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ABSTRACT

This paper proposes two joint metamodel-based Sobol’ index estimators and investigates their asymptotic
properties. The numerical evaluation corroborates the theoretical results and highlights the impact of the
combination of training sample size and Monte Carlo sample size on the estimators’ performance.

1 INTRODUCTION

Sobol’ indices are widely used in global sensitivity analysis for assessing the input parameters’ impact on
the model output (Sobol” 1990; Saltelli and Annoni 2010), with successful applications in epidemiological
modeling, defect detection in manufacturing, pollutant transport modeling, etc. Estimating Sobol’ indices
can be computationally demanding, especially when the input space dimensionality is high. Many Monte
Carlo (MC)-based estimators have emerged to efficiently estimate Sobol’ indices; see, e.g., Tarantola et al.
(2007), Saltelli et al. (2010), and Mazo (2021). However, MC-based estimators can be inefficient when the
simulation model is computationally expensive to evaluate. In recent years, research on metamodel-based
Sobol’ index estimators has attracted increasing attention; see, e.g., Marrel et al. (2012), Janon et al. (2014),
and Hart et al. (2017). Thanks to efficient metamodeling techniques and suitable experimental designs,
it is possible to construct an accurate metamodel using a relatively small training sample generated by a
limited number of simulation runs for the purpose of Sobol’ index estimation.

While point estimates of Sobol” indices can serve as a measure of the importance of input variables, it
is arguably equally important to quantify the uncertainty associated with these estimates. Non-asymptotic
uncertainty quantification methods based on bootstrapping and empirical distributions have been proposed;
see, e.g., Storlie et al. (2009), Marrel et al. (2009), and Janon et al. (2014). On the other hand, Janon et al.
(2014) investigated the asymptotic normality of metamodel-based Sobol” index estimators for deterministic
simulation models. For stochastic simulation models, Mazo (2021) conducted an asymptotic analysis for
MC-based Sobol’ index estimators. However, the asymptotic properties of metamodel-based estimators
for a stochastic simulation model have rarely been explored. To the best of our knowledge, this work is
among the first to investigate the asymptotic normality of metamodel-based Sobol” index estimators for a
stochastic simulation model.

In this paper, we propose joint metamodel-based Sobol’ index estimators which rely on estimation
of both the mean and variance functions implied by a stochastic simulation experiment. We prove the
estimators’ asymptotic normality, based on which asymptotic confidence intervals can be constructed for
uncertainty quantification. The rest of the paper is organized as follows. Section 2 briefly introduces Sobol’
indices and proposes two joint metamodel-based Sobol’ index estimators. Section 3 presents the theoretical
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analysis of the proposed estimators. Section 4 presents numerical experiments for performance evaluations
and verifies the theoretical results.

2  JOINT METAMODEL-BASED ESTIMATION

This section briefly reviews Sobol’ indices for global sensitivity analysis and proposes two joint metamodel-
based Sobol” index estimators. Given the input vector X = (X,X,... ,Xp)T € X C R”, we consider a
stochastic simulation model of the form ) = f(X, €), where f is some real-valued function and € represents
the uncertainty inherent to the simulation model. For any subset u C {1,2,..., p}, define X, as the subset of
entries in X with indices in u; e.g., for u = {1,2}, X, = (X1, X>). Define X_, := X\X,,. The Sobol’ index of
X, quantifies the contribution of the input variable(s) in X,, towards the variance of the model output ), based
on the following functional variance decomposition: Varx e (V) = Ve(Y) + X7 ¥15=i(Vi(Y) + Vie (V).

where V;() = Vary, (Ex_ ¢ (V| X)), Ve(Y) = Vare (Ex (V| €)), Vij(Y) = Vary, x; (Exf{,-_j}.,e Yy |Xi»Xj)) -

Vi(Y)=Vi(Y),i# j,Vie(Y) = Vary, ¢ (Ex , (V| Xi,€)) — V(y) Ve (), and so on. Following Mazo (2021),
the Sobol’ index of X, for a stochastic simulation model is defined as

Vary, (Ex_,.e (V| X4))

S = :
Vary ¢ ())

uc{1,2,....p} (1)

The value of $%« is between 0 and 1, and a larger value indicates greater importance of the input variable(s)
in X, to Y. The Sobol’ index given in (1) can be estimated via different methods, e.g., the pick-freeze
scheme (Gamboa et al. 2016), which amounts to running the simulation model at inputs (X, ;,X_,;) and
(X[t »X_y,;) fori € N*, where X,,; and X_,, ; are MC samples of X, and X_,,, and Xli’i is an independent copy
of Xu,, When the simulation model is computationally expensive to evaluate, Janon et al. (2014), Hart
et al. (2017), and Castellan et al. (2020) showed that metamodeling can facilitate efficient estimation of
the Sobol’ indices by only performing simulation runs to build a metamodel and evaluating the metamodel
for Sobol” index estimation using a MC sample of input vectors.

