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In this note, we prove that the K(π, 1)-conjecture for 
Artin groups implies the center conjecture for Artin groups. 
Specifically, every Artin group without a spherical factor that 
satisfies the K(π, 1)-conjecture has a trivial center.
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1. Introduction

A Coxeter system (W, S) consists of a group W and a generating set S where W is 
given by a presentation
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W = ⟨s ∈ S|s2 = (st)mst = 1⟩,

where mst ∈ {2, 3, . . . } ∪{∞}. The associated Artin group A is given by the presentation

A = ⟨s ∈ S| sts · · ·︸ ︷︷ ︸
mst terms

= tst · · ·︸ ︷︷ ︸
mst terms

⟩.

An Artin group A is spherical if the corresponding Coxeter group is finite, and otherwise 
A is infinite type. The Coxeter diagram ΓS is a graph with vertices corresponding to S
and where two vertices are joined by an edge if and only if mst > 2. If mst ≥ 4 we label 
the edge with mst. A special subgroup of A is a subgroup generated by some subset of 
S. Each special subgroup is itself an Artin group [20]. Each Artin group with standard 
generating set admits (a possibly trivial) decomposition A = AT1 × · · ·×ATn where each 
Ti ⊆ S defines a connected component of the Coxeter graph ΓS. An Artin group A is 
irreducible if its Coxeter diagram is connected. We say ATi is a spherical factor of A
if ATi is spherical. Every irreducible spherical Artin group has an infinite cyclic center 
[10,3]. Conjecturally, those are the only irreducible Artin groups with nontrivial center.

Conjecture 1 (The center conjecture). Every Artin group without a spherical factor has 
trivial center.

The center conjecture holds for FC-type Artin groups and 2-dimensional Artin groups 
[11]. Charney and Morris-Wright have shown the center conjecture holds for Artin groups 
whose defining graphs are not stars of a single vertex [7]. Godelle and Paris further showed 
that if all Artin groups with mst ̸= ∞ for all s, t ∈ S satisfy the center conjecture, then 
all Artin groups satisfy the center conjecture [11].

The FC-type and 2-dimensional Artin groups also satisfy the K(π, 1)-conjecture [4].

Conjecture 2 (The K(π, 1)-conjecture). The orbit space H(W )/W of a complexified hy-
perplane arrangement associated to a Coxeter system (W, S) is a K(π, 1) for the Artin 
group A associated to W .

For a precise definition of H(W ) and more background, see e.g. the survey paper [17]. 
It is known that the fundamental group of H(W )/W is equal to A, so the conjecture is 
about the asphericity of H(W )/W . In this note, we prove the following:

Theorem 3. Every Artin group without a spherical factor that satisfies the K(π, 1)-
conjecture has trivial center.

In fact, we only need the following consequence of the K(π, 1)-conjecture: an Artin 
group A which satisfies the K(π, 1)-conjecture has finite cohomological dimension which 
is realized by a spherical subgroup, i.e. cd(A) = cd(AT ) = |T | for some spherical subset 
T . See Theorem 12 for the more general statement of our main theorem.
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Fig. 1. The Coxeter diagram of the smallest mysterious Artin group according to McCammond.

For example, in [16] McCammond mentions that the center conjecture is unknown for 
the Artin group A with the Coxeter diagram as in Fig. 1. The group A is given by the 
presentation

⟨a, b, c, d | aba = bab, bcb = cbc, cdc = dcd, dad = ada, bdb = dbd, ac = ca⟩.

The K(π, 1)-conjecture holds for A by a theorem of Charney [6]. That allows us to answer 
the question of McCammond.

Corollary 4. The Artin group with the Coxeter diagram as in Fig. 1 has trivial center.

Another class of Artin groups which satisfy the K(π, 1)-conjecture are the locally 
reducible Artin groups, where all irreducible spherical subgroups are of rank ≤ 2 [5]. 
There are many of these with mst ̸= ∞ for each s, t ∈ S, and as far as we know the 
center conjecture was open here.

Corollary 5. Every locally reducible Artin group without spherical factor has trivial cen-
ter.

2. Representations of Artin groups in mapping class groups

An Artin group A with standard generating set S has small type if mst ∈ {2, 3} for all 
s, t ∈ S. In this section we recall a representation of small type Artin groups in mapping 
class groups, due to Crisp-Paris [8], and analyze where certain elements of A are mapped.

