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Abstract— Automation in surgical robotics has the potential
to improve patient safety and surgical efficiency, but it is
difficult to achieve due to the need for robust perception
algorithms. In particular, 6D pose estimation of surgical in-
struments is critical to enable the automatic execution of
surgical maneuvers based on visual feedback. In recent years,
supervised deep learning algorithms have shown increasingly
better performance at 6D pose estimation tasks; yet, their
success depends on the availability of large amounts of an-
notated data. In household and industrial settings, synthetic
data, generated with 3D computer graphics software, has been
shown as an alternative to minimize annotation costs of 6D
pose datasets. However, this strategy does not translate well
to surgical domains as commercial graphics software have
limited tools to generate images depicting realistic instrument-
tissue interactions. To address these limitations, we propose
an improved simulation environment for surgical robotics that
enables the automatic generation of large and diverse datasets
for 6D pose estimation of surgical instruments. Among the
improvements, we developed an automated data generation
pipeline and an improved surgical scene. To show the applica-
bility of our system, we generated a dataset of 7.5k images with
pose annotations of a surgical needle that was used to evaluate
a state-of-the-art pose estimation network. The trained model
obtained a mean translational error of 2.59 mm on a challenging
dataset that presented varying levels of occlusion. These results
highlight our pipeline’s success in training and evaluating novel
vision algorithms for surgical robotics applications.

I. INTRODUCTION

In minimally invasive robotic surgery, automation of time-
consuming and repetitive surgical subtasks has the potential
to reduce the surgeon’s mental demands and improve the
overall efficiency of surgery [1]. Automation of surgical
subtasks has been extensively studied by the research com-
munity, leading to autonomous algorithms for suturing [2]–
[5], blood suction [6], [7], and tissue retraction [8], among
others. One key challenge of surgical automation is devel-
oping perception algorithms to compensate for the robot’s
kinematic inaccuracies and execution failures. This requires
estimating the 6D pose of rigid and articulated instruments
from endoscopic video to modify autonomous motions based
on visual feedback.

In the task of 6D pose estimation, the goal is to esti-
mate the translation and rotation of the object of interest
with respect to the camera coordinate frame. This task
has traditionally been approached by extracting 2D visual
features from RGB images and then matching them with
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corresponding 3D features on the object’s model. These
2d-3d correspondences can then be used as an input to a
Perspective-n-Point [9] solver to retrieve the object’s pose.

More recently, end-to-end deep neural networks have
demonstrated superior performance for 6D object pose es-
timation tasks than traditional point-pair feature approaches
[10]. The main drawback of these deep learning approaches
is the need to generate large amounts of annotated training
data, which, for 6D pose estimation tasks, is prohibitively
expensive to obtain. As a solution, it has been shown that
high-fidelity synthetic data of models of physical objects can
be used to train pose networks that perform well in locating
their real counterparts [10], [11].

In the surgical context, synthetic data generation is a
more challenging endeavor as it is important to generate
samples that portray sensible instrument motions and realistic
tissue-instrument interaction. Currently available simulation
environments such as Vision Blender [12] or BlenderProc
[13] can be utilized to render annotated images of surgical
instruments in surgical backgrounds; however, they offer
limited capabilities on how the objects can be moved or
interact with each other in the scene. Furthermore, they
do not offer good support to work with articulated robotic
instruments.

In previous work, an open-source platform for surgical
suturing was introduced to address some of the limitations of
surgical robotics simulation platforms [14]. In particular, this
work, built with the Asynchronous Multi-Body Framework
(AMBF) [15], introduced improved robot control algorithms
and teleoperation capabilities, and provided access to ground-
truth imaging data. Although it enabled the collection of
realistic suturing motions via teleoperation, it still lacked the
capabilities to automatically generate the large-scale datasets
needed for neural network training. Furthermore, the scene
provided a simplified phantom, not resembling any real
physical phantom, which complicated the task of physically
reproducing the virtual environment.

To address these limitations, we have developed an au-
tomated data generation pipeline on top of [14] to produce
large-scale and diverse datasets from pre-recorded trajecto-
ries generated with teleoperation. Moreover, we scanned and
added a commercially available training suturing pad to our
simulation environment to improve realism and to ensure that
the virtual scene could be physically reproduced. The goal of
these improvements was to facilitate the creation of the large-
scale datasets needed for deep learning-based algorithms.