Following Marrel et al. (2012), we consider joint metamodel-based Sobol’ index estimation for
stochastic simulation models. Denote by Y,,(X) :=E¢ () | X) the mean function and Y;(X) := Var, (Y | X)
the variance function, which are defined on the probability space (Qyx, Fx,Px). We can rewrite Equation
(1) as

x, _ Vary, (Ex , (Y [ X.))
Val'x ( ) +Ex (Yd)

since Vary, (Ex , ¢ () | X,)) = Varx, (Ex , (Y,» | X,)) and Varx ¢ (Y) = Vary (V,,) + Ex (¥z). Consider esti-
mating Y,, and Y; by metamodels ?mTN and ?d,ﬂv’ where 7Ty denotes a training sample, {(X;,);)}";, to
obtain the metamodels, n denotes the training sample size, N denotes the MC sample size for metamodel
evaluations, and n — o0 as N — oo. As Janon et al. (2014) showed for deterministic simulation models, there
exist some relationships between n and N to make the metamodel-based Sobol’ index estimators consistent.
Assume that the training sample 7y is defined on the probability space (Qz, Fz,Pz). The metamodels
Y, T, and Y, T are defined on the product space (Qz x Qy, 0 (Fz X Fx),Pz®Px). In particular, given a

fixed ® € Qz, Y, 73,(0) and Yd Ti(w) are defined on the probability space (Qx,]-"x,IP’x) Since Y, and Y,

@)

are unavailable, we adopt Y Ty and Y, .7 for Sobol’ index estimation. Define Y T = Y T (Xuis X—ui))s
VX = Yo (XL X)) Yagi = Yo (Xusn X))+ and Y5 o= Yo g (X),,X0,,)) for i € NY,
where X' ui is an 1ndependent copy of X_, ;. Based on (2), we propose two estimators to be detailed next.

The First Sobol’ Index Estimator. The first estimator of $*« in (2) is devised by noting that Vary, (Ex_, (Y, | X)) =
Cov (Y (Xu, X)), Y ((X),X_4))), where X|, is an independent copy of X,;; see Lemma 2.2 of Janon et al.

(2014). Based on the outputs {Y,, 75 ., Yn)i T Yd,m,i}fy: | from evaluating the mean and variance metamodels,
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the first estimator can be given as

v 1 vN v 1 vN vX
-~ N I Yo7 Y, i — (ﬁ):izlYm,TN,i> (N i:lYm,TN,i>
Sp = . 3)

- " P .
I N I N
LD MARD CHNE <N2i:1Ym777V:i> + v Lt Ya 75

The Second Sobol’ Index Estimator. There exist alternative estimators of the numerator on the right-hand

side of (2); see, e.g., Table 2 in Saltelli et al. (2010). We study one of them in this paper. Define
zflx%vl = Nmmv((XL’”,X’ «i))- Based on the outputs (Y10 Y X Y

N .
; : T Y T, o Ya7,i}Y, from evaluating the
metamodels, we can obtain the second estimator as

S v(X)
N Z Y JINGi (erf'ﬁv i Ym,m:i)

. 4)
= | ~
N Zl 1 m JIN I (N Zi:] Ym777\’7i) + N Zivzl Yd,77v7i

~Xu p—
T77V _—

Our analysis of the two metamodel-based estimators given in (3) and (4) is detailed in the next section.
It is worthwhile studying the following two estimators given the knowledge of the true mean and variance
functions Y,,(-) and Y,(+):

o _ N EE Y — (3 EE V) (3 B Vo)

— 5)
N 1 1 21 ’ (
NI Yo = (G X Yoi) ™+ y X Ya

and

X
% Nz V(Y = Y,,&,-))
Ty' = 1 vN 1 vN ’ 6)
NZI 1 ml (N i:lYm,i) +Nzi:1Yd7i

where the two estimators above are defined analogously to those in (3) and (4) but with the outputs from
evaluating the metamodels replaced by those from evaluating the true mean and variance functions.

3 ASYMPTOTIC ANALYSIS

This section investigates the asymptotic normality of the estimators proposed in Section 2. We first show
that this property holds true for the estimators that are based on the true mean and variance functions under
a bounded moment condition. Then, we investigate when the asymptotic normality holds true if the true
mean and variance functions are unavailable and are replaced by the metamodels.

