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Abstract

During the COVID-19 pandemic, forecasting COVID-19 trends to support planning and
response was a priority for scientists and decision makers alike. In the United States,
COVID-19 forecasting was coordinated by a large group of universities, companies, and
government entities led by the Centers for Disease Control and Prevention and the US
COVID-19 Forecast Hub (https://covid19forecasthub.org). We evaluated approximately 9.7
million forecasts of weekly state-level COVID-19 cases for predictions 1-4 weeks into the
future submitted by 24 teams from August 2020 to December 2021. We assessed coverage
of central prediction intervals and weighted interval scores (WIS), adjusting for missing fore-
casts relative to a baseline forecast, and used a Gaussian generalized estimating equation
(GEE) model to evaluate differences in skill across epidemic phases that were defined by
the effective reproduction number. Overall, we found high variation in skill across individual
models, with ensemble-based forecasts outperforming other approaches. Forecast skill rel-
ative to the baseline was generally higher for larger jurisdictions (e.g., states compared to
counties). Over time, forecasts generally performed worst in periods of rapid changes in
reported cases (either in increasing or decreasing epidemic phases) with 95% prediction
interval coverage dropping below 50% during the growth phases of the winter 2020, Delta,
and Omicron waves. Ideally, case forecasts could serve as a leading indicator of changes in
transmission dynamics. However, while most COVID-19 case forecasts outperformed a
naive baseline model, even the most accurate case forecasts were unreliable in key phases.
Further research could improve forecasts of leading indicators, like COVID-19 cases, by
leveraging additional real-time data, addressing performance across phases, improving the
characterization of forecast confidence, and ensuring that forecasts were coherent across
spatial scales. In the meantime, it is critical for forecast users to appreciate current limita-
tions and use a broad set of indicators to inform pandemic-related decision making.

Author summary

As SARS-CoV-2 began to spread throughout the world in early 2020, modelers played a
critical role in predicting how the epidemic could take shape. Short-term forecasts of epi-
demic outcomes (for example, infections, cases, hospitalizations, or deaths) provided use-
ful information to support pandemic planning, resource allocation, and intervention. Yet,
infectious disease forecasting is still a nascent science, and the reliability of different types
of forecasts is unclear. We retrospectively evaluated COVID-19 case forecasts, which were
often unreliable. For example, forecasts did not anticipate the speed of increase in cases in
early winter 2020. This analysis provides insights on specific problems that could be
addressed in future research to improve forecasts and their use. Identifying the strengths
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and weaknesses of forecasts is critical to improving forecasting for current and future pub-
lic health responses.

Introduction

Predicting the trajectory of an epidemic to support control and mitigation planning is the pri-
mary objective of infectious disease forecasting. To this end, large-scale, collaborative forecast-
ing efforts across multiple disease systems, such as influenza [1-3], dengue [4], West Nile [5],
and Ebola viruses [6], have been integrated into routine public health workflows and emer-
gency response [7]. Researchers in academia, private institutions, and the United States (US)
government built upon these frameworks to incorporate forecasts into the COVID-19 infor-
mation systems used to inform pandemic response and created the US COVID-19 Forecast
Hub. In April 2020, the US Centers for Disease Control and Prevention (CDC) and the
COVID-19 Forecast Hub began collecting COVID-19 death forecasts [8]. Compared to death
reports, case reports are a leading indicator of SARS-CoV-2 infections, as the time from infec-
tion to case report is typically shorter than that between infection and death report. Hence,
information gleaned from case forecasts is potentially more actionable.

Case forecasts for all US counties (n = 3,143), states (n = 50), territories (n = 5), the District
of Columbia (DC), and the nation as a whole were generated and collected beginning in July
2020, with ensemble forecasts of cases first posted on a CDC webpage on August 6, 2020 [8,9].
Due to public interest and their potential utility, case forecasts were also integrated into US
government web pages and situational awareness updates [10]. In addition, COVID-19 case
forecasts have been cited as useful for guiding personal risk-based decisions [11]. Because
these forecasts potentially influence policies and personal decisions, accuracy and precision
are of the utmost importance.

As part of routine use of the case forecasts in the COVID-19 response, real-time evaluation
was conducted. One of the performance metrics included in the evaluation was the 95% pre-
diction interval (PI) coverage, an estimate of the frequency at which the interval captures the
eventually observed data. The 95% PI of a reliable forecast should capture eventually reported
cases 95% of the time. However, the real-time evaluation indicated that case forecasts were not
always reliable, with much lower 95% PI coverage than expected [12]. For example, in Novem-
ber 2020 as the 2020-2021 winter wave began, the 95% PI coverage for all states and territories
was less than 50% for even the shortest, 1-week ahead forecasts from the ensemble-generally
the most reliable forecast. Repeated periods of low coverage during subsequent surges led the
CDC to stop posting COVID-19 case forecasts in December 2021. Though these forecasts
showed poor performance, there are opportunities to develop more precise and reliable future
predictions.

Evaluation of forecast performance provides an opportunity not only to assess prediction
skill for the purposes of improving forecasts, but also to assess the reliability of the forecasts
and foster transparency between forecast users and creators. While evaluation is recom-
mended in forecasting research guidelines (i.e., EPIFORGE 2020 [13], a systematic review of
COVID-19 models showed that half of published models did not include probabilistic predic-
tions and that approximately one-fourth of published models did not include performance
evaluations [14]. We have previously evaluated forecast performance of cumulative [15] and
incident [16] COVID-19 deaths submitted to the COVID-19 Forecast Hub. Given that an
ensemble of submitted models provided consistently accurate probabilistic forecasts at differ-
ent scales in both evaluations, here we apply similar methods to assess the prediction skill of
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the COVID-19 case forecasters, with particular interest in the COVIDhub ensemble model
(that is, a model that combines predictions from forecasts submitted to the Forecast Hub). Spe-
cifically, we analyze prediction interval coverage and other aspects of nearly 10 million individ-
ual forecasts collected by the COVID-19 Forecast Hub for US jurisdictions between July 2020
and December 2021, the full period over which COVID-19 case forecasts were published by
the CDC. We analyze relative forecast performance across spatial scales and phases of the pan-
demic to identify limitations and opportunities for future improvement of case forecasts.

