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By (a, b)Mab we denote the alternating word abab . . . of length Mab. The Artin group 
on two generators with the label M will be denoted by ArtM , and the Artin group with 
three generators and labels M, N, P will be denoted by ArtMNP .

Theorem A. If M, N, P ≥ 4 and (M, N, P ) ̸= (2m + 1, 4, 4) (for any permutation), then 
the Artin group AMNP is residually finite.

None of the groups in Theorem A with M, N, P < ∞ were previously known to be 
residually finite. We also obtain residual finiteness of many more 2-dimensional Artin 
groups. For precise statements see Section 6. In a subsequent work [22] we prove the 
residual finiteness of Artin groups Art2MN where M, N ≥ 4 and at least one of them is 
even.

Our proof of Theorem A relies on a splitting of these Artin group as a free product 
with amalgamation or HNN extension of finite rank free groups. The existence of such 
splitting depends on the combinatorics of the defining graph. Recall an Artin group ArtΓ
with the defining graph Γ has large type if all labels in Γ are at least 3. The quotient 
of an Artin group, obtained by adding the relation a2 = 1 for every a ∈ V (Γ) is a 
Coxeter group. We say ArtΓ is spherical if the corresponding Coxeter quotient is finite, 
and ArtΓ is 2-dimensional if no triple of generators generates a spherical Artin group. In 
particular, every large type Artin group is 2-dimensional. For the definition of admissible
partial orientation of Γ, see Definition 4.2. We prove the following.

Theorem B. If Γ admits an admissible partial orientation, then ArtΓ splits as a free 
product with amalgamation or an HNN-extension of finite rank free groups.

The above theorem includes all large type Artin groups whose defining graph Γ admits 
an orientation such that each cycle is directed.

All linear groups are residually finite by a classical result by Mal’cev [28]. Among 
Artin group very few classes are known to be residually finite, and even fewer linear. 
It was once a major open question whether braid groups are linear and it was proved 
independently by Krammer [25] and Bigelow [7]. Later, the linearity was extended to 
all spherical Artin groups by Cohen-Wales [12], and independently by Digne [13]. The 
right-angled Artin groups are also well known to be linear. Since linearity is inherited 
by subgroups, any virtually special Artin group is linear. Artin groups whose defining 
graphs are forests are the fundamental groups of graph manifolds with boundary by the 
work of Brunner [10] and Hermiller-Meier [18], and so they are virtually special by the 
work of Liu [27] and Przytycki-Wise [30]. Artin groups in certain classes (including 2-
dimensional, 3-generators) are not cocompactly cubulated even virtually, unless they are 
sufficiently similar to RAAGs by Huang-Jankiewicz-Przytycki [17] and independently by 
Haettel [15]. In particular, if M, N, P are finite, none of the groups in Theorem A, is 
virtually cocompactly cubulated. Haettel has a conjectural classification of all virtually 
cocompactly cubulated Artin groups [15]. Haettel also showed that some triangle-free 
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Artin group act properly but not cocompactly on locally finite, finite dimensional CAT(0) 
cube complexes [14]. We note that if one of the exponents M, N, P is infinite, then the 
residual finiteness of ArtMNP is well-known.

The list of other known families of residually finite Artin groups is short. An Artin 
group is of FC type if every clique (i.e. a complete induced subgraph) in Γ is the defining 
graph of a spherical Artin group. (Blasco-Garcia)-(Martinez-Perez)-Paris showed that FC 
type Artin groups with all labels even are residually finite [4]. (Blasco-Garcia)-Juhasz-
Paris showed in [3] the residual finiteness of Artin groups with defining graph Γ where 
the vertices of Γ admit a partition P such that

• for each X ∈ P the Artin group AX is residually finite,
• for each distinct X, Y ∈ P there is at most one edge in Γ joining a vertex of X with 

a vertex of Y , and
• the graph Γ/P is either a forest, or a triangle free graph with even labels. The graph 

Γ/P is defined as follows. The vertices of Γ/P are P, and an edge with label M joins 
sets X, Y ∈ P if there exist a ∈ X, b ∈ Y such that Mab = M .

In [22] the author proves the residual finiteness of Artin groups Art2MN where M, N ≥ 4
and at least one of them is even.

The residual finiteness of 3-generator affine Artin groups (i.e. corresponding to affine 
Coxeter groups), i.e. Art244, Art236, Art333 follows from the work of Squier [31]. Squier 
proved that Art244 splits as an HNN extension of F2 by an automorphism of an index 
two subgroup, and both Art236 and Art333 split as F3 ∗F7 F4 where F7 is normal and of 
finite index in each of the factors. We give a geometric proof of the Squier’s splitting of 
Art333 in Example 4.14. The subgroup F7 has index three and two respectively in the 
factors F3 and F4 in the splitting of Art333. This yields a short exact sequence of groups

1 → F7 → Art333 → Z/3 ∗ Z/2 → 1.

In particular Art333 is free-by-(virtually free), and therefore virtually free-by-free. Since 
every split extension of a finitely generated residually finite group by a residually finite 
group is residually finite [29], we can conclude that Art333 is residually finite. Similar 
arguments yield residual finiteness of Art244 and Art236. The residual finiteness of Art333
and Art244 also follows from the fact that they are commensurable with the quotients of 
spherical Artin groups modulo their centers, respectively Art233 /Z and Art234 /Z [11].

Theorem B provides a splitting of ArtΓ as a graph of groups with free vertex groups. In 
general, the existence of such a splitting does not guarantee residual finiteness. In order 
to prove Theorem A we carefully analyze the splitting and use a criterion for residual 
finiteness of certain amalgams of special form. See Theorem 2.8 and Theorem 2.11. The 
following question is open in general.
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Question. Let A, B, C be finite rank free groups. When is the group A ∗C B (or A∗B) 
residually finite?

One instance where G = A ∗C B (or A∗B) is residually finite is when C is malnormal 
in A, B. By the combination theorem of Bestvina-Feighn [2], if A, B are hyperbolic, 
and C is quasi-convex in both A and B and malnormal in at least one of A, B, then 
G = A ∗CB is hyperbolic. Wise showed that in such a case, G is residually finite [34], and 
later Hsu-Wise proved that G is in fact virtually special [21]. Another class of examples 
of residually finite amalgams are doubles of free groups along a finite index subgroup. 
These groups are virtually direct products of two finite rank free groups [1].

On the other hand there are examples of amalgamated products of free groups that 
are not residually finite. Bhattacharjee constructed a first example which is an amalgam 
of two free groups along a common subgroup of finite index in each of the factors [6]. 
More examples are lattices in the automorphism group of a product of two trees, which 
split as twisted doubles of free groups along a finite index subgroup, and they were 
constructed by [33] and [8]. The Burger-Mozes examples are not only non residually 
finite, but virtually simple.

The paper is organized as follows. In Section 1 we fix notation and recall some ge-
ometric group theory tools that we use later. In Section 2 we recall some facts about 
residual finiteness and prove our criterion for residual finiteness of twisted doubles of free 
group (Theorem 2.8) and of HNN extensions of free groups (Theorem 2.11). In Section 3
we recall the definition of Artin groups, and describe their non-standard presentations 
due to Brady-McCammond [9]. In Section 4 we carefully study the presentation complex 
from the previous section and prove Theorem B (as Theorem 4.3). Finally, in Section 5
we prove Theorem A (as Corollary 5.7 and Corollary 5.12). A proof in the case where at 
least one label is even, is generalized to a broader family of Artin groups in Section 6.

Acknowledgments The author would like to thank Piotr Przytycki and Dani Wise for 
helpful conversations. She is also very grateful to anonymous referees for their corrections 
and suggestions. This material is based upon work supported by the National Science 
Foundation under Grant No. DMS-2105548/2203307.

1. Graphs

In this section we gather together some standard notions and tools that we use in 
later sections.

1.1. Basic definitions

A graph is a 1-dimensional CW-complex. All the graphs we consider are finite. The 
vertex set of a graph X is denoted by V (X), and its edge set is denoted by E(X). Most 
graphs we consider are multigraphs, i.e. they may have multiple edges with the same 
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endpoints, and loops, i.e. edges with the same both endpoints. We refer to graphs without 
loops and multiple edges with equal endpoints as simple graphs.

A map ρ between graphs is combinatorial if the image of each vertex is a vertex, and 
while restricted to an open edge with endpoints v1, v2 it is a homeomorphism onto an 
edge with endpoints ρ(v1), ρ(v2). A combinatorial map ρ : Y → X between graph X, Y
is a combinatorial immersion, if for every vertex v ∈ Y and oriented edges e1, e2 with 
terminal vertex v such that ρ(e1) = ρ(e2), we have e1 = e2. A combinatorial immersion 
ρ : Y → X induces an injective homomorphism π1(Y, y) ↪→ π1(X, x) [32, Prop 5.3] where 
x, y are basepoints of X, Y respectively with ρ(y) = x. A different basepoint y′ in the 
same connected component of Y as y and such that ρ(y′) = x represents a subgroup 
π1(Y, y′) ↪→ π1(X, x) which is conjugate to π1(Y, y).

Let In denote a graph with vertex set {0, 1, . . . , n} with an edge for every pair of 
vertices k1, k2 such that |k2 − k1| = 1. Let Cn denote graph In−1 with an additional 
edge joining n − 1 and 0. A path of length n in a graph X, is a combinatorial immersion 
In → X. A cycle of length n in a graph X, is a combinatorial immersion Cn → X. We 
say a path or cycle is simple, if vertices 0, . . . , n − 1 are mapped to distinct vertices in 
X. We say a path is closed, if 0 and n are mapped to the same vertex in X. A segment
in X is a simple path whose only vertices that are mapped to vertices of valence > 2 in 
X are its endpoints. We refer to vertices of valence > 2 as branching vertices.

Suppose X has a single vertex, i.e. X is a wedge of loops. Let ρ : Y → X be a 
combinatorial immersion. If we choose an orientation for each edge of X, then the map 
Y → X can be represented by the graph Y with edges oriented and labeled by E(X). 
Visually, we pick a distinct color for each edge of X and represent Y → X as Y with 
edges oriented and colored.

If Γ is a simple graph, we can describe a path as an n-tuple (a1, a2, . . . , an) of vertices 
of Γ where {ai, ai + 1} forms an edge for each 1 ≤ i < n. Similarly we can describe a 
cycle in Γ as an n + 1-tuple (a1, a2, . . . , an, a1), if (a1, a2, . . . , an, a1) is a path.

1.2. Fiber product of graphs

Let ρi : (Yi, yi) → (X, x) be a combinatorial immersion of based graphs for i = 1, 2. 
The intersection of subgroups π1(Y1, y1) and π1(Y2, y2) of π1(X, x) can be computed as 
the fundamental group of the fiber product of based graphs, by Stallings [32]. The fiber 
product of Y1 and Y2 over X is the pullback in the category of graphs, i.e. it is the graph 
Y1 ⊗X Y2 with the vertex set

{(v1, v2) ∈ V (Y1) × V (Y2) : ρ1(v1) = ρ2(v2)}

and the edge set

{(e1, e2) ∈ E(Y1) ×E(Y2) : ρ1(e1) = ρ2(e2)}
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where ρ1(e1) = ρ2(e2) is the equality of oriented edges. The graph Y1 ⊗X Y2 often has 
several connected components. The natural combinatorial immersion Y1 ⊗X Y2 → X

induces the embedding π1(Y1 ⊗X Y2, (y1, y2)) → π1(X, x). By [32, Thm 5.5], π1(Y1 ⊗X

Y2, (y1, y2)) is the intersection of π1(Y1, y1) and π1(Y2, y2) in π1(X, x). See also [24, 
Section 9].

