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Abstract
Given a non-positively curved cube complex𝑋, we prove
that the quotient of 𝜋1𝑋 defined by a cubical presen-
tation ⟨𝑋 ∣ 𝑌1, … ,𝑌𝑠⟩ satisfying sufficient non-metric
cubical small-cancellation conditions is hyperbolic pro-
vided that 𝜋1𝑋 is hyperbolic. This generalises the fact
that finitely presented classical 𝐶(7) small-cancellation
groups are hyperbolic.

MSC 2 02 0
20F06, 20F67, 20F65 (primary)

1 INTRODUCTION

A cubical presentation is a higher dimensional generalisation of a classical group presentation in
terms of generators and relators. Anon-positively curved cube complex𝑋 plays the role of the ‘gen-
erators’, and the ‘relators’ are local isometries of non-positively curved cube complexes 𝑌𝑖 ↪ 𝑋.
The associated group is the quotient of 𝜋1𝑋 by the normal closure ⟨⟨ {𝜋1𝑌𝑖} ⟩⟩𝜋1𝑋 of 𝜋1𝑌𝑖 . As in the
classical setting, this group is the fundamental group of 𝑋 with the 𝑌𝑖 ’s coned off. Likewise, cubi-
cal small-cancellation theory, introduced in [16], is a generalisation of classical small-cancellation
theory (see, e.g., [12]). In both the classical and cubical cases, the small-cancellation conditions are
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HYPERBOLICITY IN NON-METRIC CUBICAL SMALL-CANCELLATION 2037

expressed in terms of pieces. A piece in a classical presentation is a word that appears in two dif-
ferent places among the relators. The non-metric small-cancellation condition 𝐶(𝑝) where 𝑝 > 1
asserts that no relator is a concatenation of fewer than 𝑝 pieces. The metric small-cancellation
condition 𝐶′(𝛼) 𝛼 ∈ (0, 1) asserts that |𝑃| < 𝛼|𝑅| whenever 𝑃 is a piece in a relator 𝑅. Note that𝐶′( 1𝑝 ) ⇒ 𝐶(𝑝 + 1). Pieces in cubical presentation are defined similarly, and the same implication
holds in the cubical case.
Cubical small-cancellation has proven to be a fruitful tool in the study of groups acting on

CAT(0) cube complexes. It was used byWise as a step in his proof of the Malnormal Special Quo-
tient Theorem [16], and as such, played a crucial role in the proofs of theVirtualHaken andVirtual
Fibering conjectures [1]. Cubical presentations and cubical small-cancellation theory were also
studied and utilised in [2–4, 6–9, 14]. Although classical small cancellation groups have virtual
cohomological dimension ⩽ 2 [11], there exist cubical small cancellation groups with arbitrarily
large virtual cohomological dimension, which is moreover controlled by cd𝜋1𝑋 and cd𝜋1𝑌𝑖 (this
is proven in a forthcoming paper by Arenas, which is the continuation of 2).
To illustrate the difference between metric and non-metric conditions, consider the following

presentation: ⟨𝑎, 𝑏 ∣ 𝑎𝑛𝑤⟩. When 𝑤 is a long messy word (read: small cancellation) starting and
ending in 𝑏, then the 𝐶(𝑝) condition holds for all 𝑛. However 𝑎𝑛−1 is a piece! So, 𝐶′(𝛼) fails for
sufficiently large 𝑛. Similar examples can be produced in the cubical setting. For instance, let𝑋 = 𝑆 ∨ 𝐴 where 𝑆 is a cubulated surface and 𝐴 is a circle. Let 𝑤 be a small-cancellation path in𝑋 whose initial and terminal edges lie in 𝑆. Let 𝑤 be the lift of 𝑤 to 𝑋, and let𝑊 be the combi-
natorial convex hull of 𝑤. Let 𝑎𝑛 be a length 𝑛 arc that immerses onto 𝐴. Let 𝑌 be the quotient
of 𝑎𝑛 ∪𝑊, identifying the endpoints of 𝑎𝑛 and 𝑤. Then ⟨𝑋 ∣ 𝑌⟩ is a cubical presentation satis-
fying 𝐶(𝑝), but not 𝐶′( 1𝑝 ), when 𝑛 ≫ 0. The pumping lemma shows that for any 𝑋 with 𝜋1𝑋
non-elementary hyperbolic, there are presentations 𝑋∗ that are non-metric small cancellation,
but not metric small cancellation.
It is a fundamental result of classical small-cancellation theory that a group admitting a finite

presentation satisfying the classical 𝐶′( 16 ) or 𝐶(7) condition is hyperbolic. In analogy with the
metric classical small-cancellation case, a cubical 𝐶′( 114 ) presentation ⟨𝑋 ∣ 𝑌1, … ,𝑌𝑠⟩ yields a
hyperbolic group if 𝜋1𝑋 is hyperbolic and the 𝑌𝑖 are compact [16, Theorem 4.7]. However, the
proof of that result does not extend to the non-metric case. The goal of this paper is to prove the
following statement that recovers and generalises the result from the 𝐶′( 114 ) setting.
Theorem 5.1. Let𝑋∗ = ⟨𝑋 ∣ 𝑌1, … ,𝑌𝑠⟩ be a cubical presentation satisfying the 𝐶(𝑝) cubical small-
cancellation condition for 𝑝 ⩾ 14, where 𝑋,𝑌1, … ,𝑌𝑠 are compact, and 𝜋1𝑋 is hyperbolic. Then𝜋1𝑋∗ is hyperbolic.
1.1 Proof strategy

The main ingredients of the proof are the notion of the piece metric (Definition 4.1) and
Papasoglu’s thin bigon criterion for hyperbolicity (Proposition 3.1).
Themost immediate way of proving hyperbolicity for finitely presented𝐶′( 16 ) groups is to show

that a linear isoperimetric inequality holds for their Cayley complexes. This follows from the fact
that 𝐶′( 16 ) presentations satisfy Dehn’s algorithm by Greendlinger’s Lemma (see for instance [12,
V.4.5]). In the 𝐶(7) setting, one is no longer guaranteed to have a Dehn presentation (consider
the ⟨𝑎, 𝑏|𝑎𝑛𝑤⟩ examples described above). Instead, the usual way of proving hyperbolicity in
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2038 ARENAS et al.

this generality relies on the combinatorial Gauss–Bonnet Theorem. Another way is to realise
that reduced disc diagrams satisfy 𝐶′( 16 ) if we regard all pieces as having length 1. In fact, this
viewpoint leads to the piece-metric.
To illustrate the basic idea behind our strategy, we sketch a proof of hyperbolicity in the 𝐶(7)

case using the piece-metric and the thin bigon criterion. The definition of the classical 𝐶(𝑛) con-
dition and of all the diagrammatic notions introduced for cubical presentations in Subsection 2.2
can be particularised to this setting, and a version of Greendlinger’s Lemma also holds (see, for
instance, [12, V.4.5]).

Illustrative theorem. Let𝑋 be a 2-complex satisfying the𝐶(7) small-cancellation condition. Then𝑋 is hyperbolic with the piece metric.

This implies hyperbolicity of finitely presented𝐶(7) groups, as in that case the piece-metric and
the usual combinatorial metric on the Cayley graph are quasi-isometric (see Proposition 4.3).

Proof. We check that all bigons in 𝑋(0) are 𝜖-thin in the piece metric for some 𝜖 > 0, and apply
Proposition 3.1 to conclude that 𝑋 is hyperbolic.
Let 𝛾1, 𝛾2 be piece-geodesics forming a bigon in 𝑋, and let 𝐷 → 𝑋 be a reduced disc diagram

with 𝜕𝐷 = 𝛾1𝛾̄2. We claim that𝐷 is a (possibly degenerate) ladder, and hence that the bigon 𝛾1, 𝛾2
is 1-thin, as by definition any two cells in a ladder intersect along at most one piece.
Indeed, by Greendlinger’s Lemma, 𝐷 is either a ladder, or contains at least three shells and/or

spurs. First note that𝐷 cannot have spurs, as these can be removed to obtain paths 𝛾′1, 𝛾′2 with the
same endpoints as 𝛾1, 𝛾2, and which are shorter in the piece metric, thus contradicting that 𝛾1, 𝛾2
are piece-geodesics.
If 𝐷 has at least three shells, then at least one shell 𝑆 must have its outerpath 𝑄 contained in

either 𝛾1 or 𝛾2. As both cases are analogous, assume 𝑄 ⊂ 𝛾1, and let 𝑅 be the innerpath of 𝑆. As 𝑆
is a shell and 𝑋 satisfies 𝐶(7), then 𝑅 is the concatenation of at most 3 pieces, so |𝑅|p < |𝑄|p, and
the path 𝛾′1 obtained from 𝛾1 by traversing 𝑅 instead of 𝑄 is the concatenation of less pieces than𝛾1, contradicting that 𝛾1 is a piece-geodesic.
Thus, 𝐷 is a ladder, and the proof is complete. □

1.2 Structure of the paper

The paper is organised as follows. In Section 2, we give background on cube complexes, cubical
grouppresentations and cubical small-cancellation. In Section 3, we recall a criterion for hyperbol-
icity for groups acting on graphs. In Section 4, we define and analyse the piecemetric. In Section 5,
we prove Theorem 5.1.

