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Abstract

A multiscale topology optimization framework for stress-constrained design is presented. Spatially varying microstructures
are distributed in the macroscale where their material properties are estimated using a neural network surrogate model for
homogenized constitutive relations. Meanwhile, the local stress state of each microstructure is evaluated with another neural
network trained to emulate second-order homogenization. This combination of two surrogate models — one for effective
properties, one for local stress evaluation — is shown to accurately and efficiently predict relevant stress values in struc-
tures with spatially varying microstructures. An augmented lagrangian approach to stress-constrained optimization is then
implemented to minimize the volume of multiscale structures subjected to stress constraints in each microstructure. Several
examples show that the approach can produce designs with varied microarchitectures that respect local stress constraints. As
expected, the distributed microstructures cannot surpass density-based topology optimization designs in canonical volume
minimization problems. Despite this, the stress-constrained design of hierarchical structures remains an important compo-
nent in the development of multiphysics and multifunctional design. This work presents an effective approach to multiscale
optimization where a machine learning approach to local analysis has increased the information exchange between micro-
and macroscales.

Keywords Topology optimization - Multiscale design - Stress-constrained design - Machine learning - Second-order
homogenization

1 Introduction

The design of multiscale structures aims to strategically
distribute material with tailored properties. Inspired by
natural structures like bamboo and trabecular bone (Wegst
et al 2015), multiscale design optimization can harness the
exotic behavior of optimized cellular materials (Surjadi et al
2019) to achieve superior multi-functional performance at
the observable scale (Wu et al 2021a). In particular, mul-
tiscale structures with spatially varying microarchitectures
have been shown to exhibit exceptional performance in
energy-absorbing, buckling, and post-yield applications
(Alberdi et al 2020; Wang and Sigmund 2020; Kochmann
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and Bertoldi 2017). The relationship between the macroscale
(observable space) and microscale (material space), how-
ever, leads to a complicated exchange of physical effects that
increases the computational burden of design optimization.
A successful optimization framework must exchange the
appropriate physical information between scales, navigate
a multiscale design space, and limit the computational cost
of iterative optimization.

Several approaches to multiscale structural optimiza-
tion have emerged since the seminal work of Bendsge and
Kikuchi (1988). Approaches differ in their treatment of the
scale separation between the macroscale structure and local
changes in microstructure, but the homogenization approach
is ubiquitous in multiscale design (Wu et al 2021a). As it is
employed in design optimization approaches, the homog-
enization model of multiscale materials considers varia-
tions of the microstructure that are sufficiently small rela-
tive to the macroscale structure (Guedes and Kikuchi 1990;
Allaire 2012; Najafi et al 2021). Homogenization produces
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the effective or homogenized properties of a microstruc-
ture design through analysis of a unit-cell boundary value
problem.

Homogenization-driven design optimization links the
effective properties of a unit-cell design to a set of design
variables to evaluate the performance of a structure with
evolving topologies. For example, optimization frameworks
have considered the design of microscale topologies and the
layout of the homogenized macroscale structure, resulting
in a series of nested optimization problems (Nakshatrala
et al 2013; Xia and Breitkopf 2014). The additional com-
putational cost and potential geometric incongruities in
the nested approach to homogenization-based optimization
motivates a reduced, parameterized representation of micro-
architecture. Truss-like microarchitectures, parameterized
by geometric descriptors, provide an efficient representa-
tion of the microarchitectures (Wang et al 2018; Groen and
Sigmund 2017; Wu et al 2021b). Other approaches rely on
a database of microarchitectures to efficiently model mul-
tiscale structures (Wang et al 2020; Djourachkovitch et al
2021). In a reduced design space, surrogate models can map
the design variables to the microarchitecture’s effective stift-
ness, relegating the microscale analysis to more efficient
models (White et al 2018; Black and Najafi 2023). Further-
more, post-processing techniques such as the de-homogeni-
zation method can be used to recover viable structures from
the parameterized microarchitecture descriptors (Pantz and
Trabelsi 2008; Groen et al 2021).

In addition to the effective material properties of a
unit-cell design, homogenization can provide the effective
stresses of the microstructure. These effective macroscale
stresses are linked to the true microscale stress state through
corrector terms that describe the local stress of compos-
ite materials (Allaire 2002). In relation to the local stress
within a microarchitecture, the corrector represents a stress
amplification at the local scale. Recently the stress amplifi-
cation tensor has been studied as a metric for the design of
architected structures (Ferrer et al 2021; Zhang et al 2022).
The incorporation of local stress amplification in multiscale
structural optimization motivates a microstructure-aware
design framework and will be the focus of this work.

Stress-driven topology optimization incorporates the
structure’s state of stress as a performance metric. Stress
minimization approaches seek the topological layout that
minimizes the maximum stress under certain loading condi-
tions (Lian et al 2017), while stress-constrained approaches
apply a point-wise stress limit to the structure (da Silva et al
2021a). Several mechanical and computational challenges
drive the development of stress-driven design optimization.
The singularity phenomenon arises as the material design
density approaches zero and the local stress is amplified
(Duysinx and Sigmund 1998; Le et al 2010). The optimi-
zation, therefore, is unable to remove material (i.e., create
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holes) due to the stress amplification. The e-relaxation tech-
nique has been widely adopted to resolve the singularity
phenomenon by relaxing the stress constraint in areas of
low density (Cheng and Guo 1997). Evaluating the stress
state at each material point also creates a highly nonlinear,
computationally expensive optimization formulation. To
incorporate the point-wise stress in the optimization for-
mulation, global stress aggregation has been used to effi-
ciently quantify the structure’s stress performance (Duysinx
and Sigmund 1998; Luo et al 2013). Point-wise constraints,
implemented through the augmented lagrangian approach
(Ito and Kunisch 1990), have been also implemented to
evaluate stress-constraints locally (Pereira et al 2004; Sen-
hora et al 2020). The augmented lagrangian approach to
point-wise stress constraints, along with proper use of stress
interpolation parameters, has been shown to be extensible to
large-scale stress-constrained structural optimization prob-
lems (da Silva et al 2021b).

Stress-driven multiscale design builds upon topology
optimization frameworks to incorporate stress metrics
across the material (microscale) and structural (macroscale)
design domains. The majority of work in this field has so
far focused on the stress-driven design of materials where
the local microarchitecture is optimized under some stress
constraints (Coelho et al 2019; Picelli et al 2020; Collet et al
2018; Alacoque et al 2021; Conde et al 2022). The work
of Coelho et al (2021) compares both shape and topology
optimization approaches for stress-driven design of micro-
structures. Interestingly, in this work it is shown that a multi-
material microstructural model can significantly reduce the
peak stresses in porous composites.

To incorporate the local microarchitectures into the
greater structure, the homogenization correctors may be
evaluated to calculate local stress amplification (Allaire
et al 2004; Ferrer et al 2021). Correctors are not always
known (Allaire 2002), so other approaches estimate a stress
amplification factor in the microstructure numerically. For
example, isotropic yield models may be estimated as a func-
tion of the microarchitecture’s relative density (Cheng et al
2019; Zhang et al 2020; Zhao et al 2022). Concurrent opti-
mization has also been used to incorporate the stress state
of an evolving microstructure with limited macroscale vari-
ance (Zhao et al 2021b, a; Ho-Nguyen-Tan and Kim 2023).
These techniques resolve the microstructure’s stress state to
its maximum value (or an approximation of its maximum).

