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Abstract

The nearby type II supernova, SN 2023ixf in M101 exhibits signatures of early time interaction with circumstellar
material in the first week postexplosion. This material may be the consequence of prior mass loss suffered by the
progenitor, which possibly manifested in the form of a detectable presupernova outburst. We present an analysis of
long-baseline preexplosion photometric data in the g, w, r, i, z, and y filters from Pan-STARRS as part of the
Young Supernova Experiment, spanning ∼5000 days. We find no significant detections in the Pan-STARRS
preexplosion light curves. We train a multilayer perceptron neural network to classify presupernova outbursts. We
find no evidence of eruptive presupernova activity to a limiting absolute magnitude of −7 mag. The limiting
magnitudes from the full set of gwrizy (average absolute magnitude≈−8 mag) data are consistent with previous
preexplosion studies. We use deep photometry from the literature to constrain the progenitor of SN 2023ixf,
finding that these data are consistent with a dusty red supergiant progenitor with luminosity L Llog ( ) ≈ 5.12 and
temperature≈ 3950 K, corresponding to a mass of 14–20 Me.

Unified Astronomy Thesaurus concepts: Neural networks (1933); Type II supernovae (1731)

Supporting material: data behind figures, machine-readable table

1. Introduction

Core-collapse supernovae (CCSNe) are the explosive deaths

of massive stars (with M* 8 Me; Woosley et al. 2002).

Hydrogen-rich CCSNe, classified as Type II SNe (SNe II)

comprise ∼70% of the observed CCSN population (e.g., Li

et al. 2011; Aleo et al. 2023; Tinyanont et al. 2024). SNe II

make up the vast majority (Van Dyk 2017) of preexplosion

progenitor detections via serendipitous imaging, e.g.,

SN 2003gd (Hendry et al. 2005), SN 2013ej (Fraser et al.

2013), SN 2017aew (Kilpatrick & Foley 2018), and

SN 2022acko (Van Dyk et al. 2023). All of the observed

progenitors of “normal” SNe II (i.e., types IIP/L) have been

red supergiants (RSGs) with masses that do not exceed ∼20
Me (Smartt et al. 2009; Beasor et al. 2020).
The remarkably proximate SN 2023ixf (α= 14:03:38.56,

δ=+54:18:41.97, J2000) was discovered on 2023 May 19 by
Itagaki (2023). The host of SN 2023ixf is M101 (also known as
NGC 5457 or the Pinwheel galaxy), is at a distance of only 6.9
Mpc (as measured via Cepheids; Riess et al. 2022). A

classification spectrum from SPRAT on the Liverpool Tele-
scope revealed SN 2023ixf as a SN II (Perley et al. 2023). The
discovery of SN 2023ixf led to a sustained spectroscopic and
photometric follow-up effort (e.g., Berger et al. 2023;
Bostroem et al. 2023; Jacobson-Galán et al. 2023; Sgro et al.
2023; Smith et al. 2023). To date, these multiwavelength
follow-up observations and archival data examination have
revealed detections of a dusty RSG progenitor and signatures
of interaction with circumstellar material (e.g., Berger et al.
2023; Bostroem et al. 2023; Grefenstette et al. 2023; Guetta
et al. 2023; Hiramatsu et al. 2023; Jacobson-Galán et al. 2023;
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Jencson et al. 2023; Kilpatrick et al. 2023; Koenig 2023;
Kong 2023; Li et al. 2023; Neustadt et al. 2024; Niu et al.
2023; Panjkov et al. 2023; Pledger & Shara 2023; Qin et al.
2023; Sarmah 2023; Singh Teja et al. 2023; Smith et al. 2023;
Soraisam et al. 2023; Van Dyk et al. 2023; Vasylyev et al.
2023; Xiang et al. 2024; Yamanaka et al. 2023; Zhang et al.
2023).

SNe II exhibiting interaction signatures, attributed to
interaction with a confined, dense, slow and preexisting
circumstellar medium (CSM) are somewhat common. Around
30% of SNe II show these flash-ionization features in addition
to steep rises to peak, indicative of shock breakout out of a
dense CSM (Förster et al. 2018; Bruch et al. 2021). Similar
early time interaction is seen in SN 2023ixf (Berger et al. 2023;
Bostroem et al. 2023; Chandra et al. 2023; Grefenstette et al.
2023; Jacobson-Galán et al. 2023; Kong 2023; Mereminskiy
et al. 2023; Panjkov et al. 2023; Smith et al. 2023). The
presence of flash-ionization features in CCSNe suggests
enhanced mass-loss rates in addition to supergiant winds in
the final years of the life of their progenitors. While supergiant
winds with a steady mass-loss rate M ∼10−6 Me yr−1 are
common in RSGs, these steady state mass-loss rates are too low
to account for the mass stripping which leads to flash-ionization
features (e.g., Beasor et al. 2020). Furthermore, if supergiant
winds are the primary mass-loss route for RSGs, one would
expect an environmental metallicity dependence which is not
seen for RSGs in M31 (see McDonald et al. 2022). It is
possible that enhanced mass-loss modes such as “superwinds”
or outbursts driven by gravity waves with mass-loss rates up to
∼10−2 Me yr−1 may help strip mass off of a RSG progenitor
(Wu & Fuller 2021; Davies et al. 2022; Jacobson-Galán et al.
2022).

While pre-SN mass loss may be indirectly probed with
follow-up spectroscopic observations (e.g., via low-velocity
emission lines in spectra; Gal-Yam et al. 2014), outburst-like
pre-SN activity may be directly observable. Models of pre-SN
outbursts have predicted observable signatures lasting a few to
hundreds of days with peak absolute magnitudes MR∼−8.5 to
−10 mag (Davies et al. 2022; Tsuna et al. 2023). While pre-SN
mass loss is common in Type IIn supernovae (SNe IIn) and
“regular” SNe II (as inferred from light-curve shapes, spectral
features such as flash ionization, and X-ray observations; e.g.,
Ofek et al. 2014; Förster et al. 2018; Bruch et al. 2021;
Strotjohann et al. 2021; Panjkov et al. 2023), the luminous SN
II, SN 2020tlf stands out as an example of a SN II which had a
bright, detectable preexplosion outburst. Jacobson-Galán et al.
(2022) found that SN 2020tlf exhibited preexplosion activity
that persisted from 130 days prior the terminal explosion;
subsequent flash-ionization features were observed. Jacobson-
Galán et al. (2022) found that the progenitor of SN 2020tlf had
a mass-loss rate∼ 10−2 Me yr−1, which those authors suggest
may be consistent with nuclear flashes (e.g., Woosley &
Heger 2015) or gravity-wave-driven outbursts (potentially
creating as much as 1 Me of ejected material, contributing to
the CSM; Quataert & Shiode 2012; Wu & Fuller 2021).