Let Σ be a surface. A multicurve is a collection of pairwise disjoint simple closed curves 
on Σ. We say that two multicurves are disjoint if their isotopy classes have disjoint repre-
sentatives. A multitwist about a multicurve γ is a product of non-trivial powers of Dehn 
twists about simple closed curves in γ (the powers can be different for different curves). 
We shall need the following lemma about commuting multitwists about multicurves.

Lemma 6. Let γ and γ′ be essential multicurves on Σ that do not share a simple closed 
curve. Let Tγ and Tγ′ be the associated multitwists along γ and γ′. Then Tγ and Tγ′

commute if and only if γ and γ′ are disjoint.

Proof. The if direction is clear, so suppose Tγ and Tγ′ commute. Then TN
γ and TN

γ′

commute for all N . By a theorem of Koberda [14], the group generated by large powers 
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Fig. 2. An example of the surface ΣS (right) corresponding to the Artin group A with the standard generating 
set S whose Coxeter graph Γ is illustrated (left). For each vertex s in Γ, there is a corresponding rectangle 
in the right picture, which is glued along the dotted sides to an annulus Ans. Its meridian γs has the same 
color as s.

of Dehn twists of all curves in γ ∪ γ′ is a right-angled Artin group. Therefore, we have 
two words w and w′ in a RAAG, where w and w′ are nontrivial powers of commuting 
generators. It follows from the normal form for RAAG’s that these commute exactly when 
each generator in w commutes with each generator of w′ [12]. Therefore, the curves in γ
can be isotoped to be disjoint from the curves in γ′. !

Let AS be a small type Artin group with standard generating set S. We can build an 
associated surface

ΣS =
⋃

s∈S

Ans

where each Ans is an annulus. We denote the meridian of Ans by γs. If mst = 3, then 
we arrange that the annuli Ans, Ant intersect in a single square so that γs, γt intersect 
transversely at one point, and any triple intersection of annuli is empty. If mst = 2, then 
Ans, Ant will be disjoint. See Fig. 2 for an example. There is a representation of AS in the 
mapping class group of ΣS where each generator s ∈ S is mapped to the Dehn twist about 
the simple closed curve γs (see Proposition 9). Full details can be found in [8]. Each subset 
T of S has an associated subsurface ΣT of ΣA. By construction, the subsurface ΣT for an 
irreducible spherical subset T ⊆ S and the induced homomorphism ρT : AT → Mod(ΣT )
are exactly the Perron-Vannier representation of small type spherical Artin groups [18]
(see also [13]). For every spherical subset T , the generator of the center of the group AT

is denoted by zT . By [15, Prop 2.12] ρ(z4
T ) is a multitwist about the boundary of ΣT . 

We denote that multicurve by γT .
Let KS be the graph that is the union 

⋃
s∈S γs ⊆ ΣS . By construction, there is a 

deformation retraction r : ΣS → KS . Thus H1(ΣS) = H1(KS), and in particular if S is 
spherical then H1(ΣS) = ZS . For any S′ ⊂ S, the map H1(ΣS′) → H1(ΣS) induced by 
the inclusion ΣS′ ↪→ ΣS is injective and H1(ΣS′) ! H1(ΣS).
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Every closed path in a graph is homotopic to a cycle (i.e. a closed path without 
backtracks). In particular, every homotopy class of a simple closed curve in ΣS can be 
realized as a cycle in KS. We will now view all the simple closed curves in ΣS as cycles 
in KS . In particular, we view components of γT for any spherical subset T ⊆ S as cycles 
in KS .

Lemma 7. Let T ⊆ S be an irreducible spherical subset, and s ∈ S−T . Then γs intersects 
γT if and only if γs intersects γt for some t ∈ T .

Proof. If γs does not intersect any γt for t ∈ T , then ρ(s) commutes with ρ(t) for all 
t ∈ T . Then ρ(s) must also commute with ρ(z2

T ), and by Lemma 6 γs and γT are disjoint.
Now suppose that γs intersects γt for some t ∈ T . By construction γs, γt intersect 

exactly once. Suppose γs can be isotoped in ΣS to be disjoint from ∂ΣT . Then γs ⊆
ΣT , since γs, γt still must intersect. In particular, [γs] ∈ H1(ΣT ) = H1(KT ). This is a 
contradiction, since H1(KT ) ! H1(KT∪{s}). !

Lemma 8. Let T1, T2 ⊆ S be two disjoint, irreducible, spherical subsets. Then any com-
ponent of γT1 and any component of γT2 are non-isotopic and disjoint in ΣS.

