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Abstract
One of the few imperiled ant species in North America is the Comanche Harvester Ant, Pogonomyrmex comanche. Despite its 
status, little is known about its natural history throughout its range in the western Gulf Coastal Plain of North America. This 
study presents a regional phylogeographic analysis of P. comanche across sites in its natural range as a first step to learning 
more about this species. By using COI genotyping, we discovered that the center of genetic diversity is found in central 
Texas, which is typical for many species that found refugia in the southern North America during Pleistocene glaciations. 
Although diversity was slightly lower in northern populations, there was no evidence of recent population expansion into 
northern latitudes. Rather, some deviations from neutrality were consistent with population contraction in the northern regions 
(Arkansas, Oklahoma). The high diversity and relative rarity of identical sequences among samples were also consistent 
with dispersal limitation. The exact mechanisms driving its decline are currently unknown, but a combination of dispersal 
limitation and habitat loss seem likely causes.

Keywords  Dispersal limitation · Gulf Coastal Plain · ‘Lost Pines’ of Central Texas · mtDNA · Population contraction · 
Texas

Introduction

Ants are among the most ecologically successful group of 
animals; they occur nearly everywhere on the planet and 
are exceptionally abundant in mid to low latitudes (Moreau 
and Bell 2013; Schultheiss et al. 2022). Their success is 
partially attributed to colony life, so that once established, 
colonies may achieve numerical dominance, as well as their 
interactions with other organisms (Davidson et al. 2003; 
Parker and Kronauer 2021; Hill et al. 2022; Costa-Silva 
et al. 2023). Despite their overall success and ecological 
importance, more than 150 species are thought to be 
endangered (Talavera et al. 2015; Balzani et al. 2022; IUCN 
2024).

Southeastern North America is considered a global 
hotspot of biodiversity due to the degree of endemism and 

overall species richness found in this region (Soltis et al. 
2006; Sorrie and Weakley 2006; Noss et al. 2015). The 
region extends along the Gulf of Mexico from Texas to 
Florida and northward along the Atlantic Ocean. Although 
much information exists on the phylogeography of plants 
and vertebrates in this region, comparatively little is known 
about insects and particularly the ants that are found in this 
large region. Most of the southern USA escaped the brunt of 
Pleistocene glaciations and many northern ant species found 
refugia associated with more stable climates in Florida, 
Texas or northern Mexico before expanding northward 
during the Holocene (Soltis et al. 2006). Consequently, 
the genetic variation of many species may exhibit a pattern 
typical of expanding populations with most variation being 
found in ancestral (southern) regions and comparatively 
less found in regions more recently occupied (Avise 2000; 
Al-Rabab'ah and Williams 2004; Seal et al. 2015; Harrison 
and Noss 2017).

Pogonomyrmex is a genus of harvester ants found in 
mostly arid regions in North and South America (MacMahon 
et al. 2000; Johnson 2001) This genus has unique external 
nest forms that aid in their identification in the field. 
Pogonomyrmex nests can be identified by the presence of 
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a flattened “disk” covered with small pebbles or charcoal, 
among other objects or a crater of sand with a central 
entrance (Smith and Tschinkel 2005; Smith and Tschinkel 
2007). The internal nest structure consists of downward 
branching tunnels and chambers that house the queen, the 
worker ants, the brood and the collected seeds (Tschinkel 
2004). Pogonomyrmex ants are presumably ecologically 
important as they collect vast amounts of seeds and 
frequently dig deep nests (MacMahon et al. 2000; Tschinkel 
2015; Tschinkel and Kwapich 2016). In the southeastern 
North America, three species of Pogonomyrmex occur. 
Two (P. barbatus and P. comanche) are found west of 
the Mississippi River, whereas P. badius has an eastern 
distribution (Johnson 2000). While P. barbatus and P. 
badius have been subjects of many studies that range from 
population genetics to behavior and ecological impacts 
(Smith and Tschinkel 2006; Smith et al. 2011; Mott et al. 
2015; Tschinkel and Kwapich 2016), very little is known 
about P. comanche beyond their presence on regional species 
lists and anecdotal observations (Strandtmann 1942; Johnson 
2000; Dash and Hooper-Bùi 2008; Warriner 2011).