3.1 Analysis of the Sobol’ Index Estimators Using the True Mean and Variance Functions

This subsection analyzes the asymptotic normality of the Sobol” index estimators given in (5) and (6) when
the true mean and variance functions, Y,,(X) and Y,;(X), are available. For ease of notation, we write Y,
and Y; hereinafter. The analysis relies on Assumption 1 below.

Assumption 1 Ey (Y1) <o and Ex (¥7) < co.
Proposition 1 Under Assumption 1, v/N (S ( SX"> —>J\/ (0,02) in (Qx, Fx,Px), where

62 = Vary ((Ym —Ex () (Y —Ex (Y,,)) — $% <(Ym ~Ex (Yn))? —|—Yd)> (Varye V) 2. (D)
Proof. Define

Ui —(( i EX(Ym))(Yyii_EX(Ym))me,i_EX(Y ), Y i — Ex (Yn), (Ym,i_EX(Ym))z>Yd7i>a (8)
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and Uy :=N~'Y | U;. Define p := (Cov (Y,,,¥X),0,0, Vary (¥,,) ,Ex (¥;)). We have vVN(Uy — ) NL>

—»00
N(0,T), where T is the variance-covariance matrix of U;. Let ws(x,y,z,a,b) = (x —yz)/(a —y* +b), and
Sﬁ” = ys(Uy) according to (5). Since

Vs = 1 .z y(x—yz) ¥y . x—yz  x—)z
ST \a—Y+b a—y+b  (a—y2+b? a—y+b (a—y*+b? (a—y>+b)?)’

we have Vyg(u) = (Varxﬁ (V) 71,0,0,— Vary ¢ (V) ' %, — Vary ¢ V) SX“>. It follows that

Vs (TS (1) = Vary (%~ Bx (V) (Y5~ Bx () = S5 (Y~ Ex (%))’ +¥a ) ) (Varye ().

Assumption 1 ensures the validity of Vys(u)I'Vyy (1). The proof is complete by applying the Delta
method with 62 = Vys(u)TVy{ (). O

Similarly, we can show that the asymptotic normality holds true for the estimator given in (6).

Proposition 2 Under Assumption 1, /N <T1\)/(" —SX") NLH\/' (0,62) in (Qx, Fx,Px), where
—» 00

62 = Vary ((Ym ~Ex (Y)) (Y,ff - Y,,SX)) o ((Ym —Ex (Y,)* + Yd>) (Varye (V)2 9)
Proof.  The proof is similar to that of Proposition 1. Define
Uri= (Vi = Bx (V) (%K = Bx () (Vg = Ex (%)) (4,9 ~ B (Y1)

(Ymi —Ex (Yu))?, erf,i —Ex (Yn) ,Yd,i> ;

and Uy :=N"'Y¥, U;. Define pi := (Cov (,,,Y,X),0, Varx (Y,x),0,Ex (¥;)). We have v/N(Uy — u) NL>
—>00

N(0,T), where T is the variance-covariance matrix of Uj. Let ws(x,y,z,a,b) = (x —y)/(z — a* +b), and

T]\},(“ = ys(Uy) according to (6). Since

1 1 x—y 2a(x—y) xy
z—a’>+b’ z—a*+b’ (z—ad®+b)? (z—a?+b)?" (z—a?+b)?)’

VlI/S:<

we have Vg (u) = (Varx_,8 (V)" Varg ¢ (V) ", — Vary ¢ () 8%,0,— Vary ¢ (V) ! SX">, and it follows
that

Vs () TV (1) = Vary (G — B (%)) (¥ =i ) = 8% (00— Ex (5,))" +4) ) (Vary,e ()

Assumption 1 ensures the validity of Vys(u)I'Vyy (1). The proof is complete by applying the Delta
method with 67 = V() ITVy (). O

As the estimators given in (5) and (6) are unbiased, we are interested in which one may have a lower
asymptotic variance. Define V := (¥,, —Ex (Y,y)) (Y —Ex (Y,n)) — ™ ((Ym —Ex (V) + Yd>. Then we
have 07 = Vary (V) / (Vary ¢ (V))?, and

o = Vary (Y~ Ex (Yn) (Ex (Ya) ~ ¥ ) +V) (Vary e )
Vary (= Ex () (Ex (Ya) = Y47 ) ) +2Cov (¥ — Bx (%)) (Ex (%) 1) V)
(Varxe (V) '

10)

3708



Zhang, Chen, and Wang

A closer examination reveals that the sign of the second term on the right-hand side of (10) is indeterminate.
In fact, the relationship between O'S2 and G% is example dependent; see Section 4 for more details.