2 CUBICAL BACKGROUND

2.1 Non-positively curved cube complexes

We assume that the reader is familiar with CAT(0) cube complexes, which are CAT(0) spaces hav-
ing cell structures where each cell is isometric to a cube. We refer the reader to [5, 10, 15, 16]. A
non-positively curved cube complex is a cell-complex 𝑋 whose universal cover 𝑋 is a CAT(0) cube
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HYPERBOLICITY IN NON-METRIC CUBICAL SMALL-CANCELLATION 2039

complex. A hyperplane 𝐻̃ in 𝑋 is a subspace whose intersection with each 𝑛-cube [0, 1]𝑛 is either
empty or consists of the subspace where exactly one coordinate is restricted to 12 . For a hyper-
plane 𝐻̃ of 𝑋, we let 𝑁(𝐻̃) denote its carrier, which is the union of all closed cubes intersecting𝐻̃. The combinatorial metric d on the 0-skeleton of a non-positively curved cube complex 𝑋 is a
length metric where the distance between two points is the length of the shortest combinatorial
path connecting them.Amap𝜙 ∶ 𝑌 → 𝑋 between non-positively curved cube complexes is a local
isometry if 𝜙 is locally injective, 𝜙maps open cubes homeomorphically to open cubes, and when-
ever 𝑎, 𝑏 are concatenable edges of 𝑌, if 𝜙(𝑎)𝜙(𝑏) is a subpath of the attaching map of a 2-cube of𝑋, then 𝑎𝑏 is a subpath of a 2-cube in 𝑌.
2.2 Cubical presentations

We recall the notion of a cubical presentation, and the cubical small-cancellation conditions from
[16].
A cubical presentation ⟨𝑋 ∣ 𝑌1, … ,𝑌𝑚⟩ consists of a non-positively curved cube complex𝑋, and

a set of local isometries 𝑌𝑖 ↬ 𝑋 of non-positively curved cube complexes. We use the notation𝑋∗ for the cubical presentation above. As a topological space, 𝑋∗ consists of 𝑋 with a cone on 𝑌𝑖
attached to 𝑋 for each 𝑖. The vertices of the cones on 𝑌𝑖 ’s will be referred to as cone-vertices of 𝑋∗.
The cellular structure of 𝑋∗ consists of all the original cubes of 𝑋, and the ‘pyramids’ over cubes
in 𝑌𝑖 with a cone-vertex for the apex.
As mentioned in the introduction, cubical presentations generalise classical group presenta-

tions. Indeed, a classical presentation complex associated with a group presentation 𝐺 = ⟨𝑆 ∣ 𝑅⟩
can be viewed as a cubical presentation where the non-positively curved cube complex 𝑋 is just a
wedge of circles, one corresponding to each generator in 𝑆. The complexes 𝑌𝑖 correspond to rela-
tors 𝑟𝑖 in 𝑅. Each cycle 𝑌𝑖 has length |𝑟𝑖|, and the local isometry 𝑌𝑖 ↬ 𝑋 is defined by labelling
the edges of 𝑌𝑖 with the letters of 𝑟𝑖 .
The universal cover𝑋∗ consists of a cube complex𝑋with cones over copies of𝑌𝑖 ’s. The complex𝑋 is a covering space of𝑋. A combinatorial geodesic in𝑋∗ is a combinatorial geodesic in𝑋, viewed

as a path in 𝑋∗.
2.3 Disc diagrams in 𝑿∗
Throughout this paper, we will be analysing properties of disc diagrams, which we introduce
below together with some associated terminology:
A map 𝑓 ∶ 𝑋 ⟶ 𝑌 between 2-complexes is combinatorial if it maps cells to cells of the same

dimension. A complex is combinatorial if all attaching maps are combinatorial, possibly after
subdividing the cells.
A disc diagram is a compact, contractible 2-complex 𝐷 with a fixed planar embedding 𝐷 ⊆ 𝕊2.

The embedding𝐷 ↪ 𝕊2 induces a cell structure on 𝕊2, consisting of the 2-cells of𝐷 together with
an additional 2-cell, which is the 2-cell at infinity when viewing 𝕊2 as the one point compactifica-
tion of ℝ2. The boundary path 𝜕𝐷 of 𝐷 is the attaching map of the 2-cell at infinity. Similarly, an
annular diagram is a compact 2-complex𝐴with a fixed planar embedding𝐴 ⊆ 𝕊2 and the homo-
topy type of 𝕊1. The annular diagram𝐴 has two boundary cycles 𝜕in𝐴 𝜕out𝐴. A disc diagram in𝑋∗
is a combinatorial map (𝐷, 𝜕𝐷)→ (𝑋∗,𝑋(1)) of a disc diagram. The 2-cells of a disc diagram 𝐷 in𝑋∗ are of two kinds: squares mapping onto squares of 𝑋, and triangles mapping onto cones over
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2040 ARENAS et al.

F IGURE 1 Cone-cells in a disc diagram. In figures, we will often omit the cell structure of cone-cells, unless
needed.

edges contained in 𝑌𝑖 . The vertices in 𝐷 that are mapped to the cone-vertices of 𝑋∗ are also called
the cone-vertices. Triangles in 𝐷 are grouped into cyclic families meeting around a cone-vertex.
We refer to such families as cones, and treat a whole such family as a single 2-cell. A cone-cell 𝐶 is
the union of an annular square diagram𝐴 → 𝐷 whose interior embeds in𝐷, together with a cone
over 𝜕𝑖𝑛𝐴. See Figure 1.
We emphasise that this definition differs slightly from the definition of a cone-cell in the lit-

erature, where 𝐴 is simply a circle; allowing 𝐴 to be an arbitrary annular diagram, 𝐷 implicitly
comes equipped with a choice of cone-cells.
The square part 𝐷□ of 𝐷 is a subdiagram which is the union of all the squares that are not

contained in cone-cells.
A square disc diagram is a disc diagram whose square part is the whole diagram, that is, it

contains no cone-cells. Amid-interval in a square, viewed as [0, 1] × [0, 1], is an interval { 12 } × [0, 1]
or [0, 1] × { 12 }. A dual curve in a square disc diagram 𝐷 is a curve that intersect each closed square
either trivially, or along a mid-interval, that is, a dual curve is a restriction of a hyperplane in 𝑋 to𝐷. We note that for each 1-cube of 𝐷, there exists a unique dual curve crossing it [16, 2e].
The complexity of a disc diagram 𝐷 in 𝑋∗ is defined as

Comp(𝐷) = (#cone-cells, #squares in 𝐷□
) .

We say that 𝐷 hasminimal complexity if Comp(𝐷) is minimal in the lexicographical order among
disc diagrams with the same boundary path as 𝐷. A disc diagram 𝐷 in 𝑋∗ is degenerate ifComp(𝐷) = (0, 0). A disc diagram 𝐷, in 𝑋∗ is singular if 𝐷 is not homeomorphic to a closed ball
in ℝ2. This is equivalent to 𝐷 either being a single vertex or an edge, or containing a cut vertex. In
particular, every degenerate disc diagram is singular.
A square 𝑠 is a cornsquare on a cone-cell 𝐶 if a pair of dual curves emanating from consecutive

edges 𝑎, 𝑏 of 𝑐 terminates on consecutive edges 𝑎′, 𝑏′ of 𝜕𝐷.
Definition 2.1 (Reduction moves). We define six types of reduction moves. See Figure 2.

