

The $K(\pi, 1)$ -conjecture implies the center conjecture for Artin groups

Kasia Jankiewicz^{a,1}, Kevin Schreve^{b,*2}

^a Department of Mathematics, University of California, Santa Cruz, CA 95064, United States of America

^b Department of Mathematics, Louisiana State University, Baton Rouge, LA 70806, United States of America

ARTICLE INFO

Article history:

Received 21 January 2022

Available online 8 November 2022

Communicated by Susan Hermiller

MSC:

20F36

20F65

Keywords:

Artin groups

Center

The $K(\pi, 1)$ -conjecture

ABSTRACT

In this note, we prove that the $K(\pi, 1)$ -conjecture for Artin groups implies the center conjecture for Artin groups. Specifically, every Artin group without a spherical factor that satisfies the $K(\pi, 1)$ -conjecture has a trivial center.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

A Coxeter system (W, S) consists of a group W and a generating set S where W is given by a presentation

* Corresponding author.

E-mail addresses: kasia@ucsc.edu (K. Jankiewicz), kschreve@lsu.edu (K. Schreve).

¹ The first author was supported by the NSF grant DMS-2203307.

² The second author was supported by the NSF grant DMS-2203325.

$$W = \langle s \in S \mid \underbrace{sts \cdots}_{m_{st} \text{ terms}} = \underbrace{tst \cdots}_{m_{st} \text{ terms}} \rangle,$$

where $m_{st} \in \{2, 3, \dots\} \cup \{\infty\}$. The associated Artin group A is given by the presentation

$$A = \langle s \in S \mid \underbrace{sts \cdots}_{m_{st} \text{ terms}} = \underbrace{tst \cdots}_{m_{st} \text{ terms}} \rangle.$$

An Artin group A is *spherical* if the corresponding Coxeter group is finite, and otherwise A is *infinite type*. The Coxeter diagram Γ_S is a graph with vertices corresponding to S and where two vertices are joined by an edge if and only if $m_{st} > 2$. If $m_{st} \geq 4$ we label the edge with m_{st} . A *special subgroup* of A is a subgroup generated by some subset of S . Each special subgroup is itself an Artin group [20]. Each Artin group with standard generating set admits (a possibly trivial) decomposition $A = A_{T_1} \times \cdots \times A_{T_n}$ where each $T_i \subseteq S$ defines a connected component of the Coxeter graph Γ_S . An Artin group A is *irreducible* if its Coxeter diagram is connected. We say A_{T_i} is a *spherical factor* of A if A_{T_i} is spherical. Every irreducible spherical Artin group has an infinite cyclic center [10,3]. Conjecturally, those are the only irreducible Artin groups with nontrivial center.

Conjecture 1 (*The center conjecture*). *Every Artin group without a spherical factor has trivial center.*

The center conjecture holds for FC-type Artin groups and 2-dimensional Artin groups [11]. Charney and Morris-Wright have shown the center conjecture holds for Artin groups whose defining graphs are not stars of a single vertex [7]. Godelle and Paris further showed that if all Artin groups with $m_{st} \neq \infty$ for all $s, t \in S$ satisfy the center conjecture, then all Artin groups satisfy the center conjecture [11].

The FC-type and 2-dimensional Artin groups also satisfy the $K(\pi, 1)$ -conjecture [4].

Conjecture 2 (*The $K(\pi, 1)$ -conjecture*). *The orbit space $\mathcal{H}(W)/W$ of a complexified hyperplane arrangement associated to a Coxeter system (W, S) is a $K(\pi, 1)$ for the Artin group A associated to W .*

For a precise definition of $\mathcal{H}(W)$ and more background, see e.g. the survey paper [17]. It is known that the fundamental group of $\mathcal{H}(W)/W$ is equal to A , so the conjecture is about the asphericity of $\mathcal{H}(W)/W$. In this note, we prove the following:

Theorem 3. *Every Artin group without a spherical factor that satisfies the $K(\pi, 1)$ -conjecture has trivial center.*

In fact, we only need the following consequence of the $K(\pi, 1)$ -conjecture: an Artin group A which satisfies the $K(\pi, 1)$ -conjecture has finite cohomological dimension which is realized by a spherical subgroup, i.e. $\text{cd}(A) = \text{cd}(A_T) = |T|$ for some spherical subset T . See Theorem 12 for the more general statement of our main theorem.

