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1. Introduction

An algebraically clean graph of free groups is a graph of groups where each vertex group and edge
group are finite rank free groups, and all the inclusion maps are inclusions of free factors. Examples of
the fundamental groups of algebraically clean graph groups include free-by-cyclic groups, the fundamental
groups of clean 2-complexes in the sense of Wise [36], and certain 2-dimensional Artin groups [22,23]. We
note that (many among) the former examples are known to not admit (virtual) cocompact actions on CAT(0)
cube complexes, so they are not virtually cocompactly special. In particular, the family of algebraically clean
graphs of groups is strictly larger than the family of the fundamental groups of finite clean 2-complexes,
which all are virtually special.
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1.1. Virtual residual p-finiteness

A group G is residually finite if for every g € G — {1} there exists a quotient ¢ : G — K where K is a
finite group and ¢(g) # 1. The fundamental groups of algebraically clean graph of free groups are known to
be residually finite [37, Thm 3.4].

Let p be a prime number. A group G is residually p-finite if for every g € G — {1} there exists a quotient
¢ : G —> K where K is a finite p-group and ¢(g) # 1. Clearly, every residually p-finite group is residually
finite, but the converse does not hold.

Theorem 1.1. For every prime p, the fundamental group of an algebraically clean graph of free groups has a
finite index subgroup that is residually p-finite.

We do not know whether algebraically clean graphs of free groups are linear. We note that linear groups
are known to be virtually residually p-finite [28] for all but finitely many primes p. There have been previous
combination theorems concerning residual p-finiteness, originating in the work of Higman [17], see e.g.
[34,2,33] and references therein.

1.2. Cohomology of profinite and pro-p completions

For a residually finite group G, the profinite completion G of G is defined as

where the inverse limit is taken over the system of finite quotients of G. For every G, there is a canonical
homomorphism i : G — G which sends g € G to the cosets gH. A group G is called cohomologically good
(also known as good in the sense of Serre) if for every finite G-module M the induced homomorphism

HE (G M) = lim H*(G/H, M) 5 H*(G, M)
[G:H]<w0

is an isomorphism. We always take the cohomology of a profinite group to be its continuous cohomology.
Goodness was introduced in [32, Exercises 2.6]

We can analogously define cohomological p-completeness for a residually p-finite group. In this case, the
pro-p completion C:'p of G is given by

Gy =limG/H

where H varies over all the normal subgroups of G whose index is a power of p. Then G is cohomologically
p-complete if the homomorphism G — G, induces an isomorphism

H:ont(GIH IFP) - H* (G7 FP)
where we assume the G-action on [, is trivial.
Theorem 1.2. The fundamental group of an algebraically clean graph of free groups is

(1) cohomologically good,
(2) for every prime p, virtually cohomologically p-complete.
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For each p, the cohomologically complete finite index subgroup is a priori different. General graphs of
free groups do not always satisfy the above theorem. Indeed, there exist examples of amalgamated products
of free groups that are not residually finite [7,35]. There are even examples of simple groups that split as
amalgamated products of free groups [10].

1.8. Virtual poly-freeness

A group G is poly-free if it admits a chain of subgroups 1 = Go <G; <--- 4G, = G such that G;/G,;_1
is a free group (of possibly infinite rank). We say G is normally poly-free if additionally all subgroups G;
are normal in G.

Theorem 1.3. Algebraically clean graphs of free groups are normally poly-free.

This has a number of consequences; for instance it implies these groups are locally indicable, hence
left-orderable [31], and satisfy the K— and L—theoretic Farrell-Jones Conjecture [4,9].

1.4. Applications to Artin groups

An Artin group is given by a presentation

A={s1,...,5] 888+ = 8;8:8j )
— ~—
m;j terms mgj terms

where m;; € {2,3,...} U {o0}. We understand m;; = oo as no relation involving s; and s;. A triangle Artin
group Agpmp is an Artin group where k = 3, and mys = £, mas = m, and mq3 = n.

Since finite type Artin groups are linear ([24], [8] for braid groups, and [12], [13] in general), it follows
that they are also virtually residually p-finite. Moreover, pure Artin groups of type A, C,,Gs and Iz(n)
are residually p and cohomologically p-complete for all p [1], and cohomologically good [32].

With the next corollary in mind, we note that the only spherical triangle Artin groups are the Ass, =
A(I2(n)) x Z for n = 2, and Ass,, where n € {3,4,5}. Among those, the even ones, Ay, for even n, all are
known be cohomologically good and virtually residually p-finite and cohomologically p-complete for all p.