This paper introduces a microstructural yield criteria in
a computational design model for spatially varying micro-
architectures. We implement this yield criteria as a local
stress constraint, then we evaluate the multiscale phenomena
using a machine learning model trained using second-order
homogenization. The resulting approach yields an interpo-
lation of the maximum stress within each microstructure
as a function of its geometry and macroscale stress state.
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The multiscale formulation for stress amplification (includ-
ing second-order homogenization details) is introduced in
Sect. 2, then Sect. 3 introduces the neural network surro-
gate approach for local stress evaluation. The optimization
formulation is presented in Sect. 4. Numerous examples are
presented in Sect. 5 to evaluate the design framework. The
optimization framework is shown to effectively and effi-
ciently incorporate multiscale effects in the design model,
enriching the information exchange between scales through
the neural network surrogate models.

2 Multiscale stress amplification

The multiscale system in this work considers a hierarchi-
cal structure (Fig. 1a) represented by macroscale domain
composed of many small microscale domains (microarchi-
tectures) (Fig. 1b). We seek a model for the amplification
of stress at the macroscale caused by local changes in the
microscale. In the macroscale, boundary conditions are
defined and the material layout is prescribed (Fig. 1b, c).

~/~
&
~——

Fig.1 The procedure for calculation of the stress amplification
caused by the presence of microarchitecture is presented. The struc-
ture with realized microstructures (a) is homogenized (b) to produce

In the microscale, the structural response of each micro-
architecture is evaluated through numerical homogenization
techniques (Fig. 1d). The multiscale analysis procedure is
designed to efficiently estimate local stress-based yield cri-
teria within a structure composed of many spatially varying
microarchitectures (Fig. le).

The multiscale model presented in this work assumes
loosely coupled macroscale-microscale response. This loose
coupling is defined by a first-order (Cauchy) macroscale
stress—strain relationship and a second-order microscale
response (Fig. 2). The following subsections detail this cou-
pling and evaluate the multiscale model compared to direct
numerical simulation (fullscale analysis).

2.1 First-order macroscale response

In the macroscale, numerical homogenization is first applied
to estimate the effective linear, first-order constitutive rela-
tion of each microstructure (Guedes and Kikuchi 1990;
Hassani and Hinton 1998). From the relation o; = Cy € of

ij
stress o;; and strain €, a periodic composite with sufficient

an approximate macroscale system (c). Based on the macroscale
response, a series of local analyses (d) produces the amplified stress
in each microstructure (e)
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Macroscale
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Fig.2 The multiscale strategy is presented where the macroscale
response is approximated using first-order homogenization techniques
(a), then a local evaluation with approximate second-order behav-
ior (b) is used to evaluate local stresses. The strategy is uncoupled
because the higher-order stresses induced in (b) are neglected in the
macroscale

separation of length scales (i.e., the characteristic length
of the microstructure is significantly smaller than the char-
acteristic length of the structure) may be distilled into the
effective constitutive tensor; its definition follows from the
Method of Multiscale Virtual Power (De Souza Neto et al
2015; Blanco et al 2016b). We limit this discussion to the
case of microscale periodic boundary conditions, infinitesi-
mal strains, and linear elastic material behavior.

First, the process kinematic insertion defines the kin-
ematic transition from a macroscale position x € ), to a
microscale position y € Q,,. Without loss of generality, we
define the microscale origin at the microstructure’s centroid:

Macroscale Qv

[z ydV =0. (1)

i

The first-order expression for microscale displacement u,, is

u, () = uy(X) + Veuy(x) -y +a,(y), )
SO
Vyu, ) = Vouy ) + Vi, Q) (3)

for the microscale displacement u u defined for y € Q > TAc-
roscale displacement u,, defined for x € Q,;, and microscale
displacement fluctuation & ,. Here we introduce the notation
(-)y to indicate a macroscale quantity and (-),, to indicate a
microscale quantity (Fig. 3). In defining this space of micro-
structural deformations, the following averaging relations
are postulated:

1
Uy = ] [zﬂu”dV )
and
Fy = ! /FdV
M_lgﬂl o, H (5

for the deformation gradient F = I + Vu. The kinematical
averaging relations (4) and (5) naturally lead to the following
constraints on i ;:

1 / .
— i,dV =0
|Q;4| Q, H (6)

and

Microscale €,
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Fig.3 The multiscale framework in this work considers a discretized macroscale domain Q) composed of many microscale domains €, in

which the spatially varying microarchitectures are defined

@ Springer



Stress-constrained optimization of multiscale structures with parameterized...

Page50f23 102

1 ~
m/g Vi, (y)dV = 0. (7

The constraints (6) and (7) define the minimum viable space
of admissible & ,. Periodic boundary conditions are imposed
to further restrict this space; although periodicity restricts
the microstructural design space to periodic geometries,
periodic boundary conditions have been shown to offer a
more appropriate approximation of macroscale stresses
(Miehe and Koch 2002) which is desirable for this applica-
tion. We consider a generic set of opposing boundaries I'~
and T't with mirrored discretizations. Periodicity is defined
by

") =1u,y") )

which ensures constraints (6) and (7) are satisfied
(De Souza Neto et al 2015). In conclusion, the space of
admissible first-order fluctuations is defined

W= {a, e a,07)=a,0"). )

The microscale equilibrium condition, expressed as a vari-
ational form of the Hill-Mandel condition, ensures equilib-
rium between scales:

: 1 :
Py @ 6Fy = g I/ P, : 6F ,dV
H Qu
1 _
= P, : [6Fy + V,éii,]dV, (10)
1,1 Ja,

va, € "

for the macroscale first Piola-Kirchhoff stress tensor Py;.
By considering 6F); = 0 and our assumption of small-strain
elasticity, the microscale equilibrium condition follows from
(10) as

SO sn oD
0=‘/Q o, Vy5u”dV Vu” EVM . 1)

n

It may also be shown that for infinitesimal strains and linear
elastic constitutive behavior, the following expression for the
homogenized stiffness tensor can be derived (Nakshatrala
et al 2013; Wallin and Tortorelli 2020):

H _
Cijk[ -

1 C, () — 2} (06D _ =60) gy 12)
IQﬂl o Hpgrs y2Z'k pq rs rs

for the prescribed microscale unit strain sgffj). The local

strain field s:ffj ) is derived from (11).

The macroscale system response is then evaluated
through the finite element assembly of the element stiffness
matrix

kMe=/ B'C"Bav,, (13)
QMe

for the strain—displacement relation B. In (13), we have
assumed that the material properties in each macroscale
element are the first-order homogenized constitutive rela-
tion from (12). After assembly of the global stiffness matrix
K, the macroscale deformation u,; is evaluated through the
expression of linear elastic equilibrium,

Kyiuy = fus (14)

for the finite element forcing term f;. The macroscale stress
is then approximated using the material properties of the
solid microarchitecture C,, and the appropriate element dis-
placement uy;, such that

onmg = CoBityy,- (15)

This definition of stress follows from density-based, stress-
driven optimization techniques (Duysinx and Bendsge 1998;
da Silva et al 2021a). Critically, o, does not capture any
amplification effects caused by the local microstructure.
Therefore, we implement a local analysis procedure for each
microstructure to incorporate local stress effects.

