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ABSTRACT

This paper proposes two joint metamodel-based Sobol’ index estimators and investigates their asymptotic
properties. The numerical evaluation corroborates the theoretical results and highlights the impact of the
combination of training sample size and Monte Carlo sample size on the estimators’ performance.

1 INTRODUCTION

Sobol’ indices are widely used in global sensitivity analysis for assessing the input parameters’ impact on
the model output (Sobol’ 1990; Saltelli and Annoni 2010), with successful applications in epidemiological
modeling, defect detection in manufacturing, pollutant transport modeling, etc. Estimating Sobol’ indices
can be computationally demanding, especially when the input space dimensionality is high. Many Monte
Carlo (MC)-based estimators have emerged to efficiently estimate Sobol’ indices; see, e.g., Tarantola et al.
(2007), Saltelli et al. (2010), and Mazo (2021). However, MC-based estimators can be inefficient when the
simulation model is computationally expensive to evaluate. In recent years, research on metamodel-based
Sobol’ index estimators has attracted increasing attention; see, e.g., Marrel et al. (2012), Janon et al. (2014),
and Hart et al. (2017). Thanks to efficient metamodeling techniques and suitable experimental designs,
it is possible to construct an accurate metamodel using a relatively small training sample generated by a
limited number of simulation runs for the purpose of Sobol’ index estimation.

While point estimates of Sobol’ indices can serve as a measure of the importance of input variables, it
is arguably equally important to quantify the uncertainty associated with these estimates. Non-asymptotic
uncertainty quantification methods based on bootstrapping and empirical distributions have been proposed;
see, e.g., Storlie et al. (2009), Marrel et al. (2009), and Janon et al. (2014). On the other hand, Janon et al.
(2014) investigated the asymptotic normality of metamodel-based Sobol’ index estimators for deterministic
simulation models. For stochastic simulation models, Mazo (2021) conducted an asymptotic analysis for
MC-based Sobol’ index estimators. However, the asymptotic properties of metamodel-based estimators
for a stochastic simulation model have rarely been explored. To the best of our knowledge, this work is
among the first to investigate the asymptotic normality of metamodel-based Sobol’ index estimators for a
stochastic simulation model.

In this paper, we propose joint metamodel-based Sobol’ index estimators which rely on estimation
of both the mean and variance functions implied by a stochastic simulation experiment. We prove the
estimators’ asymptotic normality, based on which asymptotic confidence intervals can be constructed for
uncertainty quantification. The rest of the paper is organized as follows. Section 2 briefly introduces Sobol’
indices and proposes two joint metamodel-based Sobol’ index estimators. Section 3 presents the theoretical
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analysis of the proposed estimators. Section 4 presents numerical experiments for performance evaluations
and verifies the theoretical results.

2 JOINT METAMODEL-BASED ESTIMATION

This section briefly reviews Sobol’ indices for global sensitivity analysis and proposes two joint metamodel-
based Sobol’ index estimators. Given the input vector X = (X1,X2, . . . ,Xp)

� ∈ X ⊂ R
p, we consider a

stochastic simulation model of the form Y = f (X ,ε), where f is some real-valued function and ε represents
the uncertainty inherent to the simulation model. For any subset u ⊂ {1,2, . . . , p}, define Xu as the subset of
entries in X with indices in u; e.g., for u = {1,2}, Xu = (X1,X2). Define X−u := X\Xu. The Sobol’ index of
Xu quantifies the contribution of the input variable(s) in Xu towards the variance of the model output Y , based
on the following functional variance decomposition: VarX ,ε (Y) = Vε(Y)+∑p

i=1 ∑|J|=i(VJ(Y)+VJε(Y)),
where Vi(Y) = VarXi (EX−i,ε (Y | Xi)), Vε(Y) = Varε (EX (Y | ε)), Vi j(Y) = VarXi,Xj

(
EX−{i, j},ε (Y | Xi,Xj)

)
−

Vi(Y)−Vj(Y), i �= j, Viε(Y) =VarXi,ε (EX−i (Y | Xi,ε))−Vi(Y)−Vε(Y), and so on. Following Mazo (2021),
the Sobol’ index of Xu for a stochastic simulation model is defined as

SXu =
VarXu (EX−u,ε (Y | Xu))

VarX ,ε (Y)
, u ⊂ {1,2, . . . , p}. (1)

The value of SXu is between 0 and 1, and a larger value indicates greater importance of the input variable(s)
in Xu to Y . The Sobol’ index given in (1) can be estimated via different methods, e.g., the pick-freeze
scheme (Gamboa et al. 2016), which amounts to running the simulation model at inputs (Xu,i,X−u,i) and
(X ′

u,i,X−u,i) for i ∈N
+, where Xu,i and X−u,i are MC samples of Xu and X−u, and X ′

u,i is an independent copy
of Xu,i. When the simulation model is computationally expensive to evaluate, Janon et al. (2014), Hart
et al. (2017), and Castellan et al. (2020) showed that metamodeling can facilitate efficient estimation of
the Sobol’ indices by only performing simulation runs to build a metamodel and evaluating the metamodel
for Sobol’ index estimation using a MC sample of input vectors.

