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By (a,b)n,, we denote the alternating word abab... of length M,;,. The Artin group
on two generators with the label M will be denoted by Art,;, and the Artin group with
three generators and labels M, N, P will be denoted by Arty/np.

Theorem A. If M, N,P >4 and (M, N, P) # (2m + 1,4,4) (for any permutation), then
the Artin group Ay np is residually finite.

None of the groups in Theorem A with M, N, P < oo were previously known to be
residually finite. We also obtain residual finiteness of many more 2-dimensional Artin
groups. For precise statements see Section 6. In a subsequent work [22] we prove the
residual finiteness of Artin groups Artopny where M, N > 4 and at least one of them is
even.

Our proof of Theorem A relies on a splitting of these Artin group as a free product
with amalgamation or HNN extension of finite rank free groups. The existence of such
splitting depends on the combinatorics of the defining graph. Recall an Artin group Artp
with the defining graph I' has large type if all labels in T" are at least 3. The quotient
of an Artin group, obtained by adding the relation a®> = 1 for every a € V() is a
Coxeter group. We say Artp is spherical if the corresponding Coxeter quotient is finite,
and Artr is 2-dimensional if no triple of generators generates a spherical Artin group. In
particular, every large type Artin group is 2-dimensional. For the definition of admissible
partial orientation of I'; see Definition 4.2. We prove the following.

Theorem B. If I' admits an admissible partial orientation, then Artp splits as a free
product with amalgamation or an HNN-extension of finite rank free groups.

The above theorem includes all large type Artin groups whose defining graph I admits
an orientation such that each cycle is directed.

All linear groups are residually finite by a classical result by Mal'cev [28]. Among
Artin group very few classes are known to be residually finite, and even fewer linear.
It was once a major open question whether braid groups are linear and it was proved
independently by Krammer [25] and Bigelow [7]. Later, the linearity was extended to
all spherical Artin groups by Cohen-Wales [12], and independently by Digne [13]. The
right-angled Artin groups are also well known to be linear. Since linearity is inherited
by subgroups, any virtually special Artin group is linear. Artin groups whose defining
graphs are forests are the fundamental groups of graph manifolds with boundary by the
work of Brunner [10] and Hermiller-Meier [18], and so they are virtually special by the
work of Liu [27] and Przytycki-Wise [30]. Artin groups in certain classes (including 2-
dimensional, 3-generators) are not cocompactly cubulated even virtually, unless they are
sufficiently similar to RAAGs by Huang-Jankiewicz-Przytycki [17] and independently by
Haettel [15]. In particular, if M, N, P are finite, none of the groups in Theorem A, is
virtually cocompactly cubulated. Haettel has a conjectural classification of all virtually
cocompactly cubulated Artin groups [15]. Haettel also showed that some triangle-free
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Artin group act properly but not cocompactly on locally finite, finite dimensional CAT(0)
cube complexes [14]. We note that if one of the exponents M, N, P is infinite, then the
residual finiteness of Artysnyp is well-known.

The list of other known families of residually finite Artin groups is short. An Artin
group is of FC type if every clique (i.e. a complete induced subgraph) in I is the defining
graph of a spherical Artin group. (Blasco-Garcia)-(Martinez-Perez)-Paris showed that FC
type Artin groups with all labels even are residually finite [4]. (Blasco-Garcia)-Juhasz-
Paris showed in [3] the residual finiteness of Artin groups with defining graph I' where
the vertices of I' admit a partition P such that

e for each X € P the Artin group Ax is residually finite,

« for each distinct X,Y € P there is at most one edge in I' joining a vertex of X with
a vertex of Y, and

o the graph I'/P is either a forest, or a triangle free graph with even labels. The graph
['/P is defined as follows. The vertices of I'/P are P, and an edge with label M joins
sets X, Y € P if there exist a € X,b € Y such that M,, = M.

In [22] the author proves the residual finiteness of Artin groups Artepsny where M, N > 4
and at least one of them is even.

The residual finiteness of 3-generator affine Artin groups (i.e. corresponding to affine
Coxeter groups), i.e. Artogq, Artasg, Artsss follows from the work of Squier [31]. Squier
proved that Artoyy splits as an HNN extension of Fy by an automorphism of an index
two subgroup, and both Artsss and Artgss split as Fy g, Fy where Fy is normal and of
finite index in each of the factors. We give a geometric proof of the Squier’s splitting of
Artssz in Example 4.14. The subgroup F%7 has index three and two respectively in the
factors F3 and F} in the splitting of Artzss. This yields a short exact sequence of groups

1 — F7 — Artsss —>Z/3*Z/2—> 1.

In particular Artgss is free-by-(virtually free), and therefore virtually free-by-free. Since
every split extension of a finitely generated residually finite group by a residually finite
group is residually finite [29], we can conclude that Artsss is residually finite. Similar
arguments yield residual finiteness of Artogq and Artogg. The residual finiteness of Artsss
and Artoyy also follows from the fact that they are commensurable with the quotients of
spherical Artin groups modulo their centers, respectively Artass /Z and Artegy /Z [11].

Theorem B provides a splitting of Artr as a graph of groups with free vertex groups. In
general, the existence of such a splitting does not guarantee residual finiteness. In order
to prove Theorem A we carefully analyze the splitting and use a criterion for residual
finiteness of certain amalgams of special form. See Theorem 2.8 and Theorem 2.11. The
following question is open in general.



4 K. Jankiewicz / Advances in Mathematics 405 (2022) 108487

Question. Let A, B,C be finite rank free groups. When is the group A xc B (or Axp)
residually finite?

One instance where G = A x¢ B (or Axp) is residually finite is when C' is malnormal
in A, B. By the combination theorem of Bestvina-Feighn [2], if A, B are hyperbolic,
and C' is quasi-convex in both A and B and malnormal in at least one of A, B, then
G = Ax¢ B is hyperbolic. Wise showed that in such a case, G is residually finite [34], and
later Hsu-Wise proved that G is in fact virtually special [21]. Another class of examples
of residually finite amalgams are doubles of free groups along a finite index subgroup.
These groups are virtually direct products of two finite rank free groups [1].

On the other hand there are examples of amalgamated products of free groups that
are not residually finite. Bhattacharjee constructed a first example which is an amalgam
of two free groups along a common subgroup of finite index in each of the factors [6].
More examples are lattices in the automorphism group of a product of two trees, which
split as twisted doubles of free groups along a finite index subgroup, and they were
constructed by [33] and [8]. The Burger-Mozes examples are not only non residually
finite, but virtually simple.

The paper is organized as follows. In Section 1 we fix notation and recall some ge-
ometric group theory tools that we use later. In Section 2 we recall some facts about
residual finiteness and prove our criterion for residual finiteness of twisted doubles of free
group (Theorem 2.8) and of HNN extensions of free groups (Theorem 2.11). In Section 3
we recall the definition of Artin groups, and describe their non-standard presentations
due to Brady-McCammond [9]. In Section 4 we carefully study the presentation complex
from the previous section and prove Theorem B (as Theorem 4.3). Finally, in Section 5
we prove Theorem A (as Corollary 5.7 and Corollary 5.12). A proof in the case where at
least one label is even, is generalized to a broader family of Artin groups in Section 6.

Acknowledgments The author would like to thank Piotr Przytycki and Dani Wise for
helpful conversations. She is also very grateful to anonymous referees for their corrections
and suggestions. This material is based upon work supported by the National Science
Foundation under Grant No. DMS-2105548/2203307.

1. Graphs

In this section we gather together some standard notions and tools that we use in
later sections.

1.1. Basic definitions
A graph is a 1-dimensional CW-complex. All the graphs we consider are finite. The

vertex set of a graph X is denoted by V' (X), and its edge set is denoted by E(X). Most
graphs we consider are multigraphs, i.e. they may have multiple edges with the same
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endpoints, and loops, i.e. edges with the same both endpoints. We refer to graphs without
loops and multiple edges with equal endpoints as simple graphs.

A map p between graphs is combinatorial if the image of each vertex is a vertex, and
while restricted to an open edge with endpoints vy, vy it is a homeomorphism onto an
edge with endpoints p(v1), p(v2). A combinatorial map p : Y — X between graph X,Y
is a combinatorial immersion, if for every vertex v € Y and oriented edges e1, es with
terminal vertex v such that p(e1) = p(e2), we have e; = e5. A combinatorial immersion
p:Y — X induces an injective homomorphism 71 (Y, y) < 71 (X, z) [32, Prop 5.3] where
x,y are basepoints of X,Y respectively with p(y) = x. A different basepoint 3 in the
same connected component of Y as y and such that p(y') = = represents a subgroup
m1(Y,y') — 71 (X, z) which is conjugate to 71 (Y, y).

Let I,, denote a graph with vertex set {0,1,...,n} with an edge for every pair of
vertices k1, ko such that |ks — k1| = 1. Let C,, denote graph I,,_; with an additional
edge joining n — 1 and 0. A path of length n in a graph X, is a combinatorial immersion
I, — X. A cycle of length n in a graph X, is a combinatorial immersion C,, — X. We
say a path or cycle is simple, if vertices 0,...,n — 1 are mapped to distinct vertices in
X. We say a path is closed, if 0 and n are mapped to the same vertex in X. A segment
in X is a simple path whose only vertices that are mapped to vertices of valence > 2 in
X are its endpoints. We refer to vertices of valence > 2 as branching vertices.

Suppose X has a single vertex, i.e. X is a wedge of loops. Let p : ¥ — X be a
combinatorial immersion. If we choose an orientation for each edge of X, then the map
Y — X can be represented by the graph Y with edges oriented and labeled by E(X).
Visually, we pick a distinct color for each edge of X and represent ¥ — X as Y with
edges oriented and colored.

If T is a simple graph, we can describe a path as an n-tuple (a1, as, ..., a,) of vertices
of T where {a;,a; + 1} forms an edge for each 1 < i < n. Similarly we can describe a
cycle in T" as an n + 1-tuple (a1, as,...,an,a1), if (a1,az,...,a,,a1) is a path.

