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1 | INTRODUCTION

A cubical presentation is a higher dimensional generalisation of a classical group presentation in
terms of generators and relators. A non-positively curved cube complex X plays the role of the ‘gen-
erators’, and the ‘relators’ are local isometries of non-positively curved cube complexes Y; & X.
The associated group is the quotient of 77, X by the normal closure ({7, Y} )); x of 7,Y;. Asin the
classical setting, this group is the fundamental group of X with the Y;’s coned off. Likewise, cubi-
cal small-cancellation theory, introduced in [16], is a generalisation of classical small-cancellation
theory (see, e.g., [12]). In both the classical and cubical cases, the small-cancellation conditions are
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expressed in terms of pieces. A piece in a classical presentation is a word that appears in two dif-
ferent places among the relators. The non-metric small-cancellation condition C(p) where p > 1
asserts that no relator is a concatenation of fewer than p pieces. The metric small-cancellation
condition C'(a) o € (0,1) asserts that |P| < «t|R| whenever P is a piece in a relator R. Note that
c’ (113) = C(p + 1). Pieces in cubical presentation are defined similarly, and the same implication
holds in the cubical case.

Cubical small-cancellation has proven to be a fruitful tool in the study of groups acting on
CAT(0) cube complexes. It was used by Wise as a step in his proof of the Malnormal Special Quo-
tient Theorem [16], and as such, played a crucial role in the proofs of the Virtual Haken and Virtual
Fibering conjectures [1]. Cubical presentations and cubical small-cancellation theory were also
studied and utilised in [2-4, 6-9, 14]. Although classical small cancellation groups have virtual
cohomological dimension < 2 [11], there exist cubical small cancellation groups with arbitrarily
large virtual cohomological dimension, which is moreover controlled by cd 7, X and cd 7, Y; (this
is proven in a forthcoming paper by Arenas, which is the continuation of 2).

To illustrate the difference between metric and non-metric conditions, consider the following
presentation: {a, b | a"w). When w is a long messy word (read: small cancellation) starting and
ending in b, then the C(p) condition holds for all n. However a"~! is a piece! So, C’(«) fails for
sufficiently large n. Similar examples can be produced in the cubical setting. For instance, let
X = SV Awhere S is a cubulated surface and A is a circle. Let w be a small-cancellation path in
X whose initial and terminal edges lie in S. Let @ be the lift of w to X, and let W be the combi-
natorial convex hull of w. Let a” be a length n arc that immerses onto A. Let Y be the quotient
of a® UW, identifying the endpoints of a” and @. Then (X | Y') is a cubical presentation satis-
fying C(p), but not C’ (113), when n > 0. The pumping lemma shows that for any X with 7, X
non-elementary hyperbolic, there are presentations X* that are non-metric small cancellation,
but not metric small cancellation.

It is a fundamental result of classical small-cancellation theory that a group admitting a finite
presentation satisfying the classical C’ (%) or C(7) condition is hyperbolic. In analogy with the

metric classical small-cancellation case, a cubical C’ (11—4) presentation (X | Yy, ..., Y,) yields a
hyperbolic group if 7; X is hyperbolic and the Y; are compact [16, Theorem 4.7]. However, the
proof of that result does not extend to the non-metric case. The goal of this paper is to prove the
following statement that recovers and generalises the result from the C’ (ﬁ) setting.

Theorem 5.1. Let X* = (X | Yy, ..., Y,) be a cubical presentation satisfying the C(p) cubical small-
cancellation condition for p > 14, where X, Y, ..., Y are compact, and 7,X is hyperbolic. Then
7, X™ is hyperbolic.

1.1 | Proof strategy

The main ingredients of the proof are the notion of the piece metric (Definition 4.1) and
Papasoglu’s thin bigon criterion for hyperbolicity (Proposition 3.1).

The most immediate way of proving hyperbolicity for finitely presented C’ (é) groups is to show
that a linear isoperimetric inequality holds for their Cayley complexes. This follows from the fact
that C’ (é) presentations satisfy Dehn’s algorithm by Greendlinger’s Lemma (see for instance [12,
V.4.5]). In the C(7) setting, one is no longer guaranteed to have a Dehn presentation (consider
the (a, b|a"w) examples described above). Instead, the usual way of proving hyperbolicity in
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2038 | ARENAS ET AL.

this generality relies on the combinatorial Gauss-Bonnet Theorem. Another way is to realise
that reduced disc diagrams satisfy C’ (%) if we regard all pieces as having length 1. In fact, this
viewpoint leads to the piece-metric.

To illustrate the basic idea behind our strategy, we sketch a proof of hyperbolicity in the C(7)
case using the piece-metric and the thin bigon criterion. The definition of the classical C(n) con-
dition and of all the diagrammatic notions introduced for cubical presentations in Subsection 2.2
can be particularised to this setting, and a version of Greendlinger’s Lemma also holds (see, for
instance, [12, V.4.5]).

IMustrative theorem. Let X be a 2-complex satisfying the C(7) small-cancellation condition. Then
X is hyperbolic with the piece metric.

This implies hyperbolicity of finitely presented C(7) groups, as in that case the piece-metric and
the usual combinatorial metric on the Cayley graph are quasi-isometric (see Proposition 4.3).

Proof. We check that all bigons in X(®) are e-thin in the piece metric for some € > 0, and apply
Proposition 3.1 to conclude that X is hyperbolic.

Let y,,7, be piece-geodesics forming a bigon in X, and let D — X be a reduced disc diagram
with 8D = y,7,. We claim that D is a (possibly degenerate) ladder, and hence that the bigon y,, 7,
is 1-thin, as by definition any two cells in a ladder intersect along at most one piece.