(0) Cancelling a pair of squares 𝑠, 𝑠′ meeting at one edge 𝑒 in the disc diagram, whose map to 𝑋∗
factors through a reflection identifying them. That is, cutting out 𝑒 ∪ 𝐼𝑛𝑡(𝑠) ∪ 𝐼𝑛𝑡(𝑠′) and then
gluing together the paths 𝜕𝑠 − 𝑒 and 𝜕𝑠′ − 𝑒.
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HYPERBOLICITY IN NON-METRIC CUBICAL SMALL-CANCELLATION 2041

F IGURE 2 The six reduction moves from Definition 2.1.

(1) Replacing a minimal bigon-diagram, that is, a disc subdiagram containing two dual curves
intersecting each other twice, which is not contained in any other such subdiagram, with a
lower complexity square disc diagram with the same boundary.

(2) Replacing a pair of adjacent cone-cells with a single cone-cell.
(3) Replacing a cone-cell with a square disc diagram with the same boundary.
(4) Absorbing a cornsquare 𝑠 to a cone-cell 𝐶, that is, replace a minimal subdiagram containing𝐶 and the two dual curves starting at 𝐶 and ending in 𝑠 with a lower complexity disc diagram

with the same boundary and containing a cone-cell 𝐶 ∪ 𝑠′ for some square 𝑠′.
(5) Absorbing a square with a single edge in a cone-cell into the cone-cell.

Definition 2.2 (Reduced and weakly reduced disc diagram). A disc diagram 𝐷 → 𝑋∗ in a cubical
presentation is∙ reduced if no moves (0)–(5) from Definition 2.1 can be performed in 𝐷;∙ weakly reduced if no moves (1)–(5) from Definition 2.1 can be performed in 𝐷.
Note that if𝐷 hasminimal complexity then𝐷 is reduced, and that, in particular, each reduction

move outputs a diagram 𝐷′ with 𝐴𝑟𝑒𝑎(𝐷′) < 𝐴𝑟𝑒𝑎(𝐷) and 𝜕𝐷′ = 𝜕𝐷. Consequently:
Lemma 2.3. Let𝐷 → 𝑋∗ be a disc diagram, then there exist disc diagrams𝐷′ → 𝑋∗ and𝐷′′ → 𝑋∗
satisfying:

(1) 𝜕𝐷 = 𝜕𝐷′ = 𝜕𝐷′′,
(2) 𝐷′ is weakly reduced and 𝐷′′ is reduced,
(3) 𝐷′ is obtained from 𝐷 after a a finite number of moves of types (1)–(5), and 𝐷′′ is obtained from𝐷 after a finite number of moves of type (0)–(5).

Remark 2.4. Many theorems about disc diagrams in the literature assume that the disc diagram
is reduced or minimal complexity, but it is in fact sufficient to consider weakly reduced diagrams.
For example, this is the case with Lemma 2.7 (the Cubical Greendlinger’s Lemma).

2.4 Cubical small-cancellation

Weuse the conventionwhere 𝜌 denotes the path 𝜌with the opposite orientation. A grid is a square
disc diagram isometric to the product of two intervals. Let 𝜌 and 𝜂 be two combinatorial paths in
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2042 ARENAS et al.

F IGURE 3 Blue paths are contiguous pieces, and yellow paths are pieces but not contiguous pieces.

𝑋∗.We say𝜌 and𝜎 are parallel if there exists a grid𝐸 → 𝑋∗with 𝜕𝐸 = 𝜇𝜌𝜈𝜂, where the dual curves
dual to edges of 𝜌, ordered with respect to its orientation, are also dual to edges of 𝜂, ordered with
respect to its orientation. Concretely, if 𝜌 = 𝑒1⋯ 𝑒𝑘 and 𝜎 = 𝑓1⋯𝑓𝑘, and ℎ(𝑒𝑖) and ℎ(𝑓𝑖) are the
curves dual to 𝑒𝑖 and 𝑓𝑖 , respectively, then 𝜌 is a piece if ℎ(𝑒𝑖) = ℎ(𝑓𝑖) for each 𝑖 ∈ {1, … , 𝑘}.
An abstract contiguous cone-piece of 𝑋∗ in 𝑌𝑖 is a component of 𝑌𝑖 ∩ 𝑌𝑗 , where 𝑌𝑖 is a fixed

elevation of𝑌𝑖 to the universal cover𝑋, and either 𝑖 ≠ 𝑗 or where 𝑖 = 𝑗 but𝑌𝑗 ≠ 𝑌𝑖 . Each abstract
contiguous cone-piece 𝑃 induces a map 𝑃 → 𝑌𝑖 which is the composition 𝑃 ↪ 𝑌𝑖 → 𝑌𝑖 , and a
contiguous cone-piece of 𝑌𝑗 in 𝑌𝑖 is a combinatorial path 𝜌 → 𝑃 in an abstract contiguous cone-
piece of𝑌𝑗 in𝑌𝑖 . An abstract contiguous wall-piece of𝑋∗ in𝑌𝑖 is a component of𝑌𝑖 ∩ 𝑁(𝐻̃), where𝐻̃ is a hyperplane that is disjoint from 𝑌𝑖 . Each abstract contiguous wall-piece 𝑃 induces a map𝑃 → 𝑌𝑖 , and a contiguous wall-piece of 𝑌𝑖 is a combinatorial path 𝜌 → 𝑃 in an abstract contiguous
wall-piece of 𝑌𝑖 . A piece is a path parallel to a contiguous cone-piece or wall-piece.
The difference between contiguous pieces and pieces is illustrated in Figure 3.
For an integer 𝑝 > 0, we say 𝑋∗ satisfies the 𝐶(𝑝) small-cancellation condition if no essential

combinatorial closed path in 𝑌𝑖 can be expressed as a concatenation of less than 𝑝 pieces. For a
constant 𝛼 > 0, we say 𝑋∗ satisfies the 𝐶′(𝛼) small-cancellation condition if diam(𝑃) < 𝛼‖𝑌𝑖‖ for
every piece 𝑃 involving 𝑌𝑖 .
Note that the 𝐶′( 1𝑝 ) condition implies the 𝐶(𝑝 + 1) condition.When 𝑝 ⩾ 9 and𝑋∗ is 𝐶(𝑝), then

each immersion 𝑌𝑖 ↬ 𝑋 lifts to an embedding 𝑌𝑖 ↪ 𝑋∗. This is proven in [16, Theorem 4.1] for𝑝 ⩾ 12, and in [8] for 𝑝 ⩾ 9.
We record the following observation, a proof of which can be found in [2].

Lemma 2.5. Let 𝑋∗ = ⟨𝑋 ∣ 𝑌1, … ,𝑌𝑚⟩ be a cubical presentation where 𝑋 and 𝑌1, … ,𝑌𝑚 are com-
pact non-positively curved cube complexes. If 𝑋∗ satisfies the cubical 𝐶(𝑝) condition for 𝑝 ⩾ 2, then
there is a bound on the combinatorial length of pieces of 𝑋∗.
2.5 Greendlinger’s Lemma

A cone-cell 𝐶 in a disc diagram 𝐷 is a boundary cone-cell if 𝐶 intersect the boundary 𝜕𝐷 along at
least one edge. A non-disconnecting boundary cone-cell 𝐶 is a shell of degree 𝑘 if 𝜕𝐶 = 𝑅𝑄 where𝑄 is the maximal subpath of 𝜕𝐶 contained in 𝜕𝐷, and 𝑘 is the minimal number such that 𝑅 can be
expressed as a concatenation of 𝑘 pieces.We refer to𝑅 as the innerpath of𝐶 and𝑄 as the outerpath
of 𝐶.
A corner in a disc diagram 𝐷 is a vertex 𝑣 in 𝜕𝐷 of valence 2 in 𝐷 that is contained in some

square of 𝐷. A cornsquare is a square 𝑐 and a pair of dual curves emanating from consecutive
edges 𝑎, 𝑏 of 𝑐 that terminate on consecutive edges 𝑎′, 𝑏′ of 𝜕𝐷. We abuse the notation and refer
to the common vertex of 𝑎′, 𝑏′ as a cornsquare as well. A spur is a vertex in 𝜕𝐷 of valence 1 in 𝐷.
If 𝐷 contains a spur or a cut-vertex, then 𝐷 is singular.
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HYPERBOLICITY IN NON-METRIC CUBICAL SMALL-CANCELLATION 2043

F IGURE 4 Example of a ladder.

Definition 2.6 (Ladder). A pseudo-grid between paths 𝜇 and 𝜈 is a square disc diagram 𝐸 where
the boundary path 𝜕𝐸 is a concatenation 𝜇𝜌𝜈𝜂 such that
(1) each dual curve starting on 𝜇 ends on 𝜈, and vice versa,
(2) no pair of dual curves starting on 𝜇 cross each other,
(3) no pair of dual curves cross each other twice.