1.2. Fiber product of graphs

Let p; : (Yi,y:) = (X, z) be a combinatorial immersion of based graphs for i = 1, 2.
The intersection of subgroups m1(Y1,y1) and m1(Y2,y2) of m1 (X, x) can be computed as
the fundamental group of the fiber product of based graphs, by Stallings [32]. The fiber

product of Y1 and Yo over X is the pullback in the category of graphs, i.e. it is the graph
Y7 ®x Yo with the vertex set

{(v1,v2) € V(Y1) x V(Y2) : p1(v1) = p2(v2)}

and the edge set

{(e1,€2) € E(Y1) x E(Y2) : p1(e1) = pa(e2)}
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where pj(e1) = pa(e2) is the equality of oriented edges. The graph Y; ®x Y5 often has
several connected components. The natural combinatorial immersion Y; ®x Yo — X
induces the embedding m (Y7 ®x Y2, (y1,92)) — m (X, z). By [32, Thm 5.5], m (Y1 ®x
Yo, (y1,y2)) is the intersection of m1(Y1,y1) and m(Ya,y2) in m (X, z). See also [24,
Section 9].

Suppose X has a unique vertex y. Then V(Y1 @x Y2) =V (Y1) x V(Ya). If p: Y — X
is a combinatorial immersion of graphs then connected components of Y ® x Y represent
the intersections HNHY where H := 71 (Y, y) < m1(X,x) and g € m1 (X, z). In particular,
one of the connected components of Y ® x Y is a copy of Y with the vertex set {(v,v) :
v € V(Y)}. It corresponds to the intersection HNHY = H where g € H. We refer to this
connected component of Y ® x Y as trivial. All other subgroups of the form H N HY are
either {e}, or their conjugacy classes are represented by nontrivial connected components
of Y ox Y.

2. Residual finiteness

A group G is residually finite if for every g € G — {e} there exists a finite index
subgroup G’ < G such that g ¢ G’. Equivalently, there exists a finite quotient ¢ : G — G
such that ¢(g) # e. It is easy to see, that if G has a finite index residually finite subgroup,
then G is residually finite.

Let H be a subgroup of G, let ¢ : G — G be a (not necessarily finite) quotient
and let {g;}; € G — H be a collection of elements. We say ¢ separates H from {g;}; if
#(g:) & ¢(H) for all i € I. A subgroup H < G is separable if for every finite collection
{gi}s € G — H, there exists a finite quotient ¢ : G — G that separates H from {g;};.
Equivalently, there exists a finite index subgroup G’ <y; G containing H such that
gi; ¢ G’ for all i. To see the equivalence of the two definitions, in one direction take N
to be the normal core of G’ in G (i.e. the intersection of all conjugates of G’ in G) and
set G = G/N. Conversely, take G’ = ¢~ (¢(H)).

The main goal of this section is to formulate our criterion for residual finiteness of
certain free products of amalgamation and HNN extensions, Theorem 2.8 and Theo-
rem 2.11. We use the following criterion of Wise for residual finiteness of graph of free
groups [34]. A graph of groups is algebraically clean, if vertex groups are free, and edge
groups are free factors in both of their vertex groups.

Theorem 2.1. /34, Thm 3.4/Let G split as a finite algebraically clean graph of groups
where all edge groups are of finite rank. Then G is residually finite.

2.1. Free factor and separability
Let H,G be finite rank free groups. A famous theorem by Marshall Hall [16] states

that every finitely generated subgroup of a free group is virtually a free factor, i.e. if
H < @G then there exists a finite index subgroup G’ < G such that H < G’ and H is a
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free factor of G’. A closely related result states that free groups are subgroup separable,
i.e. every finitely generated subgroup is separable.

Let X,Y be graphs with basepoint xg,yo respectively. Let p : (Y,yo) — (X, x0)
be a combinatorial immersion inducing the inclusion of finite rank free group H :=
m1(Y,y0) = m (X, z0) =: G.

Definition 2.2. Let A, C G consist of all g € G represented by a cycle v in X such that
v is a concatenation of paths 7; - 72 where:

e 71 = p(p1) and p; is a non-trivial simple non-closed path in Y going from yg to some
vertex yi,

o 73 = p(u2) and ps is either trivial, or is a simple non-closed path in Y going from
some vertex yo to yg, where y1 # ya # yo.

We refer to A, as the oppressive set for H in G with respect to p. We say A is an
oppressive set for H in G, if there exists a combinatorial immersion p with A= A,.

In Proposition 2.4 we state some properties of the set A,. In particular, we explain
the connection between the separation from the set .4, and H being a free factor. In one
of the proofs below we use the following easy lemma, due to Karrass-Solitar.

Lemma 2.3 (/26]). Let H be a free factor in G. Then for every finite index subgroup
G’ < G the intersection G' N H is a free factor in G'.

Proposition 2.4. Let p : (Y,y0) — (X, o) be a combinatorial immersion of based graphs
inducing the inclusion of finite rank free group H = m(Y,y,) — m(X,z,) =: G, and
let A, be the oppressive set for H in G with respect to p.

(1) A,NnH=19.

(2) A, =0 if and only if p is an embedding.

(8) For any based cover (X,#0) — (X, x0) such that p factors through a combinatorial
immersion p: (Y,yo) — (X, 20), we have Ay = A, N 11 (X, &o).

(4) If 6 : G — G is a quotient that separates H from A,, then HNker ¢ is a free factor
in ker ¢.

Proof. (1) Suppose that there exists g € A,NH. Then g is represented by a loop v which
can be expressed as a concatenation v; -2 as in Definition 2.2. Since p is a combinatorial
immersion, there is a unique path p; starting at yo such that p(p1) = 1, and there is a
unique path po ending at yo such that p(us) = 2. Since g € H the path py must end at
the same vertex as po starts. This is a contradiction.

(2) Suppose A, is not empty. That means that there exist a path pq joining vertices
yo and y; in Y and a path us joining vertices yo and yg where yo # yo,y1 such that
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p(u1) - p(p2) is a closed path. That means that p(y1) = p(y2), i.e. p is not an embedding.
Conversely, suppose that p is not an embedding, and let y1,y2 € Y such that p(y;) =
p(y2). Then the image under p of a simple path from yg to y; concatenated with the image
of a simple path going y» back to yg lifts to a closed path in X. That path corresponds
to an element of A,.

(3) We first prove that A, C A, N (X,20). By definition A, C m(X,#). Let
g € Aj be represented by a cycle 4; - 42 in X as in Definition 2.2. Then A1 - A2 maps
to a cycle 71 - 72 in X which still satisfies Definition 2.2 and so, g € A,. Conversely, let
ge AN m1(X, #0) be represented by a cycle 1 - 72 in X. Since g € m (X, ) the cycle
lifts to a cycle 41 - 42 in X based at 2. It follows that g <A

(4) Since ¢ separates H from A,, the group G’ := ¢! (¢(H)) contains H but does
not contain any element of A,. Let (X,ﬁco) — (X, x0) be a cover corresponding to G’.
Since H C G’, the map p factors through p : (Y,y0) — (X, 2). Since A, NG =0, by
(3) A; = 0. By (2) p is an embedding. Thus H is a free factor of G'. By Lemma 2.3,
H Nker¢ is a free factor in ker ¢. O

The following Lemma will be used to verify that certain quotients separate a subgroup
from its oppressive set.

Lemma 2.5. Let p : (Y,y0) — (X, x0) be a combinatorial immersion of graphs where xg
is the unique vertex of X. Let Yo, Xo be 2-complexes with the 1-skeletons Y.(l) =Y and
X = X, and let pe : (Yeo,y0) = (Xe, o) be a map extending p. Let ¢ : m (X, x0) —
7m1(Xe, o) be the natural quotient and suppose that ¢(m1(Y,y0)) = (pe)x(m1 (Ye,v0)). If
the lift to the universal covers pe : Y, = X, of pe is an embedding, then ¢ separates
m1 (Y, y0) from A,.

Proof. The vertex set of )/(V. can be identified with m; X,. By assumption, we can view ?:
as a subcomplex of X, whose vertex set contains vertices corresponding to ¢(mry (Y,y0)) =
(pe)«(m1(Ye,y0)) C m1(Xe,20). Let p the base vertex of X, representing the trivial
element e € X,.

Let g € A, be represented by a cycle v = 71 - 72 in X with 7; = p(u;) as in Def-
inition 2.2, i.e. pp is a non-trivial simple path in Y starting at yy and ending at some
Y1 7 Yo, and ps is either trivial or it is a simple path in Y starting at some y2 # yo, Y1
and ending at yg. The path p; lifts to unique paths fi; starting at p in Y. - X.. Similarly,
the path us lifts to unique path s ending at g.p in Y. - X.. To prove that ¢ separates
m1(Y,y0) from A,, we need to show that ¢(g) ¢ (pe)«(m1(Ye, %0))-

Suppose to the contrary, that ¢(g) € (pe)«(m1(Ys,y0)). That means that fis starts
where 17 end, so the concatenation ji; - fi2 is a path from p to g.p. Since fi1 - 12 projects
onto py-pe in'Y C Y,, we conclude that py-ps is a cycle in Y, which is a contradiction. O



K. Jankiewicz / Advances in Mathematics 405 (2022) 108487 9

2.2. Residual finiteness of a twisted double

Throughout this section A is a finite rank free group, C' < A is a finitely generated
subgroup and 3 : C' — C is an automorphism.

Definition 2.6. The double of A along C' twisted by 3, denoted by D(A,C, ) is a free
product with amalgamation A ¢ A where C is mapped to the first factor via the natural
inclusion C' — A, and to the second factor via the natural inclusion precomposed with f3.

Proposition 2.7. Let A be an oppressive set for C in A. Suppose there exists a finite
quotient ¥ : D(A,C,B8) — K such that U|4 : A — K separates C from A. Then
D(A,C, B) virtually splits as an algebraically clean graph of finite rank free groups. In
particular, D(A, C, B) is residually finite.

