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Abstract
This paper proposes two sequential metamodel-based methods for level-set
estimation (LSE) that leverage the uniform bound built on stochastic kriging:
predictive variance reduction (PVR) and expected classification improvement
(ECI). We show that PVR and ECI possess desirable theoretical performance
guarantees and provide closed-form expressions for their respective sequen-
tial sampling criteria to seek the next design point for performing simulation
runs, allowing computationally efficient one-iteration look-ahead updates. To
enhance understanding, we reveal the connection between PVR and ECI’s
sequential sampling criteria. Additionally, we propose integrating a budget allo-
cation feature with PVR and ECI, which improves computational efficiency and
potentially enhances robustness to the impacts of heteroscedasticity. Numer-
ical studies demonstrate the superior performance of the proposed methods
compared to state-of-the-art benchmarking approaches when given a fixed
simulation budget, highlighting their effectiveness in addressing LSE problems.
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1 INTRODUCTION

Many scientific and engineering applications require
determining, through simulation, which system designs
have superior (or inferior) performance to a predefined
threshold. Such problems range from environmental
science [9], biology [20], financial engineering [26] to
operations management [35]. Consider the following two
concrete examples.

• Service center design: Various agent allocation config-
urations have been proposed for a single queueing net-
work. However, only alternatives with a mean waiting
time below a certain threshold are considered accept-
able.

• Supply chain management: A company is uncertain
about the market and operations conditions that their

inventory system will face in the upcoming months.
Managers want to determine which ordering policies
can keep the average total cost incurred per period
below a specified level. They intend to utilize a sim-
ulation model of the inventory system to address this
inquiry.

Stochastic simulation is widely used to evaluate com-
plex system performance. However, running a stochastic
simulation model can be expensive, especially when com-
paring numerous alternative system designs. Additionally,
simulation outputs are inherently subject to heteroscedas-
ticity, where the noise variance varies across the input
space. In such cases, a reasonable algorithm may need to
resample at the same input point multiple times (i.e., run
the simulation model for multiple independent simula-
tion replications at the same alternative) to obtain a more
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accurate estimate of the system performance. Therefore,
there is a need for intelligent allocation of the simulation
budget.

1.1 Relation to existing methods

In the literature, the problems of interest in this work are
often referred to as level-set estimation (LSE), multiple
comparisons with a known standard (MCS), or feasibility
detection (FD) problems. For simplicity, we will refer to
them as LSE hereinafter.

Existing work on LSE in the stochastic simulation lit-
erature primarily focuses on developing model-free, effi-
cient sampling procedures. These methods aim to allo-
cate the simulation budget among the alternatives to sup-
port an accurate estimation of the corresponding system
performance, thereby facilitating accurate determination
relative to the given threshold. From a frequentist per-
spective, two-stage [4, 28] and fully sequential proce-
dures [22, 29] have been developed; these methods do not
assume a fixed sampling budget and intend to achieve
a given LSE accuracy with a prescribed statistical guar-
antee. Moreover, asymptotically optimal sampling proce-
dures are investigated which maximize the large deviation
rate for LSE with no finite-time performance guarantee
[37]. LSE has also been explored from a Bayesian per-
spective. For instance, Bayes-optimal sequential sampling
policies are derived using methods frommulti-armed ban-
dits and optimal stopping [44]. A myopic allocation proce-
dure is proposed for sequentially allocating the sampling
budget to the input point thatmaximizes the posterior per-
formance gain for LSE [38]. The dynamic finite-budget
allocation rule (FAR) is a state-of-the-art LSE method
that achieves not only desirable finite budget properties
but also asymptotic optimality for maximizing the pos-
terior performance [35]. However, all the aforementioned
model-free sampling methods can only efficiently handle
LSE problems where the number of alternatives is not large.

When a stochastic model is computationally expensive
to run, and there are numerous input points (alterna-
tives) to assess, a metamodel (or a surrogate model)
can be an effective substitute for the simulation model,
allowing the simulation to be virtually run “on demand”
to support real-time decision-making processes [34].
Metamodels are simplified models that approximate the
underlying input–output relationship implied by the sim-
ulation model of interest. Among various metamodeling
techniques, Gaussian process regression (GPR) is arguably
the most important one. One primary reason for GPR
models’ popularity is that they unite sophisticated and
consistent theoretical investigations with computational
tractability [33].

There has been a substantial body of research focused
on using metamodels to tackle LSE problems. GPR is
a notable approach that offers a probabilistic model of
the target system response function using a GP prior.
Numerous studies have investigatedGPR-based sequential
sampling strategies. These methods utilize the posterior
distribution fromGP to select the next input point or alter-
native for sampling. Some work focuses on developing
variants of the expected improvement criterion originally
proposed for Bayesian optimization (BO) to select the next
input point for addressing LSE problems [6, 31, 32]. Other
studies propose sequential sampling criteria that greed-
ily maximize the reduction in, for example, the stepwise
uncertainty [5], the maximum predictive variance, the
largest classification ambiguity [19], and the truncated
predictive variance [9]. Additionally, some studies propose
criteria that myopically maximize the expected classifica-
tion improvement [45]. Recently, there has been a growing
trend in research aimed at enhancing the robustness and
applicability of LSE approaches by incorporating various
features. For example, some studies have started to con-
sider the impact of input uncertainty on LSE, as seen in
Chevalier et al. and Inatsu et al. [11, 20]. Additionally,
there has been research focusing on the batching selec-
tion of input points, as explored in Lyu et al. and Lyu
and Ludkovski [26, 27]. However, the work mentioned
above assumes that the simulation outputs are noise-free
or subject to homoscedastic noise (i.e., the noise vari-
ance is identical over the input space). To the best of
our knowledge, there has been limited research on develop-
ing metamodel-based approaches to address LSE problems
under heteroscedasticity, which is particularly relevant in the
stochastic simulation setting.

The existingmethods reviewed above typically perform
LSE relative to a given threshold in two ways: using either
point estimates or confidence bounds of the mean sys-
tem performance obtained at individual alternatives/input
points. A majority of existing metamodel-based methods
use classical pointwise confidence bounds to address LSE
at individual input points [45], but some work also adopts
uniform bounds [9, 19]. Decisions made using uniform
bounds tend to be more robust because these bounds are
designed to contain the true system performance at all
input points simultaneously and throughout the sampling
process with a prescribed high probability guarantee.

1.2 Our contributions

In this work, we consider a popular heteroscedastic
GPRmetamodeling approach, stochastic kriging (SK, [3]),
which can accurately approximate the mean function
implied by a stochastic simulation model. We develop
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sequential SK-based procedures for LSE that rely on
a suitable uniform bound for the mean function con-
structed based on SK. This uniform bound can provide
a high-probability confidence bound of the mean func-
tion value at any input point across the input space and
throughout the sequential sampling process. This is the
first attempt to use a uniform bound based on SK to tackle
LSE problems arising in the stochastic simulation setting.
Specifically, we propose two SK-based sequential proce-
dures for LSE that rely on this uniform bound: predic-
tive variance reduction (PVR) and expected classification
improvement (ECI), respectively inspired by Bogunovic
et al. [9] and Zanette et al. [45]. While Bogunovic et al.
adopt some uniform bounds to tackle LSE and BO, they
do not specifically consider heteroscedasticity in the the-
oretical development and the numerical implementation.
On the other hand, Zanette et al. do not adopt uniform
bounds for LSE, nor do they account for the impact of
heteroscedasticity.

The main contributions of this work are summarized
as follows. First, relying on the rigorously established
uniform bound based on SK, we prove that PVR and ECI
possess desirable theoretical performance guarantees for
addressing LSE problems. In particular, we provide a
high-probability lower bound for the number of iterations
PVR takes to achieve a prescribed LSE accuracy level.
Moreover, we show that the maximum LSE error achieved
by ECI is bounded by a given tolerance parameter with a
prescribed high probability. Second, we derive closed-form
expressions for their respective sequential sampling crite-
ria to seek the next design point for performing simulation
runs, allowing computationally efficient one-iteration
look-ahead updates. The criteria for PVR and ECI dif-
ferentiate their form between sampling from an existing
design point and a new one, inherently balancing between
adding more replications at an existing design point and
exploring a new design point to optimize performance
greedily. Additionally, we provide insights into the connec-
tion between PVR and ECI’s sequential sampling criteria,
facilitating a deeper understanding. Lastly, we propose
incorporating a budget allocation feature with PVR and
ECI, enhancing computational efficiency and potentially
increasing robustness to the impacts of heteroscedastic-
ity. Numerical evaluations focus on comparing PVR and
ECI, along with their respective generalizations, with
state-of-the-art LSE methods, demonstrating their supe-
riority in addressing LSE problems when given a fixed
simulation budget.

The remainder of the paper is organized as follows.
Section 2.1 reviews stochastic kriging and auniformbound
for the mean function constructed based on SK. Section 3
details the two proposed LSE methods and their general-
izations. Section 4 provides numerical evaluations of the

proposed methods against state-of-the-art benchmarking
approaches. Section 5 concludes the work.

2 BACKGROUND REVIEW

This section first provides an overview of heteroscedas-
tic simulation metamodeling, with a focus on SK. Then,
we briefly review a uniform bound established based on
SK, which serves as the foundation for the proposed LSE
methods presented in the following section.

2.1 Review of stochastic kriging

Heteroscedastic simulation metamodeling focuses on
using the simulation outputs obtained at a set of design
points to approximate the mean response surface implied
by a stochastic simulation model, where the simula-
tion output variance varies across the input space. Sev-
eral methods have gained considerable attention, which
include, but are not limited to, the Markov chain Monte
Carlo-based fully Bayesian approach [18], the maximum
a posteriori-based GP [21], SK [3], practical heteroscedas-
tic GP modeling [7], and more recently, the variational
inference-based heteroscedasticGPmodeling [39]. Among
them, SK stands out by striking a good balance between
computational efficiency and statistical accuracy. We will
consider SK as the metamodeling tool to tackle LSE in this
work.

Before delving into a brief review of SK, we first intro-
duce the notation system to facilitate the exposition.
Consider a sequential sampling process for running the
simulation model of interest to construct an SK model.
Denote the input space as  ⊂ ℜd. On each iteration (say,
the tth one for t ≥ 1), a design point is selected from  to
perform simulation runs. Since some design points may
be chosen more than once as the iteration proceeds, we
denote the number of distinct design points selected up to
the tth iteration as k(t). Let nt,i denote the total number of
simulation replications allocated to the tth design point up
to the tth iteration, and let t ≔

{
x1, x2, … , xk(t)

}
denote

the design-point set formed by iteration t.
Suppose that the simulation output obtained at design

point xi ∈  on the jth simulation replication can be
described by the following model:

yt,𝑗(xi) = f0(xi) + 𝜀𝑗(xi), 𝑗 = 1, 2, … ,nt,i, (1)

where f0(⋅)denotes the true unknownmean response func-
tion that we intend to estimate and 𝜀𝑗(xi) denotes the
simulation noise or sampling error in the output. Assume
that the simulation noise terms incurred on different
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replications at xi, 𝜀1(xi), 𝜀2(xi), … are independent and
identically distributed (i.i.d.) random variables with zero
mean and variance V(xi), for i = 1, 2, … , k(t), and that
the simulation noise variance function V(⋅) satisfies
supx∈ V(x) < ∞.

Given the simulation outputs generated up to the tth
iteration, we can obtain the average simulation output at
xi based on (1) as

yt(xi) =
1
nt,i

nt,i∑

𝑗=1
yt,𝑗(xi) = f0(xi) + 𝜀(xi),

where 𝜀(xi) = n−1t,i
∑nt,i

𝑗=1𝜀𝑗(xi) denotes the average
simulation noise incurred at design point xi, for
i = 1, 2, … , k(t). Denote the k(t) × 1 vector of average
outputs as yt ≔

(
yt(x1), yt(x2), … , yt

(
xk(t)

))
𝜏 and the

k(t) × 1 vector of the average simulation noise terms as
𝜀t ≔

(
𝜀(x1), 𝜀(x2), … , 𝜀

(
xk(t)

))
𝜏 .

Parallel with the treatment in the standard GP mod-
eling literature [34, 42], SK assumes that the underlying
mean response function f0(⋅) is a sample of a zero-mean
Gaussian process, denoted by f0(⋅) ∼ GP

(
0, 𝜏2K(⋅⋅)

)
, where

𝜏
2
> 0 denotes the process variance and K(⋅, ⋅) is the

kernel function. Specifically, the covariance between the
values of f0 at any two input points x′, x′′ ∈  can be
modeled as

Cov
(
f0
(
x′
)
, f0

(
x′′

))
= 𝜏

2K
(
x′, x′′

)
.