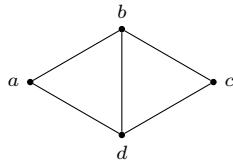


Fig. 1. The Coxeter diagram of the smallest mysterious Artin group according to McCammond.

For example, in [16] McCammond mentions that the center conjecture is unknown for the Artin group A with the Coxeter diagram as in Fig. 1. The group A is given by the presentation

$$\langle a, b, c, d \mid aba = bab, bcb = cbc, cdc = dcd, dad = ada, bdb = dbd, ac = ca \rangle.$$

The $K(\pi, 1)$ -conjecture holds for A by a theorem of Charney [6]. That allows us to answer the question of McCammond.

Corollary 4. *The Artin group with the Coxeter diagram as in Fig. 1 has trivial center.*

Another class of Artin groups which satisfy the $K(\pi, 1)$ -conjecture are the *locally reducible* Artin groups, where all irreducible spherical subgroups are of rank ≤ 2 [5]. There are many of these with $m_{st} \neq \infty$ for each $s, t \in S$, and as far as we know the center conjecture was open here.

Corollary 5. *Every locally reducible Artin group without spherical factor has trivial center.*

2. Representations of Artin groups in mapping class groups

An Artin group A with standard generating set S has *small type* if $m_{st} \in \{2, 3\}$ for all $s, t \in S$. In this section we recall a representation of small type Artin groups in mapping class groups, due to Crisp-Paris [8], and analyze where certain elements of A are mapped.

Let Σ be a surface. A *multicurve* is a collection of pairwise disjoint simple closed curves on Σ . We say that two multicurves are *disjoint* if their isotopy classes have disjoint representatives. A *multitwist* about a multicurve γ is a product of non-trivial powers of Dehn twists about simple closed curves in γ (the powers can be different for different curves). We shall need the following lemma about commuting multitwists about multicurves.

Lemma 6. *Let γ and γ' be essential multicurves on Σ that do not share a simple closed curve. Let T_γ and $T_{\gamma'}$ be the associated multitwists along γ and γ' . Then T_γ and $T_{\gamma'}$ commute if and only if γ and γ' are disjoint.*

Proof. The if direction is clear, so suppose T_γ and $T_{\gamma'}$ commute. Then T_γ^N and $T_{\gamma'}^N$ commute for all N . By a theorem of Koberda [14], the group generated by large powers

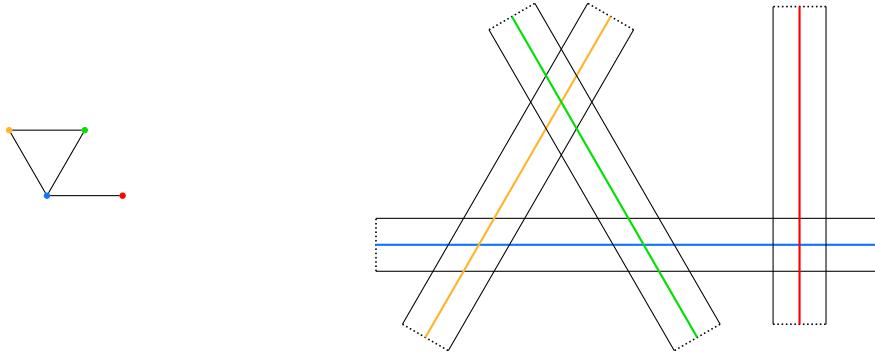


Fig. 2. An example of the surface Σ_S (right) corresponding to the Artin group A with the standard generating set S whose Coxeter graph Γ is illustrated (left). For each vertex s in Γ , there is a corresponding rectangle in the right picture, which is glued along the dotted sides to an annulus An_s . Its meridian γ_s has the same color as s .