Corollary 1.4. A triangle Artin Agpmy, where £ <m < n is

o residually finite and cohomologically good,
e for each prime p, virtually residually p-finite and cohomologically p-complete,
o virtually normally poly-free,

provided that

o V=2, and m,n =4 and at least one of them is even, or
o {,m,n =4 except for the case where £ = m =4 and n is odd.

In particular, all even triangle Artin groups and all extra-extra-large triangle Artin groups (i.e. where
L,m,n = 5) satisfy the above.

Moreover, there are many more 2-dimensional Artin groups that have the above properties. See [22] for
a combinatorial criterion on the defining graph, which ensure that the associated Artin group is virtually
algebraically clean graph of free groups.
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The Artin groups above were shown to virtually split as algebraically clean graphs of free groups in [22,23].
We note that “virtual” in the above statement is necessary. Indeed, a group G that is residually p-finite for
all primes p is bi-orderable [29] (see also [25]), but the only bi-orderable Artin groups are right-angled Artin
groups. However, it is possible that each Artin group listed above contains a finite index subgroup that is
residually p-finite for all primes p.

Artin groups that are known to be poly-free are right-angled Artin groups [14,19,20], even FC-type Artin
groups [6], and even large type Artin groups [5]. Artin groups of types A,,, By, = Cy, Dy, Fy, G2 and I1(n)
[11], as well as Zn, En, C~'n, ﬁn [30] are known to be virtually poly-free. Independently, Wu-Ye proved that
all triangle Artin groups except Ass, where n is odd, are virtually poly-free [39]. Wu-Ye also show that
some triangle Artin groups are not poly-free.

Finally, we also establish residual finiteness and cohomological goodness for all even Artin groups whose
defining graphs contains no 4-cliques.

Theorem 1.5. Let I' be a finite labeled graph with all even labels that does not contain a 4-clique. Then Ar
is residually finite and cohomologically good.

Such Artin groups are also poly-free by [5,38].
Acknowledgments

We thank the anonymous referee for their useful comments. The first author was supported by the NSF
grant DMS-2203307 and DMS-2238198. The second author was supported by the NSF grant DMS-2203325.

2. Graphs of groups
2.1. Graph of groups notation

We recall the basic definitions and set the notation.
A graph Y consists of a set V(Y) of its vertices, and a set E(Y') of its edges, and two maps:

— E(Y) satisfying € = e, where we think of € as the edge e with the orientation reversed,
— V(Y), which we think of as taking the endpoint of an edge.
A graph of groups G with underlying graph Y consists of a family of vertex groups {G}iev(yv) and edge
groups {Ge}eer(v) Where G, = G together with maps {fc : Ge — Gr(o)}ecr(v)-

Let T < E(Y) be a set of edges of a spanning tree of Y. The fundamental group mG of the graph of
groups G is constructed as the quotient

mg = (*veV(Y)Gv * F(E(Y))/K
where K is a set of the following relations

(1) efe(g)e = fe(g) for all e e E(Y) and g € G, and
(2) e=e1, and e =1 if and only if e € T'.
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2.2. Algebraically clean graph of groups

An algebraically clean graph of free groups is a graph of groups G with finite underlying graph Y, where
G, is a finite rank free group for all v € V(Y), G, is finitely generated for all e € E(Y), and the maps
fe : Ge = G(¢) are injective maps onto free factors.

Let G be a group, and N, M < G be two subgroups. We say that an isomorphism ¢ : N — M is a partial

ext

automorphism, if there exists an automorphism ¢°** : G — G such that ¢| V= ¢. A partial identity is a
partial automorphism that can be extended to the identity.

Proposition 2.1. Every algebraically clean graph of free groups G admits a splitting as an algebraically clean
graph of groups G’ where the underlying graph Y’ has a unique vertex, and up to renaming ¢ and €, G, <
Gr(e) is a free factor, f. is the inclusion map, and fe is a partial automorphism of G ().

Proof. Consider a spanning tree T in the underlying graph Y of G. We define a new graph Y’ to have the
vertex set V(Y') = {T'} and edge set E(Y') = {e€ E(Y) | e ¢ E(T)}. Let Gr denote the graph of groups with
the underlying graph T, and the vertex and edge groups and maps as in G. Then mGr = k,e7G,/{fc(9) =
fe(¢9)}. By induction on the number of vertices in T, we can argue that m1Gr is a finite rank free group,
where each G, for v € T embeds as a direct factor. That is clearly the case when |V(T')| = 1. Let V(T') > 1,
and let v € T be a leaf, and T’ be the subtree of T' excluding v, and let e be the unique edge in T such that
7(e) = v. Then 711G = Gy * Fo(9)=1fo(9) G, which is an amalgamated product of two finite rank free groups
along their free factors, so it is a finite rank free group. By construction, the group G, and every free factor
of Gr» embed in Gr as free factors.