Early time photometric and spectroscopic observations of
SN 2023ixf suggest that there was mass loss prior to the
terminal SN explosion. The RSG models utilized by Jacobson-
Galán et al. (2023) suggest that the progenitor underwent a
superwind mass-loss phase, with a mass-loss rate∼ 10−2 Me

yr−1 for 3–6 yr prior to the explosion. This mass loss created a
confined CSM with a density of 10−12 g cm−3 at a radius of

1014 cm, with the radial extent of the CSM being
0.5–1.0× 1015 cm. Hosseinzadeh et al. (2023) presented an
analysis of the early time light curve of SN 2023ixf, finding
that prediscovery, the light curve deviates from a power law or
shock-cooling models, suggesting that this could be explained
by precursor activity. Grefenstette et al. (2023) report hard
X-ray spectral observations of SN 2023ixf from NuSTAR
consistent with a confined CSM with a radial extent< 1015 cm
and a progenitor mass-loss rate∼3× 10−4 Me yr−1. Panjkov
et al. (2023) found that the Neil Gehrels Swift Observatory
(Swift) did not detect soft X-ray emission from SN 2023ixf
until ∼3 days postexplosion and concluded that the mass-loss
rate of the progenitor was 5× 10−4 Me yr−1 with a CSM
radius∼ 4× 1015 cm and also that the CSM was asymmetric.
Furthermore, using the Sub-Millimeter Array, Berger et al.
(2023) placed constraints on the CSM extent ∼2× 1015 cm and
a pre-SN mass-loss rate∼ 10−2 Me yr−1. Those authors also
suggest that the CSM was inhomogeneous, possibly explaining
the inconsistent mass-loss rate from X-ray observations.
Due to the proximity of SN 2023ixf and the subsequent CSM

interaction elucidated from early time observations, it is a
prime target for investigations into pre-SN activity. Indeed,
several studies have already explored preexplosion light curves
for pre-SN outbursts. When considering preexplosion Spitzer
data, Kilpatrick et al. (2023) noted that the progenitor was
detected at 3.6 and 4.5 μm. These infrared (IR) detections
spanned between MJD 53072–58781 and displayed variability
with brightenings ∼10 μJy with a periodicity of around 1000
days. Kilpatrick et al. (2023) interpret this variability as being
consistent with κ-mechanism oscillations (opacity-driven
variability; Li & Gong 1994; Heger et al. 1997; Paxton et al.
2013). Jencson et al. (2023) also presented Spitzer photometry
along with ground-based J- and Ks-band data spanning 13 yr,
up to 10 days before the SN explosion. These authors found
that spectral energy distribution (SED) fits to the IR data
suggest a luminous, dusty RSG progenitor with a luminosity of

L Llog ( ) = 5.1± 0.2 and a temperature of 3500 1400
800

-
+ K, and

a mass-loss rate of 3× 10−4
–3× 10−3 Me yr−1. Similarly,

Soraisam et al. (2023) found, using both Spitzer and ground-
based JHK data, a progenitor with L Llog ( ) = 5.27± 0.12 at
T= 3200 K or L Llog ( ) = 5.37± 0.12 at T= 3500 K,
corresponding to a progenitor mass of 20± 4 Me. These
findings indicate that the progenitor of SN 2023ixf is fairly
luminous compared to previously observed RSG SN progeni-
tors, suggesting a massive RSG (e.g., Smartt 2015). Using
archival Galaxy Evolution Explorer data, Flinner et al. (2023)
explore the near- and far-ultraviolet activity of the progenitor of
SN 2023ixf up to 20 yr prior to the explosion, finding no
outbursts in the UV to limits of LNUV= 1000 Le and
LFUV= 2000 Le. Dong et al. (2023) investigate the pre-SN
photometry obtained with the Zwicky Transient Facility (ZTF),
the Asteroid Terrestrial-impact Last Alert System (ATLAS),
and DLT40. While these data did not reveal any outbursts,
Dong et al. (2023) incorporated the pre-SN outburst models
presented by Tsuna et al. (2023) in order to put constraints on
pre-SN activity. Those authors found that a precursor event
with peak Mr=−9 would have had a duration of less than 100
days, while an outburst withMr=−8 must have had a duration
of 200 days or less. They suggest that an outburst similar to the
models of Tsuna et al. (2023) or what was seen prior to
SN 2020tlf was not likely to have occurred in SN 2023ixf.
Though SN 2023ixf may not have suffered large outburst-like
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events, the confined CSM (for example, see Panjkov et al.
2023, who found that the CSM was close to the progenitor)
must have originated from some enhanced mass-loss mech-
anism. Furthermore, Neustadt et al. (2024) used archival data
from the Large Binocular Telescope (LBT) spanning 5600–400
days prior to SN 2023ixf to search for optical variability. Those
authors found that there was no R-band variability to the 103 Le
level in the time frame of these data. Panjkov et al. (2023)
explored optical and X-ray preexplosion data from ATLAS,
ZTF, the All-Sky Automated Search for Supernovae, Swift,
XMM-Newton, and Chandra, finding no preexplosion varia-
bility and constrain any optical pre-SN outburst to 7× 104 Le
and X-ray pre-SN outburst to a limit of∼6× 1036 erg s−1.

In this work, we present long-baseline preexplosion photo-
metric data of SN 2023ixf spanning ∼5000 days to a few days
before the SN from Pan-STARRS in the grizy bands and also
multiyear stacks in the wizy bands. These data were obtained
through the Young Supernova Experiment (YSE; Jones et al.
2021). We analyze these data in search of pre-SN outbursts
whose presence may be indicated by the already observed CSM
interaction and variability in the IR. In Section 2 we describe
our methodology to search systematically for preexplosion
detections within the Pan-STARRS data. In Section 3 we will
discuss the findings from our long-baseline preexplosion limits
and make comparisons to known pre-SN outbursts. We
combine these results with consolidated data from the existing
literature to model the progenitor SED in Section 4. In
Section 5, we describe our method for using a pre-SN outburst
model to train a multilayer perceptron classifier in order to
search for pre-SN outbursts. We then use these models to
constrain possible outburst properties. We repeat the SED
analysis and neural net methodology to probe for possible
variability of the progenitor prior to the SN explosion in
Section 5.1. Finally, we analyze the host in Section 6 in terms
of the spatial association of SN 2023ixf with star formation. We
conclude in Section 7.

2. Photometry

We present preexplosion data for SN 2023ixf from Pan-
STARRS (Chambers et al. 2016). Pan-STARRS is comprised
of a duo of 1.8 m telescopes, PS1 and PS2, near the peak of
Haleakala on the island of Maui. These data span from 2010
January 19 to 2023 May 12, comprised of the gwrizy filter set
(Flewelling et al. 2020). In total, there are 313 PS1 pre-SN
photometric observations over a 4851 day baseline. These have
a typical depth of 20.4 mag averaged over all grizy filters. In
the following, we present a custom pipeline used to measure
the limiting magnitude of each individual exposure carefully.

2.1. Presupernova Eruption Detection Pipeline

We measure the preexplosion photometry using Photpipe

(Rest et al. 2005) to ensure highly accurate photometric
measurements and to account for pixel-to-pixel correlations in
the difference images and host galaxy noise at the SN location.
Photpipe is a well-tested pipeline for measuring SN
photometry and has been used to perform accurate measure-
ments from Pan-STARRS in a number of previous studies (e.g.,
Rest et al. 2014; Foley et al. 2018; Jones et al. 2018; Scolnic
et al. 2018; Jones et al. 2019). In brief, Photpipe takes as
input Pan-STARRS images which have been reduced by an
initial image processing pipeline. Our preprocessing pipeline

resamples the images and astrometrically aligns them to match
skycells in the Pan-STARRS 1 (PS1 hereafter) sky tessellation.
Geometric distortion is then removed. We then measure image
zero-points using DoPhot (Schechter et al. 1993) to measure
the photometry of stars in the image and comparing to stars in
the PS1 Data Release 2 catalog (Flewelling et al. 2020).
Photpipe then convolves a template image from the PS1 3π
survey (Chambers et al. 2017), with data taken between the
years 2010 and 2014, using a kernel that consists of three
superimposed Gaussian functions. This kernel is designed (and
fit) to match the point-spread function (PSF) of the survey
image. We then subtract the template from the science image
using hotpants (Becker 2015). Finally, Photpipe uses
DoPhot to measure fixed-position (i.e., forced) photometry of
the SN at the weighted average of its location across all images.
Further details regarding this procedure are given in Rest et al.
(2014) and Jones et al. (2019).
To account for underlying structure in the bright host galaxy