Commonly used kernel functions include the squared
exponential kernel or Gaussian kernel, the Matérn kernel,
etc. [46]. On the tth iteration, SK adopts the following pre-
dictive mean as the point estimator of f0(x) at any given
x ∈  :

𝜇t(x) = K(x,Xt)
(
K(Xt,Xt) + 𝜏

−2Σ𝜀,k(t)
)−1yt, (2)

with the corresponding predictive variance given by

𝜎
2
t (x) = 𝜏

2
(
K(x, x) − K(x,Xt)

(
K(XtXt) + 𝜏

−2Σ𝜀,k(t)
)−1

× K(x,Xt)𝜏
)
, (3)

whereXt ≔
(
xτ1, x

τ
2, … , xτk(t)

)τ
denotes the k(t) × d design

matrix consisting of the k(t) design points accumulated
in t up to iteration t. The 1 × k(t) vector K(x,Xt) ≔(
K(xx1),K(xx2), … ,K

(
xxk(t)

))
contains the correlations

between x and the k(t) design points, and K(Xt,Xt)
denotes the k(t) × k(t)matrix of correlations across the k(t)
design points whose (i, j)th entry is given by K

(
xi, x𝑗

)
,

i, 𝑗 = 1, 2, … , k(t). The k(t) × k(t) matrix Σ𝜀,k(t) represents

the variance–covariance matrix of the average simulation
noise vector 𝜀t. Since the use of common random num-
bers (CRN) does not necessarily help improve the pre-
dictive performance of SK [10], we assume that CRN is
not applied in the simulation experiments in this work.
Hence, Σ𝜀,k(t) reduces to a diagonal matrix, that is, Σ𝜀,k(t) =
diag

(
V(x1)∕nt,1,V(x2)∕nt,2, … ,V

(
xk(t)

)
∕nt,k(t)

)
.

Sequential design strategies for applying SKmetamod-
eling have been extensively studied in the stochastic sim-
ulation setting, primarily focusing on prediction [1] or
optimization tasks [30]. However, there has been limited
research on developing efficient SK-based methods specif-
ically tailored for addressing LSE problems.

2.2 A uniform bound for the mean
function based on stochastic kriging

There exist several methods for constructing a confidence
bound for the unknown mean response function, includ-
ing the classical pointwise confidence interval [34], the
simultaneous confidence region relying on bootstrapping
or the Bonferroni [24] and Šidák corrections [13], and the
uniform confidence bounds derived either using the fre-
quentist kernel methods [23] or from the Bayesian GP
modeling perspective [43]. We adopt the uniform bound
for heteroscedastic metamodeling approaches (including
SK) proposed by Kirschner and Krause [23] which holds
true with a prescribed high probability across the input
space  and through all iterations t ≥ 1. We formally state
the uniform bound and the underlying assumption stipu-
lated next.

Assumption 1. The simulation noise
terms 𝜀1(x), 𝜀2(x), … incurred at x ∈ 

are sub-Gaussian, namely, E
[
exp

(
𝜀𝑗(x)

)]
≤

exp
(
𝜆
2V(x)∕2

)
, for all 𝜆 ∈ ℜ.

We note that Assumption 1 is less restrictive thanmod-
eling the simulation errors as Gaussian random variables,
a commonly adopted assumption in the GP modeling lit-
erature [42]. The class of sub-Gaussian random variables
include Gaussian random variables, any bounded random
variables, any random variables with strongly log-concave
density, etc.

Proposition 1. (Lemma 7 in [23]) Let
𝛿 ∈ (0, 1). Suppose the mean response func-
tion f0 ∈ K , the reproducing kernel Hilbert
space (RKHS) corresponding to kernel K, and
Assumption 1 is fulfilled. Then, the following
uniform error bound holds true with probability
at least 1 − 𝛿 for all k(t) ≥ 1 and any x ∈  :
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|𝜇t(x) − f0(x)|

≤

(√
log

(
|Ik(t)+𝜏2Σ−1

𝜀,k(t)K(XtXt)|
)
−2 log 𝛿+ 𝜏

−1 ∥ f0 ∥K

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≔ 𝛽k(t)

𝜎t(x).

(4)

where Ik(t) denotes the k(t) × k(t) identity
matrix, |A| denotes the determinant of matrix
A, and ∥ f0 ∥K is the RKHS norm.

The uniform error bound in (4) is a direct extension
of Theorem 3.11 in [2]. Its connections to the Bayesian
GP setting is discussed in Kirschner and Krause [23]. For
completeness, we provide the proof of Proposition 1 in
Appendix A.

A uniform bound for the mean response function f0(⋅)
directly follows from Proposition 1. That is, it holds with
probability at least 1 − 𝛿 for all k(t) ≥ 1 and any x ∈  that

lt(x) ≔ 𝜇t(x) − 𝛽k(t)𝜎t(x) ≤ f0(x) ≤ ut(x)
≔ 𝜇t(x) + 𝛽k(t)𝜎t(x). (5)

The uniform bound
[
lt(x),ut(x)

]
covers the unknown

mean function value f0(x) at any x ∈  on any iteration
t with a prescribed high probability at least 1 − 𝛿. There-
fore, any LSE decision made at any input point based
on this uniform bound throughout the sequential sam-
pling process is valid with a prescribed high-probability
guarantee, and tractable analyses of the corresponding
metamodel-based LSE method’s performance follow con-
veniently. We will exploit this uniform bound in devising
the proposed procedures to be detailed in the next section.

3 SEQUENTIAL
METAMODEL-BASED LEVEL-SET
ESTIMATION UNDER
HETEROSCEDASTICITY

This section presents two sequential metamodel-based
LSEmethods suitable for the stochastic simulation setting.
Following the problem setup given in Subsection 3.1, Sub-
sections 3.2 and 3.3 respectively detail the proposed meth-
ods, predictive variance reduction and expected classifi-
cation improvement, and reveal the connections between
them. Subsection 3.4 introduces a budget allocation fea-
ture to be incorporated with PVR and ECI, aiming to
potentially mitigate the impact of heteroscedasticity.

3.1 Problem setup

We consider the LSE problem of identifying those input
points in a prediction set  ⊂ ℜd whose correspond-
ing mean values implied by stochastic simulations are

smaller (or greater) than a known threshold [19]. That
is, given a threshold h ∈  , LSE seeks to determine the
true super-level set H ≔ {x ∈ |f0(x) > h} and the true
sub-level set L ≔ {x ∈ |f0(x) < h}, where f0(⋅) denotes
the underlying true mean response function and  ⊂ ℜ
represents the range of f0(⋅).

We begin by stating some definitions necessary for our
development and the basic setup for explaining a generic
sequential LSE method.

Definition 1. Given a threshold h ∈  ⊂ ℜ,
the estimated super-level set Ht, the estimated
sub-level set Lt, and the uncertain set Mt
obtained up to the tth iteration (t ≥ 1) are
respectively defined as

Ht = {x ∈ Mt−1|lt(x) > h − ϵ0} ∪Ht−1, (6)

Lt = {x ∈ Mt−1|ut(x) < h + ϵ0} ∪ Lt−1, (7)

Mt = {x ∈ Mt−1|lt(x) ≤ h − ϵ0,ut(x) ≥ h + ϵ0}, (8)

where recall that ut(x) and lt(x) are the upper
and lower limits of the uniform bound for f0(x)
defined in (5), and ϵ0 ≥ 0 denotes a prescribed
LSE error tolerance parameter. Define H0 =
L0 ≔ ∅, an empty set, andM0 ≔  ⊂ ℜd, with
 denoting the set of input points for level-set
estimation.

Definition 2. On the tth iteration, the esti-
mated level-set triplet (Mt,Ht,Lt) is consid-
ered ϵ-accurate if Ht ⊆ H, Lt ⊆ L, and for ∀x ∈
Mt, |f0(x) − h| < ϵ∕2, for a prescribed accu-
racy level ϵ > 0.

Before delving into the two proposed LSE methods
to be detailed in the next two subsections, we point out
that there is a common level set updating step under-
lying them. On each iteration t, the estimated level-set
triplet (Mt,Ht,Lt) is updated according to (6), (7), and
(8) using the uniform bound

[
lt(x),ut(x)

]
obtained on

the tth iteration for all x ∈ Mt−1. That is, we are only
interested in classifying the input points in Mt−1 on itera-
tion t, since the input points already classified into either
Ht−1 or Lt−1 will remain there till the end of the imple-
mentation. Therefore, the estimated sub- and super-level
sets Lt and Ht are non-decreasing and the uncertain
set Mt is non-increasing in size. The major difference
between the two proposed LSE approaches, PVR and
ECI, lies in their sequential selection criteria for choos-
ing the next design point to run the simulation model.
Subsections 3.2 and 3.3 respectively provide details about
PVR and ECI.
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3.2 Predictive variance reduction

This subsection elaborates on the PVR approach for LSE.
We first describe the essential steps of PVR and provide
closed-form expressions to facilitate its efficient imple-
mentation. Then, we prove that PVR can achieve the
ϵ-accuracy guarantee with a prescribed high probability
under some technical conditions.

The core of PVR lies in its sequential selection crite-
rion, which chooses the next design point to achieve the
maximum reduction in the predictive uncertainty at all
input points yet to be classified. The details of PVR are
summarized in Algorithm 1. Specifically, PVR proceeds in
epochs. Each epoch (say, the ith one) comprises a number
of iterations which is unknown up front. On each itera-
tion (say, the tth one) within the ith epoch, PVR selects
the design point xt ∈  that maximizes the standardized
reduction in the sum of truncated predictive variances
multiplied by 𝛽2(i) over the uncertain set (with ties broken
arbitrarily):

xt = arg max
x+∈

(
∑

x∈Mt−1

max
{
𝛽
2
(i)𝜎

2
t−1(x), 𝜂

2
(i)

}

−
∑

x∈Mt−1

max
{
𝛽
2
(i)𝜎

2
t−1|x+(x), 𝜂

2
(i)

})

∕c
(
x+

)
, (9)

where 𝛽(i) is the uniform bound coefficient fixed for the
ith epoch, 𝜎2t−1|x+(x) is the predictive variance upon obtain-
ing simulation outputs generated up to iteration t − 1
and given that x+ were selected on the tth iteration, 𝜂(i)
is the truncation parameter for the predictive variance,
and c

(
x+

)
is the cost to run the simulation model at x+.

The simulation runs are conducted at xt, which is cho-
sen according to (9) with n0 replications allocated there
(Step 5), and the outputs are used to update the meta-
model, the predictive mean and variance (Step 6), and the
estimated level-set triplet (Step 7) based on the updated
uniform bound. The ith epoch continues until the maxi-
mum half-width of the uniform bound at all points in the
uncertain set diminishes to a given threshold (1 + 𝛿)𝜂(i)
(Step 8), where 𝛿 > 0 is a tolerance parameter for the trun-
cation target. Then, PVR enters the (i + 1)th epoch (Step 9)
and the threshold further decreases with 𝜂(i) shrinking by
a factor of r with r ∈ (0, 1) (Step 10). We set the parameter
values of 𝛿, r, 𝜂(i), etc., following those adopted in [9].

Successfully obtaining xt according to (9) relies on the
ability to compute 𝜎

2
t−1|x+(x) for every candidate design

point x+ efficiently. Because the closed-form expression of
Δt−1|x+(x) ≔ 𝜎

2
t−1(x) − 𝜎

2
t−1|x+(x) can be derived, the predic-

tive variance conditional on x+ being the next design point,
𝜎
2
t−1|x+(x), can be conveniently obtained without actually
performing simulation runs at each candidate design point

x+. In particular, there are two cases to consider when
deriving the expression for Δt−1|x+(x): the given candidate
point x+ is either a new design point (x+ ∉ t−1) or an
existing one (x+ ∈ t−1). Proposition 2 summarizes the
details whose proof is provided in Appendix B.

Algorithm1. The predictive variance reduction approach
for sequential level-set estimation

Input: Input space  , the tolerance parameter for the
truncation target 𝛿 > 0, the confidence-bound related
parameters r ∈ (0, 1),

{
𝛽(i)

}
i≥1, 𝜂(1) > 0, the set of input

points to be classified  , the design related parameters
K0,n0, and the threshold h.

1: Generate an initial design-point set 0 which
consists of K0 design points from  and set 𝜀0 = 0.

2: Perform n0 simulation replications at each design
point in0 and obtain the initial SK metamodel.

3: Set the epoch index i = 1, and initialize the
uncertain set M0 =  and the estimated level sets
H0 = L0 = ∅.

