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Existence of Markov equilibrium control in discrete time
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Abstract

For time-inconsistent stochastic controls in discrete time and finite horizon, an open problem
in Björk and Murgoci (Finance Stoch, 2014) is the existence of an equilibrium control. A
nonrandomized Borel measurable Markov equilibrium policy exists if the objective is inf-compact
in every time step. We provide a sufficient condition for the inf-compactness and thus existence,
with costs that are lower semicontinuous (l.s.c.) and bounded from below and transition kernels
that are continuous in controls under given states. The control spaces need not to be compact.
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1 Introduction

In this short note, we revisit discrete-time stochastic controls with time-inconsistent objectives
studied in Björk and Murgoci (2014). Unlike standard stochastic optimal control problems, time
inconsistency reflects the phenomenon that agent preferences change in time. Bellman optimality
principle fails. The optimal plan at the present moment is not followed in the future. Classi-
cal examples include non-exponential discounting (Strotz, 1955), prospect theory (Kahneman and
Tversky, 1979), mean-variance portfolio selection (Basak and Chabakauri, 2010), and optimal stop-
ping (Bayraktar et al., 2021). See the recent monograph Björk et al. (2021) and reference therein
for a comprehensive review.

As proposed in Strotz (1955), agents should only consider the policy that they can actually
follow. By the consistent planning framework in Strotz (1955), agents acknowledging time incon-
sistency view themselves at different future times as distinct planners. In this context, an equilib-
rium policy π∗ = (u∗1, . . . , u

∗
T−1) should satisfy that, if all future selves at time t+ 1, . . . , T − 1 use

u∗t+1, . . . , u
∗
T−1, then it is optimal for the planner at time t to use u∗t . Thus, there is no incentive

for the planner to deviate from π∗ at any time t. A formal definition is given in Björk and Murgoci
(2014, Definition 2.5).

If equilibrium policies exist, Björk and Murgoci (2014, Theorem 3.14) characterizes them with
the extended Bellman equation. However, the existence of an equilibrium policy remains open
(Björk and Murgoci, 2014, Section 6). Recall the Borel space framework in Bertsekas and Shreve
(1978, Chapters 7 and 8) for the classical stochastic optimal control. The existence of optimal
policies is established through measurable selection theorems. The optimal policy obtained usually
has weaker properties compared with the objective function. For instance, if the objective is l.s.c.,
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then an optimal policy, if it exists, is Borel measurable (Bertsekas and Shreve, 1978, Proposition
7.33). If the objective is lower semianalytic, then an ε-optimal policy is universally measurable
(Bertsekas and Shreve, 1978, Proposition 7.50). However, the extended Bellman equation introduces
auxiliary functions (2.4), tied to the optimal policy, and thus inheriting the weaker properties.
Consequently, demonstrating the existence of an equilibrium policy via a recursive application of
measurable selection becomes challenging.

The key observation is, if the transition kernels of states have nice properties, then it may
still be possible to apply certain measurable selection theorem repeatedly. The weak continuity of
transition kernels is often inadequate. But a stronger continuity condition, given in Assumption
3.3 (4), is sufficient for the existence of an equilibrium policy. Notably, Assumption 3.3 (4) is
not new and has been considered in Hernández-Lerma (1991) on average cost Markov decision
processes. It is relevant to setwise convergence and also used in Hernández-Lerma and Lasserre
(1999, Assumption 8.3.1 (c)) and Saldi et al. (2018, Assumption 3.1 (b)). In conjunction with a
version of the Borel measurable selection theorem (Rieder, 1978, Theorem 4.1 and Corollary 4.3)
under the inf-compact condition, we managed to prove the existence of a nonrandomized Borel
measurable Markov equilibrium policy.

In the literature, Jaśkiewicz and Nowak (2021) explored infinite-horizon Markov decision pro-
cesses with quasi-hyperbolic discounting in their equation (2.2). The existence of a randomized
stationary Markov perfect equilibrium is proved with continuous costs and transition kernels with
densities; see Jaśkiewicz and Nowak (2021, Assumptions C3.1 – C3.2). While Jaśkiewicz and Nowak
(2021, Assumption C3.2) closely resembles Assumption 3.3 (4), their proof differs since they as-
sumed compactness instead of inf-compactness and relied on the structure of quasi-hyperbolic
discounting to apply the fixed point theorem. Other existence results are available for different for-
mulations. Huang and Zhou (2021) considered weak and strong equilibria in the continuous time
under certain convexity (concavity) conditions. Bayraktar et al. (2021) and reference therein stud-
ied time-inconsistent stopping problems. Bayraktar et al. (2023) examined relaxed equilibria with
regularization. Bayraktar and Han (2023) considered optimal transport with time-inconsistency
and provided the existence of the so-called equilibrium transport.