Following Marrel et al. (2012), we consider joint metamodel-based Sobol’ index estimation for
stochastic simulation models. Denote by Ym(X) := Eε (Y | X) the mean function and Yd(X) := Varε (Y | X)
the variance function, which are defined on the probability space (ΩX ,FX ,PX). We can rewrite Equation
(1) as

SXu =
VarXu (EX−u (Ym | Xu))

VarX (Ym)+EX (Yd)
, (2)

since VarXu (EX−u,ε (Y | Xu)) = VarXu (EX−u (Ym | Xu)) and VarX ,ε (Y) = VarX (Ym)+EX (Yd). Consider esti-

mating Ym and Yd by metamodels Ỹm,TN and Ỹd,TN , where TN denotes a training sample, {(Xi,Yi)}n
i=1, to

obtain the metamodels, n denotes the training sample size, N denotes the MC sample size for metamodel
evaluations, and n → ∞ as N → ∞. As Janon et al. (2014) showed for deterministic simulation models, there
exist some relationships between n and N to make the metamodel-based Sobol’ index estimators consistent.
Assume that the training sample TN is defined on the probability space (ΩZ,FZ,PZ). The metamodels

Ỹm,TN and Ỹd,TN are defined on the product space (ΩZ ×ΩX ,σ(FZ ×FX),PZ ⊗PX). In particular, given a

fixed ω ∈ ΩZ , Ỹm,TN(ω) and Ỹd,TN(ω) are defined on the probability space (ΩX ,FX ,PX). Since Ym and Yd

are unavailable, we adopt Ỹm,TN and Ỹd,TN for Sobol’ index estimation. Define Ỹm,TN ,i := Ỹm,TN ((Xu,i,X−u,i)),

Ỹ X
m,TN ,i := Ỹm,TN ((X

′
u,i,X−u,i)), Ỹd,TN ,i := Ỹd,TN ((Xu,i,X−u,i)) , and Ỹ (X)

m,TN ,i
:= Ỹm,TN ((X

′
u,i,X

′
−u,i)) for i ∈ N

+,

where X ′
−u,i is an independent copy of X−u,i. Based on (2), we propose two estimators to be detailed next.

The First Sobol’ Index Estimator. The first estimator of SXu in (2) is devised by noting that VarXu (EX−u (Ym | Xu))=
Cov(Ym((Xu,X−u)),Ym((X ′

u,X−u))), where X ′
u is an independent copy of Xu; see Lemma 2.2 of Janon et al.

(2014). Based on the outputs {Ỹm,TN ,i,Ỹ
X
m,TN ,i,Ỹd,TN ,i}N

i=1 from evaluating the mean and variance metamodels,
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the first estimator can be given as

S̃Xu
TN

=

1
N ∑N

i=1 Ỹm,TN ,iỸ
X
m,TN ,i −

(
1
N ∑N

i=1 Ỹm,TN ,i

)(
1
N ∑N

i=1 Ỹ X
m,TN ,i

)
1
N ∑N

i=1 Ỹ 2
m,TN ,i −

(
1
N ∑N

i=1 Ỹm,TN ,i

)2

+ 1
N ∑N

i=1 Ỹd,TN ,i

. (3)

The Second Sobol’ Index Estimator. There exist alternative estimators of the numerator on the right-hand
side of (2); see, e.g., Table 2 in Saltelli et al. (2010). We study one of them in this paper. Define

Ỹ (X)
m,TN ,i

:= Ỹm,TN ((X
′
u,i,X

′
−u,i)). Based on the outputs {Ỹm,TN ,i,Ỹ

X
m,TN ,i,Ỹ

(X)
m,TN ,i,Ỹd,TN ,i}N

i=1 from evaluating the
metamodels, we can obtain the second estimator as

T̃ Xu
TN

=
1
N ∑N

i=1 Ỹm,TN ,i(Ỹ
X
m,TN ,i − Ỹ (X)

m,TN ,i)

1
N ∑N

i=1 Ỹ 2
m,TN ,i −

(
1
N ∑N

i=1 Ỹm,TN ,i

)2

+ 1
N ∑N

i=1 Ỹd,TN ,i

. (4)

Our analysis of the two metamodel-based estimators given in (3) and (4) is detailed in the next section.
It is worthwhile studying the following two estimators given the knowledge of the true mean and variance
functions Ym(·) and Yd(·):

SXu
N =

1
N ∑N

i=1Ym,iY X
m,i −

(
1
N ∑N

i=1Ym,i
)(

1
N ∑N

i=1Y X
m,i
)

1
N ∑N

i=1Y 2
m,i −

(
1
N ∑N

i=1Ym,i
)2

+ 1
N ∑N

i=1Yd,i

, (5)

and

T Xu
N =

1
N ∑N

i=1Ym,i(Y X
m,i −Y (X)

m,i )

1
N ∑N

i=1Y 2
m,i −

(
1
N ∑N

i=1Ym,i
)2

+ 1
N ∑N

i=1Yd,i

, (6)

where the two estimators above are defined analogously to those in (3) and (4) but with the outputs from
evaluating the metamodels replaced by those from evaluating the true mean and variance functions.

3 ASYMPTOTIC ANALYSIS

This section investigates the asymptotic normality of the estimators proposed in Section 2. We first show
that this property holds true for the estimators that are based on the true mean and variance functions under
a bounded moment condition. Then, we investigate when the asymptotic normality holds true if the true
mean and variance functions are unavailable and are replaced by the metamodels.

3.1 Analysis of the Sobol’ Index Estimators Using the True Mean and Variance Functions

This subsection analyzes the asymptotic normality of the Sobol’ index estimators given in (5) and (6) when
the true mean and variance functions, Ym(X) and Yd(X), are available. For ease of notation, we write Ym
and Yd hereinafter. The analysis relies on Assumption 1 below.

