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We prove that for every prime p algebraically clean graphs of groups are virtually 
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1. Introduction

An algebraically clean graph of free groups is a graph of groups where each vertex group and edge 
group are finite rank free groups, and all the inclusion maps are inclusions of free factors. Examples of 
the fundamental groups of algebraically clean graph groups include free-by-cyclic groups, the fundamental 
groups of clean 2-complexes in the sense of Wise [36], and certain 2-dimensional Artin groups [22,23]. We 
note that (many among) the former examples are known to not admit (virtual) cocompact actions on CAT(0) 
cube complexes, so they are not virtually cocompactly special. In particular, the family of algebraically clean 
graphs of groups is strictly larger than the family of the fundamental groups of finite clean 2-complexes, 
which all are virtually special.
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1.1. Virtual residual p-finiteness

A group G is residually finite if for every g P G ´ t1u there exists a quotient φ : G Ñ K where K is a 
finite group and φpgq ‰ 1. The fundamental groups of algebraically clean graph of free groups are known to 
be residually finite [37, Thm 3.4].

Let p be a prime number. A group G is residually p-finite if for every g P G ́ t1u there exists a quotient 
φ : G Ñ K where K is a finite p-group and φpgq ‰ 1. Clearly, every residually p-finite group is residually 
finite, but the converse does not hold.

Theorem 1.1. For every prime p, the fundamental group of an algebraically clean graph of free groups has a 
finite index subgroup that is residually p-finite.

We do not know whether algebraically clean graphs of free groups are linear. We note that linear groups 
are known to be virtually residually p-finite [28] for all but finitely many primes p. There have been previous 
combination theorems concerning residual p-finiteness, originating in the work of Higman [17], see e.g. 
[34,2,33] and references therein.

1.2. Cohomology of profinite and pro-p completions

For a residually finite group G, the profinite completion pG of G is defined as

pG “ limÐÝÝ
rG:Hsă8

G{H,

where the inverse limit is taken over the system of finite quotients of G. For every G, there is a canonical 
homomorphism i : G Ñ pG which sends g P G to the cosets gH. A group G is called cohomologically good
(also known as good in the sense of Serre) if for every finite G-module M the induced homomorphism

H˚
contp pG,Mq “ limÝÝÑ

rG:Hsă8
H˚pG{H,Mq i˚

Ñ H˚pG,Mq

is an isomorphism. We always take the cohomology of a profinite group to be its continuous cohomology. 
Goodness was introduced in [32, Exercises 2.6]

We can analogously define cohomological p-completeness for a residually p-finite group. In this case, the 
pro-p completion pGp of G is given by

pGp “ limÐÝÝG{H

where H varies over all the normal subgroups of G whose index is a power of p. Then G is cohomologically 
p-complete if the homomorphism G Ñ pGp induces an isomorphism

H˚
contp pGp,Fpq Ñ H˚pG,Fpq

where we assume the G-action on Fp is trivial.

Theorem 1.2. The fundamental group of an algebraically clean graph of free groups is

(1) cohomologically good,
(2) for every prime p, virtually cohomologically p-complete.
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For each p, the cohomologically complete finite index subgroup is a priori different. General graphs of 
free groups do not always satisfy the above theorem. Indeed, there exist examples of amalgamated products 
of free groups that are not residually finite [7,35]. There are even examples of simple groups that split as 
amalgamated products of free groups [10].

1.3. Virtual poly-freeness

A group G is poly-free if it admits a chain of subgroups 1 “ G0 !G1 ! ¨ ¨ ¨ !Gn “ G such that Gi{Gi´1
is a free group (of possibly infinite rank). We say G is normally poly-free if additionally all subgroups Gi

are normal in G.

Theorem 1.3. Algebraically clean graphs of free groups are normally poly-free.

This has a number of consequences; for instance it implies these groups are locally indicable, hence 
left-orderable [31], and satisfy the K´ and L´theoretic Farrell-Jones Conjecture [4,9].

1.4. Applications to Artin groups

An Artin group is given by a presentation

A “ xs1, . . . , sk| sisjsi ¨ ¨ ¨looomooon
mij terms

“ sjsisj ¨ ¨ ¨loooomoooon
mij terms

y

where mij P t2, 3, . . . u Y t8u. We understand mij “ 8 as no relation involving si and sj . A triangle Artin 
group Aℓmn is an Artin group where k “ 3, and m12 “ ℓ, m23 “ m, and m13 “ n.

Since finite type Artin groups are linear ([24], [8] for braid groups, and [12], [13] in general), it follows 
that they are also virtually residually p-finite. Moreover, pure Artin groups of type An, Cn, G2 and I2pnq
are residually p and cohomologically p-complete for all p [1], and cohomologically good [32].

With the next corollary in mind, we note that the only spherical triangle Artin groups are the A22n “
ApI2pnqq ̂ Z for n ě 2, and A23n where n P t3, 4, 5u. Among those, the even ones, A22n for even n, all are 
known be cohomologically good and virtually residually p-finite and cohomologically p-complete for all p.