4: for t = 1, 2, … do.
5: Select xt according to (9), perform n0

replications at xt, obtain the simulation output
vector y(xt) =

(
y1(xt), y2(xt), … , yn0(xt)

)
, and

update the design-point sett = t−1 ∪ {xt}.
6: Update 𝜇t(⋅) and 𝜎2t (⋅) according to (2) and (3).
7: Update the estimated level-set triplet

(Ht,Lt,Mt) according to (6), (7), and (8).
8: whilemaxx∈Mt 𝛽(i)𝜎t(x) ≤ (1 + 𝛿)𝜂(i) do.
9: i ← i + 1;
10: 𝜂(i) ← r𝜂(i−1).
11: Update 𝛽(i) according to (10).
12: end while
13: end for

Proposition 2. Denote the difference between
the predictive variance at any input point x ∈
 obtained on the (t − 1)th iteration and that
would be obtained on the tth iteration if x+
were selected to perform simulation runs as
Δt−1|x+(x) ≔ 𝜎

2
t−1(x) − 𝜎

2
t−1|x+(x). Then, if x

+ ∉
t−1, Δt−1|x+(x) can be expressed as

Δt−1|x+(x) =
Cov2t−1

(
x, x+

)

𝜎
2
t−1(x+) +

V(x+)
nt,x+

,

where Covt−1
(
x, x+

)
= 𝜏

2(K
(
x, x+

)
− K

(
x+,

Xt−1
)(
K(Xt−1Xt−1) + 𝜏

−2Σ𝜀,k(t−1)
)−1K

(
x+,Xt−1

)
𝜏
)
,

nt,x+ denotes the number of replications to be
allocated to x+, and 𝜎

2
t−1

(
x+

)
can be computed

following (3) which equals Covt−1
(
x+, x+

)
.
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ZHANG and CHEN 7 of 26

If x+ ∈ t−1, without loss of generality,
assume that it is the ith existing design point, xi.
Then, for any x ∈  ,Δt−1|x+(x) = Δt−1|xi(x) and
it takes the following form:

Δt−1|xi(x)

=

([
K(x,Xt−1)

(
K(Xt−1,Xt−1) + 𝜏

−2Σ𝜀,k(t−1)
)−1]

(i)

)2

(
K(Xt−1,Xt−1) + 𝜏−2Σ𝜀,k(t−1)

)−1
i,i −

(
𝜏−2

(
V(xi)
nt−1,i

− V(xi)
nt,i

)) ,

where [b](i) represents the ith entry in vector b,
(A)ii denotes the ith diagonal entry of matrix
A, and nt,i denotes the number of replications
allocated to the ith design point by the end of
iteration t.

We note that, despite that the next design point xt is
selected in Step 5 of Algorithm 1 while assuming n0 sim-
ulation replications are to be allocated to each candidate
point x+, one can adopt other choices of number of repli-
cations in Step 5 and leverage the general result given in
Proposition 2 to facilitate efficient computations.

We next show that PVR can achieve the prescribed
ϵ-accuracy guarantee for LSE under some conditions.
We first state Lemma 1, which upper bounds 𝛽k(t), the
high-probability uniform bound coefficient on iteration t
as a function of the number of design points, k(t). Such
an upper bound helps define 𝛽(i) used in (9). The detailed
proof for Lemma 1 is provided in Appendix C.1.

Lemma 1. The coefficient of the uniform
bound in (4) can be upper bounded as follows:

𝛽k(t) ≤

√

k(t) log
(
1 + 𝜏2

Vmin(t)

)
− 2 log 𝛿 + 𝜏

−1||f ||K ,

(10)

where recall that k(t) denotes the number of
design points up to iteration t and Vmin(t) ≔
mini=1,2,… ,k(t) V(xi)∕nt,i.

Lemma 1 is used in developing a form for 𝛽(i) to adopt
in (9) for implementation. The coefficient of the uniform
bound fixed for the ith epoch, 𝛽(i), should dominate 𝛽k(t)
across all iterations within the ith epoch. Theorem 1 pro-
vides a specific form of 𝛽(i) based on Lemma 1. Before
delving into Theorem 1, we first state Definition 3 and
Assumption 2 which are used in developing Theorem 1.

Definition 3. A function F is submodular if
and only if for all ⊆  ⊆  and x′ ∈ ∖, it
holds that

F
(
 ∪

{
x′
})

− F() ≥ F
(
 ∪

{
x′
})

− F().

Assumption 2. The kernel K satisfies that
the predictive variance reduction func-
tion, 𝜓t,x(S) = 𝜎

2
t (x) − 𝜎

2
t|S(x), is submodular

[25], for any iteration t, any design points
x1, x2, … , xk(t), and any prediction point x.
Here, S ⊂  is a set of input points to be added
to the design-point set, and 𝜎

2
t|S(x) is the pre-

dictive variance upon performing simulation
runs up to iteration t and at those input points
in set S.

Assumption 2 has been shown to hold for the predic-
tive variance of a GP with commonly used kernels K, such
as squared exponential and Matérn kernels [12, 36]. The
submodularity of the predictive variance essentiallymeans
that it satisfies the diminishing returns property: adding
new design points reduces the predictive variance at any
prediction point more if the existing design-point set is
smaller.

Theorem 1. Fix any ϵ > 0 and 𝛿 ∈ (0, 1). Sup-
pose that Assumption 2 is fulfilled and that there
exist sequences

{
C(i)

}
and

{
𝛽(i)

}
such that

C(i) ≥ C∗
(
𝜂(i)

𝛽(i)
,M(i−1)

)
log

⎛
⎜
⎜
⎝

|M(i−1)|𝛽2(i)

𝛿

2
𝜂
2
(i)

⎞
⎟
⎟
⎠
+ cmax,

(11)
where

C∗(𝜉,) ≔ min
S⊂

{
c(S) ∶ max

x∈
𝜎0|S(x) ≤ 𝜉

}
(12)

is the minimum cost to achieve a predic-
tive standard deviation of at most 𝜉 within
set , || denotes the cardinality of set
, c(S) =

∑|S|
𝑗=1c

(
x′
𝑗

)
denotes the total sam-

pling cost for performing simulation runs at
the input points in S ≔

{
x′1, x

′
2, … , x′|S|

}
,

M(i) ≔
{
x ∈ 

‖‖‖f (x) − h| ≤ 2(1 + 𝛿)𝜂(i)
}
,

cmax ≔ maxx∈ c(x), and the sequence
{
𝛽(i)

}

satisfies

𝛽(i) ≥

√∑
i′≤i C(i′)

cmin
log

(
1 + 𝜏2

Vmin(t)

)
− 2 log 𝛿 + 𝜏

−1||f ||K ,

(13)
with cmin ≔ minx∈ c(x). If PVR runs with
such a choice of

{
𝛽(i)

}
, it achieves the

ϵ-accuracy guarantee with probability at least
1 − 𝛿 given that the cumulative cost reaches
C𝜀 =

∑
i∶4(1+𝛿)𝜂(i−1)>𝜀

C(i).

Some remarks follow from Theorem 1 immediately. To
achieve the ϵ-accuracy guarantee with a lower cumulative

 19321872, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sam

.11697 by X
i C

hen - V
irginia Tech , W

iley O
nline Library on [29/05/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



8 of 26 ZHANG and CHEN

costC𝜀, one can reduce the costsC(i), for i = 1, 2, … , which
depend on C∗(𝜉,) and parameters such as

{
𝛽(i)

}
,
{
𝜂(i)

}
,

and 𝛿. According to the definition of C∗(𝜉,) in (12), we
see that two factors can potentially reduce its magnitude:
(1) lower sampling costs at individual input points and
hence a lower value of c(S), and (2) lower noise variances
at individual input points and hence a smaller set S (i.e.,
smaller |S|) to meet the target 𝜉 in (12).

Next we consider an important special case of unit cost
where c(x) = 1 for all x ∈  which holds true in a wide
range of stochastic simulation models. In this case, the
total cumulative cost becomes proportional to T, the total
number of iterations consumed by PVR. It follows from (11)
and (13) that

T(i) ≥ T∗
(
𝜂(i)

𝛽(i)
,M(i−1)

)
log

|M(i−1)|𝛽2(i)

𝛿

2
𝜂
2
(i)

+ 1,

𝛽(i) ≥

(
∑

i′≤i
T(i′) ⋅ log

(
1 + 𝜏

2

Vmin(t)

)) 1
2

+ 𝜏
−1||f ||K ,

where T(i) denotes the index of the last iteration in the
ith epoch for i ≥ 1, and T∗(𝜉,) represents the minimum
number of iterations to achieve a predictive standard devi-
ation of at most 𝜉 within set . Moreover, to achieve
the ϵ-accuracy guarantee, the total number of iterations T
required by PVR follows as

T =
∑

i∶4(1+𝛿)𝜂(i−1)>ϵ

T(i).

The following result presents an interpretable lower
bound on the total number of iterations to achieve the
ϵ-accuracy guarantee. It reveals the dependence on the
minimum noise variance level and helps understand the
corresponding impact of the noise in the simulation out-
puts. The proof of Corollary 3.2 is similar to that of Corol-
lary D.1 in Appendix D of [9]. For the sake of brevity, we
omit the details here.

Corollary 1. Fix any ϵ > 0 and 𝛿 ∈ (0, 1).

Define 𝛽T ≔

√
T log

(
1 + 𝜏2

Vmin(T)

)
+ 𝜏

−1||f ||K ,

and set 𝜂(1) = 1 and r = 1∕2. There exist choices
of 𝛽(i) (not depending on T) such that PVR
achieves the ϵ-accuracy guarantee with prob-
ability at least 1 − 𝛿 if the total number of
iterations satisfies

T ≥

(

C1𝛾T𝛽2T
96(1 + 𝛿)2

ϵ2
+ 2

⌈

log2
8(1 + 𝛿)

ϵ

⌉)

× log

(
16(1 + 𝛿)2||𝛽2T

𝛿

2
ϵ2

)

,

where C1 =
(
log

(
1 + 𝜏

2∕Vmin(T)
))−1, ⌈a⌉

gives the least integer greater than or
equal to a ∈ ℜ, and 𝛾T = maxT⊆

1
2

log det
(
Ik(T) + 𝜏

2Σ−1
𝜀,k(T)K(XT ,XT)

)
. That is,

T ≥ Ω∗(C1𝛾T𝛽2Tϵ
−2 + 1

)
.

Despite fixing 𝜂(1) = 1 and r > 1∕2 in Corollary 1
for ease of analysis, we note that similar results can
be obtained for other choices of 𝜂(1) > 0 and r ∈ (0, 1).
Some insights into the impact of the simulation noise
on T follow immediately. As Vmin(T) → ∞ (i.e., the min-
imum noise variance is high and hence the noise level
is high across the input space), the lower bound on T
has noise dependence 𝒪∗(Vmin(T)) since log

(
1 + 𝛼

−1) =
𝒪
(
𝛼
−1) as 𝛼 → ∞. On the other hand, as Vmin(T) → 0

(i.e., the minimum noise variance is low), the impact of
the simulation noise on the lower bound on T becomes
negligible.

3.3 Expected classification
improvement

This subsection details the ECI approach for LSE. We
first explain the key steps of ECI and provide closed-form
expressions that facilitate its efficient implementation.
Furthermore, we show that the maximum LSE error
achieved by ECI is bounded by the given LSE error tol-
erance parameter ϵ0 with a prescribed high probability.
Last but not least, we close this section by unfolding a
connection between PVR and ECI.

ECI intends to greedily minimize the number of
input points that remain unclassified on each iteration.
The detailed steps of ECI are summarized in Algorithm
2. On the tth iteration, ECI chooses the design point
to perform simulation runs according to the following
criterion:

xt ≔ arg max
x+∈

E

[
|HLt−1

(
x+, y

(
x+

))
|
]
− |HLt−1|, (14)

where HLt−1 ≔ Ht−1 ∪ Lt−1, |HLt−1| denotes the number
of input points classified up to the (t − 1)th iteration,
and E

[
|HLt−1

(
x+y

(
x+

))
|
]
denotes the expected number

of input points that would be classified by the end of the
tth iteration if x+ were chosen as the design point to per-
form simulation runs on iteration t. We note that |HLt−1|
is fixed conditional on the sample path leading up to the
tth iteration. The expectation in (14) is taken with respect
to the distribution of y

(
x+

)
at the candidate design point

x+. Once the design point xt is chosen according to (14),
n0 replications are allocated to run the simulation model
at xt.
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ZHANG and CHEN 9 of 26

Algorithm 2. The expected classification improvement
approach for sequential level-set estimation

Input: Input space , the set of input points to be classified
 , the design related parameters K0,n0, the threshold h,
and the LSE error tolerance parameter ϵ0.

1: Generate an initial design point set 0 consisting
of K0 design points.

2: Perform n0 simulation replications at each design
point in0 and obtain the initial SK metamodel.

3: Initialize the uncertain set M0 =  and the
estimated level sets H0 = L0 = ∅.

4: for t = 1, 2, … do.
5: Select xt according to (14), perform n0

replications at xt, obtain y(xt) ≔(
y1(xt), y2(xt), … , yn0(xt)

)
, and update t =

t−1 ∪ {xt}.
6: Update 𝜇t(⋅) and 𝜎2t (⋅) according to (2) and (3).
7: Update the estimated level-set triplet

(Ht,Lt,Mt) according to (6), (7), and (8).
8: end for

To facilitate efficient implementation of ECI, we can
obtain closed-form expressions for E|HLt−1

(
x+, y

(
x+

))
|

in (14) under Assumption 3 on normality of the simu-
lation noise terms. As in Section 3.2, we consider two
cases: the given candidate point x+ is either a new design
point

(
x+ ∉ t−1

)
or an existing design point

(
x+ ∈ t−1

)
.