3.2 Analysis of the Joint Metamodel-based Sobol’ Index Estimators

This subsection investigates the asymptotic normality of the two joint metamodel-based estimators 3‘% and
T%, respectively given in (3) and (4), when the true mean and variance functions are unavailable.

The following decomposition is key to our analysis of the first joint metamodel-based estimator S‘% :

VN (83— 8% ) = VN (S — 8% ) + VNV (8% - 5%). (1
where §X := Vary, (Exﬁ (?mTN \ Xu>> / (Varx <17mTN) +Eyx (yd,'ﬁv)> which is similar as $% given in (2),
but with the true mean and variance functions replaced by the respective metamodels built on the given
data set 7Ty. A decomposition similar to (11) holds true for the second estimator f;% as well. We next
investigate the properties of N (377% — §X") and /N (:S‘VX“ - SX“) in light of (11). Let us start with some
technical conditions.

. > L2 .
Assumption 2 For almost every @ € Qz, 6, 75(w) = Y, 75 (0) — Y —>N ¢, where ¢ is some constant.
’ ’ —>00

Assumption 3 For almost every o € Qy, Ex (YdHTN(w)) N—> Ex (Yy).
: oo

~ 2
Assumption 3’ For almost every @ € Q, 04, T(0) = Ya,T(0) — Ya N£—> 0.
—>00
We note that Assumptions 2 and 3’ can be fulfilled by well-known metamodeling techniques under
mild conditions. For instance, Kohler et al. (2003) showed that kernel smoothing is strongly universally

consistent under some assumptions, i.e., EX(‘?mjj\, —Yul?) Na—s> 0 and EX(’ZLTN — Y% Na—s> 0 with
: —>00 ’ —>00

respect to (Qz, Fz,Pz). Rather than examining a particular metamodeling technique (e.g., kernel smoothing,
Gaussian process), we focus on the asymptotic analysis of the metamodel-based estimators under some
sufficient conditions on the metamodels. We first examine S% defined in (11).

Proposition 3 Under Assumptions 1 to 3, §%u N—> SX« for almost every @ € Q.
—>00

Proof.  Under Assumption 2 and by the Cauchy—Schwarz inequality, we have

1

[Ex (Vo)) ~Ex -+ 0)| < (Bx (|8u o) ) 0.

N—oo

It follows that Ex (Ymg;v(w)) N—> Ex (Y;n) 4 c. On the other hand, by the continuity of the L, norm,
—>00

=

’ (Ex (?ﬁ,m(w)))é — (Ex (¥, +c)2))%

< (Ex ((Bumiw—©)*)) ——0.

N—roo

m

. S 2
which implies that Ex (Yzfﬁv(w)) ~ Ex ((Ym +c) ) Hence,

~ ~ ~ 2
Val‘x <Ym,’77v(a))> = EX (Ynzz,'ﬁv(co)) —EX (ijx,(w)) I\H—oo> Ex ((Ym +C)2) - Ex ((Ym —I-C))2 = Val'x (Ym) .
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Also, we have

B ([ (T~ <1 .)

2
)= [ B o = 1)

< 5 (e 15) = ) 0

N—soo
which yields

Ex (Ymmw) | Xu) Ni—ZJ Ex , (Y| X.)+c, (12)
and hence,

Vary, (EX,M (ifm,m(w) |Xu)> o Vary, (Ex_, (Y | Xu)) -

Since Vary (Y,,) +Ex (Y;) > 0, according to Assumption 3 and the quotient law for convergent sequences, for
almost every ® € Q, % = Vary, (Exﬂ (i//m,TN(w) |Xu)> / (Varx (ym(ﬁv(m)) +Ex (ydﬂ?v(w))> converges
to SX« = Vary, (Ex_, (Y | X))/ (Varx (Y,,) +Ex (¥;)) as N — oo. O

To analyze the term /N (3%‘] — §%u) (respectively /N (T;-i]“ — §%)) related to the first (resp. second)
metamodel-based estimator in the decomposition shown in (11), we stipulate the following assumption.

Assumption 4 There exist 51,52 > 0 and C > 0 such that for almost every @ € Qz, Ex (Wm,’ﬁv(w) ]4+S‘) <C
and Ex (‘?d,m(w)‘z-i-b‘z) <C,VNeNT.

