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Abstract
A multiscale topology optimization framework for stress-constrained design is presented. Spatially varying microstructures 
are distributed in the macroscale where their material properties are estimated using a neural network surrogate model for 
homogenized constitutive relations. Meanwhile, the local stress state of each microstructure is evaluated with another neural 
network trained to emulate second-order homogenization. This combination of two surrogate models — one for effective 
properties, one for local stress evaluation — is shown to accurately and efficiently predict relevant stress values in struc-
tures with spatially varying microstructures. An augmented lagrangian approach to stress-constrained optimization is then 
implemented to minimize the volume of multiscale structures subjected to stress constraints in each microstructure. Several 
examples show that the approach can produce designs with varied microarchitectures that respect local stress constraints. As 
expected, the distributed microstructures cannot surpass density-based topology optimization designs in canonical volume 
minimization problems. Despite this, the stress-constrained design of hierarchical structures remains an important compo-
nent in the development of multiphysics and multifunctional design. This work presents an effective approach to multiscale 
optimization where a machine learning approach to local analysis has increased the information exchange between micro- 
and macroscales.

Keywords  Topology optimization · Multiscale design · Stress-constrained design · Machine learning · Second-order 
homogenization

1  Introduction

The design of multiscale structures aims to strategically 
distribute material with tailored properties. Inspired by 
natural structures like bamboo and trabecular bone (Wegst 
et al 2015), multiscale design optimization can harness the 
exotic behavior of optimized cellular materials (Surjadi et al 
2019) to achieve superior multi-functional performance at 
the observable scale (Wu et al 2021a). In particular, mul-
tiscale structures with spatially varying microarchitectures 
have been shown to exhibit exceptional performance in 
energy-absorbing, buckling, and post-yield applications 
(Alberdi et al 2020; Wang and Sigmund 2020; Kochmann 

and Bertoldi 2017). The relationship between the macroscale 
(observable space) and microscale (material space), how-
ever, leads to a complicated exchange of physical effects that 
increases the computational burden of design optimization. 
A successful optimization framework must exchange the 
appropriate physical information between scales, navigate 
a multiscale design space, and limit the computational cost 
of iterative optimization.

Several approaches to multiscale structural optimiza-
tion have emerged since the seminal work of Bendsøe and 
Kikuchi (1988). Approaches differ in their treatment of the 
scale separation between the macroscale structure and local 
changes in microstructure, but the homogenization approach 
is ubiquitous in multiscale design (Wu et al 2021a). As it is 
employed in design optimization approaches, the homog-
enization model of multiscale materials considers varia-
tions of the microstructure that are sufficiently small rela-
tive to the macroscale structure (Guedes and Kikuchi 1990; 
Allaire 2012; Najafi et al 2021). Homogenization produces 
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the effective or homogenized properties of a microstruc-
ture design through analysis of a unit-cell boundary value 
problem.

Homogenization-driven design optimization links the 
effective properties of a unit-cell design to a set of design 
variables to evaluate the performance of a structure with 
evolving topologies. For example, optimization frameworks 
have considered the design of microscale topologies and the 
layout of the homogenized macroscale structure, resulting 
in a series of nested optimization problems (Nakshatrala 
et al 2013; Xia and Breitkopf 2014). The additional com-
putational cost and potential geometric incongruities in 
the nested approach to homogenization-based optimization 
motivates a reduced, parameterized representation of micro-
architecture. Truss-like microarchitectures, parameterized 
by geometric descriptors, provide an efficient representa-
tion of the microarchitectures (Wang et al 2018; Groen and 
Sigmund 2017; Wu et al 2021b). Other approaches rely on 
a database of microarchitectures to efficiently model mul-
tiscale structures (Wang et al 2020; Djourachkovitch et al 
2021). In a reduced design space, surrogate models can map 
the design variables to the microarchitecture’s effective stiff-
ness, relegating the microscale analysis to more efficient 
models (White et al 2018; Black and Najafi 2023). Further-
more, post-processing techniques such as the de-homogeni-
zation method can be used to recover viable structures from 
the parameterized microarchitecture descriptors (Pantz and 
Trabelsi 2008; Groen et al 2021).

In addition to the effective material properties of a 
unit-cell design, homogenization can provide the effective 
stresses of the microstructure. These effective macroscale 
stresses are linked to the true microscale stress state through 
corrector terms that describe the local stress of compos-
ite materials (Allaire 2002). In relation to the local stress 
within a microarchitecture, the corrector represents a stress 
amplification at the local scale. Recently the stress amplifi-
cation tensor has been studied as a metric for the design of 
architected structures (Ferrer et al 2021; Zhang et al 2022). 
The incorporation of local stress amplification in multiscale 
structural optimization motivates a microstructure-aware 
design framework and will be the focus of this work.

Stress-driven topology optimization incorporates the 
structure’s state of stress as a performance metric. Stress 
minimization approaches seek the topological layout that 
minimizes the maximum stress under certain loading condi-
tions (Lian et al 2017), while stress-constrained approaches 
apply a point-wise stress limit to the structure (da Silva et al 
2021a). Several mechanical and computational challenges 
drive the development of stress-driven design optimization. 
The singularity phenomenon arises as the material design 
density approaches zero and the local stress is amplified 
(Duysinx and Sigmund 1998; Le et al 2010). The optimi-
zation, therefore, is unable to remove material (i.e., create 

holes) due to the stress amplification. The �-relaxation tech-
nique has been widely adopted to resolve the singularity 
phenomenon by relaxing the stress constraint in areas of 
low density (Cheng and Guo 1997). Evaluating the stress 
state at each material point also creates a highly nonlinear, 
computationally expensive optimization formulation. To 
incorporate the point-wise stress in the optimization for-
mulation, global stress aggregation has been used to effi-
ciently quantify the structure’s stress performance (Duysinx 
and Sigmund 1998; Luo et al 2013). Point-wise constraints, 
implemented through the augmented lagrangian approach 
(Ito and Kunisch 1990), have been also implemented to 
evaluate stress-constraints locally (Pereira et al 2004; Sen-
hora et al 2020). The augmented lagrangian approach to 
point-wise stress constraints, along with proper use of stress 
interpolation parameters, has been shown to be extensible to 
large-scale stress-constrained structural optimization prob-
lems (da Silva et al 2021b).

Stress-driven multiscale design builds upon topology 
optimization frameworks to incorporate stress metrics 
across the material (microscale) and structural (macroscale) 
design domains. The majority of work in this field has so 
far focused on the stress-driven design of materials where 
the local microarchitecture is optimized under some stress 
constraints (Coelho et al 2019; Picelli et al 2020; Collet et al 
2018; Alacoque et al 2021; Conde et al 2022). The work 
of Coelho et al (2021) compares both shape and topology 
optimization approaches for stress-driven design of micro-
structures. Interestingly, in this work it is shown that a multi-
material microstructural model can significantly reduce the 
peak stresses in porous composites.

To incorporate the local microarchitectures into the 
greater structure, the homogenization correctors may be 
evaluated to calculate local stress amplification (Allaire 
et al 2004; Ferrer et al 2021). Correctors are not always 
known (Allaire 2002), so other approaches estimate a stress 
amplification factor in the microstructure numerically. For 
example, isotropic yield models may be estimated as a func-
tion of the microarchitecture’s relative density (Cheng et al 
2019; Zhang et al 2020; Zhao et al 2022). Concurrent opti-
mization has also been used to incorporate the stress state 
of an evolving microstructure with limited macroscale vari-
ance (Zhao et al 2021b, a; Ho-Nguyen-Tan and Kim 2023). 
These techniques resolve the microstructure’s stress state to 
its maximum value (or an approximation of its maximum).