The rest of the paper is organized as follows. Section 2 formulates the general problem, while
readers need to refer to Björk and Murgoci (2014) for the derivation of the extended Bellman
equation. Section 3 establishes the sufficient condition for the existence. Illustrative examples are
in Section 4.

2 Problem formulation

In this work, a topological space X will always be endowed with the Borel σ-algebra B(X ). A
Borel subset of a Polish (complete separable metric) space is called a Borel space. Consider a
nonstationary discrete-time controlled Markov process with the following specifications:

(1) The finite horizon T : A positive integer.

(2) State spaces Xt, t ∈ {1, . . . , T}: Xt is a nonempty Borel space.

(3) Control spaces At, t ∈ {1, . . . , T − 1}: At is a nonempty Borel space. ut ∈ At is a control
chosen at time t.

(4) Control constraints Ut, t ∈ {1, . . . , T − 1}: Ut is a function from Xt to the set of nonempty
subsets of At. Suppose the set

Γt := {(xt, ut)|xt ∈ Xt, ut ∈ Ut(xt)} (2.1)
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is a Borel subset of Xt ×At.

(5) Transition kernels Pt(dxt+1|xt, ut), t ∈ {1, . . . , T − 1}: Suppose Pt(dxt+1|xt, ut) is a Borel-
measurable stochastic kernel on Xt+1 given Γt.

The system begins at some state x1 ∈ X1 and proceeds successively to state spaces X2, . . . ,XT−1

and finally terminates in XT . A policy controlling the system is a sequence πt:T−1 := (πt, . . . , πT−1),
where πt(·|x1:t, u1:t−1) is a Borel measurable stochastic kernel on At given the history and it satisfies
πt(Ut(xt)|x1:t, u1:t−1) = 1 for every (x1:t, u1:t−1). In this work, we consider πt(·|x1:t, u1:t−1) that
depends only on the current state and time and concentrates at one point for each state xt, which
is called nonrandomized Markov policies. Thus, πt(·|x1:t, u1:t−1) = ut(xt) for some Borel measurable
functions ut(·). We still use the notation πt = (ut, . . . , uT−1).

At time t, the agent wants to minimize a state-dependent and nonlinear cost objective (Björk
and Murgoci, 2014, Equation 3.8):

Jt(x;π
t) :=

∫

[

T−1
∑

k=t

Ck(t, x, xk, uk) + F (t, x, xT )

]

P (dxt+1:T |x, π
t)

+G

(

t, x,

∫

H(xT )P (dxT |x, π
t)

)

, (2.2)

where P (dxt+1:T |x, π
t) := PT−1(dxT |xT−1, uT−1(xT−1)) . . . Pt(dxt+1|xt, ut(xt)) under the policy πt

and xt = x. The costs Ck(s, y, xk, uk), F (s, y, xT ), H(xT ), and G(s, y, h) are Borel measurable.
Given t ∈ {1, . . . , T − 1}, the term (s, y) with s ∈ {1, . . . , t} and y ∈ Xs represents the state-
dependence. For example, consider F (t, x, xT ). At a different time s 6= t, it becomes F (s, xs, xT )
and thus the preference of the agent changes. G(s, y, h) is nonlinear and does not satisfy the tower
property in general. Therefore, Bellman optimality principle fails due to the state-dependence
and nonlinearity. We refer readers to Björk and Murgoci (2014); Björk et al. (2021) for specific
applications with time inconsistency.

Inspired by the consistent planning in Strotz (1955), Björk and Murgoci (2014, Definition 2.5)
introduced a subgame perfect Nash equilibrium strategy as follows. Given time t < T and state
xt = x, define a control policy πt,u = (u, u∗t+1, . . . , u

∗
T−1) on t, . . . , T − 1, where u ∈ Ut(xt) is an

arbitrary control value and u∗s = u∗s(xs),∀xs ∈ Xs, s ∈ {t + 1, . . . , T − 1}, are Borel measurable
functions. A Borel measurable function u∗t (xt) is a nonrandomized Markov equilibrium control at
time t if for every x, we have

inf
u∈Ut(xt)

Jt(x;π
t,u) = Jt(x;π

t,∗),

where πt,∗ = (u∗t , u
∗
t+1, . . . , u

∗
T−1). Denote the corresponding equilibrium value function as Vt(x) =

Jt(x;π
t,∗).