of SN 2023ixf, which could cause larger than expected
preexplosion photometric noise in the difference image
(Kessler et al. 2015; Doctor et al. 2017; Jones et al. 2017),
we forward model our full reduction pipeline. We simulate a
noisy detection by estimating the signal-to-noise ratio that
would be recovered from a source of a given flux assuming the
following sources of uncertainty: (1) the Poisson noise at the
SN location (i.e., the square root of the counts) and (2)
Gaussian noise from the background (i.e., the standard
deviation of flux values measured from random difference-
image apertures at coordinates with approximately the same
underlying host galaxy surface brightness as exists at the SN
location). The apertures used in our reduction pipeline must
closely match the background noise statistics at the site of
SN 2023ixf in order to obtain a more rigorous calculation of
our detection limits. In order to select these apertures, a grid of
3″ apertures is placed over the host in images in each grizy

filter. The aperture grid, (with 367 trial apertures) is placed over
a 57″× 57″ area (covering the host region in the images), with
no overlap between apertures. An aperture is also placed over
the location of SN 2023ixf (determined using the coordinates of
SN 2023ixf from Kilpatrick et al. 2023). The distribution of the
flux values within the aperture containing SN 2023ixf is
measured and then compared with the flux distributions of
the apertures in the grid. Apertures from the grid are then
chosen for use in our source injection method. These apertures
are selected using a given flux distribution similarity tolerance
(here our tolerance was chosen such that at least 10 apertures
are found in each image) on the distribution of parameters.
More specifically, we select apertures based on the mean
(within 25% of the standard deviation of the mean), standard
deviation (within 10% of the standard deviation), the skew
(within 10% of the skew), and kurtosis (within 10% of the
kurtosis) of the distribution. The number of apertures differ per
filter and these apertures largely follow the spiral arms of the
host, similar to the location of SN 2023ixf. A summary of these
data (including the number of apertures found in each image)
found from PS1 is tabulated in Table 1.
To search for pre-SN emission in all Pan-STARRS images,

we perform an idealized fake source injection within each
chosen aperture to estimate the recovery fraction (i.e., the
fraction of apertures where the injected source is recovered at
>3σ significance) as a function of the injected source flux. To
find true pre-SN detections, we compared the derived limiting
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magnitude to photometric measurements from Photpipe at
the SN location. We label a detection as real if the latter is
brighter than the former. For each image, we estimate the
limiting magnitude based on the flux (i.e., in analog-to-digital
units given the zero-point calculated above) associated with an
80% recovery fraction in the chosen background apertures. We
consider this 80% recovery fraction as a detection. At this
recovery level, we do not generate false-positive detections that
would be statistically expected in more standard photometric
methodologies.

To test the validity of any possible detections, we perform a
more robust fake source injection routine in the science images,
also using Photpipe, to estimate a new set of recovery curves
for each epoch where there may be a possible detection. This
procedure is slower and more computationally intensive than
the procedure described above and uses the PSF shape
determined by DoPhot (i.e., a seven parameter Gaussian as
described in Schechter et al. 1993) to create artificial sources
with a known flux and at the same aperture locations described
above in the original science image. We then repeat the
reduction process, including image subtraction with hot-

pants, in order to simulate the effect of convolution noise in
the recovery of each source. Finally, we perform forced
photometry at the source location to simulate the detection of
sources whose sky locations are known a priori and create
recovery curves as a function of the injected source flux. In
order to obtain a statistically significant number of sources over
a broad range of magnitudes, we repeat this process with the
same image and aperture locations until we have forced
photometry for 1500 sources from 17 to 24 mag. Here we also
adopt the 80% recovery fraction as the limiting magnitude,
which we then compare to the photometric measurement at the
SN location.

3. No Evidence of Preexplosion Activity in Pan-
STARRS Data

We present the Pan-STARRS long-baseline grizy light
curves in Figure 1. Through our 4851 day preexplosion
baseline, we find no detections at the 80% aperture recovery
fraction in the g, r, i, z, or y bands. The median limits we found
in each filter are 22.0 mag in the g band, 21.6 mag in the r
band, 21.3 mag in the i band, 21.3 mag in the z and 20.1 in the
y band; these correspond to absolute magnitudes of Mg=−7.2
mag, Mr=−7.6 mag, Mi=−7.9 mag, Mz=−7.9 mag, and
My=−9.1 mag. While these source injection limits are
obtained using difference images, the templates used to make

the difference images are ∼2–3 mag deeper than the individual
epoch images at the same position so our measurements are
sensitive to the depth of the single-epoch science images. This
implies that the measurements from our difference images
between the individual images and the template images are
limited by the depth of the individual images. Therefore, the
underlying progenitor flux in the template image is insignificant
when measuring limits on outburst luminosity in difference
images. The range of literature progenitor bolometric RSG
luminosities is ∼104.39–5.52 Le, corresponding to absolute
magnitudes∼−6.2 to −9.0 mag (Davies & Beasor 2020), with
the most luminous known RSG being UY Scuti, with

L Llog ( ) ≈ 5.52 (Arroyo-Torres et al. 2013). Our limits are
therefore mostly on the upper end of, or are brighter than, the
range of the bolometric luminosities of observed RSG SN
progenitors.
We obtain multiyear stacks in the w, i, z, and y filters to

probe for progenitor detections. These data were compiled
using the data from the Pan-STARRS Survey for Transients,
which itself uses wiz data from near-Earth object searches
(Huber et al. 2015). As the w filter does not contain color
information, it is not used by YSE. Rather, these data are from
coincidental observations with YSE fields (and are therefore
not included in the light-curve analysis). Forced photometry of
these nondifference-imaged stacks reveal that there are no
progenitor detections to limits (3σ limits) of 24.80 mag in the w
band, 23.80 mag in the i band, 23.00 mag in the z band, and
20.03 mag in the y band, corresponding to absolute magnitudes
of Mw=−4.4 mag, Mi=−5.4 mag, Mz=−6.2 mag, and
My=−9.2 mag.
There is weak evidence of two possible detections in the i

and y bands at MJD 59334.41 and 56864.25, −753.6 and
−3223.8 days relative to explosion, respectively, at a less
stringent 50% recovery limit; however, these are not detections
at the 80% limit. As these epochs only meet a 50% recovery
fraction, we inspect these epochs in more detail. The i-band
detection is at an ∼2.4σ detection significance, while the y-
band detection is at an ∼2.2σ detection significance with these
being single images. We present cutout images of these
detections in Figure 1. There are no clear visible sources at the
location of SN 2023ixf in the thumbnails, consistent with our
low significance detections. Therefore we consider these as
nondetections. For our 313 Pan-STARRS observations, one
would expect ∼15 observations at the 2σ level and ∼1
observation at the 3σ level false-positive detections if using a
more standard photometric method. Our source injection
method produces no 2σ or 3σ detections at the 80% recovery
fraction.
Finally, we compare our long-baseline preexplosion light

curve to previously identified precursor outburst events in other
SNe. First, SN II 2020tlf had precursor outbursts that peaked at
an absolute magnitude∼−11.5 mag (Jacobson-Galán et al.
2022). As shown in Figure 1, all of our PS1 limits are deeper
than SN 2020tlf-like pre-SN outbursts, obtained with a similar
method to this work. To compare to the SNe IIn pre-SN
outbursts found in the literature, we select two SNe IIn which
are examples of the upper and lower luminosity ranges of
observed SN IIn precursor outbursts (e.g., Strotjohann et al.
2021).18 At the fainter end there is SN 2011ht, where Fraser

Table 1

Preexplosion Pan-STARRS 80% Detection Confidence Limits in the gwrizy

Filters

Type Phase (days) MJD Filter Lim. Mag. # Aps.