2.2 Second-order microstructure response

The local microstructural response is evaluated using a
second-order homogenization approach (Kouznetsova et al
2002, 2004). Deformation in the microscale is considered a
function of the strain and strain derivative at the macroscale,
as in

Ax = Fy - AX + %AX-GM-AX+(’)(AX3). (16)

for the generic material vector Ax in the deformed configu-
ration, the generic material vector AX in the undeformed
configuration, and gradient of the deformation gradient

aFikM
+ .
X, = ox ) (17)

OF;
Gy = VFy = %( M

The second-order term Gy, establishes a microscale strain
that varies with y as a result of the macroscale deformation.
The second-order relations, therefore, slightly relax the strict
separation of scales present in first-order homogenization
(Kouznetsova et al 2004). This relaxation is important for
our work, as we seek a multiscale model with realizable
microstructure designs.
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The second-order microscale deformation (assuming
infinitesimal strains) is therefore expressed as

u,(y) = uy(x) + Vouyx) -y

1 N 18
+56m 1y @y +a, ) (18)

Periodic boundary conditions are implemented to further
restrict the space of admissible microscale displacements.
Following (Kouznetsova et al 2004), two constraints are
applied to enforce periodicity within the space defined by
(18): the first constraint was defined in (8), and the second
constraint restricts fluctuations along I'~

/ i,y )dA =0 (19)
-

to enforce kinematic homogenization of the second-order
macroscale strain gradient G,;. The space of kinematically
admissible microscale fluctuations

S _ - 1
V” —{uMeH,

L L (20)
a,y")=u,0"), i,y )dA =0}
-
and the microscale equilibrium condition defined by
. _ L)
0=/Q c,:Vu,dv Va, GVL . 1)

"

follow from the second-order behavior (18) and constraints
(8) and (19).

We consider an uncoupled second-order behavior where
the macroscale behavior (Fig. 2a) is assumed to be first-
order (Cauchy) material that is unchanged by the microscale
second-order response (Fig. 2b). In this approximation of
second-order homogenization, the deformation gradient Fy,
and the gradient of the deformation gradient G, are approxi-
mated using the finite element shape functions. Using quad-
ratic elements, these values are readily available (Nguyen
et al 2013). These approximations neglect the higher-order
stresses in the macroscale but decrease the computational
cost of the macroscale analysis because a C! continuous
finite element scheme is not required (Rodrigues Lopes and
Andrade Pires 2022). The effects of these assumptions are
a focus in subsequent sections. For a detailed examination
of second-order homogenization techniques, readers are
directed to Blanco et al (2016a) and Rodrigues Lopes and
Andrade Pires (2022).

The second-order microstructure response response u,
is used to evaluate the local stress in each microstructure:

o = CoBu,,. (22)
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where F); and Gy, were evaluated at the macro element’s
centroid and used to calculate u,, using the uncoupled sec-
ond-order approach. Then the stress-amplification caused by
the microarchitecture follows
max (o
fa= G—(M), (23)
Mo

where max (o) is the maximum stress within the micro-
structure (Fig. 3). By definition, f, > 1 for non-solid
microstructures.

In summary of the multiscale analysis procedure, a hier-
archical structure (Fig. 1a) is decomposed into its micro-
structures which are homogenized using (12) (Fig. 1b).
The homogenized macroscale domain Fig. 1b is analyzed
using quadratic finite elements cf. (14). Then the uncou-
pled second-order microscale analysis is performed (Fig. 2),
driven by Fy; and Gy which are approximated using u,,
and the appropriate element shape functions. The microscale
equilibrium (21) is evaluated while subjected to periodicity
constraints defined by (8) and (19). Using the second-order
microscale response, local stresses are evaluated using (22)
(Fig. 1d), and the stress amplification in each microstructure
is evaluated using (23).

2.3 Evaluation of the second-order scheme

The multiscale analysis formulation presented here relies on
multiple simplifying assumptions to configure a model suit-
able for design optimization. As mentioned previously, the
mathematical model for homogenization relies on a separa-
tion of macroscale and microscale along with a sufficiently
periodic microscale representation (cf. (12)). Furthermore,
the second-order microscale analysis is uncoupled; higher-
order stresses are not considered in the macroscale, instead
the macroscale second-order strains are approximated using
finite element shape functions (c¢f. Fig. 3). This section illus-
trates the effects of these assumptions through a comparative
study.

To quantify the impact of these assumptions in the
multiscale model, a case study was performed to compare
four different structural analyses. The four cases, shown
in Fig. 4, show (1) poor scale separation with periodic
microarchitecture, (2) poor scale separation with random
microarchitecture, (3) good scale separation with periodic
microarchitecture, and (4) good scale separation with ran-
dom microarchitecture. Here poor scale separation is char-
acterized by a characteristic ratio of //L = 0.1 (i.e., 20 X 10
mesh) for the size of each microstructure relative to the char-
acteristic length of the structure, while good scale separation
is characterized by a size ratio of //L = 0.05 (i.e., 40 x 20
mesh). The cases introduce elliptical microstructures in
64 x 64 discretizations of solid (E =1, v = 0.3) and void
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Fig.4 Four pedagogical cases are considered to evaluate the multi-
scale model including a I/L = 0.1 with periodic microstructures, b
[/L = 0.1 with random microstructures, ¢ //L = 0.05 with periodic
microstructures, and d //L = 0.05 with random microstructures. Mov-

(E = 107%, v = 0.3) material. Each case is constrained on
one surface with a distributed load (||fy,|| = 1) along the
opposite surface.

A von Mises yield criterion is used in this work and is
calculated using

6, = \/6"Mo, 24)

with the matrix
1

1 -3 0
1 0 (25)

0O 0 3

defined for plane-stress conditions evaluated at the element
centroid and o, = {06,,,0,,,0,,},. Finite element analy-
sis is performed on a mesh of uniform, quadratic, plane-
stress quadrilateral elements. We apply a filter (in the style
of density-based topology optimization) for element-wise
smoothing of the von Mises stress to limit the effects of the
non-conforming mesh, as discussed in more in Sect. 3. For
an element i and filter radius ¢, the elements j within that
radius are defined as those whose centroid falls within ¢ to
the centroid of i Bruns and Tortorelli (2001). The centroid-
centroid distance d; is used in a Gaussian-weighted kernel
for each element-wise variable «a,

— J
% = Z 2 (26)
J

P ———

(c)

ing row-wise, the plots indicate the material and boundary conditions
for each case, the von Mises stress evaluated through fullscale finite
element analysis, and the maximum von Mises stress in each micro-
structure

dj
0 = max<1 _ E,o> @

W= ;w-, 28)

which will produce the “smoothed" quantity @. The von
Mises stress in Fig. 4 is ¢, the smoothed von Mises stress
is filtered using ¢ equal to three times the microscale ele-
ment’s width.