Suppose X has a unique vertex y. Then V (Y1 ⊗X Y2) = V (Y1) × V (Y2). If ρ : Y → X

is a combinatorial immersion of graphs then connected components of Y ⊗X Y represent 
the intersections H∩Hg where H := π1(Y, y) < π1(X, x) and g ∈ π1(X, x). In particular, 
one of the connected components of Y ⊗X Y is a copy of Y with the vertex set {(v, v) :
v ∈ V (Y )}. It corresponds to the intersection H∩Hg = H where g ∈ H. We refer to this 
connected component of Y ⊗X Y as trivial. All other subgroups of the form H ∩Hg are 
either {e}, or their conjugacy classes are represented by nontrivial connected components 
of Y ⊗X Y .

2. Residual finiteness

A group G is residually finite if for every g ∈ G − {e} there exists a finite index 
subgroup G′ < G such that g /∈ G′. Equivalently, there exists a finite quotient φ : G → Ḡ

such that φ(g) ̸= e. It is easy to see, that if G has a finite index residually finite subgroup, 
then G is residually finite.

Let H be a subgroup of G, let φ : G → Ḡ be a (not necessarily finite) quotient 
and let {gi}i ⊆ G −H be a collection of elements. We say φ separates H from {gi}i if 
φ(gi) /∈ φ(H) for all i ∈ I. A subgroup H < G is separable if for every finite collection 
{gi}i ⊆ G − H, there exists a finite quotient φ : G → Ḡ that separates H from {gi}i. 
Equivalently, there exists a finite index subgroup G′ <f.i G containing H such that 
gi /∈ G′ for all i. To see the equivalence of the two definitions, in one direction take N
to be the normal core of G′ in G (i.e. the intersection of all conjugates of G′ in G) and 
set Ḡ = G/N . Conversely, take G′ = φ−1(φ(H)).

The main goal of this section is to formulate our criterion for residual finiteness of 
certain free products of amalgamation and HNN extensions, Theorem 2.8 and Theo-
rem 2.11. We use the following criterion of Wise for residual finiteness of graph of free 
groups [34]. A graph of groups is algebraically clean, if vertex groups are free, and edge 
groups are free factors in both of their vertex groups.

Theorem 2.1. [34, Thm 3.4]Let G split as a finite algebraically clean graph of groups 
where all edge groups are of finite rank. Then G is residually finite.

2.1. Free factor and separability

Let H, G be finite rank free groups. A famous theorem by Marshall Hall [16] states 
that every finitely generated subgroup of a free group is virtually a free factor, i.e. if 
H < G then there exists a finite index subgroup G′ < G such that H < G′ and H is a 
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free factor of G′. A closely related result states that free groups are subgroup separable, 
i.e. every finitely generated subgroup is separable.

Let X, Y be graphs with basepoint x0, y0 respectively. Let ρ : (Y, y0) → (X, x0)
be a combinatorial immersion inducing the inclusion of finite rank free group H :=
π1(Y, y0) ↪→ π1(X, x0) =: G.

Definition 2.2. Let Aρ ⊆ G consist of all g ∈ G represented by a cycle γ in X such that 
γ is a concatenation of paths γ1 · γ2 where:

• γ1 = ρ(µ1) and µ1 is a non-trivial simple non-closed path in Y going from y0 to some 
vertex y1,

• γ2 = ρ(µ2) and µ2 is either trivial, or is a simple non-closed path in Y going from 
some vertex y2 to y0, where y1 ̸= y2 ̸= y0.

We refer to Aρ as the oppressive set for H in G with respect to ρ. We say A is an 
oppressive set for H in G, if there exists a combinatorial immersion ρ with A = Aρ.

In Proposition 2.4 we state some properties of the set Aρ. In particular, we explain 
the connection between the separation from the set Aρ and H being a free factor. In one 
of the proofs below we use the following easy lemma, due to Karrass-Solitar.

Lemma 2.3 ([26]). Let H be a free factor in G. Then for every finite index subgroup 
G′ < G the intersection G′ ∩H is a free factor in G′.

Proposition 2.4. Let ρ : (Y, y0) → (X, x0) be a combinatorial immersion of based graphs 
inducing the inclusion of finite rank free group H := π1(Y, yo) ↪→ π1(X, xo) =: G, and 
let Aρ be the oppressive set for H in G with respect to ρ.

(1) Aρ ∩H = ∅.
(2) Aρ = ∅ if and only if ρ is an embedding.
(3) For any based cover (X̂, ̂x0) → (X, x0) such that ρ factors through a combinatorial 

immersion ρ̂ : (Y, y0) → (X̂, ̂x0), we have Aρ̂ = Aρ ∩ π1(X̂, ̂x0).
(4) If φ : G → Ḡ is a quotient that separates H from Aρ, then H ∩ kerφ is a free factor 

in kerφ.

Proof. (1) Suppose that there exists g ∈ Aρ∩H. Then g is represented by a loop γ which 
can be expressed as a concatenation γ1 ·γ2 as in Definition 2.2. Since ρ is a combinatorial 
immersion, there is a unique path µ1 starting at y0 such that ρ(µ1) = γ1, and there is a 
unique path µ2 ending at y0 such that ρ(µ2) = γ2. Since g ∈ H the path µ1 must end at 
the same vertex as µ2 starts. This is a contradiction.

(2) Suppose Aρ is not empty. That means that there exist a path µ1 joining vertices 
y0 and y1 in Y and a path µ2 joining vertices y2 and y0 where y2 ̸= y0, y1 such that 
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ρ(µ1) ·ρ(µ2) is a closed path. That means that ρ(y1) = ρ(y2), i.e. ρ is not an embedding. 
Conversely, suppose that ρ is not an embedding, and let y1, y2 ∈ Y such that ρ(y1) =
ρ(y2). Then the image under ρ of a simple path from y0 to y1 concatenated with the image 
of a simple path going y2 back to y0 lifts to a closed path in X. That path corresponds 
to an element of Aρ.

(3) We first prove that Aρ̂ ⊆ Aρ ∩ π1(X̂, ̂x0). By definition Aρ̂ ⊆ π1(X̂, ̂x0). Let 
g ∈ Aρ̂ be represented by a cycle γ̂1 · γ̂2 in X̂ as in Definition 2.2. Then γ̂1 · γ̂2 maps 
to a cycle γ1 · γ2 in X which still satisfies Definition 2.2 and so, g ∈ Aρ. Conversely, let 
g ∈ Aρ ∩ π1(X̂, ̂x0) be represented by a cycle γ1 · γ2 in X. Since g ∈ π1(X̂, ̂x0) the cycle 
lifts to a cycle γ̂1 · γ̂2 in X̂ based at x̂0. It follows that g ∈ Aρ̂.

(4) Since φ separates H from Aρ, the group G′ := φ−1 (φ(H)) contains H but does 
not contain any element of Aρ. Let (X̂, ̂x0) → (X, x0) be a cover corresponding to G′. 
Since H ⊆ G′, the map ρ factors through ρ̂ : (Y, y0) → (X̂, ̂x0). Since Aρ ∩ G′ = ∅, by 
(3) Aρ̂ = ∅. By (2) ρ̂ is an embedding. Thus H is a free factor of G′. By Lemma 2.3, 
H ∩ kerφ is a free factor in kerφ. !

The following Lemma will be used to verify that certain quotients separate a subgroup 
from its oppressive set.

Lemma 2.5. Let ρ : (Y, y0) → (X, x0) be a combinatorial immersion of graphs where x0
is the unique vertex of X. Let Y•, X• be 2-complexes with the 1-skeletons Y (1)

• = Y and 
X(1)

• = X, and let ρ• : (Y•, y0) → (X•, x0) be a map extending ρ. Let φ : π1(X, x0) →
π1(X•, x0) be the natural quotient and suppose that φ(π1(Y, y0)) = (ρ•)∗(π1(Y•, y0)). If 
the lift to the universal covers ρ̃• : Ỹ• → X̃• of ρ• is an embedding, then φ separates 
π1(Y, y0) from Aρ.

Proof. The vertex set of X̃• can be identified with π1X•. By assumption, we can view Ỹ•

as a subcomplex of X̃• whose vertex set contains vertices corresponding to φ(π1(Y, y0)) =
(ρ•)∗(π1(Y•, y0)) ⊆ π1(X•, x0). Let p the base vertex of X̃• representing the trivial 
element e ∈ X̃•.

Let g ∈ Aρ be represented by a cycle γ = γ1 · γ2 in X with γi = ρ(µi) as in Def-
inition 2.2, i.e. µ1 is a non-trivial simple path in Y starting at y0 and ending at some 
y1 ̸= y0, and µ2 is either trivial or it is a simple path in Y starting at some y2 ̸= y0, y1
and ending at y0. The path µ1 lifts to unique paths µ̃1 starting at p in Ỹ• ⊆ X̃•. Similarly, 
the path µ2 lifts to unique path µ̃2 ending at g.p in Ỹ• ⊆ X̃•. To prove that φ separates 
π1(Y, y0) from Aρ, we need to show that φ(g) /∈ (ρ•)∗(π1(Y•, y0)).

Suppose to the contrary, that φ(g) ∈ (ρ•)∗(π1(Y•, y0)). That means that µ̃2 starts 
where µ̃1 end, so the concatenation µ̃1 · µ̃2 is a path from p to g.p. Since µ̃1 · µ̃2 projects 
onto µ1·µ2 in Y ⊆ Y•, we conclude that µ1·µ2 is a cycle in Y , which is a contradiction. !



K. Jankiewicz / Advances in Mathematics 405 (2022) 108487 9

2.2. Residual finiteness of a twisted double

Throughout this section A is a finite rank free group, C < A is a finitely generated 
subgroup and β : C → C is an automorphism.

Definition 2.6. The double of A along C twisted by β, denoted by D(A, C, β) is a free 
product with amalgamation A ∗CA where C is mapped to the first factor via the natural 
inclusion C ↪→ A, and to the second factor via the natural inclusion precomposed with β.

Proposition 2.7. Let A be an oppressive set for C in A. Suppose there exists a finite 
quotient Ψ : D(A, C, β) → K such that Ψ|A : A → K separates C from A. Then 
D(A, C, β) virtually splits as an algebraically clean graph of finite rank free groups. In 
particular, D(A, C, β) is residually finite.

Proof. The group D(A, C, β) acts on its Bass-Serre tree T with vertex stabilizers con-
jugate to A, and edge stabilizers conjugate to C. The group ker Ψ acts on T with a 
finite fundamental domain, since the index of kerΨ in D(A, C, β) is finite. The vertex 
stabilizers are conjugates of kerΨ ∩ A = ker Ψ|A, and the edge stabilizers are conju-
gates of kerΨ ∩ C = kerΨ|A ∩ C. By Proposition 2.4(4), ker Ψ|A ∩ C is a free factor in 
ker Ψ|A, i.e. every edge stabilizer is a free factor in each respective vertex stabilizers of 
the action of kerΨ on T . In particular, kerΨ splits as a clean graph of free groups, so 
by Theorem 2.1 ker Ψ is residually finite. Since kerΨ has finite index in D(A, C, β) the 
conclusion follows. !