Indeed, by Greendlinger’s Lemma, D is either a ladder, or contains at least three shells and/or
spurs. First note that D cannot have spurs, as these can be removed to obtain paths yi, y; with the
same endpoints as y;, ¥,, and which are shorter in the piece metric, thus contradicting that y,,7,
are piece-geodesics.

If D has at least three shells, then at least one shell S must have its outerpath Q contained in
either y, or y,. As both cases are analogous, assume Q C y;, and let R be the innerpath of S. As S
is a shell and X satisfies C(7), then R is the concatenation of at most 3 pieces, so |R|, < |Q],, and
the path y{ obtained from y; by traversing R instead of Q is the concatenation of less pieces than
71, contradicting that y; is a piece-geodesic.

Thus, D is a ladder, and the proof is complete. O

1.2 | Structure of the paper
The paper is organised as follows. In Section 2, we give background on cube complexes, cubical
group presentations and cubical small-cancellation. In Section 3, we recall a criterion for hyperbol-

icity for groups acting on graphs. In Section 4, we define and analyse the piece metric. In Section 5,
we prove Theorem 5.1.

2 | CUBICAL BACKGROUND
2.1 | Non-positively curved cube complexes
We assume that the reader is familiar with CAT(0) cube complexes, which are CAT(0) spaces hav-

ing cell structures where each cell is isometric to a cube. We refer the reader to [5, 10, 15, 16]. A
non-positively curved cube complex is a cell-complex X whose universal cover X is a CAT(0) cube
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complex. A hyperplane H in X is a subspace whose intersection with each n-cube [0, 1]" is either
empty or consists of the subspace where exactly one coordinate is restricted to % For a hyper-
plane Hof X, weletN (FI ) denote its carrier, which is the union of all closed cubes intersecting
H. The combinatorial metric d on the 0-skeleton of a non-positively curved cube complex X is a
length metric where the distance between two points is the length of the shortest combinatorial
path connecting them. Amap ¢ : Y — X between non-positively curved cube complexes is a local
isometry if ¢ is locally injective, ¢ maps open cubes homeomorphically to open cubes, and when-
ever a, b are concatenable edges of Y, if ¢(a)$(b) is a subpath of the attaching map of a 2-cube of
X, then ab is a subpath of a 2-cube in Y.

2.2 | Cubical presentations

We recall the notion of a cubical presentation, and the cubical small-cancellation conditions from
[16].

A cubical presentation (X | Yy, ..., Y,,) consists of a non-positively curved cube complex X, and
a set of local isometries Y; & X of non-positively curved cube complexes. We use the notation
X* for the cubical presentation above. As a topological space, X* consists of X with a cone on Y;
attached to X for each i. The vertices of the cones on Y;’s will be referred to as cone-vertices of X*.
The cellular structure of X* consists of all the original cubes of X, and the ‘pyramids’ over cubes
in Y; with a cone-vertex for the apex.

As mentioned in the introduction, cubical presentations generalise classical group presenta-
tions. Indeed, a classical presentation complex associated with a group presentation G = (S | R)
can be viewed as a cubical presentation where the non-positively curved cube complex X is just a
wedge of circles, one corresponding to each generator in S. The complexes Y; correspond to rela-
tors r; in R. Each cycle Y; has length |r;|, and the local isometry Y; % X is defined by labelling
the edges of Y; with the letters of r;.

The universal cover X* consists of a cube complex X with cones over copies of Y;’s. The complex
X is a covering space of X. A combinatorial geodesic in X* is a combinatorial geodesic in X, viewed
as a path in X*.

2.3 | Discdiagramsin X"

Throughout this paper, we will be analysing properties of disc diagrams, which we introduce
below together with some associated terminology:

A map f : X — Y between 2-complexes is combinatorial if it maps cells to cells of the same
dimension. A complex is combinatorial if all attaching maps are combinatorial, possibly after
subdividing the cells.

A disc diagram is a compact, contractible 2-complex D with a fixed planar embedding D C S?.
The embedding D < S? induces a cell structure on S?, consisting of the 2-cells of D together with
an additional 2-cell, which is the 2-cell at infinity when viewing S? as the one point compactifica-
tion of R2. The boundary path 3D of D is the attaching map of the 2-cell at infinity. Similarly, an
annular diagram is a compact 2-complex A with a fixed planar embedding A C S? and the homo-
topy type of S'. The annular diagram A has two boundary cycles 8;,A 3,,,,A. A disc diagram in X*
is a combinatorial map (D, 3D) — (X*,X(M) of a disc diagram. The 2-cells of a disc diagram D in
X* are of two kinds: squares mapping onto squares of X, and triangles mapping onto cones over
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2040 ARENAS ET AL.

FIGURE 1 Cone-cells in a disc diagram. In figures, we will often omit the cell structure of cone-cells, unless
needed.

edges contained in Y;. The vertices in D that are mapped to the cone-vertices of X* are also called
the cone-vertices. Triangles in D are grouped into cyclic families meeting around a cone-vertex.
We refer to such families as cones, and treat a whole such family as a single 2-cell. A cone-cell C is
the union of an annular square diagram A — D whose interior embeds in D, together with a cone
over 0;,A. See Figure 1.

We emphasise that this definition differs slightly from the definition of a cone-cell in the lit-
erature, where A is simply a circle; allowing A to be an arbitrary annular diagram, D implicitly
comes equipped with a choice of cone-cells.

The square part D of D is a subdiagram which is the union of all the squares that are not
contained in cone-cells.