The von Mises stress for the four test cases is shown in
Fig. 4. The fullscale stress is evaluated using a fully realized
discretization: 1280 X 640 elements in the case of //L = 0.1
and 2560 x 1280 in the case of //L = 0.05. The maximum
von Mises stress in each microstructure is also shown and is
related to the stress amplification caused by the microarchtiec-
ture (cf. (23)).

The fullscale von Mises stress is compared to homogeni-
zation techniques in Fig. 5; first-order evaluation of the local
stress (Gy; = 0) is compared to the equivalent second-order
analysis. Error is calculated using the relative error norm
measured relative to the fullscale analysis:

[ Xirue — 1l
error = ———__WOO% 2 (29)
| |xtrue | | 2

As a consequence of poor scale separation, (Fig. 5a, b), the
homogenized material model used to calculate Fy; and Gy, is
inaccurate. This error propagates to the calculation of local
stress within €2,. The error is especially evident near the
boundaries of €2,; where the homogenized material model

@ Springer
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fails to capture the effects of the boundary conditions. As
scale separation improves (Fig. 5c, d), the homogenized
material model becomes more accurate, and both homog-
enization methods improve. For random microarchitectures,
error is induced regardless of the scale separation.

In all cases, the second-order approach significantly
reduces the error in the microscale analysis, especially
near the boundary of €, (Table 1). We note that in situ-
ations where the microstructure is sufficiently periodic
with poor scale separation (e.g., Fig. 5a), the second-order
homogenization approach significantly reduces the error in
the von Mises stress recovery. Stress along the microstruc-
tural boundaries, in addition to the maximum stress in each
microstructure, is more accurately modeled with the second-
order homogenization approach.

Table 1 The relative error norm of the von Mises stress & is recorded
for the four test cases shown in Fig. 5

Case 1** Order 2" Order
(a)l/L = 0.1; Periodic 0.125 0.075
(b) /L = 0.1; Random 0.178 0.137
(c) I/L = 0.05; Periodic 0.079 0.061
(d) I/L = 0.05; Random 0.148 0.127

First-order ~ Second-order

[t

e
1 1
§ - &
=
0

(a)

~ Second-order

Error

o

First-order

31 34
e 1S}
0 0

Error
Error

o

1 1

0 - &
(c)

Fig.5 The four pedagogical examples introduced in Fig. 4 are evalu-

ated using first-order and second-order homogenization of the micro-
structures. The von Mises stress, evaluated for each microstructure
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3 Machine learning surrogate modeling

The multiscale formulation presented previously relies on
two independent microstructure analyses (cf. Fig. 1). The
first step involves the evaluation of effective material proper-
ties through (12), and the second step evaluates local stresses
through a second-order scheme (cf. (22)). While Table 1
shows a reasonable accuracy for this approach, the compu-
tational cost of these successive unit cell analyses is undesir-
able for design optimization which may require hundreds of
iterations to converge. Therefore, we seek an efficient sur-
rogate model for both the evaluation of effective material
properties and the evaluation of local stresses.

Three parameterized microstructures are considered
for the multiscale stress-constrained design of hierarchical
structures. Design parameters are defined by a vector e, for
each macroscale element. The first is an elliptical inclusion
defined by three parameters: major axis radius r;, minor axis
radius, r,, and major axis rotation from the horizontal 8, so
a, = {r,r,, 0} (Fig. 6). The elliptical shape naturally limits
the stress concentrations introduced in the microstructure.
The second microstructure is a truss parameterized by effec-
tive density, so &, = {p} (Fig. 7). This truss mimics similar
microstructures that approach the Hashin-Shtrikman (HS)
bounds for two-phase materials (Triff et al 2018). The next

Second-order

40
- l Ib
< 0

(b)
Second-order

44
-& Ib
0

(d)

First-order

38

Error
Error

o
o

First-order

42
-] ‘b
= 0

Error
Error

o
o

then plotted on the macroscale mesh, is shown in addition to its error
measured relative to fullscale analysis
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Fig.6 The ellipse microarchitecture is parameterized by three design
variables (7, r,, #), and the unit cell is highlighted here within a 3 X 3
array of architectures

N Y
\VAVAVAVAVAY,

AVAVAVAVAVA
\/\/\N/\/\/\/

Fig.7 The HS-truss microarchitecture is parameterized by its effec-
tive density (p = 1 — 4(0.5 — 31)?, and the unit cell is highlighted here
within a 3 X 3 array of architectures

microstructure design is a 2D biotruss design named because
of its organically shaped inclusions (Fig. 8). The surfaces of
the biotruss are parameterized using four independent bézier
curves resulting in 10 geometric parameters per microarchi-
tecture (Black and Najafi 2023). All microstructures are

Fig.8 The biotruss microarchitecture is parameterized by four bézier
curves (10 total parameters), and the unit cell is highlighted here
within a 3 X 3 array of architectures

defined by a uniform 64 X 64 discretization of solid (£ = 1,
v = 0.3) and void (E = 1079, v = 0.3) material.

The neural network is considered for surrogate model
development (Fig. 9). The neural network has shown to be
an effective, efficient surrogate model for homogenization
(White et al 2018; Black and Najafi 2023). When trained
effectively, that is without overfitting, vanishing/exploding
gradients, etc., the neural network’s jacobian has proven val-
uable in the design optimization process (Black and Najafi
2023). Two neural network models will be presented as sur-
rogate for the aforementioned (1) evaluation of the micro-
structure’s effective material properties and (2) evaluation
of local stresses using a second-order scheme.

The first class of neural network was trained to estimate
the homogenized constitutive properties (cf. (12)) for each of
the parameterized unit cell design (Figs. 6, 7, 8). We imple-
ment a similar formulation to Black and Najafi (2023) with a
3 hidden layer, 64 neuron network with sigmoid activations
that produces the independent components of C*/ based on
the microstructure’s design parameter input. In summary,
the first class of neural network maps the microstructure’s
geometric parameters to its homogenized properties:

DNN,(a,) ~ C". (30)

For all three microstructure designs, this class of network
was trained using 667 random input and their resulting out-
put produced via finite element analysis and computational
homogenization of the unit cell design via (12). Using a
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Q/Q
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< @

Hidden layers

Fig.9 The neural network maps an input vector x to an output vector
y through a series of hidden layers. Three hidden layers are shown
here, each characterized by a number of neurons shown as connected
nodes

mean squared error objective function over 1,000 epochs of
training with the Adam optimizer (Kingma and Ba 2017),
randomized batches of 8 training examples, and a learn-
ing rate of 1073, the network converged to a relative root
mean squared error (RRMSE) less than 0.05 for all unit cell
designs (Fig. 10) measured on 333 validation examples.
The second class of neural network was trained to
approximate the von Mises stress amplification factor (cf.
(23)). The input for this class of neural network is the
parameterized microstructure geometry and the normal-
ized macroscale displacement value u,;,. The amplifica-
tion factor in these cases is calculated using the maximum
local von Mises stress and the macroscale solid stress:

. max(6';) €EQ,
Jo= s (€20
MO

The normalized displacement input is mapped to its strain
and strain derivative at the microstructure centroid, then the
input parameters are passed through a 3 hidden layer, 64
neuron network with sigmoid activations that is trained to
predict £,, so

DNN,(a,, uy,) % f,. (32)

Training data is generated using the second-order homogeni-
zation scheme (cf. (16)) with randomized inputs. This class
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Fig. 10 Convergence of the neural network surrogate model for
evaluating the components of the homogenized constitutive tensor is
shown for three microstructure designs

of network is trained on 6,660 examples over 1,000 epochs
with batches of 8 examples and a learning rate of 10~3. The
larger training dataset was required to capture the larger
input space (which now incorporates the space of macro-
scale displacements uy;,). The resulting networks achieved a
RRMSE of less than 0.1 for all three design cases (Fig. 11).