By “collapsing” T in Y, we can identify m1 G with the fundamental group of a graph of groups G’ with
underlying graph Y’, where

e the unique vertex group Gr is m1 Gr,

o for each edge e € E(Y), i.e. e ¢ E(T'), G becomes identified with f.(Ge) S G,y S Gr which is a free
factor in G+ (.) and therefore also in G, and the map fe : Ge = G. — G, S Gr is an embedding
onto some free factor of G, (¢) and again also a free factor of Gpr. We can thus think of that map fe as
a partial automorphism of Gp. []

3. Residual p-finiteness
Throughout this section p is a fixed prime.
8.1. Well-known basics on residual p-finiteness
We start with stating some easy facts that we will use later.
Lemma 3.1. Let G be a finitely generated group.
(1) Let N <G be a subgroup whose index is a power of p. Then there exists a characteristic subgroup K 1G
whose index is a power of p, such that K € N.
(2) Suppose G fits in a short exact sequence

1-N->-GC->Q—-1

where @ is a finite p-group, and N is residually p-finite. Then G is residually p-finite.
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Proof. (1) Let K be the intersection [ | H of all the normal subgroups H of G of index [G : N]. Note that
K is also the kernel of a homomorphism G — [ [, G/H, since the order of each G/H is a power of p,
so is the order of [ [,; G/H. In particular, the index [G : K] is a power of p.

(2) Let g € G. If g survives in @, then @ is the required finite p-quotient of G. Suppose g € N. Since N is
residually p-finite, then using (1) we know that there exists a characteristic subgroup K < N such that
g ¢ K and whose index is a power of p. Since K is characteristic in N, it is normal in G, and [G : K]
is a power of p. [

8.2. Basics on lower central p-series
Let G be a finitely generated group. For subgroup H, K € G we denote:

« H? = (WP | he HY,
o [H,K]={[h,k]|he H,ke K), and we use the convention that [h, k] = hkh~ k™1,
o HK =<{hk|he H ke K).

Let G be a finitely generated group. A filtration of G is a collection (G,)nen of subgroups of G where
G1 =G, and G,41 € G, for each n € N. A filtration (G,,)nen is normal if G, <G is normal for each n € N,
and it is separating if (), Gn = {1}.

The lower p-central filtration {v£(G)}, of G is defined as:

NG =G 1a(G) = (@) G (G-

We also denote L2 (G) = vE(G)/~h 1 (G). In particular, L} (G) = H,(G,F,). The lower p-central filtration
of G is a normal filtration, and it is separating if and only if G is residually p-finite. We note a couple of
basic well-known properties of the lower p-central series. For completeness, we provide proofs.

Lemma 3.2.

(1) For each n we have (v2(G))P = 44,1 (G).

(2) For each n,m we have [v£,(G),v2(G)] € 75, . (G).

(3) Each~2(G) is a characteristic subgroup of G. In particular, for each i there are natural homomorphisms
0, : Aut(G) — Aut(LE(G)) and oy, : Aut(G) — Aut(G/42(G)).

Proof. (1) Follows immediately from the definition.
(2) We induct on m. For m = 1 the statement follows directly from the definition for every n. Suppose that

[Vm-1(G),¥5(G)] € V-1 (G) for every n.

First we claim that [(7},_;(G))?,72(G)] € 4%, ,.(G). Given k € 42(G) and h € 2 _,(G) we need to
show that [hP, k] € 42, (G). First note that [hP, k] = hPuP where u = kh~'k~!. By the inductive
assumption u = h™!¢ for some Le~2 .~ (F).

We have

[h,E]P = (hRkR™'E~1)P
= hP(h~ P D=0 (== P=2)) | (A~ uh)u.

By substituting v = h~'¢ we get

By p =) = p==Dp=lppe=1) = p=1p==Dpp (=0 — p=1pp. — 0,
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for some ¢; € vy, +m where the equality h=(P=D (=1 = ¢4, follows from (G, Yn+m—1] € Yn+m. Thus we
have

[h, kP = hPulp_quly_s ..., uliu e (RPuP)Vh . (G),

and in particular [h?, klyh . (G) = (WPuP)yh ., (G) = [h, k)P4, (G). Since [h, k] € v2 .. 1(G) by
induction, we have [h,k]? € ~h,  (G) by Lemma 3.2(1). We conclude that [hP k] € 4}, . (G), as
claimed.

