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Abstract— The development of algorithms for automation
of subtasks during robotic surgery can be accelerated by the
availability of realistic simulation environments. In this work,
we focus on one aspect of the realism of a surgical simulator,
which is the positional accuracy of the robot. In current sim-
ulators, robots have perfect or near-perfect accuracy, which is
not representative of their physical counterparts. We therefore
propose a pair of neural networks, trained by data collected
from a physical robot, to estimate both the controller error and
the kinematic and non-kinematic error. These error estimates
are then injected within the simulator to produce a simulated
robot that has the characteristic performance of the physical
robot. In this scenario, we believe it is sufficient for the
estimated error used in the simulation to have a statistically
similar distribution to the actual error of the physical robot.
This is less stringent, and therefore more tenable, than the
requirement for error compensation of a physical robot, where
the estimated error should equal the actual error. Our results
demonstrate that error injection reduces the mean position
and orientation differences between the simulated and physical
robots from 5.0 mm / 3.6 deg to 1.3 mm / 1.7 deg, respectively,
which represents reductions by factors of 3.8 and 2.1.

I. INTRODUCTION

In robotic minimally invasive surgery (RMIS), automation
of surgical subtasks holds the potential to improve the surgi-
cal workflow and reduce surgeon’s workload [1]. Surgical
robotic systems dealing with rigid anatomical structures,
such as orthopedic systems, have already achieved high lev-
els of autonomy [2]. However, it remains an open challenge
to reach these same levels of autonomy in soft tissue surgery
due to perception and modeling challenges.

Technical challenges of autonomy in soft-tissue surgeries
have led manufacturers of surgical robotic platforms to focus
on developing systems that surgeons can fully teleoperate
to perform the procedures. In this regard, these surgical
robotics systems are not designed to have perfect absolute
positioning accuracy, but rather an intuitive teleoperation
interface that allows the surgeon to visually close the loop to
perform actions in the surgical workspace. One of the most
successful systems following this design paradigm is the da
Vinci surgical system (Intuitive Surgical, Inc., Sunnyvale,
CA, USA).

The limited positioning accuracy of surgical robots
presents additional challenges for developing autonomous
algorithms in surgery and has been mainly approached with
two different strategies. The first strategy has been to develop
robust calibration procedures to ensure that the surgical robot
will reach a commanded pose accurately. These calibration
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procedures often require a learning-based model that can
learn to correct for the kinematic and non-kinematic errors
of the robot [3]–[5]. The second strategy has been to develop
sensor-based closed-loop control algorithms that ensure that
the surgical robot will reach the desired target pose despite
being inaccurate. Techniques such as visual-servoing and
reinforcement learning would fall under this category [6], [7].
Given the inherently limited absolute positioning accuracy of
teleoperated surgical robots and the difficulties of developing
calibration procedures that will compensate for errors in all
situations, we argue that favoring algorithms that can tolerate
realistic amounts of robot error is a more tenable solution in
the long-term to introduce autonomy in surgery.

Simulators have historically been accelerators for the
development of algorithms in robotics, however, they are
currently not well suited to encourage the development of
autonomous algorithms that can work with inaccurate robots.
This is mainly the case because robotic simulators use an
ideal mathematical model of the robot that does not account
for real sources of errors such as manufacturing tolerances,
wear and tear, and mechanical compliance of the system
[3], [4], [8]. These deviations between the real and the
simulated system imply that algorithms developed on the
simulation will have a reduced performance when deployed
on the inaccurate real system [9]. In this work, we propose to
address this limitation by taking a real2sim approach where
we model the positioning error in a real robot and use this
model to inject realistic errors into a simulated robot.

This approach may raise the obvious question of why we
are not using our error models to correct the error in the
real robot so that autonomous algorithms developed with
an accurate simulated robot can then be deployed on an
accurate real robot. The answer again is that it is easier (i.e.,
more reliable) to break an accurate robot than it is to fix an
inaccurate robot. Specifically, error compensation requires
that the error estimate be accurate all the time, whereas
we contend that error injection (in particular, for training
machine learning algorithms) requires only that the error
estimate be statistically similar to the actual error.