If π∗ = (u∗1, . . . , u
∗
T−1) exists, Björk and Murgoci (2014, Theorem 3.14) proved that the value

function Vt satisfies the extended Bellman equation given by

Vt(xt) = inf
u∈Ut(xt)

{

Ct(t, xt, xt, u) +

∫

Vt+1(xt+1)Pt(dxt+1|xt, u)

+

T−1
∑

k=t+1

∫

bk(t, xt, xt+1)Pt(dxt+1|xt, u) (2.3)

−
T−1
∑

k=t+1

∫

bk(t+ 1, xt+1, xt+1)Pt(dxt+1|xt, u)
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+

∫

f(t, xt, xt+1)Pt(dxt+1|xt, u)−

∫

f(t+ 1, xt+1, xt+1)Pt(dxt+1|xt, u)

+G

(

t, xt,

∫

h(xt+1)Pt(dxt+1|xt, u)

)

−

∫

G (t+ 1, xt+1, h(xt+1))Pt(dxt+1|xt, u)
}

.

The functions bk, f , and h are defined backwardly as

bk(s, y, xt+1) :=

∫

Ck(s, y, xk, u
∗
k(xk))P (dxk|xt+1, π

t+1,∗), k ∈ {t+ 1, . . . , T − 1},

f(s, y, xt+1) :=

∫

F (s, y, xT )P (dxT |xt+1, π
t+1,∗),

h(xt+1) :=

∫

H(xT )P (dxT |xt+1, π
t+1,∗),

(2.4)

with a nonrandomized Markov equilibrium policy πt+1,∗ = (u∗t+1, . . . , u
∗
T−1) found for time t +

1, . . . , T − 1.
In fact, the value function Vt+1 satisfies

Vt+1(xt+1) =

T−1
∑

k=t+1

bk(t+ 1, xt+1, xt+1) + f(t+ 1, xt+1, xt+1) +G(t+ 1, xt+1, h(xt+1)). (2.5)

Thus, the extended Bellman equation (2.3) reduces to

Vt(xt) = inf
u∈Ut(xt)

Lt+1(t, xt, xt, u), (2.6)

where

Lt+1(s, y, xt, u) :=Ct(s, y, xt, u) +
T−1
∑

k=t+1

∫

bk(s, y, xt+1)Pt(dxt+1|xt, u)

+

∫

f(s, y, xt+1)Pt(dxt+1|xt, u) +G

(

s, y,

∫

h(xt+1)Pt(dxt+1|xt, u)

)

.

We emphasize that the extended Bellman equation (2.6) relies on the auxiliary functions bk, f , and
h in (2.4) backwardly. When the existence of a nonrandomized Markov equilibrium policy πt+1,∗

is proved for time t+ 1, . . . , T − 1, then the characterization of u∗t is given by (2.6) at time t.

3 Existence

In Lemma 3.1, we quote a Borel measurable selection theorem in Rieder (1978, Theorem 4.1 and
Corollary 4.3), which is relevant to Brown and Purves (1973, Corollary 1). Let D be a subset of a
product space X ×Y. Denote proj(D) as the projection of D onto X . For x ∈ X , the x-section of D
is denoted by Dx. Crucially, Lemma 3.1 does not require the compactness of Dx for the existence
of a minimizer. Instead, it supposes the level sets in (3.1) are compact. Functions satisfying this
property are called inf-compact, see Hernández-Lerma and Lasserre (1996, p.28).
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Lemma 3.1. (Rieder, 1978, Theorem 4.1 and Corollary 4.3) Let X and Y be two Borel spaces.
Consider a Borel subset D of X × Y and a Borel measurable function f(x, y) : D → R. If the set

{y ∈ Dx|f(x, y) ≤ r} (3.1)

is compact for every r ∈ R and x ∈ proj(D), then there exists a Borel measurable minimizer
g : proj(D) → Y, such that

g(x) ∈ Dx and f(x, g(x)) = inf
y∈Dx

f(x, y), x ∈ proj(D). (3.2)

Remark 3.2. Since compact subsets of metric spaces are closed, the inf-compact assumption in
Lemma 3.1 implies that f(x, ·) is l.s.c. with each x ∈ proj(D). Moreover, since Dx = ∪r∈Z{y ∈
Dx|f(x, y) ≤ r}, Dx is σ-compact with each x ∈ proj(D). Note that Brown and Purves (1973,
Corollary 1) also holds for Borel spaces (Brown and Purves, 1973, Remark 2). Hence, the as-
sumptions in Brown and Purves (1973, Corollary 1) are satisfied under the assumptions in Lemma
3.1.

