
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Taming Serverless Cold Start of Cloud Model
Inference with Edge Computing

Kongyange Zhao, Zhi Zhou, Member, IEEE, Lei Jiao, Member, IEEE, Shen Cai, Fei Xu, Member, IEEE,

Xu Chen, Senior Member, IEEE

Abstract—Serverless computing is envisioned as the de-facto
standard for next-generation cloud computing. However, the cold
start dilemma has impeded its adoption by delay-sensitive and
burst applications. In this paper, we propose to tame serverless
cold start in a cloud inference system with edge computing.
Specifically, the proposed solution smooths the serverless cloud
workload with user-owned edge computing, reducing the number
of cold starts. Leveraging the configurability of requests and
serverless functions, the proposed solution further reduces the
transmission latency and serverless cost by adapting request con-
figuration (e.g., image resolution) and function configuration (e.g.,
memory). To alleviate the potential inference accuracy degrada-
tion incurred by configuration adaption, we aim to strike a nice
balance between inference latency, cost, and accuracy. However,
achieving this goal is non-trivial since the underlying optimization
is non-convex and involves future uncertain information. To
simultaneously address dual challenges, the presented cold-start-
aware online algorithms apply the regularization technique to
decompose the problem into separate convex subproblems. Then,
it applies lazy switching to smooth the number of provisioned
functions and thus reduces the cold start. Through rigorous theo-
retical analysis, realistic prototype evaluations on AWS Lambda,
and trace-driven simulations, we comprehensively validate the
theoretical and empirical performance of our proposed solution.

Index Terms—serverless computing, cold start, model infer-
ence, edge computing, online optimization

I. INTRODUCTION

SERVERLESS computing, also known as function com-
puting or Function-as-a-Service (FaaS), is emerging as

the de-facto standard for next-generation cloud computing [1].
Serverless computing enables developers to build applications
faster by writing and deploying individual program codes,
without the hassle of managing dedicated virtual machines or
servers. With serverless computing, an application is decom-
posed into a suite of small pieces of concise functions that are
loosely coupled, allowing the developers to develop, manage
and scale the applications in an agile and flexible manner.

Due to its unique merits in application development and
cost efficiency, serverless has witnessed successful adoption
in a wide variety of applications such as video processing [2],

Kongyange Zhao, Zhi Zhou, Shen Cai, Xu Chen are with the School
of Computer Science and Engineering, Sun Yat-sen University (SYSU),
Guangzhou 510006, China. E-mail: {zhaokyg, caish27}@mail2.sysu.edu.cn,
{zhouzhi9, chenxu35}@mail.sysu.edu.cn

Lei Jiao is with the Department of Computer and Information Science,
University of Oregon, Eugene, OR 97403, USA. E-mail: jiao@cs.uoregon.edu

Fei Xu is with the Shanghai Key Laboratory of Multidimensional Infor-
mation Processing, School of Computer Science and Technology, East China
Normal University, Shanghai 200062, China. E-mail: fxu@cs.ecnu.edu.cn

Corresponding author: Zhi Zhou.

tiny model

4096MB

1024MB

2048MB

Function Provision

Cloud

vanilla model

Configuration Adaption

720p

360p

480p

Edge Device M

Edge Device 2

Edge Device 1

…
…

WAN

Fig. 1. An illustration of cloud-edge collaborative inference system based on
serverless computing, where the edge device deploys a tiny model with fewer
parameters for local inference, and the cloud deploys a vanilla model with
huge parameters. Inference requests can be offloaded with different resolution
configurations to the function with different memory size in a serverless cloud.

machining learning [3], and Internet-of-Things (IoT) [4]. For
emerging IoT applications that typically invoke computational-
intensive machine learning inference tasks, completely relying
on the resource-limited edge node would deteriorate the ap-
plication performance. This dilemma poses an urgent need to
seamlessly integrate the edge and the cloud. Nowadays, many
valuable applications based on cloud-edge collaboration such
as video analytics [5] and industrial IoT [6]. To meet this need,
representative IoT cloud platforms — as exemplified by AWS
IoT Greengrass, Azure IoT Edge, and Google Cloud IoT Edge
— all adopt serverless computing to develop and deploy IoT
applications across the edge and cloud.

While recognizing the benefits of serverless computing, its
downsides must not be overlooked. Among these, the most
fundamental one is the cold start problem that may severely
deteriorate the application performance [7], [8]. In particular,
function cold start can be defined as the set-up time required
to provision the function’s runtime environment when it is
invoked for the first time within a predefined survival period
(e.g., 5-7 minutes for AWS Lambda [9]). As revealed by the
empirical measurements, the cold start latency on mainstream
commercial serverless platforms including AWS Lambda,
Google Cloud Functions, and Azure Functions typically varies
from a few hundred milliseconds to a few seconds [10]. In
sharp contrast, for many applications such as web serving,
machine learning inference, and IoT data processing, the
function execution latency is typically less than one second
[11], [12]. The cold start of the functions makes the total
runtime significantly more than the actual time required for
function executions [13], which should be carefully addressed
to achieve predictable performance.

In taming the serverless cold start, existing wisdom can be
classified into two categories. The first one is to reduce the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

cold start time by means such as lightweight function virtual-
ization [14]. The second one is to reduce the number of cold
starts via function instance pre-warming [12] or re-using [15].
While these efforts effectively mitigate the cold start, the
concerns such as increased security risk and uncontrollable
factors incurred by serverless operator-managed solutions may
prevent application providers from realistic adoption. Along
a different route, for emerging serverless-based cloud-edge
collaborative inference as shown in Fig. 1, we advocate a
solution managed by application providers to harness the
serverless cold start via edge computing. Inference requests
generated by edge devices can be processed by the local tiny
model, or offloaded to the remote cloud by a vanilla model
with larger parameters. The basic idea is to curb the burstiness
by adaptively shaping the inference workload offloaded to the
cloud with edge computing, governing the number of newly
triggered functions by requests to reduce the number of cold
starts. Since the edge computing capability is assumed to be
owned by users, the above solution does not require the inter-
vention of the serverless operator. Beyond alleviating the cold
start latency, our solution further exploits the configurability
of inference requests and serverless functions to reduce the
network transmission latency and function execution latency.
Specifically, for requests such as image recognition, their
resolution (360p, 720p, etc.) can be adapted to reduce the
data size. While for the function, the allocated resource (i.e.,
memory size such as 2048MB, 4096MB) can also be adapted
to balance the execution latency and cost.

By applying edge computing, request and function con-
figuration adaption, our proposed solution simultaneously re-
duces data transmission latency, function cold start latency
and inference latency, promising predictable performance.
However, this improvement comes at the cost of deteriorated
inference accuracy, due to the limited edge resource capacity
and potentially degraded inference configuration. To address
this issue, when jointly optimizing those control knobs, we aim
to strike a nice balance among the service latency, resource
cost and inference accuracy. However, achieving this goal is
highly non-trivial, due to the following two reasons. First,
the function cold start latency temporally couples the function
provision decisions over time, making the long-term optimiza-
tion problem involving future uncertain information such as
request arrivals that typically fluctuate over time. Thus, it is
highly desirable to minimize the long-term latency in an online
manner, without future information as a priori. Second, even
with an offline setting where all the future information is given,
the cold start latency couples the function provision decisions
in an intractable non-convex manner. This rules out the direct
applications of existing online optimization techniques such
as regularization-based optimization and optimal policy based
on Markov decision processing.

To address the above dual challenges, we first design a fast
algorithm based on the one-step regularization method, which
substitutes the intractable non-convex time-coupling term with
a convex relative entropy function. By decoupling the long-
term optimization problem into a series of single-slot convex
programs, our fast algorithm solves the regularization problem
in polynomial time based on the previous time slot’s historical

solution. We further extend the one-step regularization method
by constructing a multi-step regularization problem to utilize
historical information during the survival window of functions.
Through the independence of the cold-start time and functions
with different memory, we combine the idea of lazy-switching
to design an extended algorithm, which judiciously decides
whether to accept the cold-start solution obtained from the
multi-step regularization problem. Our extended algorithm
fully leverages the warm functions to effectively reduces the
occurrence of cold starts in the survival period.

Our main contributions are highlighted as follows.

• We advocate harnessing the serverless cold start via
edge computing in the cloud-edge collaborative inference
paradigm. We formulate the joint optimization problem
of total latency and monetary cost based on a practical
function cold-start model, which precisely captures the
cold-start latency in a fine-grained manner.

• We propose a fast algorithm as well as an extended
algorithm to address the challenges of future uncertain
information and non-convex optimization. We rigorously
prove that our fast algorithm leads to a parameterized-
constant competitive ratio against the offline optimum
which assumes all the inputs are given as a prior.

• By implementing a system prototype on AWS Lambda,
we evaluate the performance of the proposed algorithms
on real-world serverless cloud testbed. Evaluation results
show that our fast and extended algorithms significantly
improve the utilization of function containers, reducing
function cold starts by 27.6% and 51.1% respectively
compared with the baseline.

• We further conduct extensive simulation experiments
based on real-world traces to verify the effectiveness of
our proposed algorithms. Our fast algorithm and extended
algorithm reduce the long-term total latency and cost by
up to 32.6% and 39.0% compared with the benchmarks,
respectively.

The rest parts of the paper are organized as follows. Sec-
tion II reviews the literature on serverless edge computing,
summarizes the related work on mitigating serverless cold-
start, and highlights the motivation of our research. Section III
introduces the system model and problem formulation for
cloud-edge collaborative inference system based on serverless
computing. Section IV proposes a fast online algorithm and
an extended algorithm for the window switching problem, and
we analyze the performance of the proposed algorithm through
a parameterized competitive ratio in Section V. Section VI
evaluates our proposed algorithms on the real-world testbed
based on a system prototype implemented on AWS Lambda.
Section VII conducts extensive trace-driven simulations to
empirically assess the performance of the proposed online
algorithms. Finally, Section VIII discusses the future work and
Section IX concludes this paper.

II. RELATED WORK AND MOTIVATION

Serverless Edge Computing: With the emerging of edge
computing, serverless computing is envisioned as a promising
approach to seamlessly integrate the locality benefit of edge

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

computing and the capability advantage of cloud computing
[1]. As a pilot effort, a video analytic system named LAVEA
[16] collaborates with nearby client, edge and remote cloud
nodes via serverless computing, with the goal of achieving
low latency. For serverless computing across the edge and
cloud, Elgamal et al. optimize both performance and cost via
joint function fusion and placement [17]. For the emerging
paradigm of edge intelligence (i.e., hosting AI applications
with edge computing), Rausch et al. present a scheduling
framework [18] to place serverless AI functions across the
edge and cloud, by jointly considering device capabilities,
network latency and data locality. Xu et al. study the stateful
serverless application placement problem with the dependency
of functions in edge computing platform, they develop an
effective heuristic algorithm and an online learning-driven
algorithm with a bounded regret [19]. While these efforts
target performance optimization, they do not explicitly address
the cold-start issue of serverless computing.

