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In this work, we propose a method to construct a uniform error bound for the SK predictor. In investigating the asymptotic
properties of the proposed uniform error bound, we examine the convergence rate of SK’s predictive variance under the
supremum norm in both ixed and random design settings. Our analyses reveal that the large-sample properties of SK prediction
depend on the design-point sampling scheme and the budget allocation scheme adopted. Appropriately controlling the order
of noise variances through budget allocation is crucial for achieving a desirable convergence rate of SK’s approximation
error, as quantiied by the uniform error bound, and for maintaining SK’s numerical stability. Moreover, we investigate the
impact of noise variance estimation on the uniform error bound’s performance theoretically and numerically. We demonstrate
the superiority of the proposed uniform bound to the Bonferroni correction-based simultaneous conidence interval under
various experimental settings through numerical evaluations.
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1 Introduction

In the recent decades, research on metamodeling techniques for stochastic simulation experiments has received
considerable attention from the simulation research community [2, 15, 34]. Several metamodeling methodologies,
such as stochastic kriging (SK) [2, 10, 11], have been proposed for approximating the mean response surface

implied by a stochastic simulation.
Built on Gaussian process regression (GPR), SK is suitable for simulation metamodeling under the impact of

heteroscedasticity (i.e., the simulation output variance varies across the input space) [12, 46]. Similar to kriging,
a popular GPR-based methodology for design and analysis of deterministic computer experiments [37], a key
element of SK prediction is the use of conditional inference based on GP. At each prediction point in the input
space, the conditional distribution of a GP is normal with the predictive mean and the predictive variance in
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closed form. A pointwise conidence interval of the mean response value at a given prediction point with a
prescribed coverage probability can be constructed based on this conditional distribution. In many applications,
however, it is often desirable to have a joint conidence region of the mean response values at an arbitrary set of
prediction points with a prescribed simultaneous coverage probability. For example, in materials science and
engineering, researchers are interested in chemical sensor calibration in a drifting environment via GPR-based
statistical inference of the functional relationship between the sensor response and the analyte concentration and
the environmental factors with rigorous uncertainty quantiication, aiming at obtaining a calibration model of
the desired quality [20]. To draw comprehensive and reliable inferences regarding the efectiveness of a treatment
on individual patients, investigators in clinical trial studies aim to infer individualized treatment efects based
on observational data via multi-task GPR modeling. Simultaneous conidence intervals are sought to provide
measures of conidence in the estimates, a crucial aspect for realizing the full potential of precision medicine
[1]. To the best of our knowledge, the methodology for constructing uniform error bounds for SK is relatively
underdeveloped. Existing approaches to construct a joint conidence region for SK typically rely on bootstrapping
[20, 26] and correction methods such as Bonferroni or Šidák [1, 14] and only apply to a inite number of prediction
points. It would be desirable to develop a method capable of providing high-probability bounds on the maximum
approximation error achieved by the SK predictor across the input space. Such a bound proves especially valuable
in addressing predictive uncertainty, providing an overall measure of conidence in the model’s predictions across
the entire input space.
A closely related topic in nonparametric data analysis is simultaneous conidence bands (SCBs). SCBs play

a crucial role in global inference for unknown functions, such as detecting the overall shape of an unknown
function or testing whether the curve adheres to speciic functional forms that describe the underlying input-
output relationship [5, 6, 38]. SCBs were irst constructed for nonparametric density estimation [4] and further
extended to nonparametric regression in both the random design [22] and the ixed design settings [18]. Recent
advancements in nonparametric methodology for constructing SCBs have signiicantly expanded in terms of
techniques and objectives. For example, asymptotically correct SCBs were proposed for estimating either the
mean or the variance function or both of a nonparametric regression model [6]. Various SCBs for single-index
link functions [21], cumulative distribution functions [43], and functional data [8] also emerged. Adaptive SCBs
that automatically adjust to the smoothness of the underlying function were also investigated [7]. Last but not
least, various approaches were explored to construct bootstrap-based SCBs for enhancing the small sample size
performance [24] or for obtaining the minimum band width [38].
Uniform error bounds for GPR are not new; they have been studied as an essential component of GP-upper

conidence bound (GP-UCB) approaches. These methods are used to address stochastic multi-armed bandit
problems with a continuous arm set, assuming that the underlying response function of interest is either a
sample from a GP or has a bounded reproducing kernel Hilbert space norm [see, e.g., 13, 40]. Recently, there
has been a growing interest in establishing uniform error bounds for various GPR models. These bounds are
crucial in enhancing our understanding of the convergence rate and uncertainty quantiication associated with
the respective models. For example, Wang et al. (2020) derived uniform error bounds of the simple and universal
kriging predictor built on noiseless observations [47]. Lederer and Umlauft (2019) proposed a uniform error
bound for GPR under the impact of homoscedastic noise, where the true underlying function � is assumed to
be a realization of a GP with kernel � satisfying some regularity conditions [29]. However, the exploration of a
uniform error bound for GPR under heteroscedasticity has been limited.

In this work, we extend the approach of [29] and propose a method to construct a uniform error bound for the
SK predictor. In investigating the asymptotic properties of the proposed uniform error bound, we examine the
convergence rate of SK’s predictive variance under the supremum norm in both ixed and random design settings.
Previous work provided theoretical analyses of the predictive variance for GPR modeling with observations
subject to zero [41] and homoscedastic noise [28, 44]. Our investigation ills the gap by conducting a counterpart
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study of SK’s predictive variance, which can be of independent interest. Our analyses reveal that the large-sample
properties of SK prediction depend on the design-point set determined by the design-point sampling scheme
and the budget allocation scheme adopted. Roughly speaking, adopting a quasi-uniform design facilitates faster
predictive variance convergence rates. Given a suiciently large simulation budget, the smoother the underlying
function of interest is and the lower the input-space dimensionality is, the fewer distinct design points are
required, but more replications are needed at each, and vice versa. Moreover, this work reveals that appropriately
controlling the order of noise variances through budget allocation is crucial for achieving a desirable convergence
rate of SK’s approximation error, as quantiied by the uniform error bound, and for maintaining SK’s numerical
stability. Last but not least, we evaluate the impact of noise variance estimation on the uniform error bound’s
performance theoretically and numerically.

The rest of the paper is organized as follows. Section 2 provides a review of SK and a summary of key notation
used in this work. Section 3 presents the main results on the proposed uniform error bound for the SK predictor.
Section 4 analyzes the convergence rate of SK’s predictive variance under the supremum norm in the ixed design
setting and studies the corresponding convergence order of the uniform error bound. The discussion of the
random design setting is deferred to Appendix C. Section 5 reveals some implications on simulation experimental
designs for SK and theoretically investigates the impact of noise variance estimation on the uniform error bound.
Section 6 conducts numerical experiments to demonstrate the proposed uniform bound’s performance. Finally,
Section 7 concludes this work with a discussion of our major indings and avenues for future research.

2 Background

This section ofers a concise review of SK and establishes some notation that will be useful in the rest of the work.

2.1 Review of Stochastic Kriging

In SK, the system output obtained at a point x in the �-dimensional input space X ⊆ R� on the �th simulation
replication Y� (x) is modeled as

Y� (x) = � (x) + � � (x), (1)

where � (x) denotes the unknown true mean response that we intend to estimate at x ∈ X. For ease of exposition,
we assume that � : X ↦→ R represents a sample of a stationary mean-zero GP [37], in line with a vast array of
GP literature [13, 32, 40, 44]. The spatial covariance between any two points in the GP is given by ΣM (x, x′) :=
�2� (x, x′), where ΣM : R� × R� → R+ denotes the spatial covariance function, �2 is the spatial variance of the
GP, and � (x, x′) denotes the kernel function satisfying � (x, x′) ≤ 1 for all x, x′ ∈ X. The simulation noise terms
incurred at x on diferent replications, � � (x)’s, are assumed to be independent and identically distributed (i.i.d.)
normal random variables with mean zero and input-dependent variance V(x) := Var(� � (x)). The normality of
� � (x) could be anticipated since in a discrete-event simulation, the output Y� (x) typically represents the average
of a large number of more basic random variables obtained on the �th simulation replication.
Given a ixed simulation budget � to expend for approximating the mean response surface via SK, an experi-

mental design for performing the simulation runs can be given as {(x� , �� )��=1 :
∑�

�=1 �� = �}, where � denotes
the number of distinct design points selected from the input space X, x1, x2, . . . , x� denote the � design points
in the design-point set D := {x� , � = 1, 2, . . . , �}, and �� represents the number of replications to apply at x� ,
� = 1, 2, . . . , � . Based on the simulation dataset D�,� = {x� , {Y� (x� )}���=1, � = 1, 2, . . . , � :

∑�
�=1 �� = �} obtained, one

can obtain the SK predictor of � (x0) at any x0 ∈ X as follows:

��,� (x0) = ΣM (x0,X)⊤ (ΣM (X,X) + Σ�)−1 Ȳ; (2)

and its corresponding predictive variance is given by

�2
�,� (x0) = ΣM (x0, x0) − ΣM (x0,X)⊤ (ΣM (X,X) + Σ�)−1 ΣM (x0,X), (3)
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where X =

(
x⊤1 , x

⊤
2 , . . . , x

⊤
�

)⊤
denotes the � ×� design matrix; Ȳ =

(
Ȳ(x1), Ȳ(x2), . . . , Ȳ(x� )

)⊤
denotes the � × 1

vector of the sample averages of simulation outputs, with Ȳ(x� ) = � (x� ) + �̄ (x� ) and �̄ (x� ) denoting the average
random noise incurred at x� , � = 1, 2, . . . , � . With a slight abuse of notation, we use ΣM (X,X) to denote the � × �

covariance matrix that records the spatial covariances across the � design points and ΣM (x0,X) to represent
the � × 1 vector that contains the spatial covariances between the � design points and the prediction point x0;
and the kernel matrix � (X,X) and the kernel vector � (x0,X) can be understood in the same manner. The � × �

diagonal matrix Σ� denotes the variance-covariance matrix of the � × 1 vector of average random noise terms
�̄ = (�̄ (x1), �̄ (x2), . . . , �̄ (x� ))⊤ given by Σ� = diag (V(x1)/�1,V(x2)/�2, . . . ,V(x� )/�� ).

A pointwise conidence interval (CI) of � (x0) at a given prediction point x0 ∈ X with a prescribed conidence
level (1 − �) can be constructed as ��,� (x0) ± �1−�/2��,� (x0), where � ∈ (0, 1) and �1−�/2 denotes the (1 − �/2)-
quantile of the standard normal distribution [25]. One way to construct a conidence region for � (·) at� prediction
points (say, x0,� ∈ X, � = 1, 2, . . . , � ) with conidence level (1−�) is to apply the Bonferroni correction and obtain a
simultaneous conidence bound comprising � pointwise conidence intervals [26]: ��,� (x0,� ) ±�1−�/(2� )��,� (x0,� ),
� = 1, 2, . . . , � . Nevertheless, the literature on constructing a joint conidence bound for SK over an arbitrary set
of prediction points is sparse.

2.2 Notation

In the remainder of this work, we employ the following notation consistently. Given a function � : X ↦→ R,
let ∥�∥∞ denote its supremum norm. For a vector v, ∥v∥ denotes the Euclidean norm of v. Let I� denote the
� × � identity matrix. For any symmetric matrix Q, the ℓ2-operator norm or spectral norm of Q is denoted as
∥Q∥, deined as ∥Q∥ := �max (Q), where �max (Q) and �min (Q) respectively denote the maximum and minimum
eigenvalues of Q. Deine V�,max := max

1≤�≤�
V(x� )/�� and V�,min := min

1≤�≤�
V(x� )/�� as the maximum and minimum

noise variance at the � design points. Let ≲ and ≳ denote inequalities up to a constant multiple and write � ≍ �

when both � ≲ � and � ≳ � hold.

3 Uniform Error Bound for Stochastic Kriging

This section presents the main results regarding the construction of the proposed high-probability uniform error
bound and then reveals its asymptotic order as the number of design points � and the budget � allocated approach
ininity.

To deepen understanding, we sketch the idea behind constructing the uniform error bound, which essentially
involves two main steps. First, consider any grid of points covering the input space X with the grid constant
� , denoted as X� , satisfying maxx∈X minx′∈X�

∥x − x′∥ ≤ � . Conceptually, we can visualize such a cover as a
collection of balls of radius � covering the input space X. We establish a high-probability uniform bound for the
approximation error |��,� (x′) − � (x′) | that holds simultaneously at all points x′ in the grid X� by leveraging
properties of the Gaussian distribution, which follows from model (1) and Expression (2) and accounts for both
sampling and response-surface uncertainty. This step introduces a dependency on the number of points in the grid
and is accounted for by the coeicient � (�) to be deined in (5) which involves the covering number� (�,X)Ðthe
minimum number of points in X� to cover X given the grid constant � . The second step is to extend such an
error bound from the points in the grid to any point in the input space X, yielding the high-probability uniform
error bound for SK. This extension is achieved by establishing the Lipschitz continuity of the predictive mean
��,� (·) and the modulus of continuity ���,� (·) for the predictive standard deviation ��,� (·) based on the Lipschitz
continuity and diferentiability of the covariance function ΣM (·, ·).

Theorem 1. Consider a zero mean Gaussian process deined through the continuous covariance function ΣM (·, ·)
with Lipschitz constant �Σ on the compact setX ⊂ R� . Also consider a continuous unknown function � : X → R with
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Lipschitz constant �� , and its noisy observations Y(·)’s satisfying the assumptions stipulated under model (1). Then,
the predictive mean function ��,� (·) and the predictive standard deviation ��,� (·) obtained based on a simulation

dataset D�,� = {x� , {Y� (x� )}���=1, � = 1, 2, . . . , � :
∑�

�=1 �� = �} are continuous with Lipschitz constant ���,� and

modulus of continuity ���,� (·) on X, which are respectively given by

���,� = �Σ
√
�



(ΣM (X,X) + Σ�

)−1Ȳ


 ,
���,� (h) =

︄
2h�Σ

(
1 + �




(ΣM (X,X) + Σ�

)−1


 max
x̃,x̃′∈X

ΣM (x̃, x̃′)
)
, (4)

where �Σ, the Lipschitz constant of the covariance function ΣM(·, ·), is deined as

�Σ := max
x̃,x̃′∈X






(
�ΣM (x̃, x̃′)

��̃1

�ΣM (x̃, x̃′)
��̃2

. . .
�ΣM (x̃, x̃′)

��̃�

)⊤



 ,
and ���,� (h) measures how much the value of ��,� (·) can vary when moving from one point to another within a

given distance h > 0. Given any � ∈ (0, 1), choose � ∈ R+ and set

� (�) = 2 log (� (�,X)/�) and ��,� (�) = (���,� + �� )� +
︁
� (�)���,� (�), (5)

then it holds true that

P
(
|��,� (x) − � (x) | ≤

︁
� (�)��,� (x) + ��,� (�),∀x ∈ X

)
≥ 1 − �, (6)

where �� denotes a Lipschitz constant of � (·) that holds with probability of at least 1 − �� with �� ∈ (0, 1) and can
be given as

�� :=
















︂
2 log

(
2�
��

)
max
x∈X

︃
Σ
�1
M
(x, x) + 12

√
6� max

{
max
x∈X

︃
Σ
�1
M
(x, x),

︃
���1

Σ

}
...︂

2 log
(
2�
��

)
max
x∈X

︃
Σ
��
M
(x, x) + 12

√
6� max

{
max
x∈X

︃
Σ
��
M
(x, x),

︃
����

Σ

}















;

���
Σ

denotes the Lipschitz constant of the partial derivative kernel Σ��
M
(x, x) on the set X for � = 1, 2, . . . , � , and

� := max
x̃,x̃′∈X

∥x̃ − x̃′∥.