A subgroup H is malnormal in G, if for every g ∈ G − H we have Hg ∩ H = {1}, 
where Hg := g−1Hg. More generally, a collection {H1, . . . , Hn} of subgroups of G is 
malnormal in G, if for every 1 ≤ i, j ≤ n and g ∈ G, we have Hg

i ∩ Hj = {1}, unless 
i = j and g ∈ Hi.

Let φ : A → Ā be a quotient and let C̄ := φ(C). The automorphism β : C → C

projects to an automorphism β̄ : C̄ → C̄ if and only if β(C ∩ kerφ) = C ∩ kerφ. When 
that is the case, then φ induces a quotient Φ : D(A, C, β) → D(Ā, C̄, β̄).

Theorem 2.8. Suppose there exists a quotient φ : A → Ā such that

(1) Ā is a virtually special hyperbolic group,
(2) C̄ := φ(C) is malnormal and quasiconvex in Ā,
(3) φ separates C from an oppressive set A of C in A,
(4) β projects to an automorphism β̄ : C̄ → C̄.

Then D(A, C, β) virtually splits as an algebraically clean graph of finite rank free groups. 
In particular, D(A, C, β) is residually finite.
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Proof. Condition (4) ensures that φ extends to the quotient Φ : D(A, C, β) →
D(Ā, C̄, β̄). Since φ separates C from A, the set φ(A) = {φ(a) | a ∈ A} ⊆ Ā is disjoint 
from C̄. By Bestvina-Feighn [2] D(Ā, C̄, β̄) is hyperbolic, since it is a free product of two 
copies of a hyperbolic group Ā amalgamated along a subgroup C̄ which is malnormal and 
quasiconvex in each of the factors (see also [23]). Since Ā is virtually cocompactly spe-
cial, by Hsu-Wise [21] D(Ā, C̄, β̄) is cocompactly cubulated. Then by Haglund-Wise [20]
D(Ā, C̄, β̄) is virtually special and in particular QCERF [19]. Thus, C̄ is separable in 
D(Ā, C̄, β̄). There exists a finite quotient Ψ : D(Ā, C̄, β̄) → K such that Ψ|Ā separates 
C̄ from φ(A). Thus the composition Ψ ◦Φ|A : A → K separates C from A. The quotient 
Ψ ◦ Φ : D(A, C, β) → K satisfies the assumptions of Proposition 2.7. Hence D(A, C, β)
is residually finite. !

In our application of Theorem 2.8, Condition (4) will be verified using the following.

Observation 2.9. Let Z be a finite graph and let b : (Z, z0) → (Z, z1) be a graph automor-
phism. Then b together with a choice of a path from z0 to z1 induces an automorphism 
β : π1(Z, z0) → π1(Z, z0). If Z• is a finite 2-complex with the 1-skeleton Z such that b ex-
tends to b• : Z• → Z•, then β projects to an automorphism β• : π1(Z•, y0) → π1(Z•, y0).

2.3. Residual finiteness of an HNN extension

Let A, B be finite rank free groups. For i = 1, 2 let βi : B → A denote an injective 
homomorphism, and denote Bi = βi(B). Let β denote the isomorphism β2 · β−1

1 : B1 →
B2. By A∗B we denote the HNN extension of A with respect to {β1, β2}, i.e.

A∗B = ⟨A, t | t−1bt = β(b) for all b ∈ B1⟩

Let X be a bouquet of loops, with π1X identified with A, and for i = 1, 2 let ρi : Yi → X

be a combinatorial immersion inducing the inclusion Bi ↪→ A. Let Aρ1 , Aρ2 be the 
oppressive sets for B1, B2 with respect to ρ1, ρ2 respectively.

Proposition 2.10. Suppose there exists a quotient Ψ : A∗B → K such that Ψ|A : A → K

separates B1 from A1, and B2 from A2. Then A∗B virtually splits as an algebraically 
clean graph of finite rank free groups. In particular, A∗B is residually finite.

Proof. The proof is analogous as for Proposition 2.7. !

Theorem 2.11. Suppose there exists φ : A → Ā such that

(1) Ā is a virtually special hyperbolic group,
(2) B̄i := φ(Bi) is quasiconvex in Ā for i = 1, 2, and the collection {B̄1, B̄2} is malnor-

mal in Ā,
(3) φ separates Bi from Aρi for i = 1, 2,
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Fig. 1. The 2-cells of the presentation complex of the group presentation of a 2-generator Artin group Art5
(left) and Art6 (right).

(4) β projects to an isomorphism β̄ : B̄1 → B̄2.

Then A∗B virtually splits as an algebraically clean graph of finite rank free groups. In 
particular, A∗B is residually finite.

Proof. The proof is analogous as the proof of Theorem 2.8. It uses Proposition 2.10 in 
the place of Proposition 2.7. !

3. Artin groups and their Brady-McCammond complex

In this section we describe a complex XΓ associated to a non-standard presentation 
of ArtΓ that was introduced and shown to be CAT(0) for many Artin groups by Brady-
McCammond in [9]. We then describe certain subspaces of XΓ that will be used in 
Section 4 to prove that for certain Γ the group ArtΓ splits as an amalgam of finite rank 
free groups. We start with the case of 2-generator Artin group.

3.1. Brady-McCammond presentation for a 2-generator Artin group

Consider an Artin group on two generators

ArtM = ⟨a, b | (a, b)M = (b, a)M ⟩

where M < ∞. By adding an extra generator x and setting x = ab we get another 
presentation

• if M = 2m:

⟨a, b, x | x = ab, xm = bxm−1a⟩

• if M = 2m + 1:

⟨a, b, x | x = ab, xma = bxm⟩

See Fig. 1. Let r2m(a, b, x) denote the relation xm = bxm−1a and let r2m+1(a, b, x)
denote the relation xma = bxm. Let X(a, b) be the 2-complex corresponding to the 
above presentation. Denote by C(a, b) the disjoint union of its two 2-cells, and let p :
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Fig. 2. On the left: the defining graph Γ of a triangle Artin group. On the right: the graph Γ equipped with 
the cyclic orientation determining a Brady-McCammond presentation with three new generators x, y, z.

C(a, b) → X(a, b) be the natural projection. There is an embedding of C(a, b) in the 
plane and a height map h to the interval [0, 1] such that h restricted to each edge x is 
constant, as in Fig. 1. We refer to these edges as horizontal, and to the other edges as 
non-horizontal. Note that the map h is not well-defined on X(a, b).

3.2. Brady-McCammond presentation for a general Artin group

A partial orientation on a simple graph Γ is a choice of an endpoint ι(e) for some of 
the edges e in E(Γ). Visually we represent a partial orientation on a simple graph by 
arrows: an edge e with a choice of vertex ι(e) is represented as an arrow starting at the 
vertex ι(e). We say a cycle (resp. path) γ in a simple graph Γ with a partial orientation 
ι is directed, if for every edge e in the cycle ι(e) is defined, and ι(e) = ι(e′) only when 
e = e′. An orientation on Γ is a partial orientation where each edge is oriented.

Let Γ be a simple graph with edges labeled by number ≥ 2, with a partial orientation 
ι where iι(e) is defined for an edge e if and only if the label of e is ≥ 3.

Generalizing Section 3.1 we consider the following presentation of ArtΓ with respect 
to the partial orientation ι:

⟨a ∈ V (Γ), x ∈ E(Γ) | x = ab, rMab(a, b, x)
where x = {a, b} and either a = ι(x) or Mab = 2⟩.

The partial orientation of the edge x = {c, d} determines whether the new generators x
equals cd or dc. If Mcd = 2 we have x = cd = dc, which is why we do not need to specify 
the partial orientation. In the case of a 3-generators Artin group

ArtMNP = ⟨a, b, c | (a, b)M = (b, a)M , (b, c)N = (c, b)N , (c, a)P = (a, c)P ⟩,

with M, N, P < ∞, the cyclic orientation on the triangle Γ (see Fig. 2) gives the presen-
tation

⟨a, b, c, x, y, z | x = ab, y = bc, z = ca, rM (a, b, x), rN (b, c, y), rP (c, a, z)⟩.

Let XΓ be the complex obtained from the union 
⋃

(a,b)∈E(Γ) X(a, b) by identifying the 
edges with the same labels. The fundamental group of XΓ is ArtΓ. Brady-McCammond 
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Fig. 3. (1) Examples of misdirected paths and a misdirected cycle. (2) Almost misdirected cycles of even 
and odd length may contain directed subpaths of length 3 and 2 respectively.

showed in [9] that when all labels are ≥ 3, then XΓ admits a locally CAT(0) metric 
provided that there exists an orientation such that

(1) every triangle in Γ is directed,
(2) every 4-cycle in Γ contains a directed path of length at least 2.

Their proof in fact works in a greater generality. Using their methods one can show that 
for certain graphs with labels 2 the complex XΓ admits a locally CAT(0) metric. We 
discuss the condition on Γ in more detail in Section 4.1.

As in the 2-generator case, let CΓ be the disjoint union of the 2-cells of XΓ. Again 
let p : CΓ → XΓ be the projection map. We also define a height function h : CΓ → [0, 1]
whose restriction to each C(a, b) is the height function defined in Section 3.1.

4. Splittings of Artin groups

4.1. The statement of the Splitting theorem

The main goal of Section 4 is to prove Theorem 4.3, which asserts that under cer-
tain assumption on Γ, ArtΓ splits as a free product with amalgamation A ∗C B or an 
HNN-extension A∗B where A, B, C are finite rank free groups. We begin with a precise 
statement.

Definition 4.1. Let Γ be a simple graph with a partial orientation ι. We say a path γ of 
length ≥ 2 in Γ is a misdirected path if the partial orientation on γ induced by ι can be 
extended to an orientation such that a maximal directed subpath of γ has length 1. We 
say an even length cycle γ is a misdirected cycle if the induced partial orientation on γ
extends to an orientation where maximal directed subpaths of γ have length 1. We say 
a cycle γ is an almost misdirected cycle if γ can be expressed as a cycle (a1, . . . , an, a1)
where the path (a1, . . . , an) is misdirected.

See Fig. 3(1) for examples of misdirected paths and a misdirected cycle. See Fig. 3(2) 
for examples of almost misdirected cycles. Note that every even length misdirected cycle 
is almost misdirected, but not vice-versa.
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Definition 4.2. Let Γ be a simple graph. Assume edges of Γ are labeled by an integer 
≥ 2. We say that a partial orientation ι on Γ is admissible if

• ι(e) for an edge e is defined if and only if the label of e is ≥ 3, and
• no cycle in Γ is almost misdirected.