Assumption 1 EX
(
Y 4

m
)
< ∞ and EX

(
Y 2

d

)
< ∞.

Proposition 1 Under Assumption 1,
√

N
(

SXu
N −SXu

)
d−−−→

N→∞
N (0,σ2

S ) in (ΩX ,FX ,PX), where

σ2
S = VarX

(
(Ym −EX (Ym))

(
Y X

m −EX (Ym)
)
−SXu

(
(Ym −EX (Ym))

2 +Yd

))
(VarX ,ε (Y))−2 . (7)

Proof. Define

Ui :=
(
(Ym,i −EX (Ym))

(
Y X

m,i −EX (Ym)
)
,Ym,i −EX (Ym) ,Y X

m,i −EX (Ym) ,(Ym,i −EX (Ym))
2 ,Yd,i

)
, (8)
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and UN := N−1 ∑N
i=1Ui. Define μ :=

(
Cov

(
Ym,Y X

m
)
,0,0,VarX (Ym) ,EX (Yd)

)
. We have

√
N(UN −μ) d−−−→

N→∞
N (0,Γ), where Γ is the variance-covariance matrix of U1. Let ψS(x,y,z,a,b) = (x− yz)/(a− y2 +b), and

SXu
N = ψS(UN) according to (5). Since

∇ψS =

(
1

a− y2 +b
,− z

a− y2 +b
+

2y(x− yz)
(a− y2 +b)2

,− y
a− y2 +b

,− x− yz
(a− y2 +b)2

,− x− yz
(a− y2 +b)2

)
,

we have ∇ψS(μ) =
(

VarX ,ε (Y)−1 ,0,0,−VarX ,ε (Y)−1 SXu ,−VarX ,ε (Y)−1 SXu

)
. It follows that

∇ψS(μ)Γ∇ψ�
S (μ) = VarX

(
(Ym −EX (Ym))

(
Y X

m −EX (Ym)
)
−SXu

(
(Ym −EX (Ym))

2 +Yd

))
(VarX ,ε (Y))−2 .

Assumption 1 ensures the validity of ∇ψS(μ)Γ∇ψ�
S (μ). The proof is complete by applying the Delta

method with σ2
S = ∇ψS(μ)Γ∇ψ�

S (μ).

Similarly, we can show that the asymptotic normality holds true for the estimator given in (6).

Proposition 2 Under Assumption 1,
√

N
(

T Xu
N −SXu

)
d−−−→

N→∞
N (0,σ2

T ) in (ΩX ,FX ,PX), where

σ2
T = VarX

(
(Ym −EX (Ym))

(
Y X

m −Y (X)
m

)
−SXu

(
(Ym −EX (Ym))

2 +Yd

))
(VarX ,ε (Y))−2 . (9)

Proof. The proof is similar to that of Proposition 1. Define

Ui :=
(
(Ym,i −EX (Ym))

(
Y X

m,i −EX (Ym)
)
,(Ym,i −EX (Ym))

(
Y (X)

m,i −EX (Ym)
)
,

(Ym,i −EX (Ym))
2 ,Y X

m,i −EX (Ym) ,Yd,i

)
,

and UN := N−1 ∑N
i=1Ui. Define μ :=

(
Cov

(
Ym,Y X

m
)
,0,VarX (Ym) ,0,EX (Yd)

)
. We have

√
N(UN −u) d−−−→

N→∞
N (0,Γ), where Γ is the variance-covariance matrix of U1. Let ψS(x,y,z,a,b) = (x− y)/(z−a2 +b), and

T Xu
N = ψS(UN) according to (6). Since

∇ψS =

(
1

z−a2 +b
,− 1

z−a2 +b
,− x− y

(z−a2 +b)2
,

2a(x− y)
(z−a2 +b)2

,− xy
(z−a2 +b)2

)
,

we have ∇ψS(u) =
(

VarX ,ε (Y)−1 ,VarX ,ε (Y)−1 ,−VarX ,ε (Y)−1 SXu ,0,−VarX ,ε (Y)−1 SXu

)
, and it follows

that

∇ψS(μ)Γ∇ψ�
S (μ) = VarX

(
(Ym −EX (Ym))

(
Y X

m −Y (X)
m

)
−SXu

(
(Ym −EX (Ym))

2 +Yd

))
(VarX ,ε (Y))−2 .

Assumption 1 ensures the validity of ∇ψS(μ)Γ∇ψ�
S (μ). The proof is complete by applying the Delta

method with σ2
T = ∇ψS(μ)Γ∇ψ�

S (μ).

As the estimators given in (5) and (6) are unbiased, we are interested in which one may have a lower

asymptotic variance. Define V := (Ym −EX (Ym))
(
Y X

m −EX (Ym)
)
− SXu

(
(Ym −EX (Ym))

2 +Yd

)
. Then we

have σ2
S = VarX (V )/(VarX ,ε (Y))2, and

σ2
T = VarX

(
(Ym −EX (Ym))

(
EX (Ym)−Y (X)

m

)
+V

)
(VarX ,ε (Y))−2

= σ2
S +

VarX

(
(Ym −EX (Ym))

(
EX (Ym)−Y (X)

m

))
+2Cov

(
(Ym −EX (Ym))

(
EX (Ym)−Y (X)

m

)
,V

)
(VarX ,ε (Y))2

.