Corollary 1.4. A triangle Artin Aℓmn where ℓ ď m ď n is

• residually finite and cohomologically good,
• for each prime p, virtually residually p-finite and cohomologically p-complete,
• virtually normally poly-free,

provided that

• ℓ “ 2, and m, n ě 4 and at least one of them is even, or
• ℓ, m, n ě 4 except for the case where ℓ “ m “ 4 and n is odd.

In particular, all even triangle Artin groups and all extra-extra-large triangle Artin groups (i.e. where 
ℓ, m, n ě 5) satisfy the above.

Moreover, there are many more 2-dimensional Artin groups that have the above properties. See [22] for 
a combinatorial criterion on the defining graph, which ensure that the associated Artin group is virtually 
algebraically clean graph of free groups.
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The Artin groups above were shown to virtually split as algebraically clean graphs of free groups in [22,23]. 
We note that “virtual” in the above statement is necessary. Indeed, a group G that is residually p-finite for 
all primes p is bi-orderable [29] (see also [25]), but the only bi-orderable Artin groups are right-angled Artin 
groups. However, it is possible that each Artin group listed above contains a finite index subgroup that is 
residually p-finite for all primes p.

Artin groups that are known to be poly-free are right-angled Artin groups [14,19,20], even FC-type Artin 
groups [6], and even large type Artin groups [5]. Artin groups of types An, Bn “ Cn, Dn, F4, G2 and I2pnq
[11], as well as rAn, rBn, rCn, rDn [30] are known to be virtually poly-free. Independently, Wu-Ye proved that 
all triangle Artin groups except A23n where n is odd, are virtually poly-free [39]. Wu-Ye also show that 
some triangle Artin groups are not poly-free.

Finally, we also establish residual finiteness and cohomological goodness for all even Artin groups whose 
defining graphs contains no 4-cliques.

Theorem 1.5. Let Γ be a finite labeled graph with all even labels that does not contain a 4-clique. Then AΓ
is residually finite and cohomologically good.

Such Artin groups are also poly-free by [5,38].

Acknowledgments

We thank the anonymous referee for their useful comments. The first author was supported by the NSF 
grant DMS-2203307 and DMS-2238198. The second author was supported by the NSF grant DMS-2203325.

2. Graphs of groups

2.1. Graph of groups notation

We recall the basic definitions and set the notation.
A graph Y consists of a set V pY q of its vertices, and a set EpY q of its edges, and two maps:

(1) ¨ : EpY q Ñ EpY q satisfying e “ e, where we think of e as the edge e with the orientation reversed,
(2) τ : EpY q Ñ V pY q, which we think of as taking the endpoint of an edge.

A graph of groups G with underlying graph Y consists of a family of vertex groups tGvuvPV pY q and edge 
groups tGeuePEpY q where Ge “ Ge together with maps tfe : Ge Ñ GτpequePEpY q.

Let T Ď EpY q be a set of edges of a spanning tree of Y . The fundamental group π1G of the graph of 
groups G is constructed as the quotient

π1G “ p˚vPV pY qGv ˚ F pEpY qq{K

where K is a set of the following relations

(1) efepgqe “ fepgq for all e P EpY q and g P Ge, and
(2) e “ e´1, and e “ 1 if and only if e P T .



K. Jankiewicz, K. Schreve / Journal of Pure and Applied Algebra 229 (2025) 107775 5

2.2. Algebraically clean graph of groups

An algebraically clean graph of free groups is a graph of groups G with finite underlying graph Y , where 
Gv is a finite rank free group for all v P V pY q, Ge is finitely generated for all e P EpY q, and the maps 
fe : Ge Ñ Gτpeq are injective maps onto free factors.

Let G be a group, and N, M Ď G be two subgroups. We say that an isomorphism φ : N Ñ M is a partial 
automorphism, if there exists an automorphism φext : G Ñ G such that φext

|N “ φ. A partial identity is a 
partial automorphism that can be extended to the identity.

Proposition 2.1. Every algebraically clean graph of free groups G admits a splitting as an algebraically clean 
graph of groups G1 where the underlying graph Y 1 has a unique vertex, and up to renaming e and e, Ge Ď
Gτpeq is a free factor, fe is the inclusion map, and fe is a partial automorphism of Gτpeq.

Proof. Consider a spanning tree T in the underlying graph Y of G. We define a new graph Y 1 to have the 
vertex set V pY 1q “ tT u and edge set EpY 1q “ te P EpY q | e R EpT qu. Let GT denote the graph of groups with 
the underlying graph T , and the vertex and edge groups and maps as in G. Then π1GT “ ˚vPTGv{tfepgq “
fepgqu. By induction on the number of vertices in T , we can argue that π1GT is a finite rank free group, 
where each Gv for v P T embeds as a direct factor. That is clearly the case when |V pT q| “ 1. Let V pT q ě 1, 
and let v P T be a leaf, and T 1 be the subtree of T excluding v, and let e be the unique edge in T such that 
τpeq “ v. Then π1GT “ GT 1 ˚fepgq“fepgq Gv, which is an amalgamated product of two finite rank free groups 
along their free factors, so it is a finite rank free group. By construction, the group Gv and every free factor 
of GT 1 embed in GT as free factors.