Results
Summary of included team forecasts

A total of 14,960,171 forecasts were submitted by 67 teams throughout the analysis period (see
S1 Appendix for submission patterns over time). Because forecasts were submitted at multiple
geographic scales, we stratified analyses for 1) national forecasts, 2) state (including all 50
states), territory (US Virgin Islands and Puerto Rico), and DC forecasts), 3) county-level fore-
casts (including all 3,143 counties and county equivalents), split into five equal sized groups
based on county population size.

We first assessed the locations, horizons, and time periods forecasted by each team to
ensure that forecasts included all required quantiles and horizons and to limit comparisons to
teams with substantial overlapping spatiotemporal coverage. Briefly, teams were included if
they submitted the full range of required quantiles, included at least 50 of states/territories/DC
or 75% of counties, and produced forecasts at least four weeks into the future for at least 50%
of the time points in the study period. At the national level, 22 sets of team forecasts met these
criteria (5,136 forecasts across dates and forecast horizons), 23 sets of team forecasts met the
state/territory level criteria (280,132 forecasts across jurisdictions, dates, and forecast hori-
zons), and 15 sets of team forecasts met the county-level criteria (9,415,460 forecasts across
counties, dates, and forecast horizons). Overall, 64.8% of all submitted forecasts were included
in the analysis (9,700,728 forecasts). Of the included forecasts, 11 sets of team forecasts met the
inclusion criteria for analyzing submissions across all geospatial scales (8,125,220 forecasts for
specific locations, dates and forecast horizons).

Each team included in the analysis submitted forecasts that were generated from unique
model structures, data inputs, and assumptions (S1 Appendix). Two naive models (the COV-
IDhub-baseline and CEID-Walk) and four ensemble models (the COVIDhub-4_week_ensem-
ble, the COVIDhub-trained_ensemble, LNQ-ensl1, and UVA-Ensemble), which combined
multiple forecasts into one, were included in the 26 models evaluated (see Table A in S1
Appendix). The COVIDhub-baseline model projects the number of reported cases in the most
recent week as the median predicted value for the next 4 weeks. CEID-Walk is a random walk
model with a simple method for removing outliers. A total of seven models included data on
COVID-19 hospitalizations, 12 models incorporated demographic data, and seven models
used mobility data. Of the 26 evaluated models, three (COVIDAnalytics-DELPHI, CU-select,
and UCLA-SuEIR) assumed that social distancing and other behavioral patterns changed dur-
ing the prediction period.

The evaluation period consisted of 1-4 week ahead forecasts submitted in the 73 weeks
from July 28, 2020, through December 21, 2021. Multiple phases of the US epidemic were
included: the late summer 2020 increase in several locations, a large late-fall/early-winter surge
in 2020/2021, the rise and fall of the Delta variant in the summer and fall of 2021, and the early
phase of the Omicron variant’s dominance in winter 2021 (Fig 1A). Performance of the
national ensemble forecasts varied over this period (Fig 1B). For some forecasts, the median
predictions were close to the cases eventually reported, and most reported numbers fell within
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Fig 1. Weekly incident reported COVID-19 cases per 100K population, nationally (in black) and per state/territory/
DC (in gray), over time in panel A. Panel B shows a subset of COVIDhub-4_week_ensemble forecasts (in green) over
time, with the median predictions represented as lines and points and the 95% prediction intervals in bands. Reported
incident cases (counts per week) are shown in gray. In both plots, the black, dashed vertical line shows the date that
public communication of the case forecasts was paused.

https://doi.org/10.1371/journal.pcbi.1011200.9001

the 95% PIs. However, forecasts made at other times, such as January 2021 or December 2021,
diverged widely from the reported data. At those times, the forecasts missed substantial
decreases and increases, respectively, with reported cases falling within the 95% prediction
interval for only 1-week ahead forecasts.

Aggregate performance

We evaluated aggregate forecast performance with two metrics: Weighted Interval Score
(WIS), a proper score considering both precision and accuracy, and prediction interval cover-
age, an indicator of forecast uncertainty. Lower WIS values reflect forecasts with probability
mass closer to observed values. We assessed scaled pairwise WIS relative to the baseline model
(referred to throughout as relative WIS, or rWIS) for national and state/territory/DC forecasts
(Fig 2). A rWIS less than one indicates performance that is better than the baseline model.

Opverall, seven of 22 team’s forecast models outperformed the COVIDhub-baseline model
at the state/territory/DC level (i.e., had rWIS values less than 1.0), and 11 outperformed the
baseline model at the national level. Six of these teams outperformed the baseline model at
both scales: LNQ-ensl, COVIDhub-4_week_ensemble, USC-SI_kJalpha, LANL-GrowthRate,
Microsoft-DeepSTIA, and CU-select.

Prediction interval coverage at the 95% level should be close to 95% for well calibrated fore-
casts. However, it was lower for most sets of team forecasts, with only one (LNQ-ens1) having
coverage of at least 90% at all scales, while others were as low as 23%. PI coverage at 50% and
80% levels were also well below nominal levels for most sets of team forecasts, including the
COVIDhub-4_week_ensemble (Fig 3). For the 50% prediction interval, no sets of team forecasts
had coverage better than 36% at any scale. Only two sets of team forecasts had better coverage
than the COVIDhub-4_week_ensemble for the geographic scales in which they submitted fore-
casts: LNQ-ensl1 (all scales) and JHU_UNC_GAS-StatMechPool (state/territory/DC and large
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USC-SI_kJalpha 0.60 0.78
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Microsoft-DeepSTIA 0.69 0.69 0.64 0.56
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Fig 2. Percent of weeks with complete submissions for all sets of team forecasts, scaled, pairwise relative Weighted
Interval Score (rWIS; see Methods for description), observed 95% prediction interval coverage, by geographical
scale of submitted forecasts. Teams are sorted by increasing state/territory/DC rWIS values.

https://doi.org/10.1371/journal.pcbi.1011200.9002

county levels). We also found that calibration, WIS, and prediction interval coverage were all
worse at 4-week horizons compared to 1-week horizons (56 Appendix).

Forecast skill also showed distinct patterns across jurisdictional scales, with rWIS decreas-
ing for larger jurisdiction scales (e.g., national vs. state/territory) or population sizes (e.g.,
larger counties vs. smaller counties, Fig 4) for most sets of team forecasts. In contrast to this
general trend, for three sets of team forecasts, that pattern was inverted, one team had no dis-
tinct pattern, and the COVIDhub-4_week_ensemble had markedly consistent rWIS across all
scales. Consistent with the aggregate findings, both LNQ-ens1 and COVIDhub-4_week_en-
semble had rWIS lower than 1.0 at all scales, while LANL-GrowthRate had rWIS greater than
1.0 for smaller counties.