Single −4040.393 56042.44 g 22.20 12

Single −4040.383 56042.45 g 22.24 11

Single −3687.433 56395.40 g 22.00 12

Single −3014.173 57068.66 g 21.84 10

Stack L L w 24.80 L

Stack L L i 23.80 L

Stack L L z 23.00 L

Stack L L y 20.03 L

(This table is available in its entirety in machine-readable form.)

18
Preexplosion outbursts in SNe IIn are perhaps the best known; e.g., between

2018 and 2020, 18 SNe IIn observed with ZTF were found to have precursor
events.
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et al. (2013) report an outburst a year before the SN event, with
it peaking at an absolute magnitude∼−11.8 mag. On the
brighter end of the SN IIn precursor eruption scale, there is
SN 2009ip. Initially discovered as an “impostor,” SN 2009ip
likely suffered its terminal explosion in 2012, with the 2009
eruption peaking at an absolute magnitude∼−4.5 mag.
However, the nature of SN 2009ip is still a topic of debate
(see Berger et al. 2009; Miller et al. 2009; Drake et al. 2010;
Smith et al. 2010, 2014; Foley et al. 2011; Mauerhan et al.
2013; Pastorello et al. 2013; Margutti et al. 2014; Pessi et al.
2023). Our limits and the progenitor detections of SN 2023ixf
are dimmer than the outbursts seen in the RSG progenitor of
SN 2020tlf by at least 2.5 mag and are much fainter than the
possibly luminous blue variable (LBV)-like outbursts seen
prior to some SNe IIn such as SN 2009ip. In addition to the
pre-SN explosions associated with these SNe IIn, we can also
compare to some SN impostors, many of which are also
interpreted as eruptions of LBV-like progenitors. For example,
SN 2000ch and AT 2016blu are both SN impostors with
ongoing observed activity (Pastorello et al. 2010; Aghakhanloo

et al. 2023a, 2023b). SN 2000ch peaked at an absolute
magnitude∼−12.8 mag and AT 2016blu peaked at ∼−13.6
mag (lying in between the pre-SN outburst in the SNe IIn
range).

4. Progenitor Analysis via Stacked Data

To constrain the properties of the progenitor of SN 2023ixf,
SEDs of the progenitor are presented by a number of authors
(e.g., Jencson et al. 2023; Kilpatrick et al. 2023; Neustadt et al.
2024; Niu et al. 2023; Soraisam et al. 2023; Xiang et al. 2024).
Detections in Spitzer channel 1 and channel 2, MMT J,
Gemini/NIRI J, UKIRT JHK, and Hubble Space Telescope
(HST) F814W and F675W are used here. As stated, pre-SN
observations (particularly those from Spitzer) reveal a highly
variable progenitor in the decade up to SN. We must account
for scatter in the reported photometric measurements, and also
variability in the IR data. As our mean estimate in each band,
we take an average of these flux measurements over
independent measurements and time. For the uncertainties on
these measurements, we account for two contributions: the

Figure 1. Upper panel: the long-baseline preexplosion light curves of SN 2023ixf. We present PS1 grizy photometry spanning 4851–6 days prior to SN 2023ixf.
Spitzer, Gemini/NIRI, MMT/MMIRS, and Mayall/NEWFIRM data (all detections, originally presented in Jencson et al. 2023; Kilpatrick et al. 2023) are also shown.
The Pan-STARRS limits are from our source injection method. For the Pan-STARRS data, the two instances of the source injection finding possible sources at the
50% recovery fraction limit (in the i and y bands) are marked as a circle and 80% recovery fraction limits are shown as a downward pointing triangle. These two
sources, however, are detected at a signal-to-noise level < 3σ. Overplotted are also the peak absolute magnitude of pre-SN outbursts of three other transients,
SN 2020tlf (a luminous SN II, bolometric peak luminosity; Jacobson-Galán et al. 2022), SN 2011ht (a SN IIn with a plateau light curve and whose z-band peak
absolute magnitude is shown; Fraser et al. 2013), SN 2009ip (a well studied SN IIn with bright precursor eruptions, with its peak visual magnitude shown; Mauerhan
et al. 2013), and SN 2000ch and AT 2016blu (SN impostors; Pastorello et al. 2010; Aghakhanloo et al. 2023a, 2023b). Lower panel: PS1 cutouts of the epochs of the
possible sub-3σ detections in the i and y bands, where both the science images (panels 1 and 3) and difference images (panels 2 and 4 are shown. The location of the
transient is marked by a red circle. There is no visible detection in these images.
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systematic scatter in the reported measurements of the same
observations, and intrinsic variability. In the latter case, we use
the range of reported AB magnitudes as an estimate for the
systematic uncertainty, where the error interval is the range of
values per filter; in the case where epochs have multiple
measurements, we add the average scatter per epochs in
quadrature.19

We use the radiative transfer code DUSTY (Kochanek et al.
2012a) to constrain the progenitor properties. Following
Kochanek et al. (2012b) and Kilpatrick et al. (2023), we use
the Model Atmospheres with a Radiative and Convective
Scheme (MARCS) grid of RSG spectra (e.g., Gustafsson et al.
1975, 2008) as an internal heating source within an spherically
symmetric shell of dust. We note that, while the immediate
CSM showed signs of asymmetry, DUSTY assumes a
spherically symmetric dust shell. MARCS provides a grid of 15
Me RSG spectra, with varying temperatures, surface gravities,
and metallicities. Here, we explore solar metallicity models
with glog 0( ) = and progenitor effective temperatures in the
range 3300 and 4500 K. The MARCS models are then used as
internal heating sources for the DUSTY models, allowing us to
estimate the dust properties of the progenitor system. We
specifically vary the optical depth of the dust (τV ä 0, 10), the
ratio of the outer to inner radii of the dust shell
( R Rlog 2, 410 out in( ) )Î , and the inner temperature of the dust
(Tä 10, 1000 K). We test carbonaceous and silicate dust
models, as dust of both types is commonly seen. Finally, we fit
for luminosities between L Llog ( ) = 3–6.

We generate an interpolated grid of precomputed
DUSTY +MARCS models and use the Bayesian nested
sampling algorithm Dynesty (Speagle 2020) to constrain
the progenitor properties. We additionally fit for an extra white-
noise term, σ2, to capture systematic uncertainties which may
be underrepresented in our measurements, i.e., a parameter that
represents the fractional underestimate of the uncertainties in
log space. From the posterior distributions, we infer the
following values for the progenitor luminosity with carbon-

based dust (graphitic): a luminosity of L Llog ( ) = 5.12 0.21
0.15

-
+ ,

optical depth τ= 8.23 1.20
0.90

-
+ , a RSG temperature of 3935 296

335
-
+ K,

a dust temperature of 405 268
276

-
+ K, a R Rlog10 out in( ) of 3.10 0.71

0.59
-
+ ,

and a σ of −5.75 2.89
2.92

-
+ . Our low value of σ suggests that we do

not significantly underestimate the uncertainties. Silicate dust
models were trialed and were not as good a fit to the data as the
graphitic dust, with reduced χ2 values of 1.8 for silicate dust
and 0.6 for graphitic dust. (Silicate dust produces a luminosity

of L Llog ( ) = 5.31 0.19
0.13

-
+ and a RSG temperature of 4066 326

308
-
+

K.) Therefore, we only consider the graphitic dust models.
These values are broadly consistent with previous studies on
the progenitor of SN 2023ixf. Our luminosity is consistent with
most other work within the uncertainties (Jencson et al. 2023;
Neustadt et al. 2024; Niu et al. 2023; Qin et al. 2023; Soraisam
et al. 2023; Van Dyk et al. 2023; Xiang et al. 2024), with
Soraisam et al. (2023) finding the highest luminosity at