Proof. Theorem 1 is inspired by Theorem 3.1 in [29], whose proof is in the same vein as those of Theorems
3.1 and 3.2 in [29]. Speciically, we replace the homogeneous noise variance-covariance matrix �2I� by the
heteroscedastic noise variance-covariance matrix Σ� in the proof of Theorem 3.1. The Lipschitz constant �� can
be obtained following the proof of Theorem 3.2. □

Some comments follow immediately. First and foremost, we can construct a uniform bound for the function
� (·) in light of Theorem 1: it holds with probability at least 1 − � that

��(x) ≤ � (x) ≤ ��(x), ∀x ∈ X, (7)

where ��(x) := ��,� (x) −
︁
� (�)��,� (x) −��,� (�) and��(x) := ��,� (x) +

︁
� (�)��,� (x) +��,� (�) are respectively

the lower and upper limits of the bound at x ∈ X. Second, the grid constant � is a parameter used in the derivation
of Theorem 1. Given a particular value of � , obtaining a closed-form expression for the covering number� (�,X)
can be challenging. However, it is typically convenient to upper bound� (�,X). For example, for a hypercubic set
X ⊆ R� , an upper bound of� (�,X) can be given as (1+ �/�)� , where � denotes the edge length of the hypercube.
Notice that � (�) and ��,� (�) in (5) can be obtained analytically given a simulation dataset D�,� and the covariance
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function ΣM (·, ·). Therefore, a probabilistic uniform error bound that holds true simultaneously for all x ∈ X can
be constructed with a prescribed error level � and a choice of the grid constant � .

The following result elucidates the order of the approximation error, quantiied by the uniform error bound, as
� and � approach ininity. Below we make the choice of grid constant � depend on the number of design points � ,
so � (�) and ��,� (�) depend on � as well. The notation � (�), �� (�), and ��,� (�) will be used hereinafter whenever
it is not cumbersome to emphasize the terms’ dependence on the number of design points � .

Theorem 2. Suppose that the assumptions of Theorem 1 are satisied. The experimental design ensures that as

the number of design points � increases, the number of observations obtained at each existing design point also

grows. Furthermore, for any ixed � ≥ 1, the numbers of replications allocated over the � design points satisfy that

V�,max/V�,min < ∞. Assume that the absolute value of the unknown function � : X → R of interest is bounded above

by �̄ ∈ R+. Given any � ∈ (0, 1), it holds that

P

(
sup
x∈X

|��,� (x) − � (x) | = O
((
�� (�) · � (�) · �V−1

�,min

) 1
2 + � (�) + � (�) · �V− 1

2

�,min
+
︁
�� (�) sup

x∈X
��,� (x)

))
≥ 1 − �.

Proof. Due to Theorem 1 with �� (�) = 2 log (� (� (�),X)/(���)) such that
∞∑
�=1

�� = 1/2 and the union bound

over all � ≥ 1, the following event holds true with probability of at least 1 − �/2:

sup
x∈X

|��,� (x) − � (x) | ≤
︁
�� (�) sup

x∈X
��,� (x) + ��,� (�), ∀� ≥ 1. (8)

A trivial bound for the covering number can be obtained by considering a uniform grid over the hypercube
containing X. This leads to� (� (�),X) ≤ (1 + �/� (�))� , where � = maxx̃,x̃′∈X ∥x̃ − x̃′∥. Therefore, we have

�� (�) ≤ 2� log (1 + �/� (�)) − 2 log(�� ) − 2 log(�). (9)

Furthermore, recall the deinition of ���,� in (4) from Theorem 1,

���,� = �Σ
√
�


(ΣM (X,X) + Σ�)−1 Ȳ



 .
Since the matrix ΣM (X,X) + Σ� is positive deinite and � (·) is bounded above by �̄ , it follows that

(ΣM (X,X) + Σ�)−1 Ȳ



 ≤ 

Ȳ

 /�min (ΣM (X,X) + Σ�) ≤ (
√
� �̄ + ∥�̄∥)/V�,min,

where the second inequality follows from the triangular inequality, and recall �̄ = (�̄ (x1), �̄ (x2), . . . , �̄ (x� ))⊤.
Given that �̄ is multivariate normally distributed with mean zero and variance-covariance matrix Σ� , ∥�̄∥2 is

equal to
�∑
�=1

���
2
� in distribution, where �� ’s are i.i.d. standard normal random variables and �� = V(x� )/�� , for

� = 1, 2, . . . , � , i.e., ∥�̄∥2 D
=

�∑
�=1

���
2
� . Then by Lemma 1 of [27], we have

P
©­«
∥�̄∥2 ≥ 2

(
�︁

�=1

V2 (x� )
�2�

) 1
2 √

��,� + 2V�,max��,� +
�︁

�=1

V(x� )
��

ª®¬
≤ exp(−��,�)

for any ��,� > 0. Therefore, with probability of at least 1 − exp(−��,�), we have

∥�̄∥2 ≤ 2

(
�︁

�=1

V2 (x� )
�2�

) 1
2 √

��,� + 2V�,max��,� +
�︁

�=1

V(x� )
��

.
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Hence, if we set ��,� = log (1/(���)) so that
∞∑
�=1

�� = 1/2, then applying the union bounds over all � ≥ 1 yields



(ΣM (X,X) + Σ�)−1 Ȳ


 ≤ ©­­­«

√
� �̄ + ©­«

2

(
�︁

�=1

V2 (x� )
�2�

) 1
2 √

��,� + 2V�,max��,� +
�︁

�=1

V(x� )
��

ª®¬

1
2 ª®®®¬

V−1
�,min (10)

for all � ≥ 1 with probability of at least 1 − �/2. Hence, by Theorem 1, the Lipschitz constant of the predictive
mean function ��,� (·) satisies

���,� ≤ �Σ
√
�
©­­­«
√
� �̄ + ©­«

2

(
�︁

�=1

V2 (x� )
�2�

) 1
2 √

��,� + 2V�,max��,� +
�︁

�=1

V(x� )
��

ª®¬

1
2 ª®®®¬

V−1
�,min

︸                                                                                           ︷︷                                                                                           ︸
:=��,�

, ∀� ≥ 1,

where ��,� denotes all the terms to the right of �Σ in the inequality above and recall ��,� = log (1/(���)).

Since
(∑�

�=1
V2 (x� )
�2
�

) 1
2 ≤

√
�V�,max,

∑�
�=1

V(x� )
��

≤ �V�,max, and V�,max/V�,min < ∞, and ��,� grows slowly (typically

logarithmically with � for some commonly used {�� } sequences), it follows that ���,� ≲ ��,� ≍ �V
− 1

2

�,min
with

probability of at least 1 − �/2.
The modulus of continuity ���,� (·) of the predictive standard deviation deined in (4) satisies

���,� (�) ≤
[
2�Σ� (�)

(
� max
x̃,x̃′∈X

ΣM(x̃, x̃′)V−1
�,min + 1

)] 1
2

, (11)

since


(ΣM (X,X) + Σ�)−1



 = �max

(
(ΣM (X,X) + Σ�)−1

)
= 1/�min (ΣM (X,X) + Σ�) ≤ 1/�min (Σ�) = 1

/
V�,min,

where we have used �min (ΣM (X,X) + Σ�) ≥ �min (ΣM (X,X)) + �min (Σ�) ≥ �min (Σ�) due to Weyl’s Theorem.

Therefore, it follows that ���,� (�) ≲
(
� (�) · �V−1

�,min

) 1
2
.

Due to the union bound, we have that ��,� (�) in (8) can be bounded above with probability of at least 1 − � as
follows:

��,� (�) =
︁
� (�)���,� (�) + (���,� + �� )� (�)

≤
[
�� (�) · 2�Σ� (�)

(
� max
x̃,x̃′∈X

ΣM (x̃, x̃′)
/
V�,min + 1

)] 1
2

+ �� � (�) + �Σ��,�� (�)

≲

(
�� (�) · � (�) · �V−1

�,min

) 1
2 + � (�) + � (�) · �V− 1

2

�,min
. (12)

Therefore, it follows from (8) and (12) that

P

(
sup
x∈X

|��,� (x) − � (x) | = O
((
�� (�) · � (�) · �V−1

�,min

) 1
2 + � (�) + � (�) · �V− 1

2

�,min
+
︁
�� (�) sup

x∈X
��,� (x)

))
≥ 1 − �.

□

We briely comment on Theorem 2, which sets up the foundation for the subsequent analysis. First and

foremost, the upper bound of the approximation error achieved at any x ∈ X,
︁
�� (�)��,� (x) + ��,� (�), consists

of two parts. From (9), we observe that the smaller the grid constant � (�), the greater the coeicient �� (�). To
guarantee a vanishing approximation error for ∀x ∈ X, the choice of � (�) must ensure that ��,� (�) → 0 and
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supx∈X
︁
�� (�)��,� (x) → 0 as the number of design points � and the total simulation budget � approach ininity.

It is worth noting that the grid constant � (�) can be chosen arbitrarily small, making the magnitude of ��,� (�)
negligible compared to

︁
�� (�)��,� (x) for ∀x ∈ X. We will use this fact to study the asymptotic performance of

the uniform error bound as �, � → ∞. Second, given a ixed total budget � to allocate at � distinct design points,
the budget allocation scheme adopted impacts the width of the uniform error bound through ��,� (x) and ��,� (�),
indicated by (8) and the upper bounds of ���,� (�) and ���,� . In particular, eicient unequal budget allocation
schemes can potentially reduce the magnitudes of ��,� (x) and ��,� (�) compared to the equal allocation scheme,
leading to a tighter uniform error bound. However, if � (�) is suiciently small, the impact of budget allocation
schemes may not be that obvious; see (12). Nonetheless, the explicit analysis of these impacts is challenging, and
we resort to numerical studies in Section 6 for a thorough investigation. Last but not least, understanding the
convergence rate of supx∈X ��,� (x) is crucial to determine the order of the vanishing approximation error. We
will conduct an in-depth investigation of this in Section 4.

4 Analysis of the Predictive Variance and the Uniform Error Bound in the Fixed Design Seting

In this section, we analyze the convergence rate of the predictive variance �2
�,�

(·) under the supremum norm

in the ixed design setting and subsequently elucidate the corresponding order of the proposed uniform error
bound. Due to space limitations, the discussion of the random design setting is deferred to Appendix C.

We concentrate on the ixed design setting in this section, commonly employed in the design and analysis of
computer experiments [37]. In this setting, the design points are chosen according to speciic sampling schemes
of our choice. Such designs encompass a variety of approaches, including, but not limited to, grid designs,
low-discrepancy sequences, maximin Latin hypercube designs, and optimal Latin hypercube designs. Our analysis
of the convergence rate of SK’s predictive variance in the ixed design setting leverages results from the scattered
data analysis literature, where the goal is to approximate or interpolate an underlying ixed function; see, e.g.,
[36] and [49].
Notice that the predictive variance �2

�,�
(x0) can be upper bounded as follows:

�2
�,� (x0) ≤ ΣM (x0, x0) − ΣM (x0,X)⊤

(
ΣM (X,X) + V�,maxI�

)−1
ΣM (x0,X), (13)

where recall V�,max := max
1≤�≤�

V(x� )/�� . Deine � := V�,max/�2 hereinafter in this section. We can rewrite the upper

bound for �2
�,�

(x0) given by the right-hand side of (13) as �2
(
�x0 (x0) − �̂x0 (x0)

)
, where �x0 (x′) := � (x0, x′) for

any x′ ∈ X and recall from Section 2.1 that � (x, x′) = ΣM(x, x′)/�2 for any x, x′ ∈ X is the kernel function; in
addition,

�̂x0 (x′) = � (x′,X)⊤ (� (X,X) + �I� )−1 � (X, x0).
Inspired by [36] and [49], we realize that, for any given prediction point x0 ∈ X, �̂x0 (·) is the solution to the
following regularized kernel based approximation using the noiseless observations of the function � := �x0 at the
� design points in the design-point set D = {x1, x2, . . . , x� } ⊆ X:

�� = �̂x0 := argmin
�∈H

{
�︁

�=1

(
� (x� ) − � (x� )

)2 + �∥� ∥2H

}
, (14)

where the solution �� (·) depends on the choice of the regularization parameter � = V�,max/�2, H denotes the
reproducing kernel Hilbert space (RKHS) associated with kernel � , and ∥ · ∥H denotes the norm equipped withH
(see a brief introduction to RKHS in Appendix B). Therefore, we can analyze the error achieved by the estimator,

speciically ∥ � −�� ∥∞ = ∥�x0 − �̂x0 ∥∞, to investigate the convergence properties of the predictive variance �2
�,�

(·)
under the supremum norm. To begin with, we introduce some useful deinitions next.
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Deinition 1. For � ∈ N, � ∈ [1,∞], and a domain X̃ ⊆ R� which is non-empty, open, and connected, the integer

order Sobolev space� �
� (X̃) is deined as

� �
� (X̃) = {� ∈ �� (X̃) : ∀� ∈ N

� , |� | ≤ �, �� � ∈ �� (X̃)},

where N� denotes the set of multi-indices of size � , |� | := ∑�
�=1 �� for a multi-index � = (�1, �2, . . . , �� ) ∈ N� , and

�� denotes the weak derivative operator corresponding to � which is deined as �� � =
� |� |

��1��2 ...���
� .

For any function � ∈� �
� (X̃), the (semi-)norms are given by

|� |� �
� ( X̃) :=

©­«
︁
|� |=�

∥�� � ∥�
�� ( X̃)

ª®¬
1/�

and ∥ � ∥� �
� ( X̃) :=

©­«
︁

|� | ≤�
∥�� � ∥�

�� ( X̃)
ª®¬
1/�

, if � ∈ [1,∞),

|� |� �
∞ ( X̃) := sup

|� |=�
∥�� � ∥�∞ ( X̃) and ∥ � ∥� �

∞ ( X̃) := sup
|� | ≤�

∥�� � ∥�∞ ( X̃) , if � = ∞,

with ∥ · ∥�� ( X̃) denoting the usual �� norm.

