Stereo Image-based Visual Servoing Towards Feature-based Grasping

Albert Enyedy!, Ashay Aswale!, Berk Calli', Michael Gennert!

Abstract— This paper presents an image-based visual ser-
voing scheme that can control robotic manipulators in 3D
space using 2D stereo images without needing to perform
stereo reconstruction. We use a stereo camera in an eye-to-
hand configuration for controlling the robot to reach target
positions by directly mapping image space errors to joint space
actuation. We achieve convergence without a-priori knowledge
of the target object, a reference 2D image, or 3D data. By doing
so, we can reach targets in unstructured environments using
high-resolution RGB images instead of utilizing relatively noisy
depth data. We conduct several experiments on two different
physical robots. The Panda 7DOF arm grasps a static target
in 3D space, grasps a pitcher handle, and picks and places
a box by determining the approach angle using 2D image
features, demonstrating that this algorithm can be used for
grasping practical objects in 3D space using only 2D image
features for feedback. Our second platform, the Atlas humanoid
robot, reaches a target from an unknown starting configuration,
demonstrating that this controller achieves convergence to a
target, even with the uncertainties introduced by walking to a
new location. We believe that this algorithm is a step towards
enabling intuitive interfaces that allow a user to initiate a grasp
on an object by specifying a grasping point in a 2D image.

I. INTRODUCTION

To reliably complete an everyday task such as picking up a
book in a room to place on a shelf, a robot must operate often
without knowing prior information about its environment.
For example, today the book may be on a different table
than what the robot has been calibrated to pick up from, or
a differently-sized book may be used. Using cameras, the
robot can see these differences in its workspace and use
relevant image features to position its manipulator in the
desired location relative to the book. Vision-based control
can be used to complete such tasks, thus enabling a robot
to grasp objects in unstructured environments using image
features for feedback.

Robots can reach targets by using these image features
in feedback control schemes such as visual servoing, in
which motion in the image space is mapped to motion in
the task space [1]. Visual servoing has two main categories:
position-based visual servoing (PBVS) [2], [3], [4] and
image-based visual servoing (IBVS) [5], [6], [7]; PBVS
minimizes a 3D error vector between the task space location
of the target and the end effector, which requires object
models and 3D reconstruction. In this work, we focus on
IBVS, which utilizes image features and does not require
3D reconstruction.
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Fig. 1: Our visual servoing algorithm relies on RGB stereo
imaging, and does not use depth data. In this way, we
can achieve accurate control using high resolution feedback
images, while avoiding noisy depth measurements. In this
image, the target object (blue ball) is not even differentiable
from the table in depth images due to noise, but can clearly
be detected in RGB data.

The majority of existing IBVS approaches for grasping
objects assume a given goal image (i.e. known locations for
target features) and match the image features of the currently
observed target object with the corresponding image features
of its target position [8], [9]. However, in an unknown or
unstructured environment, the robot may not have access
to prior knowledge of the goal scene. These conditions
would greatly increase the difficulty a robot would have with
grasping an object, especially if the model of the target object
is not known beforehand [10].

In this work, we utilize 2D RGB images for visual
servoing for grasping applications; we do not require object
models or a goal image (the target point is manually-selected)
and do not rely on depth data or 3D stereo reconstruction.
Our motivation stems from 2D images being much higher
resolution, more reliable, and less noisy compared to depth
images, as shown in Fig. 1. 3D stereo reconstruction is also
prone to errors and inaccuracies, especially in low-texture
environments [11].

Such purely 2D stereo visual servoing approach is pro-
posed in the work of Hager et. al. [12] on robot hand-eye
coordination. Our visual servoing approach implementation
takes inspiration from Hager’s work to grasp practical objects
in 3D space. We set up two cameras side-by-side about
0.3 m apart looking at the robot arm, then we select a single
point in each of the left and right camera images, and drive
the robot manipulator to reach that point in 3D space to
grasp an object. Furthermore, the pitch approach angle of the
manipulator can be specified (but not the yaw or roll angles
due to camera placement) and using only visual feedback we
can grasp objects at desired gripper pitch approach angles.
We believe that this approach is suitable for simple point-



and-click interfaces for robotics grasping applications. As
such, it provides opportunities for streamlining control of
robot manipulators in industrial robot arm cells by replacing
complex teach pendants with a few clicks on a touchscreen.
Regarding autonomous grasping, this approach can be cou-
pled with 2D grasp synthesis algorithms to provide grasping
points [10], and our system would require no additional
sensors or data to reach the produced grasping target.

