
1

Online and Predictive Coordinated Cloud-Edge
Scrubbing for DDoS Mitigation

Ruiting Zhou, Member, IEEE, Yifan Zeng, Lei Jiao, Member, IEEE, Yi Zhong, and Liujing Song

Abstract—To mitigate Distributed Denial-of-Service (DDoS) attacks towards enterprise networks, we study the problem of scheduling

DDoS traffic through on-premises scrubbing at the local edge and on-demand scrubbing in the remote clouds. We model this problem

as a nonlinear mixed-integer program, which is characterized by the inputs of arbitrary dynamics and the trade-offs between staying at

suboptimal scrubbing locations and using different best locations with switching overhead. We first design a prediction-oblivious online

algorithm which consists of a carefully-designed fractional algorithm to pursue the long-term total cost minimization but avoid excessive

switching overhead over time, and a randomized rounding algorithm to derive the flow-based, integral decisions. We next design a

prediction-aware online algorithm which leverages the predicted inputs and can make even better scheduling decisions through

invoking our prediction-oblivious online algorithm and improving its solutions via re-solving the original problem slice over each

prediction window. We further extend our study to prioritize local scrubbing, and adapt our algorithms to this case correspondingly.

Then, we rigorously prove the worst-case, constant competitive performance guarantees of our online algorithms. Finally, we conduct

extensive evaluations and validate the superiority of our approach over multiple existing alternatives approaches.

Index Terms—DDoS mitigation, cloud scrubbing, edge scrubbing, online optimization, predictive control

✦

1 INTRODUCTION

SCrubbing suspicious traffic through cloud scrubbing
centers has been increasingly adopted recently to battle

Distributed Denial-of-Service (DDoS) attacks [2]. In this
approach, suspicious traffic is routed into the dedicated
scrubbing centers of DDoS protection services (e.g., Cloud-
flare [3]) for investigation, where the malicious traffic is
dropped and the legitimate traffic is injected back to the
network and continues to flow to the destination. This
approach has multiple advantages: scrubbing centers are
often geo-distributed and widely available; scrubbing is on-
demand and pay-per-use, with “unlimited” capacity; it has
no upfront cost, relatively easy to manage.

However, cloud scrubbing is not a panacea, and can
actually exhibit drawbacks in some scenarios such as de-
fending enterprise networks. First, routing traffic to scrub-
bing centers actually deviates from the normal network
path and increases the delay [2], which will impact the
contained legitimate traffic towards the enterprise as well.

‚ This work was supported in part by the National Natural Science Foun-
dation of China under Grants 62072344, U20A20177, and 62232004,
and in part by the U.S. National Science Foundation under Grants CNS-
2047719 and CNS-2225949. A preliminary version of this work appeared
in the Proceedings of the 19th IEEE International Conference on Sensing,
Communication, and Networking (SECON), September 20-23, 2022 [1]
(Corresponding author: Lei Jiao).

‚ R. Zhou is with the School of Computer Science and Engineering,
Southeast University, Nanjing, China (e-mail: ruitingzhou@seu.edu.cn).

‚ Y. Zeng, and Y. Zhong are with the Key Laboratory of Aerospace Infor-
mation Security and Trusted Computing, Ministry of Education, School
of Cyber Science and Engineering, Wuhan University, Wuhan, China (e-
mail: {yifanzeng, yizhong}@whu.edu.cn).

‚ L. Jiao is with the Department of Computer Science, University of Oregon,
Eugene, OR, USA (e-mail: jiao@cs.uoregon.edu).

‚ L. Song is with the Computer Network Information Center, Univer-
sity of Chinese Academy of Sciences, Beijing, China (e-mail: songliu-
jing@cnic.cn).

Cloud Scrubbing

Enterprise Network

Edge Scrubbing

Inbound
Suspicious Traffic

Outbound
Suspicious Traffic

Legitimate
Traffic

Fig. 1: DDoS mitigation via joint cloud and edge scrubbing

Second, a considerable amount of today’s DDoS traffic has
low volume, short duration, and is even “hit-and-run” [4],
which often costs long time for the remote scrubbing centers
to detect, or makes them unable to respond in time. Third,
cloud scrubbing is mostly for inbound traffic, and does not
help with outbound malicious traffic from within the enter-
prise networks [5]. To overcome these disadvantages, local
edge scrubbing on enterprise premises is needed. Yet, edge
scrubbing facilities often have insufficient capacity in face
of volumetric DDoS flows, and therefore cloud scrubbing is
still indispensable. Fig. 1 illustrates this scenario.

Operating a hybrid approach of on-demand cloud scrub-
bing and on-premises edge scrubbing optimally is non-
trivial and entails making scheduling decisions with chal-
lenging requirements. First, the DDoS traffic and other
related inputs are often time-varying, highly dynamic, and
require scheduling decisions to be made repetitively in an
online manner to accommodate such uncertainties with
complex long-term total cost management at both local and
remote scrubbing locations. Second, the scrubbing perfor-
mance matters. The best location to scrub a specific flow
may change as time goes; yet, switching among different
scrubbing centers requires the installation and update of
the routing rules (e.g., via Border Gateway Protocol) over

2

the networks [6], which often takes time and incurs addi-
tional delay. The scheduling decisions thus need to strike
the dynamic balance between staying stably at suboptimal
scrubbing locations and switching back and forth to the best
locations with the switching overhead. Third, it is further
preferred that scrubbing scheduling should be proactive,
rather than responsive, to handle both inbound and out-
bound suspicious traffic. The enterprise often has the unique
contextual awareness of its service and application behav-
iors, and can potentially better detect or predict abnormal
traffic in advance [7]. Such predicted information should be
exploited for further cost and performance optimization.

Unfortunately, this problem has never been investigated
so far to the best of our knowledge. Existing research
on DDoS mitigation with cloud/edge [2], [4], [5], [8], [9]
often treats cloud and edge separately and lack system-
atic, performance-guaranteed algorithms for the dynamic
orchestration of traffic scrubbing. Other related research
includes network flow scheduling [10], [11], [12], [13], [14]
and network resource allocation [15], [16], [17], [18], [19].
Yet, they neither target DDoS specifically nor capture the
unique features such as bidirectional attacks, traffic redirec-
tion, and scrubbing management; their solution techniques
are also inapplicable, as they fail to simultaneously address
the challenges of switching cost, integer decisions, and
prediction awareness, and may also miss rigorous analysis.
See detailed discussions in Section 2.

In this paper, first, we model and present a mathe-
matical formulation of the scrubbing scheduling problem.
Our formulation accounts for a range of inputs, including
inbound and outbound suspicious traffic for the enterprise,
scrubbing cost of different remote cloud scrubbing centers,
and operational cost of the local edge scrubbing facility.
Our models are general and make no assumption on traffic
dynamism, and each flow in our model can be appearing or
disappearing over time, long-term or “hit-and-run”, volu-
metric or low-volume, etc. We minimize the long-term total
cost of scrubbing all the suspicious traffic over time, while
capturing the performance overhead (i.e., switching delay)
of changing scrubbing locations. Our problem turns out to
be an NP-hard, nonlinear mixed-integer program.

To design polynomial-time online algorithms to solve
our problem, we next study the setting where in each time
slot we observe the current inputs and are required to make
irrevocable decisions in response on the fly. To address the
challenge of determining whether to use a better but differ-
ent scrubbing location at the cost of incurring the switching
cost, we relax the problem to the real domain, and design
an online algorithm which introduces a carefully-designed
logarithmic term [20] and uses it to perform “mild” and
conservative switches over time, based on the current in-
puts and the previous decisions. We also propose a smart
rounding algorithm to convert the real-valued solutions
to integers [21], while still satisfying all constraints of the
problem after rounding. We prove that our approach has a
guaranteed competitive ratio parameterized by the inputs,
characterizing the multiplicative gap between the cost of our
online decisions and that of the offline optimum.

We then study the setting where in each time slot we
have access to the predicted inputs (e.g., provided by the
enterprise networks via dedicated methods such as time

series analysis or recurrent neural networks) for a specified
prediction window of several future time slots, so that
we can proactively make even better scrubbing scheduling
decisions leveraging such predictions in advance. To outper-
form our aforementioned prediction-free online approach,
we design another novel online algorithm which, in each
prediction window, invokes our prediction-free approach
sequentially until the last time slot of the window, and then
fixes that solution for the last time slot as the “anchor”
and improves the solutions before it through re-solving the
original problem slice over the prediction window.

The novelty and superiority of our algorithms are that
we creatively incorporate the regularization theory into the
design of our predictive online algorithm to address the
scenario where the future inputs in the moving prediction
window are available. Our prediction-aware approach at-
tains a competitive ratio which is at least as good as that of
our prediction-free approach, and is often better in practice.

Further, we extend our study to the case of prioritizing
local scrubbing and only resorting to remote scrubbing
when necessary. This approach attempts to maximally avoid
the drawbacks of cloud scrubbing and make the upfront cost
(e.g., one-time equipment purchase) of edge scrubbing well-
spent. To that end, we revise our formulation through pe-
nalizing the waste of local scrubbing capacity and introduc-
ing additional control variables. Accordingly, by adapting
our existing algorithms, we design the waste-penalty-aware
prediction-free and predictive online algorithms. Different
from the previous design, the new algorithm needs to round
two more sets of fractions into integers. Then it puts them
back to the problem, and re-uses the updated regularized
fractional algorithm to update the fractional decisions. We
prove the competitive ratios and show that the competitive
ratio of the latter is no worse than that of the former.

Finally, we conduct extensive evaluations to validate the
practical performance of our algorithms. Utilizing the public
CICDDoS2019 data [22], Amazon GuardDuty prices [23], US
industrial electricity prices [24], and other realistic inputs,
we run our evaluations for a 1000-second time period of
DDoS attacks and observe multiple results, including the
following: (1) Our prediction-free online algorithm (PFO)
saves the long-term total cost by up to 28% compared to
the greedy approach of always using the cheapest scrub-
bing location and the random approach for selecting local
and remote scrubbing locations, and attains an empirical
competitive ratio of less than 3.2 compared to the offline
optimum; (2) Our prediction-aware online algorithm (PAO)
can further reduce the total cost, saving 15%„24% cost
over an existing sophisticated predictive online algorithm;
(3) Our prediction-aware approach is robust for inaccurate
predictions, e.g., achieving 17%„28% cost reduction when
the predicted inputs have 2%„6% random noise for the
prediction window of two time slots; (4) Our algorithms
run fast, and take up to around 90 seconds cumulatively
for the entire time period under consideration on a typical
off-the-shelf desktop; (5) As the waste of local scrubbing
capacity becomes more important, our waste-penalty-aware
algorithm is more advantageous in saving total cost; (6)
Our additional evaluations of the prediction-free online
algorithm with waste penalty (PFOW) and the prediction-
aware online algorithm with waste penalty (PAOW) observe

3

results of similar trends compared to PFO and PAO.

2 RELATED WORK

DDoS Mitigation at Cloud and Edge: Zilberman et al. [2] ex-
amined the optimal placement of cloud scrubbing centers by
considering factors such as traffic footprint, link load, and
network latency. Myneni et al. [5] proposed a distributed
defense solution against DDoS attacks, which is deployed at
both customer and provider edges, utilizing neural network
techniques. Bhardwaj et al. [4] employed edge functions to
enhance the efficiency of DDoS attack detection. Zhou et
al. [9] proposed a DDoS mitigation scheme which utilizes
a flexible allocation of traffic to distributed locations in
close proximity to the sources of the attacks. You et al. [8]
investigated the scheduling of DDoS flows through auction
mechanisms, involving the utilization of scrubbing centers.
In an effort to address the Edge DDoS Mitigation (EDM)
problem, He et al. [25] proposed a method that utilizes inte-
ger programming to derive optimal solutions for small-scale
EDM problems and game theory to achieve sub-optimal
solutions for large-scale problems. Additionally, IR et al.
[26] proposed a novel defense mechanism that employs a
combination of fog computing and deep learning techniques
to mitigate the issue of domain mismatch and effectively
handle real-time attacks within a cloud environment. Kumar
et al. [27] separated benign requests and malicious requests
at the container level to serve the former without interrup-
tions. MEC-enabled VANET is vulnerable to DDoS attacks.
To cope with it, Deng et al. [28] proposed a graph neu-
ral network (GNN)-based collaborative deep reinforcement
learning model to generate the resource provisioning and
mitigating strategy.