(10)
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A closer examination reveals that the sign of the second term on the right-hand side of (10) is indeterminate.
In fact, the relationship between σ2

S and σ2
T is example dependent; see Section 4 for more details.

3.2 Analysis of the Joint Metamodel-based Sobol’ Index Estimators

This subsection investigates the asymptotic normality of the two joint metamodel-based estimators S̃Xu
TN

and

T̃ Xu
TN

, respectively given in (3) and (4), when the true mean and variance functions are unavailable.

The following decomposition is key to our analysis of the first joint metamodel-based estimator S̃Xu
TN

:

√
N
(

S̃Xu
TN

−SXu
)
=
√

N
(

S̃Xu
TN

− S̃Xu
)
+
√

N
(

S̃Xu −SXu
)
, (11)

where S̃Xu := VarXu

(
EX−u

(
Ỹm,TN | Xu

))
/
(

VarX

(
Ỹm,TN

)
+EX

(
Ỹd,TN

))
which is similar as SXu given in (2),

but with the true mean and variance functions replaced by the respective metamodels built on the given
data set TN . A decomposition similar to (11) holds true for the second estimator T̃ Xu

TN
as well. We next

investigate the properties of
√

N
(

S̃Xu
TN

− S̃Xu

)
and

√
N
(

S̃Xu −SXu

)
in light of (11). Let us start with some

technical conditions.

Assumption 2 For almost every ω ∈ ΩZ , δm,TN(ω) := Ỹm,TN(ω)−Ym
L2

−−−→
N→∞

c, where c is some constant.

Assumption 3 For almost every ω ∈ ΩZ , EX

(
Ỹd,TN(ω)

)
−−−→
N→∞

EX (Yd).

Assumption 3′ For almost every ω ∈ ΩZ , δd,TN(ω) := Ỹd,TN(ω)−Yd
L2

−−−→
N→∞

0.

We note that Assumptions 2 and 3′ can be fulfilled by well-known metamodeling techniques under
mild conditions. For instance, Kohler et al. (2003) showed that kernel smoothing is strongly universally

consistent under some assumptions, i.e., EX(|Ỹm,TN −Ym|2) a.s.−−−→
N→∞

0 and EX(|Ỹd,TN −Yd |2)
a.s.−−−→

N→∞
0 with

respect to (ΩZ,FZ,PZ). Rather than examining a particular metamodeling technique (e.g., kernel smoothing,
Gaussian process), we focus on the asymptotic analysis of the metamodel-based estimators under some

sufficient conditions on the metamodels. We first examine S̃Xu defined in (11).

Proposition 3 Under Assumptions 1 to 3, S̃Xu −−−→
N→∞

SXu for almost every ω ∈ ΩZ .

Proof. Under Assumption 2 and by the Cauchy–Schwarz inequality, we have

∣∣∣EX

(
Ỹm,TN(ω)

)
−EX (Ym + c)

∣∣∣≤ (
EX

(∣∣δm,TN(ω)− c
∣∣2)) 1

2 −−−→
N→∞

0.

It follows that EX

(
Ỹm,TN(ω)

)
−−−→
N→∞

EX (Ym)+ c. On the other hand, by the continuity of the L2 norm,

∣∣∣∣(EX

(
Ỹ 2

m,TN(ω)

)) 1
2 −

(
EX

(
(Ym + c)2

)) 1
2

∣∣∣∣≤ (
EX

((
δm,TN(ω)− c

)2
)) 1

2 −−−→
N→∞

0,

which implies that EX

(
Ỹ 2

m,TN(ω)

)
−−−→
N→∞

EX

(
(Ym + c)2

)
. Hence,

VarX

(
Ỹm,TN(ω)

)
= EX

(
Ỹ 2

m,TN(ω)

)
−EX

(
Ỹm,TN(ω)

)2

−−−→
N→∞

EX
(
(Ym + c)2

)
−EX ((Ym + c))2 = VarX (Ym) .
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Also, we have

EXu

(∣∣∣EX−u

(
Ỹm,TN(ω)−Ym − c | Xu

)∣∣∣2)=
∫

Xu

∣∣EX−u

(
δm,TN(ω)− c | Xu

)∣∣2 dμXu

≤
∫

Xu

EX−u

(∣∣δm,TN(ω)− c
∣∣2 | Xu

)
dμXu = EX

(∣∣δm,TN(ω)− c
∣∣2)−−−→

N→∞
0,

which yields

EX−u

(
Ỹm,TN(ω) | Xu

)
L2

−−−→
N→∞

EX−u (Ym | Xu)+ c, (12)

and hence,

VarXu

(
EX−u

(
Ỹm,TN(ω) | Xu

))
−−−→
N→∞

VarXu (EX−u (Ym | Xu)) .

Since VarX (Ym)+EX (Yd)> 0, according to Assumption 3 and the quotient law for convergent sequences, for

almost every ω ∈ ΩZ , S̃Xu = VarXu

(
EX−u

(
Ỹm,TN(ω) | Xu

))
/
(

VarX

(
Ỹm,TN(ω)

)
+EX

(
Ỹd,TN(ω)

))
converges

to SXu = VarXu (EX−u (Ym | Xu))/(VarX (Ym)+EX (Yd)) as N → ∞.

To analyze the term
√

N(S̃Xu
TN

− S̃Xu) (respectively
√

N(T̃ Xu
TN

− S̃Xu)) related to the first (resp. second)
metamodel-based estimator in the decomposition shown in (11), we stipulate the following assumption.