Performance across jurisdictions

There was additional variability in forecast skill between jurisdictions. Only two team forecasts
(LNQ-ensl and COVIDhub-4_week_ensemble) performed as well as or better than the base-
line for all included states and territories (Fig 5). Variation was higher between team forecasts
than between specific jurisdictions, but the baseline model tended to outperform more models
in some jurisdictions (e.g., the baseline was better in Colorado, Kansas, Puerto Rico) than in
others (e.g., the baseline was worse in Mississippi, South Carolina, West Virginia). Spatial cor-
relation is intrinsic to COVID-19 spread making correlation in the forecasts likely regardless
of forecast skill. We found some evidence of spatial correlation in rWIS for many team fore-
casts (ensemble Moran’s I: 0.36, p-value = 0.001, Fig A in S4 Appendix).
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Performance over time

WIS also varied over time (Fig 6). For example, all models had relatively high WIS in Decem-
ber 2020-January 2021 and low WIS in June 2021. Prediction interval coverage also varied
between teams and over time, with most team forecasts exhibiting times of low coverage.
Across most time points, the baseline model outperformed many team forecasts, including the
COVIDhub-4_week_ensemble, though the ensemble more often outperformed the baseline in
both WIS and prediction interval coverage at the national, state/territory, and large county
scales. Increased WIS and decreased prediction interval coverage generally occurred with
increasing case counts, such as in the fall of 2020 and summer of 2021. The worst performance
was in the early Omicron wave in the winter of 2021. For the last set of ensemble forecasts
posted by the CDC in December 2021 (https://www.cdc.gov/coronavirus/2019-ncov/science/
forecasting/forecasts-cases.html), the WIS reached the highest level ever for all scales and the
reported case numbers were outside the 95% prediction interval for most locations at every
forecast horizon.

To further investigate these temporal patterns in performance, we first classified each fore-
casted week as increasing, peak, decreasing, or nadir based on the estimated time-varying repro-
duction number for that given week and jurisdiction (Fig A in S5 Appendix). We then fitted
Gaussian generalized estimating equations (GEE) models for each set of team forecasts, using a
normalized, log transformed WIS value per forecast time and location as the model outcome.
The regression models were adjusted for each prediction horizon and included a natural spline
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Fig 5. Scaled, pairwise relative Weighted Interval Score (rWIS; see Methods for description) by location for

national and state/territory/DC forecasts, averaged across all horizons through the entire analysis period.

National estimates are displayed first, followed by jurisdictions in alphabetical order. Team forecasts are ordered by

increasing average state/territory/DC rWIS.

https://doi.org/10.1371/journal.pcbi.1011200.9005

with two degrees of freedom for the time/state reported case counts to adjust for intrinsic
increases in WIS due to higher values in reported cases (see S7 Appendix). In agreement with
the aggregated results (Fig 2), we found that the expected WIS at the mean number of case
counts across all jurisdictions was lower than the baseline for the better performing models (6
team forecasts and the ensemble) and higher than the baseline for others (8 team forecasts).

Forecast skill and coverage also varied across epidemic phases (Fig 7B and 7C). Compared
to the baseline model across all phases, overall WIS for most models was better in nadir and
peak phases and worse in increasing and decreasing phases. Likewise, 95% prediction interval
coverage was highest in the nadir phase for nearly all teams while coverage in other phases was
mostly lower than 95 percent. LNQ-ensl and the COVIDhub ensemble had better WIS values
than the baseline model in all epidemic phases between August 1, 2020, and January 15, 2022,
with LNQ-ens]1 also exhibiting close to nominal coverage across all phases.

We classified each forecast as increasing, decreasing, or stable or uncertain based on the 50%
prediction interval relative to the most recent observed value. If the forecasts were able to cor-
rectly predict the direction of the epidemic phase, we would expect a high percentage of fore-
casts with an increasing trajectory to occur in an increasing epidemic phase, and likewise, a high
percent of stable/uncertain trajectory forecasts in the peak and nadir phases and a high percent
of forecasts with a decreasing trajectory in the decreasing epidemic phase. Increasing forecasts
were most commonly made for the peak phase (predicting continued increases rather than a
peak) followed by the increasing phase (Fig 8A), though overall the most common forecasts
were for stable or uncertainty trajectories (Fig 8B). While the percent of decreasing forecasts for
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Fig 6. Forecast accuracy over time, aggregated by geographic units, forecast horizon, and prediction date. Panels
A-C show average Weighted Interval Score (WIS); panels D-F show 95% prediction interval coverage. The black,
dashed vertical line in all panels shows the date that public communication of the case forecasts was paused. The black,
dashed horizontal line in panels D-F shows nominal 95% prediction interval coverage. National level forecasts are
presented in A and D, state/territory/DC forecasts in B and E and large county forecasts in C and F.

https://doi.org/10.1371/journal.pcbi.1011200.9006

the decreasing epidemic phase was high, forecasts often predicted declines for the nadir as well
and some teams also frequently predicted decreases for the increasing phase (Fig 8C).

To examine whether our results were affected by reporting anomalies, we also conducted
sensitivity analyses for data revisions, when data were revised at a later date, and for outlier
data points, when reported cases were outside of weekly expected ranges (see S2 Appendix).
We first identified weeks in which revised case counts as of April 2, 2022, differed from the
case counts initially reported for that week, excluded them from the dataset, and reran the
GEE models. With this partial dataset, the results were essentially unchanged. Next, we identi-
fied outliers as reported case counts outside of the expected range by at least two of the three
following algorithms: a rolling median, a seasonal trend decomposition, and a seasonal trend
decomposition without a seasonality term, each method over a 21-day window. Approximately
3% of weeks (686 of 27,489 total week-location combinations in the analysis period) had at
least one day of reported cases identified as an outlier. We then excluded the weeks with outli-
ers and the week following an outlier and reran the GEE models. This sensitivity analysis had
comparable results to the models with the full data (see Fig C in S2 Appendix, Panel 1).

Discussion

We evaluated performance of 9.7 million COVID-19 case forecasts at multiple geospatial scales
in the US over approximately a year and a half. Real-time analyses and those presented here
revealed important limitations in these forecasts. Forecast prediction intervals were largely
over-confident, that is, prediction interval coverage was lower than the nominal value, particu-
larly when case numbers were changing rapidly and forecasts could have been most useful.
Few team forecasts outperformed a relatively simple and minimally informative baseline
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https://doi.org/10.1371/journal.pchi.1011200.9007

model. Forecast skill degraded for smaller geographic scales where forecasts could potentially
be most useful. Forecast skill was also lowest when case counts were changing the most, in
phases of increasing or decreasing transmission. These limitations of case forecasts indicate
key areas for improvement and important reasons to use case forecasts with caution.