If a pseudo-grid 𝐸 is degenerate then either 𝜇 = 𝜈 or 𝜌 = 𝜂.
A ladder is a disc diagram (𝐷, 𝜕𝐷)→ (𝑋∗,𝑋(0)) which is an alternating union of cone-cells

and/or vertices 𝐶0,𝐶2 … ,𝐶2𝑛 and (possibly degenerate) pseudo-grids 𝐸1,𝐸3 … ,𝐸2𝑛−1, with 𝑛 ⩾ 0,
in the following sense:

(1) the boundary path 𝜕𝐷 is a concatenation 𝜆1𝜆2 where the initial points of 𝜆1, 𝜆2 lie in 𝐶0, and
the terminal points of 𝜆1, 𝜆2 lie in 𝐶2𝑛,

(2) 𝜆1 = 𝛼0𝜌1𝛼2⋯𝛼2𝑛−2𝜌2𝑛−1𝛼2𝑛 and 𝜆2 = 𝛽0𝜂1𝛽2⋯ 𝛽2𝑛−2𝜂2𝑛−1𝛽2𝑛,
(3) the boundary path 𝜕𝐶𝑖 = 𝜈𝑖−1𝛼𝑖𝜇𝑖+1𝛽𝑖 for some 𝜈𝑖−1 and𝜇𝑖+1 (where 𝜈−1 and𝜇2𝑛+1 are trivial),

and
(4) the boundary path 𝜕𝐸𝑖 = 𝜇𝑖𝜌𝑖𝜈𝑖𝜂𝑖 .
See Figure 4.

Lemma 2.7 (Cubical Greendlinger’s Lemma [8, 16]). Let𝑋∗ = ⟨𝑋 ∣ 𝑌1, … ,𝑌𝑠⟩ be a cubical presen-
tation satisfying the 𝐶(9) condition, and let 𝐷 → 𝑋∗ be a weakly reduced disc diagram. Then one of
the following holds:∙ 𝐷 is a ladder, or∙ 𝐷 has at least three shells of degree ⩽ 4 and/or corners and/or spurs.
We note that our definition of ladder differs slightly from the definitions in [8, 16], so that a

single cone-cell and a single vertex count as ladders here. Also, the statements in [8, 16] assume
that the disc diagrams are reduced/minimal complexity, but the proofs work for weakly reduced
disc diagrams.

3 HYPERBOLIC BACKGROUND

We explain the convention we will follow. A pair (𝑌, d) is a metric graph, if there exists a graphΓ such that 𝑌 is the vertex set of Γ, and d is defined as follows. For each edge of Γ, we assign a
positive number which is the length of that edge. The length of a simple path in Γ is the sum of the
lengths of the edges in the path. A metric d on a set 𝑌 is a graph metric, if (𝑌, d) is a metric graph.
In this paper, all edges of metric graphs have one of two lengths: 1 or 12 .
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2044 ARENAS et al.

3.1 Thin bigon criterion for hyperbolicity

A bigon in a geodesic metric space 𝑌 is a pair of geodesic segments 𝛾1, 𝛾2 in 𝑌 with the same
endpoints, that is, such that 𝛾1(0) = 𝛾2(0) and 𝛾1(𝓁) = 𝛾2(𝓁) where 𝓁 is the length of 𝛾. A bigon𝛾1, 𝛾2 is 𝜀-thin if 𝑑(𝛾1(𝑡), 𝛾2(𝑡)) < 𝜖 for all 𝑡 ∈ (0,𝓁). If we do not care about the specific value
of 𝜀, the above condition is equivalent to the condition that im 𝛾1 ⊆ 𝑁𝜀′(im 𝛾2) and im 𝛾2 ⊆𝑁𝜀′(im 𝛾1) for some 𝜀′ > 0. Indeed, suppose that for every 𝑡 ∈ (0,𝓁) there exists 𝑡′ ∈ (0,𝓁) such
that 𝑑(𝛾1(𝑡), 𝛾2(𝑡′)) < 𝜀′. Then |𝑡 − 𝑡′| < 𝜀, as otherwise 𝛾1 and 𝛾2 are not geodesic segments. That
implies that 𝑑(𝛾1(𝑡), 𝛾2(𝑡)) ⩽ 𝑑(𝛾1(𝑡), 𝛾2(𝑡′)) + 𝑑(𝛾2(𝑡′), 𝛾2(𝑡)) < 2𝜀′.
This generalises to paths 𝛾1, 𝛾2 whose endpoints are not necessarily the same. We say 𝛾1, 𝛾2𝜖-fellow travel if 𝑑(𝛾1(𝑡), 𝛾2(𝑡)) < 𝜖 for all 𝑡.
The following is a hyperbolicity criterion for graphs, due to Papasoglu [13, Theorem 1.4] (see

also [16, Proposition 4.6]).

Proposition 3.1 (Thin Bigon Criterion). Let𝑌 be a graphwhere all bigons are 𝜀-thin for some 𝜀 > 0.
Then there exists 𝛿 = 𝛿(𝜀) such that 𝑌 is 𝛿-hyperbolic.
Of course, the converse also holds.

4 THE PIECEMETRIC

Let𝑋∗ = ⟨𝑋 ∣ 𝑌1, … ,𝑌𝑠⟩ be a cubical presentation. As explained in Subsection 2.2, we write𝑋∗ to
denote the complex 𝑋 with cones over 𝑌𝑖 ’s attached. In particular, 𝑋 can be viewed as a subspace
of𝑋∗. The preimage of𝑋 in the universal cover𝑋∗ of𝑋∗ is denoted by𝑋. Note that𝑋 is a covering
space of 𝑋. The preimage of the 0-skeleton of 𝑋 in 𝑋∗ is also the 0-skeleton of 𝑋, so it is denoted
by 𝑋(0).
Definition 4.1. The piece length of a combinatorial path 𝛾 in 𝑋(0) is the smallest 𝑛 such that 𝛾 =𝜈1⋯ 𝜈𝑛 where each 𝜈𝑘 is a 1-cube or a piece. The piece metric dp on 𝑋(0) is defined as dp(𝑎, 𝑏) = 𝑛
where 𝑛 is the smallest piece length of a path from 𝑎 to 𝑏.
We note that dp is a graph metric when 𝑋(0) is viewed as the graph with all edges of length

1 obtained from the 1-skeleton 𝑋(1) of 𝑋 by adding extra edges between vertices contained in a
single piece. We will denote this graph by (𝑋(0), dp).
A piece decomposition of a path 𝛾 is an expression 𝛾 = 𝜈1⋯ 𝜈𝑘, where each 𝜈𝑖 is a piece or 1-cube.

We make the following easy observation:

Lemma 4.2. Let 𝛾, 𝛾1, 𝛾2 be piece-metric geodesics in 𝑋(0) where 𝛾 = 𝛾1𝛾2. Then
|𝛾1|p + |𝛾2|p − 1 ⩽ |𝛾|p ⩽ |𝛾1|p + |𝛾2|p.

Proof. Any piece decomposition 𝛾 = 𝜈1⋯ 𝜈𝑘 yields piece decompositions of both 𝛾1 and 𝛾2, where
at most one piece 𝜈𝑖 for 𝑖 ∈ {1, … , 𝑘} further decomposes into the concatenation of two pieces𝜈′𝑖 , 𝜈′′𝑖 , so 𝛾1 = 𝜈1⋯ 𝜈′𝑖 and 𝛾2 = 𝜈′′𝑖 ⋯ 𝜈𝑘. Similarly, any two piece decompositions of 𝛾1 and 𝛾2
can be concatenated to obtain a piece decomposition of 𝛾. □
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HYPERBOLICITY IN NON-METRIC CUBICAL SMALL-CANCELLATION 2045

We now prove a few basic facts about the piece metric. First, it is quasi-isometric to the
combinatorial metric under fairly weak hypotheses.

Proposition 4.3. Let 𝑋∗ = ⟨𝑋 ∣ 𝑌1, … ,𝑌𝑠⟩ be a cubical presentation satisfying the 𝐶(𝑝) condition
for 𝑝 ⩾ 2, and where 𝑋,𝑌1, … ,𝑌𝑠 are compact. Then (𝑋(0), dp) is quasi-isometric to (𝑋(0), d) where
d is the standard combinatorial metric. Moreover, there is a uniform bound on the dp-diameters
of cones.