of Dehn twists of all curves in $\gamma \cup \gamma'$ is a right-angled Artin group. Therefore, we have two words w and w' in a RAAG, where w and w' are nontrivial powers of commuting generators. It follows from the normal form for RAAG's that these commute exactly when each generator in w commutes with each generator of w' [12]. Therefore, the curves in γ can be isotoped to be disjoint from the curves in γ' . \square

Let A_S be a small type Artin group with standard generating set S . We can build an associated surface

$$\Sigma_S = \bigcup_{s \in S} An_s$$

where each An_s is an annulus. We denote the meridian of An_s by γ_s . If $m_{st} = 3$, then we arrange that the annuli An_s, An_t intersect in a single square so that γ_s, γ_t intersect transversely at one point, and any triple intersection of annuli is empty. If $m_{st} = 2$, then An_s, An_t will be disjoint. See Fig. 2 for an example. There is a representation of A_S in the mapping class group of Σ_S where each generator $s \in S$ is mapped to the Dehn twist about the simple closed curve γ_s (see Proposition 9). Full details can be found in [8]. Each subset T of S has an associated subsurface Σ_T of Σ_S . By construction, the subsurface Σ_T for an irreducible spherical subset $T \subseteq S$ and the induced homomorphism $\rho_T : A_T \rightarrow \text{Mod}(\Sigma_T)$ are exactly the Perron-Vannier representation of small type spherical Artin groups [18] (see also [13]). For every spherical subset T , the generator of the center of the group A_T is denoted by z_T . By [15, Prop 2.12] $\rho(z_T^4)$ is a multitwist about the boundary of Σ_T . We denote that multicurve by γ_T .

Let K_S be the graph that is the union $\bigcup_{s \in S} \gamma_s \subseteq \Sigma_S$. By construction, there is a deformation retraction $r : \Sigma_S \rightarrow K_S$. Thus $H_1(\Sigma_S) = H_1(K_S)$, and in particular if S is spherical then $H_1(\Sigma_S) = \mathbb{Z}^S$. For any $S' \subset S$, the map $H_1(\Sigma_{S'}) \rightarrow H_1(\Sigma_S)$ induced by the inclusion $\Sigma_{S'} \hookrightarrow \Sigma_S$ is injective and $H_1(\Sigma_{S'}) \subsetneq H_1(\Sigma_S)$.

Every closed path in a graph is homotopic to a cycle (i.e. a closed path without backtracks). In particular, every homotopy class of a simple closed curve in Σ_S can be realized as a cycle in K_S . We will now view all the simple closed curves in Σ_S as cycles in K_S . In particular, we view components of γ_T for any spherical subset $T \subseteq S$ as cycles in K_S .

Lemma 7. *Let $T \subseteq S$ be an irreducible spherical subset, and $s \in S - T$. Then γ_s intersects γ_T if and only if γ_s intersects γ_t for some $t \in T$.*

Proof. If γ_s does not intersect any γ_t for $t \in T$, then $\rho(s)$ commutes with $\rho(t)$ for all $t \in T$. Then $\rho(s)$ must also commute with $\rho(z_T^2)$, and by Lemma 6 γ_s and γ_T are disjoint.