Several technical challenges for forecasts were evident in these analyses. First, cases are a
relatively early indicator of transmission, with no clear leading signal in traditional public
health surveillance data (e.g., unlike for death forecasts, where case counts themselves can
provide information for predicting future deaths). While non-traditional data sources may
provide a useful predecessor to changing population case counts, the evidence from previ-
ous work is unclear. For example, internet searches, medical claims, and online surveys
have been used to modestly improve case forecast accuracy relative to models without those
data [17]. Estimating case counts using both wastewater and clinical surveillance data has
shown mixed results [18-21]. Additional integration of temporal dynamics could also be
helpful. The case forecasts analyzed here were developed and evaluated based on the date
when cases were reported, not when individuals were infected, became ill, sought care, or
were tested. Additional detail on those dates could enable models to better capture the cur-
rent dynamics using nowcasting approaches giving earlier signals of change.
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Second, and likely related to the challenge of cases being an early indicator, the models had
substantial variation in skill between epidemic phases and between states. The baseline model
performed relatively well in times of peaks and worse in nadirs because of relatively high uncer-
tainty and in increasing and decreasing phases because it forecasted a flat trend. Comparing rel-
ative skill of forecasts in different phases with the mean baseline performance across all phases,
we found that forecast skill was worst for the increasing phase followed by the decreasing phase
for most teams. Classifying forecasted trajectories based on at least a 75% chance of increase or
decrease, we found that a minority of forecasts for increasing and decreasing epidemic phases,
had confident predictions of the trajectory and forecasts for peaks and nadirs were more likely
to be increasing and decreasing forecasts, respectively. Teams generally underpredicted cases in
the increasing phase and overpredicted in the decreasing phase. Underprediction also carried
into the peak forecasts for most teams, although several teams overpredicted peaks. In many of
the periods with high WIS (e.g., the 2020-2021 winter, Delta, and Omicron waves), the COV-
IDhub ensemble and other teams predicted possible or probable increases or decreases, but not
at the rate that occurred. This effect may be even stronger than our results show as they rely on
a comparison to the baseline which, by definition, does not predict change. While epidemic
phase is unknown in real-time, it too can be estimated, and these results and others suggest that
accounting for epidemic phase when making predictions could improve the forecast skill of
ensemble models [22,23]. Additional data, as discussed above, or model components associated
with distinct phases could also help improve predictive capabilities. Seasonal changes in trans-
mission biology and human behavior, emergence of variants, and changing mitigation behavior
all contribute to transmission dynamics. While some forecasting models incorporate seasonality
and variants, only three models included some version of short-term behavior change and char-
acterizing the interaction between behavior and transmission has lagged [24-26]. Nevertheless,
even with the benefit of additional data, it is challenging to build transmission models that can
capture all of the rapid change-points in cases, which were one of the foremost leading indica-
tors. Ensemble approaches offer another opportunity to mitigate phase-specific differences.
Team modeling skill across phases was highly heterogeneous, but two ensemble approaches
were better than the baseline in all phases.
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Another challenge across most forecasts was overconfidence, a pattern seen with other
infectious disease forecasts [4,16]. The baseline model predicted a flat trend, yet it outper-
formed most team forecasts in the increasing and decreasing phase only because its predictions
had higher uncertainty around that flat trend. The COVIDhub ensemble performance, on the
other hand, benefitted by combining uncertainty across multiple models, yet, like the constitu-
ent models, also exhibited overconfidence. The temporal and phase-specific analyses suggest
that it is, during rapid increases and decreases, that model overconfidence was most pro-
nounced. Previous infectious disease forecasting work has shown that ensembles tend to have
wider prediction intervals that are more likely to capture the eventually reported outcome and
thus reduce overconfidence compared to their constituent models [4,16]. Wider prediction
intervals, reflecting increased uncertainty, can mediate some impacts of overconfidence. How-
ever, forecasts would be most useful if they were both reliable and informative - that is, if they
could accurately capture the uncertainty, while also providing more precise estimates, rather
than merely increased uncertainty [27,28].

Finally, while forecasts would be most actionable at local scales, performance was generally
worse for smaller than larger jurisdictions. Other infectious disease forecasting systems have
found better forecast skill at smaller geographic scales, likely because local transmission
dynamics (e.g., a county) are a better predictor of local than aggregate transmission (e.g., a
state) [29]. We compared WIS across scales by comparison to the baseline model to adjust for
missing forecasts and for WIS scaling relative to the magnitude of observed outcomes. After
those adjustments, population size had a clear association with forecast skill, likely reflecting
the relative role of stochastic dynamics. For better local forecasts, models may need to explic-
itly account for stochasticity. Forecasts could also be improved by better leveraging spatial
information, such as dynamics in neighboring counties or nearest urban centers. Many of the
forecasts here, including the top-performing ones, showed possible indications of spatial cor-
relation in state-level performance, suggesting that spatial dynamics may not be accounted for
fully. Local forecasts remain a key public health need, as local forecasts are more likely to
reflect local conditions and motivate local mitigation action.

Opverall, these findings, as well as the real-time evaluations, indicated that COVID-19 case
forecasts were not reliable as a single indicator for pandemic response of a novel pathogen.
Similar to other forecasting studies, we found that the ensemble was among the most reliable
forecasts [3,4,16,30], outperformed only by LNQ-ens1 across the metrics evaluated here. Thus,
while the overall best forecasts had poor performance at key times, other forecasts were often
even worse at these same time points. Weighted (or trained) ensembles offer another potential
avenue for improvement [31-33], but the version implemented here did not outperform the
simple, median ensemble, likely reflecting limited historical data [34] and variation in team
forecast submissions [35,36].