By “collapsing” T in Y , we can identify π1G with the fundamental group of a graph of groups G1 with 
underlying graph Y 1, where

• the unique vertex group GT is π1GT ,
• for each edge e P EpY q, i.e. e R EpT q, Ge becomes identified with fepGeq Ď Gτpeq Ď GT which is a free 

factor in Gτpeq and therefore also in GT , and the map fe : Ge “ Ge Ñ Gτpeq Ď GT is an embedding 
onto some free factor of Gτpeq and again also a free factor of GT . We can thus think of that map fe as 
a partial automorphism of GT . l

3. Residual p-finiteness

Throughout this section p is a fixed prime.

3.1. Well-known basics on residual p-finiteness

We start with stating some easy facts that we will use later.

Lemma 3.1. Let G be a finitely generated group.

(1) Let N !G be a subgroup whose index is a power of p. Then there exists a characteristic subgroup K!G

whose index is a power of p, such that K Ď N .
(2) Suppose G fits in a short exact sequence

1 Ñ N Ñ G Ñ Q Ñ 1

where Q is a finite p-group, and N is residually p-finite. Then G is residually p-finite.
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Proof. (1) Let K be the intersection 
Ş

H of all the normal subgroups H of G of index rG : N s. Note that 
K is also the kernel of a homomorphism G Ñ ś

H G{H, since the order of each G{H is a power of p, 
so is the order of 

ś
H G{H. In particular, the index rG : Ks is a power of p.

(2) Let g P G. If g survives in Q, then Q is the required finite p-quotient of G. Suppose g P N . Since N is 
residually p-finite, then using (1) we know that there exists a characteristic subgroup K Ď N such that 
g R K and whose index is a power of p. Since K is characteristic in N , it is normal in G, and rG : Ks
is a power of p. l

3.2. Basics on lower central p-series

Let G be a finitely generated group. For subgroup H, K Ď G we denote:

• Hp “ xhp | h P Hy,
• rH, Ks “ xrh, ks | h P H, k P Ky, and we use the convention that rh, ks “ hkh´1k´1,
• HK “ xhk | h P H, k P Ky.

Let G be a finitely generated group. A filtration of G is a collection pGnqnPN of subgroups of G where 
G1 “ G, and Gn`1 Ď Gn for each n P N. A filtration pGnqnPN is normal if Gn!G is normal for each n P N, 
and it is separating if 

Ş
nPN Gn “ t1u.

The lower p-central filtration tγp
npGqun of G is defined as:

γp
1 pGq :“ G, γp

n`1pGq :“ pγp
npGqqp rG, γp

npGqs.

We also denote Lp
npGq “ γp

npGq{γp
n`1pGq. In particular, Lp

1pGq “ H1pG, Fpq. The lower p-central filtration 
of G is a normal filtration, and it is separating if and only if G is residually p-finite. We note a couple of 
basic well-known properties of the lower p-central series. For completeness, we provide proofs.

Lemma 3.2.

(1) For each n we have pγp
npGqqp Ď γp

n`1pGq.
(2) For each n, m we have rγp

mpGq, γp
npGqs Ď γp

n`mpGq.
(3) Each γp

npGq is a characteristic subgroup of G. In particular, for each i there are natural homomorphisms 
θn : AutpGq Ñ AutpLp

npGqq and σn : AutpGq Ñ AutpG{γp
npGqq.

Proof. (1) Follows immediately from the definition.
(2) We induct on m. For m “ 1 the statement follows directly from the definition for every n. Suppose that 

rγp
m´1pGq, γp

npGqs Ď γp
n`m´1pGq for every n.

First we claim that rpγp
m´1pGqqp, γp

npGqs Ď γp
n`mpGq. Given k P γp

npGq and h P γp
m´1pGq we need to 

show that rhp, ks P γp
n`mpGq. First note that rhp, ks “ hpup where u “ kh´1k´1. By the inductive 

assumption u “ h´1ℓ for some ℓ P γp
n`m´1pF q.

We have

rh, ksp “ phkh´1k´1qp

“ hpph´pp´1quhpp´1qqph´pp´2quhpp´2qq . . . ph´1uhqu.

By substituting u “ h´1ℓ we get

h´pp´iquhpp´iq “ h´pp´iqh´1ℓhpp´iq “ h´1h´pp´iqℓhpp´iq “ h´1ℓℓi “ uℓi
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for some ℓi P γn`m where the equality h´pp´iqℓhpp´iq “ ℓℓi follows from rG, γn`m´1s Ď γn`m. Thus we 
have

rh, ksp “ hpuℓp´1uℓp´2 . . . , uℓ1u P phpupqγp
n`mpGq,

and in particular rhp, ksγp
n`mpGq “ phpupqγp

n`mpGq “ rh, kspγp
n`mpGq. Since rh, ks P γp

n`m´1pGq by 
induction, we have rh, ksp P γp

n`mpGq by Lemma 3.2(1). We conclude that rhp, ks P γp
n`mpGq, as 

claimed.
Now we claim that rrG, γp

m´1pGqs, γp
npGqs Ď γp

n`mpGq. By the three subgroup lemma (see e.g. [21, Cor 
8.28])

rrG, γp
m´1pGqs, γp

npGqs Ď rrγp
m´1pGq, γp

npGqs, Gs ¨ rrG, γp
npGqs, γp

m´1pGqs
Ď rγp

n`m´1pGq, Gs ¨ rγp
n`1pGq, γp

m´1pGqs
Ď γp

n`mpGq

and the second and third line follow from the inductive hypothesis. Thus we conclude that 
rγp

mpGq, γp
npGqs “ rpγp

m´1pGqqprγp
m´1pGq, Gs, γp

npGqs Ď γp
n`mpGq, as desired.