Proof. Since T1, T2 ⊆ S are disjoint, by construction, the subgraphs KT1 , KT2 ⊆ KS are 
disjoint. Every connected component of γTi can be realized as a cycle contained in KTi . 
Any two disjoint cycles in a graph are non-isotopic. The conclusion follows. !

Proposition 9 ([8]). For every small type Artin group A with the standard generating set 
S, there exists a surface with boundary ΣS and a homomorphism ρ : A → Mod(ΣS)
where

(a) for each s ∈ S, ρ(s) is the Dehn twist about a simple closed curve γs,
(b) the simple closed curves γs, γt are disjoint ⇐⇒ mst = 2,
(c) the simple closed curves γs, γt intersect exactly once ⇐⇒ mst = 3.

Moreover,

(d) for every irreducible spherical subset T ⊆ S, ρ(z2
T ) is the multitwist about a multic-

urve γT which is the boundary of the subsurface ΣT , and
(e) for every irreducible spherical T ⊆ S and s ∈ S−T , the simple closed curve γs and 

the multicurve γT are disjoint if and only if [s, t] = 1 for all t ∈ T .

Proof. The fact that ρ is a homomorphism follows from standard relations between Dehn 
twists, see [8, Prop 4]. The parts (a), (b), (c) follow from [8] as well. Part (d) follows 
from [15] (see discussion above). Finally part (e) is a consequence of Lemma 7 and 
Lemma 6. !
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Let A be an Artin group with standard generating set S. We say A is free-of-infinity
if mst < ∞ for all s, t ∈ S.

Proposition 10 ([8]). Let A be a free-of-infinity Artin group. Then there exists a small 
type Artin group Ã with standard generating set S̃ and a homomorphism φ : A → Ã such 
that

• there exists a partition ⊔
s∈S

I(s) of S̃ such that the elements of I(s) pairwise commute 

and φ(s) =
∏

r∈I(s)
r,

• mst = 2 if and only if every element of I(s) and every element of I(t) commute, and
• if mst ≥ 3 then the subgroup generated by I(s) ∪I(t) is a direct product of braid groups 

on mst strands.

Let ρ ◦ φ : A → Mod(ΣÃ) be the composition of the homomorphism φ with the homo-
morphism ρ : Ã → Mod(ΣÃ) from Proposition 9. Then

(a) for each s ∈ S, ρ ◦ φ(s) is a multitwist about a multicurve γs =
⋃

r∈I(s) γr,
(b) mst = 2 if and only if every component of γs and every component of γt are disjoint,
(c) for every spherical subset T ⊂ S, ρ(z2

T ) is the multitwists about a multicurve γT , 
and

(d) for every T ⊆ S and s ∈ S−T , the multicurve γs and the multicurve γT are disjoint 
if and only if [s, t] = 1 for all t ∈ T .

Proof. The homomorphism φ is described in [9] and also in [8]. Parts (a) and (b) follow 
directly from the construction. Part (c) is proven in [13, Lem 6.1]. Part (d) follows from 
Lemma 7 and Lemma 6. !

3. The main theorem

We will need the following lemma.

Lemma 11. Let AS be an Artin group which splits as a product AS = AU ×AV where AU

is the maximal spherical factor. Suppose that cdAS < ∞. Then cdAS = cdAU +cdAV .

Proof. By [2, Thm 5.5] a group G = N ×Q has cdG = cdN + cdQ provided that

• cdQ < ∞, and
• N is of type FP and Hn(N, ZN) is free for n = cdN .

Clearly cdAV < ∞ since cdAS < ∞. Since AU is a spherical Artin group, AU has type 
FP . By [19, Thm B] (see also [1]) AU is a duality group, so Hn(AU , ZAU ) is free. The 
conclusion follows. !
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Theorem 12. Let AS be an Artin group of infinite type with the standard generating set 
S such that AS has no spherical factors. If cdA = cdAT = |T | for some spherical subset 
T ⊆ S, then AS has trivial center. In particular if AS satisfies the K(π, 1)-conjecture, 
then AS has trivial center.

Proof for free-of-infinity case. First suppose that AS is free-of-infinity. Let T ⊆ S be 
a maximal spherical subset such that cdAS = cdAT . Let T1 ⊔ T2 ⊔ · · · ⊔ Tn be the 
decomposition of T into irreducible spherical subsets inducing the decomposition AT =
AT1 × · · · × ATn . Since AS has no spherical factors for each i = 1, . . . , n there exists 
si ∈ S − T such that [si, zTi ] ̸= 1 as otherwise ATi would be a spherical factor of AS. In 
particular, for each i = 1, . . . , n, there exists ti ∈ Ti such that [si, ti] ̸= 1.