Now suppose that γ_s intersects γ_t for some $t \in T$. By construction γ_s, γ_t intersect exactly once. Suppose γ_s can be isotoped in Σ_S to be disjoint from $\partial\Sigma_T$. Then $\gamma_s \subseteq \Sigma_T$, since γ_s, γ_t still must intersect. In particular, $[\gamma_s] \in H_1(\Sigma_T) = H_1(K_T)$. This is a contradiction, since $H_1(K_T) \subsetneq H_1(K_{T \cup \{s\}})$. \square

Lemma 8. *Let $T_1, T_2 \subseteq S$ be two disjoint, irreducible, spherical subsets. Then any component of γ_{T_1} and any component of γ_{T_2} are non-isotopic and disjoint in Σ_S .*

Proof. Since $T_1, T_2 \subseteq S$ are disjoint, by construction, the subgraphs $K_{T_1}, K_{T_2} \subseteq K_S$ are disjoint. Every connected component of γ_{T_i} can be realized as a cycle contained in K_{T_i} . Any two disjoint cycles in a graph are non-isotopic. The conclusion follows. \square

Proposition 9 ([8]). *For every small type Artin group A with the standard generating set S , there exists a surface with boundary Σ_S and a homomorphism $\rho : A \rightarrow \text{Mod}(\Sigma_S)$ where*

- (a) *for each $s \in S$, $\rho(s)$ is the Dehn twist about a simple closed curve γ_s ,*
- (b) *the simple closed curves γ_s, γ_t are disjoint $\iff m_{st} = 2$,*
- (c) *the simple closed curves γ_s, γ_t intersect exactly once $\iff m_{st} = 3$.*

Moreover,

- (d) *for every irreducible spherical subset $T \subseteq S$, $\rho(z_T^2)$ is the multitwist about a multicurve γ_T which is the boundary of the subsurface Σ_T , and*
- (e) *for every irreducible spherical $T \subseteq S$ and $s \in S - T$, the simple closed curve γ_s and the multicurve γ_T are disjoint if and only if $[s, t] = 1$ for all $t \in T$.*

Proof. The fact that ρ is a homomorphism follows from standard relations between Dehn twists, see [8, Prop 4]. The parts (a), (b), (c) follow from [8] as well. Part (d) follows from [15] (see discussion above). Finally part (e) is a consequence of Lemma 7 and Lemma 6. \square

Let A be an Artin group with standard generating set S . We say A is *free-of-infinity* if $m_{st} < \infty$ for all $s, t \in S$.

Proposition 10 ([8]). *Let A be a free-of-infinity Artin group. Then there exists a small type Artin group \tilde{A} with standard generating set \tilde{S} and a homomorphism $\phi : A \rightarrow \tilde{A}$ such that*

- there exists a partition $\bigsqcup_{s \in S} I(s)$ of \tilde{S} such that the elements of $I(s)$ pairwise commute and $\phi(s) = \prod_{r \in I(s)} r$,
- $m_{st} = 2$ if and only if every element of $I(s)$ and every element of $I(t)$ commute, and
- if $m_{st} \geq 3$ then the subgroup generated by $I(s) \cup I(t)$ is a direct product of braid groups on m_{st} strands.

Let $\rho \circ \phi : A \rightarrow \text{Mod}(\Sigma_{\tilde{A}})$ be the composition of the homomorphism ϕ with the homomorphism $\rho : \tilde{A} \rightarrow \text{Mod}(\Sigma_{\tilde{A}})$ from Proposition 9. Then

- (a) for each $s \in S$, $\rho \circ \phi(s)$ is a multitwist about a multicurve $\gamma_s = \bigcup_{r \in I(s)} \gamma_r$,
- (b) $m_{st} = 2$ if and only if every component of γ_s and every component of γ_t are disjoint,
- (c) for every spherical subset $T \subset S$, $\rho(z_T^2)$ is the multitwists about a multicurve γ_T , and
- (d) for every $T \subseteq S$ and $s \in S - T$, the multicurve γ_s and the multicurve γ_T are disjoint if and only if $[s, t] = 1$ for all $t \in T$.

Proof. The homomorphism ϕ is described in [9] and also in [8]. Parts (a) and (b) follow directly from the construction. Part (c) is proven in [13, Lem 6.1]. Part (d) follows from Lemma 7 and Lemma 6. \square

3. The main theorem

We will need the following lemma.