This paper introduces a microstructural yield criteria in 
a computational design model for spatially varying micro-
architectures. We implement this yield criteria as a local 
stress constraint, then we evaluate the multiscale phenomena 
using a machine learning model trained using second-order 
homogenization. The resulting approach yields an interpo-
lation of the maximum stress within each microstructure 
as a function of its geometry and macroscale stress state. 
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The multiscale formulation for stress amplification (includ-
ing second-order homogenization details) is introduced in 
Sect. 2, then Sect. 3 introduces the neural network surro-
gate approach for local stress evaluation. The optimization 
formulation is presented in Sect. 4. Numerous examples are 
presented in Sect. 5 to evaluate the design framework. The 
optimization framework is shown to effectively and effi-
ciently incorporate multiscale effects in the design model, 
enriching the information exchange between scales through 
the neural network surrogate models.

2 � Multiscale stress amplification

The multiscale system in this work considers a hierarchi-
cal structure (Fig. 1a) represented by macroscale domain 
composed of many small microscale domains (microarchi-
tectures) (Fig. 1b). We seek a model for the amplification 
of stress at the macroscale caused by local changes in the 
microscale. In the macroscale, boundary conditions are 
defined and the material layout is prescribed (Fig. 1b, c). 

In the microscale, the structural response of each micro-
architecture is evaluated through numerical homogenization 
techniques (Fig. 1d). The multiscale analysis procedure is 
designed to efficiently estimate local stress-based yield cri-
teria within a structure composed of many spatially varying 
microarchitectures (Fig. 1e).

The multiscale model presented in this work assumes 
loosely coupled macroscale-microscale response. This loose 
coupling is defined by a first-order (Cauchy) macroscale 
stress–strain relationship and a second-order microscale 
response (Fig. 2). The following subsections detail this cou-
pling and evaluate the multiscale model compared to direct 
numerical simulation (fullscale analysis).

2.1 � First‑order macroscale response

In the macroscale, numerical homogenization is first applied 
to estimate the effective linear, first-order constitutive rela-
tion of each microstructure (Guedes and Kikuchi 1990; 
Hassani and Hinton 1998). From the relation �ij = Cijkl�kl of 
stress �ij and strain �kl , a periodic composite with sufficient 

Fig. 1   The procedure for calculation of the stress amplification 
caused by the presence of microarchitecture is presented. The struc-
ture with realized microstructures (a) is homogenized (b) to produce 

an approximate macroscale system (c). Based on the macroscale 
response, a series of local analyses (d) produces the amplified stress 
in each microstructure (e)
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separation of length scales (i.e., the characteristic length 
of the microstructure is significantly smaller than the char-
acteristic length of the structure) may be distilled into the 
effective constitutive tensor; its definition follows from the 
Method of Multiscale Virtual Power (De Souza Neto et al 
2015; Blanco et al 2016b). We limit this discussion to the 
case of microscale periodic boundary conditions, infinitesi-
mal strains, and linear elastic material behavior.

First, the process kinematic insertion defines the kin-
ematic transition from a macroscale position x ∈ ΩM to a 
microscale position y ∈ Ω� . Without loss of generality, we 
define the microscale origin at the microstructure’s centroid:

The first-order expression for microscale displacement u� is

so

for the microscale displacement u� defined for y ∈ Ω� , mac-
roscale displacement uM defined for x ∈ ΩM , and microscale 
displacement fluctuation ũ𝜇 . Here we introduce the notation 
(⋅)M to indicate a macroscale quantity and (⋅)� to indicate a 
microscale quantity (Fig. 3). In defining this space of micro-
structural deformations, the following averaging relations 
are postulated:

and

for the deformation gradient F = I + ∇u . The kinematical 
averaging relations (4) and (5) naturally lead to the following 
constraints on ũ𝜇:

and

(1)∫Ω�

ydV = 0.

(2)u𝜇(y) = uM(x) + ∇xuM(x) ⋅ y + ũ𝜇(y),

(3)∇yu𝜇(y) = ∇xuM(x) + ∇yũ𝜇(y)

(4)uM =
1

|Ω�| ∫Ω�

u�dV

(5)FM =
1

|Ω�| ∫Ω�

F�dV

(6)
1

|Ω𝜇| ∫Ω𝜇

ũ𝜇dV = 0

Fig. 2   The multiscale strategy is presented where the macroscale 
response is approximated using first-order homogenization techniques 
(a), then a local evaluation with approximate second-order behav-
ior (b) is used to evaluate local stresses. The strategy is uncoupled 
because the higher-order stresses induced in (b) are neglected in the 
macroscale
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Macroscale ΩM

Microscale Ωµ

Node (macro)
Node (micro)

Integration point (macro)×
Integration point (micro)×

Integration point (stress, macro)
Integration point (stress, micro)

Fig. 3   The multiscale framework in this work considers a discretized macroscale domain Ω
M

 composed of many microscale domains Ω� in 
which the spatially varying microarchitectures are defined



Stress‑constrained optimization of multiscale structures with parameterized… Page 5 of 23    102 

The constraints (6) and (7) define the minimum viable space 
of admissible ũ𝜇 . Periodic boundary conditions are imposed 
to further restrict this space; although periodicity restricts 
the microstructural design space to periodic geometries, 
periodic boundary conditions have been shown to offer a 
more appropriate approximation of macroscale stresses 
(Miehe and Koch 2002) which is desirable for this applica-
tion. We consider a generic set of opposing boundaries Γ− 
and Γ+ with mirrored discretizations. Periodicity is defined 
by

which ensures constraints (6) and (7) are satisfied 
(De Souza Neto et al 2015). In conclusion, the space of 
admissible first-order fluctuations is defined

The microscale equilibrium condition, expressed as a vari-
ational form of the Hill-Mandel condition, ensures equilib-
rium between scales:

for the macroscale first Piola-Kirchhoff stress tensor PM . 
By considering �FM = 0 and our assumption of small-strain 
elasticity, the microscale equilibrium condition follows from 
(10) as

It may also be shown that for infinitesimal strains and linear 
elastic constitutive behavior, the following expression for the 
homogenized stiffness tensor can be derived (Nakshatrala 
et al 2013; Wallin and Tortorelli 2020):

for the prescribed microscale unit strain �0(ij)pq  . The local 
strain field �∗(ij)pq  is derived from (11).

(7)
1

|Ω𝜇| ∫Ω𝜇

∇yũ𝜇(y)dV = 0.

(8)ũ𝜇(y
−) = ũ𝜇(y

+)

(9)Ṽ
(1)

𝜇
=
{
ũ𝜇 ∈ H1

, ũ𝜇(y
−) = ũ𝜇(y

+)
}
.

(10)

PM ∶ 𝛿FM =
1

|Ω𝜇| ∫Ω𝜇

P𝜇 ∶ 𝛿F𝜇dV

=
1

|Ω𝜇| ∫Ω𝜇

P𝜇 ∶
[
𝛿FM + ∇y𝛿ũ𝜇

]
dV ,

∀ũ𝜇 ∈ Ṽ
(1)

𝜇

(11)0 = ∫Ω𝜇

�𝜇 ∶ ∇y𝛿ũ𝜇dV ∀ũ𝜇 ∈ Ṽ
(1)

𝜇
.

(12)

CH

ijkl
=

1

|Ω�| ∫Ω�

C�pqrs

(
�0(ij)
pq

− �∗(ij)
pq

)(
�0(kl)
rs

− �∗(kl)
rs

)
dV

The macroscale system response is then evaluated 
through the finite element assembly of the element stiffness 
matrix

for the strain–displacement relation B . In (13), we have 
assumed that the material properties in each macroscale 
element are the first-order homogenized constitutive rela-
tion from (12). After assembly of the global stiffness matrix 
KM , the macroscale deformation uM is evaluated through the 
expression of linear elastic equilibrium,

for the finite element forcing term fM . The macroscale stress 
is then approximated using the material properties of the 
solid microarchitecture C0 and the appropriate element dis-
placement uMe such that

This definition of stress follows from density-based, stress-
driven optimization techniques (Duysinx and Bendsøe 1998; 
da Silva et al 2021a). Critically, �M0

 does not capture any 
amplification effects caused by the local microstructure. 
Therefore, we implement a local analysis procedure for each 
microstructure to incorporate local stress effects.