(3) We now induct on n. For n “ 1, clearly γp
1 pGq “ G is characteristic in G. We assume that the statements 

in true for n ´ 1 and prove it for n. Let h P γp
npGq “ γp

n´1pGqrG, γp
n´1pGqs, i.e. h “ hp

1 ¨ rk, h2s where 
h1, h2 P γp

n´1pGq and k P G. Let φ P AutpGq. Then

φphq “ φphp
1 ¨ rk, h2sq “ φph1qp ¨ rφpkq,φph2qs.

Since γp
n´1pGq is characteristic, φph1q, φph2q P γp

n´1pGq, so φphq P γp
n´1pGqrG, γp

n´1pGqs “ γp
npGq. Thus 

γp
npGq is characteristic.

Since γp
npGq is characteristic in G, every automorphism φ : G Ñ G preserves γp

npGq, and therefore 
σnpφq : G{γp

npGq Ñ G{γp
npGq is well-defined. It is clear that σn is a homomorphism. The automorphism 

φ restricts to φ|γp
npGq : γp

npGq Ñ γp
npGq, and to φ|γp

npGq : γp
n`1pGq Ñ γp

n`1pGq. Thus φ descends to a 
well-defined automorphism of Lp

npGq. The map θn is clearly a homomorphism. l

Proposition 3.3 ([16, Chap VIII.1]). Let φ P AutpGq such that θ1pφq “ IdLp
1pGq.

(1) We have θnpφq “ IdLp
npGq for all n.

(2) The order of σnpφq is a power of p.

Proof. (1) We induct on n. The case of n “ 1 is immediate. We assume that the statement holds for n ́ 1.
Let first h P γp

n´1pGq. Then by assumption φphq “ hkn where kn P γp
npGq. We have

φphp γp
n`1pGqq “ phknqp γp

n`1pGq
“ hpph´pp´1qknhp´1qph´pp´2qknhp´2q ¨ ¨ ¨ ph´1knhqki γp

n`1pGq
“ hpknℓp´1knℓp´2 ¨ ¨ ¨ knℓ1kn γp

n`1pGq
“ hpkpnpk´pp´1q

n ℓp´1k
p´1
n qpk´pp´2q

n ℓp´2k
p´2
n q ¨ ¨ ¨ pk´1

n ℓ1knq γp
n`1pGq

“ hpkpn γ
p
n`1pGq

“ hp γp
n`1pGq
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where ℓ1, . . . , ℓp´1, ℓ, ℓ1 are some elements of γp
n`1pGq. Indeed, the fact that h´jknhj “ knℓj follows 

from the fact that rγp
n´1pGq, γp

npGqs Ď rG, γp
npGqs Ď γp

n`1pGq (Proposition 3.2(2)). Finally, the fact that 
kpn P γp

n`1 follows from Proposition 3.2(1).
Now let g P G. Then φpgq “ gℓ2 for some ℓ2 P γp

2 pGq. We have

φprg, hs γp
n`1pGqq “ rgℓ2, hkns γp

n`1pGq
“ gpℓ2hknℓ2´1qg´1kn

´1h´1 γp
n`1pGq

“ ghpkndn`1g
´1kn

´1qh´1 γp
n`1pGq

“ ghdn`1g
´1d1

n`1h
´1 γp

n`1pGq
“ ghg´1h´1 γp

n`1pGq
“ rg, hs γp

n`1pGq

where we used Proposition 3.2(2) to write ℓ2hknℓ2´1 “ hkndn`1 for some dn`1 P γp
n`1pGq since 

rγp
2 pGq, γp

n´1pGqs Ď γp
n`1pGq, and kndn`1g´1kn

´1 “ dn`1g´1d1
n`1 for some d1

n`1 P γp
n`1pGq since 

rγp
npGq, Gs Ď γp

n`1pGq.
Finally, every generator h of γp

npGq is of the form h “ hp
1rg, h2s for some h1, h2 P γp

n´1pGq. We have

φphγp
n`1pGqq “ φphp

1qφprg, h2sqγp
n`1pGq “ hp

1rg, h2sγp
n`1pGq,

for some ℓ P γp
i`1pGq. This proves that θipφq “ IdLp

i pGq as claimed.
(2) We prove by induction on n that σnpφpn´1q “ IdG{γp

npGqq. The case of n “ 1 is immediate as σ1 “ θ1. 
We assume that the statement holds for n ́ 1, in particular for every h P G we have φpn´2phγp

n´1pGqq “
hγp

n´1pGq, i.e. there exists k P γp
n´1pGq such that φpn´2phq “ hk. We have

φpn´1phq “ pφpn´2qpphq “ pφpn´2qp´1
´
φpn´2phq

¯
“ pφpn´2qp´1phkq.