Proposition 3 provides details, whose proof is given in
Appendix D.

Assumption 3. The simulation noise terms
𝜀1(x), 𝜀2(x), … incurred at any x ∈  follow a
normal distribution𝒩 (0,V(x)).

Proposition 3. Suppose that Assumption 3
is fulfilled. Denote the candidate design
point on iteration t as x+. If x+ ∉ t−1,
E
[
|HLt−1(x+, y

(
x+

))
|
]
can be written as

E

[
|HLt−1

(
x+, y

(
x+

))
|
]

=
∑

x∈
Φ
⎛
⎜
⎜
⎜
⎝

√
𝜎
2
t−1(x+) +

(
V(x+)∕nt,x+

)

|Covt−1(x, x+)|
× c+t−1

(
x|x+

)
⎞
⎟
⎟
⎟
⎠

+
∑

x∈
Φ
⎛
⎜
⎜
⎜
⎝

√
𝜎
2
t−1(x+) +

(
V(x+)∕nt,x+

)

|Covt−1(x, x+)|
× c−t−1

(
x|x+

)
⎞
⎟
⎟
⎟
⎠

,

where c+t−1
(
x |x+

)
≔ 𝜇t−1(x) − 𝛽k(t − 1)𝜎t − 1|x+

(x) − h + ϵ0, c−t−1
(
x|x+

)
≔ −𝜇t−1(x) − 𝛽k(t−1)

𝜎t−1|x+(x) + h + ϵ0, and Φ(⋅) is the cumulative

distribution function of the standard nor-
mal distribution. Recall that nt,x+ denotes the
number of replications to be allocated to x+.

If x+ ∈ t−1, without loss of general-
ity, assume that x+ is the ith existing design
point, xi. In this case, Xt = Xt−1. Then
E

[
|HLt−1

(
x+, y

(
x+

))
|
]
can be written as

E
[
|HLt−1(xiy(xi))|

]
=

∑

x∈
Φ

⎛
⎜
⎜
⎜
⎜
⎝

−
R+
i (x) − 𝜇t−1(xi)

√
𝜎
2
t−1(xi) +

V(xi)
Δnt,i

⎞
⎟
⎟
⎟
⎟
⎠

+
∑

x∈
Φ

⎛
⎜
⎜
⎜
⎜
⎝

R−
i (x) − 𝜇t−1(xi)

√
𝜎
2
t−1(xi) +

V(xi)
Δnt,i

⎞
⎟
⎟
⎟
⎟
⎠

,

where

R+
i (x) =

h − 𝜖0 + 𝛽k(t−1)𝜎t(x) − 𝜇t−1(x)
−K(x,Xt−1)Diyt−1

|Δnt,iCi
nt,i

|
+ yt−1(xi),

R−
i (x) =

h + 𝜖0 − 𝛽k(t−1)𝜎t(x) − 𝜇t−1(x)
−K(x,Xt−1)Diyt−1

|Δnt,iCi
nt,i

|
+ yt−1(xi),

Ci =
[
K(x,Xt−1)

(
K(Xt−1,Xt−1) + 𝜏

−2Σ𝜀,k(t−1)
)−1]

(i)
,

Di =
(
K(Xt,Xt) + 𝜏

−2Σ𝜀,k(t)
)−1

−
(
K(Xt−1,Xt−1) + 𝜏

−2Σ𝜀,k(t−1)
)−1

,

yt−1 is a k(t − 1) × 1 vector of average outputs,
Δnt,i ≔ nt,i − nt−1,i denotes the number of repli-
cations allocated to xi on the tth iteration, and
recall that nt,i denotes the number of replications
allocated to the ith design point by the end of
iteration t.

It is worthwhile noting that although the next design
point xt is selected in Step 5 of Algorithm 2while assuming
n0 simulation replications are to be allocated to each can-
didate point x+, the number of replications can be adjusted
in each iteration, and one can leverage the general result
given in Proposition 3 to facilitate efficient computations.

Define the LSE error incurred at each x ∈  as eh(x) =
max {0, f0(x) − h} if x is classfied into the estimated
sub-level set and eh(x) = max {0, h − f0(x)} if x is classified
into the estimated super-level set. The next result reveals
that the maximum LSE error achieved by ECI is bounded
by ϵ0 with a presecribed high probability.
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10 of 26 ZHANG and CHEN

Theorem 2. Given h ∈  , fix any 𝛿 ∈
(0, 1) and ϵ0 > 0. If the uniform bound
in (5) is adopted for implementing ECI,
P(maxx∈ eh(x) ≤ ϵ0) ≥ 1 − 𝛿 when all input
points in  are classified by Algorithm 2.

The proof of Theorem 2 follows from Definition 1 and
that the uniform bound in (5) covers f0(x) at all x ∈  on
iteration t for all t ≥ 1.

We close this section by revealing the connection
between the two proposed methods, PVR and ECI. The
specific insight is articulated in Proposition 4, whose proof
is provided in Appendix E.

Proposition 4. Suppose that the sequential
selection criterion of ECI is modified to the fol-
lowing one:

xt = arg max
x+∈

E
∫


(
||HL

h
t−1

(
x+, y

(
x+

))||

−|HLht−1|
)
dh (15)

where h denotes the givenLSE threshold, |HLht−1|
denotes the number of input points classified
up to the (t − 1)th iteration for the given thresh-
old h, and |HLht−1

(
x+, y

(
x+

))
| is the number

of input points classified up to the tth iteration
if x+ were selected on the tth iteration. The
modified ECI criterion in (15) is equivalent to

xt = arg min
x+∈

∑

x∈
𝜎t−1|x+(x). (16)

Proposition 4 reveals that if we modify the selection
criterion of ECI from (14) to the expectation of all possible
threshold values as given in (15), then the modified ECI
criterion seeks the next design point that minimizes the
1-norm of the predictive standard deviation. Recall that
for PVR, if we deal with the unit cost case (i.e., c(x) = 1)
and ignore the truncated variance target 𝜂(i), the sequen-
tial selection criterion of PVR in (9) then reduces to
arg minx+∈

∑
x∈Mt−1

𝜎
2
t−1|x+(x),which is in a similar spirit

as (16), namely, focusing on predictive uncertainty reduc-
tion. The PVR selection criterion in (9) focuses on reducing
the predictive uncertainty at the input points in the uncer-
tain set, while the modified ECI criterion in (16) examines
the entire prediction set  . It is worth noting that ECI
with the original selection criterion as given in (14) only
considers one particular threshold h specified. Hence, we
conjecture that, while tackling the LSE problems, PVR
emphasizes more on the mean response function estima-
tion accuracy achieved within the uncertain set while ECI
focuses more on the classification accuracy at the input
points regarding the given threshold h.

3.4 Generalization of PVR and ECI

To better mitigate the impact of heteroscedasticity inher-
ent in stochastic simulation outputs and further enhance
the computational efficiency, we propose to incorporate
a budget allocation scheme with PVR and ECI. On each
iteration, upon selecting the next design point following
either the PVR or ECI selection criterion and performing
simulation runs at the selected design point, this scheme
allocates additional Δn replications to each design point
in set 𝒮 , the definition of which will be specified later in
this subsection. Algorithm 3 details the major steps of the
generalized LSE approaches which incorporate the budget
allocation scheme.

Algorithm 3. A generalized LSE method with a budget
allocation feature

Input: Input space , the design related parametersK0,n0,
the additional number of replications Δn, and the thresh-
old h.

1: Generate an initial design set 0 consisting of K0
design points, perform n0 simulation replications
at each design point in 0, and obtain the initial
SK metamodel.

2: Initialize the uncertain set M0 =  and the
estimated level sets H0 = L0 = ∅.

3: for t = 1, 2, … do.
4: Choose xt according to either (9) for PVR

or (14) for ECI, obtain the simulation
outputs y(xt) ≔

(
y1(xt), y2(xt), … , yn0(xt)

)
,

and update the design-point set
t = t−1 ∪ {xt}.

5: AllocateΔnt,i replications according to (18) to
each design point in set 𝒮 , obtain additional
simulation outputs and update the sample
mean and sample variances at each design
point.

6: Update 𝜇t(⋅) and 𝜎2t (⋅) according to (2) and (3).
7: Update the estimated level-set triplet

(Ht,Lt,Mt) according to (6), (7), and (8).
8: end for

The budget allocation scheme is incorporated in Step 5 of
Algorithm 3, where the additional number of simulation
replications to be allocated to each existing design point
can be computed as follows. Inspired by the allocation rule
adopted byDieker andKim [14], Frazier, andXie andChen
[16, 43], we first calculate the number of replications that
should be allocated to the ith design point in set 𝒮 by the
end of iteration t as follows:

n∗t,i =
V(xi)

∑
𝑗∈𝒮 V

(
x𝑗
) (B𝒮 + Δn), (17)
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ZHANG and CHEN 11 of 26

where 𝒮 is the set of the existing yet unclassified design
points, B𝒮 is the total number of replications that have
already been allocated to all points in 𝒮 , and Δn denotes
the additional budget to be expended on each iteration.
The allocation in (17) aims at making the variance of
the sample means at all design points identical [14, 16]
and hence potentially better mitigates the impact of het-
eroscedasticity. Thus, the number of additional replica-
tions to be allocated to each design point in set𝒮 in Step 5
follows as

Δnt,i = max
{
0,n∗t,i − nt,i

}
, (18)

where nt,i denotes the number of replications that have
actually been allocated to the ith design point in set 𝒮 . In
implementation, we replace the unknown true noise vari-
ance V(xi) in (17) by the sample variance V̂(xi) at each
design point xi.

Upon incorporating the budget allocation scheme,
each iteration of the proposed LSE methods involves two
steps: seeking the next design point and adjusting the
budget allocated thus far to mitigate the impact of het-
eroscedasticity. We denote PVR and ECI with the budget
allocation scheme incorporated as PVR-ts and ECI-ts, in
contrast to their original versions introduced in Subsec-
tions 3.2 and 3.3. It is worth noting that the generalizations
of PVR and ECI, PVR-ts and ECI-ts, possess the same the-
oretical performance guarantees as PVR and ECI do. This
is because incorporating a budget allocation scheme at the
design points does not impact the respective assumptions
stipulated for PVR and ECI.

In practice, incorporating this additional budget allo-
cation step does impact the performance of PVR and ECI
given a fixed simulation budget. Specifically, this addi-
tional budget allocation step expedites the budget con-
sumption by exploiting more at existing design points to
tackle the impact of heteroscedasticity, leading to PVR-ts
and ECI-ts terminating in fewer iterations and with a
smaller design-point set. Denote T as the stopping time of
a given method (i.e., the index of the iteration on which
the simulation budget is exhausted). On the one hand, a
smaller number of distinct design points k(T) leads to less
exploration over the input space, hence a higher predic-
tive standard deviation 𝜎T(x) at any x ∈  , but also a lower
bound coefficient 𝛽k(T). The net effect on the resulting LSE
performance, relying on the uniform bound given in (5), is
hard to determine. On the other hand, the additional bud-
get allocation step canmitigate the impact of heteroscedas-
ticity and potentially reduce the uniform bound width at
input points in the neighborhood of the existing design
points in the uncertain set. This could result in more input
points being classified correctly, thereby enhancing the
LSE performance relying on the uniform bound given in

(5), especially when the impact of heteroscedasticity is
severe.

The overall impacts on the performance of PVR and
ECI are intractable to assess analytically but can be evalu-
ated empirically. In the next section,wewill focus on inves-
tigating the performance of the PVR-type and ECI-type
methods in detail, comparing them with state-of-the-art
LSE methods.

4 NUMERICAL EXPERIMENTS

This section provides three numerical examples to evalu-
ate the performance of proposed PVR-type and ECI-type
methods in comparison with state-of-the-art benchmark-
ing approaches. We start by giving a description of the
general experimental setup, the benchmarking methods,
the implementation details, and the performance metrics
adopted. The detailed experimental settings and results for
specific examples are presented in Sections 4.5 to 4.9.

4.1 General experimental setup

In each example, we consider the LSE task of classifying
the input points in a prediction set  ⊂  relative to a
given threshold h with a fixed simulation budget. The val-
ues of h are specified corresponding to small, medium,
and large mean response values in each example. The pre-
diction set  consists of N input points, and the fixed
simulation budget is specified as a total of B simulation
replications.