Proof. The group D(A,C, ) acts on its Bass-Serre tree T' with vertex stabilizers con-
jugate to A, and edge stabilizers conjugate to C. The group ker ¥ acts on T with a
finite fundamental domain, since the index of ker U in D(A, C, () is finite. The vertex
stabilizers are conjugates of ker U N A = ker ¥|4, and the edge stabilizers are conju-
gates of ker U N C = ker U|4 N C. By Proposition 2.4(4), ker ¥|4 N C is a free factor in
ker W] 4, i.e. every edge stabilizer is a free factor in each respective vertex stabilizers of
the action of ker ¥ on T'. In particular, ker ¥ splits as a clean graph of free groups, so
by Theorem 2.1 ker ¥ is residually finite. Since ker ¥ has finite index in D(A4, C, ) the
conclusion follows. 0O

A subgroup H is malnormal in G, if for every ¢ € G — H we have H9 N H = {1},
where HY := g~'Hg. More generally, a collection {Hi,..., H,} of subgroups of G is
malnormal in G, if for every 1 < i,j < n and g € G, we have HY N H; = {1}, unless
i1=jand g € H;.

Let ¢ : A — A be a quotient and let C' := ¢(C). The automorphism 3 : C — C
projects to an automorphism § : C' — C' if and only if 5(C Nker ¢) = C Nker ¢. When
that is the case, then ¢ induces a quotient ® : D(A,C, 8) — D(A,C, j3).

Theorem 2.8. Suppose there exists a quotient ¢ : A — A such that

(1) A is a virtually special hyperbolic group,

(2) C := ¢(C) is malnormal and quasiconvex in A,
(3) ¢ separates C' from an oppressive set A of C in A,
(4) B projects to an automorphism B : C — C.

Then D(A, C, ) virtually splits as an algebraically clean graph of finite rank free groups.
In particular, D(A,C, B) is residually finite.
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Proof. Condition (4) ensures that ¢ extends to the quotient ® : D(A,C,05) —
D(A,C, B). Since ¢ separates C' from A, the set ¢(A) = {¢(a) | a € A} C A is disjoint
from C. By Bestvina-Feighn [2] D(A, C, ) is hyperbolic, since it is a free product of two
copies of a hyperbolic group A amalgamated along a subgroup C' which is malnormal and
quasiconvex in each of the factors (see also [23]). Since A is virtually cocompactly spe-
cial, by Hsu-Wise [21] D(A, C, 3) is cocompactly cubulated. Then by Haglund-Wise [20]
D(A,C, 6_) is virtually special and in particular QCERF [19]. Thus, C is separable in
D(A,C, B). There exists a finite quotient ¥ : D(A, C, ) — K such that ¥|; separates
C from ¢(A). Thus the composition Wo®|4 : A — K separates C from A. The quotient
Pod: D(AC, B) — K satisfies the assumptions of Proposition 2.7. Hence D(A, C, )
is residually finite. O

In our application of Theorem 2.8, Condition (4) will be verified using the following.

Observation 2.9. Let Z be a finite graph and let b : (Z,z0) — (Z, z1) be a graph automor-
phism. Then b together with a choice of a path from zy to zy induces an automorphism
B:m(Z,z0) = m1(Z, 20). If Ze is a finite 2-complex with the 1-skeleton Z such that b ex-
tends to be : Ze — Zo, then B projects to an automorphism Be : 71(Ze,y0) = 71(Ze,Y0)-

2.83. Residual finiteness of an HNN extension

Let A, B be finite rank free groups. For i = 1,2 let 5; : B — A denote an injective
homomorphism, and denote B; = f;(B). Let 3 denote the isomorphism fs - 87" : By —
Bs. By Axp we denote the HNN extension of A with respect to {81, 82}, i.e.

Axp = (At |t~ bt = B(b) for all b € By)

Let X be a bouquet of loops, with 71 X identified with A, and fori =1,21let p; : ¥; = X
be a combinatorial immersion inducing the inclusion B; — A. Let A, ,A,, be the
oppressive sets for By, By with respect to p1, p2 respectively.

Proposition 2.10. Suppose there exists a quotient U : Axp — K such that U|4: A — K
separates By from Ay, and By from As. Then Axp wvirtually splits as an algebraically
clean graph of finite rank free groups. In particular, Axp is residually finite.

Proof. The proof is analogous as for Proposition 2.7. 0O

Theorem 2.11. Suppose there exists ¢ : A — A such that

(1) A is a virtually special hyperbolic group,
(2) B; := ¢(By) is quasiconvex in A fori = 1,2, and the collection {By, By} is malnor-

mal in A,
(3) ¢ separates B; from A,, fori=1,2,
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Fig. 1. The 2-cells of the presentation complex of the group presentation of a 2-generator Artin group Arts
(left) and Artg (right).

(4) B projects to an isomorphism [ : By — Bs.

Then Axpg virtually splits as an algebraically clean graph of finite rank free groups. In
particular, Axg is residually finite.

Proof. The proof is analogous as the proof of Theorem 2.8. It uses Proposition 2.10 in
the place of Proposition 2.7. O

3. Artin groups and their Brady-McCammond complex

In this section we describe a complex X1 associated to a non-standard presentation
of Artr that was introduced and shown to be CAT(0) for many Artin groups by Brady-
McCammond in [9]. We then describe certain subspaces of Xp that will be used in
Section 4 to prove that for certain I' the group Artr splits as an amalgam of finite rank
free groups. We start with the case of 2-generator Artin group.

3.1. Brady-McCammond presentation for a 2-generator Artin group
Consider an Artin group on two generators
Artyr = (a,b | (a,b)p = (bya) )

where M < oo. By adding an extra generator x and setting x = ab we get another
presentation

o if M =2m:
{a,b,z | x = ab, 2™ = bx™ 'a)
e if M =2m+1:
(a,b,x | v = ab,x™a = ba™)
See Fig. 1. Let rop(a,b,z) denote the relation ™ = bax™ la and let 72,,41(a,b,z)

denote the relation z™a = ba™. Let X(a,b) be the 2-complex corresponding to the
above presentation. Denote by C(a,b) the disjoint union of its two 2-cells, and let p :
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— ° N
a C

Fig. 2. On the left: the defining graph I" of a triangle Artin group. On the right: the graph I" equipped with
the cyclic orientation determining a Brady-McCammond presentation with three new generators z, y, z.

C(a,b) — X(a,b) be the natural projection. There is an embedding of C(a,b) in the
plane and a height map h to the interval [0, 1] such that h restricted to each edge z is
constant, as in Fig. 1. We refer to these edges as horizontal, and to the other edges as
non-horizontal. Note that the map h is not well-defined on X (a, b).

3.2. Brady-McCammond presentation for a general Artin group

A partial orientation on a simple graph I' is a choice of an endpoint ¢(e) for some of
the edges e in E(T'). Visually we represent a partial orientation on a simple graph by
arrows: an edge e with a choice of vertex t(e) is represented as an arrow starting at the
vertex t(e). We say a cycle (resp. path) v in a simple graph I with a partial orientation
¢ is directed, if for every edge e in the cycle ¢(e) is defined, and ¢(e) = ¢(e’) only when
e = ¢'. An orientation on I is a partial orientation where each edge is oriented.

Let T" be a simple graph with edges labeled by number > 2, with a partial orientation
¢ where it(e) is defined for an edge e if and only if the label of e is > 3.

Generalizing Section 3.1 we consider the following presentation of Artr with respect
to the partial orientation ¢:

(aeV(),z € ET) |z =ab, ra,,(a,b,x)
where x = {a,b} and either a = ¢(x) or My, = 2).

The partial orientation of the edge © = {¢,d} determines whether the new generators x
equals cd or dc. If M.; = 2 we have x = c¢d = dc, which is why we do not need to specify
the partial orientation. In the case of a 3-generators Artin group

Artprnp = {(a,b,c| (a,0)pr = (bya)nr, (b, )N = (¢,b)w, (¢,a)p = (a,¢)p),

with M, N, P < oo, the cyclic orientation on the triangle I' (see Fig. 2) gives the presen-
tation

<a7ba C T, Y,z | T = abay = bC,Z = ca, TM(a,b,fﬂ),T'N(b, ¢, y),rp(c,a,z)>.

Let Xt be the complex obtained from the union U(a,b)eE(r) X(a,b) by identifying the
edges with the same labels. The fundamental group of Xt is Artpr. Brady-McCammond
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Fig. 3. (1) Examples of misdirected paths and a misdirected cycle. (2) Almost misdirected cycles of even
and odd length may contain directed subpaths of length 3 and 2 respectively.

showed in [9] that when all labels are > 3, then X1 admits a locally CAT(0) metric
provided that there exists an orientation such that

(1) every triangle in I' is directed,
(2) every 4-cycle in T" contains a directed path of length at least 2.

Their proof in fact works in a greater generality. Using their methods one can show that
for certain graphs with labels 2 the complex Xr admits a locally CAT(0) metric. We
discuss the condition on I' in more detail in Section 4.1.

As in the 2-generator case, let Cr be the disjoint union of the 2-cells of Xy. Again
let p: Cr — Xr be the projection map. We also define a height function h : Cr — [0, 1]
whose restriction to each C(a,b) is the height function defined in Section 3.1.

4. Splittings of Artin groups
4.1. The statement of the Splitting theorem

The main goal of Section 4 is to prove Theorem 4.3, which asserts that under cer-
tain assumption on I', Artr splits as a free product with amalgamation A xc B or an
HNN-extension Axp where A, B, C are finite rank free groups. We begin with a precise
statement.

Definition 4.1. Let I" be a simple graph with a partial orientation ¢. We say a path v of
length > 2 in I is a misdirected path if the partial orientation on -y induced by ¢ can be
extended to an orientation such that a maximal directed subpath of « has length 1. We
say an even length cycle «y is a misdirected cycle if the induced partial orientation on -~y
extends to an orientation where maximal directed subpaths of v have length 1. We say
a cycle v is an almost misdirected cycle if v can be expressed as a cycle (ay,...,a,,a1)
where the path (a1, ...,a,) is misdirected.

See Fig. 3(1) for examples of misdirected paths and a misdirected cycle. See Fig. 3(2)
for examples of almost misdirected cycles. Note that every even length misdirected cycle
is almost misdirected, but not vice-versa.
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Definition 4.2. Let I" be a simple graph. Assume edges of I' are labeled by an integer
> 2. We say that a partial orientation ¢ on I' is admissible if

o (e) for an edge e is defined if and only if the label of e is > 3, and
e no cycle in T' is almost misdirected.