Since k P γp
n´1pGq and θnpφpn´2q “ θnpφqpn´2 “ IdLp

npGq, using Proposition 3.3(1), we get

pφpn´2qp´1phkq “ pφpn´2qp´2pφpn´2phqφpn´2pkqq

P pφpn´2qp´2phk ¨ kγp
npGqq

“ pφpn´2qp´3phk3γp
npGqq “ ¨ ¨ ¨ “ hkpγp

npGq.

In particular, since kp P γp
npGq by Proposition 3.2(1), we conclude φpn´1phq P hγp

npGq as required. l

Corollary 3.4. Let A Ď AutpGq be a subgroup.

(1) The image θ1pAq Ď AutpLp
1pGqq is a finite p-group if and only if θnpAq Ď AutpLp

npGqq is a finite p-group 
for every n ě 1.

(2) The image θ1pAq Ď AutpG{γp
1 pGqq is a finite p-group if and only if σnpAq Ď AutpG{γp

npGqq is a finite 
p-group for every n ě 1.

Proof. (1) Fix n ě 1, and suppose that θ1pAq is a finite p-group. By Proposition 3.3(1) for every φ P A, if 
θ1pφq “ IdLp

1pGq, then θnpφq “ IdLp
i pGq. Thus θipAq is a quotient of θ1pAq. In particular, θipAq is a finite 

p-group as required.
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(2) Fix n ě 1, and suppose that σ1pAq “ θ1pAq is a finite p-group. For every φ P A there exists k ě 1
such that θ1pφpkq “ θ1pφqpk “ IdLp

1pGq. By Proposition 3.3(2) the order of σnpφpkq is a power of p, and 
therefore the order of σnpφq is a power of p. We conclude that σnpAq is a p-group. As a subgroup of the 
automorphism group of a finite group σnpAq is also finite. l

The above corollary implies that for every subgroup K of kerpAutpGq Ñ AutpLp
1pGqq (which has finite 

index in AutpGq), all the images σipKq are finite p-groups. This observation is crucial in the proof of 
Theorem 1.1.

We note the following observation that the operators θi and σi can be extended to partial automorphisms.

Lemma 3.5. A partial automorphism φ : N Ñ M induces a partial automorphism N Xγp
npGqq Ñ M Xγp

npGq
of γp

npGq. In particular, it descends to the following partial automorphisms

(1) σnpφq : N{N X γp
npGq Ñ M{M X γp

npGq, and
(2) θnpφq : N X γp

npGq{N X γp
n`1pGq Ñ M X γp

npGq{M X γp
n`1pGq.

Proof. Since φ is a partial automorphism of G, there exists φext P AutpGq such that φext
|N “ φ. By 

Proposition 3.2(3), γp
npGq is a characteristic subgroup of G, so φextpγp

npGqq “ γp
npGq for every n. Thus 

φpN X γp
npGqq “ φextpN X γp

npGqq “ M X γp
npGq for every n. The lemma follows. l

3.3. Residual p-finiteness criterion for graphs of groups

We generalize a theorem of [1] that every graph of virtually residually p-groups, where edge group 
inclusions are isomorphisms, are virtually residually p-finite. Their result, in particular, applies to free-by-
cyclic groups. We will use a criterion for residual p-finiteness of graphs of groups stated therein.

A filtration G of a graph of groups G is a collection tGvuv of compatible filtrations Gv “ tGv,nun of Gv

for each v P V pΓq, in the sense that for all n

f´1
e pGτpeq,nq “ f´1

e pGτpeq,nq.

For a given property X (e.g. normal, separating), we say that G is X if for every v P V pY q the filtration Gv

is X. We say that a filtration G of a graph of groups G separates edge groups if fepGeq “ Ş
n Gτpeq,n ¨fepGeq

for all edges e.
Let Gn be the n-th depth subgroups of the filtration G of G, i.e. Gn “ pGv,nqvPV pY q. Since the filtrations 

of the vertex groups are compatible, there exists a natural graph of groups quotient G{Gn which has Y as 
it underlying graph and vertex groups Gv{Gv,n.

The following will be used to prove Theorem 1.1.

Theorem 3.6 ([1, Cor 3.14]). Let G be a normal separating filtration of G which separates edge groups of G, 
such that π1pG{Gnq is residually p-finite for every n ě 1. Then π1G is residually p-finite.

3.4. Main proof

The following lemma can be deduced from [34] but in this case it is easy to prove it directly.

Lemma 3.7. Let P be a finite p-group. Let G be a graph of p-groups where each vertex group comes with an 
injective homomorphism ψv : Gv Ñ P , and each edge group comes with an inclusion ψe : Ge Ñ P such that 
ψe “ ψe. Moreover, assume that for each edge e the composition ψτpeq ¨ fe “ ψe. Then π1G is residually 
p-finite.
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Proof. The assumption on G implies that there exists an epimorphism ψ : π1G Ñ P which is an isomorphism 
on each vertex group. Indeed, ψ is defined as ψv on each vertex group Gv, and sending all edge generators 
(not edge groups) to the identity. The kernel kerψ is thus a finite index subgroup of π1G and splits as a finite 
graph of trivial groups, i.e. kerψ is a finite rank free group. By Lemma 3.1(2) π1G is residually p-finite. l

We are now ready to prove the main theorem.