2.2 � Second‑order microstructure response

The local microstructural response is evaluated using a 
second-order homogenization approach (Kouznetsova et al 
2002, 2004). Deformation in the microscale is considered a 
function of the strain and strain derivative at the macroscale, 
as in

for the generic material vector Δx in the deformed configu-
ration, the generic material vector ΔX in the undeformed 
configuration, and gradient of the deformation gradient

The second-order term �M establishes a microscale strain 
that varies with y as a result of the macroscale deformation. 
The second-order relations, therefore, slightly relax the strict 
separation of scales present in first-order homogenization 
(Kouznetsova et al 2004). This relaxation is important for 
our work, as we seek a multiscale model with realizable 
microstructure designs.

(13)kMe = ∫ΩMe

BTCHBdVe,

(14)KMuM = fM,

(15)�M0
= C0BuMe.

(16)Δx = FM ⋅ ΔX +
1

2
ΔX ⋅ �M ⋅ ΔX +O(ΔX3).

(17)�M = ∇FM =
1

2

(
�FijM

�Xk

+
�FikM

�Xj

)
.
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The second-order microscale deformation (assuming 
infinitesimal strains) is therefore expressed as

Periodic boundary conditions are implemented to further 
restrict the space of admissible microscale displacements. 
Following (Kouznetsova et al 2004), two constraints are 
applied to enforce periodicity within the space defined by 
(18): the first constraint was defined in (8), and the second 
constraint restricts fluctuations along Γ−

to enforce kinematic homogenization of the second-order 
macroscale strain gradient �M . The space of kinematically 
admissible microscale fluctuations

and the microscale equilibrium condition defined by

follow from the second-order behavior (18) and constraints 
(8) and (19).

We consider an uncoupled second-order behavior where 
the macroscale behavior (Fig. 2a) is assumed to be first-
order (Cauchy) material that is unchanged by the microscale 
second-order response (Fig. 2b). In this approximation of 
second-order homogenization, the deformation gradient FM 
and the gradient of the deformation gradient �M are approxi-
mated using the finite element shape functions. Using quad-
ratic elements, these values are readily available (Nguyen 
et al 2013). These approximations neglect the higher-order 
stresses in the macroscale but decrease the computational 
cost of the macroscale analysis because a C1 continuous 
finite element scheme is not required (Rodrigues Lopes and 
Andrade Pires 2022). The effects of these assumptions are 
a focus in subsequent sections. For a detailed examination 
of second-order homogenization techniques, readers are 
directed to Blanco et al (2016a) and Rodrigues Lopes and 
Andrade Pires (2022).

The second-order microstructure response response u� 
is used to evaluate the local stress in each microstructure:

(18)
u𝜇(y) = u

M
(x) + ∇xuM(x) ⋅ y

+
1

2
�

M
∶ y⊗ y + ũ𝜇(y)

(19)∫Γ−

ũ𝜇(y
−)dA = 0

(20)
Ṽ
(2)

𝜇
=
{
ũ𝜇 ∈ H1

,

ũ𝜇(y
−) = ũ𝜇(y

+), ∫Γ−

ũ𝜇(y
−)dA = 0}

(21)0 = ∫Ω𝜇

�𝜇 ∶ ∇y𝛿ũ𝜇dV ∀ũ𝜇 ∈ Ṽ
(2)

𝜇
.

(22)�� = C0Bu�e.

where FM and �M were evaluated at the macro element’s 
centroid and used to calculate u� using the uncoupled sec-
ond-order approach. Then the stress-amplification caused by 
the microarchitecture follows

where max
(
��

)
 is the maximum stress within the micro-

structure (Fig.  3). By definition, f a > 1 for non-solid 
microstructures.

In summary of the multiscale analysis procedure, a hier-
archical structure (Fig. 1a) is decomposed into its micro-
structures which are homogenized using (12) (Fig. 1b). 
The homogenized macroscale domain Fig. 1b is analyzed 
using quadratic finite elements cf. (14). Then the uncou-
pled second-order microscale analysis is performed (Fig. 2), 
driven by FM and �M which are approximated using uMe 
and the appropriate element shape functions. The microscale 
equilibrium (21) is evaluated while subjected to periodicity 
constraints defined by (8) and (19). Using the second-order 
microscale response, local stresses are evaluated using (22) 
(Fig. 1d), and the stress amplification in each microstructure 
is evaluated using (23).

2.3 � Evaluation of the second‑order scheme

The multiscale analysis formulation presented here relies on 
multiple simplifying assumptions to configure a model suit-
able for design optimization. As mentioned previously, the 
mathematical model for homogenization relies on a separa-
tion of macroscale and microscale along with a sufficiently 
periodic microscale representation (cf. (12)). Furthermore, 
the second-order microscale analysis is uncoupled; higher-
order stresses are not considered in the macroscale, instead 
the macroscale second-order strains are approximated using 
finite element shape functions (cf. Fig. 3). This section illus-
trates the effects of these assumptions through a comparative 
study.

To quantify the impact of these assumptions in the 
multiscale model, a case study was performed to compare 
four different structural analyses. The four cases, shown 
in Fig. 4, show (1) poor scale separation with periodic 
microarchitecture, (2) poor scale separation with random 
microarchitecture, (3) good scale separation with periodic 
microarchitecture, and (4) good scale separation with ran-
dom microarchitecture. Here poor scale separation is char-
acterized by a characteristic ratio of l∕L = 0.1 (i.e., 20 × 10 
mesh) for the size of each microstructure relative to the char-
acteristic length of the structure, while good scale separation 
is characterized by a size ratio of l∕L = 0.05 (i.e., 40 × 20 
mesh). The cases introduce elliptical microstructures in 
64 × 64 discretizations of solid ( E = 1 , � = 0.3 ) and void 

(23)f a =
max

(
��

)
�M0

,
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( E = 10−6 , � = 0.3 ) material. Each case is constrained on 
one surface with a distributed load ( ||fM|| = 1 ) along the 
opposite surface.

A von Mises yield criterion is used in this work and is 
calculated using

with the matrix

defined for plane-stress conditions evaluated at the element 
centroid and �e = {�11, �22, �12}e . Finite element analy-
sis is performed on a mesh of uniform, quadratic, plane-
stress quadrilateral elements. We apply a filter (in the style 
of density-based topology optimization) for element-wise 
smoothing of the von Mises stress to limit the effects of the 
non-conforming mesh, as discussed in more in Sect. 3. For 
an element i and filter radius � , the elements j within that 
radius are defined as those whose centroid falls within � to 
the centroid of i Bruns and Tortorelli (2001). The centroid-
centroid distance dj is used in a Gaussian-weighted kernel 
for each element-wise variable �,

(24)𝜎̂e =

√
�T
e
M�e

(25)M =

⎡⎢⎢⎣

1 −
1

2
0

−
1

2
1 0

0 0 3

⎤⎥⎥⎦

(26)𝛼̄i =
∑
j

𝜔j

𝜔
𝛼j

which will produce the “smoothed" quantity 𝛼̄ . The von 
Mises stress in Fig. 4 is 𝜎̄ , the smoothed von Mises stress 
is filtered using � equal to three times the microscale ele-
ment’s width.