In this paper, we showcase an application of our pipeline
by generating data to train a state-of-the-art 6D pose estima-



Fig. 1: Proposed data collection pipeline. Realistic data generation with our proposed system requires two steps. First,
trajectories of the robotic manipulators are collected using a teleoperation device. Second, trajectories are replayed
automatically multiple times from different camera viewpoints to generate diverse set of images. While replaying, our
pipeline stores depth and segmentation maps and the ground truth pose of all the objects with respect to the camera.

tion network to predict the pose of a needle while performing
suturing maneuvers. Regarding the network architecture, the
GDR-Network [16] was chosen as it is one of the first fully
differentiable networks for the task of pose estimation from
monocular RGB. We envision that our work will significantly
benefit the community of surgical robotics researchers as we
provide a standardized platform for generating, evaluating,
and deploying novel vision algorithms. Lastly, we highlight
that thanks to the modular nature of the base simulation
engine, our data generation pipeline can be used for a wide
range of tasks and objects in surgical robotics setups.

In summary, this work presents the following contribu-
tions:

1) An automated data generation pipeline for 6D pose
estimation of surgical instruments.

2) A realistic simulation environment for surgical suturing
based on a commercially available suturing pad model.

3) A dataset of 7.5k images with 6D pose annotations for
a simulated surgical needle.

4) Evaluations on a state-of-the-art 6D pose estimation
neural network on the task of surgical needle pose
estimation.

II. RELATED WORK

A. Offline Simulation Data Generation

Vision Blender [12] is a Blender add-on for generat-
ing synthetic computer vision data such as RGB, depth,

segmentation, optical flow, and surface normals. Designed
as a tool to efficiently generate data for surgical robotic
system development, Vision Blender supports converting
generated data to Robot Operating System (ROS) [17] mes-
sages. Another modular procedural pipeline for generating
simulation data based on Blender is BlenderProc [13]. It
shares data generation capabilities with Vision Blender, with
the added feature of bounding box generation. BlenderProc
also supports importing data in URDF format, expanding its
capability for modeling complex robotics systems. Compared
to using the native Blender Python, which demands a deep
understanding of the Blender infrastructure, BlenderProc
offers an intuitive Python interface to simplify the scene-
building and data-acquisition process.

B. Robot Simulator & Digital Twins

NVIDIA® Isaac Sim is a scalable robotics simulator and
synthetic data generator. Powered by the GPU-accelerated
physics simulation engine PhysX and physically-based ren-
dering technology Iray, Isaac Sim is capable of simulating
physically accurate virtual environments and generating pho-
torealistic data. Isaac Sim offers support for Universal Scene
Descriptor (USD) and Unified Robot Description Format
(URDF), enabling developers to seamlessly import intricate
3D environment definitions and robot configurations with
ease. In addition, Isaac Sim allows developers to establish
connections between Isaac Sim and their custom robot ap-



plications via integrated Robot Operating System (ROS1 &
ROS2) interfaces. With extensions such as Isaac Gym [18]
and Isaac Orbit [19], developers can efficiently test and refine
their robotic systems and robot learning algorithms.

Defining multi-body robots using formats like URDF or
Standard Description Format (SDF) can lead to ambiguous
definitions in cases of densely connected, sparsely connected,
or unconnected bodies. To address this constraint, Munawar
et al. [15] introduced the Asynchronous Multi-Body Frame-
work (AMBF), an innovative front-end description format for
multi-body simulation, aimed at simulating complex closed-
loop robots. AMBF leverages Bullet Physics [20] for its
physics simulation and CHAI-3D [21] for graphics rendering
and haptic volume rendering. Within AMBF, every object
features a custom OpenGL shader, facilitating diverse data
generation capabilities, including RGB, depth, and segmen-
tation maps.