While COVID-19 deaths are a more lagging indicator of infections than case reports, and
so may be less useful as an input to public health decision making, forecasts of deaths generally
showed better forecast skill (e.g., most team death forecasts outperformed the baseline, ensem-
ble rWIS was lower, and ensemble interval coverage was higher) [16]. Similarly, COVID-19
hospitalization forecasts in France have also shown high forecast skill [37]. Better performing
US death and French hospitalization forecasts share one factor in common: models generally
used local case reports as an input to inform their forecasts. While public health decision mak-
ing should not rely on case forecasts alone, they may still be helpful in the context of other
important indicators, such as the case, hospitalizations, and death data. Nowcasts and real-
time estimates of the effective reproductive number can also provide insight into current
dynamics [38-41]. Together, a suite of indicators is more informative for outbreak response
than a leading indicator alone.
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The analysis presented here includes important findings about real-time applied forecasting
in an emerging pandemic to inform pandemic response rather than to address specific
research aims of improving predictions. First and foremost, due to the submitted format of the
forecasts and the overall goal of soliciting diverse models, our analysis was limited to WIS and
prediction interval coverage. Other proper scoring metrics with different characteristics have
been used in other challenges and may provide different insights [42-44]. Second, several fac-
tors limit the strength of our findings and ability to understand underlying mechanisms of pre-
dictive performance. Notably, we compared the forecasts to a changing record of reported
cases. Throughout the COVID-19 outbreak, cases have been reported with jurisdiction- and
time-varying delays and have been revised over time, resulting in varying forecast targets. In
addition, the definition of a reported COVID-19 case also changed over time and varied
between states. These changes were a result of many factors, including laboratory capacity and
implementation of home-based testing, and may have affected forecast skill in other ways. Our
sensitivity analyses found no qualitative differences in our main findings when we excluded
forecasts for time points with revised data or when we excluded outlier data points. Neverthe-
less, forecasting teams were greatly impacted by the evolving landscape of COVID-19 case sur-
veillance. More timely and consistent reports likely would improve both the process of making
forecasts and forecast skill.

The overall goal of the COVID-19 Forecast Hub was to provide forecasts in near real-time
for decision making. While the collaborative efforts of the Hub achieved this goal despite a
changing epidemic landscape, nevertheless, the open nature of COVID-19 forecasting also
limits understanding the drivers of forecast performance. Many teams participated at different
times, some intermittently, and provided varied and limited descriptions of their forecast
methods. While we were able to adjust our evaluation for differences in varying submissions,
we are unable to assess the underlying impact of modeling approaches on performance since
we do not have the granular details on forecast methods and how they evolved over time for all
team forecasts. For example, the LNQ-ensl, which outperformed all other forecasts by most
metrics, only submitted forecasts for approximately two-thirds of the analysis period and
stopped in June 2021 (prior to the Delta wave). The model is described as a combination of
three machine learning models, leveraging other embedded models and datasets, with weights
that “are chosen by hand each week based on performance in the previous week” (see LNQ-
ens] metadata, https://github.com/reichlab/covid19-forecast-hub/blob/b12f916abc859bf59ea
584b64f53afc2982042fd/data-processed/LNQ-ensl/metadata-LNQ-ensl.txt, at [45]). The
ensemble approach used in the LNQ-ens1 model building likely contributed to the overall per-
formance. However, several other ensemble models had lower performance than the LNQ-
ensl model; we are unable to assess whether LNQ-ensl1 performance gains were due to a par-
ticular component model or dataset, the hand weighting procedure, or something else. The
brief descriptions submitted to the COVID-19 Forecast Hub, such as for the LNQ-ens1, must
include a summary of the methods used and may indicate a variety of unique features such as
input data, parameters, model fitting, etc. [45]. However, the level of detail provided in these
descriptions varies between teams, and we do not have enough information to determine
which aspects of individual models were important determinants of forecast performance. To
elucidate associations between modeling approaches and forecast skill, additional research is
needed. Future work to support improved forecasting will require assessing the impact of spe-
cific features (e.g., through ablation analyses) using retrospective, stable data systems and ret-
rospective evaluation of the full forecasting process (e.g., from data wrangling to final forecast
production).

Infectious disease forecasting continues to present many challenges and opportunities for
improving outbreak response. Forecasts should be leading indicators of future activity. While
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the COVID-19 case ensemble forecasts were good leading indicators at many points in time,
they were highly variable across teams and unreliable at longer horizons and during periods of
rapid change. Case data were integrated in COVID-19 mortality forecasts, which proved to be
more reliable, likely in part due to reported cases being leading indicators of reported deaths
[15,46]. However, because deaths are a lagging indicator, death forecasts are less useful for
short-term outbreak responses. Evaluation of the case forecasts provided insight on limitations
of early forecasts and research avenues for improving them. These insights and the real-time
forecasts provided by this effort were the product of large-scale collaboration between
researchers and public health responders to confront the COVID-19 pandemic. Learning from
and improving forecasting for COVID-19, other infectious diseases, and future pandemics will
benefit from continuing and expanding these collaborative efforts.

Methods

The US COVID-19 Forecast Hub [47] is a consortium of researchers that develop and share
forecasts of COVID-19 reported cases, hospitalizations, and deaths with the goal of leveraging
information from individual models that predict the near-term burden of COVID-19 in the
United States. Teams that submitted models to the US COVID-19 Forecast Hub used a wide
variety of methodologies and data (Table A in S1 Appendix). Beyond serving as a repository
for forecasts, submitted data were also aggregated by scientists at the COVID-19 Forecast Hub
to generate two models that we included in this analysis: the COVIDhub-4_week_ensemble
and the COVIDhub-trained_ensemble. Since the beginning of the COVID-19 Forecast Hub,
the quantile predictions from each week’s submitted models were used as input data for the
COVIDhub-4_week_ensemble. Ensemble aggregation methods evolved over time; for this
analysis period, the ensemble forecast was calculated as the median across forecasts from all
models at each quantile level. Additionally, beginning on February 1, 2021, the COVID-19
Forecast Hub also generated a weighted ensemble (COVIDhub-trained_ensemble). Models
were selected for weighted ensemble inclusion based on their past performance over various
window periods and given a weight prior to aggregation. The methodology evolved over time
and details are available on the model’s metadata file on the COVID-19 Forecast Hub GitHub
repository (see Data and code availability and reporting guidelines).

The COVID-19 Forecast Hub, and death forecasts submitted to the Hub have been
described in detail elsewhere [8,15,16]. The Hub’s incident COVID-19 case forecasts, which
were first solicited in July 2020, have similar submission requirements to the death forecasts.
Important differences include an expanded geographical scale (national; state, territory, and
DC; and county levels) and reduced number of required quantiles in the probability distribu-
tion (7 quantiles in total: 0.025, 0.10, 0.25, 0.50, 0.75, 0.90, and 0.975). Predictions for weekly
incident COVID-19 cases can be submitted for up to 8 weeks in the future, although our analy-
sis only includes predictions made for 1-4 weeks into the future.