The von Mises stress for the four test cases is shown in 
Fig. 4. The fullscale stress is evaluated using a fully realized 
discretization: 1280 × 640 elements in the case of l∕L = 0.1 
and 2560 × 1280 in the case of l∕L = 0.05 . The maximum 
von Mises stress in each microstructure is also shown and is 
related to the stress amplification caused by the microarchtiec-
ture (cf. (23)).

The fullscale von Mises stress is compared to homogeni-
zation techniques in Fig. 5; first-order evaluation of the local 
stress ( �M = 0 ) is compared to the equivalent second-order 
analysis. Error is calculated using the relative error norm 
measured relative to the fullscale analysis:

As a consequence of poor scale separation, (Fig. 5a, b), the 
homogenized material model used to calculate FM and �M is 
inaccurate. This error propagates to the calculation of local 
stress within Ω� . The error is especially evident near the 
boundaries of ΩM where the homogenized material model 

(27)�j = max

(
1 −

dj

�
, 0

)

(28)� =
∑
j

�j,

(29)error =
||xtrue − xapprox.||2

||xtrue||2

Fig. 4   Four pedagogical cases are considered to evaluate the multi-
scale model including a l∕L = 0.1 with periodic microstructures, b 
l∕L = 0.1 with random microstructures, c l∕L = 0.05 with periodic 
microstructures, and d l∕L = 0.05 with random microstructures. Mov-

ing row-wise, the plots indicate the material and boundary conditions 
for each case, the von Mises stress evaluated through fullscale finite 
element analysis, and the maximum von Mises stress in each micro-
structure
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fails to capture the effects of the boundary conditions. As 
scale separation improves (Fig. 5c, d), the homogenized 
material model becomes more accurate, and both homog-
enization methods improve. For random microarchitectures, 
error is induced regardless of the scale separation.

In all cases, the second-order approach significantly 
reduces the error in the microscale analysis, especially 
near the boundary of ΩM (Table 1). We note that in situ-
ations where the microstructure is sufficiently periodic 
with poor scale separation (e.g., Fig. 5a), the second-order 
homogenization approach significantly reduces the error in 
the von Mises stress recovery. Stress along the microstruc-
tural boundaries, in addition to the maximum stress in each 
microstructure, is more accurately modeled with the second-
order homogenization approach.

3 � Machine learning surrogate modeling

The multiscale formulation presented previously relies on 
two independent microstructure analyses (cf. Fig. 1). The 
first step involves the evaluation of effective material proper-
ties through (12), and the second step evaluates local stresses 
through a second-order scheme (cf. (22)). While Table 1 
shows a reasonable accuracy for this approach, the compu-
tational cost of these successive unit cell analyses is undesir-
able for design optimization which may require hundreds of 
iterations to converge. Therefore, we seek an efficient sur-
rogate model for both the evaluation of effective material 
properties and the evaluation of local stresses.

Three parameterized microstructures are considered 
for the multiscale stress-constrained design of hierarchical 
structures. Design parameters are defined by a vector �e for 
each macroscale element. The first is an elliptical inclusion 
defined by three parameters: major axis radius r1 , minor axis 
radius, r2 , and major axis rotation from the horizontal � , so 
�e = {r1, r2, �} (Fig. 6). The elliptical shape naturally limits 
the stress concentrations introduced in the microstructure. 
The second microstructure is a truss parameterized by effec-
tive density, so �e = {�} (Fig. 7). This truss mimics similar 
microstructures that approach the Hashin-Shtrikman (HS) 
bounds for two-phase materials (Träff et al 2018). The next 

Table 1   The relative error norm of the von Mises stress 𝜎̄ is recorded 
for the four test cases shown in Fig. 5

Case 1st Order 2nd Order

(a) l∕L = 0.1 ; Periodic 0.125 0.075
(b) l∕L = 0.1 ; Random 0.178 0.137
(c) l∕L = 0.05 ; Periodic 0.079 0.061
(d) l∕L = 0.05 ; Random 0.148 0.127

Fig. 5   The four pedagogical examples introduced in Fig. 4 are evalu-
ated using first-order and second-order homogenization of the micro-
structures. The von Mises stress, evaluated for each microstructure 

then plotted on the macroscale mesh, is shown in addition to its error 
measured relative to fullscale analysis
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microstructure design is a 2D biotruss design named because 
of its organically shaped inclusions (Fig. 8). The surfaces of 
the biotruss are parameterized using four independent bézier 
curves resulting in 10 geometric parameters per microarchi-
tecture (Black and Najafi 2023). All microstructures are 

defined by a uniform 64 × 64 discretization of solid ( E = 1 , 
� = 0.3 ) and void ( E = 10−6 , � = 0.3 ) material.

The neural network is considered for surrogate model 
development (Fig. 9). The neural network has shown to be 
an effective, efficient surrogate model for homogenization 
(White et al 2018; Black and Najafi 2023). When trained 
effectively, that is without overfitting, vanishing/exploding 
gradients, etc., the neural network’s jacobian has proven val-
uable in the design optimization process (Black and Najafi 
2023). Two neural network models will be presented as sur-
rogate for the aforementioned (1) evaluation of the micro-
structure’s effective material properties and (2) evaluation 
of local stresses using a second-order scheme.

The first class of neural network was trained to estimate 
the homogenized constitutive properties (cf. (12)) for each of 
the parameterized unit cell design (Figs. 6, 7, 8). We imple-
ment a similar formulation to Black and Najafi (2023) with a 
3 hidden layer, 64 neuron network with sigmoid activations 
that produces the independent components of CH based on 
the microstructure’s design parameter input. In summary, 
the first class of neural network maps the microstructure’s 
geometric parameters to its homogenized properties:

For all three microstructure designs, this class of network 
was trained using 667 random input and their resulting out-
put produced via finite element analysis and computational 
homogenization of the unit cell design via (12). Using a 

(30)DNN1(�e) ≈ CH
.

Fig. 6   The ellipse microarchitecture is parameterized by three design 
variables ( r

1
 , r

2
 , � ), and the unit cell is highlighted here within a 3 × 3 

array of architectures

Fig. 7   The HS-truss microarchitecture is parameterized by its effec-
tive density ( � = 1 − 4(0.5 − 3t)2 , and the unit cell is highlighted here 
within a 3 × 3 array of architectures

Fig. 8   The biotruss microarchitecture is parameterized by four bézier 
curves (10 total parameters), and the unit cell is highlighted here 
within a 3 × 3 array of architectures
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mean squared error objective function over 1,000 epochs of 
training with the Adam optimizer (Kingma and Ba 2017), 
randomized batches of 8 training examples, and a learn-
ing rate of 10−3 , the network converged to a relative root 
mean squared error (RRMSE) less than 0.05 for all unit cell 
designs (Fig. 10) measured on 333 validation examples.

The second class of neural network was trained to 
approximate the von Mises stress amplification factor (cf. 
(23)). The input for this class of neural network is the 
parameterized microstructure geometry and the normal-
ized macroscale displacement value uMe . The amplifica-
tion factor in these cases is calculated using the maximum 
local von Mises stress and the macroscale solid stress:

The normalized displacement input is mapped to its strain 
and strain derivative at the microstructure centroid, then the 
input parameters are passed through a 3 hidden layer, 64 
neuron network with sigmoid activations that is trained to 
predict f̂a , so

Training data is generated using the second-order homogeni-
zation scheme (cf. (16)) with randomized inputs. This class 

(31)f̂a =
max(𝜎̄e

𝜇
) ∈ Ω𝜇

𝜎̂M0

.

(32)DNN2(�e, uMe) ≈ f̂a.

of network is trained on 6,660 examples over 1,000 epochs 
with batches of 8 examples and a learning rate of 10−3 . The 
larger training dataset was required to capture the larger 
input space (which now incorporates the space of macro-
scale displacements uMe ). The resulting networks achieved a 
RRMSE of less than 0.1 for all three design cases (Fig. 11).