4.2 Methods in comparison

We consider comparing the performance of the pro-
posedLSEmethodswith three state-of-the-art benchmark-
ing methods, among which one is a model-free sam-
pling method and the other two are metamodel-based
approaches. Specifically, the model-free benchmarking
method is the finite-budget allocation rule proposed in
Shi et al. [35]. Given a fixed budget, FAR sequentially
allocates simulation replications and has shown to outper-
form competing model-free sampling methods. FAR pos-
sesses both desirable finite-budget properties and asymp-
totic optimality formaximizing the posterior performance.
Upon termination, FAR classifies the input points in
 based on the sample means obtained at individual
input points. The two metamodel-based benchmarking
methods are respectively VAR and GCHK. VAR [19]
sequentially selects the design point with the maximum
predictive variance and hence is referred to as VAR:
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12 of 26 ZHANG and CHEN

xt = arg maxx∈ 𝜎t−1(x). GCHK [19] is named after the
authors’ initials, which sequentially selects the next design
point according to xt = arg maxx∈Mt at(x), where at(x) ≔
min {max (Ct(x)) − h, h −min (Ct(x))}, Ct(x) = ∩ti=1Qi(x),
and Qi(x) =

[
li(x),ui(x)

]
denotes the confidence bound

obtained for the response of interest at x on the ith iter-
ation. We note that VAR and GCHK classify the input
points in  using confidence bounds. Regarding the pro-
posedLSEmethods in thiswork,we consider the PVR-type
and ECI-type methods which include PVR, ECI, and their
respective variants with the budget allocation scheme
incorporated, i.e., PVR-ts and ECI-ts; see Section 3.4 for
more details.

4.3 Implementation details

The implementation of all methods starts with an initial
stage followed by a main stage which comprises sequen-
tial iterations until the fixed budget is exhausted. For
FAR, the initial stage estimates the mean response at each
input point in  with two replications. On each iteration
within the main stage, FAR allocates one simulation repli-
cation to the chosen input point from  , which is selected
by optimizing the posterior expectation of the classifica-
tion accuracy [35]. Regarding VAR and GCHK, the initial
stage estimates the metamodel hyper-parameters based
on simulation output data obtained at K0 initial design
points, which are a Latin hypercube sample from the input
space  , with n0 simulation replications allocated to each
design point. On each iteration within the main stage
of VAR and GCHK, one input point is chosen from 

according to their respective point selection criteria and
n0 simulation replications are allocated there. The pro-
posed PVR-type and ECI-type methods are implemented
according to Algorithms 1 to 3. For fair comparisons,
we employ the SK metamodel with a squared exponen-
tial kernel and the uniform bound given in (5) for all
metamodel-based LSEmethods (i.e., VAR, GCHK, and the
proposed PVR-type and ECI-type methods) to classify the
input points on each iteration, with the nominal confi-
dence level set to 1 − 𝛿 = 0.95. For the PVR-type methods,
we adopt 𝛿 = 0, r = 0.5, 𝜂(0) = 1, and ϵ0 = 0 following [9].
For the ECI-type methods, the tolerance parameter is set
to ϵ0 = 0.05.

4.4 Evaluation metrics

A total ofM = 50 independentmacro-replications are con-
ducted for comparing performance of all methods under
consideration. We adopt the F1 score which is a widely
used performance metric for evaluating LSE performance

in the literature [9, 19, 45]. The F1 score balances preci-
sion and recall, giving equal consideration to false positives
and false negatives. This feature enables the F1 score to
more accurately and reliably capture a candidate method’s
performance, especially when dealing with imbalanced
super-level and sub-level sets. On each macro-replication,
we record the evolving F1 score of each metamodel-based
method throughout iterations, with the F1 score on the tth
iteration defined as

F 1t =
|Ht ∩H|

|Ht ∩H| + (|Ht ∩ L| + |Lt ∩H| + |Mt|)∕2
, t ≥ 1.

(19)

We refer to F 1t in (19) as the conservative F1 score
since all input points in the uncertain set Mt obtained
by a given metamodel-based LSE method are counted as
wrongly classified if Mt ≠ ∅. Notice that FAR uses the
point estimates obtained at the input points for LSE and
its correspondingMt ≡ ∅ for t ≥ 1. Hence, we do not eval-
uate FAR using the its use within the metamodel-based
methods to avoid an unfair comparison of FAR and the
metamodel-based methods.

For a fair comparison of all methods under considera-
tion, inspired by themetric adopted by [9], we use the final
F1 score achieved when the budget is exhausted on each
macro-replication, which is defined as

F̃ 1 = |H̃T ∩H|
|H̃T ∩H| +

(
|H̃T ∩ L| + |L̃T ∩H|

)
∕2

, (20)

where recall that T denotes the stopping time of a given
method (i.e., the index of the last iteration upon termina-
tion), and H̃T ≔ HT ∪MHT with MHT denoting the set of
input points inMT that are classified to the super-level set
by the point estimate given in (2) for the metamodel-based
methods upon termination, and L̃T ≔ LT ∪MLT withMLT
denoting the set of input points in MT that are classified
to the sub-level set using the point estimate given in (2)
upon termination. For FAR, since all points are classified
on each iteration, we have H̃T = HT and L̃T = LT . Lastly,
to evaluate the point estimation accuracy upon termina-
tion of each givenmethod,we adopt the rootmean squared
error (RMSE), which is defined as

RMSE =

√√√√ 1
N

N∑

i=1

(
f0(xi) − f̂0(xi)

)2
,

where f̂0(xi) denotes the point estimate obtained at input
point xi, and recall N = || denotes the number of input
points in the prediction set  .
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ZHANG and CHEN 13 of 26

4.5 Numerical Examples

4.5.1 A one-dimensional trigonometric
function example

Consider the following 1-D trigonometric function
example, where the mean response surface of interest
is f0(x) = (6x − 2)2 sin(12x − 4) and the noise variance
function is V(x) = 1.1 + sin(2𝜋x), for x ∈  = [0, 1]. The
simulation outputs at x are generated according to (1)
where the simulation noise is normally distributed with
mean zero and variance V(x). We seek to perform LSE
regarding a given threshold h for the input points in set
 which consists of a grid of N = 1000 equispaced points
in  . Three threshold values are considered, respectively,
h = −1, 0, and 1. The total budget is B = 5100 simulation
replications, and the parameters for metamodel-based
methods are set to K0 = 10, n0 = 10, and Δn = 100.

Themean andnoise variance functions are respectively
illustrated in Figure 1A,B. We see from Figure 1 that iden-
tifying level sets is particularly challenging for the first
half of the input space, [0,0.5], due to high variances and
low absolute mean values. Additionally, among the three
thresholds considered, h = 0 is the most challenging case
because a greater proportion of the input points in  have
their true mean values around h = 0; see Figure 1A for
details.

Summary of results
Figure 2 shows the evolving performance of all
metamodel-based methods (i.e., VAR, GCHK, PVR-type,
and ECI-type methods) in terms of the conservative

F1 scores obtained on an arbitrarily chosen
macro-replication, which is representative of the 50
independent macro-replications. The following observa-
tions can be made. First, the ECI-type methods deliver
the best performance, followed by VAR and the PVR-type
methods, and GCHK ranks last. Second, compared to
PVR (respectively, ECI), PVR-ts (resp., ECI-ts) improves
the conservative F1 scores by incorporating the budget
allocation step. Lastly, GCHK’s performance stays at a non-
competitive level with little changes despite the increase in
the allocated budget. A similar pattern is observed for PVR.
However, thanks to the budget allocation step, PVR-ts
improves the conservative F1 scores by a substantial
margin.

Table 1 summarizes the final F1 scores achieved
by all methods upon termination in 50 independent
macro-replications. Recall the definition of the final F1
score in (20); it reflects the point estimation accuracy
achieved by FAR and by themetamodel-basedmethods (to
some extent) upon termination, because the latter adopts
the point estimates in (2) to classify those input points
remaining in the uncertain set upon termination. We have
the following observations from Table 1. First, compared
to themetamodel-based LSEmethods, FAR yields the low-
est final F1 scores, together with a small standard error,
indicating that FAR’s performance has slight variation and
our conclusions regarding its performance relative to the
metamodel-based methods are robust. Second, among the
metamodel-based LSE methods, the PVR-type methods
and GCHK perform best, immediately followed by the
ECI-type methods and VAR. Third, incorporating the bud-
get allocation step helps ECI-ts achieve higher final F1

F IGURE 1 The true mean and noise variance functions in the 1-D trigonometric function example. In (A), the solid line represents
the mean function; and the dashed, dotted, and dashed-dotted lines respectively correspond to the three threshold values, h = −1, 0, and 1.
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14 of 26 ZHANG and CHEN

F IGURE 2 The 1-D trigonometric function example: the conservative F1 scores obtained by the metamodel-based methods against
the consumed simulation budget on an arbitrarily chosen macro-replication.

TABLE 1 Summary of the average and the standard error (in parentheses) of the final F1 scores achieved by different LSE methods
across 50 macro-replications in the 1-D trigonometric function example.

h FAR VAR GCHK PVR PVR-ts ECI ECI-ts

−1 0.953 0.990 0.999 0.995 0.976 0.990 0.993

(0.001) (0.002) (0.001) (0.001) (0.002) (0.002) (0.001)

0 0.855 0.947 0.961 0.949 0.964 0.927 0.949

(0.002) (0.003) (0.003) (0.002) (0.002) (0.004) (0.004)

1 0.835 0.967 0.993 0.980 0.949 0.982 0.986

(0.002) (0.006) (0.002) (0.004) (0.007) (0.004) (0.003)

scores than ECI. On the other hand, the budget allocation
step does not seem to bring as much benefit to PVR in
terms of the final F1 scores, except in the case of h = 0,
which is also the most challenging case to tackle.

Lastly, Table 2 summarizes the point estimation
accuracy in terms of RMSE for all methods, which helps
explain observations made earlier. We see that FAR yields
the largest RMSEs hence the worst point estimation
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ZHANG and CHEN 15 of 26

TABLE 2 Summary of the average and the standard error (in parentheses) of the root mean squared errors achieved by different
level-set estimation methods across 50 macro-replications in the 1-D trigonometric function example.

h FAR VAR GCHK PVR PVR-ts ECI ECI-ts

−1 0.705 0.108 0.300 0.216 0.264 0.096 0.142

(0.003) (0.003) (0.010) (0.008) (0.010) (0.007) (0.007)

0 0.727 0.106 0.286 0.204 0.232 0.113 0.139

(0.002) (0.003) (0.001) (0.008) (0.009) (0.005) (0.008)

1 0.683 0.103 0.281 0.178 0.219 0.087 0.132

(0.003) (0.003) (0.008) (0.007) (0.008) (0.005) (0.007)

F IGURE 3 The true mean and noise variance functions for the M/M/1 queueing example. In (A), the solid line represents the mean
response surface and the dashed, dotted, and dashed-dotted lines represent the three threshold values, h = 0.6, 1.5, and 4, respectively.

accuracy and consequently the lowest final F1 scores as
shown in Table 1. Furthermore, we find that the RMSEs
of the PVR-type methods and GCHK dominate those of
the ECI-type methods and VAR; however, the former’s
final F1 scores are comparable to, if not much better than,
the latter’s. This is because the PVR-type methods and
GCHK emphasize reducing the uncertainty in estimating
the mean function values at points in the uncertain set,
which gives them an advantage in terms of final F1 scores.
However, they sacrifice estimation accuracy at points
already classified, where the RMSEs dominate in scale in
this example.

4.5.2 An M/M/1 queueing example

The M/M/1 queue is a classical one-dimensional example
in stochastic simulation, which simulates a single-server
queueing system. The customers arrive to the system
according to a Poisson processwith arrival rate x customer-
s/time and are served according to a first-come, first-served

discipline. A single server serves customers one at a
time and the service times of the customers are i.i.d.
exponentially distributed with rate fixed at one customer/-
time. In this example, the input variable is the arrival rate
x with the input space  = [0.3,0.9]. The simulation out-
put recorded on each replication at a given design point
is the average number of customers in the system from
time 0 to T. The mean response surface of interest is
the steady-state mean number of customers in the queue
f0(x) = x∕(1 − x). The noise variance function is V(x) ≈
2x(1 + x)∕

(
T(1 − x)4

)
for T large [41]. When simulating

the M/M/1 queue at each design point, we initialize each
replication in steady state and set the run length of each
replication T to 1000 time units.

In this experiment, the total budget isB = 5100 simula-
tion replications, and the parameters formetamodel-based
methods are set toK0 = 10, n0 = 10, andΔn = 100. The set
of input points for LSE,  , comprises a grid of N = 1000
equispaced points in  . Three threshold values are con-
sidered in this example, h = 0.67, 1.5, and 4, respectively
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16 of 26 ZHANG and CHEN

corresponding to the input values x = 0.4, 0.6, and 0.8.
The mean and noise variance functions are illustrated in
Figure 3A,B. We see that both the mean and the noise
variance functions hike with the input x, with the latter’s
increasing trend being more dramatic; this indicates that
identifying level sets becomes progressively challenging as
the threshold value h grows.

Summary of results
Figure 4 shows the evolving conservative F1 scores
of all metamodel-based methods against the con-
sumed simulation budget on an arbitrarily chosen
macro-replication, which is representative of the 50
independent macro-replications. We have the following
observations. First, the ECI-type methods outperform
the other methods with a noticeable gap. Moreover, the
higher conservative F1 scores of ECI-ts (resp., PVR-ts)

show that incorporating the budget allocation step brings
an improvement to ECI (resp., PVR). Second, regarding
the two benchmarking metamodel-based methods, VAR’s
performance is noncompetitive in all three cases com-
pared to the other metamodel-based methods despite
the increase in the allocated budget. On the other hand,
GCHK demonstrates satisfactory performance, especially
as the allocated budget increases.