We evaluated submitted forecasts between July 28, 2020, and December 21, 2021 (2020 epi
week [EW] 31-2021 EW 51), which encompasses 74 weeks. Because forecasts were submitted at
multiple geographic scales, we conducted separate analyses for 1) national forecasts, 2) state, ter-
ritory, and DC forecasts, 3) county forecasts, and 4) sets of team forecasts for all three geo-
graphic scales. When appropriate, we compared forecast performance to that of a naive model,
created by the COVID-19 Forecast Hub, the COVIDhub-baseline. The COVIDhub-baseline
model, created each week, was designed to be a neutral model to provide a simple reference
point of comparison for all models. This baseline model forecasts a predictive median incidence
equal to the number of reported cases in the most recent week, with uncertainty based on the
empirical distribution of previous differences between the median and observed values [16].
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Inclusion criteria

Teams were included in the evaluation when they submitted forecasts with a complete set of
quantiles for each 1- through 4-week ahead target predictions. Additionally, teams must have
met the following inclusion criteria:

1. had predictions for at least 50 locations (states, territories, or DC) for the state, territory,
and DC level analyses; and for at least 75% of counties included in each population size
quintile per submission week for the county-level analyses;

2. had submissions for at least 50% of the weeks included in the analysis period per location
forecasted.

Application of these inclusion criteria provided a more comparable set of forecasts for scor-
ing with the attempt to reduce biased scores if teams only forecasted for a limited number of
locations or number weeks. Teams meeting these inclusion criteria, and their submissions
over time, are depicted in Figs A and B in S1 Appendix.

Ground truth

Forecasts were evaluated against the reported COVID-19 case reports collated by the Johns
Hopkins Center for Systems Science and Engineering (CSSE) [48]. To calculate weekly inci-
dent reported cases, we subtracted the cumulative count for each Saturday from the cumula-
tive count for the next Saturday, such that each incident weekly count reflects the number of
cases reported from Sunday through Saturday in a given week. We aggregated reported counts
from smaller geographic units into their larger unit. For example, counts in a given state are
the aggregate of the county-level reported counts and national counts are the sum of all states,
territories, and DC.

CSSE reports data in real-time. Thus, data may be revised if the reporting health system
makes public updates to its surveillance data. At times, such revisions may result in negative
daily counts or in increases to case counts if the date of cases is shifted from one day to another
or the definition of a reportable case is changed. We examined the percent change between the
first reported cases in each state, DC, and territory per date relative to the counts in the surveil-
lance file from April 2, 2022. We also assessed the influence of revised data on the final model
outcomes (see S2 Appendix) and the presence of negative case counts in the timeseries. Less
than 1 percent of time points in the analysis period had negative daily case counts in the largest
US counties. Negative counts were observed at the state/territory level only twice: in Missouri
during the week of April 17, 2021, and Virgin Islands during the week ending October 10,
2020. The state of Florida reported 0 cases on November 27, 2021. We excluded all weeks and
locations with negative counts as well as the week with 0 incidence in Florida in our primary
analyses.

Additionally, we also examined whether a reported case count was an outlier in the case
trend for each state. Anomalies in case data trends have not been uncommon throughout the
pandemic, as reporting entities have uploaded large batches of surveillance data on a single
day. To assess whether cases were outside of the expected range of reported cases over time, we
applied three outlier detection algorithms, each with a 21-day window: a rolling median, a sea-
sonal trend decomposition, and a seasonal trend decomposition without a seasonality term.
We then classified a given count as an outlier if it was detected as such by at least two of the
three algorithms. Using these data, we ran several sensitivity analyses to assess the likely impact
of anomalous data points on model performance. Sensitivity analyses examining the robust-
ness of our findings to reporting anomalies are presented in S2 Appendix.
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Additional information about the CSSE data, and revisions to the dataset, is publicly avail-
able on a GitHub repository:
https://github.com/CSSEGISandData/ COVID-19/tree/master/csse_covid_19_data.

Forecast locations

Forecasts for incident cases were submitted for the national level, 50 states, 5 territories (Ameri-
can Samoa, Guam, the Northern Mariana Islands, Puerto Rico, and the US Virgin Islands), the
DC, and 3,142 US counties. We excluded two relatively new (2019) counties in Alaska (Federal
Information Processing Standard code 02063 and 02066) because they were not included by
most teams. Because fewer teams submitted forecasts for American Samoa, Guam, the Northern
Mariana Islands, we excluded these territories from the analysis. Some teams treated DC as
both a county and a jurisdiction, so we excluded DC from the county forecasts. In addition,
because county population size and transmission are correlated and case counts and forecast
performance are also correlated, we grouped counties into 5 quintiles based on their population
sizes, with cut points at 8,908; 18,662; 36,742; and 93,230 people; most analyses used forecasts
from the quintile with the largest population size (n = 628). We hypothesized that small counties
would be more likely to have better forecast accuracy because they had zero or very few reported
cases. We thus chose to stratify counties by size to minimize any bias from aggregation. Perfor-
mance results for most county forecasts are presented in S3 Appendix, and state-level spatial
correlation is presented in S4 Appendix.

Defining epidemic phases

For every state and DC, we independently classified each forecast week based on the estimated
time-varying reproduction number (R;) for that given week. State-level R, estimates were
obtained from https://github.com/epiforecasts/covid-rt-estimates [49]. We extracted the R,
estimate for the Wednesday of each week from all available files. Because R, estimates were
updated on a rolling basis in near real-time, there were multiple estimates generated for the
same date; we calculated the median estimated R, per date for the upper and lower 90% credi-
ble interval and the median value (August 1, 2020 -January 15, 2022, or 2020 EW 31-2022 EW
2, reflecting 77 weeks in total). Each forecast week was then classified into one of the following
categories based on the R, estimates: increasing, peak, decreasing, and nadir.

Increasing and decreasing phases reflect weeks in which R; had a 90% probability of being
greater than or less than 1.0, respectively. There were several periods of rapid transmission in
certain jurisdictions where R; dipped above/below the 1.0 threshold but did not remain on an
upward or downward trajectory. Thus, we classified weeks between two increasing phases as
increasing and weeks between two decreasing periods as decreasing. Weeks between increasing
and decreasing phases were classified as peaks, whereas nadirs were defined as periods between
decreasing and increasing phases. Periods at the beginning or the end of an analysis period
were classified as a continuation of whichever phase preceded or followed them. The propor-
tion of weeks classified as each epidemic phase and graphical depictions of R; are provided in
S5 Appendix. The proportion of weeks suggests non-stable Rt trajectories in most locations
and there is general concordance between R, and reported cases.