Theorem 4.3. Suppose Γ admits an admissible partial orientation. If Γ is a bipartite graph 
with all labels even, then ArtΓ splits as an HNN-extension A∗B, where A, B are finite 
rank free groups. Otherwise ArtΓ splits as a free product with amalgamation A ∗CB where 
A, B, C are finite rank free groups. Moreover, rkA = |E(Γ)|, rkB = 1 − |V (Γ)| +2|E(Γ)|, 
and C is an index 2 subgroup of B, so rkC = 1 − 2|V (Γ)| + 4|E(Γ)|.

We prove Theorem 4.3 in Section 4.9. The condition that Γ has no almost misdirected 
cycles implies ArtΓ in Theorem 4.3 is 2-dimensional (since no 3-cycle can have an edge la-
beled by 2). Our condition also implies the other condition given by Brady-McCammond 
(and included in the end of Section 3.2) ensuring that XΓ is CAT(0). Therefore all Artin 
groups satisfying the assumptions of Theorem 4.3 are CAT(0) by [9]. Since a 4-clique 
does not admit an orientation where each 3-cycle is directed, our condition also implies 
that the clique number of Γ for is at most 3.

Recall, Art(Γ) has large type, if Mab ≥ 3 for all {a, b} ∈ E(Γ). Here are some examples 
of Artin groups that satisfy the assumptions of Theorem 4.3:

• All large type 3-generator Artin groups.
• More generally, large type Artin group whose defining graph Γ admits an orientation 

where each simple cycle is directed. This includes Γ that is planar and each vertex 
has even valence (as observed in [9]).

• Many other Artin groups with the sufficiently small ratio # labels 2 in γ
length(γ) in every cycle 

γ. In particular, this includes Artin groups with Γ where all edges labeled by 2
disconnect the graph and all subgraphs without edges labeled by 2 are as above.

For the rest of this section, we assume that Γ is a fixed connected, labeled, simple 
graph. We write X for the Brady-McCammond complex XΓ defined in Section 3.2. The 
splitting of ArtΓ comes from a decomposition of the 2-complex X into a union of two 
subspaces where each subspace and the intersection of them all have homotopy type of 
graphs. We will now describe these subspaces.

4.2. Horizontal graphs in X

We distinguish the following subspaces of X that are the images under p of level sets 
of the height function h, as defined in Section 3.2.
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Fig. 4. Horizontal graphs X0, X1/2 and X1/4.

(0) The level set p(h−1(0)) is denoted by X0. The intersection of X0 with every X(a, b)
is a single loop labeled by the generator x = ab. Thus X0 is a bouquet of loops, 
one for each edge in E(Γ). See Fig. 4.

(1/2) The level set p(h−1(1
2 )) is denoted by X1/2. We call the points of intersection of 

X1/2 with the non-horizontal edges the midpoints. We will abuse the notation, and 
a will denote the midpoint of the edge labeled by a. The intersection of X1/2 with 
every X(a, b) is a single cycle of length 2 with vertices a, b. The graph X1/2 is a 
union of all these cycles of length two identified along vertices with the same label. 
Hence X1/2 is a copy of the graph Γ with every edge doubled. See Fig. 4.

(1/4) The union of the level set p(h−1(1
4) ∪h−1(3

4 )) is denoted by X1/4. We call the points 
of intersection of X1/4 with the non-horizontal edges the quarterpoints, and denote 
them by a+, a−, b+, b− where the vertices a−, a, a+ are ordered with respect with 
the orientation of the edge a. Similarly, b−, b, b+ are ordered with respect with the 
orientation of the edge b. See Fig. 4.
If Mab is odd, the intersection of X1/4 with X(a, b) is a single cycle of length 4. If 
Mab is even, the intersection of X1/4 with X(a, b) is a disjoint union of two cycles, 
each of length 2. We describe X1/4 in more detail in Section 4.5.

Let us emphasize that X1/2 is never a simple graph; it always has double edges. 
Similarly X1/4 does not need to be simple.

4.3. Horizontal tubular neighborhoods in X

Fix 0 < ϵ < 1/4. We now define tubular neighborhoods N0, N1/2, N1/4 ⊆ X of graphs 
X0, X1/2, X1/4.

(0) Let N0 be an open neighborhood of X0 of the form p 
(
h−1([0, 1/2 − ϵ) ∪ (1/2 + ϵ, 1])

)
. 

Note that N0 deformation retracts onto X0 with the property that the intersection 
of N0 with the 1-skeleton of X is contained in the 1-skeleton of X at all times.

(1/2) Similarly, let N1/2 be an open neighborhood of X1/2 of the form p(h−1((ϵ, 1 − ϵ))). 
Again, N1/2 deformation retracts onto X1/2 such that N1/2 ∩ X(1) is contained in 
X(1) at all times.
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(1/4) The intersection N0 ∩N1/2, which we denote by N1/4, restricted to X(a, b) is equal 
to p 

(
h−1((ϵ, 1/2 − ϵ) ∪ (1/2 + ϵ, 1 − ϵ))

)
. Consequently, N1/4 deformation retracts 

onto X1/4 such that N1/4 ∩X(1) is contained in X(1) at all times.

We also have N0 ∪N1/2 = X because [0, 1/2 − ϵ) ∪ (1/2 + ϵ, 1] ∪ (ϵ, 1 − ϵ) = [0, 1].

4.4. Splitting

Let A = π1X0 = π1N0, B = π1X1/2 = π1N1/2 and if X1/4 is connected, let C =
π1X1/4 = π1N1/4. The group A, B, C are all the fundamental groups of finite graphs, so 
they are finite rank free groups. The composition X1/4 ↪→ N0 → X0 of the inclusion 
X1/4 ↪→ N0 with the retraction N0 → X0 induces a group homomorphism C → A. 
Similarly, the composition X1/4 ↪→ N1/2 → X1/2 induces a group homomorphism C → B.

When X1/4 is connected, then so is N1/4. Since N0 ∪N1/2 = X and N1/4 = N0 ∩N1/2, 
by the Seifert-Van Kampen theorem we get the following.

Lemma 4.4. If X1/4 is connected and maps C → A and C → B are injective, then 
ArtΓ = A ∗C B.

Analogously, we have the following.

Lemma 4.5. Suppose X1/4 has two connected components and X1/4 → X1/2 restricted to 
each connected component is a combinatorial bijection. If X1/4 → X0 restricted to each 
connected component is π1-injective, then ArtΓ = A∗B, where the two copies of B in A
are induced by the two restrictions of X1/4 → X0 to a connected component.

Proof. Since X1/4 has two connected components, X is a graph of spaces with one vertex 
and one loop, where the vertex space is X0 and the edge space is X1/2 with two maps 
to X0 coming from the two restrictions of X1/4 → X0 to a connected component. Since 
X1/4 → X0 restricted to each connected component is π1-injective, we get the claimed 
HNN-extension. !

4.5. The graph X1/4

Let us first analyze X(a, b)1/4 := X1/4 ∩ X(a, b). It has four vertices labeled by 
a+, a−, b+, b−, and four edges. If Mab is even, then X(a, b)1/4 has two edges between 
a+, b− and two edges between a−, b+. If Mab is odd, then X(a, b)1/4 is a 4-cycle on ver-
tices a+, b−, a−, b+. We will think of the set of edges of X(a, b)1/4 as a disjoint union 
E(a, b)′ ⊔ E(a, b)′′ where

• The set E(a, b)′ is equal {{a+, b−}, {a−, b+}}. Those edges correspond to the seg-
ments contained in the 2-cell with the boundary abx−1 in the presentation complex 
(see Fig. 4).
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• The set E(a, b)′′ is equal {{a+, b−}, {a−, b+}} or {{a+, b+}, {a−, b−}}, depending on 
the parity of Mab. Those edges correspond to the segments contained in the 2-cell 
rM (a, b, x) in the presentation complex (see Fig. 4).

This gives us the following description of X1/4 for general ArtΓ.

Description 4.6. The inclusion X1/4 ↪→ N1/2 composed with the deformation retraction 
N1/2 → X1/2 is a covering map X1/4 → X1/2 of degree 2. Consequently, the graph X1/4 is 
a double cover of the graph X1/2 and can be described in terms of Γ as follows:

• The vertex set V (X1/4) is the disjoint union V+ ⊔ V− where each V+, V− is in 1-to-1 
correspondence with V (Γ). For each a ∈ V (Γ) we denote the corresponding vertices 
by a+, a− respectively.

• The set of edges E(X1/4) is the disjoint union E′ ⊔ E′′ such that each of the graphs 
Γ′ = (V+ ⊔ V−, E′) and Γ′′ = (V+ ⊔ V−, E′′) is a double cover of Γ with a± 3→ a for 
every a ∈ V (Γ). In particular, Γ′ and Γ′′ are simple graphs.

• For each {a, b} ∈ E(Γ), E′ contains an edge {a+, b−} and {a−, b+}. In particular, Γ′

is a bipartite double cover of Γ.
• For each {a, b} ∈ E(Γ) where Mab is even, there is an edge {a+, b−} and an edge 

{a−, b+} in E′′. In particular, when Mab is even then E(X1/4) contains two copies of 
the edge {a+, b−} and two copies of the edge {a−, b+}.

• For each {a, b} ∈ E(Γ) where Mab is odd, there is an edge {a+, b+} and an edge 
{a−, b−} in E′′.

In particular, every path γ = (a1, a2, . . . , an) in Γ has two lifts in Γ′:

• (a1+, a2−, . . . , an+) and (a1−, a2+, . . . , an−), if γ has even length, i.e. n is odd,
• (a1+, a2− . . . , an−) and (a1−, a2+, . . . , an+), if γ has odd length, i.e. n is even.

Every n-cycle (a1, a2, . . . , an, a1) in Γ has:

• one lift (a1+, a2−, . . . an+, a1−, a2+, . . . , an−, a1+) in Γ′ of length 2n, if n is odd,
• two lifts (a1+, a2−, . . . an−, a1+) and (a1−, a2+, . . . , an+, a1−) in Γ′, each of length n, 

if n is even.

See Fig. 5 for X1/4 of a 3-generators Artin group ArtMNP . As discussed above, if Mab is 
even, then X(a, b)1/4 has two connected components. The following lemma characterizes 
the graphs Γ for which X1/4 is connected.

Lemma 4.7. The graph X1/4 has either one or two connected components. The following 
are equivalent:
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Fig. 5. The graph X1/4 if (1) all M, N, P are odd, (2) only N is even, (3) only M is odd, (4) all M, N, P are 
even. In all cases, X1/4 → X1/2 is a double covering map.

• X1/4 has two connected components,
• each connected component of X1/4 is a copy of X1/2,
• Γ is a bipartite graph with all labels even.

Proof. By Description 4.6, X1/4 is a double cover of X1/2. Since X1/2 is connected, X1/4

can have at most two connected components. The equivalence of the first two conditions 
follows directly from that fact. Let us prove that the third condition is equivalent to the 
first one.

Suppose Γ is a bipartite graph with all labels even. Since all labels are even, X1/4

is isomorphic to the graph Γ′ with all edges doubled, so it suffices to show that Γ′ is 
not connected. Let U ⊔ W be the two parts of V (Γ), i.e. U ⊔ W = V (Γ), and each 
edge of Γ joins a vertex of U with a vertex of W . Denote by U±, V± the preimage in 
V± of U, W respectively. Then U+ ⊔ W− and U− ⊔ W+ are the vertex sets of the two 
connected components of X1/4. Indeed, this is true by the description of paths in Γ′ in 
Description 4.6.