Sobolev spaces of fractional orders (� ∉ N) are deined analogously; see [3, 49] for details. In particu-

lar, for � > �/2, the Sobolev space � �
2 (R� ) can be written as � �

2 (R� ) =

{
� ∈ �2 (R� ) : ∥ � ∥� �

2 (R� ) < ∞
}
.

The Sobolev spaces on a subset (e.g., compact and convex) X ⊂ R� , � �
2 (X), can be deined

as � �
2 (X) :=

{
� : X → R� : ∃ �̆ ∈� �

2 (R� ) such that �̆ (x) = � (x),∀x ∈ X
}
, with norm ∥ � ∥� �

2 (X) :=

inf
{
∥ �̆ ∥� �

2 (R� ) : �̆ ∈� �
2 (R� ) and �̆ (x) = � (x),∀x ∈ X

}
. The RKHS H associated with kernel � is said to be

norm-equivalent to the Sobolev space� �
2 (X), if there exists constants �1, �2 > 0 such that

�1∥ � ∥� �
2 (X) ≤ ∥ � ∥H ≤ �2∥ � ∥� �

2 (X) , ∀� ∈ H .

That is, H is equivalent to� �
2 (X) as a set of functions. In this case, the kernel function � is called �-smooth.

One popular kernel function that is �-smooth is the Matérn kernel as given below.
For � > �/2, the Matérn kernel is given by

� (x, x′) = 21−(�−�/2)

Γ(� − �/2)

(︁
2 (� − �/2) ∥x − x′∥

�

)�−�/2
B�−�/2

(︁
2 (� − �/2) ∥x − x′∥

�

)
, (15)

where Γ is the Gamma function, B�−�/2 is the modiied Bessel function of the second kind of order � − �/2,
and � > 0 is the lengthscale parameter. The parameter � controls the smoothness level of functions in the
corresponding RKHS; the smaller its value, the rougher the functions.

Deinition 2. Given the bounded input space X ⊆ R� and the design-point set D = {x� , � = 1, 2, . . . , �} ⊆ X, the

ill distance ℎD,X and the separation distance �D are deined as

ℎD,X := sup
x∈X

min
1≤ �≤�

∥x − x� ∥, �D :=
1

2
min
1≤�,�≤�
�≠�

∥x� − x� ∥ .

The design-point set D is said to be quasi-uniform with respect to a constant ��� > 0 if �D ≤ ℎD,X ≤ ��� · �D .

Remark 1. A design-point set D with a small ill distance ℎD,X guarantees that every point in the input space
X is close to some design point in D, while D having a large separation distance �D indicates that the design
points in D are not clustered. Quasi-uniform designs achieve the optimal rates for the ill distance, namely,
ℎD,X ≍ �−1/� , ∀� ∈ N [48, 51]. For example, the design-point set comprising regular grid points in a hypercube

(0, 1)� is quasi-uniform. Points selected sequentially to minimize the GPR’s predictive variance for a �-smooth
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kernel with � > (�/2) + 1 form a quasi-uniform design. It is known that low-discrepancy point sets, e.g., the
Halton sequence and Sobol’ nets have small ill distances; and sequences such as the Halton sequence have a
ill distance ℎD,X ≲ �−1/� (log�), achieving the optimal rate up to a logarithmic factor [41]. Latin hypercube
designs (LHDs) are not necessarily quasi-uniform. However, variants of LHDs, such as maximin and minimax
LHDs, exist that optimize the ill or separation distance [51].

We will ground the upcoming analysis on the smoothness level of the kernel function � , derive the conver-
gence rate of the predictive variance under the supremum norm, and investigate the asymptotic order of the
approximation error as quantiied by the uniform error bound in the ixed design setting. Subsections 4.1 and 4.2
elaborate on the inite smoothness and ininite smoothness cases, respectively.

4.1 Finite Smoothness Case

This subsection performs an analysis in the ixed design setting when the kernel � has a inite smoothness level.
We start with the following result which provides an upper bound on the error of the regularized kernel based
approximation �� given in (14).

Proposition 1 (Proposition 3.6 in Wendland and Rieger [49]). Let � = � + � with � > �/2 and � ∈ (0, 1].
Suppose that X ⊆ R� is bounded and satisies an interior cone conditionÐthere exists an angle � ∈ (0, �/2) and a
radius �̃ > 0 such that for every x ∈ X there exists a unit vector � (x) such that the cone � (x, � (x), �, �̃ ) := {x + �x0 :
x0 ∈ R� , ∥x0∥ = 1, x⊤0 � (x) ≥ cos�,� ∈ [0, �̃ ]} is contained in X. Let � ∈ [1,∞]. Suppose that �� is the solution given

in (14) for the given design-point set D ⊆ X and the target function � ∈� �
2 (X). Then the following error estimate

holds:

|� − �� |� �
� (X) ≤ �

(
ℎ
�− �−� ( 12 −

1
� )

D,X + ℎ− �

D,X
√
�

)
∥ � ∥� �

2 (X) , 0 ≤ � < � − �/2,

which gives that, for � ≤ ℎ
2�−� (1−2/�)+
D,X ,

|� − �� |� �
� (X) ≤ �ℎ

�− �−� ( 12 −
1
� )+

D,X ∥ � ∥� �
2 (X) , 0 ≤ � < � − �/2,

where (�)+ = max{�, 0}.
We note that the interior cone condition essentially states that the input space X is suiciently regular with

no sharp corners or cusps; and the �-dimensional unit cube X = [0, 1]� provides an example [41]. By setting

� := �x0 , �� := �̂x0 , � = 0, and � = ∞ in Proposition 1, we obtain the following result which reveals the optimal

convergence rate of the maximum discrepancy between �x0 and its approximation �̂x0 .

Corollary 1. Suppose that the conditions of Proposition 1 are fulilled. If � ≤ ℎ2�−�D,X and the design-point set

D is quasi-uniform so that ℎD,X ≍ �−1/� , then the maximum discrepancy between the function � := �x0 and its

approximation �� := �̂x0 achieves the optimal convergence rate:

∥�x0 − �̂x0 ∥∞ ≲ �− 2�−�
2� .

In the inite smoothness case under the ixed design setting, Corollary 1 indicates that ��,� (x0) ≲ �− �−�/2
2�

for any x0 ∈ X. The condition on the smoothness parameter � stipulated in Corollary 1 can be expressed as

V�,max ≲ �1−
2�
� following the deinition � = V�,max/�2. This condition indicates that: (i) the upper bound of V�,max

must decrease with the number of design points � ; and (ii) given a ixed number of design points � , the higher
the smoothness level � (respectively, the higher the input-space dimensionality �) a given problem has, the faster
(resp., the slower) the decreasing rate required on V�,max. The above sheds light on the following important
aspects of a desirable simulation experimental design to achieve the optimal convergence rate of ∥�2

�,�
∥∞. First
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and foremost, the design-point set must be quasi-uniform. Moreover, the numbers of simulation replications �� ’s
must grow with the number of design points � , and the smoother the kernel � , the faster �� ’s must grow.

Given that the kernel has a inite smoothness level, the next result extends Theorem 2 by elucidating the order
of the uniform error bound as �, � → ∞ in the ixed design setting.

Proposition 2. Suppose that the assumptions of Theorem 2 and Corollary 1 are fulilled, the kernel � has � > �/2
smoothness level with � < ∞, and V�,max ≍ �1−2�/� . Given any � ∈ (0, 1), it holds that

P

(
sup
x∈X

|��,� (x) − � (x) | = O
(
(log�) 1

2�− �−�/2
2�

))
≥ 1 − �.

Proof. We see from (8) that both ��,� (�) and
︁
�� (�) supx∈X ��,� (x) must converge to zero as �, � → ∞ to

guarantee a vanishing approximation error at ∀x ∈ X. In the inite smoothness case under the ixed design
setting, lim

�,�→∞
��,� (�) = 0 can be achieved if the grid constant as a function of � , � (�), decreases suiciently

fast. Recall from (12) that ��,� (�) ≲
((
�� (�) · � (�) · �V−1

�,min

) 1
2 + � (�) + � (�) · �V− 1

2

�,min

)
. Since V�,max/V�,min < ∞,

V�,min ≍ �1−2�/� , setting � (�) = O(�−�) as �, � → ∞ with � = 3�/� ensures that lim
�,�→∞

��,� (�) = 0 and moreover

��,� (�) = �
(︁

�� (�) supx∈X ��,� (x)
)
as �, � → ∞. The latter follows from the fact that �� (�) = O(log�) due to

(9) and ��,� (x) = O
(
�− �−�/2

2�

)
at ∀x ∈ X thanks to Corollary 1. Therefore, ��,� (�) +

︁
�� (�) supx∈X ��,� (x) ≲︁

�� (�) supx∈X ��,� (x) = O
(
(log�) 1

2�− �−�/2
2�

)
as �, � → ∞. □

4.2 Infinite Smoothness Case

When the kernel � has ininite smoothness, the corresponding RKHS H can be continuously embedded into
every classical Sobolev space� �

� (X) for all � ∈ N and some ixed � ∈ [1,∞) [36]. By restricting our attention to

two popular ininitely smooth kernels, respectively the Gaussian kernel (abbreviated as�): � (x, x′) = exp(−∥x −
x′∥2/� ) with � > 0 and the inverse multiquadrics kernel (abbreviated as�): � (x, x′) = (�2 + ∥x − x′∥2)−� , where
� > 0 and � > �/2 (page 76 of [48]), we reveal the convergence rate of �2

�,�
(·) under the supremum norm and the

asymptotic order of the uniform error bound as �, � → ∞ in the ixed design setting. We irst state a result that
provides an upper bound on the error of the regularized kernel based approximation �� given in (14).

Proposition 3 (Theorem 6.1 and Corollary 6.3 in Rieger and Zwicknagl [36]). If X is a compact cube

with side length ℓ , then for all � ∈ [1,∞], there exist constants ℎ0, � , and �̃ > 0 such that for all design-point sets

D ⊂ X with ill distance ℎD,X ≤ ℎ0 and for all � ∈ H� in the RKHS of a Gaussian kernel � ,

∥ � − �� ∥�� (X) ≤
(
2 exp

(
� log(ℎD,X)/ℎD,X

)
+
√
� exp

(
�̃/ℎD,X

))
∥ � ∥H�

,

which gives that, for � ≤ exp
(
2
(
� log(ℎD,X) − �̃

)
/ℎD,X

)
,

∥ � − �� ∥�� (X) ≤ 3 exp
(
� log(ℎD,X)/ℎD,X

)
∥ � ∥H�

.

For all design-point sets D ⊂ X with ill distance ℎD,X ≤ ℎ0 and for all � ∈ H� in the RKHS of an inverse

multiquadrics kernel� ,

∥ � − �� ∥�� (X) ≤
(
2 exp

(
−�/ℎD,X

)
+
√
� exp

(
�̃/ℎD,X

))
∥ � ∥H�

,
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which gives that, for � ≤ exp
(
−2

(
� + �̃

)
/ℎD,X

)
,

∥ � − �� ∥�� (X) ≤ 3 exp
(
−�/ℎD,X

)
∥ � ∥H�

.

Notice that the constants � , �̃ , and ℎ0 depend only on � , ℓ , and �.

Setting � := �x0 , �� := �̂x0 , and � = ∞ in Proposition 3 yields the following result on the optimal convergence

rate of the maximum discrepancy between �x0 and its approximation �̂x0 in the ininite smoothness case.

Corollary 2. Suppose that the assumptions of Proposition 3 are fulilled. For a Gaussian kernel, if � ≤
exp

(
2
(
� log(ℎD,X) − �̃

)
/ℎD,X

)
and the design-point set D is quasi-uniform so that ℎD,X ≍ �−1/� , then the

maximum discrepancy between the function � := �x0 and its approximation �� := �̂x0 attains its optimal convergence

rate:

∥�x0 − �̂x0 ∥∞ ≲ exp
(
−�� 1

� (log�)
)
.

For an inverse multiquardrics kernel, if � ≤ exp
(
−2

(
� + �̃

)
/ℎD,X

)
and the design-point set D is quasi-uniform

so that ℎD,X ≍ �−1/� , then the maximum discrepancy between the function � := �x0 and its approximation �� := �̂x0

attains its optimal convergence rate:

∥�x0 − �̂x0 ∥∞ ≲ exp
(
−�� 1

�

)
.

In the ininite smoothness case under the ixed design setting, Corollary 2 indicates that ��,� (x0) ≲

exp(−�� 1
� /2) at any x0 ∈ X. The condition on the regularization parameter � = V�,max/�2 stipulated in Corol-

lary 2 can be expressed as V�,max ≲ exp
(
−
(
2��−1 (log�) + 2�̃

)
�1/�

)
and V�,max ≲ exp

(
−2(� + �̃)�1/�

)
for a

Gaussian kernel and an inverse multiquadrics kernel, or equivalently, V�,max ≲ exp
(
−�̄�1/�

)
with �̄ = 2(� + �̃) if

the logarithmic factor term is ignored. It implies that: (i) the upper bound of V�,max must decrease exponentially

with �1/� ; and (ii) given a ixed number of design points � , the higher the input-space dimensionality � of a given
problem, the slower the decreasing rate required on V�,max. The above also provides some insight into a desirable
simulation experimental design to achieve the optimal convergence rate of ∥�2

�,�
∥∞. First, the design-point set

must be quasi-uniform. Moreover, the numbers of simulation replications �� ’s must grow with the number of
design points � at a much faster rate in the ininitely smoothness case compared to in the inite smoothness case.
Given that the kernel has ininite smoothness, the next result extends Theorem 2 by elucidating the order of

the uniform error bound as �, � → ∞ in the ixed design setting.

Proposition 4. Suppose that the assumptions of Theorem 2 and Corollary 2 are fulilled, the kernel � has ininite

smoothness, and V�,max ≍ exp
(
−�̄�1/�

)
with �̄ = 2(� + �̃), where � and �̃ are deined in Proposition 3. Given any

� ∈ (0, 1), it holds that

P

(
sup
x∈X

|��,� (x) − � (x) | = O
(
�

1
2� exp(−�� 1

� /2)
))

≥ 1 − �.