A square disc diagram is a disc diagram whose square part is the whole diagram, that is, it
contains no cone-cells. A mid-interval in a square, viewed as [0, 1] X [0, 1], is an interval {%} X [0,1]
or [0,1] x {%}. A dual curve in a square disc diagram D is a curve that intersect each closed square
either trivially, or along a mid-interval, that is, a dual curve is a restriction of a hyperplane in X to
D. We note that for each 1-cube of D, there exists a unique dual curve crossing it [16, 2e].

The complexity of a disc diagram D in X* is defined as

Comp(D) = (#cone-cells, #squares in D) .

We say that D has minimal complexity if Comp(D) is minimal in the lexicographical order among
disc diagrams with the same boundary path as D. A disc diagram D in X* is degenerate if
Comp(D) = (0,0). A disc diagram D, in X* is singular if D is not homeomorphic to a closed ball
in R2. This is equivalent to D either being a single vertex or an edge, or containing a cut vertex. In
particular, every degenerate disc diagram is singular.

A square s is a cornsquare on a cone-cell C if a pair of dual curves emanating from consecutive
edges a, b of ¢ terminates on consecutive edges a’, b’ of dD.

Definition 2.1 (Reduction moves). We define six types of reduction moves. See Figure 2.

(0) Cancelling a pair of squares s, s’ meeting at one edge e in the disc diagram, whose map to X*
factors through a reflection identifying them. That is, cutting out e U Int(s) U Int(s") and then
gluing together the paths s — e and 3s’ —e.
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FIGURE 2 The s six reduction moves from Definition 2.1.

(1) Replacing a minimal bigon-diagram, that is, a disc subdiagram containing two dual curves
intersecting each other twice, which is not contained in any other such subdiagram, with a
lower complexity square disc diagram with the same boundary.

(2) Replacing a pair of adjacent cone-cells with a single cone-cell.

(3) Replacing a cone-cell with a square disc diagram with the same boundary.

(4) Absorbing a cornsquare s to a cone-cell C, that is, replace a minimal subdiagram containing
C and the two dual curves starting at C and ending in s with a lower complexity disc diagram
with the same boundary and containing a cone-cell C U s’ for some square s’.

(5) Absorbing a square with a single edge in a cone-cell into the cone-cell.

Definition 2.2 (Reduced and weakly reduced disc diagram). A disc diagram D — X* in a cubical
presentation is

* reduced if no moves (0)-(5) from Definition 2.1 can be performed in D;
* weakly reduced if no moves (1)—(5) from Definition 2.1 can be performed in D.

Note that if D has minimal complexity then D is reduced, and that, in particular, each reduction
move outputs a diagram D’ with Area(D’) < Area(D) and D’ = D. Consequently:

Lemma 2.3. Let D — X* be a disc diagram, then there exist disc diagrams D' — X* and D" — X*
satisfying:

(1) 8D =4D’' =48D",

(2) D' isweakly reduced and D" is reduced,

(3) D' is obtained from D after a a finite number of moves of types (1)-(5), and D"’ is obtained from
D after a finite number of moves of type (0)—(5).

Remark 2.4. Many theorems about disc diagrams in the literature assume that the disc diagram
is reduced or minimal complexity, but it is in fact sufficient to consider weakly reduced diagrams.
For example, this is the case with Lemma 2.7 (the Cubical Greendlinger’s Lemma).

2.4 | Cubical small-cancellation

We use the convention where p denotes the path p with the opposite orientation. A grid is a square
disc diagram isometric to the product of two intervals. Let p and » be two combinatorial paths in
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IO

FIGURE 3 Blue paths are contiguous pieces, and yellow paths are pieces but not contiguous pieces.

X*.Wesay p and o are parallel if there exists a grid E — X* with dE = upvn, where the dual curves
dual to edges of p, ordered with respect to its orientation, are also dual to edges of 7, ordered with
respect to its orientation. Concretely, if o = e; --- ¢, and o = f; --- f}, and h(e;) and h(f;) are the
curves dual to e; and f;, respectively, then p is a piece if h(e;) = h(f;) foreachi € {1, ..., k}.

An abstract contiguous cone-piece gf X* in Y; is a component of ¥; N 17j, where Y is a fixed
elevation of Y; to the universal cover X, and either i # j or wherei = jbutY f # Y,;. Each abstract
contiguous cone-piece P induces a map P — Y; which is the composition P < Y; = Y;, and a
contiguous cone-piece of Y; in Y; is a combinatorial path p — P in an abstract contiguous cone-
p~iece of Y; inY;. An abstract contiguous Kvall-piece of X*inY; is a component of Y; N N(H), where
H is a hyperplane that is disjoint from Y;. Each abstract contiguous wall-piece P induces a map
P — Y, and a contiguous wall-piece of Y; is a combinatorial path p — P in an abstract contiguous
wall-piece of Y;. A piece is a path parallel to a contiguous cone-piece or wall-piece.

The difference between contiguous pieces and pieces is illustrated in Figure 3.

For an integer p > 0, we say X* satisfies the C(p) small-cancellation condition if no essential
combinatorial closed path in Y; can be expressed as a concatenation of less than p pieces. For a
constant a > 0, we say X* satisfies the C’(ct) small-cancellation condition if diam(P) < a||Y;]| for
every piece P involving Y;.

Note that the C’ (%) condition implies the C(p + 1) condition. When p > 9 and X* is C(p), then
each immersion Y; % X lifts to an embedding Y; < X*. This is proven in [16, Theorem 4.1] for
p >12,and in [8] for p > 9.