The performance of the neural networks trained to evalu-
ate effective material properties and local stress amplifica-
tion in the ellipse microstructure is evaluated using the four 
pedagogical examples originally presented in Fig. 4. The 
maximum stress in each microstructure as evaluated by full-
scale finite element analysis, a macroscale approximation of 
stress (15) through second-order homogenization cf. (16), 
and the neural network surrogate models (31) are compared 
in Fig. 12. The relative error norm for these cases is also 
compared in Table 2.

The error presented in Table 2, measured relative to the 
full scale finite element evaluation of 𝜎̄ (the von Mises stress 

Fig. 9   The neural network maps an input vector x to an output vector 
ŷ through a series of hidden layers. Three hidden layers are shown 
here, each characterized by a number of neurons shown as connected 
nodes

Fig. 10   Convergence of the neural network surrogate model for 
evaluating the components of the homogenized constitutive tensor is 
shown for three microstructure designs
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at each “micro" element centroid), illustrates the practical 
effects of the homogenization-based multiscale modeling 
approach. When predicting the maximum stress in each 
microstructure, two deep neural network (DNN) surrogates 
model are trained to predict (1) the homogenized constitu-
tive tensor of the microarchitecture and (2) the maximum 
stress within the microarchitecture as modeled by second-
order homogenization techniques. As discussed in the previ-
ous section, both of these homogenization techniques rely 
on some assumptions related to the separation of scales 
and periodicity of the microstructure. These assumptions 
induce error which is compounded by the error in the neural 
network surrogate model. The resulting approach yields a 
prediction of the maximum stress within  10–15% of the 
ground truth.

Compared to either a fullscale evaluation of the structure 
(which scales poorly with the size and complexity of the 
hierarchical structure) or a homogenization approach (which 
relies on successive evaluations of each unit cell), the neural 

network surrogate model approach has yielded 1,000–10,000 
times faster evaluations. This evaluation time is pertinent to the 
overall computational cost of the multiscale evaluation as each 
microstructure in the macroscale domain must be analyzed. 
As the problems scale, the cost of these nested evaluations 
becomes untenable. The cost of data generation (1,000 exam-
ples for the surrogate of homogenized constitutive tensors and 
10,000 examples for the surrogate of second-order evaluation 
of stress amplification) is relatively small; the training data for 
this work was generated in approximately one hour on (Intel i7 
@4.1 GHz on 4 cores). Furthermore, the neural network sur-
rogate models are suitable for optimization, as each mapping’s 
jacobian may be recovered through backpropagation. Although 
this jacobian is not necessarily as accurate as the evaluation 
accuracy, it has shown to be effective and useful in design 
optimization scenarios (Black and Najafi 2023).

4 � Optimization formulation

This section presents a formulation for multiscale stress-con-
strained design using the neural network surrogate models to 
predict stress amplification. For a multiscale structure com-
posed of many spatially varying microarchitectures, we seek 
a design framework that limits the maximum local von Mises 
stress within each microstructure. The multiscale design opti-
mization framework must consider design variables in both 
the macro- and microscales. The formulation presented here 
applies a density variable � to define the macroscale topol-
ogy. Each microstructure in the macroscale domain is assigned 
�e ∈ (0, 1] to indicate the presence of a microstructure. The 
centroid of each macroscale element is used to characterize 
each microstructure, �e is defined for each of the M macroscale 
elements. Each microarchitecture is defined by a set of param-
eters �e that fully described the local geometry. For example, 
the elliptical microstructure presented in Sect. 3 is parameter-
ized by �e = {r1, r2, �} to define the elliptical inclusion in each 
microarchitecture.

The neural network surrogate models for homogenized 
constitutive properties and local stress evaluation presented 
in Sect. 3 are integrated into the optimization formulation. 
The effective properties of each microstructure are defined in 
terms of the filtered macroscale density and the microstructure 
design parameters such that

for a minimum density �min = 10−6 , penalization parameter 
p = 3 (Zhou and Rozvany 1991; Rozvany et al 1992), and 
neural network prediction of the homogenized constitutive 
tensor Ĉ

H
 . Each design variable ( �e , �e ) is filtered using 

(26), and the macroscale layout variable � is further pro-
jected using (Wang et al 2011)

(33)CMe(𝜌̄e, �̄e) =
(
𝜌min + (1 − 𝜌min)𝜌̄

p
e

)(
Ĉ
H
(�̄e)

)

Fig. 11   Convergence of the neural network surrogate model for eval-
uating the stress amplification modeled by second-order homogeniza-
tion is shown for three microstructure designs
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where 𝜌̃e represents the filtered density variable in each ele-
ment, � is varied throughout the optimization to penalize 
intermediate densities, and � = 0.5 in this work.

The stress amplification function (31) is approximated 
using the second class of neural network as f̂a(�̄e, uMe) . 
To avoid the singularity phenomenon as �e → 0 , the stress 
amplification is also combined with stress interpolation 
(Cheng and Guo 1997; Duysinx and Sigmund 1998) in a 
combined interpolation-amplification function

(34)𝜌̄e =
tanh(𝛽𝜂) + tanh(𝛽(𝜌̃e − 𝜂))

tanh(𝛽𝜂) + tanh(𝛽(1 − 𝜂))

where

with � = 0.2 . The parameter w ∈ [0, 1] is an optional weight-
ing parameter for the stress amplification that is varied 
throughout the optimization. The amplification function 
(35) has been introduced in this work to control the opti-
mization’s sensitivity to local stress amplification. If w = 0 , 
the amplifications caused by microstructural geometries are 
neglected. If w = 1 , the stress is amplified by the local ampli-
fication factor.

Stress constraints are expressed for each microstructure 
(i.e., each macroscale element) via

for the von Mises yield stress �Y . The stress constraints, 
therefore, define a limit of the maximum von Mises stress 
within each microstructure of the domain; they depend 
on the macroscale layout �e , microarchitecture geometric 
parameters �e , and macroscale response uM.

(35)
fa−𝜖(𝜌̄e, �̄e, uMe) = f𝜖(𝜌̄e)

+ wf𝜖(𝜌̄e)
(
f̂a(�̄e, uMe) − 1

)

(36)f𝜖(𝜌̄e) =
𝜌̄e

𝜖(1 − 𝜌̄e) + 𝜌̄e

(37)
fa−𝜖(𝜌̄e, �̄e, uMe)𝜎̂0(uMe)

𝜎Y
− 1 < 0 e = 1, 2, ...,M,

Fig. 12   The maximum stress in each microstructure is compared for 
multiple strategies shown row-wise for the four pedagogical test cases 
of Fig. 4: the stress evaluated from fullscale finite element analysis, 
the stress evaluated using the macroscale deformation and a solid, 

isotropic material model, the maximum stress evaluated via second-
order homogenization of each microstructure, and the result of the 
neural network surrogate approach

Table 2   The relative error norm of the maximum microstructural von 
Mises stress max(𝜎̄) ∈ Ωm is recorded for the four test cases shown in 
Fig. 5

Here we also note that the speedup in homogenization and local stress 
evaluation for the DNN is on the order of 104 (measured on a single 
core)

Case 𝜎̂
0

1st Order 2nd Order DNN 
(Speedup: 
≈ 104)

(a) l∕L = 0.1 ; Periodic 0.390 0.105 0.061 0.079
(b) l∕L = 0.1 ; Random 0.419 0.155 0.122 0.148
(c) l∕L = 0.05 ; Periodic 0.362 0.065 0.046 0.096
(d) l∕L = 0.05 ; Random 0.397 0.124 0.105 0.176
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The objective of the optimization is to minimize the 
volume/mass of a multiscale structure subjected to stress 
constraints in each microstructure. The optimization for-
mulation is defined as

The structure’s volume is introduced in (38) where ve(�e,�e) 
is the volume fraction of solid material in each microstruc-
ture defined as

and v� is the volume fraction of the each microstructure. 
Based on these definitions, additional volume constraints 
may be appended to the optimization problem including a 
constraint of the macrostructural layout

and a constraint of the average microstructural infill

for the target values V� and V� (summarized in Fig. 13).
The augmented lagrangian method is implemented to 

handle the large number of inequality constraints related 
to the local stress constraints (Ito and Kunisch 1990). The 
objective function is redefined in the manner of da Silva 
et al (2021a):

with the scaling parameter r and approximate lagrange mul-
tiplier �e.