Summarizing our contributions and assumptions, we pro-
pose a stereo IBVS scheme that reaches and grasps objects
without depth sensing, explicit 3D stereo reconstruction,
or prior knowledge of the object model. We demonstrate
its utility with simple point-and-click interfaces to grasp
objects. We assume a rigid robot system with a known
kinematic model. We also assume that both cameras in the
stereo system are calibrated, and image features do not leave
the cameras’ field of view. When reaching target gripper
orientations, we assume the gripper’s fingers remain close to
parallel to the camera’s image plane, for the most accurate
calculation of gripper approach angle in the 2D image. Our
results show that the system can achieve convergence to
grasp a static target at various depths from the camera, grasp
the handle of a water pitcher, pick and place a practical object
such as a keyboard box by specifying approach angles, and
can reach a target from an uncertain starting position.

II. RELATED WORKS

The work of Maru et. al. [13] presents stereo IBVS
control of a manipulator arm by positioning cameras on
the end effector of the robot for a first-person view of the
workspace. In this system, the pose of the stereo cameras
can be used to calculate the image Jacobian during motion
to map velocities from the image frame to the world frame.
This camera setup limits the view of the workspace and
arm itself as opposed to an eye-to-hand setup. The work of
Hager et. al. [12] presents the concept of using the disparity
between stereo cameras viewing the end effector and target
object simultaneously in order to minimize the error, with
robustness to calibration errors. Once the visual disparity is
reduced to zero, resulting in zero error in the image space
in both camera images simultaneously, the arm has reached
its goal point in the task space—the only point at which the
visual disparity equals zero. This work does not, however,
control the end effector towards specific target orientations
using visual feedback. The work of Corke et. al. [14] presents
a decoupled approach to IBVS that solves one of the issues
of direct image-space trajectories corresponding to contorted
task-space trajectories by decoupling the z-axis components
of the controller. This process then requires the arm to reach
an intermediate position at a certain distance from the object
before converging to its 3D location as opposed to the single
motion produced by our system. The work of Garg et. al.
[15] presents a stereo IBVS arm which reaches to a target
specified by a laser pointer, but uses often noisy 3D point
clouds to reach the object. The work of Ma et. al. [6]
presents a 3-camera IBVS system with a single eye-in-hand
camera and two eye-to-hand microscopic cameras, to grasp

Fig. 2: Left and right camera image feature error vectors (red)
between center point of fingers (purple) and target (ball)

and align small size components. The eye-in-hand camera
is used to align the end effector with the target object, and
the two eye-to-hand cameras are used to ensure the grasped
object’s alignment with its target position for assembly by
reaching the correct relative pose in both images, ensuring
convergence to a 3D target point. Our system converges to
3D target positions as well, using only two cameras and
no prior knowledge or reference image of the target, thus
making it suitable for unstructured environments.

We take inspiration from the work of Hager et. al. [12] by
using IBVS that minimizes the error determined by the visual
disparity between the two images to the target. Our work has
real-time integration of control, using not only the camera
poses in the image Jacobian calculation as in Maru et. al.
[13], but also the robot forward kinematics for direct hand-
eye mapping and feedback that can control the end-effector
approach angle as well. The resulting controller produces
output velocities that result in direct trajectories in simulation
without decoupling the z-axis components of the controller.

The demonstrations in this paper use a simple point-and-
click interface to provide grasping point locations to be used
as goal references for the visual servoing algorithm. How-
ever, various automated grasping point detection algorithms
can be coupled with our visual servoing scheme as well. For
example, the work of Saxena et. al. [10] uses 2D images
to identify good grasping points on a target object. This
algorithm or similar algorithms could provide the 2D goal
points for our visual servoing scheme to grasp the object in
3D space.

III. METHODOLOGY
A. Problem Statement

Given a stereo camera system with the end effector and
target visible within the left and right images, our objective is
to generate arm joint velocities to minimize the error vector
detected between the end effector and target in the images
(see Fig. 2). Once the target is reached in both images, the
disparity between the images dictates that the target will be
reached in the arm’s task space as well.