Proof. We see from (8) that both ��,� (�) and
︁
�� (�) supx∈X ��,� (x) must converge to zero as �, � → ∞ to

guarantee a vanishing approximation error at ∀x ∈ X. In the ininite smoothness case under the ixed design
setting, lim

�,�→∞
��,� (�) = 0 can be achieved if the grid constant as a function of � , � (�), decreases suiciently

fast. Recall from (12) that ��,� (�) ≲
((
�� (�) · � (�) · �V−1

�,min

) 1
2 + � (�) + � (�) · �V− 1

2

�,min

)
. Since V�,max/V�,min < ∞

and V�,min ≍ exp
(
−�̄�1/�

)
with �̄ = 2(� + �̃), setting � (�) = O

(
exp

(
−�� 1

�

))
where � > �̄ + � ensures
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lim
�,�→∞

��,� (�) = 0 and moreover ��,� (�) = �
(︁

� (�)��,� (x)
)
at ∀x ∈ X as �, � → ∞. The latter follows from the

fact that �� (�) = O(� 1
� ) due to (9) and ��,� (x) = O

(
exp(−�� 1

� /2)
)
at ∀x ∈ X thanks to Corollary 2. Therefore,

��,� (�) +
︁
�� (�) supx∈X ��,� (x) ≲

︁
�� (�) supx∈X ��,� (x) = O

(
�

1
2� exp(−�� 1

� /2)
)
as �, � → ∞. □

We close this section with some practical insights into suitable experimental designs for SK metamodeling. To
achieve a desirable convergence rate of ��,� (·) under the supremum norm given a suiciently large budget � to
expend, an experimental design suitable for the ininite smoothness case is expected to use fewer design points
but with more replications allocated to each design point to fulill its condition on V�,max, hence a łsparse and
deepž design is recommended. On the other hand, an experimental design suitable for the inite smoothness case
can adopt relatively more design points but with fewer replications allocated at each point to fulill its condition
on V�,max; hence, a łdense and shallowž design is recommended. Such insights echo those reported in other
contexts in the stochastic simulation metamodeling literature; see, e.g., [46] and [55].

5 Discussion and Extension

This section provides implications for simulation experimental designs for SK and theoretically investigates the
impact of noise variance estimation on the performance of the uniform error bound.

5.1 Discussion

This subsection provides some further insight into the impact of experimental designs and budget allocation
schemes on SK metamodeling in light of the results obtained in Section 4 for the ixed design setting.

Given a ixed number of design points � , it is not diicult to see that V�,max = max
1≤�≤�

V(x� )/�� is minimized by

setting the number of replications at design point x� to

�� =
V(x� )∑�
�=1 V(x� )

�, � = 1, 2, . . . , � . (16)

Under the budget allocation in (16), we have � = V�,max/�2 = (��2)−1 ∑�
�=1 V(x� ). When � becomes large, it

follows that

� = (��2)−1�
(
1

�

�︁

�=1

V(x� )
)
≈ (��2)−1�

(
|X|−1

∫
X
V(u)du

)
≍ �/�,

where the last step follows from |X|−1
∫
X V(u)du < ∞.

On the other hand, if an equal budget allocation rule is applied, i.e., �� = �/� for � = 1, 2, . . . , � , it is easy to see
that in this case � = (��2)−1� max1≤�≤� V(x� ). When � becomes large, we have

� = (��2)−1�
(
max
1≤�≤�

V(x� )
)
≈ (��2)−1� sup

X
V(x) ≍ �/�,

where in the last step we have used supX V(x) < ∞. In brief, when � is suiciently large, diferent budget
allocation rules lead to the same order of � which only depends on the total budget � and the number of design
points � .

The discussion above sheds some light on the relationship between the number of design points � and the total
budget � to achieve the optimal decreasing rate of ∥��,� ∥∞. In light of the results for the ixed design setting
in Section 4, we have the following remarks regarding the inite and the ininite smoothness cases. When the
underlying kernel function has a smoothness level � < ∞, the discussion above and Corollary 1 indicate that

� ≍ �/� ≲ �1−
2�
� , or equivalently, � ≲ �

�
2� , when the budget � is suiciently large. Therefore, in addition to
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adopting a quasi-uniform design-point set, to achieve the optimal convergence rate of ��,� (·), one should use a
large number of design points � if the input-space dimensionality � of a given problem is high (respectively, the
smoothness level � is low), and vice versa. On the other hand, when the kernel function has an ininite smoothness

level, the discussion above and Corollary 2 indicate that � ≍ �/� ≲ exp
(
−
(
2��−1 (log�) + 2�̃

)
�1/�

)
(for a

Gaussian kernel), or equivalently, � ≲ (log�)� if the logarithmic factor terms are ignored, when the budget � is
suiciently large. Hence, besides adopting a quasi-uniform design-point set, to achieve an optimal convergence
rate of ∥��,� ∥∞ in this case, one should use a relatively large number of design points � if the input space
dimensionality � of a given problem is high. However, the number of design points required is expected to be
much smaller than that in the inite smoothness case.

Last but not least, we note that the root mean squared error of SK is upper bounded by the predictive standard
deviation under the supremum norm:

RMSE :=

(∫
X
�2
�,� (x)dx

)1/2
≤ ∥��,� ∥∞.

Therefore, the aforementioned desirable simulation experimental designs for achieving the optimal convergence
rate of ∥��,� ∥∞ also apply if the target is to achieve an adequate global response surface itting with a guaranteed
RMSE convergence rate.

5.2 Impact of Noise Variance Estimation on the Uniform Error Bound

In this subsection, we conduct a theoretical investigation of the impact of noise variance estimation on the
performance of the uniform error bound. Recall that, in light of Theorem 1, we can obtain a high-probability
uniform bound as given in (7) for � (·), assuming the knowledge of true noise variances V(x� ) for � = 1, 2, . . . , � .

Refer to this bound as the nominal uniform bound. Denote V̂(x� ) as the sample variance calculated based on

�� ≥ 2 replications simulated at x� for � = 1, 2, . . . , � . Deine �̂�(x) := �̂�,� (x) −
︁
� (�)�̂�,� (x) − �̂� (�) and

�̂ �(x) := �̂�,� (x) +
︁
� (�)�̂�,� (x) + �̂� (�), which are constructed using the sample variance V̂(x� ) in place of

V(x� ) for � = 1, 2, . . . , � . We refer to [�̂�(x), �̂ �(x)] as the empirical uniform bound for � (x) at all x ∈ X and
study its performance as � and � tend to ininity.

Deine �∗
�
:= min1≤�≤� �� as the minimum number of replications allocated across the � design points, and recall

V�,max = max
1≤�≤�

V(x� )/�� . The following result provides a high-probability bound of the maximum discrepancy

between the diagonal entries in the true noise variance-covariance matrix Σ� and those in its estimate Σ̂� :=

diag
(
V̂(x1)/�1, V̂(x2)/�2, . . . , V̂(x� )/��

)
, which holds for all � ≥ 1.

Proposition 5. Fix � ∈ (0, 1). Let ��,� = log
(
(���)−1

)
so that

∞∑
�=1

�� = 1/3. Suppose that the noise terms

incurred at x� , � � (x� )’s, are i.i.d. normal with mean zero and variance V(x� ) at � = 1, 2, . . . , � , and �∗
�
≥ 2. Then, with

probability at least 1 − �/3, it holds that,

max
1≤�≤�

����� V̂(x� ) − V(x� )
��

����� ≤
︄

8
(
��,� + log(2�)

)
(�∗

�
− 1) · V�,max, ∀� ≥ 1.

The proof of Propostion 5 is provided in Appendix A.1. Based on Proposition 5, we can analyze the diference
between the empirical uniform bound and the nominal uniform bound as � and � tend to ininity.

Theorem 3. Fix � ∈ (0, 1). Suppose that the assumptions of Theorem 2 and Proposition 5 are satisied and the

design-point set D is quasi-uniform.
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If the kernel � has � > �/2 smoothness with � < ∞, V�,max ≍ �1−2�/� , and �
6�
� −1 (log�) = � (�∗

�
), it holds

with probability at least 1 − � that, supx∈X

���� �̂� (x)−�� (x)√
� (� )��,� (x)+��,� (� )

���� = � (1) and supx∈X
���� �̂ � (x)−�� (x)√

� (� )��,� (x)+��,� (� )

���� = � (1) as
�, � → ∞.

If the kernel � has ininite smoothness, V�,max ≍ exp
(
−�̄�1/�

)
for some �̄ > 0, and �2 (log�) exp(2(�̄ +�)� 1

� ) =
� (�∗

�
) with �, �̄ > 0 as speciied in the proof of Proposition 4, then it holds with probability at least 1 − � that,

supx∈X

���� �̂� (x)−�� (x)√
� (� )��,� (x)+��,� (� )

���� = � (1) and supx∈X
���� �̂ � (x)−�� (x)√

� (� )��,� (x)+��,� (� )

���� = � (1) as �, � → ∞.

The proof of Theorem 3 is deferred to Appendix A.2. We see from Theorem 3 that the diference between
the empirical uniform bound and the nominal uniform bound becomes negligible so long as the numbers of
replications at all design points grow suiciently fast with the expansion of the design-point set D. While the
conditions stipulated on the minimum number of replications �∗

�
may seem stringent, the numerical results in

Section 6 indicate that the empirical and nominal uniform bounds perform similarly in practice, unless the numbers
of replications at some design points become very small. We note that the conservativeness in the conditions arises

from the techniques used to upper bound various terms involving the inverse of Σ := (ΣM + Σ�) in |�̂�(x)−��(x) |
and |�̂ �(x) −��(x) | and to ensure that these terms vanish faster than the nominal uniform bound’s half-width
for all x ∈ X. Other proof techniques may provide less stringent conditions. The proof of Theorem 3 also reveals
the importance of stabilizing the SK metamodeling process as the design-point set expands and the budget
allocated grows. To be more precise, the condition of matrix Σ can become increasingly worse as �, � → ∞,
which is relected by the magnitude of ∥Σ−1∥ = 1/�min (Σ) in the proof of Theorem 3. This also leads us to
briely discuss the condition number of Σ, cond(Σ) = �max (Σ)/�min (Σ). It is known that the maximum eigenvalue
typically incurs no problem and behaves nicely compared to the minimum eigenvalue [Chapter 12 of 48]. Since
�min (Σ) ≥ �min (ΣM) + �min (Σ�) ≥ max{�min (Σ�), �min (ΣM)}, we know more about the stability and accuracy of
SK’s prediction if we know more about the lower bounds for �min (ΣM) and �min (Σ�). Lower bounds for �min (ΣM)
are known to depend on the separation distance �D . Recall from Deinition 2 that �D ≍ ℎD,X = O(�−1/� )
if the design-point set D is quasi-uniform. In this case, it is known that �min (ΣM) ≳ �

(2�−� )
D = O(�1−2�/� )

in the inite smoothness case [51], whereas in the ininite smoothness case, �min (ΣM) ≳ exp(−�0�
−2
D )�−�D =

O(exp(−�0 · �2/� )�) for some �0 > 0 [Section 12.2 of 48]. To maintain SK’s numerical stability as �, � → ∞,
�min (Σ�) = V�,min should not diminish too rapidly. Since �min (Σ) ≥ max{�min (Σ�), �min (ΣM)} = �min (Σ�) = V�,min

and ∥Σ−1∥ ≤ 1/�min (Σ�) = V−1
�,min

, the condition V�,max/V�,min < ∞ and that on the order of V�,max stipulated in

Theorem 3 ensure the numerical stability of SK while also fulilling the regularization parameter role played
by the noise variances (manifested by V�,max) to achieve the best convergence rate of SK’s predictive variance.
We will examine the impact of noise variance estimation on the performance of the uniform bound through
numerical experiments in the next section.

6 Numerical Experiments

This section compares the performance of the nominal uniform bound assuming the knowledge of the true noise
variances (given by (7) in Section 3 and referred to asCIu), the empirical uniform bound built with noise variances
estimated (given at the beginning of Subsection 5.2 and referred to as CIeu), and the Bonferroni correction-based
simultaneous conidence interval built with noise variances estimated (given at the end of Subsection 2.1 and
referred to as CIb) through numerical evaluations. We consider the following examples: an M/M/1 queueing
model and a dimension-lexible synthetic example.

We start by describing the general experimental setup for numerical evaluations. A simulation experiment is
performed with a total budget of � observations to collect at � distinct design points, with �� observations to
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obtain at design point x� , for � = 1, 2, . . . , � . The � design points are chosen according to either a random design
or a ixed design, to be speciied for each example. Three budget allocation schemes, i.e., the equal allocation,
unequal allocation 1, and unequal allocation 2, are considered. Speciically, the equal budget allocation scheme
sets �� = ⌈�/�⌉, where ⌈�⌉ denotes the least integer not less than �. Assuming that the noise variance function is

known, unequal allocation 1 sets �� =
⌈

V(x� )∑�
�=1 V(x� )

�
⌉
, while unequal allocation 2 sets �� =

⌈ √
V(x� )∑�

�=1

√
V(x� )

�
⌉
. We note

that the goal of unequal allocation 1 is to equalize the variance of sample means across all design points. This
approach has been explored in the literature on ranking and selection as well as multi-armed bandit problems
[9, 16, 19], aiming to alleviate the impact of heteroscedasticity. Unequal allocation 2 assigns the simulation budget

in accordance with the scale function � (x) :=
︁
V(x) for x ∈ X; it is proposed based on the optimal design density

ℎ∗ (·) established for controlled nonparametric regression experiments. Speciically, ℎ∗ (�) = � (�)/
∫
X � (�)��

achieves the asymptotic sharp minimax lower bound for the mean integrated squared error when � ∈ X = [0, 1];
see [17] and references therein for more details. We consider various experimental settings comprising various
combinations of the total budget �, the number of design points � , the design-point sampling scheme to choose
� design points, and the budget allocation scheme adopted. The target conidence level is set to 0.95. SK is
implemented by adopting two types of kernel functions, respectively, the Gaussian kernel and the Matérn kernel
in (15) with smoothness parameter � = 5/2 + �/2, where � denotes the dimension of the input space X.

For performance evaluation, we repeat the simulation experiment under each experimental setting for� = 100

independent macro-replications and calculate the empirical simultaneous coverage probability (ŜCP) of a given
conidence bound deined as

ŜCP =
1

�

�︁

�=1

1{� (x0,� ) ∈ CI(x0,� ) for each � = 1, 2, . . . , � on the�th macro-replication},

where CI(x0,� ) refers to CIu, CIeu, or CIb obtained at prediction point x0,� , � = 1, 2, . . . , � ; and 1{A} is 1 if event
A is true and 0 otherwise. Moreover, we compare the half-widths of CIu, CIeu, and CIb constructed for the �
prediction points based on their respective maximum half-widths �max achieved on each macro-replication.

6.1 M/M/1ueue

Consider simulating an M/M/1 queue with service rate 1 and arrival rate � with � ∈ X = [0.3, 0.9]. In this
example, the simulation output recorded on each replication at a given design point is the average number of
customers in the system from time 0 to � time units. It is well known from queueing theory that the steady-state
mean number of customers in the queue is � (�) = �/(1 − �), which is the mean function we intend to estimate.
The noise variance function is V(�) ≈ 2� (1 + �)/(� (1 − �)4) for � large [50]. When simulating the M/M/1 queue
at each design point, we initialize each replication in steady state and set the run length of each replication �
to 1000. Besides the general experimental setup given at the beginning of Section 6, the speciic setup for this

example is as follows. The value of the grid constant � is set to ensure that
︁
�� (�)��,� (�) dominates ��,� (�)

in (7). We consider using a total budget � ∈ {2560, 25600} and varying the number of distinct design points
� ∈ {16, 32, 128, 512} when � = 2560 and � ∈ {32, 128, 512, 2048} when � = 25600. Given each choice of � , we
choose � design points according to a uniform design or a grid design, where the former comprises a sample of �
independent and uniformly distributed points and the latter � equispaced grid points in X. The three budget
allocation schemes mentioned at the beginning of Section 6 are applied given each combination of �, � , and the
design-point sampling scheme. A grid of � = 1000 equispaced points is selected from X for prediction.