We record the following observation, a proof of which can be found in [2].

Lemma2.5. Let X* =(X | Yy,...,Y,,) be a cubical presentation where X and Yy, ..., Y, are com-
pact non-positively curved cube complexes. If X* satisfies the cubical C(p) condition for p > 2, then
there is a bound on the combinatorial length of pieces of X*.

2.5 | Greendlinger’s Lemma

A cone-cell C in a disc diagram D is a boundary cone-cell if C intersect the boundary 0D along at
least one edge. A non-disconnecting boundary cone-cell C is a shell of degree k if 3C = RQ where
Q is the maximal subpath of dC contained in 0D, and k is the minimal number such that R can be
expressed as a concatenation of k pieces. We refer to R as the innerpath of C and Q as the outerpath
of C.

A corner in a disc diagram D is a vertex v in 0D of valence 2 in D that is contained in some
square of D. A cornsquare is a square ¢ and a pair of dual curves emanating from consecutive
edges a, b of ¢ that terminate on consecutive edges a’, b’ of dD. We abuse the notation and refer
to the common vertex of a’, b’ as a cornsquare as well. A spur is a vertex in 8D of valence 1in D.
If D contains a spur or a cut-vertex, then D is singular.
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FIGURE 4 Example of a ladder.

Definition 2.6 (Ladder). A pseudo-grid between paths u and v is a square disc diagram E where
the boundary path JE is a concatenation upvn such that

(1) each dual curve starting on u ends on v, and vice versa,
(2) no pair of dual curves starting on u cross each other,
(3) no pair of dual curves cross each other twice.

If a pseudo-grid E is degenerate then either u = v or p = 7.

A ladder is a disc diagram (D,dD) — (X*,X©) which is an alternating union of cone-cells
and/or vertices Cy, C, ..., C,,, and (possibly degenerate) pseudo-grids E;, E; ..., E,,,_;, withn > 0,
in the following sense:

(1) the boundary path 8D is a concatenation 1,1, where the initial points of 1,, 1, lie in Cy, and
the terminal points of 1,, 4, lie in C,,,,

(2) Ay = app1@;y -+ AgpzPon—1%, ADd Ay = Bo71 B -+ Bon—2M2n-1Ban»

(3) theboundarypathdC; = v;_;o;14;,15; forsomev;_; and y;, ; (wherev_; and u,,,, ; are trivial),
and

(4) the boundary path 0E; = u;0,v;7;.

See Figure 4.

Lemma 2.7 (Cubical Greendlinger’s Lemma [8, 16]). Let X* = (X | Yy, ..., Y,) be a cubical presen-
tation satisfying the C(9) condition, and let D — X* be a weakly reduced disc diagram. Then one of
the following holds:

* Disa ladder, or
* D has at least three shells of degree < 4 and/or corners and/or spurs.

We note that our definition of ladder differs slightly from the definitions in [8, 16], so that a
single cone-cell and a single vertex count as ladders here. Also, the statements in [8, 16] assume
that the disc diagrams are reduced/minimal complexity, but the proofs work for weakly reduced
disc diagrams.

3 | HYPERBOLIC BACKGROUND

We explain the convention we will follow. A pair (Y, d) is a metric graph, if there exists a graph

I" such that Y is the vertex set of I', and d is defined as follows. For each edge of T, we assign a

positive number which is the length of that edge. The length of a simple path in I is the sum of the

lengths of the edges in the path. A metric d on a set Y is a graph metric, if (Y, d) is a metric graph.
In this paper, all edges of metric graphs have one of two lengths: 1 or %
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2044 | ARENAS ET AL.

3.1 | Thin bigon criterion for hyperbolicity

A bigon in a geodesic metric space Y is a pair of geodesic segments y;,y, in Y with the same
endpoints, that is, such that y,(0) = y,(0) and y,(¢) = y,(¢) where ¢ is the length of y. A bigon
Y1,Y2 is e-thin if d(y,(t),y,(t)) < € for all t € (0, 7). If we do not care about the specific value
of ¢, the above condition is equivalent to the condition that imy; C N (imy,) and imy, C
N (imy,) for some & > 0. Indeed, suppose that for every ¢ € (0, ¢) there exists t’ € (0,7) such
that d(y,(t), 7,(t")) < €. Then |t — t'| < g, as otherwise y; and y, are not geodesic segments. That
implies that d(y;(t), y,()) < d(y1(8), y,(t") + d(y, ("), y,(1)) < 2¢’.

This generalises to paths y;,y, whose endpoints are not necessarily the same. We say y;,7,
e-fellow travel if d(y,(t),y,(t)) < e for all .

The following is a hyperbolicity criterion for graphs, due to Papasoglu [13, Theorem 1.4] (see
also [16, Proposition 4.6]).

Proposition 3.1 (Thin Bigon Criterion). Let Y be a graph where all bigons are e-thin for some € > 0.
Then there exists § = 8(¢) such that Y is 8-hyperbolic.

Of course, the converse also holds.

4 | THE PIECE METRIC

LetX* = (X | Yy, ..., Y,) be a cubical presentation. As explained in Subsection 2.2, we write X* to
denote the complex X with cones over Y;’s attached. In particular, X can be viewed as a subspace
of X*. The preimage of X in the universal cover X* of X* is denoted by X. Note that X is a covering
space of X. The preimage of the 0-skeleton of X in X* is also the 0-skeleton of X, so it is denoted
by X©,

Definition 4.1. The piece length of a combinatorial path y in X(© is the smallest n such that y =
vy -+ v, where each v is a 1-cube or a piece. The piece metric d, on X© is defined as dy(a,b) =n
where n is the smallest piece length of a path from a to b.