Mitigating Serverless Cold-start: To address the cold-
start issue of serverless computing, Chiang et al. model the
problem of container warming control as a Markov decision
process (MDP) [20]. Leveraging the partial submodularity,
they derive a hysteretic optimal control policy to reduce
the cold-start latency. Vahidinia et al. proposed a two-layer
adaptive appraoch that utilizes reinforcement learning and
Long Short-Term Memory (LSTM) to determine the best
time to keep containers warm and the required pre-warmed
containers, respectively [21]. To mitigate the cold-start issue in
a distributed serverless edge computing environment, Tang et

al. present a multi-agent deep reinforcement learning method
to jointly optimize the task scheduling and computing resource
allocation [22]. Also targeting the cold-start of serverless
edge computing, Pan et al. propose a container caching and
cross-edge request dispatching approach [23]. To address the
time-coupling challenge of the optimization problem, they
present an efficient online algorithm by mapping the prob-
lem to the classical ski-rental problem. Among the above
researches, methods based on reinforcement learning or LSTM
prediction [21], [22] rely on learning from a large amount
of available historical data and lack theoretical guarantees.
The works [20], [23] model the cold-start latency as a simple
convex function across two consecutive time slots, which is a
compromise of provable performance in an imprecise model.

Motivation: Given the significance of related works above,
our study differs in the following aspects. First, we advocate a
solution managed by application providers to tame serverless
function cold start for cloud model inference, which facilitates
the reduction of security risks and uncontrollable factors
incurred by serverless operator-managed solutions. Secondly,
according to the cold-start characteristics of existing FaaS
products (e.g., AWS Lambda and Google Cloud Functions) in
practice [12], [21], we precisely model the cold start latency
of serverless functions to a multi-time-slot switching problem
based on the survival window. Finally, different from directly
applying tools from AI/ML in a black-box manner, we aim
to provide online algorithms with formal guarantees to reduce
the occurrence of serverless function cold-start. It is non-trivial
due to the non-convexity for calculating cold start latency.

TABLE I
MAIN NOTATIONS

Notation Description

M,N ,K, T
set of devices, function configurations, request
configurations, and time slots

i, f, k, t
index of devices, function configurations, request
configurations, and time slots

Ai(t), Bi(t) workload and bandwidth of edge device

aik, bik inference accuracy and transmission data amount

Ci local processing capacity of edge device

Ef concurrency capacity of serverless function

T e
i inference time per request for edge devices

T s
f inference time per request for serverless functions

T c cold start time of serverless function

I survival period of serverless function

Qi average accuracy requirement of edge device

Pf running price per unit time for functions

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present the system model of a cloud-
edge collaborative inference system, consisting of edge devices
and a public cloud with serverless computing capability. By
defining two types of control decisions, we further characterize
the latency, accuracy, and cost models in the collaborative
inference system. We formulate the long-term optimization
problem that is defined as the Window Switching problem, and
finally summarize the challenges compared with the traditional
Switching problem. The main notations used in this paper are
summarized in Table I.

A. Overview of Cloud-edge Collaborative Inference System

As shown in Fig. 1, we consider an application provider
running an IoT service (e.g., video analytics for a smart
factory) in the cloud-edge collaborative inference system
based on serverless computing. This IoT service continuously
senses data (e.g., pictures or video frames) from a set of
edge devices [24], which generate inference requests to be
processed by deep neural network (DNN) models (e.g., VGG
and ResNet [25] for object recognition) deployed locally or
in the remote public cloud. For the edge devices, we assume
that they are owned by the application provider, and they can
be readily managed by a unified central controller such as
AWS Management Console [26]. Due to the resource scarcity
of the devices, compressed tiny DNN models (e.g., ResNet-
18 in the ResNet family [25]) are deployed locally to reduce
the resource footprint. While for the remote public cloud, it
can be accessed by the devices via the wide-area-network
(WAN) whose bandwidth is scarce, volatile, and expensive.
To maintain inference accuracy, vanilla DNN models (e.g.,
ResNet-152 in the ResNet family [25]) with high accuracy
are deployed in the cloud. Moreover, we also assume that the
cloud serves the inference requests in the mode of serverless
computing. This coincides with the recent trend that leading
IoT cloud platforms such as AWS IoT Greengrass.

In this paper, we use M = {1, 2, . . . ,M} to denote the set
of edge devices managed by the application provider. For each
device i ∈ M, the computing capacity (i.e., the maximum

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

number of inference requests that can be locally processed
by the compressed tiny model) is denoted by Ci. To capture
the system dynamics such as time-varying request arrivals and
bandwidths between devices and the cloud, we assume that
the system makes decisions in a time-slotted fashion within a
large time span of T . Each time slot t ∈ T = {1, 2, . . . , T}
represents a decision interval that matches the change of the
system dynamics. At time slot t, we use Ai(t) and Bi(t) to
denote the number of inference requests generated by device i
and the bandwidth between each device i and the cloud, which
typically fluctuate over time.

In a serverless cloud, a function represents a unit of resource
instance to process a request in an event-trigger manner, and
the only configuration option for users is the memory size
allocated to each function (e.g., 128MB to 10,240MB in AWS
Lambda [27]). Notably, the memory configuration directly
navigates the trade-off between function execution latency and
monetary cost [28]. In this paper, we use N = {0, 1, . . . , N}
to denote the set of valid memory configurations for each
function to run the vanilla model. When offloading the requests
from devices to the serverless cloud, the configurability of
inference requests can also be leveraged to balance the trans-
mission latency and the cloud inference accuracy. Specifically,
for computer vision tasks such as video analytics, the config-
uration (e.g., resolution and frame rate) can be degraded to
reduce the transmission data size and thus latency [29], at the
cost of reduced inference accuracy. We use K = {1, 2, . . . ,K}
to denote the set of configurations that can be chosen when
offloading requests from devices to the cloud.

B. Decision Variables

To jointly optimize the performance, cost and accuracy of
the serverless-based cloud-edge collaborative inference sys-
tem, we concentrate on two types of control decisions in this
paper. Note that the edge devices and serverless functions are
managed by the application provider through a central console,
which perceives dynamic information in the system (e.g., the
request arrivals and bandwidth of each device). Therefore,
the application provider (i.e., decision maker) specifically
makes the following request dispatching decision and function
provisioning decision: (i) xikf (t), for each edge device i,
the number of inference requests offloaded to the cloud with
configuration k and served by function with configuration f at
each time slot t, and (ii) yf (t), the total number of inference
requests served by function with configuration f at each time
slot t. The physical meaning of the above two variables is the
number of inference requests, so the value is a positive integer.

Considering that the scale of commercial model inference
serving systems has continued to grow exponentially [30],
[31], a definite trend is that the infrastructure for AI appli-
cations is rapidly shifting from the cloud to the edge [32],
[33]. Given the potentially huge amount of inference request
arrival Ai(t), it is reasonable to relax the integer variables
xikf (t) and yf (t) into continuous variables by applying the
linear programming relaxation, and thus to reduce the problem
complexity with negligible optimality loss. Note that the total
number of invoked function with configuration f is no smaller

than the actual amount of real requests offloaded to the cloud
(i.e., yf (t) ≥

∑
i∈M

∑
k∈K xikf (t), ∀t ∈ T , f ∈ N), because

the central console (controlled by the application provider)
may generate “fake requests” for the serverless cloud to warm
up functions [34] or extend the survival period for function
re-using [23]. Similar to some function warm-up tools such as
Dashbird.io [35] and Lambda Warmer [36], the “fake requests”
generated by the central console can invoke functions and keep
them warm and thus to avoid the cold start of functions when
the request arrival surges in the future.

C. Latency, Accuracy, and Cost Model

Based on the above decision variables, we characterize the
latency, inference accuracy, and cost models in the system.
The overall latency includes inference latency on both the
edge and serverless cloud, transmission latency of requests
offloaded to the cloud and cold start latency of serverless
functions. Note that our latency model does not consider the
queuing latency of requests between adjacent slots because the
length of the decision slot is much larger than the millisecond
latency requirement of the inference request [11]. Therefore,
we reasonably assume that all inference requests are processed
in the current time slot, which is verified in our real-world
evaluation of Section VI.

Edge Inference Latency. We use T e
i to represent the

inference time for device i to process a request with the
compressed DNN model locally. Given a total amount Ai(t)−∑

k∈K

∑
f∈N xikf (t) of inference requests locally processed

at each edge device i, the total edge inference latency can be
computed by:

LEI(t) =
∑

i∈M

[
Ai(t)−

∑
k∈K

∑
f∈N xikf (t)

]
T e
i .

Transmission Latency. When choosing configuration k to
offload the inference request from device i to the cloud, we
use bik to denote the amount of data to be transferred for a
single request. Considering the time-varying bandwidth Bi(t)
between device i and the cloud, the total transmission latency
in time slot t can be computed by:

LTR(t) =
∑

i∈M

∑
k∈K

∑
f∈N xikf (t)

bik
Bi(t)

.

Serverless Inference Latency. We use T s
f to represent

the inference time of serving a request by function with
memory configuration f in the serverless cloud. Note that in
practice, the execution time of functions is typically agnostic
to the request (input) configuration k. Then, the total serverless
inference latency at time slot t can be computed by:

LSI(t) =
∑

f∈N

∑
i∈M

∑
k∈K xikf (t)T s

f .

Serverless Cold Start Latency. As a unique feature of
serverless cloud computing, cold start refers to the set-up
time required to get a serverless application’s environment
up when it is invoked for the first time within a defined
period [37]. Specifically, after being invoked, the function con-
tainers usually expire after a few minutes of unuse [38]. This
survival time is typically platform-dependent but function-
agnostic [12], and it is assumed to be I time slots in this paper,
where I is an integer. The number of cold start functions in

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

each time slot is related to the number of function provided
by serverless in the past I time slots, because the functions
invoked in these time slots are still in their survival periods.
When the same type of function is invoked again during the
survival period, reusing the function instance can avoid the
cold start of the function that launches the new container [12].
For each serverless function with configuration f , the number
of cold starts in the current time slot is the number newly
added based on the maximum number of calls in the past I
time slots. We use T c to represent the cold start time of each
serverless function, therefore, the serverless cold start latency
in time slot t can be computed by:

LCS(t) =
∑

f∈N T c
[
yf (t)−maxIτ=1 yf (t− τ)

]+
,

where [a − b]+ = max{a − b, 0}. For ease of presenta-
tion, we define LnCS

(
x(t)

)
= LEI(t) + LTR(t) + LSI(t).

Then, the total latency in time slot t can be expressed as :
L
(
x(t),y(t)

)
= LnCS

(
x(t)

)
+ LCS(t).

Inference Accuracy. As we mentioned in Sec. III-A, in-
ference request with different configurations results in varying
inference accuracy. Therefore, we use ai0 and aik to denote the
inference accuracy of a request from device i processed locally
by device i and by the serverless function with configuration
k, respectively. To deliver predictable inference accuracy, we
enforce that the average inference accuracy perceived by the
requests generated by each device i is no lower than a pre-
defined threshold Qi:
(
Ai(t)−

∑
k

∑
f xikf (t)

)
ai0 +

∑
k

∑
f xikf (t)aik

Ai(t)
≥ Qi.