Summary of results. Tables 1 and 2 show the ŜCP’s achieved by the empirical uniform bound (CIeu), the nominal
uniform bound (CIu), and the Bonferroni correction-based simultaneous conidence intervals (CIb) under diferent
experimental settings when SK is implemented with the Gaussian and Matérn kernels. The following common
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observations are made across all experimental settings. First, given a ixed budget �, the ŜCP’s of CIeu and CIu are

typically higher than the target level 0.95, while the ŜCP’s of CIb are not close to 0.95, except when the number
of design points � is relatively small under the grid design. Second, the simultaneous coverage performance of
CIeu remains satisfactory as the number of design points � increases until it reaches a point where only a few
replications are allocated to some design points, regardless of the kernel function and the design-point sampling

scheme adopted; see, e.g., the ŜCP’s of CIeu obtained under the equal allocation and unequal allocation 1 when
� = 512 and � = 2560. On the other hand, the simultaneous coverage performance of CIb typically deteriorates as
� increases given a ixed budget �, regardless of the kernel function adopted. This is evidenced by examining the

ŜCP’s of CIb obtained across all experimental settings shown in Tables 1 and 2. Third, the ŜCP’s of all bounds
increase with the budget � given that the number of design points � is ixed. Lastly, applying unequal budget

allocation schemes typically help improve the ŜCP’s of CIb when the number of design points � is not too large

relative to the budget � given. Such an impact on the ŜCP’s of CIeu and CIu is not as obvious, however.

Table 1. ŜCP’s of CIeu, CIu, and CIb obtained for the M/M/1 example under the grid design.

� �

Gaussian Matérn
Equal allocation Unequal allocation 1 Unequal allocation 2 Equal allocation Unequal allocation 1 Unequal allocation 2
CIb CIeu CIu CIb CIeu CIu CIb CIeu CIu CIb CIeu CIu CIb CIeu CIu CIb CIeu CIu

2560

16 0.80 1 1 0.97 1 1 0.98 1 1 0.76 1 1 1 1 1 0.99 1 1
32 0.68 1 1 0.93 1 1 0.90 1 1 0.65 1 1 0.98 1 1 0.93 1 1
128 0.46 0.98 0.98 0.52 1 1 0.70 1 1 0.46 0.99 0.99 0.54 1 1 0.75 1 1
512 0.33 0.92 0.98 0.14 0.88 1 0.57 1 1 0.34 0.93 0.98 0.01 0.28 1 0.64 1 1

25600

32 0.98 1 1 1 1 1 1 1 1 0.97 1 1 1 1 1 1 1 1
128 0.69 1 1 0.96 1 1 0.93 1 1 0.67 1 1 1 1 1 0.91 1 1
512 0.54 1 1 0.81 1 1 0.78 1 1 0.45 1 1 0.90 1 1 0.81 1 1
2048 0.58 1 1 0.33 0.99 1 0.72 1 1 0.44 1 1 0.31 0.99 1 0.72 1 1

Table 2. ŜCP’s of CIeu, CIu, and CIb obtained for the M/M/1 example under the uniform design.

� �

Gaussian Matérn
Equal allocation Unequal allocation 1 Unequal allocation 2 Equal allocation Unequal allocation 1 Unequal allocation 2
CIb CIeu CIu CIb CIeu CIu CIb CIeu CIu CIb CIeu CIu CIb CIeu CIu CIb CIeu CIu

2560

16 0.44 0.92 0.91 0.32 0.88 0.88 0.37 0.89 0.89 0.48 0.94 0.94 0.33 0.91 0.91 0.39 0.93 0.93
32 0.46 0.95 0.95 0.50 0.97 0.98 0.56 0.98 0.98 0.44 0.96 0.96 0.59 0.99 0.99 0.55 0.99 0.99
128 0.42 0.98 0.99 0.60 1 1 0.55 1 1 0.38 1 0.99 0.62 1 1 0.60 1 1
512 0.30 0.91 0.98 0.18 0.81 1 0.70 1 1 0.23 0.93 1 0.02 0.36 1 0.67 1 1

25600

32 0.60 0.94 0.94 0.55 0.98 0.98 0.54 0.99 0.99 0.60 0.96 0.96 0.59 0.99 0.99 0.58 0.99 0.99
128 0.51 1 1 0.83 1 1 0.74 1 1 0.48 1 1 0.85 1 1 0.75 1 1
512 0.61 1 1 0.82 1 1 0.74 1 1 0.56 1 1 0.81 1 1 0.74 1 1
2048 0.48 1 1 0.32 0.99 1 0.58 1 1 0.47 1 1 0.30 0.98 1 0.58 1 1

We next examine the maximum half-widths �max of CIeu, CIu, and CIb obtained under diferent experimental
settings. Figure 1 summarizes the magnitudes of �max (in a logarithmic scale) of CIeu, CIu, and CIb obtained
under the grid design with a total budget of � = 2560 when SK is implemented with the Gaussian and Matérn
kernels. The corresponding results obtained with � = 25600 and those obtained with � ∈ {2560, 25600} under the
uniform design are shown in Figures 6Ð8 in Appendix D.1. We have the following observations from Figures 1
and 6. First, the �max’s of CIeu and CIu are larger than those of CIb under each experimental setting considered,
regardless of the kernel function adopted. Second, the magnitudes of �max of CIeu, CIu, and CIb decrease with the
number of design points � when a large total budget � = 25600 is applied under all budget allocation schemes.

ACM Trans. Model. Comput. Simul.



18 • X. Chen et al.

However, this trend may not hold for a small total budget. Third, for CIeu, CIu, and CIb, when a given budget � is
allocated to a ixed number of design points, the magnitudes of �max produced under the equal allocation scheme
are the highest. It is worth noting that, regarding all bounds, the two unequal budget allocation schemes lead to
shorter half-widths than the equal budget allocation scheme without compromising the simultaneous coverage
performance, as observed in Table 1. The magnitudes of�max produced under the two unequal allocation schemes
are similar, with unequal allocation 2 leading to higher �max values than unequal allocation 1. Lastly, regarding
the impact of the design-point sampling scheme, the uniform design tends to lead to more outliers of the �max

values compared to the grid design; see Figures 7 and 8 in Appendix D.1 for details. Moreoever, under the uniform
design, the unequal allocation schemes yield shorter half-widths of all bounds compared to the equal allocation
scheme, but the diference between the two unequal allocation schemes is slight.

We summarize the impacts of noise variance estimation, the design-point sampling scheme, and the choice of

kernel function observed in the M/M/1 queueing example. First, comparisons based on the ŜCP’s and �max’s of
CIeu and CIu indicate that the performance of the empirical uniform bound is very similar to that of the nominal
one, except when the number of replications is too few at some design points, since using the variance estimates
can incur additional variability in the SK model itting. This corroborates the theoretical results provided in
Subsection 5.2. Second, with other experimental settings held constant, the performance of all bounds under the
grid design which is quasi-uniform typically outperforms that under the uniform design. This aligns with the
theoretical results provided in Section 4. Lastly, with other experimental settings held constant, the performance
of all bounds built with the Matérn kernel is comparable to that built with the Gaussian kernel for the M/M/1
queueing example. However, the magnitudes of �max of all bounds built with the Matérn kernel tend to be
higher than those with the Gaussian kernel; this is because a faster convergence rate of the predictive variance is
achieved with the Gaussian kernel than with the Matérn kernel, corroborating Corollaries 1 and 2, along with
the comments following the results. Moreover, when the number of replications at some design points is too
small, using the Matérn kernel can result in itting issues that render the SK model unstable and adversely afect

simultaneous coverage performance; see the ŜCP’s of CIeu and CIb obtained under unequal allocation 1 when
� = 2560 and � = 512 shown in Table 1 and the corresponding �max’s shown in Figure 1 (d) in this subsection
and Figure 7 (d) in Appendix D.1.

6.2 A Dimension-flexible Example

Consider the following dimension-lexible example adapted from the one studied by [23], where X = [−1, 1]�
and � denotes the input-space dimension. The simulation output at design point x = (�1, �2, . . . , �� )⊤ on the �th
replication is generated as Y� (x) = � (x) + � � (x), where � � (x)’s are i.i.d. normally distributed with mean zero

and variance V(x). The noise variance function is V(x) = (2 + cos(� +∑�
�=1 ��/�))2 for any x ∈ X. The mean

function of interest is given by � (�) = sin(9�2) if � = 1 and � (x) = sin(9�21) + sin

((∑�
�=2 3��/(� − 1)

)2)
if � > 1.

We describe the speciic setup for this example next and refer the reader to the beginning of Section 6 for the
general experimental setup. We consider two problem cases corresponding to � = 1 and � = 5. For � = 1, we vary
the number of design points � ∈ {16, 64, 256, 512} when � = 2560 and � ∈ {16, 64, 256, 512, 2048} when � = 10240.
For � = 5, we vary � ∈ {16, 64, 256, 512} when � = 2560 and � ∈ {64, 256, 512, 1024, 2048} when � = 10240. Given
each choice of � , a set of � design points are chosen according to a uniform design or a maximin Latin hypercube
design (LHD). The three budget allocation schemes mentioned at the beginning of Section 6 are applied given
each combination of �, � , and the design-point sampling scheme. On each macro-replication, we independently
generate a set of � = 2500 points from X according to a maximin LHD as the prediction points for performance
evaluation.
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(a) Equal allocation, Gaussian (b) Equal allocation, Matérn

(c) Unequal allocation 1, Gaussian (d) Unequal allocation 1, Matérn

(e) Unequal allocation 2, Gaussian (f) Unequal allocation 2, Matérn

Fig. 1. Boxplots of log(�max) of CIeu, CIu, and CIb for the M/M/1 example obtained on 100 independent macro-replications

under the grid design with � = 2560.

Summary of results.We irst look into the 1D case. Tables 3 and 4 present the ŜCP’s of the empirical uniform
bound (CIeu), the nominal uniform bound (CIu), and the Bonferroni correction-based simultaneous conidence
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intervals (CIb) under diferent experimental settings when SK is implemented with the Gaussian and Matérn
kernels. Observations akin to those noted in the M/M/1 queueing example are summarized as follows. First,

given a ixed budget �, the ŜCP’s of CIeu and CIu are typically higher than the target level 0.95. Moreover, the
performance of CIeu is very similar to that of the nominal one in this 1D case, except when the number of

replications is too few at some design points. Second, the ŜCP’s of all bounds increase with the budget � given
that the number of design points � is ixed. Third, applying unequal budget allocation schemes typically help

improve the ŜCP’s of CIb when the number of design points � is not too large relative to the budget � given.

Lastly, the ŜCP’s of CIb deteriorate as the number of design points � becomes large, regardless of the budget
allocation schemes adopted. We highlight that this 1D case difers from the M/M/1 example in the following

aspects. First, the ŜCP’s of CIb are not signiicantly lower than those of CIeu and CIu, so long as the number of
design points � is not too large relative to the budget � given. Second, all bounds built with the Matérn kernel

achieve comparable or higher ŜCP’s compared to those built with the Gaussian kernel, especially when the
number of design points � is small.

Table 3. ŜCP’s of CIeu, CIu, and CIb obtained for the 1D case under LHD.

� �

Gaussian Matérn
Equal allocation Unequal allocation 1 Unequal allocation 2 Equal allocation Unequal allocation 1 Unequal allocation 2
CIb CIeu CIu CIb CIeu CIu CIb CIeu CIu CIb CIeu CIu CIb CIeu CIu CIb CIeu CIu

2560

16 0.90 0.92 0.92 0.92 0.95 0.96 0.93 0.94 0.94 1 1 1 1 1 1 1 1 1
64 1 1 1 0.99 1 1 0.99 1 1 1 1 1 1 1 1 1 1 1
256 0.94 1 1 0.97 1 1 0.94 0.99 1 0.98 1 1 0.98 1 1 0.98 1 1
512 0.39 0.92 1 0.43 0.94 1 0.58 0.98 1 0.33 0.92 1 0.38 0.92 1 0.53 0.94 1

10240

16 0.93 0.99 0.99 0.94 0.99 0.99 0.92 0.99 0.99 1 1 1 1 1 1 1 1 1
64 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
256 0.99 1 1 1 1 1 1 1 1 0.99 1 1 1 1 1 1 1 1
512 1 1 1 1 1 1 0.99 1 1 1 1 1 1 1 1 1 1 1
2048 0.31 0.99 1 0.34 0.97 1 0.48 0.99 1 0.25 0.93 1 0.21 0.91 1 0.41 0.98 1

Table 4. ŜCP’s of CIeu, CIu, and CIb obtained for the 1D case under the uniform design.

� �

Gaussian Matérn
Equal allocation Unequal allocation 1 Unequal allocation 2 Equal allocation Unequal allocation 1 Unequal allocation 2
CIb CIeu CIu CIb CIeu CIu CIb CIeu CIu CIb CIeu CIu CIb CIeu CIu CIb CIeu CIu

2560

16 0.94 0.95 0.94 0.96 0.97 0.93 0.94 0.94 0.94 1 1 1 1 1 1 1 1 1
64 0.91 0.92 0.95 0.99 0.99 0.98 0.96 0.96 0.97 0.99 1 1 1 1 1 1 1 1
256 0.97 1 0.97 0.97 1 1 0.95 1 1 0.98 1 1 0.99 1 1 0.99 1 1
512 0.43 0.98 1 0.46 0.92 1 0.58 0.99 1 0.46 0.96 1 0.40 0.88 1 0.65 0.98 1

10240

16 0.97 0.98 0.97 0.97 0.98 0.98 0.97 0.98 0.98 0.99 1 1 0.99 1 1 0.99 1 1
64 0.99 0.99 0.99 0.99 0.99 0.99 1 1 1 1 1 1 1 1 1 1 1 1
256 0.98 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
512 0.99 1 1 1 1 1 0.99 1 1 1 1 1 1 1 1 1 1 1
2048 0.30 0.97 1 0.38 0.98 1 0.56 1 1 0.17 0.93 1 0.29 0.91 1 0.47 0.99 1

We further delve into themaximumhalf-widths�max of CIeu, CIu, and CIb obtained under diferent experimental
settings. To save space, we concentrate on analyzing the results obtained under LHD with the equal allocation
scheme. Similar observations apply to the results obtained under LHD with the two unequal budget allocation
schemes and under the uniform design with all three budget allocations; see Figures 9 and 10 in Appendix D.2.1
for details. Figures 2 and 3 summarize the magnitudes of �max (in a logarithmic scale) of CIeu, CIu, and CIb
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obtained under LHD with a total budget of � = 2560 and 10240. First, the �max’s of CIeu and CIu are larger than
those of CIb under each experimental setting considered, regardless of the kernel function adopted. Second, the
magnitudes of �max of CIeu, CIu, and CIb decrease with the number of design points � when a large total budget
� = 10240 is applied. However, this trend is less discernible with a small budget. Third, the magnitudes of �max

of CIeu and CIu are similar, except when � becomes large relative to the given budget � so that using variance
estimates based on a few replications can incur additional variability in SK model itting, which impacts CIeu;
this observation holds regardless of the kernel function adopted. Fourth, applying unequal budget allocation
schemes only slightly reduce the half-widths of all three bounds, as observed in Figures 9 (a)Ð(d) and 10 (a)Ð(d)
in Appendix D.2.1. Lastly, the magnitudes of �max of all bounds built with the Matérn kernel tend to be higher

than those with the Gaussian kernel, which explains the corresponding higher ŜCP’s observed in Table 3. We
also highlight some diferences in the 1D case from the M/M/1 example. Given a ixed total budget �, especially
a small one, using a small number of design points � can lead to unstable SK model itting when the Gaussian
kernel is adopted, resulting in highly variable �max values for all bounds; see, e.g., the �max’s obtained for � = 16
in Figure 2 (a). This is because the true mean function � (·) in this 1D case is nonlinear and its trend changes more
frequently than that of the M/M/1 example across the input space, due to its combination of the trigonometric
function and higher-order polynomial terms. It is known that the Gaussian kernel is not lexible enough for
modeling a function with such features, and using a small number of design points exacerbates this deiciency in
capturing the true mean function � (·) in the 1D case.