Table 3 summarizes the final F1 scores obtained by
all methods upon termination in 50 macro-replications.
Several observations can be made. First, FAR’s perfor-
mance degrades significantly as the LSE difficulty rises,
with its worst performance observed in the case of h =
4. Second, among the metamodel-based approaches, the
PVR-type methods’ performance is comparable to that
of the ECI-type methods. Both types of methods out-
perform GCHK and VAR. Moreover, as h increases, the

F IGURE 4 The M/M/1 queueing example: the conservative F1 scores obtained by the metamodel-based methods against the
consumed simulation budget on an arbitrarily chosen macro-replication.
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TABLE 3 Summary of the average and the standard error (in parentheses) of the final F1 scores achieved by all methods across 50
macro-replications in the M/M/1 example.

h FAR VAR GCHK PVR PVR-ts ECI ECI-ts

0.67 0.990 0.992 0.999 0.999 0.986 0.999 0.999

(0.001) (0.001) (0.001) (0.001) (0.012) (0.001) (0.001)

1.5 0.978 0.983 0.997 0.998 0.991 0.997 0.999

(0.001) (0.001) (0.001) (0.001) (0.004) (0.001) (0.001)

4 0.899 0.938 0.963 0.986 0.978 0.988 0.994

(0.003) (0.006) (0.002) (0.001) (0.002) (0.001) (0.003)

TABLE 4 Summary of the average and the standard error (in parentheses) of the root mean squared errors achieved by all methods
across 50 macro-replications in the M/M/1 queueing example.

h FAR VAR GCHK PVR PVR-ts ECI ECI-ts

0.67 0.865 0.821 0.974 0.579 0.682 0.339 0.326

(0.009) (0.034) (0.030) (0.027) (0.065) (0.022) (0.021)

1.5 0.852 0.847 0.965 0.436 0.651 0.461 0.415

(0.009) (0.033) (0.035) (0.024) (0.054) (0.028) (0.024)

4 0.850 0.835 0.693 0.220 0.405 0.238 0.102

(0.010) (0.033) (0.018) (0.012) (0.013) (0.016) (0.006)

performance of GCHK and VAR deteriorates more rapidly
than that of the PVR-type and ECI-type methods. Third,
the budget allocation scheme benefits ECI in achieving
higher final F1 scores across all three threshold values
considered, while this is not observed for PVR.

Table 4 summarizes the point estimation accuracy
in terms of RMSE achieved by all methods in 50
macro-replications. First, the RMSEs obtained by FAR are
among the worst across all three threshold values, espe-
cially in the case of h = 4. This helps explain FAR’s low
final F1 scores as shown in Table 3, as FAR solely uses
point estimates for LSE. Second, comparing the RMSEs
obtained by the metamodel-based approaches serves as a
valuable indicator of their relative performance in terms
of the final F1 scores. Specifically, higher RMSEs cor-
respond to lower final F1 scores, especially true in the
case of h = 4. This relationship is particularly relevant
in this M/M/1 queueing example, where the uncertain
set includes a considerable number of input points that
remain unclassified based on the uniform boundwhen the
simulation budget is exhausted and must be classified by
the point estimates. This situation arises due to the high
heteroscedasticity present in this example. The advantage
of the PVR-type and ECI-type methods is worth noting, as
they consistently demonstrate high estimation accuracy.
Despite being devised originally for LSE, the PVR-type
and ECI-type methods exhibit robust performance in this

example, underscoring their versatility and effectiveness
in different scenarios.

4.5.3 A periodic review (s, S) inventory
system

In this subsection, we consider a periodic review
single-commodity (s, S) inventory system that supplies
external demands and receives stock from a production
facility. The stock level, s, is at which a new order for the
target product should be placed, and S is the maximum
stock level that should be maintained. Assume that the
system has i.i.d. continuous demands, zero lead times, full
backlogging, and linear ordering, holding, and shortage
costs, as considered in Fu and Healy and Wang and Chen
[17, 40]. The (s, S) inventory system works as follows. Let
Xi denote the stock level of the target product. When Xi is
below s units, an order of amount (S − Xi) is made which
incurs a fixed ordering cost K and a total purchase cost
c0(S − Xi) where c0 is the unit purchase cost. The unit
holding cost is h0, and the unit shortage cost is p. The cost
in period i is the sum of ordering, holding, and backorder
costs which is given by

Ji = 1{Xi < s}(K + c0(S − Xi))
+ h0 max {0,Wi} + pmax {0,−Wi}.
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F IGURE 5 The contour plots of (A) the mean response function J(𝛿0, s) and (B) the estimated noise variance function V̂(𝛿0, s) using a
large computational budget at each input point in the (s, S) inventory system example.

We are interested in the long-run average cost per
period J, which is defined as

J = lim
n→∞

Jn, with Jn =
1
n

n∑

i=1
Ji.

Assume that the demands are i.i.d. exponentially dis-
tributed with mean E[D]. Define 𝛿0 = S − s and let 𝜆 =
1∕E[D]. We are interested in estimating the unknown
mean response function J(𝛿0, s) whose analytical form is
given by

J(𝛿0, s) = c0E(D)

+

K + h0(s − E(D) + 𝜆𝛿0(s + 𝛿0∕2))
+(h0 + p)E(D) exp(−𝜆s)

1 + 𝜆𝛿0
.

In our experiment, we adopt c0 = 5, E(D) = 20, K =
100, h0 = 1, and p = 10. The input space is ≔ Ω𝛿0 × Ωs =
[10, 40] × [10, 50]. On each simulation replication at a
given design point (𝛿0, s), we use the run length ofT = 1000
periods to estimate J(𝛿0, s). The prediction set  contains
N = 1000 input points, comprising 996 Latin-hypercube
sampled input points from  plus the four corner points
of . The three threshold values are h = 190, 200, and 210.
The total budget is B = 10500 simulation replications, and
the parameters for metamodel-based methods are set to
K0 = 25, n0 = 20, and Δn = 100. The contour plots for the
mean function J(𝛿0, s) and the approximated noise vari-
ance function V̂(𝛿0, s) are shown in Figure 5A,B. Notice
that a closed-form expression of V(𝛿0, s) is unavailable and
it is estimated by the sample variance V̂(𝛿0, s) based on 105
replications at each input point. We see from Figure 5A,B

that as the threshold value h increases, the LSE difficulty
rises due to an increasing trend of noise variances.

Summary of results
Figure 6 shows the evolving conservative F1 scores of all
metamodel-based methods against the consumed simu-
lation budget on an arbitrarily chosen macro-replication,
which is representative of the 50 independent
macro-replications. The following observations can be
made. First, the ECI-type methods perform best, followed
by the PVR-type methods and GCHK; and VAR yields the
worst performance. Second, compared to PVR (respec-
tively, ECI), PVR-ts (resp., ECI-ts) improves the conser-
vative F1 scores by incorporating the budget allocation
step.

Table 5 summarizes the final F1 scores obtained
by all methods upon termination in 50 independent
macro-replications. Several observations can be made
from the table. First, FAR achieves the lowest final F1
scores due to its low point estimation accuracy. Regarding
the metamodel-based approaches, the ECI-type methods
perform the best, followed by the PVR-type, GCHK, and
VAR. However, the difference in performance between
ECI and PVR is small. Third, incorporating the bud-
get allocation step helps ECI-ts achieve higher final F1
scores than ECI. On the other hand, the budget allocation
scheme does not seem to bring as much benefit to PVR in
terms of the final F1 scores.

Table 6 summarizes the point estimation accuracy
in terms of RMSE achieved by all methods in 50
macro-replications. First, the RMSEs obtained by FAR
are among the worst across all three threshold values,
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F I GURE 6 The (s, S) inventory example: the conservative F1 scores obtained by the metamodel-based methods against the consumed
simulation budget on an arbitrarily chosen macro-replication.

TABLE 5 Summary of the average and the standard error (in parentheses) of the final F1 scores achieved by all methods across 50
macro-replications in the (s, S) inventory system example.

h FAR VAR GCHK PVR PVR-ts ECI ECI-ts

190 0.963 0.985 0.991 0.992 0.989 0.996 0.997

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

200 0.943 0.980 0.984 0.994 0.987 0.994 0.994

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

210 0.923 0.958 0.971 0.986 0.970 0.991 0.994

(0.002) (0.002) (0.001) (0.001) (0.002) (0.001) (0.001)

which helps explain FAR’s low final F1 scores as shown
in Table 5. Second, the ECI-type and PVR-type methods
demonstrate relatively high estimation accuracy. Despite
being originally designed for tackling LSE problems, the
PVR-type and ECI-type methods exhibit robust perfor-
mance in this example. Third, in contrast to the M/M/1

queueing example, the relatively large differences in the
RMSEs do not get reflected as much in the differences
in the final F1 scores. This is because the impact of het-
eroscedasticity in this example is not as dramatic as in the
M/M/1 queueing example, making the LSE task relatively
easier to tackle by all methods.
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TABLE 6 Summary of the average and the standard error (in parentheses) of the root mean squared errors achieved by all methods
across 50 macro-replications in the (s, S) inventory system example.

h FAR VAR GCHK PVR PVR-ts ECI ECI-ts

190 15.760 0.961 1.366 0.697 0.933 0.424 0.570

(0.053) (0.020) (0.054) (0.021) (0.019) (0.014) (0.025)

200 15.874 0.973 1.188 0.535 0.924 0.331 0.487

(0.048) (0.020) (0.036) (0.011) (0.017) (0.012) (0.017)

210 15.449 0.952 1.098 0.560 0.902 0.374 0.522

(0.237) (0.017) (0.032) (0.019) (0.026) (0.015) (0.014)

We close this section with remarks on the performance
of all methods based on the three numerical examples.
First, metamodel-based methods yield better performance
on final F1 scores than the state-of-the-art model-free
sampling method FAR. This is unsurprising since the
metamodel-based methods can leverage simulation out-
puts obtained at all design points for function approxi-
mation across the input space and achieve higher esti-
mation accuracy than the sample mean obtained based
on outputs at each input point. Second, compared to
the metamodel-based benchmarking methods (i.e., VAR
and GCHK), the proposed PVR-type and ECI-type meth-
ods show more robust performance regarding both the
conservative F1 scores and the final F1 scores in differ-
ent scenarios. Third, incorporating the budget allocation
step helps potentially improve PVR’s performance regard-
ing the conservative F1 scores and ECI’s performance in
terms of both the conservative F1 scores and the final
F1 scores. Last but not least, our numerical experiments
show that the metamodel-based LSE task differs from the
metamodel-based prediction task: achieving high point
estimation accuracy does not guarantee superior LSE per-
formance, and vice versa.

5 CONCLUSION

In this work, we proposed two metamodel-based LSE
methods suitable for the stochastic simulation setting,
PVR and ECI. We provided insights into their respective
characteristics and established the connection between
these two methods. We also incorporated a budget
allocation feature with PVR and ECI to better tackle
heteroscedasticity’s impact, which is prevalent in
stochastic simulation experiments. Numerical exam-
ples demonstrated the superior performance of
the proposed methods compared to benchmarking
approaches. Given a fixed total budget, we found that
the metamodel-based LSE methods outperform the
state-of-the-art model-free type method, FAR. More-
over, the metamodel-based LSE task differs from the

metamodel-based prediction task, which deserves
separate, in-depth investigations.

We aim to extend this work in two key directions. The
first is to develop theoretically sound and computation-
ally efficient sequential metamodel-based LSE methods
that can scale effectively to large heteroscedastic datasets.
The second direction is to devise a principled budget allo-
cation scheme that balances exploitation and exploration
for metamodel-based LSE, especially when given a fixed
simulation budget to expend.
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APPENDIX A. PROOF OF PROPOSITION 1

The proof for the uniform error bound as stated in
Proposition 1 is based on the connection between the
least square estimator in reproducing kernel Hilbert space
(RKHS) and a GP model. The following outlines the main
idea.