Proof. Indeed, dp(𝑎, 𝑏) ⩽ d(𝑎, 𝑏) for all 𝑎, 𝑏 ∈ 𝑋(0), and by Lemma 2.5 there is an upper bound𝑀
on the combinatorial length of pieces, so we also have that d(𝑎, 𝑏) ⩽ 𝑀dp(𝑎, 𝑏).
As there are only finitely many 𝑌𝑖 ’s and each 𝑌𝑖 is compact, there must be an upper bound on

the diameter of a simple essential curve in 𝑌𝑖 with respect to d and thus with respect to dp, which
implies the second statement. □

Corollary 4.4. Suppose that 𝜋1𝑋 is hyperbolic. Let 𝐷 → 𝑋∗ be a square diagram with boundary𝜕𝐷 = 𝛾𝜆 where 𝛾 is a dp-geodesic, and 𝜆 is a d-geodesic. Then the bigon 𝐷 is𝑀-thin for a uniform
constant𝑀.

Proof. First note that 𝐷 → 𝑋∗ is a square diagram in 𝑋, but it also lifts to 𝑋. The metric dp also
lifts to 𝑋(0), and by Proposition 4.3 d, dp are quasi-isometric on 𝑋(0), and therefore on 𝑋(0). The
statement then follows from the uniform bound on theHausdorff distance between geodesics and
quasi-geodesics in hyperbolic spaces. □

We note that ladders are thin with respect to the piece metric.

Proposition4.5. Suppose that𝜋1𝑋 is hyperbolic. Let𝐷 → 𝑋∗ be a ladderwith boundary 𝜕𝐷 = 𝜆1𝜆2
as in Definition 2.6 where each subpath of 𝜆𝑖 contained in a single pseudo-grid is a geodesic. Then
the bigon 𝜆1, 𝜆2 is 𝜖-thin with respect to dp for a uniform constant 𝜖 > 0 dependent only on 𝑋∗.
Proof. We only show that 𝜆1 ⊆ 𝑁𝜖(𝜆2), as the argument for 𝜆2 ⊆ 𝑁𝜖(𝜆1) is analogous. Let 𝑥 ∈ 𝜆1.
We want to show that dp(𝑥, 𝜆2) ⩽ 𝜖. If 𝑥 belongs to a cone-cell 𝐶, then by the definition of the
ladder, 𝜆2 also intersects 𝐶, so dp(𝑥, 𝜆2) is bounded by the piece-metric diameter of 𝐶, which is
uniformly bounded by some constant 𝜖1 by Proposition 4.3.
Otherwise 𝑥 lies in a pseudo-grid. Let 𝜌, 𝜂 be subpaths of 𝜆1, 𝜆2, respectively, contained in the

pseudo-grid that contains 𝑥. The paths 𝜌, 𝜂 are both combinatorial geodesics by the assumption.
By Proposition 4.3 𝜌, 𝜂 start and end at a uniform distance, as they lie in the same cone-cell. By
hyperbolicity of 𝑋, there exists 𝜖2 > 0 such that 𝜌, 𝜂 𝜖2-fellow travel. The conclusion follows with𝜖 = max{𝜖1, 𝜖2}. □

In the proof of Theorem 5.1, we will use the following technical lemma.

Lemma4.6. Let𝑋∗ be a cubical presentation, and let𝐸 → 𝑋∗ be a square diagram,with the induced
metric dp. Suppose that 𝜕𝐸 = 𝓁𝑄𝑟𝛾 where 𝛾 is a piece geodesic, no dual curve in 𝐸 crosses 𝓁𝑄𝑟 twice,
and each of 𝓁,𝑄, 𝑟 contains no cornsquares of 𝐸 in its interior. Moreover, assume that |𝑄|p ⩾ 3. Then
|𝛾|p ⩾ |𝓁|p + |𝑄|p + |𝑟|p − 3.
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2046 ARENAS et al.

F IGURE 5 Steps of the proof of Lemma 4.6.

Proof. See Figure 5 for a diagram 𝐸 with 𝜕𝐸 = 𝓁𝑄𝑟𝛾. By the assumptions, every dual curve of 𝐸
starting at 𝓁𝑄𝑟 must exit the diagram in 𝛾. Thus, each edge of 𝓁𝑄𝑟 is naturally paired with an
edge of 𝛾. For every piece 𝜈 in 𝛾, we consider all the dual curves ℎ1, … ,ℎ𝑛 starting at 𝜈 that exit 𝐸
in 𝓁𝑄𝑟.
These define a collection of edges in 𝓁𝑄𝑟, and every subcollection of such consecutive edges

forms a path that is a piece, as it is parallel to some path contained in one of 𝑌𝑖 . By grouping
consecutive edges into maximal subpaths contained in one of 𝓁, 𝑄, or 𝑟, we get pieces 𝜈1, … , 𝜈𝑘
whose interiors are pairwise disjoint (ordered consistently with the orientation of 𝓁𝑄𝑟), and say
that 𝜈 projects to 𝜈1, … , 𝜈𝑘 .
First we claim that each of 𝓁,𝑄, 𝑟 contains at most one piece 𝜈𝑖 . Suppose to the contrary that𝜈𝑖 , 𝜈𝑖+1 are both contained in 𝓁 (and the same argument applies to 𝑄, 𝑟). Then each dual curve

starting at an edge of 𝓁 lying between 𝜈𝑖 and 𝜈𝑖+1 must intersect at least one dual curve starting
at edges of 𝜈𝑖 , 𝜈𝑖+1, as otherwise it would also lie in a projection of 𝜈, yielding a cornsquare in 𝓁.
Thus, we can denote the projection of 𝜈 by 𝜈𝓁 , 𝜈𝑄, 𝜈𝑟 where each piece is a possibly empty

projection onto 𝓁,𝑄, 𝑟, respectively. See left diagram in Figure 5. We will assume that they are
oriented consistently with 𝓁,𝑄, 𝑟, respectively, not necessarily consistently with 𝜈.
Let 𝛾 = 𝜈1⋯ 𝜈𝑛 be aminimal piece decomposition of 𝛾, that is, |𝛾|p = 𝑛. Let 𝓁 = 𝜈𝓁𝑖𝓁(1)⋯ 𝜈𝓁𝑖𝓁(𝑛𝓁)

be the induced piece-decomposition where we only write non-trivial pieces. In particular, 𝑖𝓁 ∶{1, … ,𝑛𝓁}→ {1, … ,𝑛} is an injective function. We now claim that 𝑖𝓁 is monotone. Suppose to the
contrary, that 1 ⩽ 𝑗 < 𝑘 ⩽ 𝑛𝓁 but 𝑖𝓁(𝑗) > 𝑖𝓁(𝑘). Then there must exists a cornsquare in the con-
nected subpath of 𝓁 containing 𝜈𝓁𝑖𝓁(𝑘) and 𝜈𝓁𝑖𝓁(𝑗), which is a contradiction. Analogously, we get𝑄 = 𝜈𝑄𝑖𝑄(1)⋯ 𝜈𝑄𝑖𝑄(𝑛𝑄) and 𝑟 = 𝜈𝑟𝑖𝑟(1)⋯ 𝜈𝑟𝑖𝑟(𝑛𝑟), and the functions 𝑖𝑄, 𝑖𝑟 are monotone. These are not
necessarily the minimal piece decompositions, but certainly we have |𝓁|p ⩽ 𝑛𝓁 , |𝑄|p ⩽ 𝑛𝑄 and
|𝑟|p ⩽ 𝑛𝑟. To prove the lemma, we will show that |𝑄|p + 𝑛𝓁 + 𝑛𝑟 ⩽ 𝑛 + 3.
Note that 𝑖𝓁(𝑛𝓁) is the largest index in {1, … ,𝑛} such that 𝜈𝑖𝓁(𝑛𝓁) has non-trivial projection onto