Proposition 4 Under Assumptions 2, 3/, and 4, for almost every @ € Qg, VN (S:T(;:/(a)) _§Xu) NL>
—y00
N(0,02), where of is defined in (7).

Proof. Define
1777\/(60)71' = ((ym-,ﬁ(w)-i —Ex <?m)) (zil(vﬂv(w)i —Ex (?m)> ??m,ﬂv(w),i —Ex (ym) )

~ ~ ~ ~ 2 -
Y,,)if/;\,(a,)7,~—EX (Ym> ) (Ym,ﬁ/(a)),i_EX (Ym>) aYd.,77v(a)),i> )

and 577\,(0)) =N"! ny: 1 ﬁm(w),i- By Assumption 4, there exist s’ > 0 and C’' > 0 such that for almost every

. 245
o< Qy, Ex <HUTN(Q,)7,-H ) < C', VN € NT. Then, we have

Ex (HﬁTN(w)J zl{HﬁTN(w)J > e\/ﬁ}> ——0,¥e >0,
o]
i ~ /
Ex (Hﬁm(w,i 21{Hﬁ77v(w),i >ex/1V}> — By %1{“%“@” >eVN} | < ﬁ
‘UTN(w),i

~ 2
where 1{-} denotes the indicator function. Therefore, for each i, { HUTN(Q,)J } is uniformly integrable.
N>1

By Assumptions 2 and 3/, ﬁTN(w),i Nl> U; (recall (8)), hence the same convergence holds true in L2, As
—>00

a result, the covariance matrices of [777\]((0),1' converge to I'. The rest of the proof follows by applying the
Delta method as shown in the proof of Proposition 1. OJ
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Similarly, we have the following result for v/N (ﬁ,}% — §X”) in (11). The proof of Proposition 5 is in

the same vein as that of Proposition 4 and is omitted for the sake of brevity.

Proposition 5 Under Assumptions 2, 3’, and 4, for almost every @ € Qz, VN (f;}fv“( o) —§X") 4,

N—yoo
N(0,6%), where 62 is defined in (9).

Finally, Theorem 1 gives a set of sufficient conditions for establishing the asymptotic normality of the
two metamodel-based estimators given in (3) and (4). In addition to Assumptions 2, 3’, and 4, we note that
the convergence rates of the metamodels to the true mean and variance functions also play an important
role.

Theorem 1 Define

VarX (Ym)
arX (y

1
+ (Varx (8, 75(w))) > (Corr (5,,, T(@)s O T (0

Cs Tu(o) =2(Vary (Ym))% (Corr (Yons 870 ()) — -Corr (Ym,YX) Corr (Ym,Sm,TN(w))>

)
Vary
-Corr (Y, Yy
)y cor (1, 1) ).
for almost every @ € Q, where Corr (A, B) = Cov (A, B) /(Var (A) Var (B))'/2, given any L? random variables
A and B of nonzero variance, and 6% =yX —YX,

mTv(@) = T T(@)
Assume that Cs 7, () does not converge to 0 as N — co and Assumptions 2, 3" and 4 are fulfilled.

1. Suppose Vary (Sm,ﬁ,(w)) =0 (Nfl) and Ex (5d77;v(a,)) =0 (Nfl) for almost every € Q, then
for Vx € R,

P, <w € Qy : limsup [Py <\/N (377%:,(@) —S‘X"> Jos < x) —(D(X)‘ > 8> =0,Ve >0, (13)

N—soo

where ®(x) is the standard normal cumulative density function.
2. Suppose Cs 7;(w) converges to a constant C # 0 and there exists ¥ € R so that Vary (5,,,%,(0,)) =

(CN) 'y+o (N_l) and Ey (5d,”rN(w)) =0 (N_l) for almost every @ € Q, then there is a constant
Y such that for Vx € R,

P, <co € Qz : limsup | Py (\/N (5’7‘_;(0) — s —;/) /G §x> —<1>(x)‘ > e) =0,ve>0. (14)

N—o0

The convergence in (13) and (14) holds true for the second metamodel-based estimator f;%( )’ with oy
replaced by or.