With these considerations in mind, we propose an error
injection pipeline that can improve the realism of robotic
surgery simulation with the goal of encouraging researchers
to develop novel algorithms that can tolerate realistically
inaccurate simulated robots. As an approach to model the
robot’s positioning error, we propose to split errors into errors
due to the robot’s control system and errors due to kine-
matic and non-kinematic imprecision. This is a reasonable
distinction as the former errors are attributed to the control



Fig. 1: Proposed system to emulate the real-robot motion patterns using a simulated dVRK.

software running on the robot, while the latter errors are
related to mechanical defects and manufacturing tolerances
that are specific to each robot. After modeling each source
of error independently with a multi-layer perceptron (MLP),
errors can then be injected into the simulated robot to
obtain realistic motion patterns. This proposed error injection
pipeline was tested on a real and simulated da Vinci Research
Kit (dVRK) [10]. Additionally, the code and datasets used
in this work are provided as a public GitHub repository. In
summary, this paper presents the following contributions:

1) A general methodology to model the kinematic error
in surgical robots by splitting positioning error into
controller-related error and error related to the system’s
mechanical limitations.

2) Trained neural networks to model and predict position-
ing error for a robot.

3) Implementation of an error injection algorithm that
ensures that a simulated robot will have positioning
error patterns that are similar to the real robot.

II. RELATED WORK

Several efforts have been made to model the nonlinear
kinematic errors of surgical robots, which is relevant to
our work even though those efforts focused on using those
models to correct the error, rather than to inject it into a
simulated robot.

One traditional approach has been to develop explicit
models for specific sources of error. For instance, Miyasaka
et al. explicitly modeled physical effects of cable-driven
mechanisms with a hysteretic cable stretch model and a
cable-pulley network friction model [11]. Chrysilla et al.
proposed a compliance model that related joint motion with

lateral forces on the shaft and corrected for non-kinematic
errors due to external forces.

Alternatively, robot errors can also be modeled using data-
driven approaches such as Gaussian process [12] regression
or Deep Neural Networks [13], [14]. In particular, Peng et al.
[3] proposed using a multi-layer perceptron (MLP) to model
the errors of a Raven robot [15] in Cartesian space. Hwang et
al. [4] advanced on this idea by training a recurrent neural
network that included current and previous robot states to
model robot errors in joint space. Following [4], we decided
to perform modeling of the error via joint offsets; however,
we decided to utilize a simpler MLP model as our work only
focused on modeling the robot’s static error.

III. METHODOLOGY

A. Problem definition

The main goal of this paper is to ensure that a simulated
robot can replicate the position error of its real counterpart.
To achieve this goal, we first make the distinction between
three different end-effector poses that exist in a real robotic
system. The first pose is referred to as the setpoint pose (S1),
which is the target pose given to the robot’s control system to
initiate a motion. The next pose is the measured pose (M1).
This is the pose that can be calculated with a measurement
from the robot’s encoders and the forward kinematic model.
Lastly, we have the actual pose (A1), which is the pose to
which the robot has actually moved. In general, this pose is
not known, but it can be measured by observing the gripper
with an external sensor, such as an optical tracker.

In an ideal system, S1, M1, and A1 would be identical,
but due to limitations of real mechanical and control systems,
there will always be discrepancies between the three of them.
Assuming the measured and actual poses of the simulated
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values of k. In this study, we consider only the static position
accuracy of the robot (i.e., when it is no longer moving),
primarily due to the difficulty of measuring the true pose of
the real robot (A1) during motion.

Given that the simulated robot does not suffer from
positioning error, we relied on two neural networks to modify
the setpoint provided to the simulated robot such that it
matches the motion of the real robot. The first neural network
is trained to predict the controller error (differences between
M1 and S1), while the second network predicts differences
between the actual and measured poses. Since both the
real and simulated robots are controlled in joint space, the
neural networks are also trained to predict joint offsets. The
complete correction framework can be seen in Figure 1.