Previous studies have investigated cloud and edge DDoS
defenses independently, rather than exploring the potential
for coordination and integration between the two. Addition-
ally, these studies have not considered the orchestration of
mitigation efforts with performance guarantees. Our work
differs from these previous efforts by approaching the prob-
lem from the perspective of the victim, and by taking into
account both incoming and outgoing DDoS traffic in our
analysis.

Network Flow Scheduling: Liu et al. [10] employed a
priority-based flow scheduling approach in decentralized
federated graph learning systems. Li et al. [11] proposed
a unified dynamic flow and function scheduling method for
addressing real-time security function enforcement issues.
Lan et al. [12] examined wireless networks with continuous
and dynamic flows and developed online and adaptive
scheduling algorithms. Gu et al. [13] utilized Lyapunov
optimization to maximize network utility while satisfying
unpredictable network traffic and fairness resource alloca-
tion requirements. Gushchin et al. [14] explored deadline-
constrained flow scheduling through both offline and online
algorithms in their research. Tsanikidis et al. [29] designed
online admission, routing, and scheduling algorithms for
deadline-constrained packets under an interference graph
model of wireless networks. Mao et al. [30] took into account
the concept of service function chains (SFCs) and developed
a method for traffic-sensitive online placement and flow
routing of SFCs. Aiming at TSN chain flows, Gong et al.

[31] presented a heuristic scheduling approach based on the
chain flow constraints, which is utilized to globally schedule
chain flows in the multi-level topology. Chung et al. [32]
designed two centralized dynamic parallel flow scheduling
algorithms for recursively defined network structures to
find the least congested path for each flow.

These studies do not specifically address malicious or
DDoS traffic, and may not be directly applicable to the prob-
lem of DDoS attacks, which have unique characteristics such
as the need to consider the costs of switching traffic routes
and the use of scrubbing across multiple locations. These
considerations fundamentally alter the problem and have a
significant impact on the design of appropriate algorithms
to address it.

Resource Allocation: Liu et al. [33] proposed an online
task offloading and resource allocation approach for edge-
cloud orchestrated computing to minimize the latency of
tasks. Fan et al. [34] proposed a collaborative scheme for
service placement, task scheduling, computing resource al-
location, and transmission rate allocation to minimize la-
tency in a multi-task and multi-service scenario. Farhadi
et al. [35] proposed a two-time-scale framework for jointly
considering service placement and request scheduling for
data-intensive applications. Wang et al. [36] presented a
mixed integer linear programming (MILP) model and a
three-phase heuristic for virtual machine placement and
workload assignment in cooperative edge-cloud computing
over backhaul networks. Alsurdeh et al. [37] provided a
resource estimation and task scheduling framework to run
hybrid workflows on edge and cloud computing systems.
Additionally, there are other researches that consider the
impact of switching cost on scheduling. Ouyang et al.
[15] examined the placement and migration of services in
edge environments through the use of multi-armed bandits.
Gao et al. [16] proposed laziness-inspired approaches to
balance access, switching, and communication delay. Wang
et al. [17] developed regularization-based online methods
for allocating edge resources to mobile users. Krishnasamy
et al. [18] optimized wireless network energy by managing
base station status switching through Markov-chain-based
approaches. Chen et al. [19] used game theory to inves-
tigate drone network interference and channel switching
mitigation. Li et al. [38] studied online optimization with
switching costs for predicted inputs from a purely algo-
rithmic perspective. Yang et al. [39] defined the problem of
delay-aware network function placement and routing and
proposed a randomized approximation algorithm to solve
it. Ren et al. [40] proposed a solution for the problem of
jointly orchestrating services and managing requests while
ensuring compliance with service agreements. Liu et al.
[41] developed a model for computing resource allocation,
request assignment, and VM instance deployment to mini-
mize total latency in completing requests.

These studies employ a variety of solution techniques,
but do not often consider all of the challenges present in
our problem, such as the intractability of integer variables,
the need for online solutions, the importance of prediction-
awareness, and the competitive analysis for predictive algo-
rithms. These challenges are non-trivial and unique to our
problem.

4

3 MODEL AND FORMULATION

3.1 System Modeling

Suspicious Flows: We consider an enterprise that utilizes
traffic scrubbing to mitigate DDoS attacks. There are incom-
ing suspicious flows that originate from external attackers.
There can also exist outgoing suspicious flows, coming
from compromised servers within the enterprise or from
internal attackers toward outside the enterprise. We study
the entire system over a series of consecutive time slots
T , and consider a set J of incoming suspicious flows. For
j P J and t P T , we use λjt P t1, 0u to denote whether the
flow j appears in the system at the time slot t, and use σjt to
denote the traffic volume of the flow j at the time slot t. To
reflect arbitrary flow dynamism, we make no assumption
on how λjt and σjt vary across j and t; we capture the
outgoing suspicious flow dynamism below.

Edge Scrubbing: This enterprise has deployed a local, on-
premises scrubbing facility (e.g., server cluster) for scrub-
bing the flows. While the enterprise always uses the local
facility to scrub the outgoing flows, we denote by Ct, @t P T

the residual available capacity of the local scrubbing facility
that can be used for scrubbing incoming flows at the time
slot t. We use d to denote the operational cost (e.g., electricity
price) as using the local facility to scrub one unit of traffic.

Cloud Scrubbing: We consider a set I of remote cloud
scrubbing centers that are often geographically distributed
and operated by one or multiple operator(s). The enterprise
can redirect any incoming suspicious flows to the scrubbing
centers through deploying BGP rules in the networks, so
that after scrubbing, the clean flows are routed back to the
enterprise. For i P I and t P T , we use bit to denote
the price that needs to be paid by the enterprise to the
scrubbing center operator for scrubbing one unit traffic at
the scrubbing center i at the time slot t. For i P I and
j P J , we use cij to denote the routes setup overhead (e.g.,
the amount of time it takes to propagate BGP rules across
routers in wide area networks) for redirecting the flow j to
the scrubbing center i.

Control Decisions: The enterprise needs to make the
following scheduling decisions as time goes: yijt P t1, 0u,
denoting whether or not to use the remote scrubbing center
i to scrub the incoming flow j at time t, and zjt P r0, 1s,
denoting the proportion of the local scrubbing capacity
allocated for scrubbing the incoming flow j at time t.

We have summarized all such notations in Table 1.

TABLE 1: Notations and Descriptions

Inputs Description
λjt whether incoming flow j appears at time t
σjt traffic volume of flow j at time t
Ct available local scrubbing capacity at time t
d operational cost of scrubbing one unit traffic locally
bit price of scrubbing one unit traffic at scrubbing center i at t
cij overhead of setting up routes to redirect flow j to scrubbing

center i
a penalty of wasting one unit local scrubbing capacity

Outputs Description
xjt whether to use local scrubbing facility for flow j at t
yijt whether to use remote scrubbing center i for flow j at t
zjt proportion of local scrubbing capacity allocated for flow j at t
wt proportion of local scrubbing capacity wasted at t

Total Cost: Having all these notations, we can now
represent the different components of the total cost of

the system over the entire time horizon:
ř

t

ř

j dCtzjt
is the operational cost for scrubbing incoming flows lo-
cally;

ř

t

ř

i

ř

j bitσjtyijt is the cost of scrubbing incom-
ing flows in the remote cloud scrubbing centers; and
ř

t

ř

i

ř

j cijpyijt ´ yijt´1q`, where p¨q` def
“ maxt¨, 0u, is the

“switching cost” of setting up routes to change the target
cloud scrubbing centers. Via our residual-capacity-based
modeling, we do not need to consider the cost of scrubbing
outgoing flows, since scrubbing them locally is the default
action of the enterprise and cannot be optimized.

Prediction Window: We also study the setting where the
inputs can be predicted over the prediction window. That
is, as time goes to the time slot t, we have access to the
inputs for all the w time slots of tt, t ` 1, ..., t ` w ´ 1u,
where w is the length of prediction window, even though we
still cannot access the inputs beyond the prediction window.
Here, “inputs” refer to λjt, σjt, Ct, and so on. Such predicted
inputs can be provided by the enterprise via statistical or
machine learning techniques [7]. While focusing on accurate
predictions in our algorithm design and theoretical analysis,
we also experiment with inaccurate predictions later.

3.2 Problem Formulation and Challenges

Problem Formulation: We formulate the total cost minimiza-
tion problem P in the following:

min P “
ř

t

ř

j dCtzjt `
ř

t

ř

i

ř

j bitσjtyijt
`

ř

t

ř

i

ř

j cijpyijt ´ yijt´1q`

s.t. zjt `
ř

i yijt ě λjt, @j,@t, (1a)
zjt `

ř

i yijt ď 1, @j,@t, (1b)
Ctzjt ` σjt

ř

i yijt ě σjt, @j,@t, (1c)
ř

j zjt ď 1, @t, (1d)

yijt P t0, 1u, @i,@j,@t, (1e)
zjt ě 0, @j,@t. (1f)

Constraints (1a) and (1b) ensure that every single incom-
ing flow is scrubbed and must be scrubbed in either the
local scrubbing facility or a remote scrubbing center. Con-
straint (1c) ensures that the traffic of each incoming flow
is scrubbed completely. Constraint (1d) ensures that the
allocated local capacity cannot exceed the residual available
capacity of the local scrubbing facility. Constraints (1e) and
(1f) enforce the domains of the control variables.

Settings and Challenges: We face fundamental chal-
lenges when solving the above problem. The first chal-
lenge is online decision-making. In this paper, we consider
two settings of “prediction-free” and “prediction-aware”,
respectively, depending on the availability of predictions.
In the former setting, our algorithms run as time goes and
make control decisions irrevocably on the fly for each time
slot by observing the inputs for only that time slot and no
inputs of the future. This imposes a challenge because, for
example, at the time slot t´1, to minimize the switching cost
ř

i

ř

j cijpyijt ´ yijt´1q`, it would not be straightforward
to determine yijt´1 as we do not know yijt; yijt should be
considered as an input to the time slot t ´ 1, but will only
be determined at the next time slot t. In the latter setting, at
each time slot t, we have access to future inputs within the
prediction window beyond t. It is yet non-trivial to exploit
such future inputs to make provably better decisions than in

5

Algorithm 1: Prediction-Free Online Control Algo-
rithm (PFO)

1 for t “ 1, 2, 3, ...

2 With ŷt´1 as input, invoke Algorithm 2 to solve P̂t

to get the solution tŷt,ẑtu;
3 Invoke Algorithm 3 to round ŷt to ȳt;
4 With ȳt´1 and ȳt as input, invoke Algorithm 2 to

solve P̂t to get the solution tȳt,ẑ
˚
t u;

Algorithm 2: Regularized Fractional Algorithm,@t

Solve P̂t using any standard convex program solver:

min P̂t “
ř

i

ř

j bitσjtyijt `
ř

j dCtzjt

`
ř

i

ř

j

cij
δ

ppyijt ` εq ln
yijt`ε

yijt´1`ε
´ yijtq

s.t. (1a) „ (1d), without “@t”; yijt ě 0, zjt ě 0.

the former setting with no future inputs. The second chal-
lenge is intractability. Our problem is essentially a nonlinear
mixed-integer program. Even in the offline setting where all
the inputs are observable all at once before the start of the
time horizon, the problem is NP-hard. Solving it online faces
only escalated difficulty.

4 ONLINE ALGORITHMS

To overcome all the aforementioned challenges, we firstly
design Algorithm 1, which invokes Algorithms 2 and 3,
for the prediction-free setting; based on this approach, we
further design Algorithm 4 for the prediction-aware setting.

4.1 Algorithm for the Prediction-Free Setting

Algorithm 1: Algorithm 1 is the overall control algorithm
for the prediction-free setting. At t, Algorithm 1 takes the
fractional solution ŷt´1 from t ´ 1 as input and invokes
Algorithm 2 to get the fractional solution tŷt,ẑtu for t. Next,
it invokes Algorithm 3 to round ŷt to integers ȳt. Further,
since ŷt has been updated to ȳt, it needs to update ẑt
as well—it puts ȳt back into the problem and re-invokes
Algorithm 2 to get the updated fractional solution ẑ˚

t . That
is, eventually, the solution for t is tȳt,ẑ

˚
t u.