Theorem 4.3. Suppose I' admits an admissible partial orientation. If T is a bipartite graph
with all labels even, then Artr splits as an HNN-extension Axg, where A, B are finite
rank free groups. Otherwise Artp splits as a free product with amalgamation Axc B where
A, B, C are finite rank free groups. Moreover, tk A = |E(T)|, tk B = 1—|V(T")|+2|E(T")|,
and C' is an index 2 subgroup of B, so rkC =1 —2|V(T)| + 4| E(T)|.

‘We prove Theorem 4.3 in Section 4.9. The condition that I" has no almost misdirected
cycles implies Artr in Theorem 4.3 is 2-dimensional (since no 3-cycle can have an edge la-
beled by 2). Our condition also implies the other condition given by Brady-McCammond
(and included in the end of Section 3.2) ensuring that X is CAT(0). Therefore all Artin
groups satisfying the assumptions of Theorem 4.3 are CAT(0) by [9]. Since a 4-clique
does not admit an orientation where each 3-cycle is directed, our condition also implies
that the clique number of I" for is at most 3.

Recall, Art(T") has large type, if My, > 3 for all {a,b} € E(T'). Here are some examples
of Artin groups that satisfy the assumptions of Theorem 4.3:

e All large type 3-generator Artin groups.
e More generally, large type Artin group whose defining graph I' admits an orientation
where each simple cycle is directed. This includes I' that is planar and each vertex

has even valence (as observed in [9]).

# labels 2 in v
length(v)

~. In particular, this includes Artin groups with I' where all edges labeled by 2

e Many other Artin groups with the sufficiently small ratio in every cycle

disconnect the graph and all subgraphs without edges labeled by 2 are as above.

For the rest of this section, we assume that I" is a fixed connected, labeled, simple
graph. We write X for the Brady-McCammond complex X defined in Section 3.2. The
splitting of Artr comes from a decomposition of the 2-complex X into a union of two
subspaces where each subspace and the intersection of them all have homotopy type of
graphs. We will now describe these subspaces.

4.2. Horizontal graphs in X

We distinguish the following subspaces of X that are the images under p of level sets
of the height function h, as defined in Section 3.2.
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Fig. 4. Horizontal graphs Xo, Xi, and Xu,.

The level set p(h~1(0)) is denoted by X. The intersection of Xy with every X (a, b)
is a single loop labeled by the generator x = ab. Thus Xy is a bouquet of loops,
one for each edge in E(T"). See Fig. 4.

The level set p(h~!(3)) is denoted by Xi/,. We call the points of intersection of
X1/, with the non-horizontal edges the midpoints. We will abuse the notation, and
a will denote the midpoint of the edge labeled by a. The intersection of X1/, with
every X(a,b) is a single cycle of length 2 with vertices a,b. The graph Xi,, is a
union of all these cycles of length two identified along vertices with the same label.
Hence X1/, is a copy of the graph I with every edge doubled. See Fig. 4.

The union of the level set p(h~*(§)Uh™*(3)) is denoted by X1/,. We call the points
of intersection of X1/, with the non-horizontal edges the quarterpoints, and denote
them by ay,a_,by,b_ where the vertices a_,a, a4 are ordered with respect with
the orientation of the edge a. Similarly, b_,b, b, are ordered with respect with the
orientation of the edge b. See Fig. 4.

If My is odd, the intersection of Xi,, with X (a,b) is a single cycle of length 4. If
My, is even, the intersection of X1/, with X (a,b) is a disjoint union of two cycles,
each of length 2. We describe X1/, in more detail in Section 4.5.

Let us emphasize that X1, is never a simple graph; it always has double edges.

Similarly X1/, does not need to be simple.

4.8. Horizontal tubular neighborhoods in X

Fix 0 < € < 1/4. We now define tubular neighborhoods No, Nij,, N1/, € X of graphs
Xo, Xi/p, Xuyy-

(0)

(1/2)

Let Ny be an open neighborhood of X of the form p (h=1([0,1/2 — €) U (1/2 + ¢,1])).
Note that Ny deformation retracts onto Xg with the property that the intersection
of Ny with the 1-skeleton of X is contained in the 1-skeleton of X at all times.
Similarly, let N1/, be an open neighborhood of X1/, of the form p(h~'((e,1 — €))).
Again, Nij, deformation retracts onto Xis, such that N, N X (1) is contained in
X @ at all times.
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(1/a) The intersection Ny N Nij,, which we denote by Ni,, restricted to X(a, b) is equal
top(h((e,1/2—€)U(1/2+¢€,1—¢€))). Consequently, N1/, deformation retracts
onto X/, such that Ni, N X is contained in X at all times.

We also have Ng U N1, = X because [0,1/2 —€) U (1/2+¢€,1]U (6,1 —¢€) = [0,1].
4.4. Splitting

Let A = mXo = mNo, B = mXy, = m Ny, and if X, is connected, let C' =
71 X1/, = m1 N1y, The group A, B, C' are all the fundamental groups of finite graphs, so
they are finite rank free groups. The composition Xi, < Ny — Xp of the inclusion
Xi/, = N with the retraction No — Xg induces a group homomorphism C' — A.
Similarly, the composition X1, < N1, — X1/, induces a group homomorphism C' — B.

When X/, is connected, then so is Ni/,. Since NoU N1, = X and Ni, = No N Ny,
by the Seifert-Van Kampen theorem we get the following.

Lemma 4.4. If X, is connected and maps C — A and C' — B are injective, then
Artr = A x¢ B.

Analogously, we have the following.

Lemma 4.5. Suppose X1/, has two connected components and X, — X1, restricted to
each connected component is a combinatorial bijection. If X1, — Xo restricted to each
connected component is w1-injective, then Artr = Axg, where the two copies of B in A
are induced by the two restrictions of X1, — Xo to a connected component.

Proof. Since X1/, has two connected components, X is a graph of spaces with one vertex
and one loop, where the vertex space is Xy and the edge space is X1, with two maps
to Xo coming from the two restrictions of X1, — Xy to a connected component. Since
X1/, — Xp restricted to each connected component is mi-injective, we get the claimed
HNN-extension. 0O

4.5. The graph Xi,,

Let us first analyze X(a,b)., := X1, N X(a,b). It has four vertices labeled by
ay,a_,by,b_, and four edges. If M, is even, then X(a,b):;, has two edges between
ay,b_ and two edges between a_,b,. If My, is odd, then X (a,b)./, is a 4-cycle on ver-
tices ay,b_,a_,by. We will think of the set of edges of X(a,b)., as a disjoint union
E(a,b) U E(a,b)” where

e The set E(a,b) is equal {{ay,b_},{a_,b;}}. Those edges correspond to the seg-
ments contained in the 2-cell with the boundary abz~! in the presentation complex
(see Fig. 4).
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o The set E(a,b)” is equal {{ay,b_},{a_,b:}} or {{ay,bs}, {a—,b_}}, depending on
the parity of Mg,. Those edges correspond to the segments contained in the 2-cell
rar(a, b, x) in the presentation complex (see Fig. 4).

This gives us the following description of X/, for general Artr.

Description 4.6. The inclusion Xi,, < Nij, composed with the deformation retraction
Nij, — Xiy, is a covering map X, — Xi/, of degree 2. Consequently, the graph X/, is
a double cover of the graph Xi/, and can be described in terms of I' as follows:

» The vertex set V(X.,) is the disjoint union V; L V_ where each V,V_ is in 1-to-1
correspondence with V(I'). For each a € V(I') we denote the corresponding vertices
by a4, a_ respectively.

+ The set of edges E(X.,,) is the disjoint union £’ LI E” such that each of the graphs
I'=(VoUV_,E')and I = (VL UV_, E"”) is a double cover of I" with ax +— a for
every a € V(T'). In particular, TV and T are simple graphs.

o For each {a,b} € E(T"), E’ contains an edge {ay,b_} and {a_,bs}. In particular, I’
is a bipartite double cover of T'.

o For each {a,b} € E(I') where M,y is even, there is an edge {a4+,b_} and an edge
{a_,by} in E”. In particular, when M,y is even then E(X./,) contains two copies of
the edge {a,b_} and two copies of the edge {a_,by}.

o For each {a,b} € E(T') where Mg, is odd, there is an edge {ay,bs} and an edge
{a_,b_} in E".

In particular, every path v = (a1, as,...,a,) in I" has two lifts in I':
o (a14,a9—,...,aps) and (a1—,asy,...,a,—), if v has even length, i.e. n is odd,
o (a14,a2—...,an_) and (a1—,a24,...,ant), if v has odd length, i.e. n is even.
Every n-cycle (a1, as,...,a,,a1) in I has:
e one lift (a14,a2—,...apy,a1—,a24,...,0n—,a14) in IV of length 2n, if n is odd,
o two lifts (a14,a2—,...an—,a14) and (a1—, a4, ...,ant+,a1-) in I each of length n,
if n is even.

See Fig. 5 for X1/, of a 3-generators Artin group Artasnp. As discussed above, if My, is
even, then X (a, b)1/, has two connected components. The following lemma characterizes
the graphs I' for which X/, is connected.

Lemma 4.7. The graph X.,, has either one or two connected components. The following
are equivalent:
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Fig. 5. The graph X, if (1) all M, N, P are odd, (2) only N is even, (3) only M is odd, (4) all M, N, P are
even. In all cases, X.,, — X1, is a double covering map.

o Xi, has two connected components,
e cach connected component of Xu/, is a copy of X,
o ' is a bipartite graph with all labels even.

Proof. By Description 4.6, X1/, is a double cover of Xi,. Since X1/, is connected, X1/,
can have at most two connected components. The equivalence of the first two conditions
follows directly from that fact. Let us prove that the third condition is equivalent to the
first one.

Suppose I' is a bipartite graph with all labels even. Since all labels are even, X/,
is isomorphic to the graph IV with all edges doubled, so it suffices to show that I" is
not connected. Let U U W be the two parts of V(I'), i.e. UL W = V(I'), and each
edge of T' joins a vertex of U with a vertex of W. Denote by Uy, Vi the preimage in
Vi of U, W respectively. Then Uy U W_ and U_ U W, are the vertex sets of the two
connected components of X1/,. Indeed, this is true by the description of paths in I' in
Description 4.6.