If we can verify that
{u ∈ Ut(xt)|Lt+1(t, xt, xt, u) ≤ r} (3.3)

is compact for every r ∈ R and xt ∈ Xt, then a Borel measurable minimizer u∗t (xt) exists for (2.6)
at time t. If the inf-compact condition (3.3) can be verified for every time t after the existence of
an equilibrium is proved for time t+1, . . . , T −1, then a nonrandomized Markov equilibrium policy
exists. Assumption 3.3 provides a sufficient condition.

Assumption 3.3. (1) The functions F,G,H, and Ct, t ∈ {1, . . . , T − 1} in the objective (2.2)
are Borel measurable, real-valued, and nonnegative.

(2) For every t ∈ {1, . . . , T−1}, Ct(s, y, xt, u) is l.s.c. in u for each (s, y, xt), where s ∈ {1, . . . , t},
y ∈ Xs, and xt ∈ Xt. Moreover, the set

Ut(r, xt) := {u ∈ Ut(xt)|Ct(t, xt, xt, u) ≤ r} (3.4)

is compact for every r ∈ R, xt ∈ Xt, and t ∈ {1, . . . , T − 1}.

(3) G(s, y, h) is l.s.c. in h and nondecreasing in h for each (s, y), where s ∈ {1, . . . , T − 1} and
y ∈ Xs.

(4) For each t ∈ {1, . . . , T − 1},
∫

V (xt+1)Pt(dxt+1|xt, u) is continuous in u for each xt ∈ Xt and
bounded Borel measurable function V .

Remark 3.4. Assumption 3.3 (4) is equivalent to imposing that
∫

V (xt+1)Pt(dxt+1|xt, u) is l.s.c. in
u for each xt ∈ Xt and bounded Borel measurable function V . We could also consider nonnegative V
only; see Hernández-Lerma and Lasserre (1999, p. 44). Assumption 3.3 (3) is a sufficient condition
that the composition G

(

s, y,
∫

h(xt+1)Pt(dxt+1|xt, u)
)

is l.s.c. in u when (s, y, xt) is fixed. However,
for a special case in Section 4.2, the nondecreasing property is not needed and the composition is
even continuous.

An immediate consequence of Assumption 3.3 (4) is given by Lemma 3.5.

Lemma 3.5. Suppose Assumption 3.3 (4) holds, then
∫

V (xt+1)Pt(dxt+1|xt, u) is l.s.c. in u for
each xt ∈ Xt and Borel measurable function V ≥ 0.
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Proof. For a nonnegative Borel measurable function V , there exists a sequence Vk of Borel mea-
surable and bounded functions converging increasingly to V . By monotone convergence theorem,

∫

V (xt+1)Pt(dxt+1|xt, u) =

∫

sup
k

Vk(xt+1)Pt(dxt+1|xt, u) = sup
k

∫

Vk(xt+1)Pt(dxt+1|xt, u),

with a fixed xt. Under Assumption 3.3 (4), it is a supremum of continuous functions in u. Thus,
it is l.s.c. in u by Santambrogio (2015, Box 1.5, p.6).

Assumption 3.3 (4) is crucial and specifies the topology needed for the proof of the existence
Theorem 3.6. The usual weak topology considers bounded and continuous functions V , which is
not enough to apply the Borel measurable selection theorem 3.1 repeatedly. Assumption 3.3 (4)
implies the setwise convergence. It is widely used in the literature of Markov decision processes with
average costs; see Schäl (1993, Condition (S)(2)), Hernández-Lerma (1991, Assumption 2.1 (b)),
Hernández-Lerma and Lasserre (1999, Assumption 8.3.1 (c)), and Saldi et al. (2018, Assumption
3.1 (b)).

Theorem 3.6. Suppose Assumption 3.3 holds, then there exists a nonrandomized Markov equilib-
rium policy π∗ = (u∗1, . . . , u

∗
T−1).