By defining constants dik = aik − ai0 and qi = Qi − ai0,
we can simplify the above expression with a concise form of∑

k∈K

∑
f∈N xikf (t)dik ≥ Ai(t)qi.

Serverless Cost. For application providers, the monetary
cost is incurred by the usage of the serverless cloud resource,
which depends on the number of functions invoked [39], [40],
the configuration and the execution time (i.e., inference time
T s
f) of the invoked functions. Note that the number of invoked

functions includes real inference requests sent from devices as
well as fake requests generated by the central console. Because
once a function is triggered, regardless of whether it executes
the real inference request from the device, the corresponding
resource occupancy is generated and billed by the function.
A large number of fake requests can improve the chance of
reducing function cold start, and at the same time occupy more
cloud resources, which reflects the trade-off between cold start
time and resource consumption [41]. By denoting Pf as the
price of invoking a function with configuration f per unit
time period, the total serverlss cost at each time slot t can
be formulated as:

Cost
(
y(t)

)
=

∑
f∈N yf (t)PfT s

f .

D. Problem Formulation

Based on the latency, accuracy, and cost models above, we
minimize the weighted sum of (i) the long-term total inference

(the past time slots)
Survival Window

(the previous time slot)

Window
Switching

Switching

Fig. 2. Comparison of the window switching problem with traditional
switching problem. The cold-start model in problem PWS precisely captures
the cold-start latency in a fine-grained manner, which is different from
switching between adjacent time slots.

latency and (ii) the long-term monetary cost incurred by the
serverless cloud usage over time, and meanwhile maintain the
inference accuracy as follows:

min PWS =
∑T

t=1

{
L
(
x(t),y(t)

)
+ ω · Cost

(
y(t)

)}

s.t.
∑

k∈K

∑

f∈N

xikf (t) ≤ Ai(t), ∀t, ∀i, (1a)

Ai(t)−
∑

k∈K

∑

f∈N

xikf (t) ≤ Ci, ∀t, ∀i, (1b)

∑

k∈K

∑

f∈N

xikf (t)dik ≥ Ai(t)qi, ∀t, ∀i, (1c)

∑

i∈M

∑

k∈K

xikf (t) ≤ yf (t), ∀t, ∀f, (1d)

xikf (t) ≥ 0, yf (t) ∈
[
0, Ef

]
, ∀t, ∀i, ∀k, ∀f. (1e)

The parameter ω > 0 represents a tunable weight coefficient
of the serverless cost according to the measurements which
suggests that there is some translational relationship between
service latency and cost [42]. Constraint (1a) ensures that the
number of requests processed by serverless function does not
exceed the total number of requests received by device i in
each time slot. Constraint (1b) maintains the resource capacity
of each edge device. Constraint (1c) maintains the inference
accuracy target Qi for each edge device i. Constraint (1d)
indicates that there may be fake requests to keep the function
warm as mentioned in Section III-B. Constraint (1e) is the
non-negative constraint for the decision variables, here Ef

denotes the maximum number of functions can be invoked
concurrently (e.g., the default concurrency limit of AWS
Lambda is 1,000).

Based on the survival window of serverless functions across
multiple time slots, we define the above optimization problem
as a Window Switching problem by PWS. Solving the problem
PWS is however non-trivial due to the following challenges.
Firstly, as we can observe from that the cold start latency
temporally couples the control decisions over time, making the
long-term optimization problem time-coupling and involves
future system information. However, in practice, parameters
such as request arrivals and bandwidth typically fluctuate over
time and thus cannot be readily predicted. Then, it is challenge
to minimize the long-term latency in an online manner, without
requiring the future information as a priori. Secondly, the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

number of cold start functions is related to the historical
solutions in the past I time slots (i.e., the maximum number
maxIτ=1 yf (t − τ) as we mentioned in Section III-C), which
is highly different from the traditional Switching problem in
previous research [23] as shown in Fig. 2. While existing
literature such as [22], [23] address serverless cold-start issue
by online approaches, they model the cold-start latency based
on only two consecutive time slots, rather than the multiple I
time slots considered in our problem PWS. Note that our cold-
start latency model within I time slots is more practical, as
it precisely captures the cold-start latency in a fine-grained
manner. However, unlike the 2-time-slot cold-start model
which is convex, our cold-start model within I time slot is
non-convex even in the offline case.

IV. COLD-START-AWARE ONLINE ALGORITHMS

Due to the non-convex function in the cold-start model,
existing methods for convex cold-start models such as [20],
[23] cannot solve the proposed Window Switching problem.
On the one hand, the coupling relationship of decisions in the
past I time slots break the theoretical analysis of the algorithm
that can effectively handles the decoupling of two consecu-
tive slots. On the other hand, the survival characteristics of
serverless function makes the online approaches for traditional
Switching problem, which does not make full use of historical
information, is not satisfactory on measurable performance.
Therefore, it motivates us to design new online algorithms for
the Window Switching problem.

As shown in Fig. 3, we propose a fast one-step algo-
rithm in Section IV-A based on the algorithmic technique
of regularization, which utilizes a smooth convex function to
replace the intractable non-convex terms. Moreover, in order
to fully utilize historical information in the survival window of
activated functions, we further propose an extended multi-step
algorithm in Section IV-B. Both algorithms can independently
solve the Window Switching problem and obtain online output
of problem PWS. For clear expression, we list the relevant
solution notations and inclusion of variables in Table II.

one-step
regularization

multi-step
regularization

lazy-switching

decompose solve

solve

Algorithm 1

Algorithm 2

online output

Fig. 3. The flow diagram of our proposed online algorithms, where Algorithm
1 is based on a one-step regularization method, and Algorithm 2 is extended to
multi-step regularization and further incorporates the idea of lazy-switching.
Both of them output online solutions to the window switching problem.

A. Regularization-based Online Algorithm

To address the dual challenges of time-coupling and non-
convexity incurred by the cold-start term, an intuitive idea is
to approximate the non-convex term with a credible convex
function. In order to simultaneously prevent the potential cold
start of the function caused by the drastic shifts between
time slot t and t − 1, we exploit the algorithmic technique

TABLE II
SOLUTION NOTATIONS WITH VARIABLES

Notation Description

x(t),y(t) output of online algorithms for solving P
WS

x̃(t), ỹ(t)
optimal solution of one-step regularization prob-
lem P

S
r (t) in Algorithm 1 (line 4)

x(t),y(t)
optimal solution of multi-step regularization
problem P

WS
r (t) in Algorithm 2 (line 4)

ẋ(t),y(t̂)
optimal solution of minLnCS(t) with y(t̂) in
Algorithm 2 (line 6-7)

of regularization from the online learning literature [43].
The basic idea is to substitute the intractable time-coupling
and non-convex term with a well-designed function. In this
paper, we employ the widely adopted convex relative entropy
function [44], [45] to substitute [yf (t)−maxIτ=1 yf (t− τ)]+

as follow:

∆
(
yf (t)||yf (t−1)

)
= yf (t) ln

yf (t)

yf (t− 1)
+yf (t−1)−yf (t).

This smooth convex function is the sum of the relative entropy
term yf (t) ln

yf (t)
yf (t−1) and a linear term denoting the movement

cost yf (t−1)− yf (t). To ensure that the fraction is still valid
when no inference request processed by function f in time
slot t−1 (i.e., yf (t−1) = 0), we add a positive constant term
ϵ to both yf (t) and yf (t − 1) in the above convex function.
Moreover, we define an approximation weight factor ηf =
ln(1+Ef

ϵ) and multiply the improved relative entropy function
with 1

ηf
to normalize the cold start latency by regularization.

Let PS
r represents the regularized switching problem by

using the above enhanced regularizer ∆(yf (t)||yf (t − 1))
to approximate the time-coupling term in the cold start la-
tency LCS(t). The problem PS

r is still time-coupling, thus
the optimal solution to the decoupled problem PS

r (t) is not
equivalent to the original problem. Nonetheless, the optimality
conditions of the regularized problem yield a lower bound on
the performance of the online algorithm solving a series of
single-shot problems. So we temporally decompose PS

r into
a series of single-shot convex programs PS

r (t), which can
be solved in each individual time slot t based the solution
obtained from the previous time slot t − 1. Specifically, the
decomposed subproblem PS

r (t) for each time slot t ∈ T can
be denoted as follow:

min PS
r (t) = LnCS

(
x(t)

)
+ ω · Cost

(
y(t)

)

+
∑

f∈N

T c

ηf

((
yf (t) + ϵ

)
ln

yf (t) + ϵ

yf (t− 1) + ϵ
− yf (t)

)
,

s.t. Constraint (1a) to (1e).

Based on the one-step regularization method, we propose
a Once Forward Regularization (OFR) algorithm as shown
in Algorithm 1. At each time slot t, OFR first observes
A(t),B(t) and looks forward to get historical information
ỹ(t− 1), which has been obtained when solving PS

r (t− 1) at
time slot t−1. Then, OFR generates the optimal regularization
solution

(
x̃(t), ỹ(t)

)
by solving the single-slot regularized

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

switching problem PS
r (t). Since the problem PS

r (t) is a stan-
dard convex optimization with linear constraints, it can be
optimally solved in polynomial time by taking existing convex
optimization techniques such as interior-point method [46].

Algorithm 1: Once Forward Regularization — OFR

Input: M,N ,K,C,E,P ,T e,T s, T c, b,d, q,η, ϵ,ω.
1 Initialize ỹ(0) = 0;
2 for time slot t ∈ T do
3 Observe A(t),B(t), ỹ(t− 1);
4 Solve PS

r (t) to obtain the solution x̃(t), ỹ(t);
5 x(t),y(t) = x̃(t), ỹ(t);

Output: x(t),y(t).

In practice, the application provider can access the managed
devices to observe information through a central console such
as AWS Management Console [26]. Based on the recorded
historical decisions (i.e., ỹ(t − 1)), the central console can
quickly solve the convex problem via invoking commercial
solvers such as Gurobi [47] to generate control decisions for
each time slot t. Although the window switching problem is
non-convex and lacks theoretical tools to analyze performance
in mathematics, we still use a series of transformations to
construct a convex problem and derive a competition ratio
based on the primal-dual framework in Section V.

B. Lazy-switching-based Online Algorithm

maintain warm functions

(the past time slots)
Survival Window

maximum
solution

last cold start

regularization solution

lazy-switching
function provisioning

solve

cold-start
function

warm
function

legend

Fig. 4. The extended algorithm based on the idea of lazy-switching judiciously
arbitrates whether to adopt the regularization solution, which may generate
more cold starts in the current time slot, or to maintain warm functions
according to the last cold start.