The performance of the neural networks trained to evalu-
ate effective material properties and local stress amplifica-
tion in the ellipse microstructure is evaluated using the four
pedagogical examples originally presented in Fig. 4. The
maximum stress in each microstructure as evaluated by full-
scale finite element analysis, a macroscale approximation of
stress (15) through second-order homogenization cf. (16),
and the neural network surrogate models (31) are compared
in Fig. 12. The relative error norm for these cases is also
compared in Table 2.

The error presented in Table 2, measured relative to the
full scale finite element evaluation of & (the von Mises stress
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Fig. 11 Convergence of the neural network surrogate model for eval-
uating the stress amplification modeled by second-order homogeniza-
tion is shown for three microstructure designs

at each “micro" element centroid), illustrates the practical
effects of the homogenization-based multiscale modeling
approach. When predicting the maximum stress in each
microstructure, two deep neural network (DNN) surrogates
model are trained to predict (1) the homogenized constitu-
tive tensor of the microarchitecture and (2) the maximum
stress within the microarchitecture as modeled by second-
order homogenization techniques. As discussed in the previ-
ous section, both of these homogenization techniques rely
on some assumptions related to the separation of scales
and periodicity of the microstructure. These assumptions
induce error which is compounded by the error in the neural
network surrogate model. The resulting approach yields a
prediction of the maximum stress within 10-15% of the
ground truth.

Compared to either a fullscale evaluation of the structure
(which scales poorly with the size and complexity of the
hierarchical structure) or a homogenization approach (which
relies on successive evaluations of each unit cell), the neural

network surrogate model approach has yielded 1,000-10,000
times faster evaluations. This evaluation time is pertinent to the
overall computational cost of the multiscale evaluation as each
microstructure in the macroscale domain must be analyzed.
As the problems scale, the cost of these nested evaluations
becomes untenable. The cost of data generation (1,000 exam-
ples for the surrogate of homogenized constitutive tensors and
10,000 examples for the surrogate of second-order evaluation
of stress amplification) is relatively small; the training data for
this work was generated in approximately one hour on (Intel i7
@4.1 GHz on 4 cores). Furthermore, the neural network sur-
rogate models are suitable for optimization, as each mapping’s
jacobian may be recovered through backpropagation. Although
this jacobian is not necessarily as accurate as the evaluation
accuracy, it has shown to be effective and useful in design
optimization scenarios (Black and Najafi 2023).

4 Optimization formulation

This section presents a formulation for multiscale stress-con-
strained design using the neural network surrogate models to
predict stress amplification. For a multiscale structure com-
posed of many spatially varying microarchitectures, we seek
a design framework that limits the maximum local von Mises
stress within each microstructure. The multiscale design opti-
mization framework must consider design variables in both
the macro- and microscales. The formulation presented here
applies a density variable p to define the macroscale topol-
ogy. Each microstructure in the macroscale domain is assigned
p. € (0, 1]to indicate the presence of a microstructure. The
centroid of each macroscale element is used to characterize
each microstructure, p, is defined for each of the M macroscale
elements. Each microarchitecture is defined by a set of param-
eters a,, that fully described the local geometry. For example,
the elliptical microstructure presented in Sect. 3 is parameter-
izedby a, = {ry, r,, 8} to define the elliptical inclusion in each
microarchitecture.

The neural network surrogate models for homogenized
constitutive properties and local stress evaluation presented
in Sect. 3 are integrated into the optimization formulation.
The effective properties of each microstructure are defined in
terms of the filtered macroscale density and the microstructure
design parameters such that
Crtoes @) = (Pin + (1 = pin)?) (€7 (@) ) (33)
for a minimum density p,,,, = 107, penalization parameter
p = 3 (Zhou and Rozvany 1991; Rozvany et al 1992), and
neural r}%work prediction of the homogenized constitutive
tensor C' . Each design variable (p,, a,) is filtered using
(26), and the macroscale layout variable p is further pro-
jected using (Wang et al 2011)
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Fig. 12 The maximum stress in each microstructure is compared for
multiple strategies shown row-wise for the four pedagogical test cases
of Fig. 4: the stress evaluated from fullscale finite element analysis,
the stress evaluated using the macroscale deformation and a solid,

Table 2 The relative error norm of the maximum microstructural von
Mises stress max(6) € €, is recorded for the four test cases shown in
Fig. 5

Case 60 1% Order 2™ Order DNN
(Speedup:
~ 10%)
(a)l/L =0.1; Periodic ~ 0.390 0.105 0.061 0.079
(b)l/L =0.1; Random  0.419 0.155 0.122 0.148
(¢)l/L = 0.05; Periodic  0.362 0.065 0.046 0.096
(d)Il/L = 0.05; Random 0.397 0.124 0.105 0.176

Here we also note that the speedup in homogenization and local stress
evaluation for the DNN is on the order of 10* (measured on a single
core)

_ tanh(Bn) + tanh(B(7, — )
Pe = Tanh(Bn) + tanh(B(1 — 1))

(34)

where j, represents the filtered density variable in each ele-
ment, f is varied throughout the optimization to penalize
intermediate densities, and # = 0.5 in this work.

The stress amplification function (31) is approximated
using the second class of neural network as f,(a,, yy,)-
To avoid the singularity phenomenon as p, — 0, the stress
amplification is also combined with stress interpolation
(Cheng and Guo 1997; Duysinx and Sigmund 1998) in a
combined interpolation-amplification function
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isotropic material model, the maximum stress evaluated via second-
order homogenization of each microstructure, and the result of the
neural network surrogate approach

fa—e(ﬁe’ (_xe’ uMe) =f€(ﬁe)

+ ng(ﬁe)(f‘a(ae’ uMe) - 1) (35)

where
P,

0= =0,

(36)

with € = 0.2. The parameter w € [0, 1]is an optional weight-
ing parameter for the stress amplification that is varied
throughout the optimization. The amplification function
(35) has been introduced in this work to control the opti-
mization’s sensitivity to local stress amplification. If w = 0,
the amplifications caused by microstructural geometries are
neglected. If w = 1, the stress is amplified by the local ampli-
fication factor.

Stress constraints are expressed for each microstructure
(i.e., each macroscale element) via

f;l—e (p_e’ (_xe’ uMe)&O(uMe)
Oy

-1<0 e=12,..,M, (37
for the von Mises yield stress oy. The stress constraints,
therefore, define a limit of the maximum von Mises stress
within each microstructure of the domain; they depend
on the macroscale layout p,, microarchitecture geometric
parameters «,, and macroscale response uy;.
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The objective of the optimization is to minimize the
volume/mass of a multiscale structure subjected to stress
constraints in each microstructure. The optimization for-
mulation is defined as

M

. 1
rlr}}xn@ =2 ; V(P &),
s.t.: Kyenr = v
and: pmin < pe < pmax’ (38)
Apin < A, < Aposs
f;z—e(pe’ae’uMe)a-O(uMe) 1 < 0’
Oy
e=1,.M.