Pogonomyrmex comanche is predominantly distributed in 
the prairie or savannas overlaying sandy soils of Arkansas, 
Louisiana, Kansas, Oklahoma and Texas (Johnson 2000), in 
particular the Post Oak Savannah Ecoregion of the western 
Gulf Coastal Plain (Diggs et al. 2006). It thus occupies a 
habitat similar to P. badius, except that it is found to the west 
of the Mississippi River (Fig. 1). This species is associated 
with the P. californicus complex (Johnson et  al. 2013; 
Johnson and Moreau 2016; Smith 2023). One of the unique 
features of the biology of P. comanche is that it is, along with 
the rarely observed P. bigbendensis (Francke and Merickel 
1982), among one of the few ant species listed at being 
at risk of extinction by the states of Louisiana and Texas. 
For example, Louisiana and Texas both list P. comanche 
as globally imperiled/vulnerable (G2/G3 and regionally 
imperiled (S2) (TPWD 2017; LDWF 2020) (Fig. 2).

The goal of this study was to identify regional patterns 
of genetic diversity in P. comanche across a North–South 
gradient of its distribution, a region from central Texas 
to Oklahoma and Arkansas. We found that southern 
populations were genetically more diverse than those found 
in the North and there may be evidence of population 
contraction in northern regions.

Materials and methods

Specimen collection

Colonies were sampled in three regions. We sampled a 
‘South’ region that corresponded to several localities in the 
central part of Texas. The ‘Central region was characterized 

by several localities near Tyler, Texas, and was broadly 
between the Trinity River and the Red River, a major river 
in the southern USA. We defined the ‘North’ region as 
localities north of the Red River and consisted of a site in 
Norman, Oklahoma, and two sites in southern Arkansas 
(Miller County Sandhills Natural Area and Arkansas Oak 
Natural Area) (Table 1).

DNA extraction and mitochondrial DNA analysis

From each colony sampled in the field, a single individual 
worker was selected for DNA extraction. DNA was extracted 
from whole individual workers using a QIAamp DNA Micro 
Kit (QIAGEN), and a 779-bp sequence was obtained from 
the COI-tRNA Leucine-COII region of mitochondrial DNA 

Fig. 1   Photographs of Pogonomyrmex comanche nest and in its 
native habitat in Bastrop, County, Texas
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(mtDNA). We used the following primers: C1-J2195 (alias 
CO1-RLR; 5′-TTG​ATT​TTT​TGG​TCA​TCC​AGA​AGT​-3′); 
and C2-N-3661 (alias Barbara; 5′- CCA​CAA​ATT​TCT​GAA​
CAT​TGA​CCA​-3′ (Simon et al. 1994). Polymerase chain 
reaction (PCR) mixtures and cycling profiles were identical 
to those used in prior studies (Seal et al. 2011; Seal et al. 
2015; Matthews et al. 2021). PCR mixtures were as follows: 
4 µL (~ 20 ng µL−1) of DNA, 2 µL of 10 × PCR buffer, 1.6 

µL of 1 mM deoxyribonucleotide triphosphates (dNTPs), 
1.6 µL of MgCl2, 1.6 µL of bovine serum albumin (BSA), 
0.2 µL (1U) of Taq polymerase, and 1.2 µL of 10 μM primer. 
The PCR cycles involved an initial denaturation for 2 min 
at 94 °C; 38 cycles of 94 °C for 1 min, 50 °C for 1 min, and 
68 °C for 2 min; and a final extension at 72 °C for 5 min.

PCR products were purified and sequenced at the 
University of Texas at Austin’s DNA Sequencing 

Fig. 2   Localities of Pogonomymrex comanche sampling sites in this study. Colors of sampling sites represent designated regions. Major rivers 
and cities and state names are noted for reference

Table 1   Sample sizes of the 
collection localities and the 
associated GPS coordinates

Region County State Colonies Latitude Longitude

South Caldwell County Bastrop Texas 1 29.83865 − 97.4332
South Camp Swift Bastrop Texas 17 30.29194 − 97.271
South Red Rock Bastrop Texas 1 29.9285 − 97.3636
Central Jarvis Christian College Wood Texas 1 32.5907 − 95.1833
Central Hawkins Hawkins Texas 1 32.62615 − 95.2143
Central Lindsey Park Smith Texas 9 32.3105 − 95.3777
Central Camp Maxey Lamar Texas 1 33.78166 − 95.535
North Arkansas Oak Nature Reserve Nevada Arkansas 6 33.65808 − 93.1723
North Miller County Sandhills Miller Arkansas 6 33.19354 − 94.0278
North Norman Norman Oklahoma 5 35.20912 − 97.5037
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Facility on an Applied Biosystems 3730 DNA Analyzer. 
Chromatograms were manually checked and resolved in 
Geneious v10.2.3 (Kearse et al. 2012), and sequences were 
aligned in MEGA v6.06 (Tamura et al. 2013) using the 
ClustalW algorithm (Thompson et al. 1994). New sequences 
were deposited into NCBI GenBank under accession 
numbers MH193071–MH193170.