Theorem 3.8. For every prime p, the fundamental group of an algebraically clean graph of free groups has a 
finite index subgroup that is residually p-finite.

To illustrate the proof, we first consider the special case of free-by-free groups.

Proof for F ¸ Q. Let F, Q be finite rank free groups. In particular, F and Q are residually p-finite. Let 
α : Q Ñ AutpF q be a homomorphism associated to the semi-direct product. By Lemma 3.2(3) γp

2 pF q
is characteristic in F , so every automorphism φ P AutpF q descends to an automorphism of Lp

1pF q, i.e. 
there is a well-defined homomorphism β : AutpF q Ñ AutpLp

1pF qq. By composing α with β, we obtain a 
homomorphism to a finite group β ¨φ : Q Ñ AutpLp

1pF qq. Let Q1 be its kernel. Then F ¸Q1 is a finite index 
subgroup of F ¸ Q, which we claim is residually p-finite.

By Corollary 3.4(2) the image σipQ1q is a p-group for every i. In particular pF {γp
i q ¸ Q1 is residually 

p-finite. Indeed if g P pF {γp
i q ¸ Q1 survives in Q1, then we can use the fact that Q1 is residually p-finite. 

Otherwise, when g P kerppF {γp
i q ̧ Q1 Ñ Q1q, then g must survive in the quotient pF {γp

i q ̧ σipQ1q, which is 
a p group as its order is a power of p. Since every element g P F ¸ Q1 survives in F {γp

i pF q ̧ Q1 for some i, 
we conclude that F ¸ Q1 is residually p-finite. l

We now move to the general case. Let F be a finite rank free group, and let N, M be two subgroups 
of the same rank, each being a free factor of F . Every isomorphism φ : N Ñ M can be extended to an 
automorphism φext : F Ñ F , i.e. φext

|N “ φ, which we call an extension of φ to F . Note that an extension of 
φ is far from being unique. Indeed, it is only unique if N “ M “ F .

Proof in general case. Let G1 be a fundamental group of an algebraically clean graph of free groups. By 
Proposition 2.1 we can think of G1 as the fundamental group of a graph of groups G1 where the underlying 
graph Y 1 of G1 is a wedge of k oriented circles te1, . . . , enu. The unique vertex group of G1 is identified with 
a finite rank free group F , and for each 1 ď i ď k the edge groups Gei can be identified with a free factor 
Ni so that fei “ IdNi and fei “ φi : Ni Ñ Mi is a partial automorphism onto a free factor Mi of F . Let Q1

be a free group freely generated by tφ1, . . . , φku, which can be naturally identified with π1pY q.

Step 1. We construct a finite index normal subgroup Q of Q1 such that θnpQq is trivial.

Let tφext
1 , . . . , φext

k u be a choice of extensions of tφ1, . . . , φku, i.e. for each 1 ď i ď k φext
i P AutpF q

such that φext
i |Ni

“ φi. Recall the homomorphism θ1 : AutpF q Ñ AutpLp
1pF qq from Proposition 3.2(3). We 

construct a subgroup Q of Q1 as

Q “ kerpQ1 Ñ AutpF q Ñ AutpLp
1pF qq

where the first map sends φi to φext
i P AutpF q, and the second map is θ1. Since AutpLp

1pF qq is a finite group, 
the index rQ1 : Qs is finite.

By Corollary 3.4(1), the image of Q in AutpLp
npF qq is trivial for every n.

Step 2. We construct the corresponding finite index normal subgroup G of G1 and realize it as the fundamental 
group of a graph of groups G covering the graph of groups for G1.
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Consider the finite index subgroup G of G1 corresponding to Q, i.e. G “ kerpG1 Ñ Q1 Ñ Q1{Qq. The 
group G is the fundamental group of the following graph of groups G. The underlying graph Y of G is the 
finite covering space of Y 1 corresponding to Q Ď Q1. Each vertex group of G is a copy of F . The edge groups 
of edges labeled with ei are copies of Ni with the maps IdNi and φi into the respective vertex groups. We 
note that G is still an algebraically clean graph of finite rank free groups, with a natural quotient Q.

Step 3. There is a natural filtration G of G where Gv “ tγp
npGvqun of Gv for each v P V pY q. The filtration 

is normal, separating, and it separates the edge groups.

Lemma 3.5 implies that the filtrations Gv on the individual vertex groups are compatible and indeed 
define a filtration on G. It is immediate that G is normal. Since all the vertex groups are free groups, hence 
residually p-finite, their lower p-central series are separating. Since the edge groups are retracts of the vertex 
groups, and vertex groups are residually p-finite, [1, Lem 1.6] implies that the filtration separates the edge 
groups.

Step 4. For each n, π1pG{Gnq is residually p-finite.