Algorithm 1 is fast and efficient, while the one-step regu-
larization method uses the solution of the time slot t − 1 to
approximate the maximum solution of the past I time slots
in the time-coupling term. This approximation only utilizes
the one-step historical information of the time slot t − 1.
Moreover, in realistic serverless systems, keeping a pool of
warm containers is an effective method to alleviate cold
starts [48], [49]. Therefore, to further mitigate the cold start
of functions, we next design an extended algorithm based on
the following two ideas: 1) Fully consider all the historical
information of the past I time slots to correct the inaccuracy
of the approximation in the one-step regularization method. 2)

Use warm functions as much as possible to reduce potential
function cold starts during their survival periods.

We first construct a multi-step regularization problem by
determining the maximum solution of the previous I time slots
in each time slot. Let PWS

r represents the multi-step regularized
Window Switching problem, and the decomposed subproblem
PWS
r (t) for each time slot t ∈ T can be denoted as follow:

min PWS
r (t) = LnCS

(
x(t)

)
+ ω · Cost

(
y(t)

)

+
∑

f∈N

T c

ηf

((
yf (t) + ϵ

)
ln

yf (t) + ϵ
I

max
τ=1

y(t− τ) + ϵ
− yf (t)

)
,

s.t. Constraint (1a) to (1e).

In addition, the cold start time between the functions with
different memory is similar [9], but their execution time and
running cost are quite different, referring to our measurements
in Section VII. Therefore, making the most of warm functions
(the function within I time slots after execution) can effec-
tively reduce the occurrence of new cold starts, although it may
cause a increase in serverless cost or inference latency due
to the selection of non-optimal configurations. Furthermore,
keeping the function warm can alleviate the massive cold
start latency caused by a surge of request arrivals in the
near future. The above two insights show that maintaining
a number of functions in the survival period (the next I time
slots) is beneficial to mitigate the cold start latency. Inspired
by the lazy-switching method [50], we apply the relationship
between cold-start latency and the sum of other objective terms
to judiciously decide to accept the solution from regularied
window switching problem PWS

r (t) or keep a fixed function
provisioning decision (i.e. maintain the pool of currently warm
functions).

Algorithm 2: Window Forward Lazy-switching —
WFL
Input: M,N ,K,C,E,P ,T e,T s, T c, b,d, q,η, ϵ,ω.

1 Initialize t = 1, t̂ = 1, and y(0) = 0;
2 while t ≤ T do
3 Observe A(t),B(t),maxIτ=1 y(t− τ);
4 Solve PWS

r (t) to obtain the solution x(t),y(t);
5 if LCS

(
y(t)

)
≥

1
ρ

∑t−1
v=t̂

LnCS
(
x(t)

)
+ ω · Cost

(
y(t)

)
then

6 y(t) = y(t̂);
7 ẋ(t) = minLnCS(t) subject to (1a)-(1e);
8 x(t) = ẋ(t);

9 if x(t) is not derived then
10 x(t),y(t) = x(t),y(t);
11 if LCS

(
y(t)

)
> 0 then

12 t̂ = t;

Output: x(t),y(t).

Based on the above ideas as shown in Fig. 4, we further
design a Window Forward Lazy-switching (WFL) algorithm
as shown in Algorithm 2. Specifically, in each time slot,
WFL first looks forward for all historical information in the
past I time slots (i.e., the survival window) to obtain the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

maximum solution maxIτ=1 y(t− τ), and solves a single-slot
regularized window switching problem based on the request
arrivals A(t) and bandwidth B(t) of the current time slot
to obtain the solution

(
x(t),y(t)

)
. If the cold start latency

caused by solution y(t) in the current time slot exceeds 1
ρ (a

predefined control parameter) times of the cumulative sum of
non-cold-start latency and serverless cost since the last cold
start occurred (i.e., t = t̂), we keep the maximum solution
within the time window I and solve the convex optimization
problem to obtain a solution ẋ(t) after applying y(t) = y(t̂).
If x(t) is not derived right now, the multi-step regularization
solution

(
x(t),y(t)

)
is adopted in the current time slot, and

check whether a new cold start occurs to update t̂. Note that
there are two possible cases if line 8 is executed: (i) the cold
start latency achieved by solution y(t) does not exceed the
threshold (i.e., the opposite of line 5) and (ii) minimizing
LnCS(t) subject to (1a)-(1e) by applying y(t) = y(t̂) (i.e.,
line 6-7) is infeasible. The second case is because constraint
(1b) and constraint (1d) may not constitute a feasible region
when the request arrival Ai(t) is large and y(t) = y(t̂) is
fixed. At this time, even if the cold start latency exceeds the
threshold, we still apply x(t),y(t) = x(t),y(t) (i.e., line 9).

The extended algorithm can achieve better performance
compared to our fast algorithm, although it increases the time
complexity. Because it constructs a multi-step regularization
problem to calculate the cold start delay more accurately,
and fully leverages warm functions in the survival period
to reduce the occurrence of cold starts. However, we cannot
derive a competitive ratio for Algorithm 2, because when WFL
chooses a fixed function provisioning decision (i.e., line 6),
minimizing LnCS

(
x(t)

)
may be unsolvable due to the surge

of request arrivals. At this point the algorithm has to choose
the regularization solution

(
x(t),y(t)

)
even if the threshold

condition (i.e., line 5) is satisfied. If we consider a pool
that always maintain a large number of warm functions, we
can avoid the unsolvable situation of minimizing LnCS

(
x(t)

)

when applying y(t) = y(t̂) and thus obtain a parameterized
competition ratio. Unfortunately, in a realistic system, it is
not advisable to keep a large number of warm functions all
the time, because it causes much overhead. Although there is
no theoretical guarantee for Algorithm 2, our experiments in
Section VII demonstrate that our extended algorithm achieves
at least a 9.4% improvement with a small increase in execution
time compared to the fast algorithm.

V. PERFORMANCE ANALYSIS

A. Basic Idea

bound bridgedecoupleregularize

weak
duality

feasible
solution

construct
mapping

Fig. 5. An illustration of the basic idea for performance analysis.

As illustrated in Fig. 5, to formally prove that the objec-
tive value of Window Switching problem PWS achieved by

Algorithm 1 is upper-bounded by a parameterized constant
times the offline optimum, we apply the traditional Switching

problem PS as an important bridge for competitive analysis:

min PS =
∑T

t=1

{
LnCS

(
x(t)

)
+ ω · Cost

(
y(t)

)

+
∑

f∈N

T c
[
yf (t)− yf (t− 1)

]+}
,

s.t. Constraint (1a) to (1e).

The time-coupling term for calculation of the cold start latency
in our problem PWS is different from the traditional Switching

problem, which makes the Window Switching problem non-
convex and novel. To simplify the expression, we use the
definition symbol of each optimization problem to denote the
corresponding objective value achieved by different solutions
and P (opt) to denote the objective value of problem P

achieved by the offline optimal solution. We will establish the
following chain of inequalities:

PWS
(
x̃(t), ỹ(t)

)
(2a)

≤PS
(
x̃(t), ỹ(t)

)
(2b)

≤rDS
(
π(x̃(t), ỹ(t))

)
(2c)

≤rPS(opt) (2d)

≤rUPWS(opt), (2e)

where rU is the overall competitive ratio. We first derive (2a)
≤ (2b) because maxIτ=1 ỹf (t − τ) ≥ ỹf (t − 1), ∀t, f . Next
we obtain the part competitive ratio r by deriving (2b) ≤ (2d)
through the primal-dual framework summarized in Theorem 1
and the upper bound U by deriving (2d) ≤ (2e) in Theorem 2.

B. Competitive Ratio of Regularization

An Equivalent Problem Transformation. We introduce a
set of new auxiliary variables wf (t) which satisfy wf (t) ≥
yj(t) − yj(t − 1), ∀t, ∀f to replace the time-coupling term[
yf (t)− yf (t− 1)

]+
, and a set of knapsack cover (KC) con-

straints
∑

f ′∈N yf ′(t)−yf (t) ≥
∑

i

(
Ai(t)−Ci

)
−Ef , ∀t, ∀f

to replace the boxing constraints yf (t) ∈ [0, Ef]. With
the above transformations, we rewrite problem PS in the
following equivalent form.

min PS =
∑

t

{
LnCS(x(t)) + ω · Cost(y(t)) +

∑
f T

cwf (t)
}

s.t. wf (t) ≥ yf (t)− yf (t− 1), ∀t, ∀f, (3a)
∑

k

∑
f xikf (t) ≤ Ai(t), ∀t, ∀i, (3b)

Ai(t)−
∑

k

∑
f xikf (t) ≤ Ci, ∀t, ∀i, (3c)

∑
i

∑
k xikf (t) ≤ yf (t), ∀t, ∀f, (3d)

∑
k

∑
f xikf (t)dik ≤ Ai(t)qi, ∀t, ∀i, (3e)

∑
f ′ yf ′(t)− yf (t) ≥

∑
i

(
Ai(t)− Ci

)
− Ef , ∀t, ∀f, (3f)

xikf (t), yf (t), wf (t) ≥ 0, ∀t, ∀i, ∀k, ∀f. (3g)

Formulating the Lagrange Dual Problem of PS. We
derive the dual problem DS as follows, where νf (t),αi(t),
βi(t), γf (t), θi(t),λj(t) denote the corresponding dual vari-
ables for the constraints (3a) to (3f).

max DS =
∑

t

∑
i

(
T e
i − αi(t) + θi(t)qi

)
Ai(t)

+
∑

t

∑
f λf (t)

[∑
i(Ai(t)− Ci)− Ef

]

+
∑

t

∑
i βi(t)

(
Ai(t)− Ci

)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

s.t. T s
f − T e

i + bik
Bi(t)

+ αi(t)− βi(t) + γf (t)

− θi(t)dik ≥ 0, ∀t ∈ T , ∀i ∈ M, ∀k ∈ K, ∀f ∈ N , (4a)

T c − νf (t) ≥ 0, ∀t ∈ T , ∀f ∈ N , (4b)

PfT
s
f + νf (t)− νf (t+ 1)− γf (t) + λf (t)

−
∑

f ′ λf ′(t) ≥ 0, ∀t ∈ T , ∀f ∈ N , (4c)

All the dual variables ≥ 0.

Characterizing the Optimality of the Regularized Prob-
lem. Algorithm 1 produces the optimal solution

(
x̃(t), ỹ(t))

)

of the convex problems PS
r (t), which satisfies the Karush-

Kuhn-Tucker (KKT) conditions. To simplify the presentation,
we write KKT conditions in the disjunctive form as follows:

α̃i(t)⊥
(
Ai(t)−

∑
k

∑
f x̃ikf (t)

)
, ∀t, i, (5a)

β̃i(t)⊥
(∑

k

∑
f x̃ikf (t)−

(
Ai(t)− Ci

))
, ∀t, i, (5b)

γ̃f (t)⊥
(
ỹf (t)−

∑
i

∑
k x̃ikf (t)

)
, ∀t, f, (5c)

θ̃i(t)⊥
(∑

k

∑
f x̃ikf (t)dik −Ai(t)qi

)
, ∀t, i, (5d)

λ̃f (t)⊥
(∑

f ′ ỹf ′(t) + Ef −
∑

i

(
Ai(t)− Ci

)
− ỹf (t)

)
, ∀t, f,

(5e)

T s
f − T e

i + bik
Bi(t)

+ α̃i(t)− β̃i(t) + γ̃f (t)− θ̃i(t)dik = 0, (5f)

PfT
s
f + Tc

ηf
ln

ỹf (t)+ϵ

ỹf (t−1)+ϵ
− γ̃f (t) + λ̃f (t)−

∑

f ′

λ̃f ′(t) = 0, (5g)

where a⊥b is equivalent to a, b ≥ 0 and ab = 0.