Now we claim that [[G,+" _;(G)],72(G)] <~} ,,.(G). By the three subgroup lemma (see e.g. [21, Cor
8.28])

[[G 71 (@) (G)] = [ -1 (G), (@], G - [[G R (G 1 (G)]
< Mym—1(G), Gl [111(G)s v 1 (G)]

and the second and third line follow from the inductive hypothesis. Thus we conclude that
[, (G), A (G)] = [V (GVP [ 1 (G), Gl AR(G)] € A (), s desired.

(3) We now induct on n. For n = 1, clearly v (G) = G is characteristic in G. We assume that the statements
in true for n — 1 and prove it for n. Let h € v2(G) = 12 _(G)[G,12_,(G)], i.e. h = hY - [k, ha] where
hi,ha €42 (G) and k € G. Let ¢ € Aut(G). Then

¢(h) = ¢(hY - [k, ha]) = ¢(h1)" - [¢(k), d(ha)].

Since 77 _|(G) is characteristic, ¢(hy), p(h2) € v2_1(G), so ¢(h) € v _1(G)[G,+!_1(G)] = v2(G). Thus
~P(G) is characteristic.

Since vE(G) is characteristic in G, every automorphism ¢ : G — G preserves 72 (G), and therefore
on(@) : G/AE(G) — G/~E(G) is well-defined. It is clear that o, is a homomorphism. The automorphism
¢ restricts to ¢,z (q) @ W(G) = YE(G), and to ¢z ) Y1 (G) = Y541 (G). Thus ¢ descends to a
well-defined automorphism of LP(G). The map 6, is clearly a homomorphism. []

Proposition 3.3 (/16, Chap VIII.1]). Let ¢ € Aut(G) such that 61(¢) = 1dr(c)-

(1) We have 0,,(¢) = Idz () for all n.
(2) The order of o,(¢) is a power of p.

Proof. (1) We induct on n. The case of n = 1 is immediate. We assume that the statement holds for n — 1.
Let first h € 42 _,(G). Then by assumption ¢(h) = hk, where k,, € v2(G). We have

O(hP 75 1(G)) = (hkn)? 7711 (G)
= WP (h= P Dk, h? =) (R P~ D, hP=2) - (W ki h) ki V2,1 (G)
= PPkply 1knly—2- - knlikn 751 (G)
= hPKD (k, P~ V0, k2 (ky, P20, okP72) o (K k) A2, (G)
= hPkl 'Y£+1(G)
=h? ’Y1€+1(G)



K. Jankiewicz, K. Schreve / Journal of Pure and Applied Algebra 229 (2025) 107775

where (1,...,0,_1,¢,0 are some elements of 7/ (G). Indeed, the fact that h™7k,h! = k,t; follows

from the fact that [v2_,(G),72(G)] < [G,72(G)] < 5.1 (G) (Proposition 3.2(2)). Finally, the fact that
kb e ~F | follows from Proposition 3.2(1).

Now let g € G. Then ¢(g) = gls for some ls € v5(G). We have

O(lg: Ml 41(G)) = gtz hkn] 311 (G)

= g(l2hkn s ) g kAT AR (G)

= gh(kndn 1™ kn DD 9,4 (G)

= ghdnﬂg_ld;wlh_l VZH(G)

= ghg™'h " 1 (G)

= [9: 711 (G)
where we used Proposition 3.2(2) to write lohkyls™ b = hk,d,.1 for some d, 1 € 7£+1(G) since
V() ((@)] € 540 (@), and kndyirg™ kn ™ = dnagT d), . for some d), ;€ 45, (G) since

[V5(G), Gl = 7 11(G).-
Finally, every generator h of v2(Q) is of the form h = h{[g, ha] for some hy, hy € 4P, (G). We have

O(hy11(G)) = ¢(h]) (g, ha]) vy 11(G) = hE[g, ha]vy 1 (G),

for some £ € 7}, | (G). This proves that 0;(¢) = Id r () as claimed.

We prove by induction on n that Un(¢p"71) = Idg/42(c))- The case of n = 1 is immediate as o1 = 0.
We assume that the statement holds for n— 1, in particular for every b € G we have ¢?" ~ (hy"_,(G)) =
hyP_ (@), i.e. there exists k € v*_,(G) such that ¢*" (k) = hk. We have

n—1 n—2 n—2

& () = (") = (7" (0

2

(h) = (&)~ (k).

2 n—2

Since k € v2_,(G) and 0, (¢*" ") = 0, (¢)?" = Idps (g, using Proposition 3.3(1), we get

n—2 2

(@ )P (hk) = (" PR (h)gr" (k)
e (¢"" P2 (hk - kvE(G))

n—2 2

= (" PP (MEAE(G)) = - = hEPAE(G).