Several hyperparameters have been introduced to 
enforce the local stress constraints including � , w, r, and � . 
The parameters � , w, and r are iteratively updated through-
out the optimization process using

(38)

min
�,�

𝛩 =
1

M

M∑
e=1

ve(𝜌e,�e),

s.t.: KMuM = fM,

and: 𝜌min < 𝜌e < 𝜌max,

�min < �e < �max,

fa−𝜖(𝜌̄e, �̄e, uMe)𝜎̂0(uMe)

𝜎Y
− 1 < 0,

e = 1, ...M.

(39)ve(�e,�e) = �ev�(�e)

(40)1

M

M∑
e=1

𝜌e − V𝜌 < 0

(41)
1∑M

e=1
𝜌e

M�
e=1

ve(𝜌e,�e) − V𝛼 < 0

(42)

𝛩 =
1

M

M�
e=1

ve(𝜌e,�e)

+
r

2

M�
e=1

⟨𝜇e

r
+

fa−𝜖(𝜌̄e, �̄e, uMe)𝜎̂0(uMe)

𝜎Y
− 1⟩2

for the generic variable x with current value xi , initial value 
x0 , and final value xF that is updated every Ni iterations 
for NF total iterations. The parameter � , the approximate 
lagrange multiplier, is updated as

4.1 � Sensitivity analysis

The iterative optimization of the parameterized multiscale 
structure requires an expression for the objective’s gradient 
with respect to the macroscale design variables �̄ and micro-
structure design variables �̄ . Adjoint sensitivity analysis is 
employed to derive this sensitivity information. First (42) 
is modified to

(43)x(i+1) ← max

{
xF, x

(i)

(
xF

x0

) 1

NF∕Ni−1

}

(44)𝜇(i+1)
e

← r⟨𝜇e

r
+

fa−𝜖(𝜌̄e, �̄e, uMe)𝜎̂0(uMe)

𝜎Y
− 1⟩(i).

(45)
� =

1

M

M∑
e=1

ve(�e,�e) +
r

2

M∑
e=1

L
2

+ �T
(
K

M
u
M
− f

M

)

Fig. 13   Four example of hierarchical designs are characterized by 
three measures of volume fractions: the layout volume V� , average 
microstructural volume V� , and net volume V. The elliptical inclusion 
shown here is 50% void, so the volume fraction of each microstruc-
ture is 50%
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where the simplification L = ⟨𝜇e

r
+

fa−𝜖 (𝜌̄e,�̄e,uMe)𝜎0(uMe)

𝜎Y
− 1⟩ 

has been introduced and the arbitrary adjoint variable � has 
been added given that KMuM = fM . To simplify notation, we 
introduce the generic design variable d which may substitute 
either 𝜌e or a component of �̄e . The sensitivity analysis 
follows

which simplifies to

provided that the adjoint variable is evaluated from the solu-
tion of

The components �kMe

�d
 , �fa−�

�d
 , and �fa−�

�uMe

 , are readily derived from 
the neural network surrogate models through backpropaga-
tion (Black and Najafi 2023).

5 � Examples

This section evaluates the stress-constrained multiscale 
design optimization framework through numerous exam-
ples with different boundary conditions and microstructural 
parameterizations. Depending on the choice of microarchi-
tecture, the appropriate pair of neural networks introduced 
in Sect. 3 is used in the iterative optimization of (42) using 
the MMA optimizer (Svanberg 1987). To facilitate fair com-
parison of optimized designs, the fixed parameter update 
scheme shown in Table 3 is applied, then the optimization 
continues for 100 more iterations (500 total iterations). 
Additionally, filtering is applied via (26) for both the layout 
variable � (filter radius � is three times the microstructure 
width) and microarchitecture variables � (filter radius � is 

(46)

𝜕𝛩

𝜕d
=

1

M

𝜕ve

𝜕d

+
r

𝜎Y
Le

[
𝜕fa−𝜖

𝜕d
(𝜎̂

0
) +

𝜕fa−𝜖

𝜕u
Me

(𝜎̂
0
)
𝜕u

Me

𝜕d

+
fa−𝜖
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0

(
C
0
Bu

Me

)T
MC

0
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Me
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]

+ �T
e
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Me
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Me + k

Me

𝜕u
Me

𝜕d

)
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𝜕𝛩
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1

M

𝜕ve

𝜕d

+
r

𝜎Y
Le

𝜕fa−𝜖
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0
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K
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=
−r

𝜎Y
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𝜕u
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(𝜎̂
0
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0
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0
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)T
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0
B
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two times the microstructure width). The filter radii are set to 
enforce a limit on the local variation of the microstructures. 
By averaging local features within the radius of the filter, 
drastic fluctuations in features are reduced, and the peri-
odic assumptions introduced in the homogenization models 
are more valid. Note that the filtering of design variables � 
and � is independent of the filter previously introduced to 
smooth von Mises stress within the microstructure due to 
mesh irregularities. To evaluate the optimized designs after 
the optimization has completed, the multiscale structure is 
fully resolved on a fullscale mesh and the von Mises stress 
is calculated. Using this fullscale von Mises stress, the frac-
tion of yielded microstructures YF is defined as the fraction 
of microstructures with a local stress greater than the stress 
limit �Y.

The first set of examples implement the canonical bench-
mark L-bracket design shown in Fig. 14. Here the reentrant 
corner introduces a stress concentration that the optimiza-
tion must rectify. To prevent the boundary sticking phenom-
ena, buffer zones are introduced (with a size equal to the 
filter radius of � ) in the manner of da Silva et al (2021a). 
In each buffer zone, �e = �min and �e is defined so that the 
microstructure is completely solid. The domain is discre-
tized into 4096 microstructures resulting in a macroscale 
mesh of 0.0125 × 0.0125 quadrilaterals. Each microstruc-
ture is then represented by a 64 × 64 mesh of quadrilater-
als. The horizontal 1 × 0.4 portion of the L-bracket design 
space in Fig. 14, for example, is represented by an 80 × 32 
mesh of quadrilaterals resulting in a characteristic length 
l∕L = 1∕80 = 0.0125 . Its “fullscale" equivalent would be a 
5120 × 2048 mesh and is created by resolving each 64 × 64 
microstructure in place of a single macroscale element. As 
in Sect. 2.3, quadratic 8-node plane stress elements with-
out thickness are used in the macroscale evaluation, while 
4-node plane stress elements without thickness are used in 
the microscale evaluation and subsequent “fullscale" anal-
ysis. Each example in this section will use the same ele-
ments and discretization strategy with each mesh defined 
by its characteristic length denoted by ratio of each square 
microstructure to a unit macroscale length. A stress limit 

Table 3   The update strategy for the optimization parameters is pre-
sented including the initial value, maximum value, update frequency, 
and update range

param init max freq start-stop
(see also) x

0
x
F

N
i

(N
0
-N

F
)

p (33) 3 3 – –
� (34) 0.5 10 20 0–400
w (35) 0.1 1.0 20 0–400
r (42) 0.01

M

100

M

20 0–400

� (42), (44) 0 – 20 0–400



Stress‑constrained optimization of multiscale structures with parameterized… Page 15 of 23    102 

of �Y = 75 is set for the given loading conditions. Fig-
ure 15 illustrates the convergence behavior for the elliptical 
microstructure.