Now suppose that Γ is not a bipartite graph with all labels even. That means either 
Γ has an edge with an odd label, or there is an odd length cycle in Γ. We show that in 
both cases there is a path joining vertices a+, a− in X1/4 for some a ∈ V (Γ) (equivalently 
any, again by Description 4.6). If {a, b} ∈ E(Γ) with Mab odd, then there is a path 
with vertices a+, b−, a− in X1/4. If (a1, . . . , a2n+1) is an odd length cycle in Γ, then by 
Description 4.6 its lift to Γ′ contains a path joining a1+, a1− as a subpath. !

4.6. The map X1/4 → X1/2

As in Description 4.6, the map X1/4 → X1/2 factors as the composition of the inclusion 
X1/4 ↪→ N1/2 with the deformation retraction N1/2 → X1/2. Under that map, a± ∈ V (X1/4)
is mapped to a ∈ V (X1/2) and every edge {a±, b±} ∈ E(X1/4) is mapped to {a, b} ∈
E(X1/2).

If Γ is a bipartite graph with all labels even, then by Lemma 4.7, X1/4 is a disjoint union 
of two copies of X1/2 and the map X1/4 → X1/2 is the identity map while restricted to each 
of the connected components. Otherwise, by Lemma 4.7, X1/4 is a connected double cover 
of X1/2. Then C = π1X1/4 → B = π1X1/2 is an inclusion of an index 2 subgroup. The 
quotient B/C = Z/2Z can be identified with the automorphism group of the covering 
space X1/4 over X1/2. In the case of 3-generator Artin group this automorphism can be 
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viewed as a π-rotation of the graph X1/4 (with respect to the planar representation as in 
Fig. 5).

4.7. The map X1/4 → X0

In this section we analyze the map X1/4 → X0 which is obtained by composing the 
inclusion X1/4 ↪→ N0 with the deformation retraction N0 → X0. This map is never 
combinatorial, and it might identify two distinct edges with the same origin. This map, 
unlike X1/4 → X1/2, depends on the partial orientation ι of Γ. In this section we give a 
description of the map X1/4 → X0, and in the next section, we characterize when this 
map is π1-injective, in terms of the combinatorics of Γ and ι.

In order to understand the map X1/4 → X0 we express it as a composition X1/4 →
X1/4 → X0 where the first map collapses some edges to a point and subdivides some other 
edges, and the second one is a combinatorial map. Proposition 4.10 gives conditions on Γ
for X1/4 → X1/4 to be a homotopy equivalence, and so to be π1-injective. Proposition 4.11
gives conditions for X1/4 → X0 to be a combinatorial immersion and consequently, π1-
injective.

The graph X1/4 is obtained from X1/4 in two steps:

(1) An edge that is sent to a vertex in X0 is collapsed to a vertex, which results in 
identification of its endpoints. The edges that get collapsed are certain edges of E′.

(2) An edge that is sent to a single edge of X0 via a degree m map, is subdivided into 
a path of length m. The edges that get subdivided are certain edges of E′′.

We know from Section 4.5 that X(a, b)1/4 is a 4-cycle (a−, b+, a+, b−, a−) if Mab is odd, 
and a disjoint union of 2-cycles (a−, b+, a−) and (a+, b−, a+) if Mab is even. In both 
cases X(a, b)1/4 is mapped to a single loop in X0(a, b). In all cases the map X(a, b)1/4 →
X(a, b)0 ≃ S1 is a degree Mab map. If Mab = 2m, then the map has degree m restricted 
to each of the connected components. Since an incoming edge a and an outgoing edge b
are adjacent in X(a, b), the edge {a+, b−} of the graph X(a, b)1/4 is collapsed to a point 
(see Fig. 4). Similarly, looking at the degrees of the map X(a, b)1/4 → X(a, b)0 restricted 
to other edges we find how to subdivide these edges to ensure that the map becomes 
combinatorial. Let X(a, b)1/4 be the image of X(a, b)1/4 in X1/4.

Description 4.8. The graph X(a, b)1/4 is obtained from X(a, b)1/4 by:

• (Mab = 2m + 1, ι({a, b}) = a): collapsing edge {a+, b−} from E(a, b)′, and subdi-
viding each of edges {a+, b+} and {a−, b−} from E(a, b)′′ into a path of length m. 
Consequently, X(a, b)1/4 is a cycle of length 2m + 1.

• (Mab = 2): collapsing edges {a+, b−} and {a−, b+} from E(a, b)′. Consequently, 
X(a, b)1/4 is a disjoint union of two length 1 loops.
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Fig. 6. The graph X0, X1/4, X1/4 in Art375. The map X1/4 → X0 is combinatorial.

• (Mab = 2m ≥ 4, ι({a, b}) = a): collapsing edge {a+, b−} from E(a, b)′, subdividing 
the edge {a+, b−} from E′′

1/4 into a path of length m, and subdividing the edge 
{a−, b+} from E′′

1/4 into a path of length m − 1. Consequently, X(a, b)1/4 is a disjoint 
union of cycles of length m each.

The above description of X(a, b)1/4 gives us the following description of X1/4. See Fig. 6
for an example of the factorization of the map X1/4 → X0 as a homotopy equivalence 
X1/4 → X1/4 and a combinatorial map X1/4 → X0. In that example Mab = 3, Mbc =
7, Mca = 5.

Description 4.9. The graph X1/4 can be described in terms of Γ and ι as follows.

• There are two kinds of vertices in X1/4. Let Vold denote the set of vertices that are the 
images of vertices in X1/4, and Vnew consists of all other vertices that are introduced 
in the subdivision. There are two kinds of edges E′

, E
′′.

• The vertices in Vold correspond to the equivalence classes of V (X1/4) = V+ ⊔ V−

where the equivalence relation is generated by a+ ∼ b− for every {a, b} ∈ E(Γ) and 
every a = ι({a, b}) or Mab = 2.

• The edges in E
′ are identified with the set E′ − {{a+, b−} ∈ E′ | {a, b} ∈

E(Γ) with a = ι({a, b}) or Mab = 2}, i.e. E′ is the collection of all edges of E′

that do not get collapsed.
• For each edge {a±, b±} in E′′ there is a path of length m or m −1 as in Description 4.8, 

consisting of edges of E′′ and joining appropriate vertices in Vold. The vertices inside 
such paths form the set Vnew.
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Each X(a, b)1/4 admits a natural combinatorial immersion onto a corresponding loop of 
X0. The map X1/4 → X0 is defined piecewise using these maps X(a, b)1/4 → X0. In the 
next subsection, we characterize when X1/4 → X0 is π1-injective.

4.8. Conditions for π1-injectivity of X1/4 → X0

We are now ready to characterize when the map X1/4 → X0 is π1-injective. The next 
two propositions ensure that the maps X1/4 → X1/4 and X1/4 → X0 respectively, are π1-
injective. We refer to Definition 4.1 for the definition of an (almost) misdirected cycles. 
We emphasize that a misdirected even length cycle in the statement of Proposition 4.10
is not assumed to be simple.

Proposition 4.10. Let Γ be a simple graph with edges labeled by numbers ≥ 2 with a partial 
orientation ι such that ι(e) of an edge e is defined if and only if the label of e is ≥ 3. 
Then X1/4 → X1/4 is a homotopy equivalence if and only if Γ has no misdirected even 
length cycles and no cycles with all edges labeled by 2.

Proof. We refer to Description 4.6 for the structure of X1/4 and to Description 4.9 for the 
structure of X1/4. By construction, X1/4 → X1/4 is obtained by collapsing certain edges 
of X1/4 followed by edge subdivision. The edge subdivision never changes the homotopy 
type of a graph, but edge collapsing might. The map X1/4 → X1/4 fails to be a homotopy 
equivalence if and only if there is a cycle in X1/4 with all edges collapsed in X1/4

First let us assume that Γ has a misdirected even length cycle (a1, a2, . . . , an, a1). Then 
each of the edges in one of the cycles (a1+, a2−, . . . , an−, a1+) or (a1−, a2+, . . . , an+, a1−)
of Γ′ ⊆ X1/4 gets collapsed. Thus, X1/4 → X1/4 is not a homotopy equivalence. Now 
suppose that Γ has an odd length cycle (a1, a2, . . . , an, a1) with all edges labeled by 2. 
Then its lift to Γ′ is the cycle (a1+, a2−, . . . , an+, a1−, . . . , an−, a1+) and all of its edges 
get collapsed in Γ′ ⊆ X1/4.

Conversely, suppose that there exists a cycle γ′ in X1/4 all of whose edges are collapsed 
in X1/4. Only edges from the set E′ might be collapsed by Description 4.9, so γ′ ⊆ Γ′. 
Without loss of generality, we can assume that γ′ is a simple cycle. Let γ be the image 
of γ′ in Γ.

First suppose γ is not simple. Then there exists a vertex a ∈ Γ such that γ′ passes 
through both a− and a+, i.e. γ′ can be expressed as (a−, b1+, b2−, . . . , bk−, a+, c1−, c2+,
. . . , cl+, a−) for some k, l. Since the plus and minus signs in labels of γ alternate, the num-
bers k, l must be even. If each edge of γ′ is collapsed, that means that the partial orienta-
tion on γ induced by ι extends to an orientation on γ = (a, b1, b2, . . . , bk, a, c1, c2, . . . , cl, a)
as pictured in Fig. 7. In particular, γ is a misdirected even length (non-simple) cycle.

Now suppose that γ is simple. Either γ′ → γ is two-to-one or one-to-one, depending 
on the parity of the length of γ. If the length of γ is odd, then γ′ → γ is two-to-one. 
For every edge {a, b} in γ, both edges {a−, b+} and {a+, b−} are contained in γ′, by 
Description 4.6. Moreover, if they both get collapsed, that means that Mab = 2. Thus γ
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Fig. 7. The misdirected non-simple cycle γ.

is a cycle with all edges labeled by 2. If the length of γ is even, then γ′ → γ is one-to-one. 
This necessarily means that γ is a misdirected even length cycle. !

Proposition 4.11. Let Γ be a simple graph with all labels ≥ 2 with a partial orientation ι
such that ι(e) of an edge e is defined if and only if the label of e is ≥ 3. Suppose Γ has 
no misdirected even length cycles. Then X1/4 → X0 is a combinatorial immersion if and 
only if Γ has no almost misdirected cycles.

Proof. By construction X1/4 → X0 is always a combinatorial map. It fails to be an 
immersion precisely when there are more than one oriented edges at some vertex of X1/4

mapping to the same oriented edge of X0.
Recall that the edges of X0 are in one-to-one correspondence with edges of E(Γ), and 

for each edge x of X0 the edges of X1/4 mapping to x are exactly those coming from a 
single X(a, b)1/4 for some {a, b} ∈ E(Γ). Recall that every graph X(a, b)1/4 is a single 
cycle if Mab is odd, and a union of two cycles if Mab is even. We claim that the map 
X1/4 → X0 is not an immersion if and only if there exists a path in Γ′ joining two vertices 
v1, v2 of X(a, b)1/4 such that

• v1, v2 are not identified within X(a, b)1/4 as described in Description 4.8,
• the path gets entirely collapsed in X1/4.