Algorithm 2: Algorithm 2 splits the problem into a
series of one-shot problem slices at each corresponding t,
introduces a carefully-designed logarithmic term to replace
the switching cost in the objective function, and solves this
transformed one-shot problem slice at each t, denoted as
P̂t, by only using control decisions of the previous time
slot t ´ 1. The transformation to P̂t allows us to overcome
the blindness to future inputs while still making provably
good decisions for the current time slot, as shown in our
theoretical analysis later.

To derive the concrete formulation of P̂t at t, we use the
logarithmic term 1

δ ppyijt ` εq ln yijt`ε
yijt´1`ε ´ yijtq to replace

the original switching cost term pyijt ´ yijt´1q` [20], while
relaxing yt into the real domain, where ε ą 0 and δ “ lnp1`
1

ε q are configurable parameters. Note that in Algorithm 2, at
t, yt´1 is no longer a decision variable but an input, i.e.,
ŷt´1 or ȳt´1, as exhibited in Algorithm 1.

Algorithm 3: Algorithm 3 iteratively selects a pair of
the fractional decisions and randomly rounds them up and
down, respectively, to produce at least one integer in every

Algorithm 3: Randomized Rounding Algorithm, @t

1 I
1
t

def
“ Izti|ŷt P t0, 1uu;

2 while |I 1
t| ą 1

3 Select i1, i2 P I
1
t, where i1 ‰ i2;

4 ρ1
def
“ mint1 ´ ŷi1jt, ŷi2jtu;

5 ρ2
def
“ mintŷi1jt, 1 ´ ŷi2jtu;

6 With the probability ρ2
ρ1`ρ2

,
Set ŷ1

i1jt “ ŷi1jt ` ρ1, ŷ
1
i2jt “ ŷi2jt ´ ρ1;

With the probability ρ1
ρ1`ρ2

,
Set ŷ1

i1jt “ ŷi1jt ´ ρ2, ŷ
1
i2jt “ ŷi2jt ` ρ2;

7 if ŷ1
i1jt P t0, 1u

8 Set ȳi1jt “ ŷ1
i1jt, I

1
t “ I

1
tzti1u;

9 else Set ŷi1jt “ ŷ1
i1jt;

10 endif
11 if ŷ1

i2jt P t0, 1u
12 Set ȳi2jt “ ŷ1

i2jt, I
1
t “ I

1
tzti2u;

13 else Set ŷi2jt “ ŷ1
i2jt;

14 endif
15 endwhile
16 if |I 1

t| “ 1
17 Set ȳit “ 1 for the only i P I

1
t;

18 endif

iteration while guaranteeing their sum does not change
after rounding [21]. It also preserves the expectation of the
rounded integer to be equal to the corresponding fraction
before rounding, a property also useful in our theoretical
analysis later.

This algorithm actually has multiple critical properties:
(i) at least one of the two selected fractions is rounded into
an integer after every iteration in the loop of Lines 2„15,
i.e., either ŷi1jt, or ŷi2jt, or both are rounded into integer(s);
(ii) the weighted sum of the two fractions keeps unchanged
before and after rounding i.e., we have ŷ1

i1jt
` ŷ1

i2jt
“

ŷi1jt ` ŷi2jt, no matter which case we choose in Line 6; (iii)
the expectation of the integral ȳijt equals the fractional ŷijt,
i.e., Epȳijtq “ ŷijt,@i P IzI 1

t—for example, if ŷi2jt becomes
integral, then Epȳi2jtq “ ρ2

ρ1`ρ2
pŷi2jt ´ ρ1q ` ρ1

ρ1`ρ2
pŷi2jt `

ρ2q “ ŷi2jt; (iv) after the loop, there is at most one fraction
left. To satisfy the constraints of our problem, we just round
it up, as in Line 17.

4.2 Algorithm for the Prediction-Aware Setting

Suppose a prediction window contains w time slots, then the
entire time horizon can be divided into a series of prediction
windows starting at the time slots 1, w ` 1, 2w ` 1... At the
first time slot of a prediction window, we can observe all
the inputs for the prediction window and can thus make
control decisions altogether for every single time slot of the
prediction window. This is actually the setting of standard
Fixed Horizon Control (FHC) [38]; however, as FHC has no
explicit consideration for switching cost, it does not have
guaranteed performance in our case and thus motivates our
Algorithm 4.

Algorithm 4: Algorithm 4 first performs in each predic-
tion window the same way as in the prediction-free setting
to reach the very last time slot of the window, then fixes the
decisions in this last time slot as the “anchor”, and finally re-
solves the original problem P over the prediction window
while rounding the fractional decisions. We can thus connect
the prediction-aware setting to the prediction-free setting,

6

Algorithm 4: Prediction-Aware Online Control Algo-
rithm (PAO)

1 for t “ 1, w ` 1, 2w ` 1, 3w ` 1, ...
2 for τ “ t, t ` 1, ..., t ` w ´ 1

3 With ŷτ´1as input, use Algorithm 2 to get Ŝτ ;
4 endfor

5 With Ŝt´1 and Ŝt`w´1 as inputs, use any standard

convex solver to minimize
řt`w´1

τ“t Pτ and get the
solutions tS˚

t , ...,S
˚
t`w´2, Ŝt`w´1u;

6 for τ “ t, t ` 1, ..., t ` w ´ 2

7 Invoke Algorithm 3 to round S˚
τ into 9Sτ ;

8 endfor

9 Invoke Algorithm 3 to round Ŝt`w´1 into 9St`w´1;

and beat the latter in terms of the cost evaluated by the
objective function of P.

This algorithm executes as follows. We use Ŝt to denote
tŷt, ẑtu obtained from Algorithm 2 at t. For the prediction
window tt, ..., t`w´1u, in Lines 2„4, we proceed as in the
prediction-free setting until we get Ŝt`w´1, that is, we get
tŜt, ..., Ŝt`w´2, Ŝt`w´1u. Then, fixing Ŝt`w´1, we minimize
řt`w´1

τ“t Pτ over the prediction window, subject to all our
constraints of (1a)„(1e), (2a), and (2b), as in Line 5. Finally,
we round the fractional solutions tS˚

t , ...,S
˚
t`w´2, Ŝt`w´1u

into the mixed-integer solutions t 9St, ..., 9St`w´2, 9St`w´1u in
Lines 6„8. Algorithm 4 connects to Algorithm 1, as both
algorithms produce exactly the same solutions for the time
slots tw, 2w, 3w, ...u; however, Algorithm 4 is better overall,
as it has access to future inputs in the prediction window
and utilizes such inputs to improve the solutions for all the
other time slots of each prediction window over the time
horizon.

Note that how predictions are produced by external
predictors, whether they need to be synchronized, and how
much time is needed to produce such predictions are out of
the scope of our work. The predictions may be generated
in real time, or generated offline in advance, or generated
in a somewhat hybrid manner, depending on the specific
prediction mechanisms and algorithms that are used—all
these issues are not the focus of our paper. We only assume
the predictions are available and gradually fed to our al-
gorithms as time goes, and our focus is to design online
algorithms that can use such predictions on the fly to make
better control decisions compared to the case of having no
predictions. If the predictions are not available due to pre-
diction lag, synchronization, convergence, and other issues,
then our prediction-aware online algorithms will just not
apply (but our prediction-oblivious online algorithms will
still apply because they do not require predictions).

5 PERFORMANCE ANALYSIS

5.1 Overview

To characterize the performance of our algorithms, we will
rigorously prove that the total cost incurred by the online
solutions from our algorithms is no greater than a constant,
called the “competitive ratio”, times the offline optimal
cost. The competitive ratio represents how competitive our
online algorithms could be, when compared to the offline

optimum. Here, online algorithms can only access the inputs
as they are gradually revealed on the fly, and the offline
optimum has access to the inputs over the entire time
horizon at hindsight.

For the prediction-free setting (i.e., Algorithm 1, which
invokes Algorithms 2 and 3), we will prove

EpP ptȳt, ẑ
˚
t,@tuqq (3a)

ďr2P ptŷt, ẑt,@tuq (3b)
ďr2P

2ptŷt, ẑt,@tuq (3c)
ďr1r2D (3d)
ďr1r2P

2
opt (3e)

ďpr1r2 ` MqPopt. (3f)

Here, our goal is to connect (3a) to (3f), via utilizing the
intermediate steps (3b)„(3e) as the bridge. In (3a), we have
the expectation because of the randomization in our round-
ing algorithm. In (3a)ď(3b) which corresponds to Algorithm
3, r2 characterizes the “loss” of the rounding process. In
(3c), P 2 is the objective function of the problem P2, where
P2 is an equivalent reformulation of the problem P1 by
introducing an additional parameter M and P1 is a relaxed
problem from our original problem P. Thus, (3b)ď(3c) nat-
urally holds. In (3c)ď(3d) which corresponds to Algorithm
2, D is the objective function of the problem D which is the
Lagrange dual problem of the problem P2. r2 characterizes
the connection between P 2 and D. Then, note that we
automatically have (3d)ď(3e) due to duality, where P 2

opt is
the offline optimum of the problem P2. Finally, in (3e)ď(3f),
Popt is the offline optimum of our original problem P.
Overall, the competitive ratio is r1r2`M for our prediction-
free online approach.

For the prediction-aware setting (i.e., Algorithm 4, which
also invokes Algorithms 2 and 3), we will prove

EpP p 9S1, ..., 9Sw´1, 9Sw, 9Sw`1, ..., 9S2w´1, 9S2w, ...qq (4a)

ďr2P pS˚
1 , ...,S

˚
w´1, Ŝw,S

˚
w`1, ...,S

˚
2w´1, Ŝ2w, ...q (4b)

ďr2P
2pS˚

1 , ...,S
˚
w´1, Ŝw,S

˚
w`1, ...,S

˚
2w´1, Ŝ2w, ...q (4c)

ďr2r3P
2pŜt,@tq (4d)

ďpr1r2r3 ` MqPopt. (4e)

We highlight that (4a)ď(4b) is analogous to (3a)ď(3b),
with the same r2; (4b)ď(4c) is analogous to (3b)ď(3c); and
(4d)ď(4e) is analogous to (3c)ď(3f), with the same r1 and
M . Our only focus here will be (4c)ď(4d), based on the
design of Algorithm 4. r3 characterizes the benefit of using
the predicted inputs in the prediction window. The com-
petitive ratio is r1r2r3 ` M for our prediction-aware online
approach.

Based on the above, we will prove and find out r1, r2,
r3, and M , respectively, in the following subsections.

5.2 Analysis of Regularized Fractional Algorithm

We prove (3c)ď(3d) and find out r1.
Formulating the Problems P1 and P2. We firstly relax

our original problem P into the following problem P1:

min P 1 “
ř

t Pt

“
ř

t

ř

i

ř

j bitσjtyijt `
ř

t

ř

i

ř

j cijuijt

`
ř

t

ř

j dCtzjt
s.t. (1a)„(1d),

uijt ě yijt ´ yijt´1, @i,@j,@t, (5a)

7

uijt ě 0, yijt ě 0, zjt ě 0, @i,@j,@t. (5b)

P1 relaxes the control variables of P to the real domains
and also introduces the auxiliary variables ut with the
constraints uijt ě yijt ´ yijt´1 and uijt ě 0 to equivalently
linearize P.

We then transform P1 into an equivalent problem P2:

min P 2 “
ř

t P
1
t

“
ř

t

ř

i

ř

j bitσjtyijt `
ř

t

ř

i

ř

j cijuijt

`
ř

t

ř

j dCtzjt ` M
ř

tp
ř

j zjt ` Qtq

s.t. (1a),
ř

j zjt ´ zjt `
ř

i

ř

j yijt ´
ř

i yijt ě
ř

j λjt ´ 1

@j,@t, (6a)
Ct

σjt
zjt `

ř

i yijt ě 1, @j,@t, (6b)
ř

j zjt ` Qt ě 1, @t, (6c)

uijt ě yijt ´ yijt´1, @i,@j,@t, (6d)
uijt ě 0, xjt ě 0, yijt ě 0, zjt ě 0,

@i,@j,@t. (6e)

We transfer constraint (1b) into its equivalent form (6a) with
the help of (1a). Constraint (1d) can be seen as

ř

j zjt `
Qt “ 1, where Qt ě 0. It is equivalent to

ř

j zjt ` Qt ď 1
and

ř

j zjt ` Qt ě 1. We next introduce a relatively large
positive number M and change the objective function P 1

to P 2 “ P 1 `
ř

t Mp
ř

j zjt ` Qtq. When P 2 reaches its
minimum value, the value of the objective function depends
on the item

ř

t Mp
ř

j zjt ` Qtq since M is large, and at
the same time,

ř

j zjt ` Qt will be minimized. Combined
with

ř

j zjt ` Qt ě 1 and the minimum value of
ř

j zjt `
Qt, we can achieve

ř

j zjt ` Qt “ 1. Therefore, constraint
ř

j zjt ` Qt ď 1 can be omitted. Now, as the problem P2

reaches its offline optimum, the problem P1 also reaches the
offline optimum. Note that M depends on the inputs, e.g.,
the inputs can be normalized before fed into the problem so
that M can be small.