B. Base Visual Servoing Scheme

To produce the joint velocities required to minimize the 2D
image feature error vector, we use a variation of the visual
servoing controller as shown in the “Tutorial on Visual Servo
Control” by Hutchinson et. al. [1]. We begin by defining the
2D image feature error vector for both cameras in Eq. 1



e=g" —p" (1)

in which e represents our 2D feature error vector, a 4xl
vector with the features in the left camera image frame
occupying the top two rows and the corresponding features
in the right camera image frame occupying the bottom two
rows. The same left and right camera image frame format
is followed for g* and p* (4x1 vectors), which represent
the observed 2D image features of the target position and
the gripper position, respectively. The gripper position, p*,
represents the observed center point calculated between the
two fingers of the robot gripper.

p* can be further defined as a function of the end effector
position with respect to the camera frame, [pmpy,pz]T,
using the camera projection function as shown in Eq. 2,
where f represents the camera focal length.

v =i [ih] 2

We obtain our feature velocity in image space, v, in Eq.
3 by combining a control gain A, the pseudoinverse of our
image Jacobian, JZ»Jr , and our error vector from Eq. 1 [1].

v=-\Ne 3)

Our image Jacobian is further defined in Eq. 4, as e
can be represented as a function of p to map the hand-
eye coordination between observations in image space and
positions in task space.

J+_8e

=% )

We calculate the joint velocities required to minimize the
2D image feature error vector by combining the pseudoin-
verse of our robot manipulator Jacobian, J:r , with our feature
velocity, v, as shown in Eq. 5.

q=1Jv 5)

Our robot manipulator Jacobian is further defined in Eq.
6, as p is a function of q, mapping from task space to joint
space.

J+—a—p

Now we substitute our feature velocity v from Eq. 3 into
Eq. 5, to map from image space to joint space in Eq. 7.

q=-\M/Je (7)

We then combine the two Jacobians into one, J. in Eq. 8,
following the general equation of a visual servoing scheme.

qg=-\M'e (8)

C. Orientation Visual Servoing Scheme

To reach desired approach angles using only 2D image
features for feedback, we modify the image feature error
vector of our base visual servoing scheme from Eq. 1. We
add a third entry representing the orientation relative to the
positive x-axis of the image space to each of the left and
right feature error vector components, providing orientation
control along the axis perpendicular to each camera’s image
plane. We control orientation only about this axis to maintain
a clear view of the fingers of the gripper and more accurately
calculate the 2D orientation. This orientation is defined by
obtaining the polar coordinates angle of a line between the
center point of the two fingers, p* from Eq. 2, and the pixel
coordinates of the finger facing the positive x-axis of the
image plane, (2, yy). This formulation is shown in Eq. 9.

—fPz/p=
p* = —fpy/p- )
atan2(ys + fpy/pz,x¢ + fpu/p2)

Meanwhile, the desired approach angle of the target po-
sition with respect to the positive x-axis of the image plane
is specified when defining the target position by setting the
angle. With this new 6x1 feature error vector, we can simply
continue the remainder of the derivation in Section III-B to
produce a control scheme that minimizes error with respect
to desired approach angles as well.

IV. EXPERIMENT RESULTS AND DISCUSSION
A. Robot Setup

We present a detailed evaluation of our control scheme
using the 7DOF Franka Emika Panda robot arm, as well
as several proof of concept experiments with the Boston
Dynamics Atlas Humanoid Robot. As the Panda arm does
not have a built-in eye-to-hand stereo camera setup, we create
one by setting up two RealSense cameras on tripods pointed
towards the robot. The cameras are each set up roughly 1.7 m
away from the robot, with a baseline of roughly 0.3 m apart
from each other, to ensure an adequate disparity between the
left and right camera images and full view of both fingers of
the gripper as shown in Fig. 2. Despite the RealSense camera
having a depth camera and two stereo IR cameras, we use
only the RGB camera on each RealSense. The cameras’ pose
with respect to the Panda arm’s base frame is calibrated using
Nvidia’s DREAM framework [16].