Indeed, if such path exists then v1, v2 project to distinct vertices v̄1, ̄v2 ∈ X(a, b)1/4. Each 
v̄i is adjacent to the unique oriented edge ei that maps onto the oriented edge x in X0. By 
the second condition v̄1, ̄v2 become identified in X1/4. However, the edges e1, e2 remain 
distinct in X1/4, and therefore X1/4 → X0 is not an immersion. Conversely, if there are 
two oriented edges ē1, ̄e2 in X1/4 that maps onto the oriented edge x in X0, then ē1, ̄e2
are images of distinct oriented edges e1, e2 in X(a, b)1/4. The initial vertices of e1, e2 must 
be distinct vertices in X(a, b)1/4 which become identified in X1/4. Thus their preimages 
in X1/4 must be connected by a path as above.

We first prove that if Γ contains an almost misdirected cycle, then X1/4 → X0 is not a 
combinatorial immersion. An odd length almost misdirected cycle γ = (a1, a2, . . . , an, a1)
in Γ where the path (a1, a2, . . . , an) is misdirected, yields a path γ′ in Γ′ joining either 
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Fig. 8. The orientation on γ extending the partial orientation induced by ι.

a1−, a1+ or an−, an+ that gets entirely collapsed in X1/4. Neither the pair a1−, a1+ or 
an−, an+ is identified within any copy of X(a, b)1/4. Thus the map X1/4 → X0 is not an 
immersion.

Now suppose that γ = (a1, . . . , an, a1) is an even length almost misdirected cycle 
where the path (a1, a2, . . . , an) is misdirected. By the assumption, γ is not misdi-
rected and we can assume (by possibly replacing γ with the cycle (a1, an, . . . , a1)) 
that there exists an orientation ῑ extending the partial on γ induced by ι such that 
ῑ({a1, a2}) = a2, ῑ({a2, a3}) = a2, . . . , ̄ι({an−1, an}) = an, and ῑ({a1, an}) = a1. Then 
the path a1−, a2+, . . . an+ gets entirely collapsed. The vertices a1−, an+ become identified 
but the edge {a1−, an+} of Γ′ was not collapsed in X(a1, an)1/4. That means that the 
map X1/4 → X0 not a combinatorial immersion.

Conversely, suppose that there exists a path γ′ in X1/4 that joins one of a−, b+ with 
one of a+, b− with all edges getting collapsed in X1/4 such that γ′ is not a single edge 
of X(a, b)1/4. First consider the case where Mab = 2. Since only certain edges from the 
set E′ get collapsed we can assume that γ′ ⊆ Γ′. Without loss of generality by possibly 
extending γ′ by extra edges {a−, b+} or {a+, b−}, we can assume that γ′ joins a− and 
a+. Then γ′ projects to γ ∈ Γ, which is an odd length almost misdirected cycle. See 
Fig. 8 (left).

Now suppose Mab ̸= 2, and let ι({a, b}) = a, i.e. the edge {a+, b−} of Γ′ is collapsed 
but the edge {a−, b+} remains uncollapsed in X1/4. If there is a path γ′ in Γ′ joining a−
and a+, or b− and b+ with all edges getting collapsed, then the argument above again 
gives an odd length almost misdirected cycle in Γ. Otherwise, there must be a path γ′

in X1/4 joining a− with b+. Then γ′ projects to γ ∈ Γ, such that γ ∪ {a, b} is an even 
length almost misdirected cycle (which is not misdirected). See Fig. 8 (right). !

4.9. Proof of the Splitting theorem

We are finally ready to prove Theorem 4.3.

Proof of Theorem 4.3. By Proposition 4.10 and Proposition 4.11, the map X1/4 → X0
factors as a composition of a homotopy equivalence and a combinatorial immersion, and 
thus is π1-injective. By Lemma 4.7, X1/4 is connected if and only if Γ is not a bipartite 
graph with all labels even. In such case, the conclusion follows from Lemma 4.4. If Γ
is a bipartite graph with all labels even, then by Lemma 4.7 X1/4 has two connected 
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components, and each of them is a copy of X1/2. By Lemma 4.5 ArtΓ splits as an HNN-
extension A∗B where A = π1X0 and B = π1X1/2. If Γ is not a bipartite graph with all 
labels even, then by Lemma 4.4 ArtΓ splits as A ∗C B where C = π1X1/4. Since X0 is 
a bouquet of |E(Γ)| loops, rkA = |E(Γ)|. The graph X1/2 is a copy of Γ with doubled 
edges, so χ(X1/2) = |V (Γ)| − 2|E(Γ)|. Hence rkB = 1 − |V (Γ)| + 2|E(Γ)|. In the case of 
amalgamated product, rkC = 2 rkB − 1 = 1 − 2|V (Γ)| + 4|E(Γ)|, since the index of C
in B is two. !

Remark 4.12 (Twisted double of free groups as index two subgroup of G). Let G be any 
amalgamated product A ∗C B of groups such that the index of C in B is two. Let g be a 
representative of the nontrivial coset of B/C and denote by β : C → C the automorphism 
given by β(h) = g−1hg. Since g2 ∈ C, β2 is an inner automorphism of C. The group 
G = A ∗C B has an index two subgroup isomorphic to the twisted double D(A, C, β), 
which is the kernel of the homomorphism G → B/C.

In particular, every ArtΓ that splits as an amalgamated product as in Theorem 4.3 has 
an index two subgroup D(A, C, β). Geometrically, β is a nontrivial deck transformation 
of the graph X1/4 as a covering space of X1/2. In the case of the three generator ArtΓ, β
can be viewed as a rotation by π (with respect to the planar representation in Fig. 5). 
The choice of the element g ∈ B − C corresponds to the choice of a path joining a 
basepoint in X1/4 with the opposite vertex (e.g. a+ with a−).

4.10. Explicit splittings for 3-generator Artin groups

Let us now explicitly describe the splitting in Theorem 4.3 in the case of large type 
Artin group where Γ is a triangle.

Corollary 4.13. Let ArtMNP be an Artin group where M, N, P ≥ 3. Then ArtMNP =
A ∗C B where A ≃ F3, B ≃ F4 and C ≃ F7, and [B : C] = 2. The map C → A is induced 
by the maps pictured in Fig. 9. Moreover, ArtMNP has an index two subgroup that is 
isomorphic to the twisted double D(A, C, β) where β : C → C is given by β(h) = g−1hg

for some (equivalently any) g ∈ B − C.

Proof. Since Γ is a triangle, we have |V (Γ)| = |E(Γ)| = 3. By ordering Γ cyclically, we 
obtain a graph without misdirected cycles. By Theorem 4.3, ArtΓ splits as A ∗C B where 
rkA = 3, rkB = 1 − 3 + 2 ∗ 3 = 4 and rkC = 2 ∗ 4 − 1 = 7. The maps X1/4 → X0
inducing A → C in Fig. 9 come directly from the descriptions in Section 4.7. The index 
two subgroup isomorphic to a twisted double comes from Remark 4.12. !

Example 4.14 (Art333). By Corollary 4.13, Art333 splits as F3∗F7 F4 and the map X1/4 →
X0 is a regular cover of degree 3. See the top of Fig. 9 with m = n = p = 1. Thus C ≃ F7
is a normal subgroup in each of the factors and [C : A] = 3. This splitting of Art333 as 
F3 ∗F7 F4 was first proved in [31]. We have the following short exact sequence
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Fig. 9. The map X1/4 → X0 when (1) none, (2) one, (3) two or (4) all of Mab = M, Mbc = N, Mca = P are 
even, respectively. Specifically, M = 2m or 2m + 1, N = 2n or 2n + 1, and P = 2p or 2p + 1. Here we use 
the convention where the edge labeled by a number k is a concatenation of k edges of the given color. The 
distinguished edges in X1/4 are the ones that get collapsed to a vertex in X1/4. (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

1 → F7 → Art333 → Z/3 ∗ Z/2 → 1.

We conclude that Art333 is (fin. rank free)-by-(virtually fin. rank free), and therefore 
virtually (fin. rank free)-by-free. In particular, Art333 is virtually a split extension of a 
finite rank free group by a free group. Since every split extension of a finitely gener-
ated residually finite group by residually finite group is residually finite [29], Art333 is 
residually finite.

5. Residual finiteness of 3-generator Artin groups

In this section, we prove Theorem A. By Corollary 4.13, ArtMNP with M, N, P ≥ 3
splits as a free product with amalgamation A ∗C B of finite rank free groups, and is 
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virtually a twisted double D(A, C, β). Throughout this section, A, B, C are the groups 
from the splitting in Corollary 4.13 and M, N, P ≥ 4. We begin with computing how far 
the subgroup C is from being malnormal in A. Then we prove Theorem A (stated as 
Corollary 5.7 and Corollary 5.12) by applying Theorem 2.8. In Section 5.2 we consider 
the easier case where at least one of M, N, P is even and then in Section 5.3 we proceed 
with the case where M, N, P are all odd.

5.1. Failure of malnormality

A twisted double D(A, C, β) where A, C are finite rank free groups and C is malnormal 
in A is hyperbolic by [2]. However, ArtΓ is never hyperbolic, unless Γ is a single point, in 
which case ArtΓ = Z. Thus the intersection Cg ∩ C must be nontrivial for some g ∈ A. 
Understanding how the edge group C intersects its conjugates plays a crucial role in our 
proof.

The intersection Cg ∩C can be computed using the fiber product X1/4 ⊗X0 X1/4 (see 
Section 1.2). The map X1/4 → X0 is described in Section 4.7 and pictured in Fig. 9.

Let F denote the fiber product X1/4 ⊗X0 X1/4. The vertex set V (F ) is the product 
V (X1/4) × V (X1/4) and the edge set E(F ) is a subset of E(X1/4) × E(X1/4). All the 
nontrivial connected components of F (i.e. the ones without vertices of the form (v, v)
for some v ∈ V (X1/4)) correspond to some C ∩ Cg where g /∈ C by [32].

Let Y be either X1/4 or X1/4 ⊗X0 X1/4. We continue to represent the map Y → X0
by coloring the edges of Y where each color represents one of the edges of X0. We say a 
cycle or a path in Y is monochrome, if it is mapped onto a single loop in Y .

Note that any two simple monochrome cycles in X1/4 of the same color, have the 
same length. Hence all the simple monochrome cycles lift to their copies in F . Thus any 
connected component of F is a union of simple monochrome cycles whose lengths are the 
same as in X1/4. The branching vertices (i.e. of valence > 2) of connected components 
of F are contained in Vold ×Vold ⊆ V (X1/4) ×V (X1/4), since Vold are the only branching 
vertices of X1/4. In particular, all the segments (i.e. paths between branching vertices 
with all internal vertices of valence 2) in F are monochrome.

Lemma 5.1 (All odd). Suppose (M, N, P ) = (2m + 1, 2n + 1, 2p + 1) where m, n, p ≥ 2. 
Then the intersection Cg ∩ C for g ∈ A − C is either trivial, or its conjugacy class is 
represented by a subgraph of the graph in Fig. 10.