Assumption 4 There exist s1,s2 > 0 and C > 0 such that for almost every ω ∈ ΩZ , EX

(
|Ỹm,TN(ω)|4+s1

)
<C

and EX

(
|Ỹd,TN(ω)|2+s2

)
<C, ∀N ∈ N

+.

Proposition 4 Under Assumptions 2, 3′, and 4, for almost every ω ∈ ΩZ ,
√

N
(

S̃Xu
TN(ω)− S̃Xu

)
d−−−→

N→∞
N (0,σ2

S ), where σ2
S is defined in (7).

Proof. Define

ŨTN(ω),i :=
((

Ỹm,TN(ω),i −EX

(
Ỹm

))(
Ỹ X

m,TN(ω),i −EX

(
Ỹm

))
,Ỹm,TN(ω),i −EX

(
Ỹm

)
,

Ỹ X
m,TN(ω),i −EX

(
Ỹm

)
,
(

Ỹm,TN(ω),i −EX

(
Ỹm

))2

,Ỹd,TN(ω),i

)
,

and ŨTN(ω) := N−1 ∑N
i=1ŨTN(ω),i. By Assumption 4, there exist s′ > 0 and C′ > 0 such that for almost every

ω ∈ ΩZ , EX

(∥∥∥ŨTN(ω),i

∥∥∥2+s′
)
<C′, ∀N ∈ N

+. Then, we have

EX

(∥∥∥ŨTN(ω),i

∥∥∥2

1
{∥∥∥ŨTN(ω),i

∥∥∥> ε
√

N
})

−−−→
N→∞

0,∀ε > 0,

and

EX

(∥∥∥ŨTN(ω),i

∥∥∥2

1
{∥∥∥ŨTN(ω),i

∥∥∥> ε
√

N
})

= EX

⎛
⎜⎝
∥∥∥ŨTN(ω),i

∥∥∥2+s′

∥∥∥ŨTN(ω),i

∥∥∥s′ 1
{∥∥∥ŨTN(ω),i

∥∥∥> ε
√

N
}⎞⎟⎠≤ C′

εs′Ns′/2
,

where 1{·} denotes the indicator function. Therefore, for each i,
{∥∥∥ŨTN(ω),i

∥∥∥2
}

N≥1

is uniformly integrable.

By Assumptions 2 and 3′, ŨTN(ω),i
P−−−→

N→∞
Ui (recall (8)), hence the same convergence holds true in L2. As

a result, the covariance matrices of ŨTN(ω),i converge to Γ. The rest of the proof follows by applying the
Delta method as shown in the proof of Proposition 1.
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Similarly, we have the following result for
√

N
(

T̃ Xu
TN

− S̃Xu

)
in (11). The proof of Proposition 5 is in

the same vein as that of Proposition 4 and is omitted for the sake of brevity.

Proposition 5 Under Assumptions 2, 3′, and 4, for almost every ω ∈ ΩZ,
√

N
(

T̃ Xu
TN(ω)− S̃Xu

)
d−−−→

N→∞
N (0,σ2

T ), where σ2
T is defined in (9).

Finally, Theorem 1 gives a set of sufficient conditions for establishing the asymptotic normality of the
two metamodel-based estimators given in (3) and (4). In addition to Assumptions 2, 3′, and 4, we note that
the convergence rates of the metamodels to the true mean and variance functions also play an important
role.

Theorem 1 Define

Cδ ,TN(ω) :=2(VarX (Ym))
1
2

(
Corr

(
Ym,δm,TN(ω)

)
− VarX (Ym)

VarX ,ε (Y)
·Corr

(
Ym,Y X

m
)
·Corr

(
Ym,δm,TN(ω)

))

+
(
VarX

(
δm,TN(ω)

)) 1
2

(
Corr

(
δm,TN(ω),δ X

m,TN(ω)

)
− VarX (Ym)

VarX ,ε (Y)
·Corr

(
Ym,Y X

m
))

,

for almost every ω ∈ΩZ , where Corr(A,B)=Cov(A,B)/(Var(A)Var(B))1/2, given any L2 random variables

A and B of nonzero variance, and δ X
m,TN(ω)

:= Ỹ X
m,TN(ω)−Y X

m .

Assume that Cδ ,TN(ω) does not converge to 0 as N → ∞ and Assumptions 2, 3′ and 4 are fulfilled.

1. Suppose VarX
(
δm,TN(ω)

)
= o

(
N−1

)
and EX

(
δd,TN(ω)

)
= o

(
N−1

)
for almost every ω ∈ ΩZ , then

for ∀x ∈ R,

PZ

(
ω ∈ ΩZ : limsup

N→∞

∣∣∣PX

(√
N
(

S̃Xu
TN(ω)− S̃Xu

)
/σS ≤ x

)
−Φ(x)

∣∣∣> ε
)
= 0,∀ε > 0, (13)

where Φ(x) is the standard normal cumulative density function.
2. Suppose Cδ ,TN(ω) converges to a constant C �= 0 and there exists γ ∈ R so that VarX

(
δm,TN(ω)

)
=

(CN)−1γ +o
(
N−1

)
and EX

(
δd,TN(ω)

)
= o

(
N−1

)
for almost every ω ∈ ΩZ , then there is a constant

γ ′ such that for ∀x ∈ R,

PZ

(
ω ∈ ΩZ : limsup

N→∞

∣∣∣PX

(√
N
(

S̃Xu
TN(ω)− S̃Xu − γ ′

)
/σS ≤ x

)
−Φ(x)

∣∣∣> ε
)
= 0,∀ε > 0. (14)

The convergence in (13) and (14) holds true for the second metamodel-based estimator T̃ Xu
TN(ω), with σS

replaced by σT .