We note that d, is a graph metric when X© is viewed as the graph with all edges of length
1 obtained from the 1-skeleton X of X by adding extra edges between vertices contained in a
single piece. We will denote this graph by (X(©, dy).

A piece decomposition of a path y is an expression y = v, --- v, where each v; is a piece or 1-cube.
We make the following easy observation:

Lemma 4.2. Lety,y,,y, be piece-metric geodesics in XO wherey = Y172 Then

|y1|p + |}/2|p -1 < |y|p < |J/1|p + |y2|p'
Proof. Any piece decomposition y = v, --- v, yields piece decompositions of both y; and y,, where
at most one piece v; for i € {1, ..., k} further decomposes into the concatenation of two pieces

, ,, = cee , = ,, cee i i i 1ti
v, v, 80 ¥y = vy -+ v; and )./2 = 7{1. V- Slmll&lﬂy, any two piece decompositions of y; and y,
can be concatenated to obtain a piece decomposition of y. O
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We now prove a few basic facts about the piece metric. First, it is quasi-isometric to the
combinatorial metric under fairly weak hypotheses.

Proposition 4.3. Let X* = (X | Y,,...,Y,) be a cubical presentation satisfying the C(p) condition
for p > 2, and where X,Y, ..., Y, are compact. Then (X0, d,,) is quasi-isometric to (X©, d) where
d is the standard combinatorial metric. Moreover, there is a uniform bound on the d,-diameters
of cones.

Proof. Indeed, dp(a, b) <d(a,b)foralla,b € X©, and by Lemma 2.5 there is an upper bound M
on the combinatorial length of pieces, so we also have that d(a, b) < Md,(a, b).

As there are only finitely many Y;’s and each Y; is compact, there must be an upper bound on
the diameter of a simple essential curve in Y; with respect to d and thus with respect to d,, which
implies the second statement. O

Corollary 4.4. Suppose that 7w, X is hyperbolic. Let D — X* be a square diagram with boundary
0D = yA wherey is a d -geodesic, and A is a d-geodesic. Then the bigon D is M-thin for a uniform
constant M.

Proof. First note that D — X* is a square diagram in X, but it also lifts to X. The metric d, also
lifts to X(®, and by Proposition 4.3 d,d_ are quasi-isometric on X(®, and therefore on X(. The
statement then follows from the uniform bound on the Hausdorff distance between geodesics and
quasi-geodesics in hyperbolic spaces. O

‘We note that ladders are thin with respect to the piece metric.

Proposition 4.5. Suppose that ;X is hyperbolic. Let D — X* be a ladder with boundary 0D = /1112
as in Definition 2.6 where each subpath of A; contained in a single pseudo-grid is a geodesic. Then
the bigon A, 4, is e-thin with respect to d,, for a uniform constant € > 0 dependent only on X*.

Proof. We only show that 1; C N.(4,), as the argument for 1, C N.(4,) is analogous. Let x € 4,.
We want to show that dp(X,/lz) < €. If x belongs to a cone-cell C, then by the definition of the
ladder, 4, also intersects C, so dp(x,/lz) is bounded by the piece-metric diameter of C, which is
uniformly bounded by some constant €; by Proposition 4.3.

Otherwise x lies in a pseudo-grid. Let p,n be subpaths of 1,, 4,, respectively, contained in the
pseudo-grid that contains x. The paths p,7 are both combinatorial geodesics by the assumption.
By Proposition 4.3 p,7 start and end at a uniform distance, as they lie in the same cone-cell. By
hyperbolicity of X, there exists ¢, > 0 such that p, 7 ¢,-fellow travel. The conclusion follows with
€ = max{e;, €,}. O

In the proof of Theorem 5.1, we will use the following technical lemma.

Lemma4.6. Let X* be a cubical presentation, and let E — X* be a square diagram, with the induced
metricd . Suppose that OE = £Qry wherey is a piece geodesic, no dual curve in E crosses £Qr twice,
and each of ¢, Q, r contains no cornsquares of E in its interior. Moreover, assume that |Q|, > 3. Then
¥l 2 171, +1Ql, + Irl, = 3.
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FIGURE 5 Steps of the proof of Lemma 4.6.

Proof. See Figure 5 for a diagram E with dE = £Qry. By the assumptions, every dual curve of E
starting at #Qr must exit the diagram in y. Thus, each edge of #Qr is naturally paired with an
edge of y. For every piece v in y, we consider all the dual curves h, ..., h,, starting at v that exit E
in ZQr.

These define a collection of edges in #Qr, and every subcollection of such consecutive edges
forms a path that is a piece, as it is parallel to some path contained in one of Y;. By grouping
consecutive edges into maximal subpaths contained in one of #, Q, or r, we get pieces !, ..., yk
whose interiors are pairwise disjoint (ordered consistently with the orientation of #Qr), and say
that v projects to v, ..., v¥.

First we claim that each of #, Q,r contains at most one piece v'. Suppose to the contrary that
v, »"*1 are both contained in # (and the same argument applies to Q, r). Then each dual curve
starting at an edge of # lying between v and v'*! must intersect at least one dual curve starting
at edges of v, v'*1, as otherwise it would also lie in a projection of v, yielding a cornsquare in #.

Thus, we can denote the projection of v by v, v?,v" where each piece is a possibly empty
projection onto #, Q,r, respectively. See left diagram in Figure 5. We will assume that they are
oriented consistently with #, Q, r, respectively, not necessarily consistently with v.