Building upon AMBF, many research efforts have emerged
to advance robot-assisted surgeries. These include using
AMBF to design image-guided feedback modalities [22],
a novel framework for skull base surgeries featuring high-
precision optical tracking and real-time simulation [23], and
a causality-driven robot tool segmentation algorithm [24].
In this work, we selected AMBF simulation over other
simulation alternatives due to its support of a broad array
of input devices, which facilitates the collection of realistic
motions of the surgical instruments. In particular, its tight
integration with the da Vinci Research Kit (dVRK) [25]
allows collecting robotic surgical motions with a similar
setup to what is used in surgery.

III. METHODOLOGY

The primary motivation of this work was to provide a data
generation tool for 6D pose estimation of surgical instru-
ments. In this regard, we adapted an open-source simulation
environment to automatically generate sequences of images
of robotic-assisted surgical actions with their corresponding
ground-truth maps. The proposed data generation pipeline
(See figure 1) was developed with the goal of generating pro-
grammatically large and diverse datasets. The methodology
section is divided as follows. In section III-A, we present the
pipeline for automatic data generation. Section III-B shows
the improvements in the surgical virtual scene. Section III-C
describes the generation of a dataset for the task of needle
pose estimation. Section III-D describes the pose estimation
deep learning model trained to estimated the needle’s pose.
Lastly, section III-E, describes the evaluation metrics used
for the predictions of the trained neural network.

A. Data generation pipeline

Our proposed data generation pipeline is composed of two
stages: a recording step, and a processing and generation
step. During the data recording step, a teleoperation device
is used to move the virtual robotic manipulators to perform
the surgical task. While teleoperating, joint and Cartesian

positions of the robotic manipulators, and the poses of other
objects in the simulation are stored in a rosbag file1.

During the processing and generation step, the stored
robotic trajectories are replayed multiple times under dif-
ferent camera viewpoints and lighting conditions. While
replaying the trajectories, a collection script stores the re-
sulting monocular or stereoscopic RGB images with their
corresponding ground-truth information, i.e., depth map,
segmented images, camera intrinsic parameters, and pose
of objects expressed with respect to the camera coordinate
frame.

1) Format for generated data: To store the data, it was
decided to use the Benchmark for 6D Object Pose Estimation
(BOP) format [10]. This is a standardized format adopted
by several benchmark 6D pose estimation datasets such as
HOPE [26], YCB [27], and others. Moreover, it is a standard
format used for an annual 6D pose competition [10]. In the
BOP format, related data are grouped under a scene id. For
our pipeline, data from each trajectory replay was stored in
a different scene id.

Fig. 2: (a) Visual mesh of the 3-Dmed phantom after prepro-
cessing. (b) Simplified collision mesh composed of multiple
convex subcomponents assembled into a single mesh. The
collision mesh was only provided for a single ridge of the
phantom.

B. Improvements of virtual scene

To improve the realism of our virtual scenes, a commer-
cially available suturing pad (3-Dmed, Franklin, OH, US)
was added to the simulation. The suturing pad was initially
MRI scanned to obtain a mesh that was preprocessed using
3D Slicer [28] and Meshlab [29]. The MRI scanning was
selected over other modalities as it provides higher contrast
for soft tissue phantoms [30]. Using the resulting mesh,
an AMBF Description File (ADF) is made by utilizing the
Blender-AMBF addon plugin [14]. As observed in figure
2, the full-resolution suturing pad is used for visualization,
while a simplified mesh made of convex subshapes is used
for collision. Small corridors are left on the collision mesh
to allow for needle insertions similar to the scene developed

1A rosbag is a file format used to store messages, from the Robot
Operating System (ROS) middleware. It is ideal for storing trajectories from
a robot.



in [14]. Collision meshes are simplified to optimize the
simulation’s performance.

Fig. 3: Ground-truth distribution of the collected needle
6DoF detection dataset.

C. Generated dataset for surgical needles pose detection

Using our improved simulation environment, we collected
a dataset for the task of 6D pose estimation of an 18.65 mm
surgical needle. First, we collected 6 rosbag recordings of
suturing motions using a dVRK robot’s surgical console [25].
Two recordings were done in scene 1 and four in scene 2
(See figure 1).

Each of the 6 collected recordings was then replayed on
the simulator 20 times, each time from different camera
positions and view angles. Data from 4 recordings were
used as a training set and 2 for the testing set. Camera
positions were specified in the joint space of a virtual
endoscopic camera manipulator (ECM) provided by the base
simulation environment. To produce unique viewpoints with
every replayed recording, a small random offset was added
to the selected ECM joints.