Proof. We prove the claim by backward induction. At time T − 1, the objective function is

LT (T − 1, xT−1, xT−1, u) =CT−1(T − 1, xT−1, xT−1, u)

+

∫

F (T − 1, xT−1, xT )PT−1(dxT |xT−1, u)

+G

(

T − 1, xT−1,

∫

H(xT )PT−1(dxT |xT−1, u)

)

.

By Lemma 3.5,
∫

F (T − 1, xT−1, xT )PT−1(dxT |xT−1, u) and
∫

H(xT )PT−1(dxT |xT−1, u) are l.s.c.
in u for each xT−1. Since G(T − 1, xT−1, ·) is l.s.c. and nondecreasing, the composition G(T −
1, xT−1,

∫

H(xT )PT−1(dxT |xT−1, u)) is l.s.c. in u when xT−1 is fixed. Hence, the objective LT (T −
1, xT−1, xT−1, u) is l.s.c. in u for each xT−1.

Since F,G ≥ 0, LT (T − 1, xT−1, xT−1, u) ≤ r implies that CT−1(T − 1, xT−1, xT−1, u) ≤ r.
Therefore,

{u ∈ UT−1(xT−1)|LT (T − 1, xT−1, xT−1, u) ≤ r} (3.5)

is a subset of the compact set UT−1(r, xT−1) defined in (3.4). Moreover, the subset in (3.5) is closed
by the definition of lower semicontinuity. Since closed subsets of compact sets are compact, we have
verified the inf-compact condition (3.1). By Lemma 3.1, there exists a Borel measurable minimizer
u∗T−1(xT−1) for

VT−1(xT−1) = inf
u∈UT−1(xT−1)

LT (T − 1, xT−1, xT−1, u).

Moreover,

bT−1(s, y, xT−1) := CT−1(s, y, xT−1, u
∗
T−1(xT−1)),

f(s, y, xT−1) :=

∫

F (s, y, xT )PT−1(dxT |xT−1, u
∗
T−1(xT−1)),

h(xT−1) :=

∫

H(xT )PT−1(dxT |xT−1, u
∗
T−1(xT−1)),
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and VT−1(xT−1) are nonnegative Borel measurable functions.
At time T − 2, the objective is

LT−1(T − 2, xT−2, xT−2, u) =CT−2(T − 2, xT−2, xT−2, u)

+

∫

bT−1(T − 2, xT−2, xT−1)PT−2(dxT−1|xT−2, u)

+

∫

f(T − 2, xT−2, xT−1)PT−2(dxT−1|xT−2, u)

+G

(

T − 2, xT−2,

∫

h(xT−1)PT−2(dxT−1|xT−2, u)

)

.

Similarly, LT−1(T − 2, xT−2, xT−2, u) is l.s.c. in u for each xT−2. Hence, we can prove the stated
claim backwardly with Lemma 3.1.

Lemma 3.7 gives a sufficient condition for Assumption 3.3 (4). The proof is similar to Feinberg
and Lewis (2007, Lemma 4.1), while some calculation details are different. We include the proof in
the Appendix for the completeness of the paper.

Lemma 3.7. Let the state spaces Xt = R. Consider the transition kernels Pt(dxt+1|xt, u) specified
by the following system:

xt+1 = µ(xt, ut) + σ(xt, ut)Wt, t ∈ {1, . . . , T − 1}. (3.6)

Suppose

(1) {Wt}
T−1
t=1 are i.i.d. random noises with a Borel density function p(w), w ∈ (−∞,∞), with

respect to the Lebesgue measure.

(2) The Borel measurable functions µ(xt, u) and σ(xt, u) are continuous in u for each xt ∈ R.

(3) There exists a constant σ > 0 such that σ(xt, u) ≥ σ.

Then
∫

V (xt+1)Pt(dxt+1|xt, u) is continuous in u for each xt ∈ R and bounded Borel measurable
function V .

Remark 3.8. (1) If we assume the density p(w) of random noises is continuous, then Lemma
3.7 follows from Scheffé’s Theorem (Durrett, 2019, p.117).

(2) The assumption σ(xt, u) ≥ σ > 0 is needed. For example, consider the state following xt+1 =
utWt, where Wt ∼ N(0, 1) is a standard normal random variable. The Borel measurable
function V satisfies V (0) = 1 and V (x) = 0 if x 6= 0. Then

∫

V (xt+1)Pt(dxt+1|xt, u) =
∫

V (uw)p(w)dw = 1 if u = 0 and 0 if u 6= 0. Hence, it is not l.s.c. at u = 0.