𝓁, and similarly 𝑖𝑟(1) is the lowest index in {1, … ,𝑛} such that 𝜈𝑖𝑟(1) has non-trivial projection onto𝑟. See middle diagram in Figure 5. As 𝑖𝓁 , 𝑖𝑟 are monotone, 𝑛𝓁 ⩽ 𝑖𝓁(𝑛𝓁) and 𝑛𝑟 ⩽ 𝑛 − 𝑖𝑟(1). Thus, it
remains to prove that |𝑄|p ⩽ 𝑖𝑟(1) − 𝑖𝓁(𝑛𝓁) + 3.
Let 𝑘𝓁 is the largest number such that 𝑖𝑄(𝑘𝓁) < 𝑖𝓁(𝑛𝓁). We claim that 𝜈𝑄𝑖𝑄(1)⋯ 𝜈𝑄𝑖𝑄(𝑘𝓁) is a single

piece in 𝑄. Indeed, the dual curves starting in 𝜈𝑄𝑖𝑄(1) … 𝜈𝑄𝑖𝑄(𝑘𝓁) must all intersect a dual curve start-
ing in 𝜈𝑖𝓁(𝑛𝓁) and exiting the diagram in 𝓁. See right diagram in Figure 5. Similarly, let 𝑘𝑟 be the
smallest number such that 𝑖𝑄(𝑘𝑟) > 𝑖𝑟(1) and note that 𝜈𝑄𝑖𝑄(𝑘𝑟) … 𝜈𝑄𝑖𝑄(𝑛𝑄) is a single piece in 𝑄. By
assumption, |𝑄|𝑝 ⩾ 3, so the subpath 𝜈𝑄𝑖𝑄(𝑘𝓁+1)⋯ 𝜈𝑄𝑖𝑄(𝑘𝑟−1) is non-empty. In particular, 𝑘𝑟 > 𝑘𝓁 + 1.
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HYPERBOLICITY IN NON-METRIC CUBICAL SMALL-CANCELLATION 2047

As by definition of 𝑘𝓁 , 𝑘𝑟 we have 𝑖𝑄(𝑘𝓁 + 1) ⩾ 𝑖𝓁(𝑛𝓁) and 𝑖𝑄(𝑘𝑟 − 1) ⩽ 𝑖𝑟(1), we conclude that
|𝜈𝑄𝑖𝑄(𝑘𝓁+1)𝜈𝑄𝑖𝑄(𝑘𝓁+2)⋯ 𝜈𝑄𝑖𝑄(𝑘𝑟−1)|p⩽ |𝜈𝑖𝑄(𝑘𝓁+1)𝜈(𝑖𝑄(𝑘𝓁+1)+1)⋯ 𝜈𝑖𝑄(𝑘𝑟−1)|p⩽ |𝜈𝑖𝓁(𝑛𝓁)𝜈(𝑖𝓁(𝑛𝓁)+1)⋯ 𝜈𝑖𝑟(1)|p⩽ 𝑖𝑟(1) − 𝑖𝓁(𝑛𝓁) + 1.

This proves that |𝑄|p ⩽ 𝑖𝑟(1) − 𝑖𝓁(𝑛𝓁) + 3 and completes the proof. □

5 PROOF OF HYPERBOLICITY

In the proof of the next theorem, we show that, under suitable assumptions, (𝑋(0), dp) is a 𝛿-
hyperbolic graph to deduce that 𝜋1𝑋∗ is hyperbolic. The basic strategy is similar to [16, Theorem
4.7], but the details in this case are significantly more involved.

Theorem 5.1. Let𝑋∗ = ⟨𝑋 ∣ 𝑌1, … ,𝑌𝑠⟩ be a cubical presentation satisfying the 𝐶(𝑝) cubical small-
cancellation condition for 𝑝 ⩾ 14, where 𝑋,𝑌1, … ,𝑌𝑠 are compact, and 𝜋1𝑋 is hyperbolic. Then𝜋1𝑋∗ is hyperbolic.
Before we proceed with the proof of the above theorem we introduce a construction that is

used in the proof. Let 𝑌 ⊂ 𝑋. The cubical convex hull of 𝑌 in 𝑋 is the smallest cubically convex
subcomplex of 𝑋 contained in 𝑌. That is, it is the smallest subcomplex 𝐻𝑢𝑙𝑙(𝑌) satisfying that
whenever a corner of an 𝑛-cube 𝑐 with 𝑛 ⩾ 2 lies in 𝐻𝑢𝑙𝑙(𝑌), then 𝑐 ⊂ 𝐻𝑢𝑙𝑙(𝑌).
Construction 5.2 (Square pushes). Let 𝐷 be a minimal complexity disc diagram, and let 𝛾𝜌 = 𝜕𝐷.
Let 𝜆 be a path with the same endpoints as 𝛾 and lying in the cubical convex hull of 𝛾, such that 𝛾𝜆
bounds a disc subdiagram 𝐷0 of 𝐷 of maximal area. In particular, 𝐷0 is a square disc diagram, and𝐷′ = 𝐷 − 𝐷0 is a disc diagram with 𝜕𝐷′ = 𝜆𝜌, which has no corners contained in the interior of the
path 𝜆. The diagram 𝐷0 can be obtained via a finite sequence of square pushes, that is, a sequence
of subdiagrams

𝛾 = 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑛−1 ⊆ 𝐾𝑛 = 𝐷0,
where for each 𝑖 = 0,… ,𝑛 − 1 the subdiagram 𝐾𝑖+1 contains 𝐾𝑖 and an additional square 𝑠 such
that at least two consecutive edges of 𝑠 are contained in 𝐾𝑖 . Choosing a square 𝑠 and adding it to 𝐾𝑖
to obtain 𝐾𝑖+1 will be referred to as pushing a square.
Note that the sequence of diagrams 𝐾0, …𝐾𝑛 is indeed finite, as 𝐴𝑟𝑒𝑎(𝐾𝑖+1) = 𝐴𝑟𝑒𝑎(𝐾𝑖) + 1 for

each 𝑖, and thus 𝐴𝑟𝑒𝑎(𝐷 − 𝐾𝑖+1) = 𝐴𝑟𝑒𝑎(𝐷 − 𝐾𝑖) − 1, so 𝑛 − 1 ⩽ 𝐴𝑟𝑒𝑎(𝐷).
By construction, every dual curve ℎ in 𝐷0 starting in 𝛾′ must exit in 𝛾. Indeed, every square 𝑆 that

is being pushed has at least two consecutive edges on 𝛾 (in the first step) or on some 𝐾𝑖 (in general).
Thus, the 2 dual curves emanating from 𝑆 either directly terminate on 𝛾 or enter𝐾𝑖 , crossing some of
the previously added squares. By induction on the area of 𝐾𝑖 , we can thus conclude that these dual
curves terminate on 𝛾.
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2048 ARENAS et al.

F IGURE 6 On the left, notation in the proof of Lemma 5.4; on the centre, possible overlapping paths in the
proof of 5.1; on the right, the impossible transversal intersections described in the proof of 5.1.

Construction 5.3 (Sandwich decomposition of a bigon). Let 𝛾1, 𝛾2 be paths forming a bigon. Let𝐷 → 𝑋∗ be a reduced disc diagram with 𝜕𝐷 = 𝛾1𝛾2. We define a decomposition of 𝐷 into three
(possibly singular) subdiagrams 𝐷1 ∪ 𝐷′ ∪ 𝐷2 by applying Construction 5.2 twice as follows:∙ we first apply it to the subpath 𝛾1 ⊆ 𝜕𝐷 to obtain a decomposition𝐷 = 𝐷1 ∪ 𝐷′′ where 𝜕𝐷1 = 𝛾1𝜆1
and 𝜕𝐷′′ = 𝜆1𝛾2;∙ then we apply it to the subpath 𝛾2 of 𝜕𝐷′′ and we obtain a decomposition 𝐷′′ = 𝐷2 ∪ 𝐷′ where𝜕𝐷′ = 𝜆1𝜆2 and 𝜕𝐷2 = 𝜆2𝛾2.

See Figure 6 for an example. We note that 𝐷1,𝐷2 are square diagrams.
Lemma 5.4. Let 𝑋∗ = ⟨𝑋 ∣ 𝑌1, … ,𝑌𝑠⟩ be a cubical presentation satisfying the 𝐶(𝑝) cubical small-
cancellation condition for 𝑝 ⩾ 14, where 𝑋,𝑌1, … ,𝑌𝑠 are compact, and 𝜋1𝑋 is hyperbolic.
Then for any weakly reduced disc diagram (𝐷, 𝜕𝐷)→ (𝑋∗,𝑋) with 𝜕𝐷 = 𝛾1𝛾2 where 𝛾1, 𝛾2 are

dp-geodesics and the subdiagram 𝐷′ obtained from its sandwich decomposition 𝐷 = 𝐷1 ∪ 𝐷′ ∪ 𝐷2
is a ladder.