With our COI mtDNA alignment, we examined 
haplotype diversity and calculated basic measures of genetic 
polymorphisms across and within regions using DNAsp 
v6 (Rozas et al. 2017). We then reconstructed a haplotype 
network for the COI data using the TCS method (Clement 
et al. 2000) in PopArt v1.7 (Leigh and Bryant 2015). We 
calculated haplotype and nucleotide diversities and tested 
for population expansion using Tajima’s D neutrality test and 
Harpending’s h statistic. Expanding populations typically 
differ from neutrality. Negative Tajima’s D values indicate a 
lower frequency of polymorphism than expected by chance, 

which often indicate population bottlenecks or recent 
expansions, whereas a positive value indicates population 
contraction.

Results

COI sequences exhibited variation with regard to the region 
sampled. Haplotypes were most diverse in the southernmost 
regions in central Texas and least diverse in the northernmost 
populations in Arkansas and Oklahoma (Fig. 3, Table 2). 
For example, every second haplotype collected in central 
Texas was unique and these were never found outside the 
South region, whereas some identical haplotypes were found 
throughout the northern and northwestern region. Northern 
and Central haplotypes appear to be closely related to three 
separate haplotypes found in central Texas (Fig. 3). The tests 
of population expansion indicate that the populations are not 

Fig. 3   A TCS haplotype 
network for Pogonomyrmex 
comanche constructed with COI 
mitochondrial DNA sequences. 
Shaded circles represent unique 
haplotypes and their relative 
size is proportional to the 
number of individuals with 
that haplotype; black circles 
represent predicted intermediate 
haplotypes. Shading 
corresponds to sampling 
sites (regions) in Fig. 1. Tick 
marks on branches indicate the 
number of mutations between 
haplotypes

Table 2   Population genetic diversity indices and tests of population expansion of Pogonomyrmex comanche ants across the region studied 
n.s. = not significant α = 0.05, * corresponds to 0.10 > p > 0.05 and ** corresponds to p < 0.05

Abbreviations include: sample size (n), number of unique haplotypes (h), haplotype (hd) and nucleotide (π) diversities with standard deviation 
(SD), and the average number of nucleotide differences (k)

Region n h hd (SD) π (SD) k Tajima’s D

All 48 18 0.919 (0.023) 0.00923(0.00697) 7.165 1.065n.s.

South 19 10 0.906 (0.04) 0.00749 (0.006) 5.183 1.016n.s.

Central 12 5 0.833 (0.07) 0.00959 (0.00683) 7.439 1.7448*
North 17 5 0.779 (0.07) 0.00836(0.00534) 6.485 2.614**
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expanding in the South region, whereas the significant test 
in the North population was positive and could be evidence 
of population contraction (Table 2).

Discussion

The most striking finding in this study is the presence of 
significant genetic variation throughout the range of P. 
comanche and there is no evidence of recent expansion. 
Rather, there is potential evidence of population contraction 
along the northern portions of its range; the significant 
positive Tajima’s D statistic suggests an excess of common 
alleles and an absence of rare alleles. This pattern is 
unlike the phylogeographic structure of a distantly related 
co-occurring ant species, Trachymyrmex septentrionalis, 
which is characterized by little haplotypic variation across 
its range in the western Gulf Coastal Plain and negative 
Tajima’s D statistic (Seal et al. 2015), which is all the more 
surprising since the latter study used a longer section of COI 
than in the current study on P. comanche. Presumably, this 
reflects a longer phylogeographic history of P. comanche 
in this region. Alternatively, this pattern may be related to 
differences in dispersal biology. It seems likely that female 
T. septentrionalis queens can disperse up to 100 km or more 
(Matthews et al. 2021), whereas Pogonomyrmex queens are 
much larger and may have more restricted movements (Suni 
and Gordon 2010). Our results support limited dispersal of 
P. comanche queens because the haplotypes of P. comanche 
appear to be regionally structured. Congener P. badius 
is also known to exhibit significant mtDNA geographic 
structuring in a relatively small region (Strehl and Gadau 
2004), which may be a result of queens mating on mounds 
and dispersing locally instead of dispersing over longer 
distances to mate (J Seal, unpublished observations). A 
better understanding of the dispersal biology of P. comanche 
and comparative approach with P. badius could help to 
explain the phylogeographic patterns observed in the present 
study.