After filtering images where the needle was not present,
6430 training and 1500 testing images with a 640x480
resolution were obtained. As observed in figure 3, the re-
sulting dataset is more challenging and realistic than the one
presented in [4] as the needles in the images present varying
levels of occlusion and distance to the camera. The visibility
fraction is calculated with

visibility =
area of visible mask

area of projected mask
(1)

where the visible mask is the set of pixels in the RGB image
that correspond to the needle and the projected mask is the
set of pixels obtained by projecting the needle’s CAD model
to the image plane using the ground-truth pose.

D. Selected deep learning model for 6D pose estimation

Using the dataset described in section III-C, we trained
the state-of-the-art network for 6D pose estimation GDR-Net
[16]. This network was selected as it is one of the first fully

differentiable pose estimation methods in the literature and
the winner of the BOP pose estimation competition of 2022
[10]. This network receives as an input a 2D RGB region,
where the object of interest is located, and outputs three
intermediate geometric feature maps: the visible object mask,
a map of 2d-3d dense correspondences, and a surface region
attention map. These intermediate maps are concatenated
and then given as input to a fully-differentiable Patch-PnP
module that regresses the final rotation and translation of the
object.

Training of this network can be performed in an end-to-
end manner and only requires the RGB image and the object
CAD model to generate ground truth for the intermediate
geometric maps. As mentioned above, the network requires
a region of interest (ROI) where the object is located. To
obtain these ROIs during our experiments, the off-the-shelf
detector YOLOX [31] was also trained with our dataset for
the task of 2D bounding box detection for the needle.

E. Evaluation metrics for the pose estimates

Pose estimations from the neural network were evaluated
using three common error metrics: (1) translation error
(eTE), (2) rotation error (eRE) [32], and (3) Maximum
Symmetry-Aware Surface Distance (eMSSD) [33]. Metric 1
measures the translational error using the Euclidean distance.
Metric 2 measures the rotational error using the axis angle
representation of rotation matrices. Lastly, metric 3 measures
the maximum distance between a vertex of the object model
transformed with the ground truth and estimated pose. Given
a ground truth pose P̄ = (R̄, t̄), an estimated pose P̂ =
(R̂, t̂), and a set of vertices VM belonging to the object
model, the metrics eTE , eRE and eMSSD can be calculated
with

eTE = ||t̄− t̂|| (2)

eRE = arccos((Tr(R̄R̂
−1

− 1)/2) (3)

eMSSD = min
S∈SM

max
x∈VM

∥P̂x−PSx∥2 (4)

where SM is a set of symmetry transformations for the object
whose pose is being estimated.

IV. EXPERIMENTS AND RESULTS

For the evaluation experiments, first, the YOLOX and
GDR-Net networks were trained with the generated training
dataset. YOLOX was trained for 30 epochs using the Ranger
Optimizer [34], a batch size of 16 and a learning rate of 1e-
3. GDR-Net was trained with the Ranger Optimizer for 450
epochs, a batch size of 48 images and a learning rate of 8e-
4. This training setup was similar to the one used in [16].
At test time, the trained bounding box detector was used
to predict a single region of interest for each image. This
region of interest was then used as input for the GDR-Net.
Only images where at least 30 percent of the needle was
visible were used for evaluation. Some sample images from



Fig. 4: Test set sample frames and corresponding pose prediction visualizations. Colored images show samples from the test
dataset. Masks in the grayscale images are generated by projecting the needle model to the image with the ground-truth (blue
mask) and the network’s estimated pose (green mask). Higher overlaps between the green and blue masks are indicative of
better pose estimates.

Fig. 5: Error distribution for the best GDRNet model on the
test dataset. The x-axis represents the different error metrics,
and the y-axis is the number of samples within each bin.
The red dotted line indicates the median performance. The x-
axes of the histograms were truncated respectively at 70 mm,
15 deg and 10 mm for visualization purposes.

the test set with their corresponding pose predictions can be
observed in figure 4.