Deriving the Lagrange Dual Problem D. We further
derive the dual problem for P2, denoted as D, where αjt,
βjt, γjt, µjt, ξt, τt, and ϕijt are the dual variables:

max D “
ř

t

ř

j λjtαjt `
ř

j

ř

tp
ř

j λjt ´ 1qβjt

`
ř

t

ř

j µit `
ř

tp1 ´ Qtqξt
s.t. αjt `

ř

j βjt ´ βjt ` Ct

σjt
µjt ` ξt ď M ` dCt,

@j,@t, (7a)
αjt `

ř

j βjt ´ βjt ` µjt ´ ϕijt ` ϕijt`1 ď bitσjt,

@j,@t, (7b)
ϕijt ď cij , @i,@j,@t, (7c)
ξt ď M, @t, (7d)
dual variables ě 0.

Bounding. Now, we are ready to prove (3c)ď(3d) and
find out r1. We actually have the following theorem:

Theorem 1. P 2ptŷt, ẑt,@tuq ď r1DptΩpŷt, ẑtq,@tuq, where
r1 “ 2 ` p1 ` |I|εqδ.

Proof. See details in Appendix A. We show that the solutions
solved from the series of the problems P̂t, @t as defined
in Algorithm 2, if put together over time and evaluated in
the objective function of P2, can make the objective value
P 2 upper-bounded by a constant r1 times the objective
value D of the dual problem D. We derive the proof using

the Karush-Kuhn-Tucker (KKT) conditions—note that this
is vastly different from traditional KKT analysis, because
we use the KKT conditions for P̂t, @t, rather than those for
P2.

5.3 Analysis of Randomized Rounding Algorithm

We prove (3a)ď(3b) and find out r2.

Theorem 2. EpP ptȳt,ẑ
˚
t ,@tuqq ď r2P pt̂yt,ẑt,@tuq, where

r2 “ Ψy ` Ψz , Ψy “ |J |Ψ1
yzΨ

2
yz , Ψz “ |J |maxi,j cijΨ

2
yz ,

Ψ1
yz “ maxi,j,t bi,tσjt`dCt, and Ψ2

yz “ maxi,j,t
1

bitσjt
` 1

dCt
.

Proof. See details in Appendix B.We exploit the multiple
critical properties of Algorithm 3, which have been de-
scribed in Section 4.1, to complete the proof.

5.4 Analysis of Benefit of Prediction-Awareness

We prove (4c)ď(4d) and find out r3.

Theorem 3. P 2pS˚
1 ,...,S

˚
w´1,Ŝw,S

˚
w`1,...,S

˚
2w´1,Ŝ2w,...q ď

P 2pŜt,@tq, i.e., r3 “ 1.

Proof. First, we exhibit that if tŜ1, ..., ŜT u denote any fea-
sible solution to P2, and tS˚

τ ,S
˚
τ 1̀, ...,S

˚
κ́ 1u denote the

optimal solution to P2 for the time slots tτ, τ ` 1, ...,κ ´ 1u
given Ŝκ, where 1ďτ ăκ ď T , then we have

P 2ptŜ1, ..., Ŝτ´1,S
˚
τ ,S

˚
τ`1,S

˚
κ´1, Ŝκ, ..., ŜT uq (8a)

ďP 2ptŜ1, ..., ŜT uq. (8b)

This is due to the following. Since tS˚
τ ,S

˚
τ 1̀, ...,S

˚
κ́ 1u are

optimal over the time slots tτ, τ ` 1, ...,κ ´ 1u, we nat-
urally have P 2ptS˚

τ , ...,S
˚
κ́ 1, Ŝκuq ď P 2ptŜτ , ..., Ŝκuq for

tτ, τ ` 1, ...,κ´ 1u; we can then add both P 2ptŜ1, ..., Ŝτ 1́uq
and P 2ptŜκ, Ŝκ̀ 1, ..., ŜT uq to each side of this inequality,
and then get (8a)ď(8b). Second, the proof to this theorem
is complete by applying (8a)ď(8b) repetitively via setting
τ “ pn ´ 1qw ` 1 and κ “ nw, where n“1,2,..., according
to Algorithm 4.

We finally prove (3e)ď(3f) and find out M . We put it here
as M is the last parameter in our competitive ratio(s).

Theorem 4. r1r2P
2
opt ď pr1r2 ` MqPopt, where M is as

introduced in the problem P2.

Proof. P 2 can be seen as P 1 ` M
ř

tp
ř

j zjt ` Qtq. When
the problem P2 reaches its offline optimum, P 1 in P 2 also
equals its optimum, with

ř

j zjt ` Qt “ 1. Then, we have

r1r2P
2
opt

ďr1r2pP 1
opt ` MT q

ďr1r2pPopt ` MT q
ďr1r2pPopt ` MPoptq
ďpr1r2 ` MqPopt.

6 PRIORITIZING LOCAL SCRUBBING

Due to the drawbacks of cloud scrubbing as stated in
Section 1, one may desire to prioritize the usage of the local
on-premises facility and only resort to remote scrubbing
centers if the suspicious traffic’s volume exceeds the local
capacity. We study this case in this section. We penalize the
waste of the local scrubbing facility at each time slot in the

8

optimization objective, and also introduce two additional
control decisions. Specifically, in Section 6.1 we formulate
the new problem with the waste penalty; in Section 6.2 we
adapt our proposed algorithms to solving the new problem;
and in Section 6.3 we analyze the performance bounds of
the adapted algorithms.

6.1 System Model

Capacity Waste: We use a to denote the penalty for wasting
one unit capacity of the local scrubbing facility. The enter-
prise often pays an upfront expense (e.g., equipment and
materials) for adopting the on-premises scrubbing facility
for a projected lifespan (e.g., several years), and incurs
penalty of waste if the facility is not fully used. We reason-
ably assume that this lifespan is longer than the length of
the time horizon under consideration for DDoS mitigation.

Control Decisions: The enterprise makes two more types
of control decisions: (i) xjt P t1, 0u, which denotes whether
or not to conduct local scrubbing for the incoming flow j at
the time slot t; and (ii) wt ě 0, i.e., wt “ 1 ´

ř

j zjt, which
represents the proportion of the wasted local scrubbing
capacity at t. Due to the dependence of wt on zjt, wt can
also be considered as an auxiliary variable.

Total Cost: We still minimize the total cost from the
enterprise victim’s perspective. Now, we decompose the
total cost into four distinct components as follows: two of
which have been previously explained in the preceding
texts;

ř

t

ř

j dσjtxjt is the operational cost of scrubbing
flows locally; and

ř

t awt is the penalty of waste of the local
scrubbing resources.

Problem Formulation: We formulate the new version of
the total cost minimization problem Pu below:

min Pu “
ř

t

ř

j dσjtxjt `
ř

t

ř

i

ř

j bitσjtyijt
`

ř

t

ř

i

ř

j cijpyijt ´ yijt´1q` `
ř

t awt

s.t. xjt `
ř

i yijt ě λjt, @j,@t, (10a)
xjt `

ř

i yijt ď 1, @j,@t, (10b)
xjt ě zjt, @j,@t, (10c)
Ctzjt ` σjt

ř

i yijt ě σjt, @j,@t, (10d)
wt `

ř

j zjt “ 1, @t, (10e)

xjt P t0, 1u, yijt P t0, 1u, @i,@j,@t, (10f)
zjt ě 0, wt ě 0, @j,@t. (10g)

Constraints (10a) and (10b) correspond to (1a) and (1b).
Constraint (10c) indicates that the capacity of the local
scrubbing can be allocated to flow j only when flow j uses
the local scrubbing facility. Constraint (10d) is the same as
(1c). Constraint (10e) ensures that the sum of the allocated
and the wasted proportions is one. Constraints (10f) and
(10g) capture the domains of the decision variables.

6.2 Algorithm Design

To solve Pu, we adapt Algorithms 1„4 to form a set of new
algorithms, i.e., Algorithms 5„8, correspondingly.

Notations: We introduce several new notations for the
sake of presenting our new algorithms. Pu is our problem
formulated above. P1

u is the relaxed problem from Pu, by
relaxing all integral variables into the real domains. Put is
the one-shot problem of P1

u at the time slot t. P̂ut is the

transformed problem from Put via replacing the switching
cost term by our designated logarithmic term. We use Pu,
P 1
u, P 1

ut, and P̂ut to denote the objective functions of Pu, P1
u,

Put, and P̂ut, respectively. We write txt,yt,zt,wtu as the
concise representation for txjt,yijt,zjt,wt,@i, ju at t. Other
notations will be just explained as they are used.

Algorithm 6

Algorithm 7

Algorithm 6

time slot
...

...

...
...

...

...

t-1 t t+1Algorithm 5

Fig. 2: Sequential execution of prediction-free online algorithm

Algorithm 5: Algorithm 5 is the major algorithm for
the scenario in which there is no forecasting but the waste
penalty is imposed. It repeatedly invokes Algorithms 6 and
7 at each time slot.

As shown in Fig. 2, at t, Algorithm 5 inputs the fractional
decision ŷt´1 from the time slot t ´ 1 and calls Algorithm
6 to acquire the fractional decision tx̂t,ŷt,ẑt,ŵtu. Then, it
invokes Algorithm 7 to round tx̂t, ŷtu into integers tx̄t, ȳtu.
Further, it fixes tx̄t, ȳtu, puts them into the problem, and re-
uses Algorithm 6 to update the fractional decision tẑ˚

t ,ŵ
˚
t u.

The solution for the time slot t is therefore tx̄t,ȳt,ẑ
˚
t ,ŵ

˚
t u.

Algorithm 6: Algorithm 6 solves the “regularized” one-
shot problem at t to get the fractional solutions for t. We first
show the relaxed problem P1

u of our original problem Pu:

min P 1
u “

ř

t Put

“
ř

t

ř

j dσjtxjt `
ř

t

ř

i

ř

j bitσjtyijt
`

ř

t

ř

i

ř

j cijuijt `
ř

t awt

s.t. (1a) „ (1e),
uijt ě yijt ´ yijt´1, @i,@j,@t, (11a)
uijt ě 0, xjt ě 0, yijt ě 0, zjt ě 0, wt ě 0,

@i,@j,@t. (11b)

Relaxing all variables to the real domains, in the above,
we have introduced Put as the one-shot objective and used
auxiliary variable ut with the corresponding constraints in
order to linearize this problem. That is, like Algorithm 2, we
use the logarithmic term 1

δ ppyijt ` εq ln yijt`ε
yijt´1`ε ´ yijtq to

substitute the original switching cost term pyijt ´ yijt´1q`

in Put and thus compose the regularized problem P̂ut.
Algorithms 7 and 8: Algorithm 7 rounds fractional ŷt

and x̂t to integral ȳt and x̄t, respectively. Algorithm 8 is for
the setting of prediction-aware with waste penalty.

6.3 Theoretical Analysis

In the case of having no access to the inputs of the future,
we will prove a chain of inequalities:

9

t=w+1

t+1 t+w-1...

Algorithm 6

Algorithm 7

time slot

...

t t+1 t+w-1
Algorithm 8

t=1

...

...

t=w+1 ...

t

t=2w+1

t t+w-1...

...

...

Fig. 3: Sequential execution of prediction-aware online algo-
rithm

Algorithm 5: Prediction-Free Online Control Algo-
rithm with Waste Penalty (PFOW)

1 for t “ 1, 2, 3, ...