B. Grasping a ball at various depths away from the cameras

To show our system’s ability to grasp objects in 3D space
using only 2D image feedback, we set up a racquetball on
a stand within the workspace of the Panda arm in three
different target locations. As seen in Fig. 3, the ball is placed
at various distances away from the cameras. The cameras’
poses and the starting configuration of the arm are consistent
for each trial. To select the 2D goal position, we click on the
corresponding reference point in each of the left and right
camera images (facilitated by a small tape marker) and do
not specify a goal approach angle.



(a) Trial 1 (b) Trial 2 (c) Trial 3

(d) Trial 1 (e) Trial 2 (f) Trial 3

Fig. 3: Grasping a ball at varying depths from the cameras

The arm successfully grasps the racquetball in each con-
figuration, as shown by the feature error vector over time
shown in the graphs in Fig. 4. Detailed information about the
control performance is provided in Table I. Thus, we have
shown our stereo visual servoing control scheme can reach
locations in 3D space using only 2D images for feedback.
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Fig. 4: Feature error over time for grasping ball in Trial 3

TABLE I: Grasping a Ball Steady State Error (SSE)

Left Image Right Right
Trial SSE Image SSE L;ft Image Image %
. N o Error
(pixels) (pixels) Error
1 2.0 2.0 1.0% 0.9%
3.0 0.0 1.3% 0.0%
3 2.0 2.0 0.8% 0.8%

C. Picking Up a Pitcher Using Point-and-Click

To show our system’s ability to enable the grasping of a
practical object, we place a pitcher at two different positions
in the Panda arm’s workspace. As shown in Fig. 5, we click
on a corresponding point in the left and right camera images

(a) Pitcher in front of arm (Trial 1)

(b) Pitcher to left of arm (Trial 2)

Fig. 5: Grasping a pitcher handle using point-and-click

on the handle of the pitcher (facilitated by a small tape
marker).

The feature error over time graphs in Fig. 6 show similar
performance in grasping the pitcher as in the racquetball
experiments. Table II shows that our system can complete the
grasp while maintaining a low steady state error at maximum
of 1.2% of starting error.
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Fig. 6: Feature error over time to grasp pitcher in Trial 1

D. Pick and Place with Orientation-Inclusive Feature Vector

To show our system’s ability to control for the orientation
of the end effector using only 2D image data for feedback,
we set up an experiment in which the gripper must grasp a



TABLE II: Grasping a Pitcher Steady State Error (SSE)

Left Image Right Right
Trial SSE Image SSE | LeftImage |y ¢ %
. s % Error
(pixels) (pixels) Error
1 2.0 2.0 1.1% 1.1%
2.0 2.0 1.2% 1.1%

vertically-standing keyboard box.To successfully grasp the
object, the gripper must have a vertical approach angle.
Then, to place the object the gripper must have a horizontal
approach angle. We specify each of these target angles in
image space by entering a desired approach angle in the
terminal window after clicking the target points. For this
experiment, the first target point and approach angle are
clicked and specified, and then an additional point and
orientation are added to the queue. Once the box is grasped,
the second target point is loaded from the queue and the arm
immediately servos to the placing position and angle for the
keyboard.

(a) Starting configuration (b) Grasps Keyboard

(c) Switching to place target (d) Places keyboard

Fig. 7: Pick and place a keyboard in a specific orientation

To complete the grasp, we set the desired orientation to 90
degrees such that the gripper will reach a vertical grasping
configuration. As seen in Fig. 8 and Tables III and IV, our
system reaches the pick and place target within 1.6% of the
starting error in both pixel location and desired orientation.

TABLE II: Pick and Place Position Steady State Error (SSE)
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Fig. 8: Feature error over time to pick and place the keyboard

TABLE IV: Pick and Place Orientation Steady State Error
(SSE)

. Left Image Right Right
Elr;:‘f' SSE Image SSE Lf;fté;“rzfe Image %

(degrees) (degrees) Error

Pick 5.7 0.0 0.2% 0.0%

Place 3.3 1.8 1.0% 0.0%

. Left Image Right Right
Trial SSE Image SSE | LeftImage | @ %
Half . : % Error

(pixels) (pixels) Error
Pick 3.0 2.0 1.6% 1.0%
Place 2.2 1.0 1.0% 0.4%

E. Atlas Humanoid Robot Experiments

We also evaluated our system on the physical Atlas robot.
The robot has two 7-DOF arms with Robotiq 3-Finger
Adaptive Robot Grippers, of which we use the right arm
as the manipulator arm for our testing. We set the robot’s
starting arm positions and execute walking by using TOUGH

APIs, by Jagtap et. al. [17]. The output accelerations from
our low-level controller are sent to Atlas’s IHMC controllers
by Koolen et. al. [18] to directly control the arm. The IHMC
controllers automatically maintain the robot’s balance if arm
motion shifts Atlas’s zero moment point outside the support
polygon. Atlas’s IHMC controllers also supply the actual
joint angles and velocities, which we filter using a rolling
average to use as feedback to our controller.