4 Examples

4.1 Time-inconsistent linear-quadratic regulator

Consider a time-inconsistent linear-quadratic regulator in Björk and Murgoci (2014, Section 9.4).
The state-dependent cost objective is given by

Jt(x;π
t) =

∫

[

T−1
∑

k=t

u2k

]

P (dxt+1:T |x, π
t) +

∫

(xT − x)2P (dxT |x, π
t), (4.1)

7



with a scalar state following
xt+1 = axt + but + σWt,

where a and b are known constants. The random noises {Wt}
T−1
t=1 are i.i.d. and follow standard

normal distribution N(0, 1). By Lemma 3.7, Assumption 3.3 (4) is valid. It is also direct to verify
other conditions in Assumption 3.3. By Theorem 3.6, a nonrandomized Markov equilibrium policy
exists. The explicit solution is given in Björk and Murgoci (2014, Section 9.4).

Besides the objective (4.1), we can also consider nonlinear cost functionals satisfying Assumption
3.3, such as

Jt(x;π
t) =

∫

[

T−1
∑

k=t

u2k

]

P (dxt+1:T |x, π
t) +

(
∫

max {xT , 0}P (dxT |x, π
t)

)2

,

since h2 is a continuous and nondecreasing function on [0,∞).

4.2 Mean-variance portfolio selection

Assumption 3.3 is only a sufficient condition for the existence. In fact, if we can verify that the
objective in (2.6) is inf-compact backwardly, then the existence holds.

Consider the mean-variance portfolio selection with the objective

Jt(x;π
t) = Vart[xT ]− γEt[xT ] =

∫

(x2T − γxT )P (dxT |x, π
t)−

(
∫

xTP (dxT |x, π
t)

)2

(4.2)

and the wealth (state) process
xt+1 = Rxt + utZt. (4.3)

R ≥ 1 is a known constant. {Zt}
T−1
t=1 are i.i.d. random variables with mean µ and variance σ2 > 0.

With our notations, the objective (4.2) corresponds to

F (xT ) = x2T − γxT , H(xT ) = xT , G(h) = −h2.

While Assumption 3.3 is not satisfied, we have the following proposition for the inf-compactness
and the existence.

Proposition 4.1. For the objective (4.2) with the state (4.3), the level set (3.3) is inf-compact and
thus a nonrandomized Markov equilibrium policy exists.

Proof. At time T − 1, it is direct to show the objective is quadratic in u and an equilibrium control
u∗T−1 is a constant independent of xT−1. To apply backward induction, we assume the equilibrium
controls {u∗t+1, . . . , u

∗
T−1} exist and are constant. Then we calculate the objective at time t. The

wealth process yields

xT = RT−t−1xt+1 +

T−1
∑

k=t+1

RT−1−ku∗kZk.

Therefore,

h(xt+1) =

∫

xTP (dxT |xt+1, π
t+1,∗) = RT−t−1xt+1 +

T−1
∑

k=t+1

RT−1−kµu∗k =: RT−t−1xt+1 + h0t+1.

8



∫

x2TP (dxT |xt+1, π
t+1,∗) =R2(T−t−1)x2t+1 + 2RT−t−1xt+1

T−1
∑

k=t+1

RT−1−kµu∗k

+
∑

k 6=l,
k,l∈{t+1,...,T−1}

RT−1−kRT−1−lµ2u∗ku
∗
l +

T−1
∑

k=t+1

R2(T−1−k)(u∗k)
2(µ2 + σ2)

=:R2(T−t−1)x2t+1 + a1t+1xt+1 + a0t+1.

At time t, we have xt+1 = Rxt + uZt, with the candidate equilibrium control u to be solved. We
note that

∫

f(xt+1)Pt(dxt+1|xt, u)

=

∫

[

R2(T−t−1)x2t+1 + a1t+1xt+1 + a0t+1 − γ(RT−t−1xt+1 + h0t+1)
]

Pt(dxt+1|xt, u)

= R2(T−t−1)
[

R2x2t + 2Rxtµu+ (µ2 + σ2)u2
]

+ (a1t+1 − γRT−t−1)(Rxt + µu)

+ a0t+1 − γh0t+1.

G

(
∫

h(xt+1)Pt(dxt+1|xt, u)

)

= −(RT−txt +RT−t−1µu+ h0t+1)
2.