Final pose errors can be seen in table I. On the evaluated
images, GDR-Net obtained a median rotational error of 7.74
degrees and a median translation error of 1.49 mm (less
than 20 percent of the needle’s diameter). These results are
comparable to the pose detection results of non-occluded
needles presented in [4] even though needles in our test
set present varying levels of occlusion. Lastly, the median
MSSD error is 1.43 mm. Pose error distribution in figure 5

indicates that the network can have sporadic predictions with
significantly higher errors. High pose errors can be mainly
attributed to images where several needle poses cannot be
distinguished from each other.

Test set results (N=1458)
eRE (deg) eTE (mm) eMSSD (mm)

mean 11.85 2.59 2.09
std 17.52 3.41 2.43

median 7.74 1.49 1.43
min 0.33 0.04 0.06
max 170.5 33.01 20.91

TABLE I: GDRNET test set results. Only images where at
least 30 percent of the needle was visible were included
in the evaluation. The diameter of the detected needle was
18.65 mm.

V. DISCUSSION AND FUTURE WORK

In this work, we developed a data generation pipeline
for 6D estimation tasks of surgical instruments on top of
the simulation framework AMBF. The proposed pipeline
generates monocular or stereoscopic RGB images, and pose
annotations for any rigid or articulated instrument in the
scene. Moreover, each generated RGB image is accompanied
by its corresponding depth and segmentation maps.

The focus of the work was to enable the automatic gener-
ation of large and diverse datasets showing realistic tissue-
instrument interaction and sensible trajectories for robotic
manipulators. In this regard, we divide our data generation
pipeline into two steps: (1) a data recording step where
robotic trajectories of a surgical task are recorded, and
(2) a processing and generation step where each collected
trajectory is replayed multiple times from different camera
view angles and lighting conditions.

To showcase the applicability of our pipeline, we gener-
ated a dataset of 7.5k images with pose annotations for a
surgical needle to evaluate a state-of-the-art pose estimation



Fig. 6: Rendering quality comparison between AMBF (left), Eevee (center), and Cycles (right). Each row represents the
same scene. Shadow quality and metal shininess are superior in Cycles due to more comprehensive and exhaustive ray
tracing, while the needle is less glossy and the shadow is unrealistically uniform in Eevee. Nevertheless, both Eevee and
Cycles produce significantly higher fidelity rendering than AMBF.

neural network. After training, the network had translation
and rotation errors comparable to previous works [4], [5]
while being tested on a challenging dataset where the needle
could be partially occluded by the instruments and the tissue.

Although the network showed good performance on aver-
age, it is important to remember that the model makes predic-
tions solely based on the visual appearance of the object, and
therefore cases where multiple poses are indistinguishable
from each other will result in high pose errors. Specifically
for surgical needles, there are two main scenarios leading to
pose ambiguities: (1) images where both the needle’s tail and
tip are occluded and (2) images where the needle’s curvature
cannot be observed, i.e., the needle appears as a straight line.
As a solution, pose ambiguities could be resolved by using
the network’s predictions with a model-based tracker that
uses additional priors, such as the robot’s kinematic motion
or the pose of the needle in previous frames.

In future work, we will leverage our data generation
pipeline to study different techniques for transferring pose
detection models from simulation to reality, a problem that
is often referred to in the literature as the “domain gap”
[35]. As noted by [10] and [36], rendering realism plays an
important role in transferring neural networks from synthetic
to real objects. This hints that models trained based on our
current synthetic data (generated with the simpler Blinn-
Phong shading technique [37] ) might suffer from degraded
performance when applied to data from the physical surgical
platform.

To mitigate this limitation, we implemented a prelimi-
nary real-time pipeline to improve the rendering quality by
transferring the object pose (including cameras and lights)

from the AMBF simulator to Blender. This allows us to
utilize the two state-of-the-art rendering engines included in
Blender since version 3.0: Eevee (a real-time rasterization-
based renderer) and Cycles (a physically based path tracer).
As shown in figure 6, shadows and metal shininess rendered
using Blender are significantly better than AMBF. Future
studies will focus on understanding the effects of different
rendering algorithms on the simulation-to-real transfer of
neural networks. Additional future improvements on our
simulation platform will include more accurate models for
the robotic instruments and advanced materials that more
accurately reflect surgical tools.
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