Proof. We focus on the proof regarding the first metamodel-based estimator S̃Xu
TN(ω), as the proof

regarding T̃ Xu
TN(ω) can be given in the same vein and hence is omitted. Recall the decomposition in (11).

Since
√

N
(

S̃Xu
TN(ω)− S̃Xu

)
d−−−→

N→∞
N (0,σ2

S ) in (ΩX ,FX ,PX) for a fixed ω ∈ ΩZ according to Proposition

4, if
√

N
(

S̃Xu −SXu

)
goes to some constant κ , then for the fixed ω ∈ ΩZ ,

√
N
(

S̃Xu
TN(ω)−SXu

)
d−−−→

N→∞
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N (κ,σ2
S ) in (ΩX ,FX ,PX). Regarding

√
N
(

S̃Xu −SXu

)
, we have

S̃Xu −SXu =
Cov

(
Ỹm,TN(ω),Ỹ X

m,TN(ω)

)
VarX

(
Ỹm,TN(ω)

)
+EX

(
Ỹd,TN(ω)

) −
Cov

(
Ym,Y X

m
)

VarX ,ε (Y)

=
Cov

(
Ym,Y X

m
)
+2Cov

(
Ym,δ X

m,N
)
+Cov

(
δm,TN(ω),δ X

m,TN(ω)

)
VarX (Ym)+2Cov

(
Ym,δm,TN(ω)

)
+VarX

(
δm,TN(ω)

)
+EX (Yd)+EX

(
δd,TN(ω)

) − Cov
(
Ym,Y X

m
)

VarX ,ε (Y)

=
VarX

(
δm,TN(ω)

) 1
2 Cδ ,TN(ω)−VarX ,ε (Y)−1 Cov

(
Ym,Y X

m
)
EX

(
δd,TN(ω)

)
VarX (Ym)+2Cov

(
Ym,δm,TN(ω)

)
+VarX

(
δm,TN(ω)

)
+EX (Yd)+EX

(
δd,TN(ω)

) . (15)

Under the assumption that Cδ ,TN(ω) converges to some C �= 0, the denominator of the right-hand side
of (15) follows as

VarX (Ym)+2Cov
(
Ym,δm,TN(ω)

)
+VarX

(
δm,TN(ω)

)
+EX (Yd)+EX

(
δd,TN(ω)

)
≤VarX (Ym)+EX (Yd)+2

(
VarX (Ym)VarX

(
δm,TN(ω)

)) 1
2 +VarX

(
δm,TN(ω)

)
+EX

(
δd,TN(ω)

)
=VarX (Ym)+EX (Yd)+o(1).

Hence, Equation (15) can be written as

S̃Xu −SXu =
Cδ ,TN(ω) VarX

(
δm,TN(ω)

) 1
2 −VarX ,ε (Y)−1 Cov

(
Ym,Y X

m
)
EX

(
δd,TN(ω)

)
VarX (Ym)+EX (Yd)+o(1)

.

If VarX
(
δm,TN(ω)

)
= o(N−1) and EX

(
δd,TN(ω)

)
= o

(
N−1

)
, we have

√
N VarX

(
δm,TN(ω)

) 1
2 = o(1) and√

NEX
(
δd,TN(ω)

)
= o

(
N−1/2

)
, thus

√
N(S̃Xu

TN(ω)−SXu) = o(1) and for almost every ω ∈ ΩZ,
√

N(S̃Xu
TN(ω)−

SXu)
d−−−→

N→∞
N (0,σ2

S ). Hence, the convergence takes place in the product space (ΩZ ×ΩX ,σ(FZ ×FX),PZ ⊗
PX), which leads to (13).

If VarX
(
δm,TN(ω)

)
=(CN)−1γ+o(N−1) andEX

(
δd,TN(ω)

)
= o

(
N−1

)
, we have

√
N VarX

(
δm,TN(ω)

)1/2 −−−→
N→∞√

γ/C and
√

NEX
(
δd,TN(ω)

)
−−−→
N→∞

0, thus there exists γ ′ ∈ R such that for almost every ω ∈ ΩZ ,

√
N(S̃Xu −SXu)−−−→

N→∞
γ ′, and

√
N(S̃Xu

TN(ω)−SXu)
d−−−→

N→∞
N (γ ′,σ2

S ). The resulting convergence takes place in

the product space (ΩZ ×ΩX ,σ(FZ ×FX),PZ ⊗PX), which results in (14). The proof is complete.

4 NUMERICAL EVALUATION

In this section, we numerically evaluate the efficiency of the Sobol’ index estimators given in (3) to (6) and
verify the theoretical results. We consider the Ishigami function which is a classical example for evaluating
global sensitivity analysis approaches (Ishigami and Homma 1990; Marrel et al. 2012):

Y = f (X1,X2,X3) = sin(X1)+7sin(X2)
2 +0.1X4

3 sin(X1) , (16)

where Xi’s are independent and uniformly distributed in [−π,π], i = 1,2,3. To make model (16) a stochastic
one, we treat X1 and X2 as the input variables and X3 as the random variable that incurs stochastic noise.
The true mean and variance functions follow from (16) as

Ym(x1,x2) =

(
1+

π4

50

)
sin(x1)+(sin(x2))

2 , Yd(x1,x2) = π8

(
1

900
− 1

2500

)
(sin(x1))

2 , for xi ∈ [−π,π].
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We are interested in obtaining point estimates and confidence interval estimates for the first-order Sobol’
indices of X1 and X2. The true values are available in this case, which are respectively SX1 = 0.3139 and
SX2 = 0.4424.