Proof. ~ We focus on the proof regarding the first metamodel-based estimator §%u as the proof

~ Tv(@)
regarding TX“( ) €N be given in the same vein and hence is omitted. Recall the decomposition in (11).
Since \F( —SX ) Fd—% N(0,02) in (Qx,Fx,Px) for a fixed ® € Qz according to Proposition
— 00
4, if f( u ") goes to some constant k, then for the fixed @ € Q, W(g%(w) —SX"> NL>
—>00
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N(x,02) in (Qx,Fx,Px). Regarding vN <§X" —SX"), we have

X _ X — Cov (Ym,TN(w)’Ynﬁm(a))) Cov (Y, YY)
Cov (Y, Yy ) +2Cov (¥, 6% ) + Cov (5m,TN(w), 53;777\/(0))) Cov (¥, YY)

- Vary (Ym) +2Cov (Ym, 5m,77\/(a))) + Vary (6,,,777\,(@)) +Ex (Yd) +Eyx (5d777v(0))) Vary ¢ ))

1 _
Varx (5,,1777\]((0)) 2 C&m(w) — Varxﬁ (y) ! Cov (Ym, Yn)f) EX (6d7m(w))

_ . (15)
Vary (Ym) +2Cov (Ym, 5m,77v(a))) ~+ Vary (Sm,ﬁ(w)) +Eyx (Yd) + Ex (Sd;m(w))

Under the assumption that Cs ;) converges to some C # 0, the denominator of the right-hand side
of (15) follows as

Vary (Ym) +2Cov (Ym, 5,,1777\]((0)) + Vary (amm(w)) +Ex (Yd) +Ex (5d777v((u))

1
< Vary (Ym) +Eyx (Yd) +2 (VarX (Ym) Vary (Smﬂ?v(a)))> 2 4+ Vary (6m77v(a))) + Ex (5(1’77\,(60))
=Vary (V) + Ex (Yz) +o(1).

Hence, Equation (15) can be written as

1 _
Cs () Varx (8 7(0))* — Varx e (V) ™' Cov (Y, ¥,X) Ex (84,75 (0))
VarX (Ym) +EX (Yd) +0(1)

S‘Xu _ SXu — .
1 1 7
If Vary (8, 7,(@) = o(N"') and Ex (8;7(w)) = 0 (N~'), we have /N Vary (8,,7,w))> = 0(1) and
VNEx (84 77() =0 (N~1/2), thus \/N(S'%(w) — 8§%«) = 0(1) and for almost every ® € Qz, \/N(S?%v(a)) —
§Xu) NL> N(0,02). Hence, the convergence takes place in the product space (Qz x Qx, 0(Fz x Fx),Pz®
—>00

Px), which leads to (13).

IfVarX (6m777\1(w)) = (CN)flf}/—f—O(Nil) andEX (6d.77\]((0)) =0 (Nil)’ we have \/NVal‘x (6m777\,(w)) —>N4)°O
V7/C and V/NEx (84 75,(w)) ~— 0, thus there exists Y € R such that for almost every ® € Qg,

— 00

1/2

VN (8% — §%u) o Y, and VN (S‘?%‘v @) §Xu) NL> N (7, 02). The resulting convergence takes place in
—00 —>00
the product space (Qz x Qx,0(Fz X Fx),Pz ®Px), which results in (14). The proof is complete. O

4 NUMERICAL EVALUATION

In this section, we numerically evaluate the efficiency of the Sobol’ index estimators given in (3) to (6) and
verify the theoretical results. We consider the Ishigami function which is a classical example for evaluating
global sensitivity analysis approaches (Ishigami and Homma 1990; Marrel et al. 2012):

Y = £(X1,X2,X3) = sin (X)) + 7sin (X2) + 0.1X3 sin (X1), (16)

where X;’s are independent and uniformly distributed in [— 7, 7], i = 1,2, 3. To make model (16) a stochastic
one, we treat X and X, as the input variables and X3 as the random variable that incurs stochastic noise.
The true mean and variance functions follow from (16) as

4 1 1

Y (x1,%2) = <1 + 75To> sin(x;) + (sin(x2))?, Yy(x1,x) = 7° <9oo — 2500> (sin(x;))?, for x; € [—7, 7).
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We are interested in obtaining point estimates and confidence interval estimates for the first-order Sobol’
indices of X; and X,. The true values are available in this case, which are respectively SX! = 0.3139 and
§% = 0.4424.