Constructing the Mapping. We construct a mapping to
jointly map PS

r ’s optimal primal and dual solutions to a feasible
solution of the dual problem DS as follows:

π
{
x̃(t), ỹ(t)

}
=

(
νf (t),αi(t),βi(t), γf (t), θi(t),λf (t)

)
,

in which we let

νf (t) =
T c

ηf
ln

Ef + ϵ

ỹf (t− 1) + ϵ
,αi(t) = α̃i(t),

βi(t) = β̃i(t), γf (t) = γ̃f (t), θi(t) = θ̃i(t),λf (t) = λ̃f (t).

Based on the above analysis, we bound non-cold-start latency,
serverless cost and cold start latency respectively, also estab-
lish the chain of inequalities DS

(
π(x̃(t), ỹ(t))

)
≤ DS(opt) ≤

PS(opt) according to the Weak Duality [51]. Summarizing all
derivations, we have the following Theorem 1.

Theorem 1. The objective value of problem PS achieved by

Algorithm 1 is no larger than r times of the offline optimum

PS(opt), where r is given by:

r = ln
(
1 +

Emax

ϵ

)
+

Emax

δ
+ 1,

and Emax = maxf Ef , δ = mint,f ỹ
+
f (t), where ỹ+f (t) ∈{

ỹf (t) | ỹf (t) > 0, ∀t ∈ T , f ∈ N
}

.

Proof. See Appendix A.

C. Upper Bound of Offline Optimum

Finally, we prove (2d) ≤ (2e) and derive the upper bound
U of offline optimum between the Switching problem PS and
our Window Switching problem PWS in Theorem 2. We define
µ = T+/T , where T+ = |T +| and T + =

{
t |

∑
i[Ai(t) −

Ci] > 0
}

, to denote the proportion of the number of time slots

in which the total inference requests received by edge devices
exceeds their capacity limitation in the total number of time
slots over the entire time horizon.

Theorem 2. The offline optimum of problem PS is no larger

than U times of the offline optimum of problem PWS, where

U =
1

µ
×

(∑
i CiT e

i + κ2
∑

f Ef

)

κ1 min
t∈T +

∑
i

(
Ai(t)− Ci

) ,

κ1 = min
i,k,t

bik
Bi(t)

+ min
f

T s
f +min

f
T s
fPf ,

κ2 = max
i,k,t

bik
Bi(t)

+ max
f

T s
f +max

f
T s
fPf + T c.

Proof. See Appendix B.

Remark. According to the definition of the set T +, ∀t ∈
T + we have

∑
i

(
Ai(t) − Ci

)
> 0, which ensures that the

parameterized upper bound U is always positive. In addition,
the parameter µ contained in the upper bound U may vary
with the length of the time horizon, but its value is always
equal or close to 1. Because in a realistic inference system,
the number of inference requests generated by edge devices
can be sufficiently large, exceeding the capacity of devices
with limited resources [52]. Therefore, the parameter U does
not actually increase with the number of time slots T . This
is also verified by measurements based on real-world request
traces in the experiment section.

The competitive ratio r decreases with the increase of the
parameter ϵ. By increasing ϵ sufficiently, we can obtain the
coefficient r that is arbitrarily close to Emax

δ + 1, while also
increasing the time complexity of Algorithm 1. The coefficient
U essentially reflects the distinction between the traditional
Switching problem and the Window Switching problem. When
the cold start time T c of the serverless function increases, the
gap between the two offline optimum enlarges, resulting in a
reduction in the theoretical performance of Algorithm 1. The
overall competitive ratio rU is independent of the function
survival time I , because Algorithm 1 factually utilizes the
historical information of the previous time slot t− 1, the best
performance is achieved when I = 1 as a result. The perfor-
mance of Algorithm 1 is inferior to that of Algorithm 2 as I
increases, because WFL combines the idea of regularization
and “lazy switching” [50] to minimize the cold start latency in
the current time slot and the future window I , thus achieving
better performance than OFR. We will verify the effect of the
two algorithms in Section VI and Section VII.

VI. REAL-WORLD EVALUATION

A. System Prototype

We first evaluate the performance of the proposed algorithm
through realistic prototype experiments on the serverless cloud
platform of AWS Lambda. The system architecture of the
prototype implementation is shown in Fig. 6.

Central Console. We run the central console on a host
equipped with AMD EPYC 7532 32-Core Processor, which
receives request and bandwidth information from edge devices

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

Algorithm 1

Algorithm 2

Algorithm Module

Serverless Cloud

Time-slot Manager

Function Trigger

Control Module

invoke fake
matrix

historical
information

Function Trigger

Inference Module

Tiny Model

request

Edge Devices

scheduling
matrix

request and bandwidth information

Vanilla Model

...

request

fake
requests

Function Pool

 2048MB

 4096MB

resultsinference
requests

Central Console

data flow/ / control flow

Fig. 6. The architecture diagram of the system prototype consists of a central
console running on the host, three edge devices mimicked by containers,
and a serverless cloud of AWS. The solid arrows represent the flow between
components, and the dotted arrows represent the flow within the components.

and connects to the serverless cloud. The algorithm module
can set different scheduling algorithms (including Algorithm
1, Algorithm 2 and other baselines), and the time-slot manager
first invoke the algorithm after receiving the device infor-
mation in each time slot. Next, the output of scheduling
matrix is sent to the corresponding edge device, and the fake
matrix is sent to the control module. Finally, according to the
fake matrix, the function trigger sends fake requests to the
serverless cloud for maintaining the function container.

Edge Devices. We mimic edge devices by using three
Docker-based containers, which are with the operating sys-
tem of Debian GNU/Linux 11. The resource allocation of
containers reflects the heterogeneity of computing resources
of different edge devices. In addition to the CPU, device 3 is
also equipped with a GeForce RTX 4090 GPU to achieve local
inference acceleration. According to the computing resources
of different devices, we deploy different versions of the DNN
model YOLOv5 [53] in these containers respectively, and
the inference framework is ONNXRuntime [54]. The specific
configuration of the containers is in Table III.

TABLE III
CONTAINER PARAMETERS

Device CPU Cores Memory GPU Model

#1 6 8GB - YOLOv5n

#2 8 16GB - YOLOv5s

#3 6 8GB 24GB YOLOv5m

Serverless Cloud. We choose the mainstream AWS Lambda
as the serverless computing platform in our system prototype.
We deploy the large version of the DNN model YOLOv5 [53]
on the cloud, and choose five functions with memory con-
figurations of 2048MB, 3072MB, 4096MB, 6144MB, and
8192MB. The model is stored in AWS’s S3 storage service,
and the inference framework is also ONNXRuntime [54].

Note that request configuration (i.e., resolution) is ignored
in our system prototype because the bandwidth from the
container to the AWS cloud is difficult to measure in real time.
Therefore, inference requests offloaded from the device to the
serverless cloud are raw data under the default configuration.

We supplement the bandwidth and request configuration in the
simulation experiment of Section VII.

B. Other Settings

Traces. We use the request traces of three different regions
(Back Bay, Beacon Hill and Boston University) on Novem-
ber 27 in Uber and Lyft Dataset Boston [55]. Specifically,
we count the number of rideshare requests to generate the
normalized request arrivals, and then multiply this value by
1,000 as the inference workload Ai(t) of different devices.

Algorithms. We evaluate three scheduling algorithms in our
system prototype as follows:

(i) OFR, is Algorithm 1 we proposed in Section IV-A, but
ignores the transmission latency and accuracy constraint (1c)
in the optimization problem PWS.

(ii) WFL, is Algorithm 2 we proposed in Section IV-B, but
ignores the transmission latency and accuracy constraint (1c)
in the optimization problem PWS.

(iii) Only, a serverless-only scheduling algorithm that does
not consider edge inference to optimize function cold start. By
setting the local capacity Ci = 0 and ignoring the transmission
latency, cold start latency, and the accuracy constraint (1c) in
the optimization problem PWS, the algorithm then solves the
single-slot subproblem in each time slot.

Metrics. In order to evaluate the performance of the system
prototype under different scheduling algorithms, we record the
following five indicators in edge devices and AWS Cloud-
Watch logs:

(i) local duration, the duration from the start of local
inference with the first request to the completion of processing
all requests, is used as the total latency of the edge inference.

(ii) serverless duration, the duration from the start of
sending the first request to the receipt of the response of the
last request, is used as the end-to-end latency of the serverless
inference.

(iii) request duration, the duration from sending the request
to receiving the response, is used as the end-to-end latency of
the offloaded request. We use request id to index the requests
sent to the serverless cloud and track the inference results of
the requests.

(iv) billed duration, recorded in AWS CloudWatch logs as
the execution time of the function.

(v) init duration, recorded in AWS CloudWatch logs as the
cold start time of the function.

Note that the bandwidth from the edge device to the
serverless cloud is not considered in the experiment of the
system prototype, but we can still calculate the transmission
time of the request through the end-to-end latency of the
request and the execution time of the function.

C. Evaluation Results

Based on the above real-world traces, we apply 3 minutes
as the length of a time slot. We run the system prototype with
three different scheduling algorithms for 24 hours (T = 480),
and record the above metrics.

Function Containers, Cost and End-to-end Latency.
Through the number of logs captured by AWS CloudWatch

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

and the recorded request id, we count the number of con-
tainers used by Lambda over the entire time horizon under
different algorithms and the number of requests offloaded
to the cloud. Thus, we can calculate the average number
of inference requests per function container under different
algorithms, as an indicator of function container utilization.
In the Cost Explorer of the AWS Management Console [26],
we can obtain the cost incurred over the entire time horizon
under each algorithm. The end-to-end latency of serverless
inference in each time slot depends on the one with the largest
serverless duration among all devices. We record all the end-
to-end latency in T = 480 and calculate the average value
per time slot. The results of the above multiple dimensions
are summarized in Table IV. According to the observations
in the table, our proposed ORF and WFL algorithms signifi-
cantly improve function container utilization (i.e., the actual
number of requests processed in the function survival period)
compared to the baseline, where ORF and WFL each reduces
26% and 49% of function containers compared to Only. The
higher container utilization is due to the fake request extending
the survival period of the function container, so WFL pays an
additional 6% cost compared to OFR with a 33% improvement
in utilization. Compared with the cloud-only solution (Only),
the solutions based on the cloud-edge collaboration (OFR and
WFL) reduce up to 11.6% of serverless cost, because inference
by local models does not require additional overhead from
the cloud service provider. In addition, the average end-to-end
latency of serverless inference under the three algorithms are
significantly less than the length of a time slot (180 seconds),
which is consistent with our model assumption: all inference
requests could be processed in the current time slot.