In particular, since kP € 42(G) by Proposition 3.2(1), we conclude " (h) € hy2(G) as required. []

Corollary 3.4. Let A € Aut(G) be a subgroup.

(1)
(2)

The image 01(A) < Aut(LY(G)) is a finite p-group if and only if 6,,(A) < Aut(LE(QG)) is a finite p-group
for everyn = 1.

The image 61(A) < Aut(G/~Y(G)) is a finite p-group if and only if 0,(A) S Aut(G/~E(Q)) is a finite
p-group for every n = 1.

Proof. (1) Fix n > 1, and suppose that 6;(A) is a finite p-group. By Proposition 3.3(1) for every ¢ € A, if

01(¢) = Idzr(q), then 0,,(¢) = Idpr (. Thus 0;(A) is a quotient of 01 (A). In particular, §;(A) is a finite
p-group as required.
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(2) Fix n > 1, and suppose that o1(A) = 01(A) is a finite p-group. For every ¢ € A there exists k > 1
such that 6 ((bpk) =06 ((b)pk = Idr(g). By Proposition 3.3(2) the order of an((bpk) is a power of p, and
therefore the order of o, (¢) is a power of p. We conclude that ¢,,(A) is a p-group. As a subgroup of the
automorphism group of a finite group o,,(A) is also finite. []

The above corollary implies that for every subgroup K of ker(Aut(G) — Aut(L}(G)) (which has finite
index in Aut(QG)), all the images o;(K) are finite p-groups. This observation is crucial in the proof of
Theorem 1.1.

We note the following observation that the operators 6; and o; can be extended to partial automorphisms.

Lemma 3.5. A partial automorphism ¢ : N — M induces a partial automorphism N n+E(G)) - M n~2(G)
of ¥2(G). In particular, it descends to the following partial automorphisms

(1) on(®) : N/N nyh(G) — M/M n~2(G), and
(2) 0n(¢) : N0 Ah(G)/N a1 (G) = M ayB(G)/M o4 (G).

Proof. Since ¢ is a partial automorphism of G, there exists ¢*** € Aut(G) such that ¢rﬁt = ¢. By
Proposition 3.2(3), 7v£(G) is a characteristic subgroup of G, so ¢**!(72(G)) = v2(G) for every n. Thus
O(N n2(Q)) = ¢°“'(N nv2(Q)) = M n P (Q) for every n. The lemma follows. []

3.3. Residual p-finiteness criterion for graphs of groups

We generalize a theorem of [1] that every graph of virtually residually p-groups, where edge group
inclusions are isomorphisms, are virtually residually p-finite. Their result, in particular, applies to free-by-
cyclic groups. We will use a criterion for residual p-finiteness of graphs of groups stated therein.

A filtration G of a graph of groups G is a collection {Gy}, of compatible filtrations G, = {G, n}n of G,
for each v € V(I'), in the sense that for all n

f;l(GT(e),n) = fE_l(G'r(E),n)'

For a given property X (e.g. normal, separating), we say that G is X if for every v € V(Y') the filtration G,
is X. We say that a filtration G of a graph of groups G separates edge groups if f.(Ge) = (), Gr(e)n - fe(Ge)
for all edges e.

Let G, be the n-th depth subgroups of the filtration G of G, i.e. G, = (Gy,n)vev (v)- Since the filtrations
of the vertex groups are compatible, there exists a natural graph of groups quotient G/G,, which has Y as
it underlying graph and vertex groups G,/Gy n.

The following will be used to prove Theorem 1.1.

Theorem 3.6 ([1, Cor 3.14]). Let G be a normal separating filtration of G which separates edge groups of G,
such that 71(G/Gy,) is residually p-finite for every n = 1. Then mG is residually p-finite.

8.4. Main proof
The following lemma can be deduced from [34] but in this case it is easy to prove it directly.

Lemma 3.7. Let P be a finite p-group. Let G be a graph of p-groups where each vertex group comes with an
injective homomorphism 1, : G, — P, and each edge group comes with an inclusion ¢, : Ge — P such that
e = e. Moreover, assume that for each edge e the composition V() - fe = te. Then mG is residually

p-finite.
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Proof. The assumption on G implies that there exists an epimorphism v : 711G — P which is an isomorphism
on each vertex group. Indeed, v is defined as v, on each vertex group G,, and sending all edge generators
(not edge groups) to the identity. The kernel ker ) is thus a finite index subgroup of 71 G and splits as a finite
graph of trivial groups, i.e. ker ¢ is a finite rank free group. By Lemma 3.1(2) m G is residually p-finite. [

We are now ready to prove the main theorem.

Theorem 3.8. For every prime p, the fundamental group of an algebraically clean graph of free groups has a
finite index subgroup that is residually p-finite.