L Llog ( ) = 5.27± 0.12 or L Llog ( ) = 5.37± 0.12 depen-
dent on the temperature used in their fits. Our RSG temperature
is on the higher end of the range from other studies, with
Kilpatrick et al. (2023) finding the next hottest temperature at

3920 160
200

-
+ K, but also our uncertainties are larger due to the

scatter in the photometry. However, our temperature is

consistent with a number of the studies within uncertainties
(Jencson et al. 2023; Neustadt et al. 2024; Niu et al. 2023; Van
Dyk et al. 2023).
Our SED fits are presented in Figure 2. In addition to

detections of the presumed progenitor, we also plot limits from
the Pan-STARRS wizy multiyear stacks and limits from H band
(MJD 56108) and J band (MJD 56107). These limits are
consistent with our SED fits. We note that progenitor detections
that are at single epochs are in HST F814W (MJD 52594) and
F675W (MJD 51261). Our SED fits are consistent with most
(but not all) of the previous literature (see the summary by Qin
et al. 2023). Finally, we compare our SED fits to MESA
Isochrones and Stellar Tracks (MIST) evolutionary models
(Choi et al. 2016; Dotter 2016) assuming a nonrotating star and
solar metallicity models (consistent with previous studies such
as Kilpatrick et al. 2023). We consider models to be consistent
if their final luminosity is consistent with our derived values.
Assuming a graphitic dust model, we find that our progenitor
properties are consistent with a 14–20 Me star (see Figure 3).
This mass range is too high for the electron-capture scenario
suggested by Xiang et al. (2024).
In our SED, the largest scatter is in the H band from data

presented by Soraisam et al. (2023) with an uncertainty∼ 1
mag, which is due to the variability of the progenitor in the IR.
Furthermore, the reported Spitzer data has a large scatter in
both the 3.6 and 4.5 μm channels, with the range in the average
brightness being 0.91 mag and 0.72 mag, respectively. Other
methodological differences such as differences in the SED
models have an effect on the calculated progenitor parameters.
For example, Soraisam et al. (2023) use a RSG period–
luminosity relation to obtain their high luminosities. Others
phase average their data to account for variability (Jencson
et al. 2023), while others assume no variability when creating
inputs for their SEDs (Kilpatrick et al. 2023). Van Dyk et al.
(2023) incorporated the variability in the IR using the range in
the IR measurements and models of the J-band to V-band
variability to estimate an uncertainty (Smith et al. 2002; Riebel
et al. 2012). Niu et al. (2023) add a 0.5 mag uncertainty to their
optical measurements to account for variability. Furthermore
the dust models used differ, with some using carbon-based
(graphitic) dust models (Kilpatrick et al. 2023; Niu et al. 2023)
and others using silicate-based dust models (Jencson et al.
2023; Van Dyk et al. 2023).
Our progenitor mass estimates, as expected, lie within the

range of reported values (which shows substantial scatter). The
range of reported progenitor masses includes the lowest end of
the range for CCSN progenitors: Pledger & Shara (2023) report
a progenitor mass of 8–10 Me, using isochrone fitting of HST
preexplosion data. The SED analysis of Jencson et al. (2023),
using the Grid of Red supergiant and Asymptotic Giant Branch
ModelS (GRAMS; with silicate dust; Sargent et al. 2011;
Srinivasan et al. 2011), suggests a RSG with mass 17± 4 Me,
luminosity L Llog ( ) = 5.1± 0.2, and RSG temperature of

3500 1400
800

-
+ K. Despite their choice of silicate dust, Jencson et al.

(2023) found a progenitor temperature and luminosity estimate
consistent with this work within the reported uncertainties.
Therefore our progenitor mass estimate is also consistent with
those authors. Niu et al. (2023) also find a massive RSG
progenitor with mass 16.2–17.4 Me and luminosity

L Llog ( ) = 5.11 for a model SED with graphitic dust and a
RSG temperature of 3700 K. Van Dyk et al. (2023) used SED
fitting which accounted for the variability of the progenitor and

19
This table is provided as a github repository at https://github.com/

AstroSkip/pre_sn_23ixf.git.
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single-star stellar evolution models (GRAMS, with silicate
dust) to constrain a progenitor with mass 12–15 Me. They
derived a luminosity of 7.6–10.8× 104 Le with a RSG

temperature of 3450 1080
250

-
+ K, which they suggest is similar to

the Galactic RSG, IRC–10414. Xiang et al. (2024) use HST

and Spitzer data to fit an SED to a dusty RSG model, finding a
very cool RSG temperature of 3090 K, a progenitor mass of
12 1

2
-
+ Me, and L Llog ( ) = 4.8. Xiang et al. (2024) also

suggest that the IR colors of the progenitor of SN 2023ixf may
suggest a super–asymptotic giant branch star, in which case it
would be on the lower end of the CCSN progenitor mass range
of 8–10 Me and possibly exploded as an electron-capture SN.
Qin et al. (2023) use archival HST data along with the Spitzer
data to infer a progenitor with mass 18 1.2

0.7
-
+ Me, a luminosity of

L Llog ( ) = 5.1± 0.02, and a RSG temperature of 3343± 26
K. Neustadt et al. (2024) infer a progenitor mass of 9–14 Me

from their data from the LBT and a silicate dust model, with
luminosity L Llog ( ) = 4.8–5.0. Generally, the differences in
the reported values in the literature may be attributed to the
variety of factors described above, such as differences in the
photometric treatment of the archival imaging of the progeni-
tor, different dust models, stellar evolution tracks, and SED
fitting methods (e.g., fixing the effective temperature). We have
incorporated the available photometric measurements from the
literature to construct our SED, which is well sampled in
wavelength space, albeit with our conservative uncertainty
treatment accounting for both the IR variability and differences
in the reported values from the literature. We summarize and
compare these values with the literature in Figure 4.

5. Searching for Presupernova Outbursts with a Neural Net
Classifier

We search for preexplosion outbursts in the PS1 data using a
multilayer perceptron classifier. Multilayer perceptrons are
neural networks comprised of at least three layers (input,
hidden, and output) with neurons that are fully connected and
use a nonlinear activation function, such as a sigmoid.
Multilayer perceptrons are commonly used as relatively
lightweight and fast to train classifiers due to their utility in
distinguishing between complex nonlinear data sets. We train

Figure 2. Consolidated photometry of the progenitor from the SN 2023ixf
literature and our best-fit models. We use the photometric measurements
presented by Jencson et al. (2023), Kilpatrick et al. (2023), Soraisam et al.
(2023), Xiang et al. (2024), and Niu et al. (2023). These data consist of Spitzer
channel 1 and channel 2, MMT J and Ks, Gemini/NIRI J, UKIRT HJK,
Mayall/NEWFIRM Ks, and HST F814W and F675W. The model SED that
represents the median posterior values is plotted in orange and random draws
are plotted in gray for reference.

(The data used to create this figure are available.)

Figure 3. Evolutionary tracks from MIST compared with our progenitor
measurements from our SED fits. The red star is the fit for SN 2023ixf. The
gray squares are RSG SN progenitors from Smartt (2015).

Figure 4. Top: comparison of our progenitor mass with values from previous
work. Bottom: comparison of our progenitor luminosity and effective
temperature with values from previous work. The gray squares are RSG SN
progenitors from Smartt (2015).
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our classifier on model light curves which are constructed using
injected outbursts following a pre-SN outburst model
(described below). These light curves assume the same form
as our preexplosion Pan-STARRS data in terms of filters and
epochs. For each real observation, in some filter, there will be a
model observation in the same filter, with each of the model
light curves having 313 observations consistent with our data
with an outburst injected at some time.