Proof . Let  be the RKHS corresponding to the
kernel function K ∶ ℜd ×ℜd → ℜ with canonical
embeddings Kx = K(x, ⋅). Let v = Kx ∈  be the embed-
ding of x ∈ ℜd, such that ⟨v, f0⟩ = ⟨Kx, f0⟩ = f0(x).
Define (K(Xt,Xt))i,𝑗 ≔ (

∗)i,𝑗 = K
(
xi, x𝑗

)
and (Kx)i ≔

(Kx)i = ⟨xi, x⟩ = K(xi, x). Using the reproducing
property and the linear operator property
(∗

 + 𝜆I)−1∗ = 
∗(


∗ + 𝜆Ik(t)
)−1 with  = Σ−1

𝜀,k
, we calculate 𝜇t(x) for any x ∈  ,

𝜇t(x) = ⟨𝜇t,Kx⟩

=
⟨(


∗Σ−1

𝜀,k + 𝜆I
)−1


∗Σ−1

𝜀,kyt,Kx
⟩



=
⟨


∗Σ−1∕2
𝜀,k

(
Σ−1∕2
𝜀,k 

∗Σ−1∕2
𝜀,k + Id

)−1
Σ−1∕2
𝜀,k yt,Kx

⟩



=
⟨


∗(


∗ + 𝜆Σ𝜀,k
)−1yt,Kx

⟩



=
⟨(


∗ + 𝜆Σ𝜀,k

)−1yt,Kx
⟩

ℜk(t)

= K(x,Xt)
(
K(Xt,Xt) + 𝜆Σ𝜀,k

)−1yt. (A1)

Using 𝜆(∗
 + 𝜆)−1 = Ik(t) −

∗(
∗ + 𝜆Ik(t))−1

with  = Σ−1∕2
𝜀,k , we have 𝜆⟨Kx,Kx′⟩−1

t
= K

(
x, x′

)
−

K(x,Xt)
(
K(Xt,Xt) + 𝜆Σ𝜀,k

)−1K
(
x′,Xt

)
𝜏 , where t = K

(Xt,Xt) + 𝜆Σ𝜀,k. Hence, by setting v = Kx = Kx′ , we can
calculate ||v||2


−1
t
as follows:

||v||2


−1
t

= 1
𝜆

(
K(x, x) − K(x,Xt)

(
K(Xt,Xt) + 𝜆Σ𝜀,k

)−1

× K(x,Xt)𝜏
)
= 𝜎

2
t (x).

(A2)
We next draw the connection to the Bayesian setting.

Let f0 ∼ GP
(
0, 𝜆−1K

)
be a sample from a GP, where 𝜆−1 =

𝜏
2
> 0 is the process variance parameter, and assume that

the simulation noise 𝜀𝑗 ’s are independent and following
the distribution𝒩

(
0,V

(
x𝑗
))
. Then the posterior distribu-

tion of f0 is also a GP with mean 𝜇t(x), and 𝜎
2
t (x) is the

posterior variance at x.
We have set up the connection between least squares

estimation in RKHS under heteroscedasticity and stochas-
tic kriging (SK). Then, the uniform error bound for SK
follows from specializing Lemma 6 in [23] to the RKHS
setting:

|⟨v, 𝜇t⟩ − ⟨v, f0⟩|

≤

⎛
⎜
⎜
⎜
⎝

√√√√√2 log

(
1
𝛿

det
(
Σ𝜀,k +0

∗)1∕2

det
(
Σ𝜀,k

)1∕2

)

+ ∥ f0 ∥0

⎞
⎟
⎟
⎟
⎠

× ∥ v ∥−1
t
,

(A3)
where 0 = 𝜆Ik(t) = 𝜏

−2Ik(t).

APPENDIX B. PROOF OF PROPOSITION 2

To reduce the computational complexity, we need to
update the predictive variance by computing the predictive
variance difference, instead of directly computing the new
predictive variance. In this section, we detail the computa-
tion of Δt−1|x+(x) as given in Proposition 2 for PVR.

Proof . If x+ has not been visited, then we have

Δt−1|x+(x) = 𝜎
2
t−1(x) − 𝜎

2
t−1|x+(x)

= 𝜏
2
(
K(x, x) − K

(
x,Xt−1

)
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×
(
K(Xt−1Xt−1) + 𝜏

−2Σ𝜀,k(t−1)
)−1K

(
x,Xt−1

)
𝜏

)

− 𝜏
2
(
K(x, x) − K

(
x,Xt

)

×
(
K(XtXt) + 𝜏

−2Σ𝜀,k(t)
)−1K

(
x,Xt

)
𝜏

)

= 𝜏
2
(
K(xXt)

(
K(XtXt) + 𝜏

−2Σ𝜀,k(t)
)−1K

(
x,Xt

)
𝜏

− K(xXt−1)
(
K(Xt−1Xt−1) + 𝜏

−2Σ𝜀,k(t−1)
−1
)

× K
(
x,Xt−1

)
𝜏

)
, (B1)

where K(x,Xt) =
(
K(xXt−1),K

(
x, x+

))
,K(Xt,Xt) =(

K(Xt−1,Xt−1) K
(
x+,Xt−1

)
𝜏

K
(
x+,Xt−1

)
K
(
x+, x+

)
)
, Σ𝜀,k(t) =

(
Σ𝜀,k(t−1) 0
0 V

(
x+

)
n−1t,x+

)
. Denote b = K(x,Xt−1), d = K

(
x+, x+

)
+ 𝜏

−2V
(
x+

)
n−1t,x+ , e =

(
K(Xt−1,Xt−1) + 𝜏

−2Σ𝜀,k(t−1)
)−1

b𝜏 , and g = (d − be)−1. Then,
(
K(Xt,Xt) + 𝜏

−2Σ𝜀,k(t)
)−1

=
⎛
⎜
⎜
⎜
⎝

K(Xt−1,Xt−1) + 𝜏
−2Σ𝜀,k(t−1)K

(
x+,Xt−1

)
𝜏

K
(
x+,Xt−1

)
K
(
x+, x+

)
+
V
(
x+

)

nt,x+

⎞
⎟
⎟
⎟
⎠

−1

=

((
K(Xt−1,Xt−1) + 𝜏

−2Σ𝜀,k(t−1)
)−1 + gee𝜏 −ge

− ge𝜏 g

)

.

(B2)
Plugging (B1) into (B2) yields

Δt−1|x+(x) = 𝜏
2(gK

(
x+Xt−1

)
eeτK

(
x+Xt−1

)τ

+K
(
x, x+

)
(−geτ)K

(
x+,Xt−1

)
τ

+ K
(
x+,Xt−1

)
(−ge)K

(
x+, x+

)

+K
(
x, x+

)
gK

(
x, x+

))

= 𝜏
2g
(
K
(
x+,Xt−1

)
ee𝜏K

(
x+,Xt−1

)
𝜏

−2K
(
x+,Xt−1

)
eK

(
x+, x+

)
+K

(
x, x+

)
K
(
x, x+

))

=
Cov2t−1

(
x, x+

)

𝜎
2
t−1(x+) +

V(x+)
nt,x+

.

If x+ has been visited, without loss of generality,
assume it to be the ith existing design point, xi, then
Δt−1|xi (x) can bewritten as below following the proof in [8],

Δt−1|xi (x) = 𝜎
2
t−1(x) − 𝜎

2
t−1|xi

(x) = 𝜏
2

⎛
⎜
⎜
⎜
⎝

K(xXt−1)

((
K(XtXt)+𝜏

−2Σ𝜀,k(t)
)−1−

(
K(Xt−1Xt−1)+𝜏

−2Σ𝜀,k(t−1)
)−1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≔Bk

K
(
x,Xt−1

)
𝜏

⎞
⎟
⎟
⎟
⎟
⎠

,

where Xt = Xt−1. By the Sherman-Morrison formula, we
have

Bk =

(
K(Xt−1,Xt−1) + 𝜏

−2Σ𝜀,k(t−1)
)−1
⋅,i

⋅
(
K(Xt−1,Xt−1) + 𝜏

−2Σ𝜀,k(t−1)
)−1
i,⋅

(
K(Xt−1,Xt−1) + 𝜏

−2Σ𝜀,k(t−1)
)−1
i,i

−
(
𝜏
−2
(
V(xi)
nt−1,i

− V(xi)
nt,i

))

,

where A⋅,i denotes the ith column of matrix A, and Ai,⋅
denotes the ith row of matrix A. It follows that

Δt−1|xi(x)

=
𝜏
2
([
K(x,Xt−1)

(
K(Xt−1,Xt−1) + 𝜏

−2Σ𝜀,k(t−1)
)−1]

(i)

)2

(
K(Xt−1,Xt−1) + 𝜏−2Σ𝜀,k(t−1)

)−1
i,i −

(
𝜏−2

(
V(xi)
nt−1,i

− V(xi)
nt,i

)) ,

where b(i) denotes the ith entry of vector b.

APPENDIX C. PROOF OF THEOREM 3.2

Lemmas 1 and 2 upper bound 𝛽k(t) by a function of k(t),
the number of design points, which can be easily general-
ized to a function of t, the number of iterations. Such an
upper bound supports the proof of Theorem1,which starts
by transforming the uniform bound given in Proposition 1
to a function of the iteration index t. This helps us find an
analytical form of 𝛽(i). To prove Theorem 1, we first begin
with the proof of Lemma 1 using Lemma 2.
C.1. Proof of Lemma 1
The proof for Lemma 1 relies on Lemma 2 which is stated
below.

Lemma 2. In the uniform bound given in (4),
𝛾k(t) ≔ log

(
|Ik(t) + 𝜏

2Σ−1
𝜀,k(t)K(XtXt)|

)
is equiva-

lent to
∑k

i=1 log
(
1 + 𝜏

2nt,iV(xi)−1𝜎2t (xi)
)
.

Proof . The proof follows Appendix A in [15]. We
abbreviate k(t), the number of design points on the
tth iteration, to k, to ease notation. Define Bk = I +
𝜏
2
𝜱

𝜏

kΣ
−1
𝜀,k(t) 𝜱k, where 𝜱k = (𝜱(x1), … , 𝜱(xk))τ with

𝜱 (xi) = (𝜙1(xi), 𝜙2(xi), …) for i = 1, 2, … , k is a k ×∞
matrix. Meanwhile, K(Xt,Xt) = Φk Φτ

k and K
(
x, x′

)
=

𝜱(x)𝜏 𝜱
(
x′
)
. Then, we have

Bk𝜱𝜏

k =
(
Ik + 𝜏

2Σ−1
𝜀,k(t)K(Xt,Xt)

)
𝜱

τ
k

= 𝜱
𝜏

k + 𝜏
2
𝜱

𝜏

kΣ
−1
𝜀,k(t)𝜱k𝜱

τ
k

= 𝜱
𝜏

k

(
Ik + 𝜏

2Σ−1
𝜀,k(t)𝜱k𝜱

τ
k

)

= 𝜱
τ
k

(
Ik + 𝜏

2Σ−1
𝜀,k(t)K(Xt,Xt)

)
.
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Since det(AC) = det(A) det(C), using A = Bk−1 and
C = 1 + 𝜏

2 nt,k
V(xk)‖𝜙(xk)‖B

−1
k−1
, we have

log
(
det

(
Ik + 𝜏

2Σ−1
𝜀,k(t)K(Xt,Xt)

))
= log (det (Bk))

= log
(
det

(
Bk−1 + 𝜏

2 nt,k
V(xk)

𝜙(xk)𝜙(xk)T
)

= log
(
det (Bk−1) det

(
1 + 𝜏

2 nt,k
V(xk)

‖𝜙(xk)‖B−1
k−1

))

= log

(

det (B0)
k∏

i=1

(
1 + 𝜏

2 nt,i
V(xi)

‖𝜙(xk)‖B−1
i−1

))

= log
( k∏

i=1

(
1 +

nt,i
V(xi)

𝜎
2
t (xi)

=
k∑

i=1
log

(
1 +

nt,i
V(xi)

𝜎
2
t (xi)

)
.

Based on the proof of Lemma 2, Lemma 1 can be
proved as follows.

Proof. By Lemma 2, we have

𝛽k(t) =

√√√√
k(t)∑

i=1
log

(
1 + nt,i

V(xi)𝜎
2
t (xi)

)
− 2 log 𝛿 + +𝜏−1 ∥ f ∥K

≤

√√√√
k(t)∑

i=1
log

(
1 + 𝜏2

Vmin(t)

)
− 2 log 𝛿 + +𝜏−1 ∥ f ∥K

=
√
k(t) log

(
1 + 𝜏2

Vmin(t)

)
− 2 log 𝛿 + +𝜏−1 ∥ f ∥K ,

where recall that Vmin(t) ≔ min
i=1,2,… ,k(t)V(xi)∕nt,i. ▪

C.2. Proof of Theorem 1
Based on Lemmas 1 and 2, we can prove Theorem 1 in the
same vein as the proof of Theorem 1 in [9]. The flow of the
proof is outlined next, with specific details omitted for the
sake of brevity.

The proof consists of three parts, and the extension to
the heteroscedastic noise setting concentrates on the sec-
ond part. The first part is to prove the least cost each epoch
requested to achieve (1 + 𝛿)𝜂(i) confidence for all points in

the uncertain setMt is c
(
S∗t(i)

)
log

(
|Mt(i)−1|𝛽

2
(i)

(
𝛿

2
𝜂
2
(i)

)−1
)
,

where S∗t(i) is the optimal solution to the problem stated
below as given in (C1), and recall that |M| denotes the
cardinality of set M, and t(i) denotes the index of the first
iteration of the ith epoch. We first define the function
gt(S) as the decrease in the truncated variance across the
unclassified points in setMt after adding points in set S as
follows:

gt(S) =
∑

x∈Mt−1

max

{

𝜎
2
t−1(x),

𝜂
2
(i)

𝛽
2
(i)

}

−
∑

x∈Mt−1

max

{

𝜎
2
t−1|S(x),

𝜂
2
(i)

𝛽
2
(i)

}

,

and its maximum gt,max which can be understood as the
excess variance:

gt,max ≔
∑

x∈Mt−1

max

{

0, 𝜎2t−1(x) −
𝜂
2
(i)

𝛽
2
(i)

}

.