Now suppose that I' is not a bipartite graph with all labels even. That means either
T" has an edge with an odd label, or there is an odd length cycle in I'. We show that in
both cases there is a path joining vertices ay,a_ in X1/, for some a € V(T') (equivalently
any, again by Description 4.6). If {a,b} € E(I') with My, odd, then there is a path
with vertices ay,b_,a_ in Xi. If (a1,...,a2,41) is an odd length cycle in T', then by
Description 4.6 its lift to IV contains a path joining a14,a;— as a subpath. O

4.6. The map X1/, — X1p

As in Description 4.6, the map X1/, — X1/, factors as the composition of the inclusion
X1/, = Nij, with the deformation retraction N/, — X1, Under that map, ax € V(X))
is mapped to a € V(Xiy) and every edge {a+,b+} € E(X.,) is mapped to {a,b} €
E(X1),).

If I is a bipartite graph with all labels even, then by Lemma 4.7, X1/, is a disjoint union
of two copies of X1/, and the map X1/, — X, is the identity map while restricted to each
of the connected components. Otherwise, by Lemma 4.7, X1/, is a connected double cover
of Xijye Then C = mXi, — B = mXy, is an inclusion of an index 2 subgroup. The
quotient B/C = Z /27 can be identified with the automorphism group of the covering
space X1/, over Xi/,. In the case of 3-generator Artin group this automorphism can be
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viewed as a 7-rotation of the graph X/, (with respect to the planar representation as in
Fig. 5).

4.7. The map X1/, — Xo

In this section we analyze the map Xi, — Xo which is obtained by composing the
inclusion X, < Ny with the deformation retraction Ny — Xo. This map is never
combinatorial, and it might identify two distinct edges with the same origin. This map,
unlike X1/, — Xi/,, depends on the partial orientation ¢ of T'. In this section we give a
description of the map X, — Xo, and in the next section, we characterize when this
map is mi-injective, in terms of the combinatorics of I and ¢.

In order to understand the map Xi, — Xo we express it as a composition X1, —
X1/, — Xo where the first map collapses some edges to a point and subdivides some other
edges, and the second one is a combinatorial map. Proposition 4.10 gives conditions on I"
for X1/, — X, /2 to be a homotopy equivalence, and so to be mi-injective. Proposition 4.11
gives conditions for X1, — Xo to be a combinatorial immersion and consequently, ;-
injective.

The graph X /2 is obtained from Xi/, in two steps:

(1) An edge that is sent to a vertex in Xy is collapsed to a vertex, which results in
identification of its endpoints. The edges that get collapsed are certain edges of E’.

(2) An edge that is sent to a single edge of Xy via a degree m map, is subdivided into
a path of length m. The edges that get subdivided are certain edges of E”.

We know from Section 4.5 that X (a,b)./, is a 4-cycle (a_,by,a4,b_,a_) if My, is odd,
and a disjoint union of 2-cycles (a—,by,a_) and (ay,b_,ay) if Mgy is even. In both
cases X (a,b):/, is mapped to a single loop in Xo(a,b). In all cases the map X (a,b).;, —
X(a,b)g ~ St is a degree M, map. If M, = 2m, then the map has degree m restricted
to each of the connected components. Since an incoming edge a and an outgoing edge b
are adjacent in X (a,b), the edge {a,b_} of the graph X (a,b)/, is collapsed to a point
(see Fig. 4). Similarly, looking at the degrees of the map X (a,b).;, — X (a,b)o restricted
to other edges we find how to subdivide these edges to ensure that the map becomes
combinatorial. Let X (a, b)1/, be the image of X(a,b)i/, in 71/4.

Description 4.8. The graph X (a, b)1/, is obtained from X (a,b)./, by:

o (My =2m+1, t({a,b}) = a): collapsing edge {ai,b_} from E(a,b)’, and subdi-
viding each of edges {a4,by} and {a_,b_} from E(a,b)” into a path of length m.
Consequently, X (a, b)i/, is a cycle of length 2m + 1.

o (My, = 2): collapsing edges {ay,b_} and {a_,b;} from E(a,b)’. Consequently,

X(a, b)), is a disjoint union of two length 1 loops.
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Fig. 6. The graph Xp, Xl/,l,Yl/d in Artzzs. The map Yl/,i — X0 is combinatorial.

o (Mg, =2m > 4, 1({a,b}) = a): collapsing edge {a4,b_} from E(a,b)’, subdividing

the edge {ay,b_} from E{’/4 into a path of length m, and subdividing the edge

a_,by} from EY, into a path of length m — 1. Consequently, X (a,b)1/, is a disjoint
/4 /
union of cycles of length m each.

The above description of X (a, b): /2 gives us the following description of X /a- See Fig. 6

for an example of the factorization of the map Xi, — Xy as a homotopy equivalence

X1, — Xi/, and a combinatorial map X1, — Xo. In that example My, = 3, My =
7.M,, = 5.

Description 4.9. The graph X /» can be described in terms of I' and ¢ as follows.

There are two kinds of vertices in X1 Ja- Let V.14 denote the set of vertices that are the
images of vertices in X1 > and V¢, consists of all other vertices that are introduced
in the subdivision. There are two kinds of edges E/, £

The vertices in V,;q correspond to the equivalence classes of V(X1/4) =Viuv_
where the equivalence relation is generated by ay ~ b_ for every {a,b} € E(T") and
every a = 1({a,b}) or My, = 2.

The edges in E are identified with the set E' — {{as,0-} € E" | {a,b} €
E(T) with a = ¢({a,b}) or My, = 2}, i.e. E is the collection of all edges of E’
that do not get collapsed.

For each edge {a+, by} in E” there is a path of length m or m—1 as in Description 4.8,
consisting of edges of E" and joining appropriate vertices in V,;4. The vertices inside
such paths form the set Ve .
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Each X (a,b): /» admits a natural combinatorial immersion onto a corresponding loop of
Xo. The map 71/4 — X is defined piecewise using these maps X (a, b)i/, — Xo. In the
next subsection, we characterize when X /2 — Xo is mi-injective.

4.8. Conditions for my-injectivity of X1/, — Xo

We are now ready to characterize when the map X1, — Xo is mi-injective. The next
two propositions ensure that the maps X1/, — X /» and X /1 — Xo respectively, are ;-
injective. We refer to Definition 4.1 for the definition of an (almost) misdirected cycles.
We emphasize that a misdirected even length cycle in the statement of Proposition 4.10
is not assumed to be simple.

Proposition 4.10. Let ' be a simple graph with edges labeled by numbers > 2 with a partial
orientation v such that t(e) of an edge e is defined if and only if the label of e is > 3.
Then X1/, — 71/4 is a homotopy equivalence if and only if T' has no misdirected even
length cycles and no cycles with all edges labeled by 2.

Proof. We refer to Description 4.6 for the structure of X1/, and to Description 4.9 for the
structure of X, /1- By construction, X1, — X, /1 is obtained by collapsing certain edges
of Xi, followed by edge subdivision. The edge subdivision never changes the homotopy
type of a graph, but edge collapsing might. The map X1/, — X, /2 fails to be a homotopy
equivalence if and only if there is a cycle in Xi,, with all edges collapsed in X, /4

First let us assume that I" has a misdirected even length cycle (aq,as, ..., an,a1). Then
each of the edges in one of the cycles (a14,a2—,...,a,—,a14+) or (@1—, @24, ..., Api,a1_)
of I € Xi/, gets collapsed. Thus, Xy — 71/4 is not a homotopy equivalence. Now
suppose that I has an odd length cycle (a1, as,...,an,a1) with all edges labeled by 2.
Then its lift to I is the cycle (a14,a9—,...,apn+,a1—,...,an—,a14) and all of its edges
get collapsed in IV C X, Ja-

Conversely, suppose that there exists a cycle 7" in X1/, all of whose edges are collapsed
in X1/, Only edges from the set E’ might be collapsed by Description 4.9, so 7/ C I".
Without loss of generality, we can assume that 4 is a simple cycle. Let v be the image
of v in T

First suppose v is not simple. Then there exists a vertex a € I' such that v’ passes
through both a_ and a4, i.e. ¥/ can be expressed as (a_,b14,ba—, ..., bg—,a4,c1—, Cox,
..., a_) for some k, . Since the plus and minus signs in labels of v alternate, the num-
bers k, [ must be even. If each edge of 7' is collapsed, that means that the partial orienta-
tion on v induced by ¢ extends to an orientation on v = (a, by, ba, ..., bk, a,c1,¢2,...,¢1, Q)
as pictured in Fig. 7. In particular, 7 is a misdirected even length (non-simple) cycle.

Now suppose that v is simple. Either 4" — v is two-to-one or one-to-one, depending
on the parity of the length of ~. If the length of « is odd, then 4/ — v is two-to-one.
For every edge {a,b} in ~, both edges {a_,b;} and {ay,b_} are contained in 4/, by
Description 4.6. Moreover, if they both get collapsed, that means that M, = 2. Thus
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C 2m-4 C 2m-2%
T Com,

bz-n-)_ bm~1

Fig. 7. The misdirected non-simple cycle ~.

is a cycle with all edges labeled by 2. If the length of 7 is even, then v/ — ~ is one-to-one.
This necessarily means that « is a misdirected even length cycle. O

Proposition 4.11. Let I" be a simple graph with all labels > 2 with a partial orientation ¢
such that t(e) of an edge e is defined if and only if the label of e is > 3. Suppose T' has
no misdirected even length cycles. Then 71/4 — Xg is a combinatorial immersion if and
only if T' has no almost misdirected cycles.

Proof. By construction X, /s — Xo is always a combinatorial map. It fails to be an
immersion precisely when there are more than one oriented edges at some vertex of X, Ja
mapping to the same oriented edge of Xj.

Recall that the edges of X are in one-to-one correspondence with edges of E(T"), and
for each edge x of Xy the edges of X1, mapping to x are exactly those coming from a
single X(a,b)./, for some {a,b} € E(I'). Recall that every graph X(a,b)./, is a single
cycle if My, is odd, and a union of two cycles if My, is even. We claim that the map
X /1 — Xo is not an immersion if and only if there exists a path in I' joining two vertices
v1,v2 of X(a,b), such that

e v1,vo are not identified within Y(a, b)1/, as described in Description 4.8,
« the path gets entirely collapsed in X Ja-

Indeed, if such path exists then vy, v project to distinct vertices o1, 72 € X (a, b)./,- Each
v; is adjacent to the unique oriented edge e; that maps onto the oriented edge = in Xg. By
the second condition 77, become identified in X /- However, the edges ej, e remain
distinct in X /s> and therefore X, /2 — Xo is not an immersion. Conversely, if there are
two oriented edges €7, es in Y1/4 that maps onto the oriented edge x in X, then e, es
are images of distinct oriented edges e;, e5 in X (a, b)1/,. The initial vertices of e;, e must
be distinct vertices in X (a, b): /o which become identified in X /s~ Thus their preimages
in X1/, must be connected by a path as above.