Evaluation methodology

We evaluated probabilistic forecast accuracy using two different metrics, empirical prediction
interval coverage rates and weighted interval scores (WIS) [43]. Coverage was calculated by
determining the frequency with which the prediction interval contained the eventually
observed outcome for the 50%, 80% and 95% intervals. WIS reflects a weighted estimate of
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sharpness (i.e., the range of the predicted interval) and calibration (i.e., precision or error)
across the three prediction intervals and the median prediction, with higher WIS and indicat-
ing lower forecast skill. WIS also integrates measures of overprediction and underprediction,
that is, the difference in the observed value and the lower or upper limit of the prediction inter-
val. Importantly, WIS is highly correlated with the magnitude of observed and forecasted val-
ues. We used mean absolute WIS to assess forecast accuracy over time and mean relative WIS
(rWIS) to assess forecast accuracy over space. Relative WIS was estimated by calculating the
geometric mean of WIS across all sets of team forecasts and scaling that value to the WIS of a
naive model, the COVID-hub baseline. This approach eases interpretation, where values
greater than 1.0 reflected worse accuracy than the baseline model and values below 1.0
reflected better model performance. Additionally, the pairwise relative comparison helps
account for missing forecasts. Both coverage and WIS have been described in detail elsewhere
[16,43]. Horizon-specific results for national, state/territory/DC, and large counties are pre-
sented in S6 Appendix.

To assess the association between WIS and epidemic phase for each team, we fitted separate
Gaussian generalized estimating equation (GEE) models per team (Eq 1) with an independent
working correlation structure at the state level. This structure assumes that observations are
correlated within a state (denoted as / in the equations below), but not correlated over time in
said state. Cases and weighted interval scores were log transformed and then standardized
(subtracting the mean and dividing by the standard deviation) prior to fitting the model, as
this transformation yielded more computationally and numerically stable estimates. We define
those resulting variables as stdWIS and stdCases. The expected value for a standardized WIS
for time (¢) and location (1), with forecasts from a given team’s model, is as follows:

log(stdWIS,‘l‘h) =p,+ R T ns(log(stdCasest_’,_’h)) +&, (1)

Where p[t,]] is an index that reflects the phase of each time (#) and location (J), A is the hori-
zon of the forecast in weeks, and ns(-) represents a natural spline with two degrees of freedom.
The model intercept is represented by B, and error by €, ;. Using a regression model allows us
to summarize patterns of overall average performance between teams while accounting for
high correlation and variation in the scores. Comparisons of rWIS, in contrast, do not allow
for formal inference with statistical hypothesis testing or interval-based inference. Prior to
applying this regression model structure, our model building approach included exploratory
analysis of several structures appropriate for longitudinal analysis. We examined model residu-
als, influential observations, goodness of fit metrics, and the impact of changing the functional
form of the variables included in the model.

The inclusion of reported cases in models permitted flexible adjustment for the wide range
in cases between and within jurisdictions, which led to a wide range of possible WIS values, as
WIS values tend to be higher when counts are higher. Expected WIS values were computed by
first obtaining a marginal mean from the GEE model and then undoing the transformations
by exponentiating and un-standardizing the marginal mean. This was done separately for each
team for all phases and for each team and each phase individually (see S7 Appendix for esti-
mated team-specific marginal mean WIS relative to reported case counts). Additionally, we
calculated whether the 80% confidence interval (based on Gaussian distributional assump-
tions) for each team’s expected WIS outcome (on the log-scale and normalized, as described
above) was less than the average baseline model across all phases (i.e., the marginal mean WIS
for the baseline model).

To determine the direction of the forecast predictions, each model’s 50% PI was compared
to the last known incidence value. Forecasts were categorized as increasing predictions when
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the lower limit of their 50% PI was greater than the last known value, decreasing predictions
when the upper limit of their 50% PI was less than the last known value, and stable/uncertain if
their 50% PI contained the last known value.

All analyses were conducted using the R language for statistical computing (v 4.0.3) (50),
and the following packages were used for the main analyses: scoringutils (44), covidhubUtils
(51), geepack (52). Additionally, we included the EPIFORGE 2020 reporting guideline check-
list in S8 Appendix to indicate each page in this evaluation that corresponds to each specific
recommendation (13).

This activity was reviewed by the CDC and was conducted consistent with applicable fed-
eral law and CDC policy. See e.g., 45 C.F.R. part 46, 21 C.F.R. part 56; 42 U.S.C. §241(d); 5 U.S.
C. §552a; 44 U.S.C. §3501 et seq.

CDC disclaimer: The findings and conclusions in this report are those of the authors and
do not necessarily represent the official position of the Centers for Disease Control and
Prevention.

Supporting information

S1 Appendix. Team submissions, methods, and data. Fig A and B. Forecasts submitted over
time at the national, state-territory-DC level in Fig A and at the county scale in Fig B. The
number of forecasted locations submitted each week nationally or at the state, territory and
DC level is included, while the county level forecast submissions show the percent of counties
per quantile that were submitted each week. Sets of team forecasts meeting the inclusion crite-
ria for this main analysis are labeled with an asterisk (*). Table A. List of models evaluated,
including sources for case, hospitalization, death, demographic, and mobility data when used
as inputs for the given model. We evaluated 26 models contributed by 24 teams. The COVID-
hub team submitted three models including the baseline model and the ensemble model. A
brief description is included for each model, with a reference where available. The last column
indicates whether the model made assumptions about how and whether social distancing mea-
sures were assumed to change during the period for which forecasts were made.