(a) Equal allocation, Gaussian (b) Equal allocation, Matérn

Fig. 2. Boxplots of log(�max) of CIeu, CIu, and CIb for the 1D example obtained on 100 independent macro-replications

under LHD with � = 2560.

We next investigate the 5D case. Compared to the 1D case, notice that the true mean function � (·) in this

5D case is more complex and changes more rapidly across its input space. Tables 5 and 6 present the ŜCP’s of
CIeu, CIu, and CIb obtained under various experimental settings. We observe that, similar to the 1D case, the
performance of CIb built with the Gaussian kernel is notably weak, regardless of the budget size �. In contrast,
CIb built with the Matérn kernel delivers relatively robust performance under the same experimental settings.

Furthermore, in this 5D case, an increase in the number of design points � is associated with higher ŜCP’s for CIb
especially when the Matérn kernel is adopted, underscoring the need of using a dense design with more design
points for capturing the function in high-dimensional problems and enhancing the reliability of the conidence
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(a) Equal allocation, Gaussian (b) Equal allocation, Matérn

Fig. 3. Boxplots of log(�max) of CIeu, CIu, and CIb for the 1D example obtained on 100 independent macro-replications

under LHD with � = 10240.

bound built. Regarding CIeu and CIu, the Matérn kernel also facilitates consistently strong simultaneous coverage
performance across diferent experimental settings, highlighting its suitability for modeling highly nonlinear
and rapidly changing response surfaces in high-dimensional problems. In contrast, due to the limitations of the

Gaussian kernel in modeling the mean surface � (·) in this 5D case, the ŜCP’s of CIeu and CIu sufer especially
when the number of design points � is small.

Table 5. ŜCP’s of CIeu, CIu, and CIb obtained for the 5D case under LHD.

� �

Gaussian Matérn
Equal allocation Unequal allocation 1 Unequal allocation 2 Equal allocation Unequal allocation 1 Unequal allocation 2
CIb CIeu CIu CIb CIeu CIu CIb CIeu CIu CIb CIeu CIu CIb CIeu CIu CIb CIeu CIu

2560

16 0 0.51 0.49 0 0.51 0.50 0 0.52 0.51 0.10 1 1 0.07 1 1 0.08 1 1
64 0 1 1 0 1 1 0 0.99 0.99 0.39 1 1 0.44 1 1 0.36 1 1
256 0.03 1 1 0.01 1 1 0 1 1 0.79 1 1 0.70 1 1 0.78 1 1
512 0.17 1 0.97 0.17 1 0.99 0.16 1 0.98 0.80 1 1 0.78 1 1 0.78 1 1

10240

64 0 1 1 0 0.99 0.99 0 1 1 0.32 1 1 0.32 1 1 0.34 1 1
256 0.01 1 1 0.01 1 1 0.01 1 1 0.65 1 1 0.70 1 1 0.64 1 1
512 0.08 1 1 0.05 1 1 0.10 1 1 0.90 1 1 0.90 1 1 0.84 1 1
1024 0.17 1 1 0.19 1 1 0.19 1 1 0.92 1 1 0.89 1 1 0.92 1 1
2048 0.24 1 1 0.24 1 1 0.22 1 0.99 0.96 1 1 0.97 1 1 0.99 1 1

Figures 4 and 5 summarize the magnitudes of �max (in a logarithmic scale) of CIeu, CIu, and CIb, employing
LHD with a total budget � = 2560 and 10240. For simplicity, the discussion below focuses on the results obtained
under LHD with the equal allocation scheme. Similar observations apply to the results obtained under LHD
with the two unequal budget allocation schemes and under the uniform design with all three budget allocations,
which are detailed in Figures 11 and 12 provided in Appendix D.2.2. First and foremost, the variation exhibited by
the �max values of all bounds built with the two kernels demonstrates the notable diference between the two
kernels in this 5D case as the number of design points � increases, especially when the given budget � is small.
Speciically, the Gaussian kernel leads to increased instability in modeling as the number of design points � grows,
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Table 6. ŜCP’s of CIeu, CIu, and CIb obtained for the 5D case under the uniform design.

� �

Gaussian Matérn
Equal allocation Unequal allocation 1 Unequal allocation 2 Equal allocation Unequal allocation 1 Unequal allocation 2
CIb CIeu CIu CIb CIeu CIu CIb CIeu CIu CIb CIeu CIu CIb CIeu CIu CIb CIeu CIu

2560

16 0 0.69 0.71 0 0.74 0.72 0 0.73 0.73 0.14 1 1 0.12 1 1 0.12 1 1
64 0 0.99 1 0 1 1 0 1 1 0.33 1 1 0.22 1 1 0.33 1 1
256 0 1 1 0 1 1 0 1 1 0.65 1 1 0.60 1 1 0.66 1 1
512 0.24 1 0.99 0.21 1 0.96 0.23 1 0.99 0.80 1 1 0.77 1 1 0.72 1 1

10240

64 0 1 1 0 1 1 0 1 1 0.19 1 1 0.19 1 1 0.20 1 1
256 0 1 1 0.01 1 1 0 1 1 0.57 1 1 0.58 1 1 0.58 1 1
512 0.09 1 1 0.11 1 1 0.09 1 1 0.83 1 1 0.86 1 1 0.76 1 1
1024 0.24 1 1 0.18 1 1 0.23 1 1 0.92 1 1 0.92 1 1 0.95 1 1
2048 0.28 1 0.99 0.23 1 0.99 0.27 1 0.99 0.95 1 1 0.95 1 1 0.92 1 1

contrasting with the Matérn kernel which maintains consistent modeling stability across the range of � values
considered; compare Figure 4 (a) and (b). Furthermore, given a large budget �, the �max’s of all bounds built
using the Gaussian kernel show a decreasing trend as the number of design points � increases. However, such a

trend seems absent when the Matérn kernel is adopted. This observation explains the corresponding low ŜCP’s
of CIb observed in Tables 5 and 6. An explanation is that the predictive variance (hence the conidence bound
width) associated with the Gaussian kernel diminishes faster compared with the Matérn kernel, as indicated by
Corollaries 1 and 2 and the comments immediately following them.

(a) Equal allocation, Gaussian (b) Equal allocation, Matérn

Fig. 4. Boxplots of log(�max) of CIeu, CIu, and CIb for the 5D example obtained on 100 independent macro-replications

under LHD with � = 2560.

Finally, we summarize key insights obtained from the numerical evaluations. When applying SK for meta-
modeling purposes, selecting an appropriate kernel suitable for modeling the function of interest is crucial.
The Gaussian kernel performs well in queueing applications like the M/M/1 example considered here [53]. In
contrast, only the Matérn kernel with smoothness parameter � = 5/2+�/2 was considered by [23] from where the
dimension-lexible example originated, which also showed its competence in our evaluations. Therefore, choosing
an appropriate kernel function is example-dependent and should take into account the features of the function of
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(a) Equal allocation, Gaussian (b) Equal allocation, Matérn

Fig. 5. Boxplots of log(�max) of CIeu, CIu, and CIb for the 5D example obtained on 100 independent macro-replications

under LHD with � = 10240.

interest. The performance of Bonferroni correction-based simultaneous conidence intervals is sensitive to this
choice, and they can be unreliable even when built by adopting an appropriate experimental design. In contrast,
the uniform error bound is more robust, especially in high-dimensional problems. Second, ixed designs can
outperform random designs in facilitating stability in SK model itting and simultaneous coverage performance.
Lastly, unequal allocation schemes can enhance the performance of conidence bounds, but their impact is limited.

7 Conclusion

In this paper, we proposed a method for constructing a uniform error bound with a prescribed conidence level for
the SK predictor. The investigation of the asymptotic properties of the proposed uniform error bound delves into
analyzing the convergence rate of SK’s predictive variance under the supremum norm. The work sheds light on
suitable design-point sampling schemes and budget allocation schemes for SK metamodeling to ensure desirable
large-sample predictive performance. Furthermore, we conducted theoretical and numerical investigations into
the impact of noise variance estimation on the empirical uniform error bound’s performance. Our comprehensive
numerical evaluations corroborated the theoretical indings and demonstrated the competence of the uniform
error bound in implementation under various experimental settings.
In analyzing the convergence rates of SK’s predictive variance under the supremum norm, we derived an

upper bound for SK’s predictive variance, characterized this upper bound as the solution to a regularized kernel
based approximation (or equivalently, a kernel ridge regression, KRR) problem with noiseless observations of
kernel function values, and identiied the maximum noise variance across design points as playing a crucial role
in efectively serving as the regularization parameter in the KRR problem. The conditions on the regularization
parameter and experimental designs to ensure the solution to the KRR problem achieves the fastest convergence
rate under the supremum norm then translate into conditions on budget allocation and design-point selection for
SK’s predictive variance under the supremum norm and hence the proposed uniform error bound to achieve a
desirable convergence rate. It is worth noting that, for uncertainty quantiication of GPR modeling subject to the
impact homoscedastic noise, Wang (2021) examined the reliability of the pointwise GP conidence interval under
model misspeciication [44]. The study also recognized the role played by the ratio of the noise variance to the

ACM Trans. Model. Comput. Simul.



A Uniform Error Bound for Stochastic Kriging: Properties and Implications on Simulation Experimental Design • 25

spatial variance as the regularization parameter in GPR, considering that its value can decrease with the increase
in the number of design points. However, it is crucial to highlight that the value of this regularization parameter
is externally imposed without a connection to budget allocation and hence no insights were derived. A caveat
to note is that the results derived in this work relies on the assumption that the mean function of interest can
be accurately modeled by a GP with the speciied kernel function. Our numerical examples demonstrated that
selecting an appropriate kernel function is example-dependent and should take into account the features of the
function of interest.
There are several promising avenues for future research. Firstly, despite its desirable simultaneous coverage

guarantee and relative robustness to kernel choice and design-point sampling schemes, the uniform bound often
exhibits wider interval widths compared to the Bonferroni bound, resulting in reduced sharpness in speciic
applications. One potential approach to enhancing the uniform bound’s performance is to reduce � (�) and ��,� (�)
in (7) by optimizing the choice of the grid constant � and employing suitable experimental designs. Secondly,
investigating the reliability of the uniform error bound under model misspeciication is a priority. Moreover,
extensions to other cases, such as � being a sample of a non-zero mean GP, a nonstationary GP, or unsuitable
to be modeled as a sample of a GP, are promising directions to explore. Thirdly, studying the efects of GPR
hyper-parameter estimation on the uniform error bound’s accuracy warrants a detailed examination. Moreover,
given that substituting sample variances with smoothed variance estimates enhances SK model itting and
predictive performance [45, 46], using smoothed variance estimates is anticipated to improve the simultaneous
coverage performance of the uniform bound. We intend to investigate this impact, building upon the discussion
in Subsection 5.2. Lastly, developing a numerically stable and computationally eicient uniform error bound for
large-scale GPR applications under heteroscedasticity presents an intriguing challenge.
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A Proofs in Section 5

A.1 Proof of Proposition 5

Proof. We start by presenting some deinitions and results essential for the subsequent development.

Deinition 3 (Definition 2.7 on page 26 of [42]). A random variable� with mean � = E[� ] is sub-exponential
if there are non-negative parameters (�, �) such that

E[�� (�−� ) ] ≤ �
�2�2

2 , for all |� | < 1

�
.

Lemma 1 (Concentration ineqality for chi-sqared variables, page 29 of Wainwright [42]). A

chi-squared X2 random variable with � degrees of freedom, denoted by � ∼ X2
� , is sub-exponential with parameters

(�, �) = (2
√
�, 4), and the two-sided tail bound follows as

P

(���� 1�� − 1

���� ≥ �

)
≤ 2�−��

2/8, for all � ∈ (0, 1).

We are now ready to prove Proposition 5. At any given design point x� (� = 1, 2, . . . , �), consider the random

variable (�� − 1)V̂(x� )/V(x� ). Since the noise terms incurred at x� , � � (x� )’s, are i.i.d. normal with mean zero

and variance V(x� ), it follows that (�� − 1)V̂(x� )/V(x� ) ∼ X2
��−1, a X

2 random variable with (�� − 1) degrees of
freedom.
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By Lemma 1, we have

P

(����� V̂(x� )V(x� )
− 1

����� ≥ �

)
≤ 2�−(��−1)�2/8, for all � ∈ (0, 1). (A.17)

Deine events A� :=

{ ��� V̂(x� )−V(x� )��

��� ≤ � · V(x� )
��

}
and B� :=

{ ��� V̂(x� )−V(x� )��

��� ≤ � · V�,max

}
for � = 1, 2, . . . , � . In light of

(A.17) and V�,max = max1≤�≤�
V(x� )
��

, we have for each x� given,

P
(
B�
�

)
≤ P

(
A�

�

)
≤ 2�−(��−1)�2/8, for all � ∈ (0, 1). (A.18)

In particular, it follows from (A.18) that, for all � ∈ (0, 1),

P

(
max
1≤�≤�

����� V̂(x� ) − V(x� )
��

����� ≥ � · V�,max

)
= P

(
∪�
�=1B�

�

)
≤ 2

�︁

�=1

�−(��−1)�2/8 ≤ 2��−(�∗
�
−1)�2/8. (A.19)

Set �−��,� = 2��−(�∗
�
−1)�2/8 for any � ∈ (0, 1). Correspondingly, a given��,� > 0 corresponds to � =

︂
8(��,�+log(2� ))

(�∗
�
−1) .