Lemma 11. *Let A_S be an Artin group which splits as a product $A_S = A_U \times A_V$ where A_U is the maximal spherical factor. Suppose that $\text{cd } A_S < \infty$. Then $\text{cd } A_S = \text{cd } A_U + \text{cd } A_V$.*

Proof. By [2, Thm 5.5] a group $G = N \times Q$ has $\text{cd } G = \text{cd } N + \text{cd } Q$ provided that

- $\text{cd } Q < \infty$, and
- N is of type FP and $H^n(N, \mathbb{Z}N)$ is free for $n = \text{cd } N$.

Clearly $\text{cd } A_V < \infty$ since $\text{cd } A_S < \infty$. Since A_U is a spherical Artin group, A_U has type FP. By [19, Thm B] (see also [1]) A_U is a duality group, so $H^n(A_U, \mathbb{Z}A_U)$ is free. The conclusion follows. \square

Theorem 12. *Let A_S be an Artin group of infinite type with the standard generating set S such that A_S has no spherical factors. If $\text{cd } A = \text{cd } A_T = |T|$ for some spherical subset $T \subseteq S$, then A_S has trivial center. In particular if A_S satisfies the $K(\pi, 1)$ -conjecture, then A_S has trivial center.*

Proof for free-of-infinity case. First suppose that A_S is free-of-infinity. Let $T \subseteq S$ be a maximal spherical subset such that $\text{cd } A_S = \text{cd } A_T$. Let $T_1 \sqcup T_2 \sqcup \cdots \sqcup T_n$ be the decomposition of T into irreducible spherical subsets inducing the decomposition $A_T = A_{T_1} \times \cdots \times A_{T_n}$. Since A_S has no spherical factors for each $i = 1, \dots, n$ there exists $s_i \in S - T$ such that $[s_i, z_{T_i}] \neq 1$ as otherwise A_{T_i} would be a spherical factor of A_S . In particular, for each $i = 1, \dots, n$, there exists $t_i \in T_i$ such that $[s_i, t_i] \neq 1$.

Consider the representation of $\rho : A_S \rightarrow \text{Mod}(\Sigma_S)$ from Proposition 10. By Proposition 10, $\rho(s_i)$ and $\rho(z_{T_i})$ are the Dehn twists about multicurves γ_{s_i} and γ_{T_i} respectively, where γ_{s_i} and γ_{T_i} intersect.

Suppose that A_S has nontrivial center and let $y \in Z(A_S)$ with $y \neq e$. Note that y has infinite order since A_S is torsion-free, as $\text{cd } A_S < \infty$. If $y^k \notin A_T$ for any $k \neq 0$, then $\langle A_T, y \rangle \simeq A_T \times \mathbb{Z}$ is a subgroup of $\text{cd } A + 1$, which is a contradiction. Thus there exists $k \in \mathbb{N}$ such that $y^k \in A_T$. Then $y^k \in Z(A_T)$, i.e. $y^m = \prod_{i=1}^n z_{T_i}^{m_i}$ for some $m > 0$ and at least one of m_1, \dots, m_n , say m_1 , is non-zero. By Lemma 8, $\rho(y^m)$ is a multitwist about a multicurve $\gamma = \sqcup \gamma_{T_i}$ in Σ where the union is taken over all i such that $m_i \neq 0$. In particular, γ intersects γ_{s_1} . By Lemma 6, $[\rho(y^m), \rho(s_1)] \neq 1$. Thus $[y, s_1] \neq 1$. This contradicts the fact that y is a central element of A . \square