Our pre-SN outburst model takes the form of a blackbody
SED expanding from the initial progenitor radius at a constant
velocity, vej, whose luminosity assumes no driving central
power source (e.g., recombination; Arnett 1980; Villar et al.
2017):

L L e , 10

t t0
diff ( )

( )

= t
- -

where L0 is the initial injected luminosity, t0 is the time of

eruption, and τdiff is the diffusion time that takes the form:

, 2
M

cR
diff

ej

0

( )t =
k

b

where c is the speed of light, κ= 0.34 cm2 g−1 is the opacity of

H-rich material (fixed to typical H-rich material opacities), and

β= 13.7 is a geometric constant related to the density profile of

the ejecta (Arnett 1982). Mej (the ejecta mass) and R0 (the

progenitor radius) are free parameters of the model. We assume

that the blackbody temperature self-consistently decreases until

reaching 5000 K, at which point our photosphere begins to

recede to maintain this temperature. Model realizations are

shown in Figure 5.
In this model, L0, R0, t0, vej, and Mej are free parameters. In

our training sets, we fix vej to represent the measured wind
velocity, as high-resolution spectroscopy indicates a wind
velocity∼ 50 km s−1

(Zhang et al. 2023). It should be noted
that Smith et al. (2023) found higher velocities that may
originate from winds that have been radiatively accelerated.
Our four free parameters are therefore the input luminosity, the
pre-SN outburst time, progenitor radius, and the ejecta mass.
We uniformly sample from a range of parameter values. We
generate 104 training set light curves, which are set at the
distance of the host, M101 (6.9 Mpc), and dust extinction is
added (with AV= 4.6 mag as per Kilpatrick et al. 2023) and
with RV= 3.1 following the extinction law of Schlafly &
Finkbeiner (2011). A summary of our parameter ranges is
presented in Table 2.

Training sets are generated such that the resultant simulated
light curves have observations at identical epochs in identical
filters as the real data in the long-baseline preexplosion Pan-
STARRS grizy light curves. The uncertainties on these model
observations are calculated by interpolating the uncertainties
from flux uncertainty maps from our source injection method
described in Section 2. In our model, we vary the input
luminosity between 0 and 106 Le with the maximum being
chosen as it is of the order of the outburst observed in
SN 2020tlf (Jacobson-Galán et al. 2022). We vary the ejecta
mass uniformly and randomly between 0.01 and 1.00 Me,
typical of pre-SN outbursts in the time frame that the CSM
around SN 2023ixf was formed (e.g., Smith 2014). The time of
the injected eruption spans the time phase space of our
preexplosion data. In terms of the progenitor star, the relevant
free parameter in our pre-SN outburst model is the progenitor
radius, which we sample between 1 and 1000 Re.

When sampling these model light curves to generate our
training light curves, we convolve these pre-SN outbursts with
the filter response curves for each of our grizy filters in order to
create a model observation. The filter response curves were
obtained from the Spanish Virtual Observatory Filter Profile
Service.20 Furthermore, we illustrate how increasing the
injected luminosity or ejecta mass affects the outburst light
curves in the bottom two panels of Figure 5. These example
light curves show the same increments in luminosity and ejecta
mass with arbitrarily chosen “middle of the range” parameters
fixed. These include a progenitor radius of 500 Re, an injected
luminosity of 1.0× 106 Le, and an ejecta mass of 0.5 Me.
We use a multilayer perceptron in order to detect pre-SN

eruptions within our PS1 light curve with three layers and 12
neurons in the first layer, eight in the second, and one in the
third, using a combination of the standard sigmoid and ReLU
activation functions. We train 2,500 epochs using the standard
adam optimizer (Kingma & Ba 2014). After training our neural
network to classify the presence of a pre-SN eruption (with an
accuracy∼ 94%), we then used the trained neural network to
determine if such an eruption is present in the long-baseline
preexplosion grizy Pan-STARRS light curves. Our neural net
classifies these preexplosion data as being consistent with there
being no detectable pre-SN outbursts in this 4851 day range.
Given this nondetection, we place limits on the possible

eruption models ruled out from our observations. We generate
a test set ∼10,000 eruptive light curves of various luminosities
and ejecta masses and test the detection efficiency of our
classifier. These parameters are increased incrementally
(between 0–106 Le and 0.01–1.00 Me). This is shown in
Figure 5.
With our parameter range, we can put a constraint on the

injected luminosity of a preexplosion outburst of <5× 104 Le,
which corresponds to an absolute magnitude∼−7.0 mag; see
Figure 5. This constraint on the outburst luminosity is within
the luminosity range of RSGs (Davies & Beasor 2020).
Furthermore, this constraint corresponds to an apparent
magnitude∼ 22 mag, deeper than most of our upper limits.
We additionally note that our model can be understood as a
lower limit—if another power source contributed to the
eruptions (e.g., recombination), we would expect brighter and
longer-duration transients for a given set of parameters.
Other investigations into pre-SN outbursts in SN 2023ixf

also have not found evidence for any detectable signatures
(Flinner et al. 2023; Neustadt et al. 2024; Panjkov et al. 2023),
although to varying limits. Our outburst constraints and
photometric limits are comparable to those found by Dong
et al. (2023), who derive an upper limit to the ejecta mass of
0.015 Me based on the models of Tsuna et al. (2023; compared
to our ejecta mass limit of <0.3 Me) for a hydrodynamical
model that had peak Mr;−8 mag.
When compared to SN 2020tlf, any SN 2023ixf pre-SN

outburst would be fainter than the activity seen prior to
SN 2020tlf. On average, our limits are fainter than the pre-SN
outburst of SN 2020tlf by ∼2.5 mag.
Defining the duration of a model outburst as the amount of

time the outburst is brighter than the detection limits, we find
that the typical duration of a detectable outburst is similar, or
shorter than, the gaps between the Pan-STARRS observations.
The duration of an outburst at our upper luminosity and ejected

20
http://svo2.cab.inta-csic.es/theory/fps/
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mass limit is ∼100 days. This is shorter than the largest gap in
the Pan-STARRS data ∼600 days and there are multiple large
gaps of over 100 days in the preexplosion data set. A detectable
outburst may therefore not be detected due to larger gaps in the
photometric coverage.

In Figure 5 we also show the luminosity that corresponds to
the 80% cutoff for bump detection and the corresponding
luminosity of our averaged Pan-STARRS limits. Furthermore,
we plot the upper values of the CSM mass for SN 2023ixf
(Jacobson-Galán et al. 2023) and SN 2020tlf (Jacobson-Galán

et al. 2020). The upper value for the CSM mass from Jacobson-
Galán et al. (2023), which was derived from best-fit CMFGEN
radiative transfer models. is 0.07 Me, below our 80% detection
ejecta mass of 0.3 Me. Our limit is consistent with the CSM
mass estimated by Kilpatrick et al. (2023) who found a dusty
CSM mass∼5× 10−5 Me and Singh Teja et al. (2023) find a
CSM mass between 0.001 and 0.030 Me. Similarly, Panjkov
et al. (2023) constrain the mass-loss rate of the progenitor from
their X-ray analysis to 5× 10−4 Me yr−1, consistent with our
limit. Hiramatsu et al. (2023) estimate mass-loss rates of