Proof. This proof is a direct computation of the fiber product of F . Let {r0, . . . , r2m}, 
{g0, . . . , g2n} and {b0, . . . , b2p} be the sets of cyclically ordered (consistently with the 
orientation of the cycle) vertices in X1/4 of red, green and blue cycle respectively such 
that vr := r0 = g0 = b0, vg := rm = gn = b1 and vb := rm+1 = g2n = bp+1 are in 
Vold. The vertices vr, vg, vb come from collapsing a red, green, blue edge of X1/4 respec-
tively. They are respectively the top, the bottom right and the bottom left vertices in 
X1/4 in Fig. 9. The connected component containing vertices (vr, vg), (vg, vb), (vb, vr) is 
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Fig. 10. A non-trivial component of F , when M,N, P are all odd. The vertex (vr, vg) is the bottom left.

Fig. 11. A non-trivial component of F , when M,N are odd and P is even.

illustrated in Fig. 10. Another copy of that graph is the connected component contain-
ing (vr, vb), (vg, vr), (vb, vg). All other nontrivial connected components do not have any 
branching vertices, and so are single monochrome cycles, or single vertices. !

Lemma 5.2 (One even). If (M, N, P ) = (2m + 1, 2n + 1, 2p) where m, n, p ≥ 2, then the 
intersection Cg ∩C for g ∈ A is either trivial, or its conjugacy class is represented by a 
subgraph of the graph in Fig. 11.

Proof. We analyze the fiber product F as in proof of Lemma 5.1. Let {r0, . . . , r2m} and 
{g0, . . . , g2n} be the sets of cyclically ordered vertices of red and green cycle respectively, 
and {b0, . . . , bp−1} and {bp . . . , b2p−1} be the sets of cyclically ordered vertices of the two 
blue cycles such that vr := r0 = g0 = b0, vg := rm = gn = b1 and vb := rm+1 = g2n = bp. 
As before the only branching vertices in F are pairs of branching vertices of X1/4.

If p > 2, then F has two connected components, one containing the vertices 
(vr, vg), (vg, vb), (vb, vr) and one containing the vertices (vr, vb), (vg, vr), (vb, vg). Each 
of them is a copy of the graph is illustrated in Fig. 11(1). In the first case, the vertex 
(vr, vg) is in the center. All the connected components without branching vertices are 
simple monochrome cycles, or single vertices.

If p = 2, then the vertices (vr, vg) and (vg, vr) are adjacent. In that case F is connected 
and is illustrated in Fig. 11(2). !
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Fig. 12. A non-trivial component of F , when M is odd and N,P are even.

Lemma 5.3 (Two even). If (M, N, P ) = (2m + 1, 2n, 2p) where m, n, p ≥ 2, then the 
intersection Cg ∩C for g ∈ A is either trivial, or its conjugacy class is represented by a 
subgraph of the graph in Fig. 12.

Proof. As before, let {r0, . . . , r2m}, {g0, . . . , gn−1}, {gn, . . . , g2n−1}, {b0, . . . , bp−1} and 
{bp . . . , b2p−1} be the sets of cyclically ordered vertices of monochrome cycles such that
vr := r0 = g0 = b0, vg := rm = gn = b1 and vb := rm+1 = gn−1 = bp. If n, p > 2, then 
there is a connected component of F containing branching vertices (vb, vr) and (vr, vg), 
and distinct connected component containing the vertices (vr, vb) and (vg, vr). Each is a 
copy of the graph illustrated in Fig. 12(1).

If n = p = 2, then there is one connected component of F containing all fours 
branching vertices. It is illustrated in Fig. 12(2). The cases where exactly one of n, p is 
equal 2 are illustrated in Fig. 12(3) and 12(4).

All other components are simple monochrome cycles, or single vertices. !

Lemma 5.4 (All even). If (M, N, P ) = (2m, 2n, 2p) where m, n, p ≥ 3, then the intersec-
tion Cg ∩C for g ∈ A is either trivial, or its conjugacy class is represented by a subgraph 
of the graph in Fig. 13.

Proof. As before, let {r0, . . . , rm−1}, {rm, . . . , r2m−1}, {g0, . . . , gn−1}, {gn, . . . , g2n−1}, 
{b0, . . . , bp−1} and {bp . . . , b2p−1} be the sets of cyclically ordered vertices of monochrome 
cycles such that vr := r0 = g0 = b0, vg := rm = gn = b1 and vb := rm+1 = gn−1 = bp. 
If m, n, p > 2, then each connected component of F contains at most one branching 
vertex. Any such connected component is a copy of the graph illustrated in Fig. 13(1). 
Otherwise, a connected component of F contains at most two branching vertices. If 
m = 2, then the connected component containing (vg, vb) also contains (vb, vg) but no 



K. Jankiewicz / Advances in Mathematics 405 (2022) 108487 29

Fig. 13. A non-trivial component of F , when M,N, P are all even.

other branching vertices. Such connected component is illustrated in Fig. 132. There are 
analogous graphs for n = 2, vr, vb and for p = 2, vr, vg. All other components are simple 
monochrome cycles, or single vertices. !

Remark 5.5. If at least one of M, N, P is even and (M, N, P ) ̸= (2m + 1, 4, 4) (for any 
permutation), then all the simple cycles in the fiber product of F are monochrome. It 
follows immediately from Lemmas 5.2, 5.3, 5.4.

5.2. At least one even exponent

We now will apply Theorem 2.8 to the twisted double D(A, C, β) that is an index 
two subgroup of ArtMNP in Corollary 4.13. In this section we consider the case where 
at least one of M, N, P is even. Let Aρ be the oppressive set of C in A with respect to 
ρ : X1/4 → X0.

Proposition 5.6. Suppose M, N, P ≥ 4 and at least one of M, N, P is even. Suppose that 
(M, N, P ) ̸= (2m + 1, 4, 4) (for any permutation). There exists a quotient φ : A → Ā

such that

(1) Ā is virtually free,
(2) C̄ = φ(C) is free and is malnormal in Ā,
(3) φ separates C from Aρ,
(4) β : C → C projects to an automorphism β̄ : C̄ → C̄.

Proof. For each number k define

k̄ =
{

k
2 if k is even,
k if k is odd.

Let

Ā = ⟨x, y, z | xM̄ , yN̄ , zP̄ ⟩ = Z/M̄Z ∗ Z/N̄Z ∗ Z/P̄Z,

and let φ : A → Ā be the natural quotient. As a free product of finite groups Ā is 
virtually free. Geometrically, we obtain Ā as the fundamental group of a 2-complex X•
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Fig. 14. The 2-cells in the presentation complex of Ā can be pulled back to X1/4. These are three cases 
where at least one of M, N, P is even. These new 2-complexes admit a rotation by π which represents the 
automorphism β.

obtained from the bouquet of circles X0 by attaching 2-cells along xM̄ , yN̄ and zP̄ . Let 
Y• be a 2-complex obtained from X1/4 by attaching a 2-cell along each of the simple 
monochrome cycles with labels xM̄ , yN̄ and zP̄ . The complex Y• has the homotopy type 
of a graph (see Fig. 9), so π1Y• is a free group. There is an induced map ρ• : Y• → X•
which lifts to an embedding Ỹ• → X̃• of the universal covers. We have π1Y• = C̄. By 
Lemma 2.5, φ separates C from Aρ.

In Lemma 5.2, Lemma 5.3 and Lemma 5.4, we computed the graphs representing the 
intersections C ∩Cg for g ∈ A. The intersections of C̄ ∩ C̄ ḡ for ḡ ∈ Ā can be represented 
by the graphs obtained in those lemmas with 2-cells added along simple monochrome 
cycles with labels xM̄ , yN̄ and zP̄ . The graphs become contractible after attaching 2-cells 
to the simple monochrome cycles (see Remark 5.5). It follows that C̄ is malnormal in Ā.

The 2-cells of Y• can be pulled back along the homotopy equivalence X1/4 → X1/4. 
See Fig. 14. The pulled back 2-cells in Fig. 14 have boundary cycles that are denoted 
by the same colors as the corresponding boundary cycles of the corresponding 2-cells in 
X1/4. By Observation 2.9, β projects to an automorphism β̄ : C̄ → C̄. !

Since free groups are locally quasiconvex, C̄ is quasiconvex in Ā. By combining Propo-
sition 5.6 with Theorem 2.8 we have the following.

Corollary 5.7. If at least one M, N, P is even and (M, N, P ) ̸= (2m + 1, 4, 4) (for any 
permutation), then ArtMNP splits as an algebraically clean graph of finite rank free 
groups. In particular, ArtMNP is residually finite.

5.3. All exponents odd

We will now apply Theorem 2.8 in the case where M, N, P are all odd. Again, let Aρ

be the oppressive set of C in A with respect to ρ : X1/4 → X0. The main goal of this 
section is the following.

Proposition 5.8. Suppose (M, N, P ) = (2m + 1, 2n + 1, 2p + 1) where m, n, p ≥ 2. There 
exists a quotient φ : A → Ā such that

(1) Ā is a hyperbolic von Dyck group,
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(2) C̄ := φ(C) is a free group of rank 2 and is malnormal in Ā,
(3) φ separates C from Aρ,
(4) β : C → C projects to an automorphism β̄ : C̄ → C̄.

Proof. Let φ : A → Ā be the natural quotient where Ā is given by the presentation

Ā = ⟨x, y, z | xM , yN , zP , xmynzp⟩. (∗)

The group Ā is the von Dyck group D(M, N, P ). Remind, D(M, N, P ) is the index two 
subgroup of the group of reflection of a triangle in H2 with angles π

M , πN , πP , and can be 
given by the presentation

D(M,N,P ) = ⟨a, b, c | aM , bN , cP , abc⟩. (∗∗)

In order to see that Ā is isomorphic to D(M, N, P ), note that xm, yn, zp are generators 
of Ā. Indeed, since m(M − 2) = m(2m − 1) = M(m − 1) + 1, we have

(xm)M−2 = xM(m−1)+1 = x

and similarly (yn)N−2 = y and (zp)P−2 = z. By setting a = xm, b = yn and c = zp, and 
rewriting the presentation in generators a, b, c, we get the presentation (∗∗).

Let X• be the presentation complex of (∗). The 1-skeleton of X• can be identified 
with X0. Let Y• be a 2-complex obtained from X1/4 by attaching the following 2-cells

• one simple monochrome cycle with label xM , yN , zP respectively for each color,
• two copies of a 2-cell with the boundary word xmynzp.

By Lemma 5.11 (stated after this proof), π1Y• = C̄. In Lemma 5.1, we computed the 
graph representing an intersection C ∩ Cg for g ∈ A. The intersection C̄ ∩ C̄ ḡ for ḡ ∈ Ā

can be represented by a 2-complex obtained from that graph by attaching the 2-cells as 
along all cycles with labels xM , yN , zP , xmynzp. After attaching the 2-cells the complex 
becomes contractible. Thus C̄ is malnormal in Ā.

We now show that β projects to C̄. As in proof of Proposition 5.6, all the 2-cells of 
Y• can be pulled back along the homotopy equivalence X1/4 → X1/4. See Fig. 15 for the 
five 2-cells that we attach to X1/4 and that correspond to the five 2-cells of Y•. Three 
of the 2-cells pulled back to X1/4 in the figure have boundary cycles that are denoted 
by the same colors as the corresponding boundary cycles of the corresponding 2-cells in 
X1/4. The remaining two have boundary cycles of length three and correspond to the 
two copies of a 2-cell with the boundary xmynzp in X1/4. By Observation 2.9, β projects 
to an automorphism β̄ : C̄ → C̄.