Consider the representation of ρ : AS → Mod(ΣS) from Proposition 10. By Proposi-
tion 10, ρ(si) and ρ(zTi) are the Dehn twists about multicurves γsi and γTi respectively, 
where γsi and γTi intersect.

Suppose that AS has nontrivial center and let y ∈ Z(AS) with y ̸= e. Note that y
has infinite order since AS is torsion-free, as cdAS < ∞. If yk /∈ AT for any k ̸= 0, 
then ⟨AT , y⟩ ≃ AT × Z is a subgroup of cdA + 1, which is a contradiction. Thus there 
exists k ∈ N such that yk ∈ AT . Then yk ∈ Z(AT ), i.e. ym =

∏n
i=1 z

mi
Ti

for some m > 0
and at least one of m1, . . . , mn, say m1, is non-zero. By Lemma 8, ρ(ym) is a multitwist 
about a multicurve γ = ⊔γTi in Σ where the union is taken over all i such that mi ̸= 0. 
In particular, γ intersects γs1 . By Lemma 6, [ρ(ym), ρ(s1)] ̸= 1. Thus [y, s1] ̸= 1. This 
contradicts the fact that y is a central element of A. !

Proof for general case. The general case is induction on the cardinality of S. Suppose 
cdAS = cdAT where T ⊆ S is a spherical subset. Suppose there exist generators v, w ∈ S

such that mvw = ∞. The group AS splits as an amalgamated product AS\{v} ∗AS\{v,w}

AS\{w}. Since T cannot contain both v and w, we have T ⊆ S \ {v} or T ⊆ S \ {w}. 
Without loss of generality we assume that T ⊆ S\{v}. It follows that cdAS\{v} = cdAT , 
as cdAS\{v} ≤ cdAS . If AS\{v} has no spherical factor, then by induction AS\{v} has 
trivial center. By [11, Lem 3.2] the center of the amalgamated product A is also trivial.

Now suppose that AS\{v} has a nontrivial spherical factor. Let

AU1 × · · ·×AUp ×AV1 × · · ·×AVq

be the decomposition of AS\{v} into irreducible factors where each AUi is spherical and 
each AVj has infinite type. Let AV = AV1 × · · · × AVq . By maximality Ui ⊆ T for all 
i = 1, . . . , p. Let T ′ = V ∩ T . Then cdAV = cdAT ′ . Indeed by Lemma 11,

cdAV = cdAS\{v} − Σp
i=1 cdAUi = cdAT − Σp

i=1 cdAUi = AT ′ .

By the inductive assumption Z(AV ) = {1}, and thus Z(AS\{v}) ⊆ ⟨zU1⟩ × · · ·× ⟨zUn⟩.
Since AS does not have a spherical factor, for every i = 1, . . . , n we have [v, zUi ] ̸= 1. 

In particular, each set Ui contains a standard generator ui such that mvui ≥ 3. Since 
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Z(AS\{v}) ⊆ AT and by [11, Lem 3.2] Z(A) ⊆ Z(AS\{v}), it suffices to prove that v does 
not commute with any nontrivial element of Z(AT ) = ⟨zT1 , . . . , zTn⟩. By maximality 
of T , AT∪{v} is not spherical. By the discussion above, AT∪{v} is irreducible, and in 
particular it has no spherical factors. If AT∪{v} is free-of-infinity, we are done.

We now assume that AT∪{v} is not free-of-infinity. Consider the quotient homomor-
phism φ : AT∪{v} → AT∪{v}, where for every t ∈ T such that mtv = ∞ the corresponding 
generators t, v ∈ T ∪ {v} have mtv = 7. The group AT∪{v} is irreducible. The only irre-
ducible spherical Artin group containing label 7 is the dihedral Artin group. If AT∪{v}
is the dihedral Artin group, then AT∪{v} = F2 and so cdAS = 1, i.e. AS = F (S). 
Then clearly, AS has trivial center. Otherwise AT∪{v} is irreducible and has infinite 
type. Also cdAT∪{v} = cdAT . By the free-of-infinity case, [v, y] ̸= 1 for any nontrivial 
y ∈ ⟨zT 1

, . . . , zTn
⟩, as otherwise y would be a central element of AT∪{v}. Thus [v, y] ̸= 1

for any nontrivial y ∈ ⟨zT1 , . . . , zTn⟩. This completes the proof. !
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