Figure 5. Detection efficiency curves from our neural network classifier. Using the test light curves described in Section 5, we can place constraints (defined as the
limit at 80% detection efficiency). On the top row, dotted lines are also plotted representing the luminosity threshold for the 80% detection limit (black) and our
averaged limits over the grizy filters (gray). On the top row, for comparison, in light blue is the double-long model from Tsuna et al. (2023) and in dark blue is their
single-small model. Top left: example light curves for increasing injected luminosity. Top right: example light curves for increasing ejecta mass. For the example light-
curve plots, only luminosity or ejecta mass were varied with the other parameters fixed. The color map transitions from brown to orange for higher injected
luminosity/ejecta mass. Bottom left: detection efficiency curve for increasing injected luminosity. Dotted lines are also plotted representing the luminosity threshold
for the 80% detection limit (black) and our averaged limits over the grizy filters (gray). Bottom right: detection efficiency curve for increasing ejecta mass. Overplotted
is our upper ejected mass limit for SN 2023ixf, which is similar to the mass-loss estimate for SN 2020tlf (gray dotted line) from Jacobson-Galán et al. (2020).
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0.1–1.0 Me yr−1 in the 1–2 yr before the SN explosion using
numerical light-curve models informed by early follow-up
observations. Qin et al. (2023) used archival HST and Spitzer
imaging to examine the progenitor of SN 2023ixf, finding a
mass-loss rate∼ 3.6× 10−4 Me yr−1, concluding that this
enhanced mass-loss rate (compared to RSG winds) was
consistent with there being pulsational mass loss. Jencson
et al. (2023) also conclude enhanced mass-loss rates deduced
from their IR analysis of the progenitor of SN 2023ixf, finding
that the mass-loss rate of the progenitor 3–19 yr prior to
explosion was ∼3× 10−5

–3× 10−4 Me yr−1. Using a period–
luminosity relation with the IR variability of the progenitor of
SN 2023ixf, Soraisam et al. (2023) found a mass-loss rate of
2–4× 10−4 Me yr−1. In short, all mass-loss rate estimates seem
consistent with our limit of 0.3 Me of ejected mass in an
outburst forming the CSM.

We repeat our eruption-search methodology utilizing the
radiation hydrodynamic models of pre-SN outbursts in SNe II
devised by Tsuna et al. (2023). We select the two extreme
models in terms of luminosity: the “double-large,” corresp-
onding to 3.6 Me of CSM and 1.4× 1047 erg in radiated
energy and the “single-small” model, being the least energetic
and corresponding to an ejected mass of 0.015 Me and a
radiated energy of 2.0× 1045 erg. When using these models to
construct a training set of light curves, our only free parameter
is the time of explosion. Again, we create a training set of 104

model light curves and add appropriate extinction to these light
curves (which was not considered in the initial modeling by
Tsuna et al. 2023). The resultant classifier was then applied to
our long-baseline preexplosion data. Our classifier, again, does
not detect pre-SN eruptions consistent with this model. This is
consistent with the analysis of Dong et al. (2023), who do not
find any of the models of Tsuna et al. (2023) likely to be
represented in their preexplosion data. The top row of Figure 5
also shows the single-small and double-long models (the least
and most luminous of their hydrodynamical preexplosion
outburst models, respectively) of Tsuna et al. (2023) for
reference. With a peak at ∼−10.5 mag and duration of a few
hundred days in the case of the double-long model, our Pan-
STARRS observations would be sensitive to outbursts that
follow this model.

5.1. Preexplosion Variability of the Progenitor

Numerous previous studies of the preexplosion activity of
SN 2023ixf found that the progenitor was observably variable
at IR wavelengths (see Jencson et al. 2023; Kilpatrick et al.
2023; Soraisam et al. 2023). Kilpatrick et al. (2023) suggested
that the variability, with a period of around 1000 days seen in
preexplosion Spitzer data, may be due to κ-mechanism
pulsations seen in RSGs such as αOri (Betelgeuse; see Li &

Gong 1994; Heger et al. 1997), where a changing opacity
drives variability. Apart from deep HST single-epoch images,
in the optical bands, the progenitor is not detected. However,
we may extend our methodology to place constraints on the
variability of the progenitor in the optical.
Similarly to our pre-SN outburst model, we construct a

simple variability model, assuming sinusoidal variability,
antiphased to the IR variability (i.e., assuming constant
bolometric luminosity). This model has a fixed period of
1000 days and two free parameters, the amplitude of the
variation and the baseline. Again, we train a multilayer
perceptron with the same number of layers, number of neurons,
and the same activation function as in Section 5. We randomly
sample both the amplitude and baseline between 0 and 106 Le
and create 104 test light curves (both with and without
variability) with which we construct our training set. We then
run the i-band Pan-STARRS preexplosion data through this
model. We choose the i band as this has the most data and best
temporal coverage, while also using one filter avoids making
assumptions on color evolution. In the preexplosion data, we
find no detectable variability in the i-band data.
To place upper limits on the variability, we repeat the

methodology used to constrain the pre-SN outbursts (see
Figure 5). We vary the baseline and amplitude (separately)
between 0 and 106 Le with each step having 103 test light
curves generated. For each set of 103 light curves, the other
unfixed parameter is varied randomly. Using the same 80%
detection efficiency threshold, we find that these models are not
sensitive to the baseline and the amplitude has an upper
limit∼ 4× 104 Le. This limit is similar to the constraint from
the pre-SN outburst models and is similar to the luminosity of
RSG progenitors. This suggests that if our optical images were
close to the depth of the progenitor, we would have observed
variability.
Moreover, we vary our SED models to infer the limits of

variability in other bands (in a nonperiodic fashion). We use the
RSG progenitor parameters derived from our SED analysis
using the consolidated photometry presented in Section 4. First,
we vary only the dust properties of the progenitor with the
other parameters being fixed. We vary the optical depth due to
the surrounding dust, τ, between 2 and 10. We then test a
second scenario in which the progenitor properties (luminosity
and temperature) are freely varied, with a fixed τ= 8.23 (the
value from our SED fitting). In these two tests, we use the
Spitzer observations to constrain the remaining free parameters,
and we use Gaussian process interpolation to predict the Spitzer
observed fluxes throughout the observed baseline.
The peak of variability in each grizy filter found with each

method and the limits from our photometry are shown in
Figure 6. When the variability is accounted for by changing the
progenitor parameters, the variability never peaks brighter than
our limits. When the variability is assumed to be due to
changes in the optical depth, in the optical, all but the z band
have photometric limits brighter than the peak of the
variability. This may suggest that our z-band photometric
coverage did not catch a peak in the variability if it was
detectable or that the variability may not be purely due to
optical depth variations. Generally, we would not have been
able to detect variability of the progenitor of SN 2023ixf in the
framework of our assumptions with Pan-STARRS. Also shown
in Figure 6 are the near-infrared bands, JHK. The progenitor of
SN 2023ixf was detected in the near-infrared; however, these

Table 2

Presupernova Outburst Model Priors and Their Ranges

Parameter Value Range

Ejecta mass, Mej 0.01–1.00 Me

Injected outburst luminosity, L0 0–106 Le
Progenitor radius, R0 1–1000 Re

Explosion time, t0 0–4851 days

Wind velocity, vej 50 km s−1

Geometric parameter, β 13.7

Opacity, κ 0.34 cm2 g−1
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detections occur outside of the Spitzer baseline. Nevertheless,
these observations are similar to the peaks of the variability in
both scenarios, being dimmer than the peak of the variability
when just the optical depth is varied and brighter than the case
where the progenitor properties are free parameters. For
variability in the IR, we also note that the fractional variability,
defined as the range in flux measurements over the baseline
(taken as the average flux), is approximately constant over all
IR filters. The scatter in the flux measurements is presented in
Figure 7. Systematically adding to the uncertainty of each
measurement in quadrature (adding a fractional uncertainty of
0.0001 in each step) to represent intrinsic scatter allows us to
probe possible variability. By calculating how much scatter is
required to produced a reduced χ2= 1, compared with zero
scatter, Δfν= 0 μJy, we can estimate the intrinsic scatter. In the
Pan-STARRS izy filters (the filters with the most flux
measurements), typically 5% of the uncertainty is required
to be added as intrinsic scatter. This may indicate some
marginal variability in these data. However, we note that there
may be underestimates in the uncertainties in this analysis and
that the typical uncertainty of the flux measurements is larger
than the the typical IR variability.