2 With ŷt´1 as input, invoke Algorithm 6 to solve P̂ut

to get the solution tx̂t,ŷt,ẑt,ŵtu;
3 Invoke Algorithm 7 to round tx̂t, ŷtu to tx̄t, ȳtu;
4 With ȳt´1 and tx̄t, ȳtu as inputs, invoke Algorithm

6 to solve P̂ut to get the solution tx̄t,ȳt,ẑ
˚
t ,ŵ

˚
t u;

Algorithm 6: Updated Regularized Fractional Algo-
rithm,@t

Solve P̂ut using any standard convex program solver:

min P̂ut “
ř

j dσjtxjt `
ř

i

ř

j bitσjtyijt ` awt

`
ř

i

ř

j

cij
δ

ppyijt ` εq ln
yijt`ε

yijt´1`ε
´ yijtq

s.t. (1a) „ (1e), without “@t”.

Algorithm 7: Updated Randomized Rounding Algo-
rithm, @t

1 Invoke Algorithm 3 to round ŷt;
2 if

ř

i ȳijt “ 1
3 Set x̄jt “ 0;
4 else Set x̄jt “ λjt;

Algorithm 8: Prediction-Aware Online Control Algo-
rithm with Waste Penalty (PAOW)

1 for t “ 1, w ` 1, 2w ` 1, 3w ` 1, ...
2 for τ “ t, t ` 1, ..., t ` w ´ 1

3 With ŷτ´1as input, use Algorithm 6 to get Ŝτ ;
4 With Ŝt´1 and Ŝt`w´1 as inputs, use any standard

convex solver to minimize P 1
u

def
“

řt`w´1

τ“t Puτ and get
the solutions tS˚

t , ...,S
˚

t`w´2, Ŝt`w´1u;
5 for τ “ t, t ` 1, ..., t ` w ´ 2

6 Invoke Algorithm 7 to round S
˚
τ into 9Sτ ;

7 Invoke Algorithm 7 to round Ŝt`w´1 into 9St`w´1;

EpPuptx̄t, ȳt, ẑ
˚
t , ŵ

˚
t ,@tuqq (13a)

ďr1
2Puptx̂t, ŷt, ẑt, ŵt,@tuq (13b)

ďr1
2P

2
u ptx̂t, ŷt, ẑt, ŵt,@tuq (13c)

ďr1
1r

1
2Du (13d)

ďr1
1r

1
2P

2
uopt (13e)

ďpr1
1r

1
2 ` M 1qPuopt. (13f)

We will prove (13a)ď(13b) based on the design of Algo-
rithm 7. We have (13b)ď(13c) due to the way we construct
the auxiliary problem P2

u as shown next to facilitate our
analysis, where its objective function P 2 has an additional
non-negative term of

ř

t Mpwt `
ř

j zjtq. We will prove
(13c)ď(13d) based on the design of Algorithm 6 and we
derive the problem Du with its objective function Du, which
is the Lagrange dual problem of P2

u. We have (13d)ď(13e)
due to weak duality. We will finally prove (13e)ď(13f) using
the value of the term

ř

t Mpwt `
ř

j zjtq at the optimum. To
sum up, for our prediction-free approach, the competitive
ratio is r1r2 ` M .

In the case of having access to the inputs in each predic-
tion window as time goes, we will remove the proof here
because it is similar to Section 5.4.

We prove (13c)ď(13d) and find out r1
1.

Reformulating Problem P1
u into P2

u. We transform P1
u

into an equivalent form P2
u as follows:

min P 2
u “

ř

t P
1
ut

“
ř

t

ř

j dσjtxjt `
ř

t

ř

i

ř

j bitσjtyijt
`

ř

t

ř

i

ř

j cijuijt `
ř

t awt `
ř

t Mpwt `
ř

j zjtq

s.t. (1a), (1c)
ř

j xjt ´ xjt `
ř

i

ř

j yijt ´
ř

i yijt ě
ř

j λjt ´ 1,

@j,@t, (14a)
Ct

σjt
zjt `

ř

i yijt ě 1, @j,@t, (14b)

wt `
ř

j zjt ě 1, @t, (14c)

uijt ě yijt ´ yijt´1, @i,@j,@t, (14d)
uijt ě 0, xjt ě 0, yijt ě 0, zjt ě 0, wt ě 0,

@i,@j,@t. (14e)

M is a large constant, based on which we have changed
Constraint (14c) from its previous equality form into its
current inequality form. Also, the new Constraint (14a) is
from (1a) and (1b). Now, note that when P2

u reaches its
offline optimum, P1

u also reaches its offline optimum.
Deriving the Lagrange Dual Problem. We write the dual

problem Du for the primal problem P2
u, where αjt, βjt, γjt,

µjt, ξt, τt, and ϕijt are the dual variables.

max Du “
ř

t

ř

j λjtαjt `
ř

j

ř

tp
ř

j λjt ´ 1qβjt

`
ř

t

ř

j µit `
ř

t ξt `
ř

tp
ř

t τt ´ τtq

s.t. αjt `
ř

j βjt ´ βjt ` γjt ď aσjt, @j,@t, (15a)

αjt `
ř

j βjt ´ βjt ` µjt ´ ϕijt ` ϕijt`1 ď bitσjt,

@j,@t, (15b)

´γjt ` Ct

σjt
µjt ` ξt ď M, @j,@t, (15c)

ϕijt ď cij , @i,@j,@t, (15d)
ξt ď a ` M, @t, (15e)
dual variables ě 0

Bounding. Using the KKT conditions, we can prove

10

(13c)ď(13d), i.e., Theorem 5:

Theorem 5. P 2
u ptx̂t, ŷt, ẑt, ŵt,@tuq ď r1

1DuptΩpx̂t, ŷt, ẑt,
ŵtq,@tuq, where r1

1 “ 1 ` p1 ` |I|εqδ.

Proof. See Appendix C. We need to exhibit that our online
solution at each time slot, i.e., the optimal solution to P̂ut

defined in Algorithm 6, if collected over time and evaluated
in the objective of P2

u, makes (13c)ď(13d) hold.

We prove (13a)ď(13b) and find out r1
2. We show Theorem

6.

Theorem 6. EpPuptx̄t,ȳt,ẑ
˚
t ,ŵ

˚
t ,@tuqq ď r1

2Puptx̂t,ŷt,ẑt,
ŵt,@tuq, where r1

2 “ Ψx ` Ψy , Ψx “ p|J |Ψ1
xy ` aqΨ2

xy ,
Ψy “ |J |maxi,j cijΨ

2
xy , Ψ1

xy “ maxj,t dσjt`maxi,j,tbi,tσjt,
and Ψ2

xy “ maxj,t
1

dσjt
` maxi,j,t

1

bitσjt
.

Proof. We remove the proof as it is similar to the proof of
Section 5.3.

7 EXPERIMENTAL EVALUATION

7.1 Evaluation Settings

DDoS Traffic: We utilize the publicly availabl CICDDoS2019
dataset [22] for our evaluation. The attack, which lasted
for approximately 6 hours on March 3, 2019, utilized 4
PCs as external attackers to send incoming DDoS flows
towards a single victim server and also used the victim
server to send outgoing DDoS flows. The volumes of the
flows are 0 „ 4 MB. For each flow, we have the starting
time, duration, total volume, and flow direction indicator.
The dataset includes approximately 73 million flows, with
approximately 93% as incoming flows and around 7% as
outgoing flows. We choose the first 1000-second data as
input for our evaluations, which includes approximately 24
million flows. We consider 10 seconds as a single time slot.

0 20 40 60 80 100

time slot

0

1000

2000

3000

4000

5000

6000

7000

S
y
s
te

m
 T

ra
ff

ic
 F

lo
w

(K
B

) flow in
flow out

Fig. 4: DDoS flows

We then obtain our inputs σjt and λjt as follows. For
every second s, we consider all the DDoS flows that start
at s as a single combined DDoS flow that starts at the time
slot where s belongs and ends at the time slot where the
component flow of the longest duration ends. The volume of
such a combined flow (i.e., σjt) at the time slot t is calculated
as the sum of the volume of each component flow at t,
where the volume of a component flow at any time slot in its
duration is calculated as its recorded total volume divided
by the number of its time slots. As a result, the volumes of
the incoming DDoS flows are 0„ 5.8 MB and the outgoing
DDoS flows are 0„0.6 MB. The existence of each flow (i.e.,
λjt) is set accordingly. Note that the outgoing flow volume

at t is reflected in Ct. We depict the traffic volumes in the
first 100 time slots in Fig. 4.

Cloud Scrubbing Centers: We use the pricing information
from Amazon GuardDuty [23], which divides its regional
pricing in the US into 6 regions. We therefore consider 6
scrubbing centers, one in each region. We assume a rela-
tively stable bit over time for each scrubbing center. At every
time slot t, we use the scrubbing prices of $4, $4, $4, $4.2,
$4.4, and $4.8 as the base, generate a uniformly-distributed
random number in [0.8,1.2], and set bit as the base times the
corresponding random number.

Edge Scrubbing Facility: Without loss of generality, we
set the local scrubbing capacity based on the maximum
volume of the combined outgoing DDoS flow over the
whole time horizon. Specifically, as the outgoing flows
can only be scrubbed locally, the local scrubbing capacity
must adequately cover the outgoing flows. We calculate the
maximum virtual outgoing flow volume v “ 1267 KB, and
set the local scrubbing facility capacity as 1.5 times v. The
available local scrubbing capacity Ct for t is set as the local
scrubbing capacity minus the overall outgoing volume at t.

Operational Cost: We assume the local scrubbing facility
is powered by the same electricity market as the cloud
scrubbing centers. We use the average price of the US indus-
trial electricity in 2019 (6.81 cents/kWh) as the operational
cost of scrubbing one unit traffic locally (i.e., d) [24].

Redirection Rules Overhead: The BGP route convergence
time can fluctuate from seconds to minutes in reality. Using
this BGP convergence time as the base, we vary its weight
to decide the unit switching cost cij . Analogously, we create
a series of random numbers from the range of [5,100], and
set the unit switching cost as the multiplication of the BGP
convergence time and the random numbers.

Prediction Error: To evaluate the robustness of our
prediction-aware algorithm, we inject zero-mean Gaussian
white noise into bit and σjt, while setting the standard
deviation of such noise as a percentage of the standard
deviation at t of bit and σjt, respectively. This percentage
is then considered as the prediction error. We vary the
prediction error in [0, 10%].

Algorithms for Comparison: We implement multiple al-
ternative approaches for comparison: Random, Greedy, Fixed
Horizon Control (FHC), and Approximation [41]. The random
approach treats every remote scrubbing center and the local
facility equally, and randomly routes incoming flows to one
of them; if the local capacity is not sufficient, it randomly
chooses a remote one. The greedy approach calculates the
optimal fractional solution at every time slot t while ignor-
ing the switching cost, and then uses our own Algorithm 3
to get the final solution. In the prediction-aware setting, we
additionally consider the FHC approach for comparison.

We write PFO to represent our the Prediction-Free On-
line Algorithm (i.e., Algorithm 1), and PAO to represent our
Prediction-Aware Online Algorithm (i.e., Algorithm 4). We
set the parameter ε “ 0.01 in Algorithm 2. For our extended
study of waste penalty, we have PFOW (i.e., Algorithm 5)
and PAOW (i.e., Algorithm 8), correspondingly.

7.2 Evaluation Results

Fig. 5 illustrates the temporal evolution of the total cost as
the weight assigned to the cost of transitioning between

11

scrubbing centers increases (it is worth noting that this
weight was not included in our previous formulations). As
the weight becomes more substantial, both the random and
the greedy approach tend to disregard the switching cost,
resulting in a significant increase in total cost; in contrast,
our proposed online algorithm consistently yields superior
performance, achieving a maximum savings of 28% in total
cost through the explicit consideration of the switching cost.

0 1 2 3

Weight on Switching Cost

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
li
z
e
d
 T

o
ta

l
C

o
s
t

PFO
greedy
random

Fig. 5: Impact of switching
cost

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
o

rm
al

iz
ed

 T
o

ta
l C

o
st

PFO
greedy
random

0 10% 20% 30% 40% 50%
Volume Varies of Incoming Flows

Fig. 6: Impact of incoming
flows

Fig. 6 shows the total cost as the volumes of incoming
flows vary. For instance, a value of approximately ˘30% in
the figure denotes that the volume of each incoming flow
oscillates within a range of 0.7 to 1.3 times its initial volume,
and the degree of fluctuation is generated through a uniform
distribution. The figure illustrates that our method demon-
strates robustness when confronted with varying volumes
of incoming flow.