We first prove that if I' contains an almost misdirected cycle, then X /2 — Xo is not a
combinatorial immersion. An odd length almost misdirected cycle v = (a1, az, ..., an, a1)
in I' where the path (a1,aq,...,a,) is misdirected, yields a path 4/ in I" joining either
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Fig. 8. The orientation on v extending the partial orientation induced by ¢.

aj_,ap, or a,_,anps that gets entirely collapsed in Y1/4. Neither the pair a;_,a;, or
n—, Gy is identified within any copy of X (a,b)./,. Thus the map 71/4 — Xj is not an

immersion.

Now suppose that v = (a1,...,a,,a1) is an even length almost misdirected cycle
where the path (aq,as,...,a,) is misdirected. By the assumption, 7 is not misdi-
rected and we can assume (by possibly replacing v with the cycle (a1,an,...,a1))

that there exists an orientation ¢ extending the partial on ~ induced by ¢ such that
t({a1,a2}) = ag, t({az,as}) = az,...,t({an-1,an}) = an, and t({a1,a,}) = a1. Then
the path a;_,asy,...a,, gets entirely collapsed. The vertices a;_, a,, become identified
but the edge {ai—,an,} of I was not collapsed in X(ay,ay)1;,. That means that the
map X1 /2 — Xo not a combinatorial immersion.

Conversely, suppose that there exists a path 4" in Xi), that joins one of a_, b, with
one of a,,b_ with all edges getting collapsed in X /1 such that ' is not a single edge
of X(a,b).,. First consider the case where My, = 2. Since only certain edges from the
set B’ get collapsed we can assume that ' C I. Without loss of generality by possibly
extending ' by extra edges {a_,b;} or {ay,b_}, we can assume that 4/ joins a_ and
ay. Then ' projects to v € T', which is an odd length almost misdirected cycle. See
Fig. 8 (left).

Now suppose Mg, # 2, and let ¢({a,b}) = a, i.e. the edge {a;,b_} of IV is collapsed
but the edge {a_, b} remains uncollapsed in 71/4. If there is a path + in I joining a_
and a4, or b_ and by with all edges getting collapsed, then the argument above again
gives an odd length almost misdirected cycle in T". Otherwise, there must be a path ~/
in Xu/, joining a_ with b,. Then + projects to v € I', such that v U {a,b} is an even
length almost misdirected cycle (which is not misdirected). See Fig. 8 (right). O

4.9. Proof of the Splitting theorem

We are finally ready to prove Theorem 4.3.

Proof of Theorem 4.3. By Proposition 4.10 and Proposition 4.11, the map X1, — Xo
factors as a composition of a homotopy equivalence and a combinatorial immersion, and
thus is mi-injective. By Lemma 4.7, X1/, is connected if and only if I' is not a bipartite
graph with all labels even. In such case, the conclusion follows from Lemma 4.4. If T’
is a bipartite graph with all labels even, then by Lemma 4.7 X/, has two connected
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components, and each of them is a copy of Xi/,. By Lemma 4.5 Artr splits as an HNN-
extension Axp where A = m Xg and B = w1 X14,. If T is not a bipartite graph with all
labels even, then by Lemma 4.4 Artr splits as A xc B where C' = 71 X1/,. Since Xj is
a bouquet of |E(I")| loops, rk A = |E(I")|. The graph Xi/, is a copy of I' with doubled
edges, so x(X1,) = |V(I')] = 2|E(I")|. Hence tk B = 1 — |V/(I')| 4 2| E(T")|. In the case of
amalgamated product, rkC'= 2rk B —1 = 1 — 2|V(T")| + 4| E(T")|, since the index of C
in B is two. O

Remark 4.12 (Twisted double of free groups as index two subgroup of G). Let G be any
amalgamated product A x¢ B of groups such that the index of C' in B is two. Let g be a
representative of the nontrivial coset of B/C and denote by /3 : C'— C the automorphism
given by B(h) = g~'hg. Since g®> € C, 42 is an inner automorphism of C. The group
G = A x¢ B has an index two subgroup isomorphic to the twisted double D(A, C, ),
which is the kernel of the homomorphism G — B/C.

In particular, every Artr that splits as an amalgamated product as in Theorem 4.3 has
an index two subgroup D(A, C, 8). Geometrically, § is a nontrivial deck transformation
of the graph X1/, as a covering space of Xi/,. In the case of the three generator Artr,
can be viewed as a rotation by 7 (with respect to the planar representation in Fig. 5).
The choice of the element ¢ € B — C corresponds to the choice of a path joining a
basepoint in X1/, with the opposite vertex (e.g. ay with a_).

4.10. Ezxplicit splittings for 3-generator Artin groups

Let us now explicitly describe the splitting in Theorem 4.3 in the case of large type
Artin group where I' is a triangle.

Corollary 4.13. Let Artyynvp be an Artin group where M, N, P > 3. Then Artyynp =
Axc B where A~ F3, B~ Fy and C ~ F;, and [B : C| = 2. The map C — A is induced
by the maps pictured in Fig. 9. Moreover, Artynp has an index two subgroup that is
isomorphic to the twisted double D(A,C,[3) where 3: C — C is given by B(h) = g~ 1hg
for some (equivalently any) g € B — C.

Proof. Since I' is a triangle, we have |[V/(I')| = |E(T")| = 3. By ordering I" cyclically, we
obtain a graph without misdirected cycles. By Theorem 4.3, Artr splits as A ¢ B where
tkA=31kB=1-3+2%3=4and rkC =2%4—1=7. The maps X1, — Xo
inducing A — C in Fig. 9 come directly from the descriptions in Section 4.7. The index
two subgroup isomorphic to a twisted double comes from Remark 4.12. O

Example 4.14 (Artss3). By Corollary 4.13, Artsss splits as Fyx g, Fy and the map 71/4 —
Xy is a regular cover of degree 3. See the top of Fig. 9 withm =n =p=1. Thus C ~ Fy
is a normal subgroup in each of the factors and [C' : A] = 3. This splitting of Artsss as
F5 xp. Fy was first proved in [31]. We have the following short exact sequence
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Fig. 9. The map X.,, — Xo when (1) none, (2) one, (3) two or (4) all of Muy, = M, My. = N, Moo = P are
even, respectively. Specifically, M = 2m or 2m + 1, N = 2n or 2n + 1, and P = 2p or 2p 4+ 1. Here we use
the convention where the edge labeled by a number k is a concatenation of k edges of the given color. The
distinguished edges in X.,, are the ones that get collapsed to a vertex in 71/4. (For interpretation of the
colors in the figure(s), the reader is referred to the web version of this article.)

1—>F7—>A1‘t333 —)Z/3*Z/2—> 1.

We conclude that Artsss is (fin. rank free)-by-(virtually fin. rank free), and therefore
virtually (fin. rank free)-by-free. In particular, Artsss is virtually a split extension of a
finite rank free group by a free group. Since every split extension of a finitely gener-
ated residually finite group by residually finite group is residually finite [29], Artsss is
residually finite.

5. Residual finiteness of 3-generator Artin groups

In this section, we prove Theorem A. By Corollary 4.13, Artp;nyp with M, N, P > 3
splits as a free product with amalgamation A x¢ B of finite rank free groups, and is



26 K. Jankiewicz / Advances in Mathematics 405 (2022) 108487

virtually a twisted double D(A, C, ). Throughout this section, A, B,C are the groups
from the splitting in Corollary 4.13 and M, N, P > 4. We begin with computing how far
the subgroup C' is from being malnormal in A. Then we prove Theorem A (stated as
Corollary 5.7 and Corollary 5.12) by applying Theorem 2.8. In Section 5.2 we consider
the easier case where at least one of M, N, P is even and then in Section 5.3 we proceed
with the case where M, N, P are all odd.

5.1. Failure of malnormality

A twisted double D(A, C, 8) where A, C are finite rank free groups and C' is malnormal
in A is hyperbolic by [2]. However, Artr is never hyperbolic, unless I is a single point, in
which case Artpr = Z. Thus the intersection CY N C' must be nontrivial for some g € A.
Understanding how the edge group C intersects its conjugates plays a crucial role in our
proof.

The intersection C9 N C can be computed using the fiber product X /2 ®x, X /1 (see
Section 1.2). The map Y% — X is described in Section 4.7 and pictured in Fig. 9.

Let F' denote the fiber product X1/, ®x, X1/,. The vertex set V(F) is the product
V(X1,) x V(X1,) and the edge set E(F) is a subset of E(X1/,) x E(X1/,). All the
nontrivial connected components of F' (i.e. the ones without vertices of the form (v,v)
for some v € V(X)) correspond to some C' N CY where g ¢ C by [32].

Let Y be either 71/4 or 71/4 ®x, Y%. We continue to represent the map ¥ — X
by coloring the edges of Y where each color represents one of the edges of Xy. We say a
cycle or a path in Y is monochrome, if it is mapped onto a single loop in Y.

Note that any two simple monochrome cycles in X, /2 of the same color, have the
same length. Hence all the simple monochrome cycles lift to their copies in F. Thus any
connected component of F' is a union of simple monochrome cycles whose lengths are the
same as in X /1~ The branching vertices (i.e. of valence > 2) of connected components
of F' are contained in Vg X Vg C V(Y%) X V(Yw), since V,;q are the only branching
vertices of X /s In particular, all the segments (i.e. paths between branching vertices
with all internal vertices of valence 2) in F' are monochrome.

Lemma 5.1 (All odd). Suppose (M,N,P) = (2m + 1,2n + 1,2p + 1) where m,n,p > 2.
Then the intersection C9 N C for g € A — C is either trivial, or its conjugacy class is
represented by a subgraph of the graph in Fig. 10.