Experimental settings. Obtaining the joint metamodel-based Sobol’ index estimators given in (3) and (4)
requires metamodel construction and MC sampling to evaluate the metamodels. Regarding the metamodel
construction, we adopt the following iterative procedure proposed by Marrel et al. (2012) for estimating the
mean and variance functions. Specifically, we first generate a training sample of size n via Latin hypercube
sampling (LHS) and build a standard Gaussian process (GP) model (denoted as GF,, 1) for estimating the
mean function. Next, taking the squared residuals based on GF,, |, we construct a metamodel (denoted as
V1) for approximating the variance function. We then construct a heteroscedastic GP model (denoted as
GP,,») for the mean function estimation, with the noise variances being estimated by V1. Finally, the squared
residuals are calculated based on GP, > to construct another metamodel (denoted as V») for the ultimate
variance function estimation. We adopt the resulting GP,,» and Vs as Ym 7 and Yd 7 in the subsequent
Sobol’ index estimation. We consider two variants of this iterative procedure in terms of constructing the
variance metamodels V; and V5, via either GP modeling (referred to as “Variant 1) or kernel smoothing
(referred to as “Variant 2”). Variant 2 seems to enhance numerical stability in implementation. For MC
evaluations, we use LHS to draw a sample of size N for model evaluations. Similar designs such as Sobol’
quasi-random sequences are also suggested by Saltelli et al. (2010) for MC-based Sobol” index estimation.

Performance metrics. To assess the accuracy of the metamodels ?mTN and ?d,ﬁv’ we use the pre-
dictivity coefficient Q, (Marrel et al. 2012). For a given metamodel Y, Qz(?) =1 f.VZI(Yi —
17,)2/ Yy, (N_IZf-\LlYi—Y,')Z, where recall that N denotes the MC sample size, ¥; denotes the meta-
model prediction at input X;, and ¥; is the corresponding true function value. The closer O»(Y) to 1, the
higher the accuracy of the metamodel Y.

For performance evaluation, we perform R independent macro-replications. The root mean squared error
(RMSE), standard deviation, and bias of Sobol’ index estimators given in (3) and (4) are calculated across

2 ~
the macro-replications. Specifically, RMSE = \/ RIYR <Sar( " — SXH> , where §%« is a given estimator of

S%« obtained on the rth macro-replication. To assess the asymptotic normality, we examine the empirical
coverage of the asymptotic confidence interval (referred to as CI) with the target level set to 0.95. The
confidence interval CI, based on the two estimators on the rth macro-replication is given by EX;F (resp.

f%(v" ) :|:1.96c~757, (resp. CNFTJ) / /N, where S‘Xﬁl ,and f;%‘ . denote the joint metamodel-based estimators, and
557r and 5T7r are the MC-based estimators of og and oy obtained on the rth macro-replication; to ease
notation, we write G and Gy hereinafter. The empirical coverage is calculated as R™'YX | 1{s% e CI,}.

Results. We first examine the two estimators constructed using the true mean and variance functions, Sx*
and TA),(”, given in (5) and (6). The results are obtained based on R = 2000 macro-replications. Figure
1 shows the empirical coverage of the CIs built based on Propositions 1 and 2. We see that as the MC
sample size N increases, for Sy and TN “(u=1,2), the empirical coverage meets and slightly overshoots
the target level. The results corroborate Propositions 1 and 2. Table 1 displays the CI widths (rescaled by
V/N) and the RMSE of Sﬁ“ and TA),(” for u = 1,2. Since the rescaled CI widths are equal to 3.9205 (resp.
3.9267), we see from Table 1 that the Sobol’ index of Xj, estimated by the second estimator TXl, has a
smaller variance, while the first estimator Sﬁz is better at estimating the index of X;. We have the same
observation regarding the RMSEs of the two estimators. Therefore, neither estimator dominates the other,
and one can adopt different estimators for estimating Sobol’ indices of different input variables for higher
statistical accuracy.

For evaluating the joint metamodel-based Sobol’ index estimators, we perform R = 100 macro-
replications. Table 2 presents the average (O, values across the macro-replications and the RMSEs of
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Table 1: The confidence interval widths (rescaled by v/N) and the RMSEs of S,’f,“ and T,f,(“ given in (5) and
(6) obtained with an MC sample size N = 10°.

S%l S]?\flz T]\)I(l T]\)lfz
Rescaled CI width 2.39 2.15 2.06 247
RMSE (x107%) 6.1 55 48 58
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Figure 1: The empirical coverage of the asymptotic CIs for Sf," and TA),(“ as a function of the MC sample
size N.

the first joint metamodel-based Sobol’ index estimator ?%V obtained using the metamodels constructed via
the two variants of the iterative fitting procedure. We observe that the variance metamodel obtained via
Variant 1 has higher accuracy than that obtained via Variant 2, and the accuracy of the mean metamodels
obtained via the two variants is comparable. Furthermore, the RMSEs of the resulting joint metamodel-based
Sobol’ index estimators are also comparable. This indicates that the mean metamodel is likely to play a
dominating role in the joint metamodel-based Sobol’ index estimation. We note that, as the training sample
size n increases, the heteroscedastic GP model produced by Variant 1 for the mean function estimation
becomes numerically unstable, rendering the Sobol’ index estimation unreliable. Hence, we focus on
Variant 2 in the rest of the study.