Lety = v --- v, be a minimal piece decomposition of y, that s, [y|, = n. Let £ = v/ ¢

cee ‘V
ip(1) ir(ng)
be the induced piece-decomposition where we only write non-trivial pieces. In particular, i, :

{1,...,n,} — {1,...,n} is an injective function. We now claim that i, is monotone. Suppose to the
contrary, that 1 < j < k < n, buti,(j) > i (k). Then there must exists a cornsquare in the con-
nected subpath of # containing vif and v/, which is a contradiction. Analogously, we get

(k) ()
—_ Q ee Q —_ r Y . . .
Q= viQ o ‘Vl_Q (ng) and r = Vi Yy and the functions i, i, are monotone. These are not

necessarily the minimal piece decompositions, but certainly we have |£|, < n,, |Q|, < ny and
7|, < n,. To prove the lemma, we will show that |Q[, + n, + n, <n+3.

Note that i,(n,) is the largest index in {1, ..., n} such that v; ,, ) has non-trivial projection onto
¢, and similarly i, (1) is the lowest index in {1, ..., n} such that v; () has non-trivial projection onto
r. See middle diagram in Figure 5. As i, i, are monotone, n, < i,(n,) and n, < n —i.(1). Thus, it
remains to prove that |Q|, < i.(1) — iy (n,) + 3.

Let k, is the largest number such that i (k,) < i,(n,). We claim that vl%

Q 0
o) ™ Tig(ky)
ing in v;,(,,) and exiting the diagram in 7. See right diagram in Figure 5. Similarly, let k, be the

wv?  isasi
o ViQ(kf) is a single

piece in Q. Indeed, the dual curves starting in v must all intersect a dual curve start-

smallest number such that iy(k,) > i.(1) and note that »

Q
igke+1) " Vigle,~1)

Q Q . . . .
A viQ(nQ) is a single piece in Q. By

assumption, |Q|, > 3, so the subpath » isnon-empty. In particular, k, > k, + 1.
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As by definition of k,, k, we have ig(k, + 1) > i,(n,) and ip(k, — 1) < (1), we conclude that

Q Q Q

Vi 10 Vigtr 2 Vigl—n o

< Pigte,+10) Yiigle,+1)4+1) * Vigle, -1 lp
< i) Vi, ()40 Vi o
< (1) —iy(ny) + 1.

This proves that |Q|, < i.(1) —iz(n,) + 3 and completes the proof. O

5 | PROOF OF HYPERBOLICITY

In the proof of the next theorem, we show that, under suitable assumptions, (X(O),dp) is a &-
hyperbolic graph to deduce that 77, X* is hyperbolic. The basic strategy is similar to [16, Theorem
4.7], but the details in this case are significantly more involved.

Theorem 5.1. Let X* = (X | Yy, ..., Y,) be a cubical presentation satisfying the C(p) cubical small-
cancellation condition for p > 14, where X, Y, ..., Y are compact, and 7,X is hyperbolic. Then
7, X* is hyperbolic.

Before we proceed with the proof of the above theorem we introduce a construction that is
used in the proof. Let Y C X. The cubical convex hull of Y in X is the smallest cubically convex
subcomplex of X contained in Y. That is, it is the smallest subcomplex Hull(Y) satisfying that
whenever a corner of an n-cube ¢ with n > 2 lies in Hull(Y), then ¢ C Hull(Y).

Construction 5.2 (Square pushes). Let D be a minimal complexity disc diagram, and let yp = dD.
Let A be a path with the same endpoints as y and lying in the cubical convex hull of y, such that y/_l
bounds a disc subdiagram D, of D of maximal area. In particular, Dy is a square disc diagram, and
D’ = D — D, is a disc diagram with 0D’ = Ap, which has no corners contained in the interior of the
path A. The diagram D, can be obtained via a finite sequence of square pushes, that is, a sequence
of subdiagrams

y=KyCK, CCK, ; €K, =D,,

where for each i =0, ...,n — 1 the subdiagram K, ., contains K; and an additional square s such
that at least two consecutive edges of s are contained in K;. Choosing a square s and adding it to K;
to obtain K; , will be referred to as pushing a square.

Note that the sequence of diagrams K, ... K,, is indeed finite, as Area(K;, ;) = Area(K;) + 1 for
each i, and thus Area(D — K; ;) = Area(D —K;) — 1, son — 1 < Area(D).

By construction, every dual curve h in D, starting in y' must exit in y. Indeed, every square S that
is being pushed has at least two consecutive edges on y (in the first step) or on some K; (in general).
Thus, the 2 dual curves emanating from S either directly terminate on y or enter K;, crossing some of
the previously added squares. By induction on the area of K;, we can thus conclude that these dual
curves terminate on y.
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FIGURE 6 On the left, notation in the proof of Lemma 5.4; on the centre, possible overlapping paths in the
proof of 5.1; on the right, the impossible transversal intersections described in the proof of 5.1.

Construction 5.3 (Sandwich decomposition of a bigon). Let y,,y, be paths forming a bigon. Let
D — X* be a reduced disc diagram with D = y,y,. We define a decomposition of D into three
(possibly singular) subdiagrams D, U D' U D, by applying Construction 5.2 twice as follows:

* wefirst apply it to the subpathy,; C 8D to obtain a decomposition D = D; U D" where 8D, = }/1/_11
and 8D = A,y,;

* then we apply it to the subpath y, of dD"" and we obtain a decomposition D"' = D, U D" where
3D’ = 4,4, and 8D, = 1,7,

See Figure 6 for an example. We note that D, D, are square diagrams.