Fig. 7 examines the effect of the available local scrubbing
capacity on the total cost. We determine the maximum flow
volume v at each time slot, and set the local scrubbing
facility capacity to 0 (i.e., utilizing a cloud-only approach),v,
2v, and 3v respectively. As evident from the figure, as the
available local capacity increases, our algorithm is able to se-
lect a local scrubbing facility and thus mitigate the need for
additional switching costs. The random approach exhibits a
variable total cost due to its inherent randomness, while the
greedy approach exhibits a decreasing cost, however, it still
remains higher than that of our approach.

0 1 2 3

Local Capacity

0

0.1

0.2

0.3

0.4

0.5

0.6

N
o

rm
a

li
z
e

d
 T

o
ta

l
C

o
s
t

PFO
greedy
random

Fig. 7: Impact of local capacity

0 1 2 3 4 5

Local Capacity

3

3.2

3.4

3.6

3.8

4

E
m

p
ir
ic

a
l
C

o
m

p
e

ti
ti
v
e

 R
a

ti
o

PFO
random
greedy

Fig. 8: Empirical competitive-
ness

Fig. 8 illustrates the empirical competitive ratios as a
function of the local scrubbing capacity when no predic-
tion is taken into account. The PFO algorithm consistently
demonstrates superior performance, achieving an empirical
competitive ratio of less than 3.2.

Fig. 9 visualizes the empirical competitive ratios as the
length of the prediction window varies. With the exception
of FHC and PAO, all other methods do not incorporate pre-
dictions and thus their competitiveness remains constant.

When the prediction window length is 1, the performance
of PFO and PAO is comparable. As the prediction win-
dow becomes more extensive, the competitive ratio of PAO
decreases, providing a better performance than FHC by
16% „ 24%, owing to its ability to effectively manage the
switching cost across prediction windows.

0 2 3 4 5 6 7 8 9 10

Prediction Window Length

2

2.5

3

3.5

4

E
x

p
e

ri
m

e
n

ta
l

C
o

m
p

e
ti

ti
v

e
 R

a
ti

o

PFO
PAO
FHC
random
greedy

Fig. 9: Impact of window
length

0 2% 4% 6% 8% 10%

Prediction Error

2

2.5

3

3.5

4

4.5

N
o

rm
a

li
z
e

d
 T

o
ta

l
C

o
s
t

w=2

w=4

w=6

w=8

w=10

PFO

Fig. 10: Impact of Gaussian
prediction error

Fig. 10 and 11 respectively investigate the impact of
Gaussian prediction errors and uniform prediction errors
on the performance of PAO, when the predictions about the
remote scrubbing price and traffic flow volume in the pre-
diction window are inaccurate. Using PFO as the baseline,
which is not affected by predictions, we observe that the
Gaussian prediction error threshold is 6% when the length
of the prediction window is two. The threshold of uniform
prediction error is 5% when the length of the prediction
window is two. Furthermore, a longer prediction window
can tolerate a higher prediction error threshold, thereby
rendering PAO more resilient to prediction errors.

0 2% 4% 6% 8% 10%
Prediction Error

2

2.5

3

3.5

4

4.5

N
or

m
al

iz
ed

 T
ot

al
 C

os
t

w=2
w=4
w=6
w=8
w=10
PFO

Fig. 11: Impact of uniform pre-
diction error

0 20 40 60 80 100

Total Number of Time Slots

0

20

40

60

80

100

E
x
e

c
u

ti
o

n
 T

im
e

(s
)

PFO
PAO
random
greedy

Fig. 12: Execution time

Fig. 12 compares the execution time of the algorithms as
the input size increases. We execute all algorithms 10 times
and calculate the average; for PAO, we set the prediction
window to 5 time slots. Our algorithms run at a slightly
slower pace than those with simpler algorithmic logic. The
total execution time of our approach is less than 100 seconds,
compared to the total duration of 1000 seconds for all the
time slots; as a single time slot can be longer (e.g., hours)
in reality, our execution time of the order of magnitude of
seconds is deemed acceptable.

7.3 More Evaluation Results

Now we evaluate the performance of PFOW and PAOW.
The settings here are the same as the settings in Section
7.1. To better illustrate the performance of our algorithm,
we implement a new baseline. The algorithm Liu [41] was
designed based on the primal-dual theory to address the
request assignment problem. Both the remote scrubbing

12

center and the local facility are regarded as “cloudlets” in
Liu. Liu selected a cloudlet for each suspicious flow to
scrub and determine the allocated resources. One of the
cloudlets was used to represent the local scrubbing facility
with limited scrubbing capacity.

0 1 2 3
Weight on Switching Cost

0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 T
ot

al
 C

os
t PFOW

Liu
greedy
random

Fig. 13: Impact of switching
cost

0 10% 20% 30% 40% 50%
Fluctuation of Incoming Flows

0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 T
ot

al
 C

os
t

PFOW
Liu
greedy
random

Fig. 14: Impact of incoming
flows

Impact of Switching Cost: Fig. 13 compares the cumula-
tive total cost as the weight of the switching cost increases.
When the switching cost is not present, random selection
can yield good results. However, when the weight of switch-
ing cost grows, the total cost of the random algorithm in-
creases significantly and our approach performs optimally.
Our algorithm consistently beats the greedy algorithm and
the Liu algorithm.

Impact of Incoming Flows: We also examine the fluctu-
ation of incoming flows, which can be represented by the
variations in traffic volume of flow. We configure σjt to
fluctuate between plus or minus 10% and 50%, and investi-
gate the impact of this variation on the results. As shown
in Fig. 14, our online algorithm demonstrates consistent
performance for various incoming flows.

0.5 1 2 3
Local Capacity

0

0.2

0.4

0.6

N
or

m
al

iz
ed

 T
ot

al
 C

os
t

PFOW
Liu
greedy
random

Fig. 15: Impact of local capac-
ity

0.5 1 2 3
Wasting Cost

0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 T
ot

al
 C

os
t PFOW

greedy
random

Fig. 16: Impact of unit waste
cost

Impact of Local Capacity: Fig. 15 illustrates the total
costs of the algorithms when the local scrubbing capacity
fluctuates. We determine the maximum traffic flow volume
v at each time slot and set the local capacity to 0.5, 2, 3 times
v. As the available local capacity increases, it selects local
scrubbing, thereby avoiding additional switching costs.

Impact of Waste Penalty: In real situations, the waste
penalty depends on how victims treat the importance of
local scrubbing. We set an original waste penalty and then
consider 0.5, 1, 2, and 3 times of it, respectively. As the
weight of the waste increases, our online algorithm incurs
up to 18% less total cost than other algorithms in Fig. 16.

Impact of Prediction Window: Fig. 17 examines the com-
petitive ratio of different algorithms with varying prediction
window lengths in the case where the input is predictable.
With the exception of the PAOW and FHC algorithms, the

0 2 4 6 8 10

Prediction Window Length

3

3.5

4

4.5

5

5.5

6

E
x

p
e

ri
m

e
n

ta
l

C
o

m
p

e
ti

ti
v

e
 R

a
ti

o

PFOW
PAOW
FHC
random
greedy

Fig. 17: Impact of window length

others are not influenced by predicted information and thus
remain constant. When the window length of prediction is
zero, PAOW will be equivalent to PFOW. As the prediction
window length increases, the competitive ratio of PAOW
decreases, and it approaches the offline optimum. PAOW
consistently outperforms the standard FHC algorithm.

2% 4% 6% 8% 10%

Prediction Error

1

1.5

2

2.5

3

3.5

4

4.5

N
o

rm
a

li
z

e
d

 T
o

ta
l

C
o

s
t

w=2

w=4

w=6

w=8

w=10

PFOW

Fig. 18: Impact of Gaussian
prediction error

0 2% 4% 6% 8% 10%
Prediction Error

1

1.5

2

2.5

3

3.5

4

4.5

N
or

m
al

iz
ed

 T
ot

al
 C

os
t

w=2
w=4
w=6
w=8
w=10
PFOW

Fig. 19: Impact of uniform pre-
diction error

Impact of Inaccurate Predictions: Fig. 18 and Fig. 19
investigate the effect of Gaussian prediction errors and
uniform prediction errors on PAOW, respectively. We vary
the prediction error rate for different prediction window
lengths. The results confirm that PAOW can operate with
inaccurately predicted inputs, particularly when the Gaus-
sian prediction error rates are less than 6% „ 8% or the
uniform prediction error rates are less than 4% „ 6%.

0 50 100

Total Number of Time Slot

0

20

40

60

80

100

E
x
e
c
u
ti
o
n
 T

im
e
(s

) PFOW
PAOW
Liu
random
greedy

10 20 30 40 50
Number of Cloud Centers

0

50

100

150

200

250

E
xe

cu
tio

n
T

im
e(

s)

PFOW
PAOW
Liu
random
greedy

Fig. 20: Execution time

Execution Time: Fig. 20 shows the algorithms’ running
time as the data size and the number of cloud centers
increase. We set the prediction window w as 5 and run
all the algorithms 10 times, and then compute the average
value. Our algorithms run at a slower pace than others;
however, when taking into account the total cost in Fig. 13,
such execution time is deemed relatively acceptable. It is
important to note that the execution time is measured on
our commodity laptop, which is equipped with 12 i7-8700
CPU cores, 64GB RAM and 1000GB HDDs; executing the
algorithms in real-world data centers can be much faster.

13

0 20 40 60
Time Slot

0

0.5

1
Ed

ge
 U

tili
za

tio
n

PFOW
PFO

0 20 40 60
Time Slot

0

0.5

1

PAOW
PAO

Fig. 21: Edge Utilization

Edge Utilization: Fig. 21 shows the resource utilization
of the local edge scrubbing facility. At each time slot, the
scheduling decisions obtained by the algorithm considering
the waste penalty (PFOW and PAOW) preferentially use the
local facility for scrubbing.

8 DISCUSSIONS ON SECURITY ANALYSIS

While the scope of our work is the scrubbing performance
in terms of the total cost, including the operational cost,
the switching cost, and the penalty of resource waste, we
discuss the security analysis as below.

What type of DDoS attacks and what type of scrubbing
technologies are targeted in this paper? We assume that the
DDoS traffic under consideration can be scrubbed by the
corresponding scrubbing technology under consideration,
as long as such traffic can be redirected to scrubbing centers
and scrubbing such traffic incurs “cost”, which is often the
case. That is, we do not focus on a specific type of DDoS
traffic (e.g., transport layer, application layer), or a specific
type of scrubbing technologies (e.g., deep packet inspection,
machine-learning-based); instead, we build general models
in this paper to capture the different types of costs, and
present a mathematical study of online cost optimization.

Who, as the controller, runs the proposed algorithms, and can
this controller be compromised? The scrubbing system mainly
consists of the remote cloud scrubbing centers and the local
edge scrubbing center. The operator or the provider of such
a scrubbing system can be responsible for gathering the
inputs and running the online optimization algorithms to
redirect the traffic, scrub the traffic, etc. In this paper, we
focus on letting the scrubbing system protect the enterprise
victim, and do not consider the situation where the scrub-
bing system itself is compromised; we also focus on DDoS,
and do not consider other types of attacks that may or may
not be launched simultaneously.

Can the attacker attack the scrubbing system itself by DDoS?
A typical assumption for cloud computing is that the cloud
has almost infinite resources, thus capable of scrubbing the
DDoS traffic no matter how large such traffic is. So, we do
not consider the case where the attackers directly attack the
cloud scrubbing centers using DDoS. Regarding the local
edge scrubbing facility with limited capacity, it seems that
the attackers can overwhelm it by DDoS and prevent it
from scrubbing the traffic that targets the victim. Yet, note
that such local edge scrubbing facility is co-located with
the victim, which could be invisible to the attacker; even if
the attacker detects it, it is the scrubbing system operator’s
responsibility to firstly protect the local edge scrubbing
facility and make it function normally to protect the victim.