TABLE IV
MULTIDIMENSIONAL RESULTS UNDER DIFFERENT ALGORITHMS

Alg. # of Containers Utilization Cost End-to-end Lat.

Only 37544 12.1 63.17$ 13.4s

OFR 27740 15.5 55.82$ 11.6s

WFL 18451 20.6 59.72$ 12.8s

Fig. 7. The number of cold starts in each time slot under different algorithms,
and the results from t = 100 to t = 120 are highlighted.

Cold start. Through the recorded init duration, we count
the number of functions with cold start in each time slot
under different algorithms, as shown in Fig. 7. To simplify
the presentation, we only plot the results for the first 120 time
slots and highlight the results from t = 100 to t = 120. We
can observe that WFL has fewer cold starts compared to OFR

and Only, and the number of cold starts does not exceed 100

in most time slots. In the entire time horizon T = 480, the
total number of cold starts by Only, OFR and WFL algorithms
are 36946, 26739 and 18064 respectively. Compared with the
baseline Only, OFR and WFL achieves 27.6% and 51.1%
reduction in the number of cold starts respectively.

Latency Composition. Fig. 8 shows the average objective
values of various latency under different algorithms, referring
to LEI(t), LTR(t), LSI(t) and LCS(t) in PWS(t). Due to the
optimization of request configuration is ignored in our system
prototype, the transmission latency LTR(t) mainly depends
on the number of requests offloaded to the serverless cloud.
Therefore, the baseline Only that does not consider edge in-
ference has a large transmission latency. The inference latency
includes the sum of edge inference LEI(t) and serverless in-
ference LSI(t), and there is no obvious distinction between the
three algorithms. Nonetheless, our proposed OFR and WFL are
slightly smaller than the baseline because the local tiny model
with less parameters reduce the inference time compared to
serverless computing. As for the cold start latency LCS(t), our
proposed algorithms has a significant improvement compared
to the baseline, and WFL further reduces the cold start latency
by 32.2% compared to OFR.

Fig. 8. Various total latency per time slot under different algorithms,
i.e. LEI(t), LTR(t), LSI(t) and LCS(t) in objective value of problem
PWS. Compared with the baseline, our proposed OFR and WFL algorithms
significantly reduce cold start latency.

Note that the latency in Fig. 8 is the accumulation of the
time spent by all requests in each time slot. Since the number
of requests with cold start is only a part of the total number,
so the value of LCS(t) is much smaller than LTR(t) and
LEI(t) +LSI(t). In fact, edge inference, serverless inference
and serverless function are all processed in parallel in our
system prototype. Therefore, the time duration for processing
all requests in each time slot depends on the time when the
last inference result is returned, referring to the end-tot-end
latency in Table IV.

Average Time on Each Device. In order to show the
details of different devices, we select the records in WFL

algorithm and calculate the various average time per request
on each device, as shown in Fig. 9. The function processing
(i.e., serverless inference) time and cold start time have no
obvious distinction on different devices, because they mainly
depend on the configuration of functions and the inference
model, which is common with YOLOv5l. Since the local
tiny models (YOLOv5n, YOLOv5s, and YOLOv5m) have less
parameters, the local processing time (green bars) on the three
devices is much smaller than the function processing time
(orange bars) on the cloud. Furthermore, benefiting from GPU
acceleration, device 3, which deploys the YOLOv5m model

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

with a relatively large number of parameters, has the lowest
local processing time. Therefore, edge devices equipped with
GPUs can significantly reduce the latency of local inference,
so that more complex DNN models can be deployed within
limited SLO (Service Level Objective) to improve the accuracy
of edge inference in practice.

Fig. 9. Various time per request under WFL algorithm on each device, where
the local processing time is much smaller than the function inference time
and cold start time, refer to the green coordinate scale on the right. Device 3
equipped with GPU has significant acceleration of edge inference.

VII. SIMULATION EXPERIMENT

A. Experimental Setup

We simulate a cloud-edge collaborative inference system
consisting of three types of devices, which connect to a
remote cloud with serverless computing service. Based on
different types of devices and deployed models, we set the
number of devices (i.e., M) with different scales to 3, 9,
and 15 in our experiment. Taking the object detection task
as an example, the inference request contains images with
different configuration resolutions of 240p, 360p, 480p, and
720p (K = 4). For serverless computing service, serverless
functions with different memory sizes of 2048MB, 3072MB,
4096MB, 6144MB, and 8192MB (N = 5) are used to provide
inference services.

Request Traces and Bandwidth. Similar to real-world
evaluation, we also use the request traces of three different
regions in Uber and Lyft Dataset Boston [55]. The statistical
interval of requests is 3 minutes, which is the length of a
single time slot in our experiment. We set the total time
horizon T = 480, which corresponds to the complete request
traces within 24 hours. Given the real-world request traces,
the parameter µ in Theorem 2 is always equal to 1 in our
experiments, indicating that the parameterized upper bound
U is independent of the time span T . We apply the uplink
rates of the static device at three different times in the 4G
LTE Dataset [56] as the dynamic bandwidth Bi(t) of edge
devices. We calculate the data amount of inference requests
generated by different edge devices according to the resolution
of images with different configurations, and multiply different
compression rates (100%, 80%, and 60%) according to the
different accuracy requirements and heterogeneous bandwidth
as the transmission data size bik under different configurations
of different devices.

Edge Inference. We assume that three mainstream object
detection models YOLOv2 [57], SSD [58], and R-FCN [59]
are deployed on different edge devices to process inference
requests locally. Therefore, the edge inference time T e

i and

TABLE V
ACCURACY PARAMETERS

Deployed Model
Inference Accuracy aik Qi

240p 360p 480p 720p edge

YOLOv2 0.671 0.717 0.758 0.765 0.60 0.75

SSD 0.761 0.799 0.815 0.818 0.62 0.74

R-FCN 0.728 0.771 0.811 0.817 0.65 0.73

TABLE VI
SERVERLESS FUNCTION PARAMETERS

Parameter
Memory Size

2048MB 3072MB 4096MB 6144MB 8196MB

T s
f 2261ms 1641ms 1278ms 1050ms 914ms

Ef 1000 800 500 250 150

capacity Ci are directly related to the deployed inference mod-
els. Specifically, we set the Ci according to the size of three
models after training, and estimate T e

i = [250, 500, 170] based
on the FPS (frames per second) of each model then scale it
with constrained edge resources. Taking the inference request
of car detection as an example, we calculate the inference
accuracy of inference requests with different configurations
from different devices through the curve fitting method [60],
and set the edge inference accuracy ai0 and the service quality
Qi of different devices according to the deployed models. The
specific accuracy parameters are shown in Table V.

Serverless Function. Considering the sufficient resources,
we assume that a more accurate model (YOLOv5 model [53])
is allocated to functions on the serverless cloud. We deploy
the YOLOv5l model on AWS Lambda with different memory
configurations, and measure the inference time and cold start
time of each function by recording Init Duration and Billed

Duration in the CloudWatch logs, as shown in Fig. 10. We
repeatedly invoke each function 20 times after cold start
(i.e., the first call), calculate the average running time as
the processing time T s

f . According to AWS Lambda’s default
value of 1,000 for function concurrency, we set the values
of parameter Ef for different functions according to their
memory size as shown in Table VI. Regarding the cold start
time, we repeat the test 10 times for functions with different
memory, and the time interval between each call is larger
than 10 minutes to ensure that the survival window of the
function is exceeded. The experimental results show that the
cold start time of functions with different memory has no
visible difference, because it is closely related to the deployed
package size [9]. In our experiment, the default cold start time
T c is set to 2s, and the function running price refers to [27].

Fig. 10. Function inference time and cold-start time of YOLOv5l model
inference with different memory size on AWS Lambda, the average result of
each function repeated 20 times.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

Fig. 11. Average objective value. Fig. 12. Normalized objective value in each time slot with different algorithms and the marked mean value.

Benchmarks and Metrics. We compare our algorithms
to OLSA [61], which is a state-of-the-art online algorithm
applied to tackle problems with the switching term [62], [63].
To demonstrate the efficiency in reducing the cold start of
serverless functions, we also compare them with the scheme
Non-CS, which directly solves the convex problem without
considering the cold start latency. As for metrics, we use
the following intuitive quantitative indicators to measure the
performance of different algorithms: 1) Objective Value (i.e.,
the total latency and serverless cost achieved by the algorithm
for the original optimization problem PWS), we use the average
objective value and normalized objective value. 2) Total Num-
ber of Cold Starts (i.e., the total number of functions which
have a cold start when they are triggered), we also apply the
cold starts of the request arrivals over the entire time horizon
to calculate the retention ratio of cold starts by different
algorithms. 3) Approximate Competitive Ratio (i.e.,the total
objective value achieved by different algorithms divided by the
approximate offline optimum), we use the offline optimal value
of the problem PNS = LnCS + Cost without considering
the cold start latency as an approximation, since the original
optimization problem PWS with non-convex terms cannot be
directly solved even given priors. Note that the approximate
competitive ratio is an upper bound of the true competitive
ratio, because the approximate offline optimum must be no
larger than the offline optimum of the original problem.

B. Simulation Results

If there is no special instruction, our experimental results
are based on the default parameters: T = 480,M = 3, I =
3, T c = 2s,ω = 10× 10−6.

Objective Value. We first plot the average objective value
of different algorithms under varying total time slots T in
Fig. 11. Our proposed OFR and WFL significantly outperform
benchmarks, and WFL always achieves the lowest average
total latency and serverless cost. In all 480 time slots, OFR
achieves a maximum improvement of 32.6% and 12.6% com-
pared to Non-CS and OLSA respectively, and WFL achieves
a maximum improvement of 39.0% and 20.8% compared
to Non-CS and OLSA respectively. Fig. 12 visualizes the
normalized objective value of our proposed OFR and WFL as
well as the benchmark OLSA per time slot over the entire
time horizon. WFL has a more stable performance against
uncertain future information (i.e., fluctuating workload and
bandwidth), and achieves 9.4% improvement compared to
OFR. Note that the average objective value decreases as T

increases in Fig. 11, since the system is initialized without
pre-warmed serverless functions. All invoked functions in the
first time slot experience a cold start, resulting in a large
amount of cold-start latency in total objective value. This
value is then averaged by the increasing T , thus causing above
phenomenon.

Total Number of Cold Starts. In order to demonstrate the
efficiency of the proposed algorithm on cold-start reduction,
we plot the total number of cold starts with different algo-
rithms on the entire time horizon in Fig. 13, and calculate
the cold-start retention ratio of each algorithm on the dataset.
Compared with Non-CS and OLSA, OFR achieves 69.3% and
39.8% reduction in the number of cold starts respectively,
and WFL achieves 84.3% and 69.3% reduction respectively.
The proposed WFL achieves the smallest total number of
cold starts and only 14.1% retention of cold starts on the
dataset. Compared with the real-world evaluation result in
Fig. 7, the algorithms in the simulation experiment have better
performance in mitigating the function cold start. This may be
because on the real-world testbed, the survival period of the
function is within a small range, which is different from being
precise to a certain minute in our cold-start latency model. As
a result, the cold start reduction of the proposed algorithm in
the real-world evaluation is slightly inferior to the performance
in the simulation experiment. The function survival period
changes with the strategy adjustment of different serverless
computing platforms, which inspires us to adjust the hyper-
parameter I in practice.