The rest of the methodology section is divided as follows.
Subsection III-C describes how measured (M1) and setpoint
(S1) poses are collected to train the first neural network.
Subsection III-D explains the procedure to register the robot
and tracker and then how to use this information to calculate
the dVRK grippers’ actual pose (A1). Subsections III-E and
III-F explain how neural networks are trained to predict the
robot’s positioning error from the generated data and the
evaluation metrics for each model. Lastly, subsection III-G
describes how the neural network models are incorporated
into the simulated robot.

B. Mathematical notation

In this paper, poses are represented using a 4 × 4 rigid
transformation matrix T that contains a rotational component
R and a translational component t. To describe the relative
pose of coordinate frame i with respect to coordinate frame
j, we use the notation jTi. Lastly, we denote the ith measured
joint value which can be read from the robot’s encoders as
qi. Since the dVRK manipulators have only 6 joints, we used
the values q1 to q6 in this work.

C. Modeling errors between setpoint and measured pose

In dVRK, controller errors, or errors between setpoint
poses and measured poses, can be easily measured by
collecting the last setpoint that was provided to the robot
and measuring the position of the encoders. Historically, the
dVRK had large differences between S1 and M1 because it
used a proportional-derivative (PD) controller that depended
on steady-state error to compensate for gravity. Recently, a
disturbance observer was added to the dVRK PD controller
[16], and used for this work, which reduces but does not
eliminate the error.

D. Modeling errors between measured and actual pose

In dVRK, the measured pose (M1) is calculated by using
the measured joint angles from the encoders and the forward

kinematics function, which is parameterized by the robot’s
Denavit–Hartenberg (DH) parameters. Differences between
A1 and M1 can be broadly attributed to kinematic and non-
kinematic errors. Kinematic errors exist due to deviations
from the nominal robot kinematic parameters, which can
occur due to manufacturing tolerances and wear and tear
of the system. Non-kinematic errors are due to cable-related
effects, e.g., hysteresis and cable tension, and mechanical
deformations due to external forces applied to the instrument
arm [8].

In this paper, we aim to calculate an actual pose (A1)
that incorporates corrections for both kinematic and non-
kinematic errors. To calculate A1, we attach an optically
tracked marker to the robot’s final link. Then, we perform
a hand-eye calibration to identify the rigid transformation
between the marker and the gripper, and the optical tracker
and the robot. Lastly, A1 is calculated using the hand-
eye transformations and a measurement from the tracking
system. For this paper, data is only collected after the robot
comes to a complete stop to avoid synchronization issues
between the tracking system and the robot.

1) Hand-eye calibration and actual pose estimation: As
observed in Figure 2, there are two unknown transformations
that need to be estimated before computing the actual pose
of the robot using an external sensor: the transformation
between the marker and the gripper control point GTM and
the transformation from the robot base to the tracker OTR.
These transformations can be estimated by solving the hand-
eye calibration problem in equation 1:

RTG
GTM = RTO

OTM (1)

where RTG is the measured pose of the robot gripper with
respect to the robot base and OTM is a measurement of the
location of the marker with respect to the optical tracker.
After performing the hand eye-calibration, the pose A1 can
be calculated using equation 2:

A1 = RTO
OTM

MTG (2)

E. Neural network modeling

To emulate realistic position errors on the simulated robot,
two neural networks are trained to predict the error injection
offsets. To train the neural networks, a dataset S1, M1,
and A1 is collected by moving the robot to multiple joint
configurations. The first neural network (NN1) is trained
to reproduce the error between S1 and M1, and therefore
its training dataset follows equation 3. Sk
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1

represent setpoint, measured, and actual pose at time k,
respectively.
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The second neural network (NN2) is trained to reproduce
the error between A1 and M1, and therefore its training
follows equation 4.



Fig. 2: Transformation diagram that indicates how to cal-
culate the robot’s actual pose (A1) with an optical tracker
sensor.
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Given that the simulated and real robots are both con-
trolled in joint space, the neural networks are designed to
predict error injection offsets in joint space. In this regard,
both neural networks receive a feature vector of 6 inputs
corresponding to a joint configuration and produce 6 outputs
corresponding to the error injection offsets that need to be
applied to each joint. The poses in the dataset are converted
to joint configurations using the dVRK inverse kinematic
function. Inputs and outputs are also normalized to have
zero mean and unit standard deviation. Additionally, we
experiment with augmenting the input feature vector with
6 more inputs corresponding to encoded previous measured
positions. These additional features are added to account
for the hysteresis-like nature of the non-linearities of cable-
driven robots.