Can the attacker circumvent the scrubbing system to attack the
victim? We assume the suspicious traffic is already detected
in the first place, and then the suspicious traffic is scrubbed
so that the malicious part is filtered out. We do not consider
the case where the suspicious traffic cannot be detected
and thus one has no idea whether or when to start traffic
scrubbing. The context of this paper is that traffic scrubbing
is started, and our task is to carefully schedule and manage
it in a cost-efficient manner.

9 CONCLUDING REMARKS

In this paper, we investigate the optimization problem of
scheduling DDoS traffic through both remote cloud and
local edge scrubbing facilities. We design prediction-free
and prediction-aware online algorithms, based on the avail-
ability of predicted inputs, and demonstrate that our online
algorithms can achieve guaranteed performance compared
to offline optimums in terms of the total cost over time.
We also demonstrate the effectiveness and the advantages
of our approaches in practice. For future work, we plan to
formally incorporate various inaccurate prediction models
into our algorithm design and analysis, and also investigate
other non-scrubbing-based cloud-edge DDoS mitigation ap-
proaches in general.

ACKNOWLEDGEMENT

The authors acknowledge Dr. Yebo Feng (Nanyang Tech-
nological University, Singapore) for helpful discussions on
security analysis and the anonymous reviewers for their
constructive comments.

APPENDIX A
PROOF OF THEOREM 1

First, we write the Karush-Kuhn-Tucker (KKT) conditions
that are satisfied by the optimal solution of P̂t:

M ` dCt ´ αjt ´
ř

j βjt ` βjt ´ Ct

σjt
µjt ´ ξt “ 0, @j,

(16a)

bitσjt ´ αjt ´
ř

j βjt ` βjt ´ µjt ` cij
δ ln

yijt`ε
yijt´1`ε “ 0,

@i,@j, (16b)
M ´ ξt “ 0, @j, (16c)
αjtpλjt ´ zjt ´

ř

i yijtq “ 0, @j, (16d)
βjtp

ř

j λjt´1´
ř

j zjt`zjt´
ř

i

ř

j yijt`
ř

i yijtq“0,

@j, (16e)

µjtp1 ´ Ct

σjt
zjt ´

ř

i yijtq “ 0, @j, (16f)

ξtp1 ´ Qt ´
ř

j zjtq “ 0, @j. (16g)

Second, to show (3c)ď(3d), we need a dual solution to be
evaluated in D, as in (3d). We can actually always construct
such a dual solution via a designated mapping Ω, which
converts P̂t’s optimal solution tŷt, ẑt,@tu into a feasible
dual solution. We can leverage our KKT conditions above
to easily show that the constructed dual solution via the
following mapping satisfies all the constrains of D:

αjt “ αj ,@j; βjt “ βj ,@j; γjt “ γj ,@j; µjt “ µj ,@j;

ξt “ ξ; ϕijt “ cij
δ ln

yijt`ε
yijt´1`ε ,@i,@j.

14

Taking Constraint (7b) for example. The left-hand side of
(7b) is equal to the right-hand side, which is based on (16b).

αjt `
ř

j βjt ´ βjt ` µjt ´ ϕijt ` ϕijt`1

“αj `
ř

j βj ´ βj ` µj ´ cij
δ ln

yijt`ε
yijt´1`ε ` cij

δ ln
yijt`1`ε
yijt`ε

“bitσjt.

Third, let us now prove (3c)ď(3d). With the two facts
below, @p, qą0,

p
ř

n pnq ln
ř

n pn
ř

n qn
ď

ř

n pn ln
pn

qn
, (18a)

p ´ q ď p ln p
q , (18b)

we can have the following, @i,@j:
ř

t ŷijt ln
ŷijt`ε

ŷijt´1`ε

“
ř

tpŷijt ` εq ln ŷijt`ε
ŷijt´1`ε ´

ř

t ε ln
ŷijt`ε

ŷijt´1`ε

ěp
ř

tpŷijt ` εqq ln
ř

tpŷijt`εq
ř

tpŷijt´1`εq ` pŷij0 ` εq ln ŷij0`ε
ŷijT `ε

ě
ř

tpŷijt ` εq ´
ř

tpŷijt´1 ` εq ` ŷij0 ´ ŷijT “ 0.

Then we can prove that the non-switching cost in P 2 satis-
fies

ř

t

ř

i

ř

j bitσjtŷijt `
ř

t

ř

jpM ` dCtqẑjt `
ř

t MQt ď
2D:

ř

t

ř

i

ř

j bitσjtŷijt `
ř

t

ř

jpM ` dCtqzjt `
ř

t MQt

ď
ř

t

ř

jpαjt `
ř

j βjt ´ βjt ` Ct

σjt
µjt ` ξtqẑjt `

ř

t ξtQt

`
ř

t

ř

i

ř

jpαjt `
ř

j βjt ´ βjt ` µjt ´ cij
δ ln

ŷijt`ε
ŷijt´1`ε qŷijt

(20a)

ď
ř

t

ř

jpαjt `
ř

j βjt ´ βjt ` Ct

σjt
µjt ` ξtqẑjt `

ř

t ξtQt

`
ř

t

ř

i

ř

jpαjt `
ř

j βjt ´ βjt ` µjtqŷijt (20b)

“
ř

t

ř

j αjtλjt `
ř

t

ř

j βjtp
ř

j λjt ´ 1q `
ř

t

ř

j µjt

`
ř

t ξt (20c)
“D `

ř

t Qtξt ď 2D.

(20a) is due to (16a)„(16c). (20b) is due to ŷijt ln
ŷijt`ε

ŷijt´1`ε ě
0, as shown right above. (20c) follows from (16d)„(16g).
As for the switching cost, it can then be upper-bounded
as

ř

t

ř

i

ř

j cijpŷijt ´ ŷijt´1q` ď p1 ` |I|εqδD, where we
define η “ p1 ` εqσ. That is,

ř

t

ř

i

ř

j cijpŷijt ´ ŷijt´1q`

ď
ř

t

ř

i

ř

j cijpŷijt ´ ŷijt´1q (21a)

ď
ř

t

ř

i

ř

j cijpŷijt ` εq ln pŷijt`εq
pŷijt´1`εq (21b)

“δ
ř

t

ř

i

ř

jpŷijt ` εqpαjt `
ř

j βjt ´ βjt ` µjt ´ bitσjtq
(21c)

ďp1 ` |I|εqδ
ř

t

ř

jpαjt `
ř

j βjt ´ βjt ` µjtq (21d)

ďp1 ` |I|εqδ
`

ř

t

ř

j λjtαjt `
ř

t

ř

jp
ř

j λjt ´ 1qβjt

`
ř

t

ř

j µjt

˘

(21e)

ďp1 ` |I|εqδD.

(21a) is owing to the definition of pŷijt ´ ŷijt´1q`. (21b) is
due to (18b). (21c) follows from (16b). (21d) holds because
of (1b). (21e) is due to our assumption of

ř

j λjt ě 1.

APPENDIX B
PROOF OF THEOREM 2

We firstly show E
`

p
ř

t

ř

i

ř

j bitσjtȳijt `
ř

t

ř

j dCtzjtq,
@t

˘

ď ΨyP ptŷt,ẑt,@tuq:

Ep
ř

t

ř

i

ř

j bitσjtȳijt `
ř

t

ř

j dCtzjtq

ďΨ1
yz

ř

t

ř

j E pzjt `
ř

i ȳijtq (22a)

ďΨ1
yz

ř

t

ř

j 1 (22b)

ď|J |Ψ1
yz

ř

t

ř

j λjt (22c)

ď|J |Ψ1
yz

ř

t

ř

jpzjt `
ř

i ŷijtq (22d)

ďΨyp
ř

t

ř

i

ř

j bitσjtyijt `
ř

t

ř

j dCtzjtq. (22e)

After executing Algorithm 3, the sum of zjt `
ř

i ȳijt is less
than or equal to 1, hence we can reach (22b). (22c) holds
since we assume

ř

j λjt ě 1. (22d) is due to (1a).

Then we show E
´

`
ř

t

ř

i

ř

j cijpȳijt ´ ȳijt´1q`
˘

,@t
¯

ď

ΨzP̂ ptŷt, ẑt,@tuq:

E
`

ř

t

ř

i

ř

j cijpȳijt ´ ȳijt´1q`
˘

ďE
`

ř

t

ř

i

ř

j cij ȳijt
˘

(23a)

ďmaxi,j cijEp
ř

t

ř

i

ř

j ȳijtq (23b)

ďΨzp
ř

t

ř

i

ř

j bitσjtyijt `
ř

t

ř

j dCtzjtq. (23c)

(23a) follows from p¨q` def
“ maxt¨, 0u. (23b)„(23c) is analo-

gous to (22a)„(22e).

APPENDIX C
PROOF OF THEOREM 5

First, we write the Karush-Kuhn-Tucker (KKT) conditions
that are satisfied by the optimal solution of P̂t:

αjtσjt ´ αjt ´
ř

j βjt ` βjt ´ γjt “ 0, @j, (24a)

bitσjt ´ αjt ´
ř

j βjt ` βjt ´ µjt ` cij
δ ln

yijt`ε
yijt´1`ε “ 0,

@i,@j, (24b)

M ` γjt ´ Ct

δjt
µjt ´ ξt “ 0, @j, (24c)

M ` a ´ ξt “ 0, (24d)
αjtpλjt ´ xjt ´

ř

i yijtq “ 0, @j, (24e)
βjtp

ř

j λjt´1´
ř

j xjt`xjt´
ř

i

ř

j yijt`
ř

i yijtq“0,

@j, (24f)
γjtpzjt ´ xijtq “ 0, @j, (24g)

µjtp1 ´ Ct

σjt
zjt ´

ř

i yijtq “ 0, @j, (24h)

ξtp1 ´ wt ´
ř

j zjtq “ 0, @j, (24i)

Second, to show (13c)ď(13d), we need a dual solution to be
evaluated in Du, as in (13d). Now, we show we can always
construct such a dual solution via a mapping Ω, which
converts P̂ut’s optimal solution tx̂t, ŷt, ẑt, ŵt,@tu into a
feasible dual solution. We can leverage our KKT conditions
above to easily show that the following constructed dual
solution satisfies all the constrains of Du:

αjt “ αj ,@j; βjt “ βj ,@j; γjt “ γj ,@j; µjt “ µj ,@j;

ξt “ ξ; ϕijt “ cij
δ ln

yijt`ε
yijt´1`ε ,@i,@j.

Third, we can have the following, which has been proved
in Appendix A, @i,@j: ŷijt ln

ŷijt`ε
ŷijt´1`ε ě 0.

Then, we can prove that the non-switching cost in P 2
u

satisfies:
ř

t

ř

j dσjtx̂jt `
ř

t

ř

i

ř

j bitσjtŷijt `
ř

t aŵt `
Mpŵt `

ř

j ẑjtq ď Du.

ř

t

ř

j dσjtx̂jt `
ř

t

ř

i

ř

j bitσjtŷijt `
ř

t aŵt

15

`Mpŵt `
ř

j ẑjtq

ď
ř

t

ř

jpαjt `
ř

j βjt ´ βjt ` γjtqx̂jt

`
ř

t

ř

i

ř

jpαjt `
ř

j βjt ´ βjt ` µjt ´ cij
δ ln

ŷijt`ε
ŷijt´1`ε qŷijt

`
ř

t ξtŵt `
ř

t

ř

jp Ct

δjt
µjt ` ξt ´ γjtqẑjt (25a)

ď
ř

t

ř

jpαjt `
ř

j βjt ´ βjt ` γjtqx̂jt

`
ř

t

ř

i

ř

jpαjt `
ř

j βjt ´ βjt ` µjtqŷijt
`

ř

t ξtŵt `
ř

t

ř

jp Ct

δjt
µjt ` ξt ´ γjtqẑjt (25b)

“
ř

t

ř

j αjtλjt `
ř

t

ř

j βjtp
ř

j λjt ´ 1q `
ř

t

ř

j µjt

`
ř

t ξt (25c)
“Du (25d)

(25a) is due to (24a)„(24d). (25b) holds since
ŷijt ln

ŷijt`ε
ŷijt´1`ε ě 0, as shown before. (25c) follows

from (24e)„(24i).
Then the switching cost in Pu can be upper-bounded as

follows:
ř

t

ř

i

ř

j cijpŷijt ´ ŷijt´1q` ď p1`|I|εqδDu. Here,
we will omit its proof as it has been proofed in Appendix A.