Starting from a solid design ( V� = 1.0 ), the optimiza-
tion process begins by significantly reducing the structural 
volume. As shown in Fig. 16, the successive updating of 
the parameters � , r, w, and � results in a more stringent 
evaluation of the stress constraints. The structure’s infill is 
therefore gradually increased, approaching a 96% solid infill 
and a 33% net volume fraction. The evolution of the objec-
tives and constraints is influenced by the hyperparameters 
defined in Table 3, especially the weight r defined in (42). 
In the first 100 iterations, the parameter r is relatively small 
and scales the objective to penalize structural volume more 
than violations of the stress constraints. As the optimiza-
tion progresses, r increases the nominal value of the aug-
mented lagrangian term, resulting in the rising objective 
value observed in Fig. 15. This effect is compounded by 
the increasing parameter w which penalizes the local micro-
structural stress value.

The von Mises stress distribution is further analyzed 
in Fig. 17. Here a selection of local stress-distributions - 
obtained through homogenization of each independent unit 
cell - are contextualized within the “fullscale" stress dis-
tribution previously shown in Fig. 16. The cell-level stress 
distributions are representative of the data used in training 
the neural network surrogates used in the optimization for-
mulation. Meanwhile, the “fullscale" analysis remains the 
best model for the response of the structure with observable 
microstructures, so we use this representation for evaluation 
of the proposed framework.

Multiscale design optimization, however, is dependent 
on the initial design configuration, and this framework is 
no exception. Figures 18 and 19 show the same optimiza-
tion results for a design initialized with a 74% infill. In this 
case, the lower infill volume fraction propagates through 
the optimization, resulting in a final infill volume fraction 
of 94% and a 37% net volume fraction. The higher volume 
fraction in this case indicates the presence of local minima, 
another trait of multiscale design. In both cases of L-bracket 

Fig. 14   The L-bracket benchmark boundary conditions are shown 
including the buffer zone indicated by dashed lines

Fig. 15   The convergence of the optimized multiscale L-bracket 
design with elliptical microarchitecture is shown

Fig. 16   The von Mises stress 𝜎̄ evaluated on an equivalent fullscale mesh is shown for the design problem outlined in Fig. 15
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designs, some infill porosity is preserved during the optimi-
zation. This is not the case with other objectives. In compli-
ance minimization, for example, it is expected that the infill 
volume fraction approaches 100% (Sigmund et al 2016; Sig-
mund 2022). The preservation of some infill porosity illus-
trates the competition between the volume minimization and 
the satisfaction of the stress constraints. Early in the optimi-
zation before the hyperparameters of Table 3 have matured, 
the optimization favors the efficiency of a porous design with 
low infill volume fraction. As the stress constraint violations 

are further penalized, most of this porosity is solidified by 
the optimization process in favor of solid members. The 
microstructures that remain are typically distributed in the 
joints of the structure to transition between larger members.

5.1 � Comparison of microstructure designs

The optimized designs for each of the three microstructures 
are shown in Fig. 20. The HS-truss design proved inap-
propriate for this framework and serves to aid our evalu-
ation of this approach. Although the HS-truss is simply 
parameterized by one parameter (its effective density), the 
optimized failed to converge to a viable structure for the 
target stress limit of �Y = 75 . For an increased stress limit 
of �Y = 150 and an increased characteristic length ratio of 
l∕L = 1∕40 = 0.0250 , the HS-truss design converged to a 
suboptimal design with net volume fraction of 30% . The 
poor performance is attributed to the stress concentrations 
caused by the member connections in each truss. Although 
this design is stiffer than the ellipse microstructure at a given 
effective density, the HS-truss’s proclivity to stress concen-
trations are an impediment to the optimization’s progress.

The biotruss design alleviates stress concentrations 
through its smooth interfaces. Furthermore, the biotruss cre-
ates a much larger design space (10 parameters per micro-
structure). The optimized L-bracket design for the biotruss 
microarchitecture shown in Fig. 20 achieved a net volume 
fraction of 46% . Here we note that the parameterization for 
the biotruss results in a lower bulk modulus than the ellipse 
microstructure, as optimization of the bulk modulus via 
microscale optimization traditionally distributes material to 
the outside of each microstructure (Sigmund et al 2016). The 
biotruss is generally less stiff, so more material is required to 
satisfy the same stress constraints as the ellipse.

5.2 � Comparison of different boundary conditions

Two new domains are defined in Figs. 21 and 22. The dou-
ble L-bracket of Fig. 21 uses mixed loading and two reen-
trant corners to test the optimization framework. The double 
L-bracket domain is discretized into 5,632 microstructures 
with a characteristic length ratio of l∕L = 1∕80 = 0.0125 . 
The stress concentration problem illustrated in Fig. 22 is 
derived from da Silva et al (2021a) and is discretized into 
5000 microstructures with a characteristic length ratio of 
l∕L = 1∕100 = 0.01 . The multiscale design optimization 
results are compared to the monoscale density-based topol-
ogy optimization results in Table 4. Figures 23, 24, and 25 
compare the optimized designs for density-based topology 
optimization and our multiscale approach with the elliptical 
microstructure.

The density-based formulation for stress-constrained 
design does not include any amplification caused by 

Fig. 17   The von Mises stress 𝜎̄ is detailed for an equivalent fullscale 
analysis of the optimized result from Fig.  15. Details a–c show the 
results of a multiscale analysis of the same problem where the micro-
scale cellular problems are subjected to equivalent macroscale loads

Fig. 18   The convergence of the optimized multiscale L-bracket 
design with elliptical microarchitecture—starting with an initial 
microstructural volume of V� = 0.7—is shown
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intermediate microstructure designs, so fa = 1 for all val-
ues of the design variable � . Therefore, the pre-convergence 
designs offer a relaxed evaluation of stress. The density-
based optimized designs subsequently feature smaller 
macroscale members compared to the multiscale designs. 
Although the multiscale designs attempt to compensate for 
this increased mass with some infill porosity, they fail to out-
perform the density-based formulations. Both formulations 

largely obey the prescribed stress constraints with all design 
examples resulting in a YF of 1–2%. The stress measured 
in the multiscale formulation is microstructure-aware, so 

Fig. 19   The von Mises stress 𝜎̄ evaluated on an equivalent fullscale mesh is shown for the design problem outlined in Fig. 18

Fig. 20   The optimized results for three different microstructure designs are presented for the L-bracket benchmark problem

Fig. 21   The double L-bracket benchmark boundary conditions are 
shown including the buffer zone indicated by dashed lines

Fig. 22   The stress-concentration benchmark boundary conditions are 
shown including the buffer zone indicated by dashed lines
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the stress distribution in the multiscale designs is generally 
lower than the prescribed stress limit. Meanwhile, the den-
sity-based designs feature a larger portion of the structure 
near the stress limit.

5.3 � Multifunctional design

The previous section showed that the homogenization-based 
multiscale design optimization cannot outperform density-
based topology optimization in pure volume minimization 
problems subjected to stress constraints (and indeed this trend 
continues with other objectives such as single-load structural 
compliance (Sigmund 2022)). These examples were included 
as a controlled metric for evaluating the presented multiscale 
framework for optimization with microstructural stress con-
straints. This framework is extensible to other objectives, as we 
will demonstrate in this section with a simple multifunctional 
design problem.