Lemma 5.4. Let X* = (X | Y,,...,Y,) be a cubical presentation satisfying the C(p) cubical small-
cancellation condition for p > 14, where X, Y, ..., Y are compact, and 7, X is hyperbolic.

Then for any weakly reduced disc diagram (D,d8D) — (X*,X) with dD = y,y, where y,,v, are
d,-geodesics and the subdiagram D’ obtained from its sandwich decomposition D = D, UD’ U D,
is a ladder.

The idea of the proof is as follows. Proceeding by contradiction, if D’ is not a ladder, then D’
contains a shell whose outerpath is disjoint from the endpoints g, g’ of y, y,. Using this shell and
Lemma 4.6, we construct a path y with endpoints g and ¢’ and with shorter piece-length than y,,
which contradicts the fact that y, is a piece geodesic (see Figure 6).

Proof. Suppose to the contrary that D’ is not a ladder. We will derive a contradiction with the fact
that y,,y, are dp-geodesics. By Lemma 2.7, D’ has at least three exposed cells, that is, shells of
degree < 4, corners and/or spurs. Two of those exposed cells might contain g and ¢’, but there
still must be at least one other exposed cell whose boundary path is disjoint from both g and ¢’.
By construction of D’ in Construction 5.3, there are no corners or spurs contained in the interior
of the paths y; and y,, so we conclude that there must be a shell S of degree < 4 in D’ with the
outerpath Q contained in y; or y,. Up to switching names of y; and y,, we can assume that Q is
contained in y;. Let R denote the innerpath of S in D’.

Let e, and e, be the leftmost (first) and the rightmost (last) edge of R, and let h,, h, be their
dual curves in D;. By Construction 5.2 h,, h, exit D; in y;. Let y{ be the minimal subpath of y;
that contains the edges dual to h,, h,.

Let H,, H, be the hyperplanes of X extending h,, h,, respectively. Let #,r be combinatorial
paths in D, parallel to h,, h, and starting at the two endpoints of the path Q, respectively.

Consider a minimal complexity square disc diagram E with boundary 0F = ¢ Qr)_/1 where £ and
r are combinatorial paths contained in N(H,), N(H,). In particular, # and r do not intersect H,
and H,, respectively. Such a diagram E exists because we can choose a subdiagram of D;. Among
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all possible choices of Z,r and E we pick a diagram with minimal area. A feature of the choice
of E is that it has no cornsquares in the interiors of # and r, as otherwise we could push that
cornsquare out and reduce the area. Up to possibly replacing Q with another path with the same
endpoints contained in the same cone, we can assume that Q has no cornsquares either. We will
assume that this is the case for the remainder of the proof.

We will be applying Lemma 4.6 to E, so we first verify that the assumptions are satisfied. By
Lemma 2.7, |Q|, > p — 4 > 3. Next, we claim that every dual curve starting in £Qr exits E in y;.
The cases of dual curves starting in # and r are analogous, so we only explain the argument for #.
Consider the subdiagram E’ = E U S of D'. Let e be an edge in #. Note that the dual curve h to e in
E’ cannot terminate on Q, as this would imply that there is a cornsquare on Q. If & terminates on
r, then h is parallel to Q, and therefore Q is a single wall-piece, contradicting the C(p) condition.
Thus, h must terminate on y;. Let now e be an edge of Q, and h its dual curve in E. We already
know that h cannot exit E in £ or r. If h exited E in Q, it would either yield a cornsquare in the
interior of Q, contradicting the choice or Q, or it would yield a bigon formed from 2 squares glued
along a pair of adjacent edges, contradicting the minimal complexity of E.

As no dual curve in E crosses ZQr twice, there are no cornsquares in none of 7, Q and r, and
|Ql, > 3, Lemma 4.6 implies that |Q|, + |£], + |r|, —3 < Iyilp. Recall that R is the innerpath of
the shell S of degree < 4 in D’. By definition |R|p < 4, and so the C(p) condition with p > 14 for
X* implies that [Q|, > p —4 > 10 > |R]|, + 5. Combining the two inequalities we get

[ZRr], <RI, + 121, + IFl, < (IQl, = 5) + I£1, + Irl, < Y], — 2.

In particular, if we write y; = yl’fy;yl’,, then using Lemma 4.2 we get

1l 2 171l + 1Vilp + 17plo = 2> 1V1pely + 1ERYL, + Y14, 2 Y1 RV,
which contradicts the fact that y, is a piece-geodesic, completing the proof. O

We now combine the previous ingredients to finish the proof of Theorem 5.1. Here is an outline
of the proof. We consider a piece-geodesic bigon and want to prove that it is thin in the piece-
metric. We apply the reduction moves from Definition 2.1 to obtain a new bigon. We then apply
Lemma 5.4 to show that the middle layer of its sandwich decomposition is a ladder, and thus it is
thin by Proposition 4.5. Finally, we use Corollary 4.4 to deduce that the other layers are also thin,
and consequently the original bigon is thin.

Proof of Theorem 5.1. We prove that the coned-off space (X©,d.) is 8'-hyperbolic for some &’ by
showing that it satisfies the bigon criterion (Proposition 3.1).
Let y;,7, be d,-geodesic segments forming a bigon. Pick combinatorial geodesics 4,4, such

that y,4, and y,4, bound square disc diagrams D, and D,, as they are path-homotopic in X. Let
D’ — X* be a reduced disc diagram with boundary 8D’ = A, 1,. By gluing D, UD’ U D, along
A, and A,, respectively, we obtain a (possibly non-weakly reduced) disc diagram D — X* with
0D = y17,.