For perception, the robot uses a MultiSense SL 3D sense
head, which includes a LiDAR and RGB-D cameras that we
only access the 2D image data from. The MultiSense SL
only detects RGB images in the left camera, so we use the
grayscale images from both the left and right cameras, which
are published at 30Hz. Thus, we use the KCF tracker of
Henriques et. al. [19] to track the gripper fingertips and target
object. To ensure high contrast with the background, we wrap
the fingertips in white tape with a black X drawn on to
provide a consistent feature reference when selecting points
by clicking on the fingers in the image using OpenCV’s
Region of Interest (ROI) selector. The ball also has a black X
drawn on it for the same reason. Consistent feature references
ensure the disparity between the stereo cameras is properly
reflected in the tracked features.

We start Atlas at about 1.5 meters away from the target
and have Atlas walk five steps forward such that the target
is now within Atlas’s workspace. Then, we select the target
object in the camera image and execute our visual servoing
controller pipeline to grasp the target from this new position.
The graph of feature error over time is shown in Fig. 9
and control performance is presented in Table V. We would
like to note that when the arm reaches for the target, the
Atlas robot’s body does slight autonomous balancing motions
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Fig. 9: Image plane error (in pixels) in left and right cameras
to reach a target after walking to a nearby position

TABLE V: Walking then Grasping Steady State Error (SSE)

Left Image Right Right
SSE Image SSE L;fthmage Image %
. s o Error
(pixels) (pixels) Error
9914064 | 'HELE 3.5% 4.3%

since the center of mass of the system continuously changes.
Still, the visual servoing algorithm achieves convergence
with satisfactory control performance.

(a) Trial 1 (b) Trial 2

Fig. 10: Grasping a ball from an uncertain starting configu-
ration after walking

V. CONCLUSIONS AND FUTURE WORK

The results of our experiments show that our algorithm
can successfully grasp targets, including at desired pitch
approach angles using stereo IBVS without stereo recon-
struction. With the Panda robot, we show that the algorithm
can reach points in 3D space at varying depths from the
cameras, using only 2D images for feedback. We additionally
show that our system can pick up a practical object by its
handle and can pick and place a keyboard box at specified
approach angles. Future work would explore the proper
placement of an additional pair of cameras to control the
full 6DOF pose of the gripper using only RGB images to
overcome the limitation of controlling only the pitch angle.

Fig. 11: Left: Left error vector (red) in left camera image
calculated between features tracked in the magenta boxes,
Right: Right error vector (red) shown in right camera image
calculated between features tracked in the yellow boxes

We show that the algorithm can achieve convergence even
from uncertain starting configurations in our walking then
grasping experiment. We also show that this system is mod-
ular enough to be implemented on a variety of robots with
minimal changes, as the same control scheme is used for both
the Panda and Atlas robot with only minor implementation-
specific changes required.

One of the next steps for this work is to move towards
vision-based full-body control, thus extending the workspace
of the robot. By implementing this controller on Atlas, we
have the potential to extend this work to moving the legs
and torso of Atlas to reach targets outside its workspace
in the starting standing position. We would like to thank
WARNER, WPI’s Atlas robot for its service in completing
its final experiments with us before its retirement.

This work could be integrated with a 2D image-based
grasp synthesis algorithm like the work of Saxena et. al
[10] to autonomously generate the target in the images and
then our algorithm could minimize the error in the image
space to reach the grasping position and complete the grasp.

This system presents a novel approach to stereo image-
based visual servoing that requires no stereo reconstruction in
order to reach targets, including at specified approach angles,
moving towards robust control of vision-based robots with
minimal data and execution steps required for convergence.
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