The graph of groups G{Gn has all the vertex groups naturally isomorphic to F {γp
npF q and the edge 

groups are pNi{pNi X γp
npF qq for respective i, with the respective edge maps being partial identities and 

partial automorphisms φi. We construct a further subgroup Qn of Q as

Qn “ kerpQ Ñ AutpF q Ñ AutpF {γp
npF qq

the first map sends φi to φext
i P AutpF q, and the second map is the map σn defined in Lemma 3.2(3). By 

Corollary 3.4(2), the image of Q in AutpF {γp
npF qq is a finite p-group, and therefore rQ : Qns is a p-power. 

We now claim that the kernel Kn “ kerpπ1pG{Gnq Ñ Q Ñ Q{Qnq is the fundamental group of a graph 
of groups satisfying the assumptions of Lemma 3.7, and therefore is residually p-finite. Indeed, Kn is a 
finite cover Gn of the graph of groups G{Gn whose all the vertex groups are still naturally isomorphic 
to F {γp

npF q, and edge groups are pNi{pNi X γp
npF qq for respective i, with the respective edge maps being 

partial identities and partial automorphisms φi. We fix a vertex group Gv0 of Gn and for each v P V pY q we 
construct a map φv : Gv Ñ Gv0 . We describe each map as an automorphism ψv P AutpF {γp

npF qq using the 
natural identification of each Gv with F {γp

npF q. First, ψv0 “ IdF {γp
npF q. For v such that there is a path from 

v to v0 is labeled by edges ei1 . . . eik we define ψv “ σnpφext
ik ¨ ¨ ¨φext

i1 q.
We claim that ψv does not depend on the choice of the path from v to v0. Indeed, given some other path 

with labels ej1 . . . ejk1 we get that

θnpφext
ik ¨ ¨ ¨φext

i1 qθnpφext
jk1 ¨ ¨ ¨φext

j1 q´1 “ θnpφext
ik ¨ ¨ ¨φext

i1 pφext
j1 q´1 ¨ ¨ ¨ pφext

jk1 q´1q “ IdGv0

by our choice of Qn. This proves that θnpφext
ik ¨ ¨ ¨φext

i1 q “ θnpφext
jk1 ¨ ¨ ¨φext

j1 q. For any edge e with label i, we 
set ψe “ ψe “ ψτpeq|Ge

, and easily verify that this choice is compatible with both ψτpeq and ψτpeq. By 
Lemma 3.7 Gn is residually p-finite. By Lemma 3.1, so is G{Gn since it has a power-p subgroup that is 
residually p-finite.

Step 5. The group π1pGq is residually p-finite.

Residual p-finiteness of π1pGq follows from Theorem 3.6 and Steps 3 and 4. l
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4. Cohomological p-completeness and goodness

In this section we prove Theorem 1.1. The proofs are nearly identical for goodness/p-completeness. 
Therefore, we will just prove the p-completeness statements, and mention in the last subsection how the 
same arguments work for goodness.

4.1. Cohomological p-completeness

Recall from the introduction that a discrete group G is cohomologically p-complete if the canonical 
homomorphism G Ñ pGp to the pro-p completion induces an isomorphism

H˚
contp pGp,Fpq Ñ H˚pG,Fpq.

Theorem 4.1. The following groups are cohomologically p-complete for all p:

(1) Free groups [27].
(2) Finitely generated nilpotent groups [26].
(3) Right-angled Artin groups [26].
(4) Free products of cohomologically p-complete groups [27].
(5) Direct products of cohomologically p-complete groups where at least one factors has a finite classifying 

space [27].
(6) Retracts of cohomologically p-complete groups [27].

We refer to [27] for further details on cohomologically p-complete groups. The idea behind our proof 
is simple. We are considering multiple HNN extensions of a free group F , and the cohomology of these 
can be computed by a Mayer-Vietoris sequence. It is well-known that free groups are cohomologically p-
complete for every p, hence four out of every five terms in the Mayer-Vietoris sequence are cohomology 
groups of cohomologically p-complete groups, and the remaining term is H˚pG, Fpq. If there was a similar 
exact sequence for the cohomology of the pro-p completion pGp, then we would be done by the Five Lemma 
(this is essentially the argument for right-angled Artin groups used in [26]). The following property of a 
graph of groups is a sufficient condition for this pro-p Mayer-Vietoris sequence [1, Lem 5.11]. A profinite 
version can be found in [40, Prop 4.3].

Definition 4.2. Let G be the fundamental group of a graph of groups, and suppose G is residually p-finite. 
The pro-p topology on G is p-efficient if the vertex and edge groups of G are closed in the pro-p topology 
of G and if the pro-p topology on G induces the full pro-p topologies on the vertex and edge groups of G.

In general, if H ă G and G is residually p-finite, the pro-p topology on G induces the full pro-p topology 
on H if and only if for every pn-index subgroup K ă H, there is a pm-index subgroup J ă G with JXH Ă K. 
A subgroup H ă G is closed in the pro-p topology if it is the intersection of pn-index subgroups.