By Lemma 2.3, there exists a sequence of reduction moves (1) - (5) from Definition 2.1 that
turns D into a weakly reduced disc diagram. We describe how each reduction move transforms a
quintuple (D,/ll,ﬂ.;,/lz,/lg) into a quintuple (D,il,)f;,}iz,)i;), both satisfying conditions below.
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FIGURE 7 Reduction moves (1), (4), (4), (5). In the first two cases, the path 4; = 4] is reduced to the path
A; = A In the last two case, A/ = A/ (purple paths), but Z; differs from 4,.

Our sequence starts with (D,/ll,/li,/lz,/lg) = (D, A,4;,15,4,). At each step (D,/ll,/li,/lz,/lg)
satisfies:

(a) D isadisc diagram with 8D = y;7,,

(b) each 4; is an embedded combinatorial path in D, such that the three subdiagrams D,, D,
and D’ of D with boundaries y,1,, 1,7, and 1,1,, respectively, are reduced, and D,, D, are
square diagrams,

(c) each /1{ is an embedded combinatorial path in D (not necessarily in D) such that /Il.’ is a
combinatorial geodesic in X*, and ANDg=4,nDpy,

and after applying a reduction move, we obtain a new quintuple (D, 1,,4],1,, 4) satisfying the
above conditions.

As the subdiagrams D;, D, are square disc diagrams and D’ is reduced, we never apply the
reduction moves (3) and (2), as those would have to be performed within D’, contradicting that
D’ is reduced.

We now describe the transformation from A, to 4; and from A to /11/ , for each reduction move.
In each case the change will occur only within a subdiagram B that is transformed to B by the
reduction. See Figure 7. We assume A; intersects the interior of B. We note that it might happen
that both 4,, 1, intersect B, in which case we apply the transformations to both 4,, /11 and 4,, lg,
according to the rules described below. It might happen that paths 4,, 1, overlap, but at no step
they intersect transversally, that is, at each step they yield a decomposition of the diagram D into
D, UD' U D,. See Figure 6.

Consider reduction move (1). Let B be a bigon-subdiagram of D, which is to be reduced. As this
reduction move involves only squares, we have 4; N B = A/ n B. Note that 4; N B cannot join the
two corners of B because 4] is a combinatorial geodesic. Thus, 4; N B must be a combinatorial
geodesic crossing both dual curves associated to B. For each 4, N B we set 1, N B = /11’ N B to the
combinatorial geodesic with the same endpoints in B and maximising the area of D;. See the first
diagram in Figure 7. Thus, the reduction move yields a new disc diagram D) with new paths 4;, /1{
fori = 1, 2 satisfying the required conditions. We note that in the case where both 1,, 1, intersect
B, the choices of 4,, 1, ensure that 1, 4, do not intersect transversally.

Consider reduction move (4). Let B be a subdiagram associated to a cornsquare s and its dual
curves ending on a cone-cell C. We set A; N B to the combinatorial path with the same length and
endpoints in B and maximising the area of D;. If A/ coincides with 4; in Bwe set A/ n B = 4, n B.
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See the second diagram in Figure 7. Otherwise, we set /11’ NB = A/ N B. See the third diagram in
Figure 7. Again, in the case where both 4,, 4, intersect B, the choices of transformed paths ensure
that no transversal intersection occurs.

Finally, consider reduction move (5). Let B be a subdiagram consisting of a square s overlapping
with a cone-cell C along a single edge e. Thus, 4; N B = e. We set 4; N B to the path ds — e. We also
set A/ n B = 2/ n B. See the last diagram in Figure 7.

Working under the assumption of weakly reduced: We now assume that (D, 4, /11, A, /1;)
satisfies conditions (a)-(c) above and that D is weakly reduced. Following the notation in (b), we
claim that either D; U D’ U D, is the sandwich decomposition of D, or we can push squares into
D, and D, modifying 4;, 4] while preserving conditions (a)~(c). As 4; N\ Dy = 4/ N Dy and 4! isa
geodesic in X*, no square s in D’D has three sides on 4. So, if a square s on A; can be pushed into
D;, then s must have two consecutive edges a, b on 4. Let 4; = £;abr; where ¢;, r; are subpaths
of 2; — ab. Likewise, let A/ = #/abr]. Finally, define 4; = ¢;cdr; and 1/ = ¢/cdr] where c,d are
the other two edges of s. The quintuple (D,}l'l,}l';,)l'z,/'lé) satisfies conditions (a)-(c). Indeed, as
M{ | = |ﬂ.l’ |, condition (c) is still satisfied. As this replacement does not affect D, nor the property
of being (weakly) reduced, nor that D, and D, are square diagrams, conditions (a) and (b) are also
preserved. We arrive at the sandwich decomposition after finitely many square pushes.

Working under the further assumption that D, U D’ U D, is the sandwich decomposi-
tion of D: For the remainder of the proof, we assume that (D, 4, /1;, /12,/l;) satisfies conditions
(a)-(c) and that D is weakly reduced, and that the associated D; U D’ U D, is the sandwich decom-
position of D. By Lemma 5.4, the subdiagram D’ with 8D’ = 1,4, is a ladder. Let D" be the
subdiagram of D’ with D" = /11/_1;. Then D" is also a ladder, as 4; N D" = A/ n D’. By Proposi-
tion 4.5, the bigon 4/, /1; is e-thin for a uniform constant €. By Corollary 4.4 there exists a uniform
constant M such that y;, /1{ is M-thin. Consequently, y,, ¥, is (¢ + 2M)-thin. O
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