The idea of the proof is as follows. Proceeding by contradiction, if 𝐷′ is not a ladder, then 𝐷′
contains a shell whose outerpath is disjoint from the endpoints 𝑞, 𝑞′ of 𝛾1, 𝛾2. Using this shell and
Lemma 4.6, we construct a path 𝛾 with endpoints 𝑞 and 𝑞′ and with shorter piece-length than 𝛾1,
which contradicts the fact that 𝛾1 is a piece geodesic (see Figure 6).
Proof. Suppose to the contrary that 𝐷′ is not a ladder. We will derive a contradiction with the fact
that 𝛾1, 𝛾2 are dp-geodesics. By Lemma 2.7, 𝐷′ has at least three exposed cells, that is, shells of
degree ⩽ 4, corners and/or spurs. Two of those exposed cells might contain 𝑞 and 𝑞′, but there
still must be at least one other exposed cell whose boundary path is disjoint from both 𝑞 and 𝑞′.
By construction of 𝐷′ in Construction 5.3, there are no corners or spurs contained in the interior
of the paths 𝛾1 and 𝛾2, so we conclude that there must be a shell 𝑆 of degree ⩽ 4 in 𝐷′ with the
outerpath 𝑄 contained in 𝛾1 or 𝛾2. Up to switching names of 𝛾1 and 𝛾2, we can assume that 𝑄 is
contained in 𝛾1. Let 𝑅 denote the innerpath of 𝑆 in 𝐷′.
Let 𝑒𝓁 and 𝑒𝑟 be the leftmost (first) and the rightmost (last) edge of 𝑅, and let ℎ𝓁 ,ℎ𝑟 be their

dual curves in 𝐷1. By Construction 5.2 ℎ𝓁 ,ℎ𝑟 exit 𝐷1 in 𝛾1. Let 𝛾′1 be the minimal subpath of 𝛾1
that contains the edges dual to ℎ𝓁 ,ℎ𝑟.
Let 𝐻𝓁 ,𝐻𝑟 be the hyperplanes of 𝑋 extending ℎ𝓁 ,ℎ𝑟, respectively. Let 𝓁, 𝑟 be combinatorial

paths in 𝐷1 parallel to ℎ𝓁 ,ℎ𝑟 and starting at the two endpoints of the path 𝑄, respectively.
Consider aminimal complexity square disc diagram𝐸with boundary 𝜕𝐸 = 𝓁𝑄𝑟𝛾′1 where 𝓁 and𝑟 are combinatorial paths contained in 𝑁(𝐻𝓁),𝑁(𝐻𝑟). In particular, 𝓁 and 𝑟 do not intersect 𝐻𝓁

and𝐻𝑟, respectively. Such a diagram 𝐸 exists because we can choose a subdiagram of 𝐷1. Among
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HYPERBOLICITY IN NON-METRIC CUBICAL SMALL-CANCELLATION 2049

all possible choices of 𝓁, 𝑟 and 𝐸 we pick a diagram with minimal area. A feature of the choice
of 𝐸 is that it has no cornsquares in the interiors of 𝓁 and 𝑟, as otherwise we could push that
cornsquare out and reduce the area. Up to possibly replacing 𝑄 with another path with the same
endpoints contained in the same cone, we can assume that 𝑄 has no cornsquares either. We will
assume that this is the case for the remainder of the proof.
We will be applying Lemma 4.6 to 𝐸, so we first verify that the assumptions are satisfied. By

Lemma 2.7, |𝑄|p ⩾ 𝑝 − 4 > 3. Next, we claim that every dual curve starting in 𝓁𝑄𝑟 exits 𝐸 in 𝛾′1.
The cases of dual curves starting in 𝓁 and 𝑟 are analogous, so we only explain the argument for 𝓁.
Consider the subdiagram 𝐸′ = 𝐸 ∪ 𝑆 of𝐷′. Let 𝑒 be an edge in 𝓁. Note that the dual curve ℎ to 𝑒 in𝐸′ cannot terminate on 𝑄, as this would imply that there is a cornsquare on 𝑄. If ℎ terminates on𝑟, then ℎ is parallel to 𝑄, and therefore 𝑄 is a single wall-piece, contradicting the 𝐶(𝑝) condition.
Thus, ℎ must terminate on 𝛾′1. Let now 𝑒 be an edge of 𝑄, and ℎ its dual curve in 𝐸. We already
know that ℎ cannot exit 𝐸 in 𝓁 or 𝑟. If ℎ exited 𝐸 in 𝑄, it would either yield a cornsquare in the
interior of 𝑄, contradicting the choice or𝑄, or it would yield a bigon formed from 2 squares glued
along a pair of adjacent edges, contradicting the minimal complexity of 𝐸.
As no dual curve in 𝐸 crosses 𝓁𝑄𝑟 twice, there are no cornsquares in none of 𝓁, 𝑄 and 𝑟, and

|𝑄|p ⩾ 3, Lemma 4.6 implies that |𝑄|p + |𝓁|p + |𝑟|p − 3 ⩽ |𝛾′1|p. Recall that 𝑅 is the innerpath of
the shell 𝑆 of degree ⩽ 4 in 𝐷′. By definition |𝑅|p ⩽ 4, and so the 𝐶(𝑝) condition with 𝑝 ⩾ 14 for𝑋∗ implies that |𝑄|p ⩾ 𝑝 − 4 ⩾ 10 > |𝑅|p + 5. Combining the two inequalities we get

|𝓁𝑅𝑟|p ⩽ |𝑅|p + |𝓁|p + |𝑟|p < (|𝑄|p − 5) + |𝓁|p + |𝑟|p ⩽ |𝛾′1|p − 2.
In particular, if we write 𝛾1 = 𝛾1,𝓁𝛾′1𝛾1,𝑟, then using Lemma 4.2 we get

|𝛾1|p ⩾ |𝛾1,𝓁|p + |𝛾′1|p + |𝛾1,𝑟|p − 2 > |𝛾1,𝓁|p + |𝓁𝑅𝑟|p + |𝛾1,𝑟|p ⩾ |𝛾1,𝓁𝓁𝑅𝑟𝛾1,𝑟|p
which contradicts the fact that 𝛾1 is a piece-geodesic, completing the proof. □

We now combine the previous ingredients to finish the proof of Theorem 5.1. Here is an outline
of the proof. We consider a piece-geodesic bigon and want to prove that it is thin in the piece-
metric. We apply the reduction moves from Definition 2.1 to obtain a new bigon. We then apply
Lemma 5.4 to show that the middle layer of its sandwich decomposition is a ladder, and thus it is
thin by Proposition 4.5. Finally, we use Corollary 4.4 to deduce that the other layers are also thin,
and consequently the original bigon is thin.

Proof of Theorem 5.1. We prove that the coned-off space (𝑋(0), dp) is 𝛿′-hyperbolic for some 𝛿′ by
showing that it satisfies the bigon criterion (Proposition 3.1).
Let 𝛾1, 𝛾2 be dp-geodesic segments forming a bigon. Pick combinatorial geodesics 𝜆1, 𝜆2 such

that 𝛾1𝜆1 and 𝛾2𝜆2 bound square disc diagrams 𝐷1 and 𝐷2, as they are path-homotopic in 𝑋. Let𝐷′ → 𝑋∗ be a reduced disc diagram with boundary 𝜕𝐷′ = 𝜆1𝜆2. By gluing 𝐷1 ∪ 𝐷′ ∪ 𝐷2 along𝜆1 and 𝜆2, respectively, we obtain a (possibly non-weakly reduced) disc diagram 𝐷 → 𝑋∗ with𝜕𝐷 = 𝛾1𝛾2.
By Lemma 2.3, there exists a sequence of reduction moves (1) - (5) from Definition 2.1 that

turns 𝐷 into a weakly reduced disc diagram. We describe how each reduction move transforms a
quintuple (𝐷, 𝜆1, 𝜆′1, 𝜆2, 𝜆′2) into a quintuple (𝐷̈, 𝜆̈1, 𝜆̈′1, 𝜆̈2, 𝜆̈′2), both satisfying conditions below.
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2050 ARENAS et al.