Clearly, the objective Lt+1(xt, u) =
∫

f(xt+1)Pt(dxt+1|xt, u)+G
(∫

h(xt+1)Pt(dxt+1|xt, u)
)

at time

t is a quadratic function of u. Since the coefficient of u2 is R2(T−t−1)σ2 > 0, the level set (3.3)
is compact. Thus, an equilibrium control u∗t at time t exists. Indeed, u∗t is also constant, since
coefficients of u2 and u do not rely on xt. Then we can prove the existence by backward induction.

The existence of an equilibrium strategy with the so-called state-dependent risk aversion (Björk
and Murgoci, 2014, Section 9.2) can be proved similarly. Indeed, these two cases have explicit
equilibrium policies.

4.3 Non-exponential discounting

Consider the portfolio selection with non-exponential discounting and the exponential utility:

Jt(x;π
t) =

∫

ϕ(T − t)
e−γxT

γ
P (dxT |x, π

t), (4.4)

where γ > 0 is the risk aversion parameter and ϕ(T − t) > 0 is the non-exponential discounting
function. The wealth process is still given by (4.3). The following existence result is directly from
Theorem 3.6 and Lemma 3.7.

Proposition 4.2. Suppose the random variables Zt in (4.3) satisfy Condition (1) in Lemma 3.7.
Moreover, assume the control 0 < u ≤ ut ≤ ū < ∞ is in a compact interval. Then there exists a
nonrandomized Markov equilibrium policy for (4.4).
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A Proof of Lemma 3.7

Fix xt ∈ R. Consider a sequence uk converging to u. For notational simplicity, denote µk :=
µ(xt, u

k), µ := µ(xt, u), σ
k := σ(xt, u

k), and σ := σ(xt, u). Under condition (2), we have µk → µ
and σk → σ, when k → ∞.

A change of variables gives

∫

V (xt+1)Pt(dxt+1|xt, u
k) =

∫ ∞

−∞
V (µk + σkw)p(w)dw =

∫ ∞

−∞
V (z)p

(z − µk

σk

)dz

σk
.

Then
∣

∣

∣

∣

∫

V (xt+1)Pt(dxt+1|xt, u
k)−

∫

V (xt+1)Pt(dxt+1|xt, u)

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ ∞

−∞
V (z)p

(z − µk

σk

)dz

σk
−

∫ ∞

−∞
V (z)p

(z − µ

σ

)dz

σ

∣

∣

∣

∣

≤ M

∫ ∞

−∞

∣

∣

∣

∣

p
(z − µk

σk

) 1

σk
− p

(z − µ

σ

) 1

σ

∣

∣

∣

∣

dz, (A.1)

where the second inequality uses the boundedness of |V | ≤ M . Denote y = (z − µ)/σ, then

∫ ∞

−∞

∣

∣

∣

∣

p
(z − µk

σk

) 1

σk
− p

(z − µ

σ

) 1

σ

∣

∣

∣

∣

dz =

∫ ∞

−∞

∣

∣

∣

∣

p
(σy + µ− µk

σk

) 1

σk
− p(y)

1

σ

∣

∣

∣

∣

σdy.

Note that σ > 0 and can be moved into the absolute value.
For simplicity, denote σ̃k := σ/σk and µ̃k := (µ − µk)/σk. For given 0 < δ < 1 and δ′ > 0,

choose an integer k large enough such that

|σ̃k − 1| ≤ δ, |µ̃k| ≤ δ′.

For a fixed ε > 0, consider K > 0 such that
∫K

−K
p(y)dy ≥ 1 − ε/8. Denote a constant K∗ :=

(K + δ′)/(1 − δ). We have

∫ ∞

K∗

∣

∣

∣

∣

p
(σy + µ− µk

σk

) 1

σk
− p(y)

1

σ

∣

∣

∣

∣

σdy ≤

∫ ∞

K∗

p(σ̃ky + µ̃k)σ̃kdy +

∫ ∞

K∗

p(y)dy

≤

∫ ∞

σ̃kK∗+µ̃k

p(y′)dy′ +

∫ ∞

K∗

p(y)dy

≤ 2

∫ ∞

K

p(y)dy,
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where the last inequality used the fact that max{σ̃kK∗ + µ̃k,K∗} ≥ (1 − δ)K∗ − δ′ = K, by the
definition of K∗. Similarly, we have

∫ −K∗

−∞

∣

∣

∣

∣

p
(σy + µ− µk

σk

) 1

σk
− p(y)

1

σ

∣

∣

∣

∣

σdy ≤ 2

∫ −K

−∞
p(y)dy.