To illustrate the proof, we first consider the special case of free-by-free groups.

Proof for F' x Q. Let F,(Q be finite rank free groups. In particular, F' and @) are residually p-finite. Let
a : Q — Aut(F) be a homomorphism associated to the semi-direct product. By Lemma 3.2(3) ~5(F)
is characteristic in F, so every automorphism ¢ € Aut(F) descends to an automorphism of L¥(F), i.e.
there is a well-defined homomorphism 3 : Aut(F) — Aut(LY(F)). By composing o with 3, we obtain a
homomorphism to a finite group 8- ¢ : Q — Aut(L(F)). Let @’ be its kernel. Then F x Q' is a finite index
subgroup of F' x @, which we claim is residually p-finite.

By Corollary 3.4(2) the image 0;(Q’) is a p-group for every i. In particular (F/47) x @' is residually
p-finite. Indeed if g € (F/4F) x @' survives in @', then we can use the fact that Q' is residually p-finite.
Otherwise, when g € ker((F/7F) x Q" — Q'), then g must survive in the quotient (F/4¥) x 0;(Q’), which is
a p group as its order is a power of p. Since every element g € F' x Q' survives in F//77(F) x Q' for some 4,
we conclude that F' x @’ is residually p-finite. [J

We now move to the general case. Let F' be a finite rank free group, and let N, M be two subgroups
of the same rank, each being a free factor of F'. Every isomorphism ¢ : N — M can be extended to an
automorphism ¢t : I — F i.c. ¢f1"f,t = ¢, which we call an extension of ¢ to F. Note that an extension of
¢ is far from being unique. Indeed, it is only unique if N = M = F.

Proof in general case. Let G’ be a fundamental group of an algebraically clean graph of free groups. By
Proposition 2.1 we can think of G’ as the fundamental group of a graph of groups G’ where the underlying
graph Y’ of G’ is a wedge of k oriented circles {ey,...,e,}. The unique vertex group of G’ is identified with
a finite rank free group F, and for each 1 < i < k the edge groups G., can be identified with a free factor
N; so that f., = Idy, and f5, = ¢; : N; » M; is a partial automorphism onto a free factor M; of F. Let Q’
be a free group freely generated by {¢1,..., ¢}, which can be naturally identified with 71 (Y).

Step 1. We construct a finite index normal subgroup Q of Q' such that 6,,(Q) is trivial.

Let {¢§™,...,¢5""} be a choice of extensions of {¢1,..., ¢}, i.e. for each 1 < i < k ¢5** € Aut(F)
such that gbf””twi = ¢;. Recall the homomorphism 6 : Aut(F) — Aut(L}(F)) from Proposition 3.2(3). We
construct a subgroup Q of Q' as

Q = ker(Q' — Aut(F) — Aut(LE(F))

where the first map sends ¢; to ¢¢** € Aut(F), and the second map is 0;. Since Aut(L}(F)) is a finite group,
the index [@’ : Q] is finite.
By Corollary 3.4(1), the image of @ in Aut(LE(F)) is trivial for every n.

Step 2. We construct the corresponding finite index normal subgroup G of G' and realize it as the fundamental
group of a graph of groups G covering the graph of groups for G'.
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Consider the finite index subgroup G of G’ corresponding to @, i.e. G = ker(G' — Q' — @Q'/Q). The
group G is the fundamental group of the following graph of groups G. The underlying graph Y of G is the
finite covering space of Y’ corresponding to Q < Q’. Each vertex group of G is a copy of F'. The edge groups
of edges labeled with e; are copies of IV; with the maps Idy, and ¢; into the respective vertex groups. We
note that G is still an algebraically clean graph of finite rank free groups, with a natural quotient Q.

Step 3. There is a natural filtration G of G where G, = {V2(Gy)}n of Gy for each v e V(Y). The filtration
is mormal, separating, and it separates the edge groups.

Lemma 3.5 implies that the filtrations G, on the individual vertex groups are compatible and indeed
define a filtration on G. It is immediate that G is normal. Since all the vertex groups are free groups, hence
residually p-finite, their lower p-central series are separating. Since the edge groups are retracts of the vertex
groups, and vertex groups are residually p-finite, [1, Lem 1.6] implies that the filtration separates the edge
groups.

Step 4. For each n, m1(G/G,,) is residually p-finite.