F. Simulated robot motion error injection

After training the two neural networks, realistic errors
can be added to the simulated robot following a three-stage
process. In the first stage, the setpoint (S1) is given to the
first neural network to predict the injection offset (α1), which
indicates the error between M1 and S1. In the second stage,
the joint configuration S1+α1 is given to the second neural
network to predict the injection offset (α2), which represents
the error between A1 and M1. In the last stage, the new
setpoint S1 + α1 + α2 is given to the simulated robot to
initiate the motion. Assuming that the simulated robot does
not have any control or kinematic errors, its final pose will
be A2 = S1+α1+α2 which should be approximately equal
to A1 (real robot’s actual pose) (see Fig. 1). We note that
although we are only testing the proposed error injection
algorithm with a simulated dVRK, it is general enough to
improve the realism of any simulated robot as long as it is
possible to obtain training data from the real robot.

Fig. 3: Hyperparameter optimization experiment for NN1.
The legend represents: {Number of neurons in hidden
layers}-{Type of input features}. Three input features were
considered: Only current (OC), Current+previous (CP), and
Current+previous encoded (CPE) (see subsection IV-C). It is
observed that adding previous measurements is necessary to
reduce the validation loss.

G. Evaluation metrics

To evaluate differences between the simulated and real
robot trajectories, translation (eq. 5) and rotation (eq. 6)
error metrics are calculated. The translation error (ET )
measures the Euclidean distance between two poses and can
be calculated with

ET = ||t̄− t̂|| (5)

where t̄ and t̂ are the translational components of the real
and simulated robot, respectively. The rotation error (ER)
measures the angle between two poses using the axis-angle
representation of rotations [17] and can be calculated with

ER = arccos

⎛⎝Tr
(︂
R̄R̂

−1
)︂
− 1

2

⎞⎠ (6)

where Tr() represents the trace operator and R̄ and R̂
represent the rotational components of the poses for the real
and simulated robots, respectively.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

Our framework was tested on a dVRK which has two main
components: a Patient Side Manipulator (PSM) with a large
needle driver (LND) instrument and a Master Tool Manipu-
lator (MTM) mainly used to teleoperate the PSM. To collect
data for the neural networks, an optically tracked marker
was attached to the last link of the PSM as described in
section III-D. To calculate the marker’s pose, a fusionTrack
500 sensor (Atracsys, Switzerland) was mounted facing the
robot approximately one meter away during the experiment
(see Fig. 5). Regarding the simulation environment, we used



Fig. 4: Qualitative results for the neural networks. Left plot shows predictions for the controller error while the right plot
shows predictions for kinematic/non-kinematic errors. Ground-truth offsets for each of the joints of the dVRK are shown
in blue, while predicted offsets are shown in orange. Orange lines following closely the blue lines indicate that the neural
networks are correctly modeling the robot errors. Notice that the dVRK has 5 rotational and 1 translational joints and
therefore not all the offsets have the same units.

the Asynchronous Multi-Body Framework (AMBF) [18] and
we used the dVRK robot model that was developed in [19].

Fig. 5: Experiment setup. The marker was rigidly attached to
the tip of the tool, and it was tracked by the optical tracker.

B. Data collection and hand-eye calibration

After setting up the equipment, the robot was programmed
to execute a random trajectory of 3684 steps. The trajectory
was generated by randomly sampling joint configurations as
goal poses. The robot was commanded to take a step and
then stop to take a measurement. To minimize excessive
movements, intermediate steps were added between the
beginning and random goal pose by linearly interpolating
the two joint configurations. At every step of the motion, we
recorded S1 and M1 from the robot and the location of the
marker from the tracker. Utilizing this data, we performed
a hand-eye calibration to calculate the robot’s actual pose
(A1). Hand-eye calibration was solved with the open-source
solver in [20]. One additional trajectory was collected via
teleoperation with the MTM for testing purposes.