(DOCX)

S2 Appendix. Revision and outlier sensitivity analyses. Fig A. To assess the influence of data
revisions on our evaluation of forecast skill, we compared daily differences in cumulative
reported cases during the week they were first reported to reported case counts for the same
week in the complete data as of April 2, 2022. In total 721 weeks had at least one day with a
revised case count (17% of all weeks, n = 4,241 weeks) and revisions occurred in 43 of 51 juris-
dictions. These jurisdiction specific plots compare cases reported as of the date in the subtitle
(in red) compared to cases reported as of April 2, 2022 (in black). Fig B. After identifying
weeks with revised case counts, we then excluded them from the dataset and reran the GEE
models and estimated the marginal mean Weighted Interval Score (WIS). Panel 1 shows the
estimated marginal mean WIS and 95% confidence intervals for mean cases from team-spe-
cific GEE models for all 48 jurisdictions from this sensitivity analysis. The 95% confidence
intervals for the COVIDhub-baseline model are shown in dashed red vertical lines. Panel 2
presents each team’s estimated marginal mean WIS per phase, scaled to the COVIDhub-base-
line model’s estimated marginal mean WIS for all epidemic phases, using the dataset with
excluded weeks. Teams with higher estimated marginal mean WIS values (i.e., greater than
1.0) are presented in shades of orange while teams with lower estimated marginal mean WIS
(i.e., less than 1.0) are shown in shades of green. Team forecasts are denoted with an asterisk
(*) if the 80% confidence interval of the expected WIS outcome (normalized and on the log
scale) was estimated by a model to be lower than the average expected WIS of the COVIDhub-
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baseline model across all phases. Fig C. Outliers were defined as non-revised reported case
counts that were outside of the expected range by at least two of the three algorithms: a rolling
median, a seasonal trend decomposition, and a seasonal trend decomposition without a sea-
sonality term. Each method used a 21-day window. Approximately three percent of weeks
(686 of 27,489 total weeks in the analysis period) had at least one day of reported cases identi-
fied as an outlier.

(PDF)

S$3 Appendix. Incident COVID-19 case forecasts were submitted for all US counties. The
plots shown here depicted average, scaled pairwise Weighted Interval Score (WIS; see Methods
for description), 95% coverage, and submissions (Fig A), average 50%, 80% and 95% coverage
for eligible submitted forecasts (Fig B), and average WIS and 95% coverage over time (Fig C).
Each Fig shows spatial disaggregated results, with increasing population size and quintile num-
bers. For example, counties with the smallest population are grouped in Quintile 1 and the
largest population sizes are grouped in Quintile 5. The following teams are included in these
Figs: CEID-Walk, LNQ-ensl, Microsoft DeepSTIA, COVIDhub-4_week_ensemble, COVID-
hub-trained_ensemble, COVIDhub-baseline, CU-select, FAIR-NRAR, FRBSF_Wilson-Econo-
metric, lowasStateLW-STEM, JHU_IDD-CovidSP, JHU_CSSE-DECOM, JHUAPL-Bucky,
LANL-GrowthRate, LNQ-esnl, UVA-Ensemble. Fig A. Percent of weeks with complete sub-
missions for all sets of team forecasts, scaled, pairwise relative Weighted Interval Score (rWIS),
95% coverage, and by geographical scale of submitted forecasts. Teams are sorted by increasing
rWIS values. Fig B. Expected and observed coverage rates aggregated over time and horizon
for county forecasts. The dashed line represents optimal expected coverage. Team forecasts
that outperformed the COVIDhub-4_week_ensemble model at all coverage levels are labeled
on the right hand side of the plots. Fig C. Mean Weighted Interval Score (WIS) over time,
aggregated by geographic units and forecast horizon in A and 95% coverage over time, aggre-
gated by geographic units and forecast horizon in B. The black, dashed vertical line in all pan-
els shows the date that public communication of the case forecasts was paused. The black,
dashed horizontal line in panels B show nominal 95% interval coverage.

(DOCX)

S4 Appendix. Spatial correlation of forecast performance. Fig A. Moran’s I for each team’s

state-level relative Weighted Interval Score in the contiguous United States.
(DOCX)

S5 Appendix. Proportion of weeks in each classified epidemic phase (Fig A), and the esti-
mated time-varying reproduction number and epidemic phase classifications (Fig B). Fig A.
The proportion of weeks in each classified epidemic phase per state. Fig B. For each state, the
top panel shows the median R; and median upper and lower 90% credible interval over time in
red. The bottom panel shows reported case counts over time. Both plots have vertical bands
representing the epidemic phase of each forecast week: increasing, peak, decreasing, nadir.
(PDF)

S6 Appendix. Each location specific forecast submitted to the COVID19 Forecast Hub
included at least 4 weeks of future predictions. Here, we present disaggregated 1 and 4 week
ahead predictions of model performance for each team model that submitted national and
state/territory/DC forecasts and were included in the main analyses. Specific plots include the
average 50%, 80% and 95% coverage for eligible submitted forecasts (Fig A), average absolute
Weighted Interval Score (WIS) and 95% coverage over time (Fig B), and scaled, pairwise riWIS
by location (Fig C) Fig A. Expected and observed coverage rates aggregated for 1 and 4 week
ahead forecasts over time for national forecasts in 1, state/territory/DC forecasts in 2, the
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largest county forecasts in 3. The dashed line represents optimal expected coverage. Teams
that outperformed the COVIDhub-4_week_ensemble model at all coverage levels are labeled
on the right-hand side of the plots. Fig B. Mean Weighted Interval Score (WIS) over time for 1
and 4 week ahead forecasts, aggregated by geographic units, and 95% coverage over time for 1
and 4 week ahead forecasts, aggregated by geographic units. The black, dashed vertical line in
all panels shows the date that public communication of the case forecasts was paused. The
black, dashed horizontal line in panels 3, 4, and 5 shows nominal 95% interval coverage.
Teams that submitted national forecasts are presented in 1 and 4, state/territory/DC forecasts
presented in 2 and 5, and teams that submitted large county forecasts are presented in 3 and 6.
Fig C. Scaled, pairwise relative Weighted Interval Score (rWIS; see Methods for description)
for all teams that submitted national and state/territory/DC forecasts by location for 1 and 4
week ahead horizon. National estimates are displayed first, followed by jurisdictions in alpha-
betical order. Teams are displayed by decreasing average rWIS across all forecast horizons and
locations.

(DOCX)

S7 Appendix. Phase- specific marginal mean Weighted Interval Score (WIS) over range of
reported cases. Fig A. Each team model’s estimated marginal mean Weighted Interval Score
(WIS) over a range of reported case counts per epidemic phase. Marginal mean WIS was esti-
mated from GEE model results and reflects values across the 95% confidence interval of mean
reported cases. Case counts differ per team model as each team forecasted a different set of
locations over a different range of possible dates.

(DOCX)

S8 Appendix. EPIFORGE 2020 guidelines outline 19 recommended reporting items for
epidemic forecasting and prediction research (13). These items are included in the checklist
below, which also includes the page number where each item is described or presented within
this evaluation.
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