Proof. This proof is a direct computation of the fiber product of F. Let {ro,...,r2m},
{90,---,92n} and {bo,...,ba} be the sets of cyclically ordered (consistently with the
orientation of the cycle) vertices in X, /2 of red, green and blue cycle respectively such
that v, == rg = go = by, Vg == T = gp = b1 and vy := 41 = gon = bppq are in
Voia- The vertices v,.,vg,vp come from collapsing a red, green, blue edge of X/, respec-
tively. They are respectively the top, the bottom right and the bottom left vertices in
71/4 in Fig. 9. The connected component containing vertices (v,., vq), (vg, V), (vp, vy is
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Fig. 10. A non-trivial component of F', when M, N, P are all odd. The vertex (v,,vy) is the bottom left.
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Fig. 11. A non-trivial component of F, when M, N are odd and P is even.

illustrated in Fig. 10. Another copy of that graph is the connected component contain-
ing (vy,vp), (vg,vr), (b, vg). All other nontrivial connected components do not have any
branching vertices, and so are single monochrome cycles, or single vertices. O

Lemma 5.2 (One even). If (M, N,P) = (2m + 1,2n + 1,2p) where m,n,p > 2, then the
intersection C9 N C for g € A is either trivial, or its conjugacy class is represented by a
subgraph of the graph in Fig. 11.

Proof. We analyze the fiber product F' as in proof of Lemma 5.1. Let {ro,...,ra,} and
{90, - --,92n} be the sets of cyclically ordered vertices of red and green cycle respectively,
and {bo,...,bp—1} and {b, ..., bap_1} be the sets of cyclically ordered vertices of the two
blue cycles such that v, := 179 = go = by, Vg 1=, = gn = b1 and vy 1= rpi1 = gon = bp.
As before the only branching vertices in F are pairs of branching vertices of X, Jax

If p > 2, then F has two connected components, one containing the vertices
(vr, vg), (Vg,vs), (Vp, vr) and one containing the vertices (v, vp), (vg,vr), (Vs,v4). Each
of them is a copy of the graph is illustrated in Fig. 11(1). In the first case, the vertex
(vr,vg) is in the center. All the connected components without branching vertices are
simple monochrome cycles, or single vertices.

If p = 2, then the vertices (v,,v4) and (vg, v,) are adjacent. In that case F' is connected
and is illustrated in Fig. 11(2). O
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Fig. 12. A non-trivial component of F', when M is odd and N, P are even.

Lemma 5.3 (Two even). If (M,N,P) = (2m + 1,2n,2p) where m,n,p > 2, then the
intersection C9 N C for g € A is either trivial, or its conjugacy class is represented by a
subgraph of the graph in Fig. 12.

Proof. As before, let {ro,...,72m}, {90, s9n=1}, {gn:--->92n-1}, {bo,...,bp—1} and
{bp ...,bap—1} be the sets of cyclically ordered vertices of monochrome cycles such that
Vp =79 = go = by, Vg :=Tm = gn = b1 and vy := 141 = gn—1 = bp. If n,p > 2, then
there is a connected component of F' containing branching vertices (vp, v,) and (v,., vy),
and distinct connected component containing the vertices (v,,vp) and (vg, v,). Each is a
copy of the graph illustrated in Fig. 12(1).

If n = p = 2, then there is one connected component of F containing all fours
branching vertices. It is illustrated in Fig. 12(2). The cases where exactly one of n, p is
equal 2 are illustrated in Fig. 12(3) and 12(4).

All other components are simple monochrome cycles, or single vertices. 0O

Lemma 5.4 (All even). If (M, N, P) = (2m,2n,2p) where m,n,p > 3, then the intersec-
tion CINC for g € A is either trivial, or its conjugacy class is represented by a subgraph
of the graph in Fig. 15.

Proof. As before, let {ro,...,7m—1}, {rm,---s"2m-1} {90y --sGn-1}s {Ggns---+92n-1},
{bo,...,bp—1}and {b, ..., bap_1} be the sets of cyclically ordered vertices of monochrome
cycles such that v, := 19 = go = by, Vg := T, = g, = b1 and vy := 41 = Gn-1 = bp.
If m,n,p > 2, then each connected component of F' contains at most one branching
vertex. Any such connected component is a copy of the graph illustrated in Fig. 13(1).
Otherwise, a connected component of F' contains at most two branching vertices. If
m = 2, then the connected component containing (v,,v) also contains (v, vy) but no
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Fig. 13. A non-trivial component of F, when M, N, P are all even.

other branching vertices. Such connected component is illustrated in Fig. 132. There are
analogous graphs for n = 2, v,, v, and for p = 2, v,, v4. All other components are simple
monochrome cycles, or single vertices. 0O

Remark 5.5. If at least one of M, N, P is even and (M, N, P) # (2m + 1,4,4) (for any
permutation), then all the simple cycles in the fiber product of F' are monochrome. It
follows immediately from Lemmas 5.2, 5.3, 5.4.

5.2. At least one even exponent

We now will apply Theorem 2.8 to the twisted double D(A,C, ) that is an index
two subgroup of Arta;np in Corollary 4.13. In this section we consider the case where
at least one of M, N, P is even. Let A, be the oppressive set of C' in A with respect to
p: X /2 — Xo-

Proposition 5.6. Suppose M, N, P > 4 and at least one of M, N, P is even. Suppose that
(M,N,P) # (2m + 1,4,4) (for any permutation). There erists a quotient ¢ : A — A
such that

(1) A is virtually free,

(2) C = ¢(C) is free and is malnormal in A,

(8) ¢ separates C from A,,

(4) B:C — C projects to an automorphism B : C — C.

Proof. For each number k£ define

P g if k is even,
) kB if kis odd.

Let
A= (z,y,z| a:M,yN,zP> =7/MZx7/NZ % 7/PZ,

and let ¢ : A — A be the natural quotient. As a free product of finite groups A is
virtually free. Geometrically, we obtain A as the fundamental group of a 2-complex X,
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T

Fig. 14. The 2-cells in the presentation complex of A can be pulled back to Xi/,. These are three cases
where at least one of M, N, P is even. These new 2-complexes admit a rotation by 7 which represents the
automorphism f.

obtained from the bouquet of circles Xy by attaching 2-cells along .’L‘M N and zP. Let
Y. be a 2-complex obtained from X /4 by attachlng a 2-cell along each of the simple
monochrome cycles with labels 2™, 4" and 2. The complex Y, has the homotopy type
of a graph (see Fig. 9), so 7r1Y is a free group. There is an induced map pe : Yo — X,
which lifts to an embedding Y. — X, of the universal covers. We have 7Y, = C. By
Lemma 2.5, ¢ separates C from A,.

In Lemma 5.2, Lemma 5.3 and Lemma 5.4, we computed the graphs representing the
intersections C' N CY for g € A. The intersections of C N CY for g € A can be represented
by the graphs obtained in those lemmas with 2-cells added along simple monochrome
cycles with labels 2™,y and 2. The graphs become contractible after attaching 2-cells
to the simple monochrome cycles (see Remark 5.5). It follows that C' is malnormal in A.

The 2-cells of Y, can be pulled back along the homotopy equivalence X1, — X, Ja-
See Fig. 14. The pulled back 2-cells in Fig. 14 have boundary cycles that are denoted
by the same colors as the corresponding boundary cycles of the corresponding 2-cells in
X, /- By Observation 2.9, 3 projects to an automorphism :C—=C. O

Since free groups are locally quasiconvex, C' is quasiconvex in A. By combining Propo-
sition 5.6 with Theorem 2.8 we have the following.

Corollary 5.7. If at least one M, N, P is even and (M,N,P) # (2m + 1,4,4) (for any
permutation), then Artyrnp splits as an algebraically clean graph of finite rank free
groups. In particular, Artynp is residually finite.

5.8. All exponents odd

We will now apply Theorem 2.8 in the case where M, N, P are all odd. Again, let A,
be the oppressive set of C' in A with respect to p : X1 /2 — Xo. The main goal of this
section is the following.

Proposition 5.8. Suppose (M, N,P) = (2m+ 1,2n+ 1,2p + 1) where m,n,p > 2. There
exists a quotient ¢ : A — A such that

(1) A is a hyperbolic von Dyck group,
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(2) C := ¢(C) is a free group of rank 2 and is malnormal in A,
(3) ¢ separates C' from A,,
(4) B :C — C projects to an automorphism f: C — C.

Proof. Let ¢ : A — A be the natural quotient where A is given by the presentation

A= (z,y, 2 [ M yN, 2P 2y r). (*)
The group A is the von Dyck group D(M, N, P). Remind, D(M, N, P) is the index two
subgroup of the group of reflection of a triangle in H? with angles 17 7 p» and can be
given by the presentation

D(M,N,P) = (a,b,c|a™ b™, c" abc). (s5)

In order to see that A is isomorphic to D(M, N, P), note that 2™, y", zP are generators
of A. Indeed, since m(M — 2) = m(2m — 1) = M(m — 1) + 1, we have

(Im)M—Q — mM(m—1)+1 =

N—-2 P-2

and similarly (y™) =y and (2P) = z. By setting a = 2™, b = ¢y"™ and ¢ = 2P, and
rewriting the presentation in generators a, b, ¢, we get the presentation (s:x).
Let X, be the presentation complex of (k). The 1-skeleton of X, can be identified
with Xg. Let Y, be a 2-complex obtained from X /2 by attaching the following 2-cells
« one simple monochrome cycle with label 2™ 4™, 2 respectively for each color,

e two copies of a 2-cell with the boundary word z™y™2P.

By Lemma 5.11 (stated after this proof), m Y, = C. In Lemma 5.1, we computed the
graph representing an intersection C'N C9 for g € A. The intersection C N CY for g € A
can be represented by a 2-complex obtained from that graph by attaching the 2-cells as
along all cycles with labels o™, y™V, 2P 2™y"2P. After attaching the 2-cells the complex
becomes contractible. Thus C' is malnormal in A.

We now show that 3 projects to C. As in proof of Proposition 5.6, all the 2-cells of
Y, can be pulled back along the homotopy equivalence Xi, — X, /2 See Fig. 15 for the
five 2-cells that we attach to X1/, and that correspond to the five 2-cells of Y,. Three
of the 2-cells pulled back to X/, in the figure have boundary cycles that are denoted
by the same colors as the corresponding boundary cycles of the corresponding 2-cells in
X /- The remaining two have boundary cycles of length three and correspond to the
two copies of a 2-cell with the boundary x™y"2? in X./,. By Observation 2.9, 8 projects
to an automorphism 3 : C — C.