Thus, in light of Assumption 2, Algorithm 1 can be
treated as a greedy rule for solving the following submod-
ular optimization problem:

min
S

c(S)

subject to gt(S) = gt,max.
(C1)

Then, by Lemma 2 in [25], we have

gt+1,max ≤

(

1 − c(xt)
c
(
S∗t

)

)

gt,max,

and hence

gt+l,max
gt,max

≤ exp

(

−
∑t+l

t′=t+1c(xt′ )
c
(
S∗t

)

)

for l ≥ 1,

if the tth and the (t + l)th iterations are in the same
epoch. Thus, if we want to reduce all but a propor-
tion 𝛾 of the excessive variance, it takes cost at least
c
(
S∗t(i)

)
log 𝛾−1. According to Algorithm 1, it requires 𝛾 to

be 𝛿
2
𝜂
2
(i)

(
|Mt(i)−1|𝛽

2
(i)

)−1
.

The second part is to prove the maximum cost C(i)
required by each epoch via mathematical induction on
the epoch number, which is detailed discussed in [23]. To
extend their proof to the heteroscedastic noise case, we
require that 𝛽(i) as given in (10) is an upper bound for
all 𝛽k(t) in the ith epoch. This result can be validated by
Lemma 1 and the following two facts: (1) t is always larger
than or equal to k(t); and (2)

∑
i′≤i C(i′)c−1min is always larger

than t.
Finally, by Definition 2 in Section 3, to achieve

ϵ-accuracy, we require 2(1 + 𝛿)𝜂(i−1) > ϵ∕2, hence 4(1 +
𝛿)𝜂(i−1) > ϵ. Therefore, if we have Cϵ =

∑
i∶4(1+𝛿)𝜂(i−1)>ϵ

C(i),
Algorithm 1 can be validated to achieve the ϵ-accuracy
guarantee.
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APPENDIX D. PROOF OF PROPOSITION 3

Proof . If the selected point on the tth iteration is an
existing point, assume it to be the ith point, xi. Then the
predictive mean can be written as:

𝜇t(x) = 𝜇t−1(x) + K(x,Xt−1)⋅
((
K(Xt,Xt) + 𝜏

−2Σ𝜀,k(t)
)−1(yt−1 + Δyt−1

)

−
(
K(Xt−1,Xt−1) + 𝜏

−2Σ𝜀,k(t−1)
)−1yt−1

)

= 𝜇t−1(x) + K(x,Xt−1)
((
K(Xt,Xt) + 𝜏

−2Σ𝜀,k(t)
)−1)

−
(
K(Xt−1,Xt−1) + 𝜏

−2Σ𝜀,k(t−1)
)−1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≔Di

yt−1

+ K(x,Xt−1)
(
K(Xt,Xt) + 𝜏

−2Σ𝜀,k(t)
)−1Δyt−1

= 𝜇t−1(x) + K(x,Xt−1)Diyt−1 + K(x,Xt−1)
(
K(Xt,Xt) + 𝜏

−2Σ𝜀,k(t)
)−1Δyt−1,

(D1)

where Δyt−1 = yt − yt−1 =
⎛
⎜
⎜
⎜
⎝

0, … , 0
⏟⏟⏟

i−1

,
nt−1,iyt−1,i+Δnt−1,iΔyt−1,i

nt,i

−yt,i, 0, … , 0
⏟⏟⏟

k−i

⎞
⎟
⎟
⎟
⎠

, Δyt−1,i denotes the sample average

at the ith design point collected on the tth
iteration. By Assumption 3, we have Δyt−1,i ∼
𝒩

(
𝜇t−1(xi), 𝜎2t−1(xi) + V(xi)∕Δnt,i

)
. Thus, we have

K(x,Xt−1)
(
K(Xt,Xt) + 𝜏

−2Σ𝜀,k(t)
)−1Δyt−1

=
[
K(x,Xt−1)

(
K(Xt−1,Xt−1) + 𝜏

−2Σ𝜀,k(t−1)
)−1]

(i)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≔Ci(
nt−1,iyt−1,i + Δnt−1,iΔyt−1,i

nt,i
− yt−1,i

)

=
Δnt−1,iCi

nt,i
(
Δyt−1,i − yt,i

)
,

(D2)

where recall that [b](i) is the ith element of vector b.
Then, for the super-level set Ht, we have

𝜇t(x) − 𝛽k(t−1)𝜎t−1|xi(x) > h − ϵ0. (D3)

Plugging (D2) into (D1) and combining with (D3)
yields

𝜇t−1(x) + K(x,Xt−1)Diyt−1 +
Δnt−1,iCi

nt,i
(
Δyt−1,i − yt−1,i

)

− 𝛽k(t−1)𝜎t−1|xi(x) > h − ϵ0 (D4)

⇒
Δnt−1,iCi

nt,i
(
Δyt−1,i − yt−1,i

)
> h − ϵ0

+ 𝛽k(t−1)𝜎t−1|xi (x) − 𝜇t−1(x) − K(x,Xt−1)Diyt−1. (D4)

If Δnt−1,iCi
(
nt,i

)−1
> 0, we can write (D4) as

Δyt−1,i >

h − ϵ0 + 𝛽k(t−1)𝜎t−1|xi (x) − 𝜇t−1(x)
−K(x,Xt−1)Diyt−1

Δnt−1,iCi
nt,i

+ yt−1,i.

Then, the expectation that any point in the prediction
set (i.e., x ∈ ) is included in the super-level set is given by

∫

∞

−∞
1
{
𝜇t(x) − 𝛽k(t−1)𝜎t(x) > h − 𝜖0

}
p
(
Δyt−1,i

)
dΔyt−1,i

=
∫

∞

−∞
1

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

Δyt−1,i>

h − 𝜖0 + 𝛽k(t−1)𝜎t−1|xi(x)
−𝜇t−1(x) − K(x,Xt−1)Diyt−1

|Δnt−1,iCi
nt,i

|
+yt−1,i

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≔R+
i (x)

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

× p
(
Δyt−1,i

)
dΔyt−1,i

=
∫

+∞

−∞
1

⎧
⎪
⎪
⎨
⎪
⎪
⎩

z >
R+
i (x) − 𝜇t−1(xi)

√
𝜎
2
t−1(xi) +

V(xi)
Δnt,i

⎫
⎪
⎪
⎬
⎪
⎪
⎭

𝜙(z)dz

=
∫

+∞

−∞
1

⎧
⎪
⎪
⎨
⎪
⎪
⎩

−z < −
R+
i (x) − 𝜇t−1(xi)

√
𝜎
2
t−1(xi) +

V(xi)
Δnt,i

⎫
⎪
⎪
⎬
⎪
⎪
⎭

𝜙(z)dz

= Φ

⎛
⎜
⎜
⎜
⎜
⎝

−
R+
i (x) − 𝜇t−1(xi)

√
𝜎
2
t−1(xi) +

V(xi)
𝚫nt,i

⎞
⎟
⎟
⎟
⎟
⎠

,

(D5)
where p

(
Δyt−1,i

)
is the probability density function of

Δyt−1,i. If Δnt−1,iCi
(
nt,i

)−1
< 0, the expectation that any

point in the prediction set (i.e., x ∈ ) is included in the
super-level set is given by

∫

∞

−∞
1
{
𝜇t(x)−𝛽k(t−1)𝜎t−1|xi (x) > h − 𝜖0

}
p
(
Δyt−1,i

)
dΔyt−1,i

=
∫

∞

−∞
1

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

Δyt−1,i <

h − 𝜖0 + 𝛽k(t−1)𝜎t−1|xi (x)
−𝜇t−1(x) − K(x,Xt−1)Diyt−1

|Δnt−1,iCi
nt,i

|
+ yt−1,i

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

× p
(
Δyt−1,i

)
dΔyt−1,i
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=
∫

+∞

−∞
1

⎧
⎪
⎪
⎨
⎪
⎪
⎩

z < −
R+
i (x) − 𝜇t−1(xi)

√
𝜎
2
t−1(xi) +

V(xi)
Δnt,i

⎫
⎪
⎪
⎬
⎪
⎪
⎭

𝜙(z)dz

= Φ

⎛
⎜
⎜
⎜
⎜
⎝

−
R+
i (x) − 𝜇t−1(xi)

√
𝜎
2
t−1(xi) +

V(xi)
Δnt,i

⎞
⎟
⎟
⎟
⎟
⎠

. (D6)

Equations (D5) and (D6) are in the same form. Hence,
the probability that any point in the prediction set (i.e., x ∈
) is classified to the super-level set is given by

Φ

⎛
⎜
⎜
⎜
⎜
⎝

−
R+
i (x) − 𝜇t−1(xi)

√
𝜎
2
t−1(xi) +

V(xi)
Δnt,i

⎞
⎟
⎟
⎟
⎟
⎠

. (D7)

Similarly, the probability that any point in the predic-
tion set (i.e., x ∈ ) belongs to the sub-level set can be
shown to be

Φ

⎛
⎜
⎜
⎜
⎜
⎝

R−
i (x) − 𝜇t−1(xi)

√
𝜎
2
t−1(xi) +

V(xi)
Δnt,i

⎞
⎟
⎟
⎟
⎟
⎠

, (D8)

where

R−
i (x) =

h + ϵ0 − 𝛽k(t−1)𝜎t−1|xi(x)
−𝜇t−1(x) − K(x,Xt−1)Diyt−1

|Δnt−1,iCi
nt,i

|
+ yt−1,i.

Finally, the expected number of points in the
super-level set and the sub-level set follows as the
summation of (D7) and (D8) over the prediction set  :

E
[
|HLt(xiy(xi))|

]
=

∑

x∈
Φ

⎛
⎜
⎜
⎜
⎜
⎝

−
R+
i (x) − 𝜇t−1(xi)

√
𝜎
2
t−1(xi) +

V(xi)
Δnt,i

⎞
⎟
⎟
⎟
⎟
⎠

+
∑

x∈
Φ

⎛
⎜
⎜
⎜
⎜
⎝

R−
i (x) − 𝜇t−1(xi)

√
𝜎
2
t−1(xi) +

V(xi)
Δnt,i

⎞
⎟
⎟
⎟
⎟
⎠

.

APPENDIX E. PROOF OF PROPOSITION 4

Proof . We compute the expected integral on the num-
ber of classified points over h ∈  as follows. We separate
the calculation into two parts: one for the super-level set
and the other for the sub-level set. Following the proof
process in Appendix D for each part leads to the final
expression.

E
∫

∞

−∞
|HLht−1

(
x+, y

(
x+

))
| − |HLht−1|dh

= E
∫

∞

−∞

∑

x∈
1
{
𝜇t(x) − 𝛽k(t−1)𝜎t−1|x+(x) > h − 𝜖0

}

− 1
{
𝜇t−1(x) − 𝛽k(t−1)𝜎t−1(x) > h − 𝜖0

}
dh

+ E
∫

∞

−∞

∑

x∈
1
{
𝜇t(x) + 𝛽k(t−1)𝜎t−1|x+ < h + 𝜖0

}

− 1
{
𝜇t−1(x) + 𝛽k(t−1)𝜎t−1(x) < h + 𝜖0

}
dh

= E

∑

x∈
∫

∞

−∞
1
{
h < 𝜇t(x) − 𝛽k(t−1)𝜎t−1|x+(x) + 𝜖0

}

− 1
{
h < 𝜇t−1(x) − 𝛽k(t−1)𝜎t−1(x) + 𝜖0

}
dh

+ E

∑

x∈
∫

∞

−∞
1
{
h > 𝜇t(x) + 𝛽k(t−1)𝜎t−1|x+ − 𝜖0

}

− 1
{
h > 𝜇t−1(x) + 𝛽k(t−1)𝜎t−1(x) − 𝜖0

}
dh

= E

∑

x∈
∫

𝜇t(x)−𝛽k(t−1)𝜎t−1|x+ (x)+𝜀0

𝜇t−1(x)−𝛽k(t−1)𝜎t−1(x)+𝜀0
dh

+ E

∑

x∈
∫

−(𝜇t(x)+𝛽k(t−1)𝜎t−1|x+−𝜀0)

−(𝜇t−1(x)+𝛽k(t−1)𝜎t−1(x)−𝜀0)
dh

= 2𝛽k(t−1)
∑

x∈

(
𝜎t−1(x) − 𝜎t−1|x+(x)

)
.

Then, since 𝛽k(t−1) and 𝜎t−1(x) are fixed on the tth
iteration, we have

arg max
x+∈

2𝛽k(t−1)
∑

x∈

(
𝜎t−1(x) − 𝜎t−1|x+(x)

)

⇔ arg min
x+∈

∑

x∈
𝜎t−1|x+(x).

□
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