
maximization problems or convex service costs either. Thus, it
would be of interest to study such extensions. Fourth, it may
also be of interest to study how regularization may help to
improve the regret, instead of the competitive ratio.
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APPENDIX A
PROOF OF LEMMA 1

Proof. To prove Lemma 1, we need to prove, together with
the dual variables 6(7) (t(T)) constructed in (19), the online
dual variables () (t) and 6(7)(¢) from each version 7 of
R-FHC satisfy the constraints (16b)-(16e). We consider one
episode from time (™) to ¢(”) + K. The proof is similar in all
other episodes. (Please see our technical report [46] for the
complete proof.)

First, according to the KKT conditions of (11), we have the
following inequalities,

en (7)) — Z B ()
m:n€Sny, (t)
1 £
+ 20 | — T 0t +1) >0,
] oy () — 1)+ &
foralln € [1,N], (49)
)= Y B +6 () -6t +1) 20,

m:n€S,, (t)
foralln e [I,N], t € [t +1,t0) + K —1], (50)

(M +E) - > BE + K)+ 00t + K)
m:n€Sy, (t)

1 £
_&m o) T~ >0,
U zn (1) + K) + 5

for all n € [1, N],
wy, — 05 (t) > 0,

foralln e [1,N], t € [t +1,t() + K],
B (t) > 0, for all m € [1, Sm(t)],t € [, ™) + K],
(53)
fo)(t) >0, foralln € [1,N], t € [t(f) + 1,67 + K].
(54)

619

(52)

Thus, constraint (16b) from time t +1t0t™ + K -1,
constraint (16¢) from time ¢™ 4+ 1 to (™) + K, constraint
(16d) from time t(™) to +(™) + K, and constraint (16e) from
time (7 + 1 to (™) + K are satisfied.

Moreover, according to (19), we know 97(; ) (t(T)) =

Wy, +x (7) (4(7) _
n In I%T)(t('r)fl)‘i’ﬁ and 60, (t + K + 1) =
Wy, +x

1 ) (1) L Y€
n xy  (HT+K)+ 5
we have that constraint (16b) at time t) and V) + K,
constraint (16¢) at time ¢(7), and constraint (16e) at time ¢(7)
are satisfied.

Hence, together with the dual variables 6(7)(t(™) con-
structed in (19), the online dual variables 5(7) () and 6(7) (¢)
from each version 7 of R-FHC satisfy the constraints (16b)-
(16e). Lemma 1 then follows.

). Thus, according to (49) and (51),

O

APPENDIX B
SKETCH OF PROOF OF LEMMA 2

Due to page limits, we only provide a sketch of proof of
Lemma 2 in this section. Please see our technical report [46]
for the complete proof.

Proof. First, for each version 7 of R-FHC, the total cost from
time t(7) to t(7) + K is equal to

Cost™ (¢ : t(7) 4 K)

tV4K N tV+K N
> D eald)x > D wa ()
t= t(f) n=1 t=t(")41n=1

0 - 1]

+Zw [ (1) (47 —

Then, notice that the complementary slackness and the opti-
mality condition of the KKT conditions of (11) implies that

(55)

t(M 4 K M(t)

Yo 8P |1- > 2P| =0, (56a)
t=t(7) m=1 nESm (t)

4K N

> 300 500 - e -1) -y 0] =0,
t=t(1)4+1n=1

(56b)

By taking the sum of the right-hand-side of (55) and the left-
hand-side of the two equations in (56), together with (19), we
have that the total cost is equal to

CostM (¢ t(7) 4 K)

£ K M (t) 4K N
Sy a0+ Y S0 [cnm
t=t(7) m=1 t=t(t) n=1
- Y B+ ) -0t +1)
m:n€Sy, (t)
t4K N

+ 3 YW [w

t=t(") 41 n=1

-0 (0)]
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+ Z W [x (") — (D () — 1)} i

_ Z ) In 1+ 5
— N () — 1) + ~
1+ &

+Z a7 + K)In

e (0 + K) + 5
(57)

Finally, notice that the complementary slackness and the
optimality condition of the KKT conditions of (11) implies
that

4K N
S 3 W) {w - 9517)(t)} —0, (58a)
t=t(7) 41 n=1
4K N
oY DW= D B0
t=t(7) n=1 m:n€Sy, (t)
+0@) -0t + 1) =0. (58b)
Lemma 2 then follows by combining (57) and (58).
O
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