The structure’s volume is introduced in (38) where v,(p,, @,)
is the volume fraction of solid material in each microstruc-
ture defined as

Ve(per @) = pvg(a,) 39)

and v, is the volume fraction of the each microstructure.
Based on these definitions, additional volume constraints
may be appended to the optimization problem including a
constraint of the macrostructural layout

M

1

sze—vp<o (40)
e=1

and a constraint of the average microstructural infill

1 M
—— D v lpa) =V, <0 1)
ze:] pe e=1

for the target values V, and V,, (summarized in Fig. 13).

The augmented lagrangian method is implemented to
handle the large number of inequality constraints related
to the local stress constraints (Ito and Kunisch 1990). The
objective function is redefined in the manner of da Silva
et al (2021a):

M
1
0= i Z Vo(per @)

e=1

(42)

§<& + fa—e(ﬁe’ ae’ uMe)a-O(uMe) _ 1>2

r Oy

with the scaling parameter » and approximate lagrange mul-
tiplier u,.

Several hyperparameters have been introduced to
enforce the local stress constraints including f, w, r, and u.
The parameters f, w, and r are iteratively updated through-
out the optimization process using

V,=10,V,=10,V =10 V,=10,V,=05V =05

_ it

Vo=10,V =05

ﬁ%

Fig. 13 Four example of hierarchical designs are characterized by
three measures of volume fractions: the layout volume V,, average
microstructural volume V,, and net volume V. The elliptical inclusion
shown here is 50% void, so the volume fraction of each microstruc-
ture is 50%

. NF/}Vi_l
XD max { xp, 20 43)
xo

for the generic variable x with current value x;, initial value
Xo, and final value x; that is updated every N, iterations
for N total iterations. The parameter u, the approximate
lagrange multiplier, is updated as

fa—e(ﬁe’ (_xe’ uMe)a-O(uMe)

WD r(Ee -0 @)
r O-y

4.1 Sensitivity analysis

The iterative optimization of the parameterized multiscale
structure requires an expression for the objective’s gradient
with respect to the macroscale design variables p and micro-
structure design variables &. Adjoint sensitivity analysis is
employed to derive this sensitivity information. First (42)
is modified to

M

1 2
0= M;V(pgwa)'i‘ Zﬁ 43)

+ AT (Kyuy —fy)
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where the simplification £ = (% + o

has been introduced and the arbitrary adjoint variable A has
been added given that Kyuy; = f;. To simplify notation, we
introduce the generic design variable d which may substitute
either p, or a component of &,. The sensitivity analysis
follows

90 _ 1.0
od M od
r ()f ()f auMe
+—L + 6
oy [ 2q auMe(do) ad
Ja—e (46)
+ 5 (CoBuy,)" MCOB 7 ]
ok ou
/IT Me k Me
+ < 9q "Me v 5, >
which simplifies to
00 _ 19v,
od ~ M od
Nye . LY 47)
ead 60)+Ae od uMe

provided that the adjoint variable is evaluated from the solu-
tion of

Ky A
—ry [
= E ( 0)
oy & lduy, (48)
Ja—e T
- ((COBuMe) MCOB) .
%o
The componentsa 2 0; < and L“ are readily derived from

the neural network surrogate models through backpropaga-
tion (Black and Najafi 2023).

5 Examples

This section evaluates the stress-constrained multiscale
design optimization framework through numerous exam-
ples with different boundary conditions and microstructural
parameterizations. Depending on the choice of microarchi-
tecture, the appropriate pair of neural networks introduced
in Sect. 3 is used in the iterative optimization of (42) using
the MMA optimizer (Svanberg 1987). To facilitate fair com-
parison of optimized designs, the fixed parameter update
scheme shown in Table 3 is applied, then the optimization
continues for 100 more iterations (500 total iterations).
Additionally, filtering is applied via (26) for both the layout
variable p (filter radius ¢ is three times the microstructure
width) and microarchitecture variables a (filter radius ¢ is
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two times the microstructure width). The filter radii are set to
enforce a limit on the local variation of the microstructures.
By averaging local features within the radius of the filter,
drastic fluctuations in features are reduced, and the peri-
odic assumptions introduced in the homogenization models
are more valid. Note that the filtering of design variables p
and «a is independent of the filter previously introduced to
smooth von Mises stress within the microstructure due to
mesh irregularities. To evaluate the optimized designs after
the optimization has completed, the multiscale structure is
fully resolved on a fullscale mesh and the von Mises stress
is calculated. Using this fullscale von Mises stress, the frac-
tion of yielded microstructures Y is defined as the fraction
of microstructures with a local stress greater than the stress
limit oy.

The first set of examples implement the canonical bench-
mark L-bracket design shown in Fig. 14. Here the reentrant
corner introduces a stress concentration that the optimiza-
tion must rectify. To prevent the boundary sticking phenom-
ena, buffer zones are introduced (with a size equal to the
filter radius of p) in the manner of da Silva et al (2021a).
In each buffer zone, p, = p;, and «, is defined so that the
microstructure is completely solid. The domain is discre-
tized into 4096 microstructures resulting in a macroscale
mesh of 0.0125 x 0.0125 quadrilaterals. Each microstruc-
ture is then represented by a 64 X 64 mesh of quadrilater-
als. The horizontal 1 X 0.4 portion of the L-bracket design
space in Fig. 14, for example, is represented by an 80 x 32
mesh of quadrilaterals resulting in a characteristic length
[/L =1/80 = 0.0125. Its “fullscale" equivalent would be a
5120 x 2048 mesh and is created by resolving each 64 X 64
microstructure in place of a single macroscale element. As
in Sect. 2.3, quadratic 8-node plane stress elements with-
out thickness are used in the macroscale evaluation, while
4-node plane stress elements without thickness are used in
the microscale evaluation and subsequent “fullscale" anal-
ysis. Each example in this section will use the same ele-
ments and discretization strategy with each mesh defined
by its characteristic length denoted by ratio of each square
microstructure to a unit macroscale length. A stress limit

Table 3 The update strategy for the optimization parameters is pre-
sented including the initial value, maximum value, update frequency,
and update range

param init max freq start-stop
(see also) X Xp N; (Ny-Nr)
p (33) 3 3 -
p(34) 0.5 10 20 0-400
w (35) 0.1 1.0 20 0-400
r(42) 001 100 20 0-400

M M
u(42), (44) 0 - 20 0-400
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Fig. 14 The L-bracket benchmark boundary conditions are shown
including the buffer zone indicated by dashed lines
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Fig. 15 The convergence of the optimized multiscale L-bracket
design with elliptical microarchitecture is shown

75

Tter. 0 Iter. 40

of oy =75 is set for the given loading conditions. Fig-
ure 15 illustrates the convergence behavior for the elliptical
microstructure.