Experimental settings. Obtaining the joint metamodel-based Sobol’ index estimators given in (3) and (4)
requires metamodel construction and MC sampling to evaluate the metamodels. Regarding the metamodel
construction, we adopt the following iterative procedure proposed by Marrel et al. (2012) for estimating the
mean and variance functions. Specifically, we first generate a training sample of size n via Latin hypercube
sampling (LHS) and build a standard Gaussian process (GP) model (denoted as GPm,1) for estimating the
mean function. Next, taking the squared residuals based on GPm,1, we construct a metamodel (denoted as
V̂1) for approximating the variance function. We then construct a heteroscedastic GP model (denoted as
GPm,2) for the mean function estimation, with the noise variances being estimated by V̂1. Finally, the squared
residuals are calculated based on GPm,2 to construct another metamodel (denoted as V̂2) for the ultimate

variance function estimation. We adopt the resulting GPm,2 and V̂2 as Ỹm,TN and Ỹd,TN in the subsequent
Sobol’ index estimation. We consider two variants of this iterative procedure in terms of constructing the
variance metamodels V̂1 and V̂2, via either GP modeling (referred to as “Variant 1”) or kernel smoothing
(referred to as “Variant 2”). Variant 2 seems to enhance numerical stability in implementation. For MC
evaluations, we use LHS to draw a sample of size N for model evaluations. Similar designs such as Sobol’
quasi-random sequences are also suggested by Saltelli et al. (2010) for MC-based Sobol’ index estimation.

Performance metrics. To assess the accuracy of the metamodels Ỹm,TN and Ỹd,TN , we use the pre-

dictivity coefficient Q2 (Marrel et al. 2012). For a given metamodel Ỹ , Q2(Ỹ ) := 1 − ∑N
i=1(Yi −

Ỹi)
2/∑N

i=1

(
N−1 ∑N

i=1Yi −Yi
)2

, where recall that N denotes the MC sample size, Ỹi denotes the meta-

model prediction at input Xi, and Yi is the corresponding true function value. The closer Q2(Ỹ ) to 1, the

higher the accuracy of the metamodel Ỹ .
For performance evaluation, we perform R independent macro-replications. The root mean squared error

(RMSE), standard deviation, and bias of Sobol’ index estimators given in (3) and (4) are calculated across

the macro-replications. Specifically, RMSE :=

√
R−1 ∑R

i=r

(
S̃Xu

r −SXu

)2

, where S̃Xu
r is a given estimator of

SXu obtained on the rth macro-replication. To assess the asymptotic normality, we examine the empirical
coverage of the asymptotic confidence interval (referred to as CI) with the target level set to 0.95. The

confidence interval CIr based on the two estimators on the rth macro-replication is given by S̃Xu
TN ,r (resp.

T̃ Xu
TN ,r) ±1.96σ̃S,r (resp. σ̃T,r) /

√
N, where S̃Xu

TN ,r and T̃ Xu
TN ,r denote the joint metamodel-based estimators, and

σ̃S,r and σ̃T,r are the MC-based estimators of σS and σT obtained on the rth macro-replication; to ease

notation, we write σ̃S and σ̃T hereinafter. The empirical coverage is calculated as R−1 ∑R
r=1 1

{
SXu ∈CIr

}
.

Results. We first examine the two estimators constructed using the true mean and variance functions, SXu
N

and T Xu
N , given in (5) and (6). The results are obtained based on R = 2000 macro-replications. Figure

1 shows the empirical coverage of the CIs built based on Propositions 1 and 2. We see that as the MC
sample size N increases, for SXu

N and T Xu
N (u = 1,2), the empirical coverage meets and slightly overshoots

the target level. The results corroborate Propositions 1 and 2. Table 1 displays the CI widths (rescaled by√
N) and the RMSE of SXu

N and T Xu
N for u = 1,2. Since the rescaled CI widths are equal to 3.92σ̃S (resp.

3.92σ̃T ), we see from Table 1 that the Sobol’ index of X1, estimated by the second estimator T X1
N , has a

smaller variance, while the first estimator SX2
N is better at estimating the index of X2. We have the same

observation regarding the RMSEs of the two estimators. Therefore, neither estimator dominates the other,
and one can adopt different estimators for estimating Sobol’ indices of different input variables for higher
statistical accuracy.

For evaluating the joint metamodel-based Sobol’ index estimators, we perform R = 100 macro-
replications. Table 2 presents the average Q2 values across the macro-replications and the RMSEs of
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Table 1: The confidence interval widths (rescaled by
√

N) and the RMSEs of SXu
N and T Xu

N given in (5) and

(6) obtained with an MC sample size N = 106.