Fig. 13. Total number of cold starts
and retention ratio.

Fig. 14. Approximate competitive
ratio at different scales.

Approximate Competitive Ratio. In order to verify the
overall competitive ratio given in Section V, we measure
the approximate competitive ratio of several algorithms at
different scales (i.e., the number of devices M = 3, 9, 15)
as shown in Fig. 14. The results show that there is no
significant difference in the approximate competitive ratio of
the algorithms under different M . Our proposed OFR and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

Fig. 15. Impact of survival length I . Fig. 16. Impact of cold start T c. Fig. 17. Impact of coefficient ω. Fig. 18. Algorithm execution time.

WFL algorithm outperform the comparison methods, and WFL

always achieves the smallest approximate competitive ratio
(closest to the offline optimum). As we mentioned before that
the approximate competitive ratio is the upper bound of the
true competitive ratio, so the true competitive ratios achieved
by OFR and WFL at different scales do not exceed 1.37 and
1.26, respectively.

Impact of Survival Length. Fig. 15 shows the total number
of cold starts of different algorithms under different serverless
function survival lengths I . We can observe that as the I
increases, the total number of cold starts achieved by all
algorithms decreases significantly, and our proposed OFR and
WFL always have the smallest total number of cold starts.
When I = 1, the Window Switching problem degenerates into
the traditional Switching problem. At this time, OFR based on
the one-step historical information achieves a lower number
of cold starts and better performance than WFL, indicating
that when the survival period is very short, the regularization
method is more effective than the lazy switching method.

Impact of Cold Start Time. Fig. 16 shows the approximate
competitive ratio of different algorithms under different cold
start time T c. We omit the results of the Non-CS method
because the performance without considering the cold-start
latency deteriorates rapidly when T c increases leading to par-
ticularly large approximate competitive ratios. Compared with
OLSA, our proposed OFR and WFL consistently achieve lower
approximate competitive ratios (not exceeding 1.8). We notice
that when T c increases to 10s, the approximate competitive
ratios of different algorithms all increase substantially (OLSA’s
even exceeds 2.0). Because our cold-start model is time-
coupling with future uncertainty, the optimality gap of any
online algorithm would enlarge as the cold-start time increases,
which is also reflected in κ2 in our Theorem 2.

Impact of Serverless Cost. Fig. 17 shows the average
objective value of WFL over the entire time horizon under
different weight coefficients of serverless cost, as well as
the proportion of non-cold-start latency, cold-start latency and
serverless cost in the objective value. The average objective
value increases as the weight coefficient ω increases. When
ω ≤ 10, the main reason for the increase in objective
value is the increased serverless cost. When ω > 10, the
cold start latency starts to increase significantly, because the
expensive running cost makes it difficult to reduce the cold
start occurrence by retaining the warm functions. For the
convenience of presentation we only plot the result of WFL, a
similar phenomenon is also observed on OFR.

Execution Time. Fig. 18 depicts the cumulative distribution

of the execution time of our proposed algorithms. The average
execution time of OFR and WFL over all 480 time slots is about
294.9ms and 366.8ms, respectively, which are much less than
the commonly adopted length of 3 minutes of a single time
slot. Hence, our proposed algorithms are practically efficient.

VIII. DISCUSSION AND FUTURE WORK

The measurements and evaluations in this paper are mainly
based on AWS Lambda. However, our proposed algorithms
and system prototype can be generally extended to other major
serverless computing platforms. Nevertheless, some hyper-
parameters used in the algorithm are platform-dependent, such
as survival period I and function price Pf , need to be re-
tuned. Note that the parameter I is platform-dependent but
fixed in our cold-start latency model. However, our proposed
algorithms and theoretical analysis can be naturally extended
to the general case when the survival periods vary for different
functions. We are also willing to discuss possible future work
for this research as follows.

Dynamic survival period. We assume that the survival
period of all serverless functions is fixed as the time goes
in our cold-start latency model. This assumption may change
as strategies adjustment of commercial serverless computing
platforms, such as based on the workload of the function.
The dynamic survival period of the function will bring novel
challenges to solving the window switching problem.

Further exploration of competition ratio. Both in real-
world testbed and simulation experiments, our proposed ex-
tended algorithm achieve significant performance improve-
ments compared to the fast algorithm. However, there is
currently a lack of theoretical analysis for the lower bound of
algorithm performance. Intuitively, the competitive ratio that
proves this bound is likely to be related to the survival period
of the function.

Real-world system implementation. The system prototype
can be further combined with real edge devices to implement
a real-world cloud-edge collaborative inference system. This
may help inspire the application and deployment of inference
systems based on serverless computing in practice.

IX. CONCLUSION

In this paper, we tame the serverless cold start in the cloud
inference system with edge computing. We define a practical
cold-start model which is related to multiple time slots in
the past, so the long-term optimization problem is highly
non-trivial to solve because of the non-convex time-coupling

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

term. Based on the regularization and lazy-switching method,
we propose a fast algorithm (Once Forward Regularization)
and an extended algorithm (Window Forward Lazy-switching).
We prove the competitive ratio and evaluate the algorithm
performance based on a system prototype with AWS Lambda.
We further verify the practical efficiency of the proposed
algorithms through extensive simulation experiments driven
by real-world data sets. Our proposed algorithms significantly
reduce the number of cold starts and achieve lower approxi-
mate competitive ratio.

ACKNOWLEDGMENTS

This work was supported by the National Key Research
& Development (R&D) Plan under Grant 2022YFB4500004,
in part by the National Science Foundation of China under
Grants U20A20159, 61972432, and 62372184, the Guangdong
Basic and Applied Basic Research Foundation under Grant
2021B151520008, and the Science and Technology Commis-
sion of Shanghai Municipality under Grant 22DZ2229004.
It was also supported in part by the U.S. National Science
Foundation under Grants CNS-2047719 and CNS-2225949.

REFERENCES

[1] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar et al., “Cloud
programming simplified: A berkeley view on serverless computing,”
arXiv preprint arXiv:1902.03383, 2019.

[2] M. Zhang, F. Wang, Y. Zhu, J. Liu, and B. Li, “Serverless empowered
video analytics for ubiquitous networked cameras,” IEEE Network,
vol. 35, no. 6, pp. 186–193, 2021.

[3] F. Xu, Y. Qin, L. Chen, Z. Zhou, and F. Liu, “λdnn: Achieving
predictable distributed dnn training with serverless architectures,” IEEE
Transactions on Computers, vol. 71, no. 2, pp. 450–463, 2021.

[4] A. Das, A. Leaf, C. A. Varela, and S. Patterson, “Skedulix: Hybrid
cloud scheduling for cost-efficient execution of serverless applications,”
in Proc. of IEEE CLOUD, 2020.

[5] M. Zhang, F. Wang, Y. Zhu, J. Liu, and Z. Wang, “Towards cloud-
edge collaborative online video analytics with fine-grained serverless
pipelines,” in Proc. of ACM MMsys, 2021, pp. 80–93.

[6] Y. Laili, F. Guo, L. Ren, X. Li, Y. Li, and L. Zhang, “Parallel
scheduling of large-scale tasks for industrial cloud-edge collaboration,”
IEEE Internet of Things Journal, 2021.

[7] J. Manner, M. Endreß, T. Heckel, and G. Wirtz, “Cold start influencing
factors in function as a service,” in Proc. of IEEE/ACM UCC, 2018.

[8] R. B. Roy, T. Patel, and D. Tiwari, “Icebreaker: warming serverless
functions better with heterogeneity,” in Proc. of ACM ASPLOS, 2022.

[9] M. Shilkov. (2021) Cold Starts in AWS Lambda. [Online]. Available:
https://mikhail.io/serverless/coldstarts/aws/

[10] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind
the curtains of serverless platforms,” in Proc. of USENIX ATC, 2018.

[11] C. Zhang, M. Yu, W. Wang, and F. Yan, “Mark: Exploiting cloud services
for cost-effective,slo-aware machine learning inference serving,” in Proc.
of USENIX ATC, 2019.

[12] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless
in the wild: Characterizing and optimizing the serverless workload at a
large cloud provider,” in Proc. of USENIX ATC, 2020.

[13] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya,
and V. Hilt, “SAND: Towards High-Performance Serverless Computing,”
in Proc. of USENIX ATC, 2018, pp. 923–935.

[14] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D.-M. Popa, “Firecracker: Lightweight virtualization
for serverless applications,” in Proc. of USENIX NSDI, 2020.

[15] A. Fuerst and P. Sharma, “Faascache: keeping serverless computing alive
with greedy-dual caching,” in Proc. of ACM ASPLOS, 2021.

[16] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea:
Latency-aware video analytics on edge computing platform,” in Proc.
of ACM/IEEE SEC, 2017.

[17] T. Elgamal, “Costless: Optimizing cost of serverless computing through
function fusion and placement,” in Proc. of ACM/IEEE SEC, 2018.

[18] T. Rausch, W. Hummer, V. Muthusamy, A. Rashed, and S. Dustdar,
“Towards a serverless platform for edge AI,” in Proc. of USENIX
HotEdge, 2019.

[19] Z. Xu, L. Zhou, W. Liang, Q. Xia, W. Xu, W. Ren, H. Ren, and P. Zhou,
“Stateful serverless application placement in mec with function and state
dependencies,” IEEE Transactions on Computers, 2023.

[20] Y.-H. Chiang, C. Zhu, H. Lin, and Y. Ji, “Hysteretic optimality of
container warming control in serverless computing systems,” IEEE
Networking Letters, vol. 3, no. 3, pp. 138–141, 2021.

[21] P. Vahidinia, B. Farahani, and F. S. Aliee, “Mitigating cold start problem
in serverless computing: A reinforcement learning approach,” IEEE
Internet of Things Journal, 2022.

[22] Q. Tang, R. Xie, F. R. Yu, T. Chen, R. Zhang, T. Huang, and Y. Liu,
“Distributed task scheduling in serverless edge computing networks for
the internet of things: A learning approach,” IEEE Internet of Things
Journal, 2022.

[23] L. Pan, L. Wang, S. Chen, and F. Liu, “Retention-aware container
caching for serverless edge computing,” Proc. of IEEE INFOCOM,
2022.

[24] H. Guo, Y. Wang, J. Liu, and C. Liu, “Multi-uav cooperative task
offloading and resource allocation in 5g advanced and beyond,” IEEE
Transactions on Wireless Communications, 2023.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. of IEEE CVPR, 2016.

[26] “AWS Management Console,” 2023. [Online]. Available: https:
//aws.amazon.com/console/

[27] “AWS Lambda Pricing,” 2023. [Online]. Available: https://aws.amazon.
com/lambda/pricing/

[28] N. Akhtar, A. Raza, V. Ishakian, and I. Matta, “Cose: Configuring server-
less functions using statistical learning,” in Proc. of IEEE INFOCOM,
2020.