Starting from a solid design (V, = 1.0), the optimiza-
tion process begins by significantly reducing the structural
volume. As shown in Fig. 16, the successive updating of
the parameters f, r, w, and u results in a more stringent
evaluation of the stress constraints. The structure’s infill is
therefore gradually increased, approaching a 96% solid infill
and a 33% net volume fraction. The evolution of the objec-
tives and constraints is influenced by the hyperparameters
defined in Table 3, especially the weight r defined in (42).
In the first 100 iterations, the parameter r is relatively small
and scales the objective to penalize structural volume more
than violations of the stress constraints. As the optimiza-
tion progresses, r increases the nominal value of the aug-
mented lagrangian term, resulting in the rising objective
value observed in Fig. 15. This effect is compounded by
the increasing parameter w which penalizes the local micro-
structural stress value.

The von Mises stress distribution is further analyzed
in Fig. 17. Here a selection of local stress-distributions -
obtained through homogenization of each independent unit
cell - are contextualized within the “fullscale” stress dis-
tribution previously shown in Fig. 16. The cell-level stress
distributions are representative of the data used in training
the neural network surrogates used in the optimization for-
mulation. Meanwhile, the “fullscale" analysis remains the
best model for the response of the structure with observable
microstructures, so we use this representation for evaluation
of the proposed framework.

Multiscale design optimization, however, is dependent
on the initial design configuration, and this framework is
no exception. Figures 18 and 19 show the same optimiza-
tion results for a design initialized with a 74% infill. In this
case, the lower infill volume fraction propagates through
the optimization, resulting in a final infill volume fraction
of 94% and a 37% net volume fraction. The higher volume
fraction in this case indicates the presence of local minima,
another trait of multiscale design. In both cases of L-bracket

75

Iter. 200 Iter. 500

Fig. 16 The von Mises stress ¢ evaluated on an equivalent fullscale mesh is shown for the design problem outlined in Fig. 15
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75

Fig. 17 The von Mises stress ¢ is detailed for an equivalent fullscale
analysis of the optimized result from Fig. 15. Details a—c¢ show the
results of a multiscale analysis of the same problem where the micro-
scale cellular problems are subjected to equivalent macroscale loads
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Fig. 18 The convergence of the optimized multiscale L-bracket
design with elliptical microarchitecture—starting with an initial
microstructural volume of V, = 0.7—is shown

designs, some infill porosity is preserved during the optimi-
zation. This is not the case with other objectives. In compli-
ance minimization, for example, it is expected that the infill
volume fraction approaches 100% (Sigmund et al 2016; Sig-
mund 2022). The preservation of some infill porosity illus-
trates the competition between the volume minimization and
the satisfaction of the stress constraints. Early in the optimi-
zation before the hyperparameters of Table 3 have matured,
the optimization favors the efficiency of a porous design with
low infill volume fraction. As the stress constraint violations
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are further penalized, most of this porosity is solidified by
the optimization process in favor of solid members. The
microstructures that remain are typically distributed in the
joints of the structure to transition between larger members.

5.1 Comparison of microstructure designs

The optimized designs for each of the three microstructures
are shown in Fig. 20. The HS-truss design proved inap-
propriate for this framework and serves to aid our evalu-
ation of this approach. Although the HS-truss is simply
parameterized by one parameter (its effective density), the
optimized failed to converge to a viable structure for the
target stress limit of oy = 75. For an increased stress limit
of 6y = 150 and an increased characteristic length ratio of
[/L =1/40 = 0.0250, the HS-truss design converged to a
suboptimal design with net volume fraction of 30%. The
poor performance is attributed to the stress concentrations
caused by the member connections in each truss. Although
this design is stiffer than the ellipse microstructure at a given
effective density, the HS-truss’s proclivity to stress concen-
trations are an impediment to the optimization’s progress.

The biotruss design alleviates stress concentrations
through its smooth interfaces. Furthermore, the biotruss cre-
ates a much larger design space (10 parameters per micro-
structure). The optimized L-bracket design for the biotruss
microarchitecture shown in Fig. 20 achieved a net volume
fraction of 46%. Here we note that the parameterization for
the biotruss results in a lower bulk modulus than the ellipse
microstructure, as optimization of the bulk modulus via
microscale optimization traditionally distributes material to
the outside of each microstructure (Sigmund et al 2016). The
biotruss is generally less stiff, so more material is required to
satisfy the same stress constraints as the ellipse.

5.2 Comparison of different boundary conditions

Two new domains are defined in Figs. 21 and 22. The dou-
ble L-bracket of Fig. 21 uses mixed loading and two reen-
trant corners to test the optimization framework. The double
L-bracket domain is discretized into 5,632 microstructures
with a characteristic length ratio of //L = 1/80 = 0.0125.
The stress concentration problem illustrated in Fig. 22 is
derived from da Silva et al (2021a) and is discretized into
5000 microstructures with a characteristic length ratio of
[/L =1/100 = 0.01. The multiscale design optimization
results are compared to the monoscale density-based topol-
ogy optimization results in Table 4. Figures 23, 24, and 25
compare the optimized designs for density-based topology
optimization and our multiscale approach with the elliptical
microstructure.

The density-based formulation for stress-constrained
design does not include any amplification caused by
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Fig. 19 The von Mises stress & evaluated on an equivalent fullscale mesh is shown for the design problem outlined in Fig. 18
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Fig.20 The optimized results for three different microstructure designs are presented for the L-bracket benchmark problem
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Fig.21 The double L-bracket benchmark boundary conditions are
shown including the buffer zone indicated by dashed lines

intermediate microstructure designs, so f, = 1 for all val-

ues of the design variable p. Therefore, the pre-convergence  Fig.22 The stress-concentration benchmark boundary conditions are
designs offer a relaxed evaluation of stress. The density-  shown including the buffer zone indicated by dashed lines

based optimized designs subsequently feature smaller

macroscale members compared to the multiscale designs.

Although the multiscale designs attempt to compensate for  largely obey the prescribed stress constraints with all design
this increased mass with some infill porosity, they fail to out-  examples resulting in a Y of 1-2%. The stress measured
perform the density-based formulations. Both formulations  in the multiscale formulation is microstructure-aware, so
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Table 4 Key characteristics of comparable optimized designs are pre-
sented

Example Microstructure Vv 1% V Yr

P a

L-bracket
Density-based 0.261 -
Ellipse (V0 = 1.0) 0.333 0.347 0.958 0.014
Ellipse (V2:0.7) 0.369 0.392 0.939 0.013
BioTruss 0.431 0.443 0.972 0.006
Double L-bracket

Density-based 0.271 - -

Ellipse 0.423 0.448 0.944 0.011
Stress Concentra-
tion Density-based ~ 0.153 — - 0.010
Ellipse 0.212 0.238 0.892 0.014

the stress distribution in the multiscale designs is generally
lower than the prescribed stress limit. Meanwhile, the den-
sity-based designs feature a larger portion of the structure
near the stress limit.