6. The Host, M101, The Pinwheel Galaxy

The host, Messier 101 (M101), also known as NGC 5457, or
the Pinwheel galaxy, is located at a redshift of 0.000804
(Perley et al. 2023) and is a face-on spiral galaxy (SABc;
Buta 2019). As can be seen in Figure 8, SN 2023ixf is
coincident with a spiral arm at an offset of 264″ (∼8.7 kpc)
from the center of the nucleus of the host. SN 2023ixf is the
fifth recorded SN in M101, the others being SN 1909A (Kowal
& Sargent 1971), SN 1970G (Stienon & Wdowiak 1971),
SN 1951H (Maza & van den Bergh 1976), and SN 2011fe
(Nugent et al. 2011).

In order to gauge the association of the location of
SN 2023ixf with local star formation, we utilize the pixel
statistics technique, which takes advantage of normalized
cumulative ranking (NCR; see James & Anderson 2006;

Ransome et al. 2022, for details on this method). This
technique has been used to compare the environments of
different SN classes with star formation as traced by Hα
emission (James & Anderson 2006; Anderson et al. 2012;
Habergham et al. 2014; Ransome et al. 2022). In short, NCR
processing consists of sorting a continuum-subtracted image by
pixel (flux) value, cumulatively summed, and normalized by
the total (e.g., each pixel now has a value between 0 and 1).
We show an “NCR image” of the local environment in the

bottom left inset of Figure 8. This continuum-subtracted Hα
image was downloaded from NED,21 where the original
observations by Hoopes et al. (2001) were obtained with the
Kitt Peak National Observatory Burrel Schmidt Telescope.
After NCR processing, we find that the NCR value at the site of
SN 2023ixf is 0.27± 0.08. This NCR value is almost identical
to the average NCR value of SNe IIP presented by Anderson
et al. (2012) of 0.26, who measured NCR values from
observations of the hosts of 58 SNe IIP. Therefore the
environment of SN 2023ixf in terms of association to star
formation traced by Hα is unremarkable for SNe II.

7. Conclusions and Summary

In this work, we have presented a long-baseline preexplosion
light curve of the nearby SN II, SN 2023ixf in M101 as
observed by Pan-STARRS. With limits from this photometry
and stacked images and also measurements from the literature,
we find a progenitor consistent with a RSG with mass 14–20
Me, in agreement with most previous works. Using neural net
classifiers, we do not find evidence of outbursts that may have
produced the confined CSM but were able to place limits on
any possible outbursts. Our findings can be summarized as
follows.

Figure 6. The peaks of the possible preexplosion variability in the Pan-
STARRS grizy and also the near-infrared JHK filters (red triangles). The two
methods used to fit the variability are compared with the photometric limits.
Gray squares show the optical depth of the CSM as the driver of variability,
while yellow crosses show the RSG properties as the cause.

(The data used to create this figure are available.)

Figure 7. The scatter of the photometry in the preexplosion light curve of the
progenitor of SN 2023ixf. Plotted is the scatter in the flux measurements of the
Pan-STARRS data, HST detections, Spitzer, and near-infrared data. The HST
observations are placed at arbitrary dates. The dashed horizontal line represents
a Δfν = 0.

21
http://ned.ipac.caltech.edu
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1. Using our source injection photometric methodology for
obtaining preexplosion limits, we do not detect any
preexplosion activity in the Pan-STARRS grizy filters.
The average limits obtained are Mg=−7.2 mag,
Mr=−7.8 mag, Mi=−7.9 mag, Mz=−7.9 mag, and
My=−9.2 mag. These limits are below the brightness of
the pre-SN outburst seen in SN 2020tlf and much fainter
than outbursts seen prior to SNe IIn with preexplosion
outburst detections. Therefore, if the progenitor of
SN 2023ixf suffered an outburst similar to previous
observed events (with a duration of 100 days), Pan-
STARRS would have been able to detect it, if the
outburst did not occur during a gap in the data.

2. We train a multilayer perceptron using an expanding

photosphere model and the model outlined in Tsuna et al.

(2023) to identify outbursts in our Pan-STARRS light

curves. We do not find evidence for these types of

outbursts in our pre-SN data.
3. Using our multilayer perceptron classifier, we find that

our outburst luminosity has an upper limit absolute

magnitude∼−7.0 mag and an ejecta mass less than 0.3

Me. These constraints are consistent with measurements

from the literature (Dong et al. 2023; Flinner et al. 2023;

Hiramatsu et al. 2023; Jacobson-Galán et al. 2023;

Jencson et al. 2023; Kilpatrick et al. 2023; Neustadt et al.

Figure 8. The host of SN 2023ixf, M101 aka NGC 5457. This is a color-composite image made with PS1 gri images. In both the full host image and the inset zoomed-
in images, the location of SN 2023ixf is denoted by a white circle. The host image was created using mosaiced gri images from the Pan-STARRS image cutout service
(http://ps1images.stsci.edu/cgi-bin/ps1cutouts). The inset image in the upper-right corner is an i-band stacked image from the Pan-STARRS image cutout service,
which has the same pixel scale as the color image. The cutout on the bottom left is the location of SN 2023ixf in a continuum-subtracted Hα image of M101 from
Hoopes et al. (2001), downloaded from the NASA/IPAC Extragalactic Database (NED). All images are aligned north as up and east to the left.
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2024; Panjkov et al. 2023; Qin et al. 2023; Singh Teja
et al. 2023; Soraisam et al. 2023).

4. Multiyear deep stacks in the wizy bands do not yield a
progenitor detection to 3σ limits of w= 24.80 mag,
i= 23.80 mag, z= 23.00 mag, and y= 20.03 mag. These
are consistent our best-fit progenitor SED and shallower
than the optical HST detections.

5. We train another multilayer perceptron to detect periodic
variability, following the period discovered in Spitzer
observations. We do not detect any pre-SN variability in
the most sampled filter, i, using the neural network. We
repeat the methodology used for the pre-SN outburst to
place limits on variability, finding similar limits on the
amplitude of the variation as we found with the pre-SN
outburst model (<4× 104 Le).

6. We fit the SEDs using DUSTY +MARCS models to
consolidated literature photometry of the progenitor with
conservative uncertainty estimates to account for its
variability at IR wavelengths. We use a carbon dust
model (however, some authors such as Jencson et al.
2023 used silicate dust and get consistent results within
the reported uncertainties) and find a progenitor mass
range of 14–20 Me. This mass range is consistent with
other reported values for SN 2023ixf from the literature
and may indicate a RSG progenitor on the higher end of
the observed mass range (Jencson et al. 2023; Neustadt
et al. 2024; Niu et al. 2023; Qin et al. 2023; Soraisam
et al. 2023; Van Dyk et al. 2023; Xiang et al. 2024).

7. By varying both the dust properties and progenitor
temperature and luminosity and fitting the SEDs with
varying progenitor properties, we find that optical
variability consistent with Spitzer observations and our
DUSTY models was not observable with Pan-STARRS.

8. Using the NCR pixel statistics method, we find that the
host environment of SN 2023ixf, with an NCR value of
0.27± 0.08, is consistent with the average NCR value of
the environments of SN IIP and indicative of an
environment of moderate ongoing star formation.
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