Then (A.19) can be equivalently written as

P

(
max
1≤�≤�

����� V̂(x� ) − V(x� )
��

����� ≥
︄

8
(
��,� + log(2�)

)
(�∗

�
− 1) · V�,max

)
≤ �−��,� . (A.20)

Now, if we set ��,� = log
(
(���)−1

)
so that

∞∑
�=1

�� = 1/3, then applying the union bounds over all � ≥ 1 yields

max
1≤�≤�

����� V̂(x� ) − V(x� )
��

����� ≤
︄

8
(
��,� + log(2�)

)
(�∗

�
− 1) · V�,max, ∀� ≥ 1

holds true with probability of at least 1 − �/3.
□

A.2 Proof of Theorem 3

Proof. Deine Σ := ΣM + Σ� and Σ̂ := ΣM + Σ̂� . And let ΔΣ� := Σ̂� − Σ� . Recall the deinitions of �̂�(x) and
�̂ �(x) of the empirical uniform bound. We have����̂�(x) − ��(x)

��� = ����̂ �(x) −��(x)
��� ≤ Δ��,� (x) +

︁
� (�)Δ��,� (x) + Δ��,� (�), (A.21)

where for all x ∈ X,

Δ��,� (x) :=
���̂�,� (x) − ��,� (x)

�� = ���ΣM (x0,X)⊤
(
Σ̂−1 − Σ−1

)
Ȳ
��� ,

Δ��,� (x) :=
︃
Δ�2

�,�
(x),

Δ�2
�,� (x) :=

����̂2
�,� (x) − �2

�,� (x)
��� = ���ΣM(x0,X)⊤

(
Σ̂−1 − Σ−1

)
ΣM(x0,X)

��� ,
Δ��,� (�) := Δ���,�� +

︁
� (�)Δ���,� (�), (A.22)

with Δ���,� :=
����̂��,� − ���,�

��� and Δ���,� (�) :=
(
2��Σ�




Σ̂−1 − Σ−1



 max
x,x′∈X

ΣM (x, x′)
) 1

2

.
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Recall from (4) that

���,� (�) =

︄
2��Σ

(
1 + � ∥Σ−1∥ max

x,x′∈X
ΣM(x, x′)

)
,

and �̂��,� (�) is obtained by replacing Σ with Σ̂ in the equation above. It follows from
√
� + � ≤

√
� +

√
� for any

�, � ≥ 0 that
���̂��,� (�) − ���,� (�)

�� ≤ Δ���,� (�).
The irst part of the proof is identical to that of Theorem 2 but by replacing

∞∑
�=1

�� = 1/2 with
∞∑
�=1

�� = 1/3

in (8) and (10). The second part of the proof focuses on showing that
����̂�(x) − ��(x)

��� = ����̂ �(x) −��(x)
��� =

�
(︁

� (�)��,� (x) + ��,� (�)
)
for all x ∈ X despite the impact of noise variance estimation.

From Proposition 5, we have with probability at least 1 − �/3,

max
1≤�≤�

����� V̂(x� ) − V(x� )
��

����� ≲
(
log�

�∗
�

) 1
2

· V�,max . (A.23)

By the Woodbury matrix identity, we have

Σ̂−1 − Σ−1
= Σ−1 (I + ΔΣ�Σ

−1)−1
ΔΣ�Σ

−1. (A.24)

It follows that 


Σ̂−1 − Σ−1



 ≤ 

Σ−1

 


(I + ΔΣ�Σ

−1)−1


 

ΔΣ�Σ−1

 ≤ 

Σ−1

 

ΔΣ�Σ−1

 , (A.25)

where, thanks to Weyl’s Theorem, we have used


(I + ΔΣ�Σ
−1)−1


 = �max

( (
I + ΔΣ�Σ

−1)−1)
=

1

�min (I + ΔΣ�Σ−1) ≤ 1, (A.26)

and �min

(
I + ΔΣ�Σ

−1) ≤ 1 since ΔΣ�Σ
−1 is positive deinite.

First, we analyze the terms in Δ��,� (�) deined in (A.22). It follows that, with probability of at least 1 − �/3,

Δ���,�� = �Σ
√
�



(Σ̂−1 − Σ−1

)
Ȳ



�

(� )
≤ �Σ

√
�


Σ−1

 

ΔΣ�Σ−1Ȳ



�
≤ �Σ

√
�


Σ−1

 ∥ΔΣ� ∥ 

Σ−1Ȳ



�
= �Σ

√
�


Σ−1Ȳ



� 

Σ−1

 ∥ΔΣ� ∥
(�� )
≲ ���,�� · V−1

�,min ·
(
log�

�∗
�

) 1
2

· V�,max

(��� )≍ ���,��

(
log�

�∗
�

) 1
2

= � (���,��) (A.27)

if log� = � (�∗
�
) as �, � → ∞. In (A.27), step (�) on the right-hand side follows from (A.24) and (A.26), step (��)

follows from (4), (A.23), and that ∥Σ−1∥ ≤ 1/�min (Σ�) = V−1
�,min

, and step (���) follows since V�,max/V�,min < ∞.
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Next, we have that with probability of at least 1 − �/3

︁
� (�)Δ���,� (�) =

︁
� (�)

(
2��Σ�




Σ̂−1 − Σ−1



 max
x,x′∈X

ΣM (x, x′)
) 1

2

(� )
≤

︁
� (�)

(
2��Σ�



Σ−1

 ∥ΔΣ� ∥ 

Σ−1

 max
x,x′∈X

ΣM (x, x′)
) 1

2

(�� )
≤

(
� (�) · 2� · �Σ� · max

x,x′∈X
ΣM (x, x′)V−1

�,min

) 1
2

V
− 1

2

�,min

((
log�

�∗
�

) 1
2

· V�,max

) 1
2

(��� )≍
︁
� (�)���,� (�)

(
log�

�∗
�

) 1
4

= �
(︁

� (�)���,� (�)
)

(A.28)

if log� = � (�∗
�
) as �, � → ∞. In (A.28), step (�) on the right-hand side follows from (A.25), step (��) follows (A.23)

and that ∥Σ−1∥ ≤ V−1
�,min

, and step (���) follows from (11) and that V�,max/V�,min < ∞.

Moreover, due to the union bound, we have with probability of at least 1 − 2�/3,

Δ��,� (x) =
���ΣM (x,X)⊤

(
Σ̂−1 − Σ−1

)
Ȳ
���

(� )
≤ ∥ΣM(x,X)∥



Σ−1

 ∥ΔΣ� ∥ 

Σ−1Ȳ




(�� )
≲

√
�V−1

�,min

(
log�

�∗
�

) 1
2

· V�,max

√
�V

− 1
2

�,min

(��� )≍ �

(
log�

�∗
�

) 1
2

V
− 1

2

�,min
= �

(︁
� (�)��,� (x)

)
∀x ∈ X, (A.29)

if (1) in the inite smoothness case, �
6�+�
2� = � (�∗

�
), thanks to Proposition 2; and (2) in the ininite smoothness case,

�
2�−1
� (log�) exp

(
(� + �̄)� 1

�

)
= � (�∗

�
), thanks to Proposition 4, where �, �̄ > 0 are as speciied in the proof of

Proposition 4. In (A.29), step (�) on the right-hand side follows from (A.24) and (A.26), step (��) follows from
(A.23), (10) with ��,� = log (1/(���)) and

∞∑
�=1

�� = 1/2 being replaced by
∞∑
�=1

�� = 1/3, and that ∥Σ−1∥ ≤ V−1
�,min

,

and step (���) follows since V�,max/V�,min < ∞.
Finally, it holds with probability of 1 − �/3 that

Δ�2
�,� (x) =

���ΣM (x,X)⊤
(
Σ̂−1 − Σ−1

)
ΣM (x,X)

���
(� )
≤ ∥ΣM (x,X)∥



Σ−1

 

ΔΣ�Σ−1

 ∥ΣM (x,X)∥
≤ ∥ΣM (x,X)∥



Σ−1

 ∥ΔΣ� ∥ 

Σ−1

 ∥ΣM (x,X)∥

(�� )
≲

√
�V−1

�,min

(
log�

�∗
�

) 1
2

· V�,max · V−1
�,min

√
�

(��� )≍ �V−1
�,min

(
log�

�∗
�

) 1
2

= � (�2
�,� (x)), ∀x ∈ X, (A.30)
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if (1) in the inite smoothness case,�
6�−�
� (log�) = � (�∗

�
), thanks to Proposition 2; and (2) in the ininite smoothness

case, �2 (log�) exp(2(�̄ + �)� 1
� ) = � (�∗

�
), thanks to Proposition 4, where �, �̄ > 0 are as speciied in the

proof of Proposition 4. In both inite and ininite smoothness cases, it follows from (A.30)
︁
� (�)Δ��,� (x) =

�
(︁

� (�)��,� (x)
)
for all x ∈ X. In (A.30), step (�) on the right-hand side follows from (A.25), step (��) follows

from (A.23) and that ∥Σ−1∥ ≤ V−1
�,min

, and step (���) follows since V�,max/V�,min < ∞.

Due to the union bound, combining (A.21), (A.27), (A.28), (A.29), and (A.30) completes the proof. □

B Reproducing Kernel Hilbert Space

We provide some necessary notation and preliminaries to reprocuding kernel Hilbert space (RKHS) in this section.
Denote the marginal distribution of design points on X by P and let �2 (X) be the �2 space with respect to P. For

� , � : X → R, let ⟨� , �⟩2 =
(∫

X � (x)�(x) �P(x)
)1/2

denote the inner product.

Consider a continuous and positive deinite kernel function � that satisies the Hilbert-Schmidt condition:∫
X×X

�2 (x, x′)�P(x)�P(x′) < ∞.

For any � ∈ �2 (X), we deine an integral operator �� : �2 (X) → H via

�� � (x) :=
∫
X
� (x, x′) � (x′)�P(x′), x ∈ X.

Mercer’s Theorem [Section 4.3 of 35] states that there exists countable pairs of eigenvalues and eigenfunctions
(�� ,�� )�∈N ⊂ (0,∞) × �2 (X) of �� such that

���� = ���� , ∀� ∈ N,

where {�� }∞�=1 form an orthonormal basis of �2 (X) and �1 ≥ �2 ≥ · · · are non-negative with lim�→∞ �� = 0.
Furthermore, the kernel function � has the following expansion:

� (x, x′) = Σ
∞
�=1���� (x)�� (x′), ∀x, x′ ∈ X,

where the convergence of the series on the right-hand side is absolute and uniform over any x, x′ ∈ X. The
reprocuding kernel Hilbert space (RKHS)H associated with kernel � can be deined as

H :=

{
� ∈ �2 (X) : ∥ � ∥2H =

∞︁

�=1

� 2�
��

< ∞, �� = ⟨� ,��⟩2

}
,

which is equipped with the inner product ⟨� , �⟩H =
∑∞

�=1 ����/�� for any � =
∑∞

�=1 ���� and � =
∑∞

�=1 ���� inH .
Now, consider an estimator of a function �0 ∈ H given by

�� = (�� + �id)−1�� �0,
where id is the identify operator. It can be shown that �� is the solution to the following optimization problem
[54]:

�� := argmin
� ∈H

{
∥ � − �0∥22 + �∥ � ∥2H

}
, (A.31)

which is the population counterpart of the following KRR problem:

�̂� := argmin
� ∈H

{
1

�

�︁

�=1

(� (x� ) − �0 (x� ))2 + �∥ � ∥2H

}
.
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The estimator �� in (A.31) can be obtained through the integral operator��̃ as �� = ��̃ �0, where �̃ is the equivalent

kernel for � : �̃ has the same eigenfunctions as � but its eigenvalues are changed to �� = ��/(�� + �) for � ∈ N,

i.e., �̃ (x, x′) = ∑∞
�=1 ���� (x)�� (x′). Let H̃ be the RKHS associated with kernel �̃ . We have H̃ equivalent toH as a

functional space, but with a diferent inner product:

⟨� , �⟩�̃ = ⟨� , �⟩2 + �⟨� , �⟩� ,
and the corresponding RKHS norm is ∥ · ∥�̃ . For more details on equivalent kernels, we refer the interested reader
to [54] and Chapter 7 of [35].

C Random Design Seting

This subsection focuses on the analysis of predictive variance of SK in the random design setting, i.e., the design
points are randomly drawn from the input space X according to some distribution P. Our investigation builds on
the literature on the non-asymptotic error analysis for kernel ridge regression estimators [30, 54].
Consider the predictive variance �2

�,�
(x0) given in (3). We have

�2
�,� (x0) ≤ ΣM (x0, x0) − ΣM (x0,X)⊤

(
ΣM (X,X) + V�,maxI�

)−1
ΣM (x0,X), (A.32)

where recall that V�,max = max
1≤�≤�

V(x� )/�� . Deine � := V�,max/(�2�) in this subsection. We can write the upper

bound for �2
�,�

(x0) given by the right-hand side of (A.32) as �2
(
�x0 (x0) − �̂x0 (x0)

)
, where �x0 (x′) := � (x0, x′)

for any x′ ∈ X and recall from Section 2.1 that � (x, x′) = ΣM (x, x′)/�2 for any x, x′ ∈ X is the kernel function;
in addition,

�̂x0 (x′) = � (x′,X)⊤ (� (X,X) + ��I� )−1 � (X, x0). (A.33)

Inspired by [30] and [54], we realize that, for any given prediction point x0 ∈ X, �̂x0 (·) is the solution to the
following kernel ridge regression (KRR) problem with noiseless observations of �x0 at the design points:

�̂x0 := argmin
�∈H

[
1

�

�︁

�=1

(
�x0 (x� ) − �(x� )

)2 + �∥�∥2H

]
, (A.34)

whereH denotes the RKHS associated with kernel � , ∥ · ∥H denotes the norm equipped withH , and � represents

the regularization parameter. Hence, we can investigate the order of the upper bound �2
(
�x0 (x0) − �̂x0 (x0)

)
on

�2
�,�

(x0) through studying the bias of the noiseless KRR estimator �̂x0 .

C.1 Main Results

We are now in a position to state the assumption on the eigenfunctions of the kernel function � and the main
result that will be useful for establishing the convergence rate of the predictive variance under the supremum
norm in the random design setting.

Assumption 1. There exists a constant �� > 0 such that ∥�� ∥∞ ≤ �� for all � ∈ N.

Deine �̃2 := supx∈X �̃ (x, x) and

� (�) :=
∞︁

�=1

��

� + ��
, (A.35)

which is often referred to as the efective dimensionality of kernel � with respect to �2 (X) [56]. It is follows
directly from Assumption 1 that �̃2 ≤ �2

�

∑∞
�=1 �� ≲ � (�).
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Theorem 4. Under Assumption 1, it holds with probability at least 1 − � with any � ∈ (0, 1/3) that

∥�x0 − �̂x0 ∥∞ ≤ � (�, �̃)
1 −� (�, �̃) ��

2
�� (�), (A.36)

where

� (�, �̃) = �̃2

︁
2 log(�−1)

√
�

(
4 +

4�̃
︁
2 log(�−1)
3
√
�

)
.