Proof for general case. The general case is induction on the cardinality of S . Suppose $\text{cd } A_S = \text{cd } A_T$ where $T \subseteq S$ is a spherical subset. Suppose there exist generators $v, w \in S$ such that $m_{vw} = \infty$. The group A_S splits as an amalgamated product $A_{S \setminus \{v\}} *_{A_{S \setminus \{v, w\}}} A_{S \setminus \{w\}}$. Since T cannot contain both v and w , we have $T \subseteq S \setminus \{v\}$ or $T \subseteq S \setminus \{w\}$. Without loss of generality we assume that $T \subseteq S \setminus \{v\}$. It follows that $\text{cd } A_{S \setminus \{v\}} = \text{cd } A_T$, as $\text{cd } A_{S \setminus \{v\}} \leq \text{cd } A_S$. If $A_{S \setminus \{v\}}$ has no spherical factor, then by induction $A_{S \setminus \{v\}}$ has trivial center. By [11, Lem 3.2] the center of the amalgamated product A is also trivial.

Now suppose that $A_{S \setminus \{v\}}$ has a nontrivial spherical factor. Let

$$A_{U_1} \times \cdots \times A_{U_p} \times A_{V_1} \times \cdots \times A_{V_q}$$

be the decomposition of $A_{S \setminus \{v\}}$ into irreducible factors where each A_{U_i} is spherical and each A_{V_j} has infinite type. Let $A_V = A_{V_1} \times \cdots \times A_{V_q}$. By maximality $U_i \subseteq T$ for all $i = 1, \dots, p$. Let $T' = V \cap T$. Then $\text{cd } A_V = \text{cd } A_{T'}$. Indeed by Lemma 11,

$$\text{cd } A_V = \text{cd } A_{S \setminus \{v\}} - \sum_{i=1}^p \text{cd } A_{U_i} = \text{cd } A_T - \sum_{i=1}^p \text{cd } A_{U_i} = \text{cd } A_{T'}.$$

By the inductive assumption $Z(A_V) = \{1\}$, and thus $Z(A_{S \setminus \{v\}}) \subseteq \langle z_{U_1} \rangle \times \cdots \times \langle z_{U_p} \rangle$.

Since A_S does not have a spherical factor, for every $i = 1, \dots, n$ we have $[v, z_{U_i}] \neq 1$. In particular, each set U_i contains a standard generator u_i such that $m_{vu_i} \geq 3$. Since

$Z(A_{S \setminus \{v\}}) \subseteq A_T$ and by [11, Lem 3.2] $Z(A) \subseteq Z(A_{S \setminus \{v\}})$, it suffices to prove that v does not commute with any nontrivial element of $Z(A_T) = \langle z_{T_1}, \dots, z_{T_n} \rangle$. By maximality of T , $A_{T \cup \{v\}}$ is not spherical. By the discussion above, $A_{T \cup \{v\}}$ is irreducible, and in particular it has no spherical factors. If $A_{T \cup \{v\}}$ is free-of-infinity, we are done.

We now assume that $A_{T \cup \{v\}}$ is not free-of-infinity. Consider the quotient homomorphism $\phi : A_{T \cup \{v\}} \rightarrow A_{\overline{T} \cup \{\overline{v}\}}$, where for every $t \in T$ such that $m_{tv} = \infty$ the corresponding generators $\overline{t}, \overline{v} \in \overline{T} \cup \{\overline{v}\}$ have $m_{\overline{t}\overline{v}} = 7$. The group $A_{\overline{T} \cup \{\overline{v}\}}$ is irreducible. The only irreducible spherical Artin group containing label 7 is the dihedral Artin group. If $A_{\overline{T} \cup \{\overline{v}\}}$ is the dihedral Artin group, then $A_{T \cup \{v\}} = F_2$ and so $\text{cd } A_S = 1$, i.e. $A_S = F(S)$. Then clearly, A_S has trivial center. Otherwise $A_{\overline{T} \cup \{\overline{v}\}}$ is irreducible and has infinite type. Also $\text{cd } A_{\overline{T} \cup \{\overline{v}\}} = \text{cd } A_{\overline{T}}$. By the free-of-infinity case, $[\overline{v}, \overline{y}] \neq 1$ for any nontrivial $\overline{y} \in \langle z_{\overline{T}_1}, \dots, z_{\overline{T}_n} \rangle$, as otherwise y would be a central element of $A_{\overline{T} \cup \{\overline{v}\}}$. Thus $[v, y] \neq 1$ for any nontrivial $y \in \langle z_{T_1}, \dots, z_{T_n} \rangle$. This completes the proof. \square

Data availability

No data was used for the research described in the article.