Lemma 4.3. Let G be a graph of groups where the edge groups are retracts of the vertex group. Then π1G is 
p-efficient if and only if

(1) G “ π1G is residually p-finite,
(2) the pro-p topology on G induces the pro-p topology on Gv for all vertices v, and
(3) every vertex group Gv is closed in the pro-p topology of G.
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Proof. Every homomorphism φ : Ge Ñ P to a finite p-group P extends to a homomorphism from Gv. This 
proves that the pro-p topology on Gv induces to the pro-p topology on Ge, and it follows that the pro-p
topology on G induces the pro-p topology on Gv. When the edge group Ge is a retract of a vertex group 
Gv, then it is closed in the pro-p topology of Gv by [1, Lem 1.6]. Thus if Gv is closed in the pro-p topology 
of G, then so is Ge. l

We state the criterion.

Theorem 4.4 ([1, Cor 5.12]). Let G be a p-efficient graph of finitely generated groups, where all vertex and 
edge groups are cohomologically p-complete. Then π1G is cohomologically p-complete.

Theorem 4.5. For every prime p, the fundamental group of an algebraically clean graph of free groups has a 
finite index subgroup which is cohomologically p-complete

Proof. We have already constructed in the proof of Theorem 3.8 a finite index subgroup π1pGq of π1pG1q
which is residually p-finite. We claim that the corresponding decomposition as a graph of free groups 
is efficient. Recall that the pro-p topology on vertex groups is generated by the filtration γp

npGvq. By 
construction, for every n, π1pGq admits a homomorphism to a finite p-group which restricts to Gv Ñ
Gn{γp

npGvq. This combined with Lemma 4.3 shows that the pro-p topology on π1pGq is efficient, so we are 
done by Theorem 4.4. l

4.2. Goodness

Cohomological goodness is a bit easier to establish; we will give a more straightforward proof with-
out restating the relevant definitions (which essentially involves replacing the pro-p completion/topology 
everywhere with the profinite completion/topology).

Theorem 4.6. The fundamental group G of an algebraically clean graph of free groups is cohomologically 
good.

Proof. We know G decomposes as an iterated HNN extension of a free group F , where the edge maps 
extend to automorphisms of F . We claim these decompositions are efficient. To see this, take a finite index 
characteristic subgroup C of F . There is an induced homomorphism from G to an iterated HNN extension 
of F {C, denoted by G1. Since F {C is finite, G1 is virtually free, so let H2 be any finite index free subgroup 
which intersects F {C trivially. The preimage H of H 1 hence intersects F inside of C. This shows the HNN 
extension is efficient, so we are done by the profinite Mayer-Vietoris sequence [40, Prop 4.3]. l

Since finite extensions of good groups are good, this implies that any Artin group satisfying the conditions 
of Corollary 1.4 is good as well.

5. Virtual poly-freeness

Proof of Theorem 1.3. Let G be an algebraically clean graph of finite rank free groups over a finite graph 
Γ. By Proposition 2.1, we can assume that Γ has a unique vertex v, and some finite number of loops. Then 
the fundamental group of G fits in the following short exact sequence

1 Ñ xxGvyy Ñ π1pGq Ñ π1Γ Ñ 1.
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We claim that x xGvy y is a (possibly infinite rank) free group. Indeed, the induced graph of groups decompo-
sition of x xGvy y is an infinite tree of Gv, amalgamated along free factors. The chain 1 ! x xGvy y ! π1pGq is a 
chain witnessing the normal poly-freeness of π1pGpΓqq. l

6. Even Artin groups

Lemma 6.1. Let Γ be a graph labeled by even numbers ě 2, and let Λ Ď Γ be any induced subgraph. Then 
AΓ retracts onto AΛ.

Proof. The retraction is obtained by mapping each generator s P V pΛq to itself, and each generator s P
V pΓq ́ V pΛq to 1. l

Proof of Theorem 1.5. The proof is an induction on the number of non-edges in the defining graph Γ of 
AΓ. If Γ is a full graph, then by the assumption on no 4-cliques Γ has at most three vertices. If Γ has one 
vertex, then AΓ “ Z is residually finite and cohomologically good. If Γ has two vertices, then AΓ is virtually 
F ˆ Z (see e.g. [18, Lem 4.3]), which is residually finite and cohomologically good. Since residual finiteness 
and cohomological goodness pass to finite index supergroups [15, Lem 3.2], AΓ has those properties. Finally, 
when Γ has three vertices then AΓ is residually finite and cohomologically good by Corollary 1.4.

We now prove the inductive step. Let Γ have a non-edge tu, vu. Then AΓ splits as an amalgamated 
product AΓ´tuu ˚AΓ´tu,vu AΓ´tvu. By the inductive assumption AΓ´tuu and AΓ´tvu are residually finite and 
cohomologically good. By Lemma 6.1, AΓ is an amalgamated product along retracts, so AΓ is residually 
finite by [3], and cohomologically good by [15, Prop 3.5]. l

More generally, the argument in the proof above shows that for even Artin groups being residually finite 
and cohomologically good are “free-of-infinity properties”, in the sense that if we prove that all even Artin 
groups whose defining graphs are cliques are residually finite and cohomologically good, then we will be 
able to deduce that the same holds for all even Artin groups.
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