[29] S. Zhang, C. Wang, Y. Jin, J. Wu, Z. Qian, M. Xiao, and S. Lu, “Adaptive
configuration selection and bandwidth allocation for edge-based video
analytics,” IEEE/ACM Transactions on Networking, vol. 30, no. 1, pp.
285–298, 2021.

[30] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,
M. Fawzy, B. Jia, Y. Jia, A. Kalro et al., “Applied machine learning
at facebook: A datacenter infrastructure perspective,” in Proc. of IEEE
HPCA, 2018.

[31] Alibaba Clouder. (2019) One Trillion Calls, One
Billion People, and One Billion Images All in a
Day. [Online]. Available: https://www.alibabacloud.com/blog/
one-trillion-calls-one-billion-people-and-one-billion-images-all-in-a-day
595462

[32] C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan,
K. Hazelwood, E. Isaac, Y. Jia, B. Jia et al., “Machine learning at
facebook: Understanding inference at the edge,” in Proc. of IEEE HPCA,
2019.

[33] M. Xu, Z. Fu, X. Ma, L. Zhang, Y. Li, F. Qian, S. Wang, K. Li, J. Yang,
and X. Liu, “From cloud to edge: a first look at public edge platforms,”
in Proc. of ACM IMC, 2021.

[34] Z. Xu, H. Zhang, X. Geng, Q. Wu, and H. Ma, “Adaptive function
launching acceleration in serverless computing platforms,” in Proc. of
IEEE ICPADS, 2019.

[35] (2023) Agentless observability for serverless applications. [Online].
Available: https://dashbird.io/

[36] J. Daly. (2023) A module to optimize AWS Lambda function cold starts.
[Online]. Available: https://github.com/jeremydaly/lambda-warmer

[37] P. Vahidinia, B. Farahani, and F. S. Aliee, “Cold start in serverless
computing: Current trends and mitigation strategies,” in Proc. of IEEE
COINS, 2020.

[38] G. McGrath and P. R. Brenner, “Serverless computing: Design, imple-
mentation, and performance,” in Proc. of IEEE ICDCSW, 2017.

[39] Z. Wen, Y. Wang, and F. Liu, “Stepconf: Slo-aware dynamic resource
configuration for serverless function workflows,” in Proc. of IEEE
INFOCOM, 2022.

[40] A. Das, S. Imai, S. Patterson, and M. P. Wittie, “Performance optimiza-
tion for edge-cloud serverless platforms via dynamic task placement,”
in Proc. of IEEE/ACM CCGRID, 2020.

[41] R. Moreno Vozmediano, E. Huedo Cuesta, R. Santiago Montero, and
I. Martı́n Llorente, “Latency and resource consumption analysis for
serverless edge analytics,” 2022.

[42] A. Singla, B. Chandrasekaran, P. B. Godfrey, and B. Maggs, “The
internet at the speed of light,” in Proceedings of the 13th ACM Workshop
on Hot Topics in Networks, 2014.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 16

[43] N. Buchbinder, S. Chen, and J. Naor, “Competitive analysis via regu-
larization,” in Proc. of ACM/SIAM SODA, 2014.

[44] L. Wang, L. Jiao, J. Li, J. Gedeon, and M. Mühlhäuser, “Moera:
Mobility-agnostic online resource allocation for edge computing,” IEEE
Transactions on Mobile Computing, vol. 18, no. 8, pp. 1843–1856, 2018.

[45] W. You, L. Jiao, S. Bhattacharya, and Y. Zhang, “Dynamic distributed
edge resource provisioning via online learning across timescales,” in
Proc. of IEEE SECON, 2020.

[46] Y. Nesterov and A. Nemirovskii, Interior-point polynomial algorithms
in convex programming. SIAM, 1994.

[47] “Gurobi Optimizer,” 2023. [Online]. Available: https://www.gurobi.com/
[48] P.-M. Lin and A. Glikson, “Mitigating cold starts in serverless platforms:

A pool-based approach,” arXiv preprint arXiv:1903.12221, 2019.
[49] (2023) Fast, open source serverless framework for kubernetes. [Online].

Available: https://fission.io/docs/
[50] L. Zhang, C. Wu, Z. Li, C. Guo, M. Chen, and F. C. Lau, “Moving big

data to the cloud: An online cost-minimizing approach,” IEEE Journal
on Selected Areas in Communications, vol. 31, no. 12, pp. 2710–2721,
2013.

[51] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[52] X. Xu, Y. Ding, S. X. Hu, M. Niemier, J. Cong, Y. Hu, and Y. Shi,
“Scaling for edge inference of deep neural networks,” Nature Electron-
ics, vol. 1, no. 4, pp. 216–222, 2018.

[53] (2023) YOLOv5. [Online]. Available: https://github.com/ultralytics/
yolov5

[54] ONNX Runtime developers, “ONNX Runtime,” https://www.
onnxruntime.ai, 2021, version: 1.10.0.

[55] (2018) Uber and Lyft Dataset Boston. [Online]. Available: https:
//www.kaggle.com/datasets/brllrb/uber-and-lyft-dataset-boston-ma

[56] D. Raca, J. J. Quinlan, A. H. Zahran, and C. J. Sreenan, “Beyond
throughput: a 4g LTE dataset with channel and context metrics,” in
Proc. of ACM MMSys, 2018.

[57] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in Proc.
of IEEE CVPR, 2017.

[58] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “Ssd: Single shot multibox detector,” in Proc. of ECCV,
2016.

[59] J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via region-
based fully convolutional networks,” Advances in neural information
processing systems, vol. 29, 2016.

[60] C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, and M. Xiao, “Joint
configuration adaptation and bandwidth allocation for edge-based real-
time video analytics,” in Proc. of IEEE INFOCOM, 2020.

[61] B. Gao, Z. Zhou, F. Liu, and F. Xu, “Winning at the starting line: Joint
network selection and service placement for mobile edge computing,”
in Proc. of IEEE INFOCOM, 2019.

[62] X. Qi, H. Xu, Z. Ma, and S. Chen, “Joint network selection and task
offloading in mobile edge computing,” in Proc. of IEEE/ACM CCGrid,
2021.

[63] Q. Zhang, F. Liu, and C. Zeng, “Online adaptive interference-aware vnf
deployment and migration for 5g network slice,” IEEE/ACM Transac-
tions on Networking, vol. 29, no. 5, pp. 2115–2128, 2021.

Kongyange Zhao received the B.E. degree from
the South China University of Technology, China,
in 2020, and the M.E. degree from the School of
Computer Science and Engineering, Sun Yat-sen
University (SYSU), China, in 2022. He is currently
pursuing his Ph.D. degree in Sun Yat-sen University,
Guangzhou, China. His research interests include
edge computing, edge intelligence, and serverless
computing.

Zhi Zhou received the B.S., M.E., and Ph.D. degrees
in 2012, 2014, and 2017, respectively, all from the
School of Computer Science and Technology at
Huazhong University of Science and Technology
(HUST), Wuhan, China. He is currently an associate
professor in the School of Data and Computer Sci-
ence at Sun Yat-sen University, Guangzhou, China.
In 2016, he was a visiting scholar at University of
Göttingen. He was nominated for the 2019 China
Computer Federation CCF Outstanding Doctoral
Dissertation Award, the sole recipient of the 2018

ACM Wuhan & Hubei Computer Society Doctoral Dissertation Award, and a
recipient of the Best Paper Award of IEEE UIC 2018. His research interests
include edge computing, cloud computing, and distributed systems.

Lei Jiao received the Ph.D. degree in computer
science from the University of Göttingen, Germany.
He is currently a faculty member at the Department
of Computer Science, University of Oregon, USA.
Previously he worked at Nokia Bell Labs in Ireland.
He is interested in the mathematics of optimization,
control, learning, and mechanism design applied to
computer and telecommunication systems, networks,
and services. He is a recipient of the NSF CAREER
award. He publishes papers in journals such as
JSAC, ToN, TPDS, and TMC and in conferences

such as INFOCOM, MOBIHOC, ICNP, ICDCS, SECON, and IPDPS. He also
received the Best Paper Awards of IEEE LANMAN 2013 and IEEE CNS
2019, and the 2016 Alcatel-Lucent Bell Labs UK and Ireland Recognition
Award. He has been on the program committees of INFOCOM, MOBIHOC,
ICDCS, TheWebConf, and IWQoS, and served as the program chair of
multiple workshops with INFOCOM and ICDCS.

Shen Cai received the B.S. degree in electronic
information engineering from the College of Elec-
tronics and Information Engineering, Shenzhen Uni-
versity (SZU), Shenzhen, China in 2020. He is cur-
rently pursuing the master’s degree with the School
of Computer Science and Engineering, Sun Yat-sen
University, Guangzhou, China. His research interests
include cloud computing, serverless computing, ma-
chine learning inference system.

Fei Xu received the BS, ME, and PhD degrees from
the Huazhong University of Science and Technology
(HUST), Wuhan, China, in 2007, 2009, and 2014,
respectively. He received Outstanding Doctoral Dis-
sertation Award in Hubei province, China, and ACM
Wuhan & Hubei Computer Society Doctoral Disser-
tation Award in 2015. He is currently an associate
professor with the School of Computer Science and
Technology, East China Normal University, Shang-
hai, China. His research interests include cloud com-
puting and datacenter, virtualization technology, and

distributed systems.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 17

Xu Chen is a Full Professor with Sun Yat-sen
University, Guangzhou, China, and the Vice Director
of National and Local Joint Engineering Labora-
tory of Digital Home Interactive Applications. He
received the Ph.D. degree in information engineering
from the Chinese University of Hong Kong in 2012,
and worked as a Postdoctoral Research Associate at
Arizona State University, Tempe, USA, from 2012 to
2014, and a Humboldt Scholar Fellow at the Institute
of Computer Science of the University of Goettin-
gen, Germany from 2014 to 2016. He received the

prestigious Humboldt research fellowship awarded by the Alexander von
Humboldt Foundation of Germany, 2014 Hong Kong Young Scientist Runner-
up Award, 2017 IEEE Communication Society Asia-Pacific Outstanding
Young Researcher Award, 2017 IEEE ComSoc Young Professional Best Paper
Award, Honorable Mention Award of 2010 IEEE international conference
on Intelligence and Security Informatics (ISI), Best Paper Runner-up Award
of 2014 IEEE International Conference on Computer Communications (IN-
FOCOM), and Best Paper Award of 2017 IEEE Intranational Conference
on Communications (ICC). He is currently an Area Editor of the IEEE
OPEN JOURNAL OF THE Communications Society, an Associate Editor
of the IEEE TRANSACTIONS WIRELESS COMMUNICATIONS, IEEE
INTERNET OF THINGS JOURNAL and IEEE JOURNAL ON SELECTED
AREAS IN COMMUNICATIONS (JSAC) Series on Network Softwarization
and Enablers.