F IGURE 7 Reduction moves (1), (4), (4), (5). In the first two cases, the path 𝜆𝑖 = 𝜆′𝑖 is reduced to the path𝜆̈𝑖 = 𝜆̈′𝑖 . In the last two case, 𝜆̈′𝑖 = 𝜆′𝑖 (purple paths), but 𝜆̈𝑖 differs from 𝜆𝑖 .
Our sequence starts with (𝐷, 𝜆1, 𝜆′1, 𝜆2, 𝜆′2) = (𝐷, 𝜆1, 𝜆1, 𝜆2, 𝜆2). At each step (𝐷, 𝜆1, 𝜆′1, 𝜆2, 𝜆′2)
satisfies:

(a) 𝐷 is a disc diagram with 𝜕𝐷 = 𝛾1𝛾2,
(b) each 𝜆𝑖 is an embedded combinatorial path in 𝐷□, such that the three subdiagrams 𝐷1, 𝐷2

and 𝐷′ of 𝐷 with boundaries 𝛾1𝜆1, 𝜆2𝛾2 and 𝜆1𝜆2, respectively, are reduced, and 𝐷1,𝐷2 are
square diagrams,

(c) each 𝜆′𝑖 is an embedded combinatorial path in 𝐷 (not necessarily in 𝐷□) such that 𝜆′𝑖 is a
combinatorial geodesic in 𝑋∗, and 𝜆′𝑖 ∩ 𝐷□ = 𝜆𝑖 ∩ 𝐷□,

and after applying a reduction move, we obtain a new quintuple (𝐷̈, 𝜆̈1, 𝜆̈′1, 𝜆̈2, 𝜆̈′2) satisfying the
above conditions.
As the subdiagrams 𝐷1,𝐷2 are square disc diagrams and 𝐷′ is reduced, we never apply the

reduction moves (3) and (2), as those would have to be performed within 𝐷′, contradicting that𝐷′ is reduced.
We now describe the transformation from 𝜆𝑖 to 𝜆̈𝑖 and from 𝜆′𝑖 to 𝜆̈′𝑖 , for each reduction move.

In each case the change will occur only within a subdiagram 𝐵 that is transformed to 𝐵̈ by the
reduction. See Figure 7. We assume 𝜆𝑖 intersects the interior of 𝐵. We note that it might happen
that both 𝜆1, 𝜆2 intersect 𝐵, in which case we apply the transformations to both 𝜆1, 𝜆′1 and 𝜆2, 𝜆′2,
according to the rules described below. It might happen that paths 𝜆1, 𝜆2 overlap, but at no step
they intersect transversally, that is, at each step they yield a decomposition of the diagram 𝐷 into𝐷1 ∪ 𝐷′ ∪ 𝐷2. See Figure 6.
Consider reduction move (1). Let 𝐵 be a bigon-subdiagram of𝐷, which is to be reduced. As this

reduction move involves only squares, we have 𝜆𝑖 ∩ 𝐵 = 𝜆′𝑖 ∩ 𝐵. Note that 𝜆𝑖 ∩ 𝐵 cannot join the
two corners of 𝐵 because 𝜆′𝑖 is a combinatorial geodesic. Thus, 𝜆𝑖 ∩ 𝐵 must be a combinatorial
geodesic crossing both dual curves associated to 𝐵. For each 𝜆𝑖 ∩ 𝐵 we set 𝜆̈𝑖 ∩ 𝐵̈ = 𝜆̈′𝑖 ∩ 𝐵̈ to the
combinatorial geodesic with the same endpoints in 𝐵̈ and maximising the area of 𝐷𝑖 . See the first
diagram in Figure 7. Thus, the reduction move yields a new disc diagram 𝐷̈ with new paths 𝜆̈𝑖 , 𝜆̈′𝑖
for 𝑖 = 1, 2 satisfying the required conditions. We note that in the case where both 𝜆1, 𝜆2 intersect𝐵, the choices of 𝜆̈1, 𝜆̈2 ensure that 𝜆̈1, 𝜆̈2 do not intersect transversally.
Consider reduction move (4). Let 𝐵 be a subdiagram associated to a cornsquare 𝑠 and its dual

curves ending on a cone-cell 𝐶. We set 𝜆̈𝑖 ∩ 𝐵̈ to the combinatorial path with the same length and
endpoints in 𝐵̈ and maximising the area of 𝐷𝑖 . If 𝜆′𝑖 coincides with 𝜆𝑖 in 𝐵 we set 𝜆̈′𝑖 ∩ 𝐵̈ = 𝜆̈𝑖 ∩ 𝐵̈.
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HYPERBOLICITY IN NON-METRIC CUBICAL SMALL-CANCELLATION 2051

See the second diagram in Figure 7. Otherwise, we set 𝜆̈′𝑖 ∩ 𝐵̈ = 𝜆′𝑖 ∩ 𝐵. See the third diagram in
Figure 7. Again, in the case where both 𝜆1, 𝜆2 intersect 𝐵, the choices of transformed paths ensure
that no transversal intersection occurs.
Finally, consider reductionmove (5). Let𝐵 be a subdiagram consisting of a square 𝑠 overlapping

with a cone-cell 𝐶 along a single edge 𝑒. Thus, 𝜆𝑖 ∩ 𝐵 = 𝑒. We set 𝜆̈𝑖 ∩ 𝐵̈ to the path 𝜕𝑠 − 𝑒. We also
set 𝜆̈′𝑖 ∩ 𝐵̈ = 𝜆′𝑖 ∩ 𝐵. See the last diagram in Figure 7.
Working under the assumption of weakly reduced: We now assume that (𝐷, 𝜆1, 𝜆′1, 𝜆2, 𝜆′2)

satisfies conditions (a)-(c) above and that 𝐷 is weakly reduced. Following the notation in (b), we
claim that either 𝐷1 ∪ 𝐷′ ∪ 𝐷2 is the sandwich decomposition of 𝐷, or we can push squares into𝐷1 and 𝐷2 modifying 𝜆𝑖 , 𝜆′𝑖 while preserving conditions (a)–(c). As 𝜆𝑖 ∩ 𝐷□ = 𝜆′𝑖 ∩ 𝐷□ and 𝜆′𝑖 is a
geodesic in 𝑋∗, no square 𝑠 in 𝐷′

□ has three sides on 𝜆𝑖 . So, if a square 𝑠 on 𝜆𝑖 can be pushed into𝐷𝑖 , then 𝑠 must have two consecutive edges 𝑎, 𝑏 on 𝜆𝑖 . Let 𝜆𝑖 = 𝓁𝑖𝑎𝑏𝑟𝑖 where 𝓁𝑖 , 𝑟𝑖 are subpaths
of 𝜆𝑖 − 𝑎𝑏. Likewise, let 𝜆′𝑖 = 𝓁′𝑖 𝑎𝑏𝑟′𝑖 . Finally, define 𝜆̈𝑖 = 𝓁𝑖𝑐𝑑𝑟𝑖 and 𝜆̈′𝑖 = 𝓁′𝑖 𝑐𝑑𝑟′𝑖 where 𝑐,𝑑 are
the other two edges of 𝑠. The quintuple (𝐷, 𝜆̈1, 𝜆̈′1, 𝜆̈2, 𝜆̈′2) satisfies conditions (a)–(c). Indeed, as
|𝜆′𝑖 | = |𝜆̈′𝑖 |, condition (c) is still satisfied. As this replacement does not affect 𝐷, nor the property
of being (weakly) reduced, nor that𝐷1 and𝐷2 are square diagrams, conditions (a) and (b) are also
preserved. We arrive at the sandwich decomposition after finitely many square pushes.
Working under the further assumption that 𝐷1 ∪ 𝐷′ ∪ 𝐷2 is the sandwich decomposi-

tion of 𝐷∶ For the remainder of the proof, we assume that (𝐷, 𝜆1, 𝜆′1, 𝜆2, 𝜆′2) satisfies conditions
(a)-(c) and that𝐷 is weakly reduced, and that the associated𝐷1 ∪ 𝐷′ ∪ 𝐷2 is the sandwich decom-
position of 𝐷. By Lemma 5.4, the subdiagram 𝐷′ with 𝜕𝐷′ = 𝜆1𝜆2 is a ladder. Let 𝐷′′ be the
subdiagram of 𝐷′ with 𝜕𝐷′′ = 𝜆′1𝜆′2. Then 𝐷′′ is also a ladder, as 𝜆𝑖 ∩ 𝐷′ = 𝜆′𝑖 ∩ 𝐷′. By Proposi-
tion 4.5, the bigon 𝜆′1, 𝜆′2 is 𝜖-thin for a uniform constant 𝜖. By Corollary 4.4 there exists a uniform
constant𝑀 such that 𝛾𝑖 , 𝜆′𝑖 is𝑀-thin. Consequently, 𝛾1, 𝛾2 is (𝜖 + 2𝑀)-thin. □
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