In particular, taking � = �−10 yields

� (�, �̃) = �̃2
√
20

︂
log�

�

(
4 + 4�̃

√
20

3

︂
log�

�

)
;

and choosing � such that �̃2 = � (
︁
�/log�) simpliies (A.36) to

∥�x0 − �̂x0 ∥∞ ≤ 2��2
�� (�) ≲ �� (�).

Theorem 4 follows from applying Lemma 4 and Theorems 1 in [30] to the noiseless KRR estimator �̂x0 given
in (A.33). For the sake of brevity, we omit the proof here. Notice that setting � = �−10 simpliies the bound in
(A.36) and facilitates further analysis. Such a choice is quite common in the nonparametric regression literature;

see, e.g., [31], [33], and [54]. Theorem 4 enables us to further investigate the convergence rate of ∥�x0 − �̂x0 ∥∞
for commonly used kernel functions.

Polynomially decaying kernels. Kernels with polynomially decaying eigenvalues include those that underlie
the Sobolev spaces with diferent orders of smoothness. One popular kernel function belonging to this category
is the Matérn kernel when P is the uniform distribution on X [40].

Assumption 2. The eigenvalues of � , {� � }∞�=1, satisfy � � ≍ �−2�/� for some � > �/2.

Corollary 3. Under Assumptions 1 and 2, it holds with probability at least 1 − �−10 that

∥�x0 − �̂x0 ∥∞ ≲ �
2�−�
2� , (A.37)

where � is chosen such that �̃2 = � (
︁
�/log�) holds. In particular, for any 0 < �′ ≤ �, it holds with probability at

least 1 − �−10 for all x0 ∈ X that

�x0 (x0) − �̂x0 (x0; �′) ≤ �x0 (x0) − �̂x0 (x0; �) ≲ �
2�−�
2� .

Proof. Under Assumption 2, by selecting � ′ =
⌊
�−�/(2� )

⌋
where ⌊�⌋ denotes the greatest integer less than or

equal to � , we have from (A.35) that

� (�) =
∞︁

�=1

1

1 + �2�/��
=

� ′︁
�=1

1

1 + �2�/��
+

∞︁

�=� ′+1

1

1 + �2�/��
≲ �−

�
2� +

∞︁

�=� ′+1

1

1 + �2�/��
. (A.38)

The last term in (A.38) can be further upper bounded as follows:

∞︁

�=� ′+1

1

1 + �2�/��
≤ 1

�

∫ ∞

�−�/(2� )

1

�2�/� �� = �−1�
2�−�
2�

(
�

2� − �

)
≍ �−

�
2� . (A.39)

It follows from (A.38) and (A.39) that � (�) ≲ �−�/(2� ) . By choosing � such that that �̃2 ≲ � (�) = � (
︁
�/log�),

we have the upper bound in (A.37) follow from Theorem 4 immediately. The last statement follows since

�x0 (x0) − �̂x0 (x0; �) is a nonincreasing function of �. □
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With respect to Corollary 3, one viable choice of � is � ≍ �−� (log�)� , where � > 0 and � ∈ R. We can

show that, if � = �/� and � > �/� , then �̃2 ≲ � (�) ≲

(
�−� (log�)�

)− �
2�

≲ �
1
2 (log�)− �

2� � = � (
︁
�/log�). In

this case, it follows that ∥�x0 − �̂x0 ∥∞ ≲ �− 2�−�
2� (log�) 2�−�

2� � . Hence, with a high probability, for any x0 ∈ X,

��,� (x0) ≲ �− 2�−�
4� (log�) 2�−�

4� � . Recall the deinition � = V�,max/(�2�); it is not diicult to allocate the simulation
budget to fulill this choice of �. In case the budget allocation adopted makes � decay to zero at a faster rate than

the aforementioned case, Corollary 3 makes it clear that the corresponding upper bound on ∥�x0 − �̂x0 ∥∞ and
hence the upper bound on the order of ��,� (·) still hold; however, it can be loose and does not imply the optimal
convergence rate of ��,� (·).
We can further extend Theorem 2 and study the order of the uniform error bound in the random design

setting as �, � → ∞, when polynomially decaying kernels are adopted. We see from (8) that both ��,� (�)
and

︁
�� (�) supx∈X ��,� (x) must converge to zero as �, � → ∞ to guarantee a vanishing approximation error

at ∀x ∈ X. Given the aforemeioned choice of � ≍ �−� (log�)� with � = �/� and � > �/� , we have that
lim

�,�→∞
��,� (�) = 0 can be achieved if the grid constant as a function of � , � (�), decreases suiciently fast. Recall

from (12) that ��,� (�) ≲

((
�� (�) · � (�) · �V−1

�,min

) 1
2 + � (�) + � (�) · �V− 1

2

�,min

)
. Assuming that V�,max/V�,min < ∞,

we have V�,min ≍ V�,max ≍ �1−� (log�)� . Setting � (�) = O(�−�) as �, � → ∞ with � = 2�/� ensures that

lim
�,�→∞

��,� (�) = 0 and moreover ��,� (�) = �
(︁

�� (�) supx∈X ��,� (x)
)
as �, � → ∞. The latter follows from the

fact that �� (�) = O(log�) due to (9) and ��,� (x) = O
(
�− 2�−�

4� (log�) 2�−�
4� �

)
at ∀x ∈ X thanks to Corollary 3.

Therefore, ��,� (�) +
︁
�� (�) supx∈X ��,� (x) ≲

︁
�� (�) supx∈X ��,� (x) = O

(
�− 2�−�

4� (log�) 2�−�
4� �+ 1

2

)
as �, � → ∞.

Exponentially decaying kernels. Consider kernels having exponentially decaying eigenvalues. Roughly speaking,
ininitely smooth stationary kernels belong to this category. One important kernel function that falls into this
category is the squared exponential or Gaussian kernel when P is the uniform distribution or normal on X
[39, 40]: � (x, x′) = exp

(
−∥x − x′∥2/�

)
, where � > 0 denotes the lengthscale parameter.

Assumption 3. The eigenvalues of � , {� � }∞�=1, satisfy � � ≍ � �
1
� for some � ∈ (0, 1).

Corollary 4. Under Assumptions 1 and 3, it holds with probability at least 1 − �−10 that

∥�x0 − �̂x0 ∥∞ ≲ �
(
log �−1

)�
, (A.40)

where � is chosen such that �̃2 = � (
︁
�/log�) holds. In particular, for any 0 < �′ ≤ �, it holds with probability at

least 1 − �−10 for all x0 ∈ X that

�x0 (x0) − �̂x0 (x0; �′) ≤ �x0 (x0) − �̂x0 (x0; �) ≲ �
(
log �−1

)�
.
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Proof. Under Assumption 3, by setting �∗ =

⌊(
log�−1

log�−1

)� ⌋
, we have from (A.35) that

� (�) =
�∗︁
�=1

1

1 + ��−1�
+

∞︁

�=�∗+1

1

1 + ��−1�

≲

(
log �−1

log�−1

)�
+ �−1

∞︁

�=�∗+1
� �

1
�

≲
(
log �−1

)� + �−1
∫ ∞
(
log�−1
log�−1

)� ��
1
�
d� . (A.41)

Let � = ��1/� , where � = − log�. Then ��
1/�

= �−� , d� = (�� −� )��−1d� , and the range of � is [log �−1,∞). Hence,
the second term on the right-hand side of (A.41) can be upper bounded as follows:

�−1
∫ ∞
(
log�−1
log�−1

)� ��
1
�
d� = �−1

∫ ∞

log�−1
�−� (�� −� )��−1d�

= �−1�� −�
∫ ∞

log�−1
�−���−1d�

= �−1�� −�Γ
(
�, log �−1

)
, (A.42)

where Γ(�,�) =
∫ ∞
�

��−1�−�d� denotes the upper incomplete gamma function; in our setting, � = � and� = log �−1.

It is also known that Γ(�,�) → ��−1�−� as � → ∞. Therefore, (A.42) becomes

�−1
∫ ∞
(
log�−1
log�−1

)� ��
1
�
d� ≍ �−1�� −� (log �−1)�−1� ≍ (log �−1)�−1 . (A.43)

Hence, � (�) ≲ (log �−1)� follows from (A.41) and (A.43). By choosing � such that that �̃2 ≲ � (�) = � (
︁
�/log�),

we have the upper bound in (A.40) follow from Theorem 4 immediately. The last statement follows since

�x0 (x0) − �̂x0 (x0; �) is a nonincreasing function of �. □

Some comments follow from Corollary 4. One viable choice of � is � ≍ exp(−�
1
� ) for some � > 0. By choosing

� > 2� , it follows that �̃2 ≲ � (�) ≲ �
�
� = � (

︁
�/log�). The high probability upper bound given by (A.40) in this

case follows as ∥�x0 − �̂x0 ∥∞ ≲ exp(−�
1
� )�

�
� . Therefore, it follows that with a high probability, for any x0 ∈ X,

��,� (x0) ≲ exp(− 1
2�

1
� )�

�
2� . Recall that � := V�,max/(�2�); we see that it is possible to allocate the computational

budget to fulill this choice of �. In case the budget allocation adopted makes � diminish at a faster rate than the

case discussed above, the corresponding upper bound on ∥�x0 − �̂x0 ∥∞ and hence the upper bound on the order
of ��,� (·) still hold; however, in this case the upper bound is not as tight.
Finally, we further extend Theorem 2 by discussing the order of the uniform error bound in the random

design setting as �, � → ∞, when exponentially decaying kernels are adopted. We see from (8) that both ��,� (�)
and

︁
�� (�) supx∈X ��,� (x) must converge to zero as �, � → ∞ to guarantee a vanishing approximation error

at ∀x ∈ X. Given the aforemeioned choice of � ≍ exp(−�
1
� ) with � > 2� , we have that lim

�,�→∞
��,� (�) = 0

can be achieved if the grid constant as a function of � , � (�), decreases suiciently fast. Recall from (12) that

��,� (�) ≲
((
�� (�) · � (�) · �V−1

�,min

) 1
2 + � (�) + � (�) · �V− 1

2

�,min

)
.Assuming thatV�,max/V�,min < ∞, we have V�,min ≍
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V�,max ≍ � exp(−�
1
� ). Setting � (�) = O

(
exp

(
−��

1
�

))
where � ≥ 2 ensures that lim

�,�→∞
��,� (�) = 0 and moreover

��,� (�) = �
(︁

�� (�) supx∈X ��,� (x)
)
as �, � → ∞. The latter follows from the fact that �� (�) = O(�

1
� ) due to (9)

and ��,� (x) = O
(
exp(− 1

2�
1
� )�

�
2�

)
at ∀x ∈ X thanks to Corollary 4. Therefore, ��,� (�) +

︁
�� (�) supx∈X ��,� (x) ≲︁

�� (�) supx∈X ��,� (x) = O
(
exp(− 1

2�
1
� )�

1+�
2�

)
as �, � → ∞.
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D Additional Figures for Section 6

D.1 Figures for the M/M/1ueueing Example

(a) Equal allocation, Gaussian (b) Equal allocation, Matérn

(c) Unequal allocation 1, Gaussian (d) Unequal allocation 1, Matérn

(e) Unequal allocation 2, Gaussian (f) Unequal allocation 2, Matérn

Fig. 6. Boxplots of log(�max) of CIeu, CIu, and CIb for the M/M/1 example obtained on 100 independent macro-replications

under the grid design with � = 25600.
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(a) Equal allocation, Gaussian (b) Equal allocation, Matérn

(c) Unequal allocation 1, Gaussian (d) Unequal allocation 1, Matérn

(e) Unequal allocation 2, Gaussian (f) Unequal allocation 2, Matérn

Fig. 7. Boxplots of log(�max) of CIeu, CIu, and CIb for the M/M/1 example obtained on 100 independent macro-replications

under the uniform design with � = 2560.
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(a) Equal allocation, Gaussian (b) Equal allocation, Matérn

(c) Unequal allocation 1, Gaussian (d) Unequal allocation 1, Matérn

(e) Unequal allocation 2, Gaussian (f) Unequal allocation 2, Matérn

Fig. 8. Boxplots of log(�max) of CIeu, CIu, and CIb for the M/M/1 example obtained on 100 independent macro-replications

under the uniform design with � = 25600.
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D.2 Figures for Dimension-flexible Example

D.2.1 Additional Figures for the 1D Case. Figures 9 and 10 summarize the magnitudes of �max (in a logarithmic
scale) of CIeu, CIu, and CIb obtained with a total budget of � = 2560 and 10240, respectively. These igures
illustrate that, regardless of the kernel function adopted, diferent budget allocation schemes and design-point
sampling schemes (i.e., LHD and uniform) tend to yield similar patterns in �max magnitudes.
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(a) LHD + equal allocation, Gaussian (b) LHD + equal allocation, Matérn

(c) LHD + unequal allocation 1, Gaussian (d) LHD + unequal allocation 1, Matérn

(e) Uniform + equal allocation, Gaussian (f) Uniform + equal allocation, Matérn

Fig. 9. Boxplots of log(�max) of CIeu, CIu, and CIb for the 1D example obtained on 100 independent macro-replications

with � = 2560.
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(a) LHD + equal allocation, Gaussian (b) LHD + equal allocation , Matérn

(c) LHD + unequal allocation 1, Gaussian (d) LHD + unequal allocation 1, Matérn

(e) Uniform + equal allocation, Gaussian (f) Uniform + equal allocation, Matérn

Fig. 10. Boxplots of log(�max) of CIeu, CIu, and CIb for the 1D example obtained on 100 independent macro-replications

with � = 10240.
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D.2.2 Additional Figures for the 5D Case. Figures 11 and 12 summarize the magnitudes of �max (in a logarithmic
scale) of CIeu, CIu, and CIb obtained with a total budget of � = 2560 and 10240, respectively. These igures
illustrate that, regardless of the kernel adopted, diferent budget allocation schemes and design-point sampling
schemes (i.e., LHD and uniform) tend to yield similar patterns in �max magnitudes.
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(a) LHD + equal allocation, Gaussian (b) LHD + equal allocation, Matérn

(c) LHD + unequal allocation 1, Gaussian (d) LHD + unequal allocation 1, Matérn

(e) Uniform + equal allocation, Gaussian (f) Uniform + equal allocation, Matérn

Fig. 11. Boxplots of log(�max) of CIeu, CIu, and CIb for the 5D example obtained on 100 independent macro-replications

with � = 2560.
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(a) LHD + equal allocation, Gaussian (b) LHD + equal allocation, Matérn

(c) LHD + unequal allocation 1, Gaussian (d) LHD + unequal allocation 1, Matérn

(e) Uniform + equal allocation, Gaussian (f) Uniform + equal allocation, Matérn

Fig. 12. Boxplots of log(�max) of CIeu, CIu, and CIb for the 5D example obtained on 100 independent macro-replications

with � = 10240.
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