The graph of groups G/G,, has all the vertex groups naturally isomorphic to F/42(F) and the edge
groups are (N;/(N; n yP2(F)) for respective i, with the respective edge maps being partial identities and
partial automorphisms ¢;. We construct a further subgroup @Q,, of @ as

Qn = ker(Q — Aut(F) — Aut(F/+2(F))

the first map sends ¢; to ¢¢** € Aut(F), and the second map is the map o,, defined in Lemma 3.2(3). By
Corollary 3.4(2), the image of @ in Aut(F/42(F)) is a finite p-group, and therefore [Q : Q,] is a p-power.
We now claim that the kernel K,, = ker(m1(G/G,) — Q@ — Q/Q,) is the fundamental group of a graph
of groups satisfying the assumptions of Lemma 3.7, and therefore is residually p-finite. Indeed, K,, is a
finite cover G, of the graph of groups G/G,, whose all the vertex groups are still naturally isomorphic
to F/42(F), and edge groups are (N;/(N; n ~E(F)) for respective i, with the respective edge maps being
partial identities and partial automorphisms ¢;. We fix a vertex group G,, of G, and for each v e V(Y) we
construct a map ¢, : G, — G,,. We describe each map as an automorphism ,, € Aut(F /42 (F)) using the
natural identification of each G, with F'/y}(F). First, ¥, = Idp .z (py. For v such that there is a path from
we define 1), = 0, (¢t -+ - P57,

(23 11
We claim that v, does not depend on the choice of the path from v to vy. Indeed, given some other path

v to vg is labeled by edges ¢;, . ..¢;,

with labels e;, ...e;,, we get that

—1 —1

(057" 6TV (511 - 057

(6 = 1dg

_0 ( ext = ewt( ewt)
RN j Ikt

ik i1 J1 v

by our choice of Q. This proves that 6, (¢ -+ ¢5") = 0, (¢57) - - $57). For any edge e with label 7, we
set e = e = Vr(o)c., and easily verify that this choice is compatible with both . and .. By
Lemma 3.7 G, is residually p-finite. By Lemma 3.1, so is G/G,, since it has a power-p subgroup that is

residually p-finite.
Step 5. The group 71(G) is residually p-finite.

Residual p-finiteness of 71 (G) follows from Theorem 3.6 and Steps 3 and 4. [



12 K. Jankiewicz, K. Schreve / Journal of Pure and Applied Algebra 229 (2025) 107775

4. Cohomological p-completeness and goodness

In this section we prove Theorem 1.1. The proofs are nearly identical for goodness/p-completeness.
Therefore, we will just prove the p-completeness statements, and mention in the last subsection how the
same arguments work for goodness.

4.1. Cohomological p-completeness

Recall from the introduction that a discrete group G is cohomologically p-complete if the canonical
homomorphism G — G,, to the pro-p completion induces an isomorphism

Hjont(ép»]Fp) - H*(Gva)-
Theorem 4.1. The following groups are cohomologically p-complete for all p:

(1) Free groups [27].

(2) Finitely generated nilpotent groups [20].

(3) Right-angled Artin groups [26].

(4) Free products of cohomologically p-complete groups [27].

(5) Direct products of cohomologically p-complete groups where at least one factors has a finite classifying
space [27].

(6) Retracts of cohomologically p-complete groups [27].

We refer to [27] for further details on cohomologically p-complete groups. The idea behind our proof
is simple. We are considering multiple HNN extensions of a free group F, and the cohomology of these
can be computed by a Mayer-Vietoris sequence. It is well-known that free groups are cohomologically p-
complete for every p, hence four out of every five terms in the Mayer-Vietoris sequence are cohomology
groups of cohomologically p-complete groups, and the remaining term is H*(G,F,). If there was a similar
exact sequence for the cohomology of the pro-p completion Gp , then we would be done by the Five Lemma
(this is essentially the argument for right-angled Artin groups used in [26]). The following property of a
graph of groups is a sufficient condition for this pro-p Mayer-Vietoris sequence [1, Lem 5.11]. A profinite
version can be found in [40, Prop 4.3].

Definition 4.2. Let G be the fundamental group of a graph of groups, and suppose G is residually p-finite.
The pro-p topology on G is p-efficient if the vertex and edge groups of G are closed in the pro-p topology
of G and if the pro-p topology on G induces the full pro-p topologies on the vertex and edge groups of G.

In general, if H < G and G is residually p-finite, the pro-p topology on G induces the full pro-p topology
on H if and only if for every p”-index subgroup K < H, there is a p"*-index subgroup J < G with JnH < K.
A subgroup H < G is closed in the pro-p topology if it is the intersection of p™-index subgroups.