REFERENCES

[1] Y. Zhong, L. Jiao, R. Zhou, and L. Song, “On-demand or on-
premises: Online mitigation of ddos attacks via cloud-edge co-
ordination,” in Proc. of IEEE SECON, 2022.

[2] P. Zilberman, R. Puzis, and Y. Elovici, “On network footprint of
traffic inspection and filtering at global scrubbing centers,” IEEE
Transactions on Dependable and Secure Computing, vol. 14, no. 5, pp.
521–534, 2015.

[3] “Cloudflare - The Web Performance & Security Company,” https:
//www.cloudflare.com/.

[4] K. Bhardwaj, J. C. Miranda, and A. Gavrilovska, “Towards iot-
ddos prevention using edge computing,” in Proc. of USENIX
HotEdge, 2018.

[5] S. Myneni, A. Chowdhary, D. Huang, and A. Alshamrani, “Smart-
defense: A distributed deep defense against ddos attacks with
edge computing,” Elsevier Computer Networks, vol. 209, p. 108874,
2022.

[6] V. Giotsas, G. Smaragdakis, C. Dietzel, P. Richter, A. Feldmann,
and A. Berger, “Inferring bgp blackholing activity in the internet,”
in Proc. of ACM IMC, 2017.

[7] D. Kwon, H. Kim, D. An, and H. Ju, “Ddos attack volume
forecasting using a statistical approach,” in Proc. of IFIP/IEEE IM,
2017.

[8] W. You, L. Jiao, J. Li, and R. Zhou, “Scheduling ddos cloud
scrubbing in isp networks via randomized online auctions,” in
Proc. of IEEE INFOCOM, 2020.

[9] L. Zhou, H. Guo, and G. Deng, “A fog computing based approach
to ddos mitigation in iiot systems,” Elsevier Computers & Security,
vol. 85, pp. 51–62, 2019.

[10] T. Liu, P. Li, and Y. Gu, “Glint: Decentralized federated graph
learning with traffic throttling and flow scheduling,” in Proc. of
IEEE/ACM IWQoS, 2021.

[11] Q. Li, X. Deng, Z. Liu, Y. Yang, X. Zou, Q. Wang, M. Xu, and
J. Wu, “Dynamic network security function enforcement via joint
flow and function scheduling,” IEEE Transactions on Information
Forensics and Security, vol. 17, pp. 486–499, 2022.

[12] X. Lan, Y. Chen, and L. Cai, “Throughput-optimal h-qmw schedul-
ing for hybrid wireless networks with persistent and dynamic
flows,” IEEE Transactions on Wireless Communications, vol. 19, no. 2,
pp. 1182–1195, 2019.

[13] L. Gu, D. Zeng, S. Tao, S. Guo, H. Jin, A. Y. Zomaya, and
W. Zhuang, “Fairness-aware dynamic rate control and flow
scheduling for network utility maximization in network service
chain,” IEEE Journal on Selected Areas in Communications, vol. 37,
no. 5, pp. 1059–1071, 2019.

[14] A. Gushchin, S.-H. Tseng, and A. Tang, “Optimization-based net-
work flow deadline scheduling,” in Proc. of IEEE ICNP, 2016.

[15] T. Ouyang, X. Chen, Z. Zhou, L. Li, and X. Tan, “Adaptive user-
managed service placement for mobile edge computing via con-
textual multi-armed bandit learning,” IEEE Transactions on Mobile
Computing, 2021.

[16] B. Gao, Z. Zhou, F. Liu, and F. Xu, “Winning at the starting line:
Joint network selection and service placement for mobile edge
computing,” in Proc. of IEEE INFOCOM, 2019.

[17] L. Wang, L. Jiao, J. Li, J. Gedeon, and M. Mühlhäuser, “Moera:
Mobility-agnostic online resource allocation for edge computing,”
IEEE Transactions on Mobile Computing, vol. 18, no. 8, pp. 1843–
1856, 2018.

[18] S. Krishnasamy, P. Akhil, A. Arapostathis, R. Sundaresan, and
S. Shakkottai, “Augmenting max-weight with explicit learning for
wireless scheduling with switching costs,” IEEE/ACM Transactions
on Networking, vol. 26, no. 6, pp. 2501–2514, 2018.

[19] J. Chen, Y. Xu, Q. Wu, Y. Zhang, X. Chen, and N. Qi, “Interference-
aware online distributed channel selection for multicluster fanet:
A potential game approach,” IEEE Transactions on Vehicular Tech-
nology, vol. 68, no. 4, pp. 3792–3804, 2019.

[20] N. Buchbinder, S. Chen, and J. Naor, “Competitive analysis via
regularization,” in Proc. of SODA, 2014.

[21] A. A. Ageev and M. I. Sviridenko, “Pipage rounding: A new
method of constructing algorithms with proven performance
guarantee,” Journal of Combinatorial Optimization, vol. 8, no. 3, pp.
307–328, 2004.

[22] “DDoS Evaluation Dataset,” https://www.unb.ca/cic/datasets/
ddos-2019.html.

[23] “Amazon GuardDuty Price Reduction,” https://aws.amazon.
com/cn/guardduty/pricing/.

[24] “Total electric power industry summary statistics,” https://www.
eia.gov/electricity/annual/html/epa 01 01.html.

[25] Q. He, C. Wang, G. Cui, B. Li, R. Zhou, Q. Zhou, Y. Xiang,
H. Jin, and Y. Yang, “A game-theoretical approach for mitigating
edge ddos attack,” IEEE Transactions on Dependable and Secure
Computing, vol. 19, no. 4, pp. 2333–2348, 2022.

[26] D. IR and S. K, “Dad: Domain adversarial defense system against
ddos attacks in cloud,” IEEE Transactions on Network and Service
Management, vol. 19, no. 1, pp. 554–568, 2022.

[27] A. Kumar and G. Somani, “Ddos attack mitigation in cloud targets
using scale-inside out assisted container separation,” in Proc. of
IEEE INFOCOM, 2022.

[28] Y. Deng, H. Jiang, P. Cai, T. Wu, P. Zhou, B. Li, H. Lu, J. Wu,
X. Chen, and K. Wang, “Resource provisioning for mitigating edge
ddos attacks in mec-enabled sdvn,” IEEE Internet of Things Journal,
vol. 9, no. 23, pp. 24 264–24 280, 2022.

[29] C. Tsanikidis and J. Ghaderi, “Online scheduling and routing with
end-to-end deadline constraints in multihop wireless networks,”
in Proc. of ACM MobiHoc, 2022.

[30] Y. Mao, X. Shang, and Y. Yang, “Provably efficient algorithms for
traffic-sensitive sfc placement and flow routing,” in Proc. of IEEE
INFOCOM, 2022.

[31] W. Z. J. R. Kai Gong, Dong Yang, “An efficient scheduling ap-
proach for multi-level industrial chain flows in time-sensitive net-
working,” Computer Networks: The International Journal of Computer
and Telecommunications Networking, vol. 221, no. C, 2023.

[32] W.-K. Chung, Y. Li, C.-H. Ke, S.-Y. Hsieh, A. Y. Zomaya, and
R. Buyya, “Dynamic parallel flow algorithms with centralized
scheduling for load balancing in cloud data center networks,”
IEEE Transactions on Cloud Computing, vol. 11, no. 1, pp. 1050–1064,
2023.

[33] T. Liu, L. Fang, Y. Zhu, W. Tong, and Y. Yang, “A near-optimal
approach for online task offloading and resource allocation in
edge-cloud orchestrated computing,” IEEE Transactions on Mobile
Computing, vol. 21, no. 8, pp. 2687–2700, 2022.

[34] W. Fan, L. Zhao, X. Liu, Y. Su, S. Li, F. Wu, and Y. Liu, “Collabora-
tive service placement, task scheduling, and resource allocation for
task offloading with edge-cloud cooperation,” IEEE Transactions on
Mobile Computing, pp. 1–18, 2022.

[35] V. Farhadi, F. Mehmeti, T. He, T. F. L. Porta, H. Khamfroush,
S. Wang, K. S. Chan, and K. Poularakis, “Service placement and
request scheduling for data-intensive applications in edge clouds,”
IEEE/ACM Transactions on Networking, vol. 29, no. 2, pp. 779–792,
2021.

[36] W. Wang, M. Tornatore, Y. Zhao, H. Chen, Y. Li, A. Gupta, J. Zhang,
and B. Mukherjee, “Infrastructure-efficient virtual-machine place-
ment and workload assignment in cooperative edge-cloud com-
puting over backhaul networks,” IEEE Transactions on Cloud Com-
puting, vol. 11, no. 1, pp. 653–665, 2023.

[37] R. Alsurdeh, R. N. Calheiros, K. M. Matawie, and B. Javadi, “Hy-
brid workflow provisioning and scheduling on cooperative edge
cloud computing,” in 2021 IEEE/ACM 21st International Symposium

16

on Cluster, Cloud and Internet Computing (CCGrid), 2021, pp. 445–
454.

[38] Y. Li, G. Qu, and N. Li, “Online optimization with predictions and
switching costs: Fast algorithms and the fundamental limit,” IEEE
Transactions on Automatic Control, vol. 66, no. 10, pp. 4761–4768,
2021.

[39] S. Yang, F. Li, S. Trajanovski, X. Chen, Y. Wang, and X. Fu, “Delay-
aware virtual network function placement and routing in edge
clouds,” IEEE Transactions on Mobile Computing, vol. 20, no. 2, pp.
445–459, 2021.

[40] Y. Ren, S. Shen, Y. Ju, X. Wang, W. Wang, and V. C. Leung, “Edge-
matrix: A resources redefined edge-cloud system for prioritized
services,” in Proc. of IEEE INFOCOM, 2022.

[41] H. Liu, X. Long, Z. Li, S. Long, R. Ran, and H.-M. Wang, “Joint
optimization of request assignment and computing resource al-
location in multi-access edge computing,” IEEE Transactions on
Services Computing, vol. 16, no. 2, pp. 1254–1267, 2023.

Ruiting Zhou is a Professor in the School of
Computer Science Engineering at Southeast
University. She received her Ph.D. degree in
2018 from the Department of Computer Sci-
ence, University of Calgary, Canada. Her re-
search interests include cloud computing, ma-
chine learning and mobile network optimiza-
tion. She has published research papers in top-
tier computer science conferences and jour-
nals, including IEEE INFOCOM, ACM MOBI-
HOC, IEEE/ACM TON, IEEE JSAC, IEEE TMC.

She serves as the TPC chair for INFOCOM workshop-ICCN 2019-2023.
She also serves as a reviewer for international conferences and journals
such us IEEE ICDCS, IEEE/ACM IWQoS, IEEE SECON, IEEE JSAC,
IEEE TON, IEEE TMC, IEEE TCC.

Yifan Zeng received the B.E. degree from
the School of Cyber Science and Engineering,
Wuhan University, China, in 2022. She is cur-
rently working toward the master’s degree from
the School of Cyber Science and Engineering,
Wuhan University, China. Her research interests
include edge computing, online learning and net-
work optimization.

Lei Jiao received the Ph.D. degree in computer
science from the University of Göttingen, Ger-
many. He is with the Department of Computer
Science, University of Oregon, USA and was
previously with Nokia Bell Labs, Ireland. He is in-
terested in the mathematics of optimization, con-
trol, learning, and economics applied to large-
scale computer systems, services, and applica-
tions. He is an NSF CAREER awardee and also
a recipient of several IEEE Best Paper Awards.
He publishes papers in journals such as JSAC,

ToN, TPDS, and TMC and in conferences such as INFOCOM, MOBI-
HOC, ICNP, ICDCS, SECON, and IPDPS. He has served as the pro-
gram committee track co-chair of ICDCS and as a program committee
member for many conferences such as INFOCOM, MOBIHOC, ICDCS,
and WWW.

Yi Zhong received a B.E. degree in School of
Information Management, and a M.E. degree in
School of Cyber Science and Engineering at
Wuhan University, China. Her research interests
include optimization algorithms, online schedul-
ing and network security.

Liujing Song is currently with the Computer
Network Information Center, Chinese Academy
of Sciences, China. She is also a Ph.D. stu-
dent in the University of Chinese Academy of
Sciences, majoring in Computer Software and
Theory. Her research interests mainly include
network function virtualization and network se-
curity.