Finally, it remains to prove that ¢ separates C from A. Let X be the presentation
complex of (xx), and let ¥ be a 2-complex with the 1-skeleton as in Fig. 16, three
monochrome 2-cells and two with boundary word abc. There is a natural immersion
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Fig. 15. The 2-cells in the presentation complex of A can be pulled back to X, in the case where M, N, P
are all odd. The new 2-complex admits the w-rotation which represents the automorphism 3. The rotation
exchanges the two triangular 2-cells and leaves other 2-cells invariant.

Fig. 16. The graph Y’. Red arrows correspond to generator a, green to b, and blue to c.

P 2 Y/ — X! inducing the inclusion C — A. Let Y’ and X’ be the 1-skeleta of Y/ and
X respectively, and let p’ : Y’ — X’ be the map p) restricted to the 1-skeleta. The
map p’ is an inclusion of m Y’ ~ F» in m X’ ~ F3. In terms of the original generators of
A, we have m X' = (2™, y", 2P), so this is a different inclusion F; — Fj than C — A.
However, the image ¢'(A,) C A of the oppressive set A, with respect to p’ is equal to
¢(A,) C A. Indeed, all the pairs of paths p1, o in Y’ that p/(p1) - p'(p2) is a closed path
are in one-to-one correspondence with such pairs of paths in X /s (see Fig. 16 for Y and
Fig. 9 for 71/4). Thus to show that ¢ separates C' from A,, it suffices to show ¢'(A,/) is
disjoint from C' in A.

Let X/ denote the universal cover of X, with the 2-cells with the same boundary

M are collapsed to a

identified (i.e. M copies of the 2-cell whose boundary word is a
single 2-cell, and similarly with %, ¢f’). The complex X . admits a metric so that makes it
isometric to H2. In particular, X, is CAT(0). Consider the induced metric on Y. Since p,
is an immersion, a lift 17,’ - X . is a local isometric embedding (i.e. every point in 57,’ has
a neighborhood such that the restriction of }N/,’ - X . to that neighborhood is an isometry

onto its image), and by [5, Proposition I1.4.14], it is an embedding. By Lemma 2.5, ¢’
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separates 7Y from A, . This means that C is disjoint from ¢'(A,) = ¢(A,), and so ¢
separates C' from A4,. O

We will prove the last missing bit in Lemma 5.11. First, we recall a version of the
ping-pong lemma and its application in the hyperbolic plane, which allows us to show
that certain convex subsets of H? are disjoint.

Lemma 5.9 (Ping-pong Lemma). Let a group generated by u,v act on a set Q and let
Uy, U_, V., V_ be disjoint subsets of Q) such that

wQ-U_)=U,,

Then u,v freely generate a free group.

Lemma 5.10. Let ABCD be a convex quadrangle in H? with all internal angles < 5
Then the lines AB and CD do not intersect in H? U OH?.

Proof. Two lines in H? do not intersect in H? U9H? if and only if there exists a common
perpendicular line, i.e. a line that intersects each of the two lines at angle 5. Consider
the shortest geodesic segment p between segments AB and C'D. The segment p is con-
tained inside the closed quadrangle ABC' D, by the assumption on the angles of ABC'D.
Moreover, the angles between p and each of the segments AB, C'D are equal 7. This

proves that the line containing p is perpendicular to the lines AB and CD. O

We are now ready to complete the proof of Proposition 5.8. The group C and the
complexes Y,, X, are as in the proof of Proposition 5.8.

Lemma 5.11. Let M, N, P > 5. The group C in the proof of Proposition 5.8 is the funda-
mental group of the 2-complex Yo and the map Yo — X,o induces the inclusion of group
C — A. In particular, C is a free group of rank 2.

Proof. It is clear that the 2-cells in X, pull back to the five 2-cells of Y,, so C is
necessarily the image of mY, in A. By pushing free edges into the 2-cells, we can show
that the wedge based at the a4 /b_ (the top vertex in X1/, in Fig. 9) of two loops with

~" and z7Px™ is a retract of Y. In particular, mY = F5. In order

boundary words ™y
to show that 7Y, = C, we will show that Y, maps to a free group of rank two in
A = m X,. We will show that the elements u = 2™y =™ and v = 2 P2™ generate Fy in
A. In the generators a,b,c of A as in presentation (+*) given above, we have u = ab™"

and v = ¢~ 'a. The group A is an index two subgroup of a reflection group generated by

5
A preserves the tilling of H? with triangles with those angles. See Fig. 17. We use the

the reflection in the sides of triangle with angles 5=, 7%, 2p7fH < T in H2. Therefore
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™

Fig. 17. A portion of the hyperbolic plane tilling with a triangle whose all three angles are F.

hyperplanes from this tiling to define subsets U,,U_,V,,V_ and apply Lemma 5.9. Let
P,, Py, P. be three vertices of a triangle in the tiling such that the isometry a fixes P,
b fixes P, and c fixes P.. Let ki be the line a!(P,P,), and let hy be the line b(P,P.).
The lines k7 and h; intersect, see Fig. 17. Let

hg = uhl,
kg = ’Uk‘l,
hs := vhq.

Clearly ks and hj intersect. We claim that no other pairs of lines among hq, ho, h3, k1, k2
intersect. Since M, N, P > 5, all angles in all triangles are < . For each pair of hyper-
planes that we claim are disjoint, there exists a geodesic quadrangle with two opposite
sides lying in those hyperplanes, and with all angles < 7. By Lemma 5.10 such hyper-
planes are disjoint.

Let U, be the closed outward halfplane of hg, i.e. the halfplane that does not contain
any of hy, h3, k1, ko. Let U_ be the open outward halfplane of h;. We clearly have u(H? —
U_) = U,. Now, let V. be the union of the closed outward halfplanes of ks and hs (i.e. the
halfplanes not containing hq, k1 or hs), and let V_ be the intersection of the open outward
halfplanes of k; and the open inward halfplane of h;. We have v(H? — V_) = V,.. The
subspaces Uy, U_,V,,V_ are pairwise disjoint. By Lemma 5.9, v and v freely generate
a free group. O
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By Proposition 5.8 and Theorem 2.8 we get the following.

Corollary 5.12. If M, N, P > 5 are all odd, then the group Artpy;np splits as an al-
gebraically clean graph of finite rank free groups. In particular, Artynp is residually
finite.

We finish this section with the analogous construction as in the proof of Proposition 5.8
but in the case of Artin group Artsss.

Example 5.13. If (M, N, P) = (3,3,3) then group C has index 3 in A. Let A be the
Euclidean von Dyck group D(3,3,3) obtained in the same way as in proof of Proposi-
tion 5.8. Then the subgroup C' = Z2. Indeed, the complex Y, has one additional 2-cell
whose boundary reads the third copy of the word xyz. This complex is homeomorphic
to a closed surface with x(Ys) =3 —94 6 =0, so Y, is homeomorphic to a torus. Note
that the 2-cells of Y, still can be pulled back to Xi/,. The third triangle pulls back to a
hexagon, which is invariant under the graph automorphism b. Thus it is still true that
8 projects to C.

6. Residual finiteness of more general Artin groups

The proof of residual finiteness of a three generator Artin group where at least one
exponent is even, generalizes to other Artin groups. Throughout this section I' is a
graph admitting an admissible partial orientation, so by Theorem 4.3 Artr splits as a
free product with amalgamation or an HNN extension of finite rank free groups.

Theorem 6.1. If all the simple cycles in mnontrivial connected components of F are
monochrome, then Artr is residually finite.

Proof. This proof is analogous to the proof of Proposition 5.6. The quotient A of A is
obtained by adding a relation 2™ for each generator x of A corresponding to an edge in
I' with label M and where M is either % or M, depending on parity of M. Then A is
virtually free, and C is free. The assumption that simple cycles in nontrivial connected
components of F are monochrome, ensures that C' is malnormal. The universal cover X,
of the Cayley 2-complex of A can be homotoped to a tree by replacing each monochrome
2-cycle corresponding to a M with an M-star graph whose middle vertex corresponds
to the 2-cell and other vertices correspond to the original vertices. We note that the
presentation 2-complex Y, of C' can also be homotoped to a graph in that way. It follows
that the map Y. — X, is a local isometric embedding, and consequently an embedding,
by [5, Proposition 11.4.14]. By Lemma 2.5 ¢ separates C' from the oppressive set A of
C in A. All the attached 2-cells of Ylﬂ can be pulled back to Xi/, in a way that
projects to . Depending on whether X: /2 is connected or not, the conclusion follows
from Theorem 2.8 or Theorem 2.11. 0O
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Fig. 18. In the above example My, = Mcy = 4 and M.q is odd. For each edge e of I'. The second graph
is a part of X1 and the third graph is the image of that part of X,/ in X\/4, which admits two different

combinatorial 1mmer510n&. of the cycle on the right.

Corollary 6.2. Let I' be a graph admitting an admissible partial orientation. If all labels
are even and > 6, then Artp is residually finite.

Proof. For every color with corresponding label 2m, there are three segments of that
color in X, /s> which have lengths 1,m — 1, m respectively. The segments of the length 1
and m —1 form one cycle and the other segment forms its own cycle. Since the branching
vertices in the fiber product F' are pairs of branching vertices, a lift of every monochrome
cycle has exactly one branching vertex. It follows that all simple cycles in nontrivial
connected components of F' are monochrome. By Theorem 6.1, we are done. 0O

There are many more examples of graphs satisfying the assumption of Theorem 6.1.
However, in the following example, Theorem 6.1 cannot be applied to any admissible
partial orientation of I'.

Example 6.3. Let I" be the graph on the left in Fig. 18. Note that every admissible
partial orientation of I is the same up to a permutation of the vertex labels. The second
picture in Fig. 18 is a part of the graph X/,. Edges that are thickened get collapsed in
X /s> see the next graph. Finally, on the right we have a cycle that admits two distinct
combinatorial immersion to X /- This yields a non monochrome simple cycle in F.
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