Hence, noting the property of K, we obtain

∫ ∞

−∞

∣

∣

∣

∣

p
(z − µk

σk

) 1

σk
− p

(z − µ

σ

) 1

σ

∣

∣

∣

∣

dz ≤

∫ K∗

−K∗

∣

∣

∣
p(σ̃ky + µ̃k)σ̃k − p(y)

∣

∣

∣
dy +

ε

4
. (A.2)

Next, we choose a constant G > 0, such that
∫∞
−∞ p(y)1{p(y)>G}dy ≤ ε/8. Define

pG(y) = p(y)1{p(y)≤G} +G1{p(y)>G},

which is bounded. It yields

∫ K∗

−K∗

∣

∣

∣
p(σ̃ky + µ̃k)σ̃k − p(y)

∣

∣

∣
dy −

∫ K∗

−K∗

∣

∣

∣
pG(σ̃

ky + µ̃k)σ̃k − pG(y)
∣

∣

∣
dy

≤

∫ K∗

−K∗

∣

∣

∣
p(σ̃ky + µ̃k)σ̃k − pG(σ̃

ky + µ̃k)σ̃k
∣

∣

∣
dy +

∫ K∗

−K∗

∣

∣

∣
p(y)− pG(y)

∣

∣

∣
dy

≤ 2

∫ ∞

−∞

∣

∣

∣
p(y)− pG(y)

∣

∣

∣
dy = 2

∫ ∞

−∞
(p(y)−G)1{p(y)>G}dy

≤ 2

∫ ∞

−∞
p(y)1{p(y)>G}dy ≤ ε/4. (A.3)

Finally, we apply Lusin’s theorem to p(y), which is Borel measurable on R. There exists a continuous
function q(y), such that the Lebesgue measure of the set {p(y) 6= q(y)} is not greater than ε/(8G).
Define

qG(y) = q(y)1{0≤q(y)≤G} +G1{q(y)>G}.

Obviously, if p(y) = q(y), then pG(y) = qG(y). It implies that {pG(y) 6= qG(y)} ⊆ {p(y) 6= q(y)}.
As a consequence,

∫ K∗

−K∗

∣

∣

∣
pG(σ̃

ky + µ̃k)σ̃k − pG(y)
∣

∣

∣
dy

≤

∫ K∗

−K∗

∣

∣

∣
qG(σ̃

ky + µ̃k)σ̃k − qG(y)
∣

∣

∣
dy +

∫ K∗

−K∗

∣

∣

∣
pG(σ̃

ky + µ̃k)σ̃k − qG(σ̃
ky + µ̃k)σ̃k

∣

∣

∣
dy

+

∫ K∗

−K∗

∣

∣

∣
pG(y)− qG(y)

∣

∣

∣
dy

≤

∫ K∗

−K∗

∣

∣

∣
qG(σ̃

ky + µ̃k)σ̃k − qG(y)
∣

∣

∣
dy + 2

∫ ∞

−∞

∣

∣

∣
pG(y)− qG(y)

∣

∣

∣
dy

≤

∫ K∗

−K∗

∣

∣

∣
qG(σ̃

ky + µ̃k)σ̃k − qG(y)
∣

∣

∣
dy + 2

∫ ∞

−∞
G1{pG(y)6=qG(y)}dy

≤

∫ K∗

−K∗

∣

∣

∣
qG(σ̃

ky + µ̃k)σ̃k − qG(y)
∣

∣

∣
dy + ε/4. (A.4)
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We can regard qG(ay + b)a as a function of three variables (a, b, y). Clearly, qG(ay + b)a is jointly
continuous in (a, b, y), since qG(·) is continuous. By the uniform continuity on the compact set
[1− δ, 1 + δ]× [−δ′, δ′]× [−K∗,K∗], there exists an integer N > 0 such that

sup
k≥N,y∈[−K∗,K∗]

∣

∣

∣
qG(σ̃

ky + µ̃k)σ̃k − qG(y)
∣

∣

∣
≤ ε/(8K∗). (A.5)

Combining (A.1), (A.2), (A.3), (A.4), and (A.5), we obtain

∣

∣

∣

∣

∫

V (xt+1)Pt(dxt+1|xt, u
k)−

∫

V (xt+1)Pt(dxt+1|xt, u)

∣

∣

∣

∣

≤ Mε.

Since ε > 0 is arbitrary, the claim follows.
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