Fig. 23 The density-based
topology optimized result is
compared to the multiscale
(ellipse microarchitecture) opti-
mized result for the L-bracket
benchmark problem

75

Density-based

5.3 Multifunctional design

The previous section showed that the homogenization-based
multiscale design optimization cannot outperform density-
based topology optimization in pure volume minimization
problems subjected to stress constraints (and indeed this trend
continues with other objectives such as single-load structural
compliance (Sigmund 2022)). These examples were included
as a controlled metric for evaluating the presented multiscale
framework for optimization with microstructural stress con-
straints. This framework is extensible to other objectives, as we
will demonstrate in this section with a simple multifunctional
design problem.

The multifunctional problem, described in Fig. 26, adds
to the objective (42) a target displacement term to design a
structure that (1) supports an external load and (2) maintains
dimensional stability in a specific region:

6= @+%yo(u—uT)T(u—uT) (49)

75 75
\
! o 10
0 0
Multiscale
75
0
0

Multiscale

Fig.24 The density-based topology optimized result is compared to the multiscale (ellipse microarchitecture) optimized result for the double

L-bracket benchmark problem
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Fig. 25 The density-based
topology optimized result is
compared to the multiscale
(ellipse microarchitecture) opti-
mized result for the stress-con-
centration benchmark problem
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Fig.26 The results of a stress-constrained design optimization prob-
lem in which a prescribed deformation is applied to one surface are
compared. A beam is fixed on one end and subjected to a uniform
load on its free end with a symmetry condition enforced about the

where u and u are the structure’s displacement and its pre-
defined target displacement respectively, y is a vector of ones
and zeros of size u with 1 indicating a targeted degree of
freedom and O elsewhere, and N is a scalar normalization
term for the number of targeted degrees of freedom. Mul-
tiscale approaches have been shown to perform well when
considering this objective, as their expanded microstructural
material property space allows for anisotropy that is not pos-
sible with density-based design (Wang et al 2020; Black

x axis. A target displacement is defined on the surface y = 1.0. The
optimized designs are shown here along with the displacement of the
final designs along the free surface

and Najafi 2023). Sensitivity analysis of this objective is
performed in Black and Najafi (2023).

The resulting formulation represents a volume minimi-
zation problem subjected to stress constraints (o, = 0.5)
and a prescribed deformation. The example in Fig. 26
shows a target displacement of 0.01 in the y direction on
one surface of a beam subjected to compressive loading
f = 0.1 and symmetry boundary conditions. In this exam-
ple, a2 x 1 domain is discretized into 100 x 50 elements for
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density-based optimization or 40 X 20 microstructures for
multiscale optimization. After 500 iterations following the
parameter update schedule defined in Table 3, the density-
based design converged to a final volume fraction of 33%,
and the multiscale design converged to a final volume frac-
tion of 43%. Interestingly, although the multiscale design
required more material, the anisotropy of the microstructural
material model converged to a better targeted displacement;
the L, norm of (u —u;) was 0.133 for the density-based
design and 0.070 for the multiscale design. Figure 26 also
shows that the peak deviation from the target displacement
is also reduced in the multiscale formulation.

6 Conclusion

This work presented a methodology for stress-constrained
multiscale design optimization of hierarchical structures.
The multiscale design space considered the macroscale
layout of the structure and the microscale parameterization
of local geometry, producing a hierarchical system of con-
nected microstructures. To approximate the local stress in
each microstructure without modeling the expensive fulls-
cale model, two successive homogenization steps were per-
formed. First, the macroscale response was approximated
based on the homogenized, first-order material properties of
each microstructure. Next, using second-order homogeniza-
tion, the local stress was evaluated in each microstructure.
The combination of these homogenization methods proved
an effective approximation of the stress amplification fac-
tor induced by local microarchitecture with poor scale
separation. The optimization approach implemented neural
network surrogate models for each of the homogenization
steps. The first class of neural network approximated the
effective properties of each microstructure based on its geo-
metric parameterization, and the second class of neural net-
work estimated the stress amplification factor as a function
of the microstructure’s geometric parameterization and its
deformed configuration. With an augmented lagrangian for-
mulation of stress constraints, a series of example problems
were presented that minimized the volume of a multiscale
structure subjected to stress constraints.

The examples illustrate several important attributes of
the presented methodology. We note that the system of neu-
ral network surrogates were sufficiently accurate in ensur-
ing stress constraints were accurately modeled during the
optimization process. The optimization performance is also
dependent on the choice of microstructure parameterization.
This parameterization, which was restricted to perfect cell-
to-cell connections that respect the assumption of periodic-
ity, must produce a sufficiently stiff microstructure without
inducing stress concentrations. Furthermore, the number of
design parameters should be carefully considered, as each

@ Springer

new parameter requires an additional solve of the sensitiv-
ity’s adjoint variable. The data generation time for the train-
ing datasets required to train both classes of neural network
should also be considered, as more complicated designs may
require more data to capture the entire design space.

The multiscale approach presented in this work does not
outperform density-based (monoscale) approaches in the
minimization of structural volume subjected to stress con-
straints. In this particular objective, the augmented lagran-
gian approach was able to enforce stress constraints with
minimal violations (cf. Table 4). The freedom of density-
based design in controlling the structural layout proved more
beneficial in the provided examples, producing a lower over-
all structural volume. It is our view then that the application
of multiscale is more appropriate for multiobjective or mul-
tiphysics problems such as optimizing buckling resistance
or diffusivity. In these scenarios, the method presented here
would be an effective approach to including microstructural
stress-constraints in the optimization formulation.

Consequently, the main contribution of this work lies in
the multiscale design formulation. Incorporating second-
order homogenization techniques, this formulation included
local information related to the microstructure’s stress. The
neural network surrogate model served to include this local
information in the optimization formulation. We have dem-
onstrated the viability of this approach in structural optimi-
zation; the surrogate model was able to successfully navi-
gate the multiscale design space and enforce local stress
constraints to the same tolerance as density-based topology
optimization Table 4. For different objectives (e.g., design
for maximum energy absorption, design for maximum buck-
ling load) and especially for models with local material non-
linearity, the inclusion of microstructure-level mechanics is
critical to successful design optimization. The framework
presented here will be critical to extending multiscale design
in these areas.

The second-order evaluation of microstructure response
enabled the realization of microstructures at the observable
scale. We considered an infinitesimal strain formulation of
uncoupled second-order homogenization. Here, the first-
order macroscale response was evaluated, then the element
shape functions were used to approximate second-order
strains in the microscale. We showed that the uncoupled
model produced accurate analysis when the separation of
scales decreased. Future work should evaluate a second-
order scheme that incorporates higher-order stresses in the
macroscale.

The design framework presented in this work is read-
ily extensible to new microstructures and 3D designs. The
computational cost of extension to 3D should not be under-
estimated, as both the computational cost macroscale analy-
sis and microstructural analyses will increase dramatically.
As with density-based (monoscale) design techniques, this
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multiscale technique evaluated stresses based on a non-
conforming mesh, relying on filtering and interpolation of
stresses to characterize the design. Future work may improve
this evaluation with isogeometric finite element methods.

This work has built an optimization approach that
enriches the information exchange between the local mate-
rial scale and the greater structure. Additionally, the second-
order approach to local analysis is a promising method to
relieve the computational burdens associated with the sepa-
ration of scales. Finally, the machine learning approach used
here remains favorable because of its low data generation
costs, quick and efficient training, and significant contribu-
tion to the design model.
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