Table 2: Comparisons of Q2(Y,,75), Q2(Ys7;), and RMSE of S‘:% produced by the two variants of the
iterative fitting procedure.

N QZ(Ymﬂ?v) QZ(Ydi) RMSE of S‘?%'V
Variant 1  Variant 2 Variant 1 Variant 2 Variant 1  Variant 2
50 1000 0.99 0.99 0.88 0.47 0.082 0.087
100 1000 0.99 0.99 0.90 0.48 0.061 0.058
500 1000 0.99 0.99 0.89 0.48 0.033 0.027
1000 1000 0.99 0.99 0.90 0.49 0.026 0.021

Table 3 shows the point estimation accuracy and the variability of the first metamodel-based estimator
S’% given in (3) for u = 1,2. Since the results of the second estimator T%(\;‘ lead to similar conclusions, we
omit them for the sake of brevity. We see from Table 3 that, for a fixed training sample size n, increasing
N does not always lower the bias, as the accuracy of the metamodels is constrained by the given training
sample. In contrast, the RMSE and the standard deviation of the joint metamodel-based estimator decrease
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with N in most cases. While one may be inclined to increase N to improve the point estimation accuracy,
we highlight that, once N becomes very large, the law of diminishing marginal returns emerges. To reduce
the RMSE to a given level, a slight increase in the training sample size n can be more computationally
efficient. We do not go into the details to economize on space.

Table 3: The RMSE, the standard deviation (std), and the bias of ?%“v under different combinations of

(N,n).

SX' waz
N n Ty Ty
RMSE std bias RMSE std bias

150 300 0.052 0.052 0.002 0.055 0.052 0.018
500 300 0.039 0.039 0.004 0.046 0.042 0.018
800 300 0.036 0.034 0.002 0.041 0.040 0.010
250 500 0.040 0.040 0.003 0.046 0.045 0.010
500 500 0.035 0.034 0.007 0.036 0.033 0.015
800 500 0.028 0.028 0.004 0.035 0.034 0.009
500 1000 0.027 0.027 0.002 0.030 0.027 0.012
800 1000 0.028 0.028 0.003 0.030 0.028 0.010
1000 1000 0.021  0.021 0.000 0.023 0.023 0.004
800 2000 0.021 0.021 0.000 0.023 0.022 0.003
1000 2000 0.021  0.021 0.002 0.023 0.022 0.007
1200 2000 0.020 0.020 0.002 0.018 0.017 0.006

Finally, we investigate the empirical coverage of the asymptotic confidence intervals obtained based on
Theorem 1. Table 4 shows the combinations of (N,n) that help achieve the target coverage level. We see

that, for the Sobol’ index of Xj, both asymptotic CIs based on estimators 377(7'\/ and ﬁ}% achieve the target
coverage level using N ~ 0.5n. For the Sobol’ index of X5, the asymptotic CI based on 337% achieves the target

coverage level using N ~ 0.2n while that based on T;% achieves the target level using N ~ 0.1n. Without
showing details, we mention some important observations made throughout the experiment. First, as n and
N increase, the empirical coverage of the asymptotic Cls approaches the target level, which corroborates
Theorem 1. Second, increasing or decreasing N does not always improve the empirical coverage, and
the relationship between n and N is crucial to make the empirical coverage meets the target level. Our
results echo those of Janon et al. (2014), who demonstrated that different metamodeling techniques require
different combinations of (N,n) for the asymptotic CIs constructed to reach a prescribed target coverage
level.

Table 4: The empirical coverage of the asymptotic Cls based on Thoerem 1 under different combinations
of (N,n). The values in parentheses in Column “N” are those that lead to the corresponding empirical
coverages closer to the target level at 0.95.

N coverage N  coverage N coverage N  coverage
300 150 0.96 60 0.91 150 0.92 30 0.94
500 250 0.95 100 0.96 250 (100) 0.9 (0.93) | 50 0.94
1000 500 0.97 200 0.97 500 0.94 100 0.95
1500 | 750 (650) 0.89 (0.94) | 300 0.98 750 0.96 150 0.91
2000 1000 0.94 400 0.93 1000 0.93 200 0.96
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In summary, while increasing the MC sample size N for obtaining the joint metamodel-based estimators
is computationally convenient, our results suggest that setting N to an extremely large value given a fixed
training sample is ineffective for improving the point estimation accuracy and the empirical coverage of
the asymptotic confidence intervals.
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