Lemma 4.3. Let G be a graph of groups where the edge groups are retracts of the vertex group. Then mG is
p-efficient if and only if

(1) G =mG is residually p-finite,
(2) the pro-p topology on G induces the pro-p topology on G, for all vertices v, and
(3) every vertex group G, is closed in the pro-p topology of G.
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Proof. Every homomorphism ¢ : G, — P to a finite p-group P extends to a homomorphism from G,. This
proves that the pro-p topology on G, induces to the pro-p topology on G, and it follows that the pro-p
topology on G induces the pro-p topology on G,. When the edge group G, is a retract of a vertex group
G, then it is closed in the pro-p topology of G, by [1, Lem 1.6]. Thus if G, is closed in the pro-p topology
of G, then so is G.. [

We state the criterion.

Theorem 4.4 ([1, Cor 5.12]). Let G be a p-efficient graph of finitely generated groups, where all vertex and
edge groups are cohomologically p-complete. Then ™G is cohomologically p-complete.

Theorem 4.5. For every prime p, the fundamental group of an algebraically clean graph of free groups has a
finite index subgroup which is cohomologically p-complete

Proof. We have already constructed in the proof of Theorem 3.8 a finite index subgroup 71 (G) of m1(G’)
which is residually p-finite. We claim that the corresponding decomposition as a graph of free groups
is efficient. Recall that the pro-p topology on vertex groups is generated by the filtration v2(G,). By
construction, for every n, m(G) admits a homomorphism to a finite p-group which restricts to G,, —
G./v2(G,). This combined with Lemma 4.3 shows that the pro-p topology on m1(G) is efficient, so we are
done by Theorem 4.4. []

4.2. Goodness

Cohomological goodness is a bit easier to establish; we will give a more straightforward proof with-
out restating the relevant definitions (which essentially involves replacing the pro-p completion/topology
everywhere with the profinite completion/topology).

Theorem 4.6. The fundamental group G of an algebraically clean graph of free groups is cohomologically
good.

Proof. We know G decomposes as an iterated HNN extension of a free group F', where the edge maps
extend to automorphisms of F. We claim these decompositions are efficient. To see this, take a finite index
characteristic subgroup C of F. There is an induced homomorphism from G to an iterated HNN extension
of F/C, denoted by G’. Since F/C is finite, G’ is virtually free, so let H” be any finite index free subgroup
which intersects F'/C' trivially. The preimage H of H' hence intersects F' inside of C. This shows the HNN
extension is efficient, so we are done by the profinite Mayer-Vietoris sequence [40, Prop 4.3]. [

Since finite extensions of good groups are good, this implies that any Artin group satisfying the conditions
of Corollary 1.4 is good as well.

5. Virtual poly-freeness

Proof of Theorem 1.3. Let G be an algebraically clean graph of finite rank free groups over a finite graph
I'. By Proposition 2.1, we can assume that " has a unique vertex v, and some finite number of loops. Then
the fundamental group of G fits in the following short exact sequence

1 -Gy — m(G) > mI — 1.
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We claim that (G, is a (possibly infinite rank) free group. Indeed, the induced graph of groups decompo-
sition of (G, is an infinite tree of G,, amalgamated along free factors. The chain 1 Q(G,» <71 (G) is a
chain witnessing the normal poly-freeness of 71 (G(T')). O

6. Even Artin groups

Lemma 6.1. Let T be a graph labeled by even numbers = 2, and let A € T' be any induced subgraph. Then
Ar retracts onto Ap.

Proof. The retraction is obtained by mapping each generator s € V(A) to itself, and each generator s €

VI)—V(A) tol. O

Proof of Theorem 1.5. The proof is an induction on the number of non-edges in the defining graph I' of
Ap. If T is a full graph, then by the assumption on no 4-cliques I' has at most three vertices. If T" has one
vertex, then Ar = Z is residually finite and cohomologically good. If I has two vertices, then Ar is virtually
F x Z (see e.g. [18, Lem 4.3]), which is residually finite and cohomologically good. Since residual finiteness
and cohomological goodness pass to finite index supergroups [15, Lem 3.2], Ar has those properties. Finally,
when I" has three vertices then Ar is residually finite and cohomologically good by Corollary 1.4.

We now prove the inductive step. Let I' have a non-edge {u,v}. Then Ar splits as an amalgamated
product Ap_g, *Ar_ (a0} Ar_{yy- By the inductive assumption Ap_g,; and Ap_g,, are residually finite and
cohomologically good. By Lemma 6.1, Ar is an amalgamated product along retracts, so Ar is residually
finite by [3], and cohomologically good by [15, Prop 3.5]. [

More generally, the argument in the proof above shows that for even Artin groups being residually finite
and cohomologically good are “free-of-infinity properties”, in the sense that if we prove that all even Artin
groups whose defining graphs are cliques are residually finite and cohomologically good, then we will be
able to deduce that the same holds for all even Artin groups.
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