The multifunctional problem, described in Fig. 26, adds 
to the objective (42) a target displacement term to design a 
structure that (1) supports an external load and (2) maintains 
dimensional stability in a specific region:

(49)𝛩̂ = 𝛩 +
1

N
�◦

(
u − uT

)T(
u − uT

)

Table 4   Key characteristics of comparable optimized designs are pre-
sented

Example Microstructure V V� V� Y
F

L-bracket
Density-based 0.261 – – 0.017
Ellipse ( V0

�
= 1.0) 0.333 0.347 0.958 0.014

Ellipse ( V0

�
= 0.7) 0.369 0.392 0.939 0.013

BioTruss 0.431 0.443 0.972 0.006
Double L-bracket

Density-based 0.271 – – 0.018
Ellipse 0.423 0.448 0.944 0.011

Stress Concentra-
tion Density-based 0.153 – – 0.010

Ellipse 0.212 0.238 0.892 0.014

Fig. 23   The density-based 
topology optimized result is 
compared to the multiscale 
(ellipse microarchitecture) opti-
mized result for the L-bracket 
benchmark problem

Fig. 24   The density-based topology optimized result is compared to the multiscale (ellipse microarchitecture) optimized result for the double 
L-bracket benchmark problem
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where u and uT are the structure’s displacement and its pre-
defined target displacement respectively, � is a vector of ones 
and zeros of size u with 1 indicating a targeted degree of 
freedom and 0 elsewhere, and N is a scalar normalization 
term for the number of targeted degrees of freedom. Mul-
tiscale approaches have been shown to perform well when 
considering this objective, as their expanded microstructural 
material property space allows for anisotropy that is not pos-
sible with density-based design (Wang et al 2020; Black 

and Najafi 2023). Sensitivity analysis of this objective is 
performed in Black and Najafi (2023).

The resulting formulation represents a volume minimi-
zation problem subjected to stress constraints ( �Y = 0.5 ) 
and a prescribed deformation. The example in Fig.  26 
shows a target displacement of 0.01 in the y direction on 
one surface of a beam subjected to compressive loading 
f = 0.1 and symmetry boundary conditions. In this exam-
ple, a 2 × 1 domain is discretized into 100 × 50 elements for 

Fig. 25   The density-based 
topology optimized result is 
compared to the multiscale 
(ellipse microarchitecture) opti-
mized result for the stress-con-
centration benchmark problem

Fig. 26   The results of a stress-constrained design optimization prob-
lem in which a prescribed deformation is applied to one surface are 
compared. A beam is fixed on one end and subjected to a uniform 
load on its free end with a symmetry condition enforced about the 

x axis. A target displacement is defined on the surface y = 1.0 . The 
optimized designs are shown here along with the displacement of the 
final designs along the free surface



	 N. Black, A. Najafi   102   Page 20 of 23

density-based optimization or 40 × 20 microstructures for 
multiscale optimization. After 500 iterations following the 
parameter update schedule defined in Table 3, the density-
based design converged to a final volume fraction of 33% , 
and the multiscale design converged to a final volume frac-
tion of 43% . Interestingly, although the multiscale design 
required more material, the anisotropy of the microstructural 
material model converged to a better targeted displacement; 
the L2 norm of (u − uT ) was 0.133 for the density-based 
design and 0.070 for the multiscale design. Figure 26 also 
shows that the peak deviation from the target displacement 
is also reduced in the multiscale formulation.

6 � Conclusion

This work presented a methodology for stress-constrained 
multiscale design optimization of hierarchical structures. 
The multiscale design space considered the macroscale 
layout of the structure and the microscale parameterization 
of local geometry, producing a hierarchical system of con-
nected microstructures. To approximate the local stress in 
each microstructure without modeling the expensive fulls-
cale model, two successive homogenization steps were per-
formed. First, the macroscale response was approximated 
based on the homogenized, first-order material properties of 
each microstructure. Next, using second-order homogeniza-
tion, the local stress was evaluated in each microstructure. 
The combination of these homogenization methods proved 
an effective approximation of the stress amplification fac-
tor induced by local microarchitecture with poor scale 
separation. The optimization approach implemented neural 
network surrogate models for each of the homogenization 
steps. The first class of neural network approximated the 
effective properties of each microstructure based on its geo-
metric parameterization, and the second class of neural net-
work estimated the stress amplification factor as a function 
of the microstructure’s geometric parameterization and its 
deformed configuration. With an augmented lagrangian for-
mulation of stress constraints, a series of example problems 
were presented that minimized the volume of a multiscale 
structure subjected to stress constraints.

The examples illustrate several important attributes of 
the presented methodology. We note that the system of neu-
ral network surrogates were sufficiently accurate in ensur-
ing stress constraints were accurately modeled during the 
optimization process. The optimization performance is also 
dependent on the choice of microstructure parameterization. 
This parameterization, which was restricted to perfect cell-
to-cell connections that respect the assumption of periodic-
ity, must produce a sufficiently stiff microstructure without 
inducing stress concentrations. Furthermore, the number of 
design parameters should be carefully considered, as each 

new parameter requires an additional solve of the sensitiv-
ity’s adjoint variable. The data generation time for the train-
ing datasets required to train both classes of neural network 
should also be considered, as more complicated designs may 
require more data to capture the entire design space.

The multiscale approach presented in this work does not 
outperform density-based (monoscale) approaches in the 
minimization of structural volume subjected to stress con-
straints. In this particular objective, the augmented lagran-
gian approach was able to enforce stress constraints with 
minimal violations (cf. Table 4). The freedom of density-
based design in controlling the structural layout proved more 
beneficial in the provided examples, producing a lower over-
all structural volume. It is our view then that the application 
of multiscale is more appropriate for multiobjective or mul-
tiphysics problems such as optimizing buckling resistance 
or diffusivity. In these scenarios, the method presented here 
would be an effective approach to including microstructural 
stress-constraints in the optimization formulation.

Consequently, the main contribution of this work lies in 
the multiscale design formulation. Incorporating second-
order homogenization techniques, this formulation included 
local information related to the microstructure’s stress. The 
neural network surrogate model served to include this local 
information in the optimization formulation. We have dem-
onstrated the viability of this approach in structural optimi-
zation; the surrogate model was able to successfully navi-
gate the multiscale design space and enforce local stress 
constraints to the same tolerance as density-based topology 
optimization Table 4. For different objectives (e.g., design 
for maximum energy absorption, design for maximum buck-
ling load) and especially for models with local material non-
linearity, the inclusion of microstructure-level mechanics is 
critical to successful design optimization. The framework 
presented here will be critical to extending multiscale design 
in these areas.

The second-order evaluation of microstructure response 
enabled the realization of microstructures at the observable 
scale. We considered an infinitesimal strain formulation of 
uncoupled second-order homogenization. Here, the first-
order macroscale response was evaluated, then the element 
shape functions were used to approximate second-order 
strains in the microscale. We showed that the uncoupled 
model produced accurate analysis when the separation of 
scales decreased. Future work should evaluate a second-
order scheme that incorporates higher-order stresses in the 
macroscale.

The design framework presented in this work is read-
ily extensible to new microstructures and 3D designs. The 
computational cost of extension to 3D should not be under-
estimated, as both the computational cost macroscale analy-
sis and microstructural analyses will increase dramatically. 
As with density-based (monoscale) design techniques, this 
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multiscale technique evaluated stresses based on a non-
conforming mesh, relying on filtering and interpolation of 
stresses to characterize the design. Future work may improve 
this evaluation with isogeometric finite element methods.

This work has built an optimization approach that 
enriches the information exchange between the local mate-
rial scale and the greater structure. Additionally, the second-
order approach to local analysis is a promising method to 
relieve the computational burdens associated with the sepa-
ration of scales. Finally, the machine learning approach used 
here remains favorable because of its low data generation 
costs, quick and efficient training, and significant contribu-
tion to the design model.
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