Finally, it remains to prove that φ separates C from A. Let X ′
• be the presentation 

complex of (∗∗), and let Y ′
• be a 2-complex with the 1-skeleton as in Fig. 16, three 

monochrome 2-cells and two with boundary word abc. There is a natural immersion 
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Fig. 15. The 2-cells in the presentation complex of Ā can be pulled back to X1/4 in the case where M, N, P
are all odd. The new 2-complex admits the π-rotation which represents the automorphism β. The rotation 
exchanges the two triangular 2-cells and leaves other 2-cells invariant.

Fig. 16. The graph Y ′. Red arrows correspond to generator a, green to b, and blue to c.

ρ′• : Y ′
• → X ′

• inducing the inclusion C̄ → Ā. Let Y ′ and X ′ be the 1-skeleta of Y ′
• and 

X ′
• respectively, and let ρ′ : Y ′ → X ′ be the map ρ′• restricted to the 1-skeleta. The 

map ρ′ is an inclusion of π1Y ′ ≃ F7 in π1X ′ ≃ F3. In terms of the original generators of 
A, we have π1X ′ = ⟨xm, yn, zp⟩, so this is a different inclusion F7 → F3 than C → A. 
However, the image φ′(A′

ρ) ⊆ Ā of the oppressive set Aρ′ with respect to ρ′ is equal to 
φ(Aρ) ⊆ Ā. Indeed, all the pairs of paths µ1, µ2 in Y ′ that ρ′(µ1) ·ρ′(µ2) is a closed path 
are in one-to-one correspondence with such pairs of paths in X1/4 (see Fig. 16 for Y ′ and 
Fig. 9 for X1/4). Thus to show that φ separates C from Aρ, it suffices to show φ′(Aρ′) is 
disjoint from C̄ in Ā.

Let X̃ ′
• denote the universal cover of X ′

• with the 2-cells with the same boundary 
identified (i.e. M copies of the 2-cell whose boundary word is aM are collapsed to a 
single 2-cell, and similarly with bN , cP ). The complex X̃ ′

• admits a metric so that makes it 
isometric to H2. In particular, X̃ ′

• is CAT(0). Consider the induced metric on Y ′
• . Since ρ′•

is an immersion, a lift Ỹ ′
• → X̃ ′

• is a local isometric embedding (i.e. every point in Ỹ ′
• has 

a neighborhood such that the restriction of Ỹ ′
• → X̃ ′

• to that neighborhood is an isometry 
onto its image), and by [5, Proposition II.4.14], it is an embedding. By Lemma 2.5, φ′
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separates π1Y ′ from Aρ′ . This means that C̄ is disjoint from φ′(Aρ′) = φ(Aρ), and so φ
separates C from Aρ. !

We will prove the last missing bit in Lemma 5.11. First, we recall a version of the 
ping-pong lemma and its application in the hyperbolic plane, which allows us to show 
that certain convex subsets of H2 are disjoint.

Lemma 5.9 (Ping-pong Lemma). Let a group generated by u, v act on a set Ω and let 
U+, U−, V+, V− be disjoint subsets of Ω such that

u(Ω − U−) = U+,

v(Ω − V−) = V+.

Then u, v freely generate a free group.

Lemma 5.10. Let ABCD be a convex quadrangle in H2 with all internal angles ≤ π
2 . 

Then the lines AB and CD do not intersect in H2 ∪ ∂H2.

Proof. Two lines in H2 do not intersect in H2∪∂H2 if and only if there exists a common 
perpendicular line, i.e. a line that intersects each of the two lines at angle π2 . Consider 
the shortest geodesic segment p between segments AB and CD. The segment p is con-
tained inside the closed quadrangle ABCD, by the assumption on the angles of ABCD. 
Moreover, the angles between p and each of the segments AB, CD are equal π

2 . This 
proves that the line containing p is perpendicular to the lines AB and CD. !

We are now ready to complete the proof of Proposition 5.8. The group C̄ and the 
complexes Y•, X• are as in the proof of Proposition 5.8.

Lemma 5.11. Let M, N, P ≥ 5. The group C̄ in the proof of Proposition 5.8 is the funda-
mental group of the 2-complex Y• and the map Y• → X• induces the inclusion of group 
C̄ → Ā. In particular, C̄ is a free group of rank 2.

Proof. It is clear that the 2-cells in X• pull back to the five 2-cells of Y•, so C̄ is 
necessarily the image of π1Y• in Ā. By pushing free edges into the 2-cells, we can show 
that the wedge based at the a+/b− (the top vertex in X1/4 in Fig. 9) of two loops with 
boundary words xmy−n and z−pxm is a retract of Y . In particular, π1Y = F2. In order 
to show that π1Y• = C̄, we will show that π1Y• maps to a free group of rank two in 
Ā = π1X•. We will show that the elements u = xmy−n and v = z−pxm generate F2 in 
Ā. In the generators a, b, c of Ā as in presentation (∗∗) given above, we have u = ab−1

and v = c−1a. The group Ā is an index two subgroup of a reflection group generated by 
the reflection in the sides of triangle with angles π

2m+1 , 
π

2n+1 , 
π

2p+1 ≤ π
5 in H2. Therefore 

Ā preserves the tilling of H2 with triangles with those angles. See Fig. 17. We use the 
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Fig. 17. A portion of the hyperbolic plane tilling with a triangle whose all three angles are π
5 .

hyperplanes from this tiling to define subsets U+, U−, V+, V− and apply Lemma 5.9. Let 
Pa, Pb, Pc be three vertices of a triangle in the tiling such that the isometry a fixes Pa, 
b fixes Pb and c fixes Pc. Let k1 be the line a−1(PaPb), and let h1 be the line b(PbPc). 
The lines k1 and h1 intersect, see Fig. 17. Let

h2 := uh1,

k2 := vk1,

h3 := vh1.

Clearly k2 and h3 intersect. We claim that no other pairs of lines among h1, h2, h3, k1, k2
intersect. Since M, N, P ≥ 5, all angles in all triangles are ≤ π

5 . For each pair of hyper-
planes that we claim are disjoint, there exists a geodesic quadrangle with two opposite 
sides lying in those hyperplanes, and with all angles ≤ π

2 . By Lemma 5.10 such hyper-
planes are disjoint.

Let U+ be the closed outward halfplane of h2, i.e. the halfplane that does not contain 
any of h1, h3, k1, k2. Let U− be the open outward halfplane of h1. We clearly have u(H2−
U−) = U+. Now, let V+ be the union of the closed outward halfplanes of k2 and h3 (i.e. the 
halfplanes not containing h1, k1 or h2), and let V− be the intersection of the open outward 
halfplanes of k1 and the open inward halfplane of h1. We have v(H2 − V−) = V+. The 
subspaces U+, U−, V+, V− are pairwise disjoint. By Lemma 5.9, u and v freely generate 
a free group. !
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By Proposition 5.8 and Theorem 2.8 we get the following.

Corollary 5.12. If M, N, P ≥ 5 are all odd, then the group ArtMNP splits as an al-
gebraically clean graph of finite rank free groups. In particular, ArtMNP is residually 
finite.

We finish this section with the analogous construction as in the proof of Proposition 5.8
but in the case of Artin group Art333.

Example 5.13. If (M, N, P ) = (3, 3, 3) then group C has index 3 in A. Let Ā be the
Euclidean von Dyck group D(3, 3, 3) obtained in the same way as in proof of Proposi-
tion 5.8. Then the subgroup C̄ = Z2. Indeed, the complex Y• has one additional 2-cell 
whose boundary reads the third copy of the word xyz. This complex is homeomorphic 
to a closed surface with χ(Y•) = 3 − 9 + 6 = 0, so Y• is homeomorphic to a torus. Note 
that the 2-cells of Y• still can be pulled back to X1/4. The third triangle pulls back to a 
hexagon, which is invariant under the graph automorphism b. Thus it is still true that 
β projects to C̄.

6. Residual finiteness of more general Artin groups

The proof of residual finiteness of a three generator Artin group where at least one 
exponent is even, generalizes to other Artin groups. Throughout this section Γ is a 
graph admitting an admissible partial orientation, so by Theorem 4.3 ArtΓ splits as a 
free product with amalgamation or an HNN extension of finite rank free groups.

Theorem 6.1. If all the simple cycles in nontrivial connected components of F are 
monochrome, then ArtΓ is residually finite.

Proof. This proof is analogous to the proof of Proposition 5.6. The quotient Ā of A is 
obtained by adding a relation xM̄ for each generator x of A corresponding to an edge in 
Γ with label M and where M̄ is either M2 or M , depending on parity of M . Then Ā is 
virtually free, and C̄ is free. The assumption that simple cycles in nontrivial connected 
components of F are monochrome, ensures that C̄ is malnormal. The universal cover X̃•
of the Cayley 2-complex of Ā can be homotoped to a tree by replacing each monochrome 
2-cycle corresponding to a xM̄ with an M̄ -star graph whose middle vertex corresponds 
to the 2-cell and other vertices correspond to the original vertices. We note that the 
presentation 2-complex Y• of C̄ can also be homotoped to a graph in that way. It follows 
that the map Ỹ• → X̃• is a local isometric embedding, and consequently an embedding, 
by [5, Proposition II.4.14]. By Lemma 2.5 φ separates C from the oppressive set A of 
C in A. All the attached 2-cells of X1/4 can be pulled back to X1/4 in a way that β
projects to β̄. Depending on whether X1/4 is connected or not, the conclusion follows 
from Theorem 2.8 or Theorem 2.11. !
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Fig. 18. In the above example Mab = Mef = 4 and Mcd is odd. For each edge e of Γ. The second graph 
is a part of X 1

4
and the third graph is the image of that part of X1/4 in X1/4, which admits two different 

combinatorial immersions of the cycle on the right.

Corollary 6.2. Let Γ be a graph admitting an admissible partial orientation. If all labels 
are even and ≥ 6, then ArtΓ is residually finite.

Proof. For every color with corresponding label 2m, there are three segments of that 
color in X1/4, which have lengths 1, m − 1, m respectively. The segments of the length 1
and m −1 form one cycle and the other segment forms its own cycle. Since the branching 
vertices in the fiber product F are pairs of branching vertices, a lift of every monochrome 
cycle has exactly one branching vertex. It follows that all simple cycles in nontrivial 
connected components of F are monochrome. By Theorem 6.1, we are done. !

There are many more examples of graphs satisfying the assumption of Theorem 6.1. 
However, in the following example, Theorem 6.1 cannot be applied to any admissible 
partial orientation of Γ.

Example 6.3. Let Γ be the graph on the left in Fig. 18. Note that every admissible 
partial orientation of Γ is the same up to a permutation of the vertex labels. The second 
picture in Fig. 18 is a part of the graph X1/4. Edges that are thickened get collapsed in 
X1/4, see the next graph. Finally, on the right we have a cycle that admits two distinct 
combinatorial immersion to X1/4. This yields a non monochrome simple cycle in F .
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