SX1
N SX2

N T X1
N T X2

N
Rescaled CI width 2.39 2.15 2.06 2.47

RMSE (×10−4) 6.1 5.5 4.8 5.8

(a) SXu
N (b) T Xu

N

Figure 1: The empirical coverage of the asymptotic CIs for SXu
N and T Xu

N as a function of the MC sample

size N.

the first joint metamodel-based Sobol’ index estimator S̃X1

TN
obtained using the metamodels constructed via

the two variants of the iterative fitting procedure. We observe that the variance metamodel obtained via
Variant 1 has higher accuracy than that obtained via Variant 2, and the accuracy of the mean metamodels
obtained via the two variants is comparable. Furthermore, the RMSEs of the resulting joint metamodel-based
Sobol’ index estimators are also comparable. This indicates that the mean metamodel is likely to play a
dominating role in the joint metamodel-based Sobol’ index estimation. We note that, as the training sample
size n increases, the heteroscedastic GP model produced by Variant 1 for the mean function estimation
becomes numerically unstable, rendering the Sobol’ index estimation unreliable. Hence, we focus on
Variant 2 in the rest of the study.

Table 2: Comparisons of Q2(Ỹm,TN ), Q2(Ỹd,TN ), and RMSE of S̃X1

TN
produced by the two variants of the

iterative fitting procedure.

N n
Q2(Ỹm,TN ) Q2(Ỹd,TN ) RMSE of S̃X1

TN

Variant 1 Variant 2 Variant 1 Variant 2 Variant 1 Variant 2

50 1000 0.99 0.99 0.88 0.47 0.082 0.087

100 1000 0.99 0.99 0.90 0.48 0.061 0.058

500 1000 0.99 0.99 0.89 0.48 0.033 0.027

1000 1000 0.99 0.99 0.90 0.49 0.026 0.021

Table 3 shows the point estimation accuracy and the variability of the first metamodel-based estimator

S̃Xu
TN

given in (3) for u = 1,2. Since the results of the second estimator T̃ Xu
TN

lead to similar conclusions, we
omit them for the sake of brevity. We see from Table 3 that, for a fixed training sample size n, increasing
N does not always lower the bias, as the accuracy of the metamodels is constrained by the given training
sample. In contrast, the RMSE and the standard deviation of the joint metamodel-based estimator decrease
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with N in most cases. While one may be inclined to increase N to improve the point estimation accuracy,
we highlight that, once N becomes very large, the law of diminishing marginal returns emerges. To reduce
the RMSE to a given level, a slight increase in the training sample size n can be more computationally
efficient. We do not go into the details to economize on space.

Table 3: The RMSE, the standard deviation (std), and the bias of S̃Xu
TN

under different combinations of

(N,n).

N n
S̃X1

TN
S̃X2

TN

RMSE std bias RMSE std bias

150 300 0.052 0.052 0.002 0.055 0.052 0.018

500 300 0.039 0.039 0.004 0.046 0.042 0.018

800 300 0.036 0.034 0.002 0.041 0.040 0.010

250 500 0.040 0.040 0.003 0.046 0.045 0.010

500 500 0.035 0.034 0.007 0.036 0.033 0.015

800 500 0.028 0.028 0.004 0.035 0.034 0.009

500 1000 0.027 0.027 0.002 0.030 0.027 0.012

800 1000 0.028 0.028 0.003 0.030 0.028 0.010

1000 1000 0.021 0.021 0.000 0.023 0.023 0.004

800 2000 0.021 0.021 0.000 0.023 0.022 0.003

1000 2000 0.021 0.021 0.002 0.023 0.022 0.007

1200 2000 0.020 0.020 0.002 0.018 0.017 0.006

Finally, we investigate the empirical coverage of the asymptotic confidence intervals obtained based on
Theorem 1. Table 4 shows the combinations of (N,n) that help achieve the target coverage level. We see

that, for the Sobol’ index of X1, both asymptotic CIs based on estimators S̃X1

TN
and T̃ X1

TN
achieve the target

coverage level using N ≈ 0.5n. For the Sobol’ index of X2, the asymptotic CI based on S̃X2

TN
achieves the target

coverage level using N ≈ 0.2n while that based on T̃ X2

TN
achieves the target level using N ≈ 0.1n. Without

showing details, we mention some important observations made throughout the experiment. First, as n and
N increase, the empirical coverage of the asymptotic CIs approaches the target level, which corroborates
Theorem 1. Second, increasing or decreasing N does not always improve the empirical coverage, and
the relationship between n and N is crucial to make the empirical coverage meets the target level. Our
results echo those of Janon et al. (2014), who demonstrated that different metamodeling techniques require
different combinations of (N,n) for the asymptotic CIs constructed to reach a prescribed target coverage
level.

Table 4: The empirical coverage of the asymptotic CIs based on Thoerem 1 under different combinations

of (N,n). The values in parentheses in Column “N” are those that lead to the corresponding empirical

coverages closer to the target level at 0.95.

n
S̃X1

TN
S̃X2

TN
T̃ X1

TN
T̃ X2

TN

N coverage N coverage N coverage N coverage

300 150 0.96 60 0.91 150 0.92 30 0.94

500 250 0.95 100 0.96 250 (100) 0.9 (0.93) 50 0.94

1000 500 0.97 200 0.97 500 0.94 100 0.95

1500 750 (650) 0.89 (0.94) 300 0.98 750 0.96 150 0.91

2000 1000 0.94 400 0.93 1000 0.93 200 0.96
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In summary, while increasing the MC sample size N for obtaining the joint metamodel-based estimators
is computationally convenient, our results suggest that setting N to an extremely large value given a fixed
training sample is ineffective for improving the point estimation accuracy and the empirical coverage of
the asymptotic confidence intervals.
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