The factors behind dispersal limitation need to be 
explored in greater detail, but there are several potential 
non-exclusive factors that may contribute to Pogonomyrmex 
dispersal and their genetic diversity. Some have remarked 
potential drivers in the loss of Pogonomyrmex populations 
in the form of invasive fire ants (Solenopsis invicta.), but 
fire ants are not known to occur in northern populations 
and are also known to avoid dry, xeric habitats typical for 
Pogonomyrmex (Tschinkel 1988; King and Tschinkel 2008; 
Warriner 2011; King and Tschinkel 2015). An alternate 
explanation may be related to habitat fragmentation or 
land use change. Habitat fragmentation is thought to be an 
important factor in driving ant community structure (Crist 
2009) and has been directly implicated in the loss of genetic 

variation and reductions in population sizes of European 
wood ants (Formica spp.) (Mäki-Petäys et al. 2005; Mäki-
Petäys and Breen 2007; Dekoninck et al. 2010). Changes in 
land use and habitat fragmentation could be an important 
factor related to dispersal behaviors, since Pogonomyrmex 
typically prefer hot, open environments. For example, 
experimental shading of P. badius colonies caused more 
frequent nest relocations, possibly because the shading 
cooled soil (Carlson and Gentry 1973). In another study, P. 
badius foraging increased after a prescribed fire; however, 
it was unclear whether this behavior was due to a stress 
associated with incinerated food or stimulated by an increase 
of seeds (food) released after a fire (McCoy and Kaiser 
1990). If fires are an important mechanism to free up open 
space, in addition to droughts, among other mechanisms that 
could clear up space, then future studies should examine the 
impact of local environments on colony-level performance 
and growth (Seal and Tschinkel 2006; Seal and Tschinkel 
2010). Food limitation might be another explanation 
limiting their growth in isolate population fringes (Smith 
2007). Generally, dispersal limitation coupled with a 
dependence on hot, open environments and mechanisms 
that to create open spaces could be an explanation for why 
P. comanche populations are not expanding and may instead 
be contracting.

Future genetic work should involve diploid markers 
such as microsatellites or whole genome approaches to 
examine for gene flow among populations. Attempts to use 
microsatellites developed from other species (Volny and 
Gordon 2002; Gadau et al. 2003) on these populations of 
P. comanche were not successful as the alleles were not 
sufficiently polymorphic (Romo 2018). However, novel 
microsatellite markers could be developed (Matthews 
et al. 2020) or high-throughput whole genome approaches 
such as genotyping-by-sequencing could be implemented 
(Beigel et  al. 2021). One promising strategy (using 
either molecular genetic approach) may be to explore the 
population genetics of both P. badius and P. comanche in a 
comparative framework. Since both species live in similar 
environments (the southeastern coastal plain), a congeneric 
comparative approach could help determine whether both 
are experiencing range contractions or if these processes 
apply only to P. comanche or if an ‘umbrella’ approach 
could be used to protect Pogonomyrmex species, generally, 
as advocated in conservation measures for Formica wood 
ants (Balzani et al. 2022).

We believe our results are robust despite known issues 
with mtDNA. For example, some properties of mtDNA such 
as pseudogenes or nuclear insertions (numts) can complicate 
conclusions regarding the evolutionary relationships among 
organisms (Martins et al. 2007; Beckenbach 2009; Moreau 
2009; Toews and Brelsford 2012; Cristiano et al. 2014). 
While we recognize these limitations, mtDNA sequences 
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can be readily obtained and their associated problems can 
be easily examined, whereas the problems associated with 
biparentally inherited nuclear markers are not always as 
clear (Moreau 2009; Bowen et al. 2014). Consequently, 
mtDNA sequences are robust tools to assess phylogenetic 
patterns (Mikheyev et al. 2008; Seal et al. 2015; Matthews 
et al. 2021). Nevertheless, we examined for stop codons 
in our sequences and found none. We also noted that the 
sequences in this study were long and frequently readable 
at > 800 bp and contained variation, which numts usually 
lack as they are subject to DNA proofreading mechanisms 
in the nucleus.

A tragic finding in this study is that the southernmost 
region of our study (Central Texas) appears to be the most 
genetically rich area of P. comanche and should be under 
prime consideration for conservation efforts; however, 
central Texas is among the fastest growing areas of Texas. 
However, harvester ants are a major food of the state reptile 
(Burgess et al. 2018; Schmidt 2019), the Texas Horned 
Lizard (Phrynosoma cornutum), which is also threatened 
(McIntyre 2003). As a result, conservation programs 
could be developed that target both species, such as by 
increasing awareness of the role of habitat loss, among other 
mechanisms that could be involved in the loss of these two 
charismatic and important species.
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