References

- [1] Mladen Bestvina, Non-positively curved aspects of Artin groups of finite type, *Geom. Topol.* 3 (1999) 269–302. MR1714913.
- [2] Robert Bieri, Homological Dimension of Discrete Groups, second, Queen Mary College Department of Pure Mathematics, London, 1981.
- [3] Egbert Brieskorn, Kyoji Saito, Artin-Gruppen und Coxeter-Gruppen, *Invent. Math.* 17 (1972) 245–271. MR323910.
- [4] Ruth Charney, Michael W. Davis, The $K(\pi, 1)$ -problem for hyperplane complements associated to infinite reflection groups, *J. Am. Math. Soc.* 8 (3) (1995) 597–627. MR1303028.
- [5] Ruth Charney, The Tits conjecture for locally reducible Artin groups, *Int. J. Algebra Comput.* 10 (6) (2000) 783–797. MR1809385.
- [6] Ruth Charney, The Deligne complex for the four-strand braid group, *Trans. Am. Math. Soc.* 356 (10) (2004) 3881–3897. MR2058510.
- [7] Ruth Charney, Rose Morris-Wright, Artin groups of infinite type: trivial centers and acylindrical hyperbolicity, *Proc. Am. Math. Soc.* 147 (9) (2019) 3675–3689. MR3993762.
- [8] John Crisp, Luis Paris, The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group, *Invent. Math.* 145 (1) (2001) 19–36. MR1839284.
- [9] John Crisp, Injective maps between Artin groups, in: Geometric Group Theory down Under, Canberra, 1996, 1999, pp. 119–137. MR1714842.
- [10] Pierre Deligne, Les immeubles des groupes de tresses généralisés, *Invent. Math.* 17 (1972) 273–302, MR0422673 (54 #10659).
- [11] Eddy Godelle, Luis Paris, Basic questions on Artin-Tits groups, in: Configuration Spaces, 2012, pp. 299–311. MR3203644.
- [12] Susan Hermiller, John Meier, Algorithms and geometry for graph products of groups, *J. Algebra* 171 (1) (1995) 230–257.
- [13] Kasia Jankiewicz, Kevin Schreve, Right-angled Artin subgroups of Artin groups, *J. Lond. Math. Soc.* 106 (2) (2022) 818–854.
- [14] Thomas Koberda, Right-angled Artin groups and a generalized isomorphism problem for finitely generated subgroups of mapping class groups, *Geom. Funct. Anal.* 22 (6) (2012) 1541–1590. MR3000498.
- [15] Catherine Labruère, Luis Paris, Presentations for the punctured mapping class groups in terms of Artin groups, *Algebraic Geom. Topol.* 1 (2001) 73–114. MR1805936.

- [16] Jon McCammond, The mysterious geometry of Artin groups, Winter Braids Lect. Notes 4 (2017), no. Winter Braids VII (Caen, 2017), Exp. No. 1, 30. MR3922033.
- [17] Luis Paris, $K(\pi, 1)$ conjecture for Artin groups, Ann. Fac. Sci. Toulouse Math. (6) 23 (2) (2014) 361–415. MR3205598.
- [18] B. Perron, J.P. Vannier, Groupe de monodromie géométrique des singularités simples, Math. Ann. 306 (2) (1996) 231–245. MR1411346.
- [19] Craig C. Squier, The homological algebra of Artin groups, Math. Scand. 75 (1) (1994) 5–43. MR1308935.
- [20] Harm van der Lek, Extended Artin groups, in: Singularities, Part 2, Arcata, Calif., 1981, 1983, pp. 117–121. MR713240.