TABLE I: Optimized hyperparameters used for the proposed
Neural Network.

batch size learning rate hidden layers hidden neurons
32 0.0064 2 16, 32

C. Neural network modeling

NN1 and NN2 are trained with the same data used
to perform the hand-eye calibration and then tested with
the teleoperated trajectory. The hand-eye calibration data is
further split into a training dataset and a validation dataset
to perform hyperparameter tuning. A simple multi-layer
perception (MLP) with ReLU activation functions was used
for both error regression tasks. While training the model, the
Adam optimizer [21] and the MSE loss functions were used.
Hyperparameter optimization experiments were performed to
select the optimal network architecture, training parameters
and input features. The optimized hyperparameters were
training batch size, learning rate, number of hidden layers
and number of hidden neurons in each layer. As for input
features, three options were experimentally evaluated:

1) Only current (OC): a 6-entry feature vector with only
current measurements.

2) Current+previous (CP): a 12-entry feature vector
with current measurements and measurements from the
previous step.

3) Current+previous encoded (CPE): a previous vector
with current and previous measurements, but encoding
the previous measurements as a vector of +1 or -1
indicating the direction of motion.

Figure 3 shows results from the hyperparameter experi-
ments for NN1. From the plot, it can be seen that it is
important to include information about the previous location
to obtain a decreasing validation loss. Additionally, encoding
the previous measurement sped up the convergence of the
neural network. In terms of the network architecture, the



most effective model had two hidden layers with 16 and 32
hidden neurons. The final set of hyperparameters can be seen
in Table I. The same set of hyperparameters was used for
both correction networks. Lastly, the optimized models are
tested on the trajectory recorded via teleoperation. Figure
4 shows qualitatively that the models are able to predict
errors between M1 and S1 and A1 and M1. This illustrates
that, although not a requirement, our error injection approach
could potentially satisfy the stricter condition that Mk

2 ≈ Mk
1

and Ak
2 ≈ Ak

1 for all k.

D. Correcting the motion of the virtual robot

Using the trained error models and setpoints from the
teleoperated testing trajectory, S2, M2 and A2 are generated
for the simulated robot. To evaluate the performance of our
system, we first compare the position error distributions of
the simulated and real robots, i.e., the error distributions
between setpoint and measured poses and measured and
actual poses. As observed in Figure 6, the error distributions
of the real and simulated robots are similar, indicating that
the neural networks are effectively modeling the error from
the real robot. Additionally, we compare the trajectories
A1 and A2, with and without corrections from the neural
network. As observed in Table II, the mean position error is
reduced from 5.0±2.0 to 1.3±0.6mm and the rotation error
is reduced from 3.6 ± 1.4 to 1.7 ± 0.7 degrees. Both these
results indicate that the neural networks allow the simulated
robot to imitate the motion patterns of the real one.

Fig. 6: Error distributions of the real and simulated robots.
It is observed that the simulated robot presents positioning
errors that are very similar to the ones of the real robot after
applying the corrections with the neural networks.

V. SUMMARY AND FUTURE WORK

In this work, we propose a learning-based error approach
to inject realistic noise patterns into a simulated robot. The
proposed approach relies on neural networks to first predict
different sources of error on a dVRK and then use these
models to inject realistic error into the simulated robot.
Ground-truth data to train the networks was generated with

TABLE II: Comparison between A1 and A2 with and without
correction. Lower values of error indicate that the actual
trajectories of the real and simulated robots are more similar.

Differences between simulated and real actual poses
Without corrections With corrections

ET[mm] ER[deg] ET[mm] ER[deg]
mean 4.967 3.559 1.316 1.675

std 2.048 1.416 0.558 0.719
median 4.023 3.510 1.281 1.616

max 9.220 7.894 5.734 4.409

an optical tracker, which was used to calculate the actual
position of the robot. After training, the neural networks
were successfully able to reduce position and orientation
discrepancies between the simulated and real robots.

In future work, data collection will be extended to sit-
uations where the surgical robot is in contact with the
environment. As described in [8], applying external forces
to surgical robotic instruments can lead to high pose errors
due to mechanical compliance. In this regard, an additional
neural network model could be trained to model the effects
of external forces on the simulated robot. This will enable
our approach to be more applicable to a broader range of
surgical subtasks.
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