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Abstract. The increasing supermartingale coupling, introduced by Nutz and Stebegg (Canon-

ical supermartingale couplings, Ann. Probab., 46(6):3351–3398, 2018) is an extreme point

of the set of ‘supermartingale’ couplings between two real probability measures in convex-

decreasing order. In the present paper we provide an explicit construction of a triple of

functions, on the graph of which the increasing supermartingale coupling concentrates. In

particular, we show that the increasing supermartingale coupling can be identified with the

left-curtain martingale coupling and the antitone coupling to the left and to the right of a

uniquely determined regime-switching point, respectively.

Our construction is based on the concept of the shadow measure. We show how to

determine the potential of the shadow measure associated to a supermartingale, extending the

recent results of Beiglböck et al. (The potential of the shadow measure, Electron. Commun.

Probab., 27, paper no. 16, 1–12, 2022) obtained in the martingale setting.
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1. Introduction

The joint distribution π of two real-valued random variables X and Y is called a super-

martingale coupling if Eπ[Y |X] ≤ X. The classical result by Strassen [39] states that, for

two probability measures µ and ν on R, the set of supermartingale couplings of X ∼ µ and

Y ∼ ν is non-empty if and only if µ ≤cd ν, i.e., µ is smaller than ν with respect to the

convex-decreasing order. The natural question is then whether there is any canonical choice

to couple µ and ν. Nutz and Stebegg [34] recently introduced the increasing supermartingale

coupling, denoted by πI , and proved that it is canonical in several ways.

First, πI solves the supermartingale optimal transport (SOT) problem for a class of cost

functions c : R × R 7→ R (essentially those c that are such that c(x2, ·) − c(x1, ·) is strictly

decreasing and strictly convex for all x1 < x2):

minimise Eπ[c(X,Y )] subject to X ∼ µ, Y ∼ ν,

where the infimum is taken over all supermartingale couplings π (in this context the couplings

π are often called transport plans). Second, the optimality of πI is closely linked to the mono-

tonicity properties of its support. In particular, πI is the unique supermartingale coupling

whose support is both, first-order right-monotone (see Definition 3.3) and second-order left

monotone (see Definition 3.2). Finally, the increasing supermartingale coupling has one fur-

ther, order-theoretic, characterisation: it is canonical with respect to the convex-decreasing

order. More precisely, for a transport plan π and any real number t denote by νπt the terminal

law of µ|(−∞,t] within ν (for two measures η, χ on R, we say that η is within χ if η(A) ≤ χ(A)

for all Borel measurable subsets A of R) when a coupling π is used. Then πI is such that, for

each t, νπIt ≤cd νπt for all supermartingale couplings π.

In this paper our goal is to establish a Brenier-type result (see, for example, Brenier [8] and

Beiglböck and Juillet [6]) for supermartingale couplings. In particular, we will explicitly con-

struct a triple of functions, on the graph of which the increasing supermartingale concentrates.

The following summarises the main achievement:

For measures µ and ν in convex-decreasing order on R, there exists a

regime-switching point x∗ such that, to the left of x∗, the increasing su-

permartingale coupling coincides with the left-curtain martingale coupling

and is supported on the graphs of two functions, and to the right of of x∗,

it coincides with the antitone coupling and is supported on the graph of a

decresing function.

Literature Review. From the optimal transportation point of view, the SOT is a classical

Monge-Kantorovich optimal transport (OT) problem with an additional moment constraint.

On the other hand, the basic martingale optimal transport (MOT) problem (introduced by

Beiglböck et al. [3] (in a discrete time setting) and Galichon et al. [21] (in continuous time),
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and first solved by Hobson and Neuberger [28] and Hobson and Klimmek [27] for the specific

cost functions c(x, y) = −|y−x| and c(x, y) = |y−x|, respectively) is to construct a martingale

M , with M1 ∼ µ and M2 ∼ ν, and such that E[c(M1,M2)] is minimal. Since the martingale

requirement can be expressed in terms of couplings π satisfying Eπ[M2|M1] = M1, the SOT

problem can be also seen as a relaxation of an MOT problem. (Similarly as MOT, SOT

has some natural applications in mathematical finance: see Fahim and Huang [19] for model-

independent hedging with portfolio constraints, Ewald and Yor [18] for robust pricing of Asian

and Australian options and Ewald and Yor [17] for applications to the economics theory of

risk and poverty measures.) Given the connectedness of the aforementioned three variations

of the transportation problem, we in fact have that they all share a similar theory.

It is a well-known fact in the classical OT setting that the support of an optimal coupling

is a c-cyclically monotone set (see, for example, Villani [40]). Furthermore, if one considers

the cost functions c that can be represented as c(x, y) = h(y − x) for a strictly convex h

(the so-called Spence-Mirrlees condition), then the optimal coupling is given by the so-called

Hoeffding-Fréchet (or quantile) coupling πHF . In particular, πHF is canonical with respect to

the first-order stochastic dominance in the sense that, for all t, νπHFt is the left-most measure

within ν and with total mass µ|(−∞,t](R) (so that FνπHFt
≥ Fη on R, for all measures η within

ν and η(R) = µ|(−∞,t](R)).

In the martingale setting, Beiglböck and Juillet [6] introduced the left-curtain coupling πlc
that can be viewed as a martingale counterpart to the monotone quantile coupling πHF . Some

notable similarities are that πlc can also be described via three different characterizations:

order-theoretic, optimality, monotonicity of the support. First, πlc is canonical with respect

to the convex order, denoted by ≤c: for each t, νπlct ≤c νπt for any martingale coupling π.

Beiglböck and Juillet [6] also showed that the left-curtain coupling is optimal for a range

of different cost functions. Later Henry-Labordère and Touzi [23] extended their result and

proved that πlc is optimal for an even larger class of cost functions, namely those satisfying

the martingale Spence-Mirrlees condition cxyy > 0. Finally πlc can be characterized by its

support: it is the unique second-order left-monotone (see Definition 3.2) martingale coupling.

Several other authors further investigate the properties and extensions of the left-curtain

coupling, see Beiglböck et al. [4, 2, 5], Juillet [32, 33], Hobson and Norgilas [29], Nutz et al.

[34, 35], Campi et al. [10], Henry-Labordère et al. [24] and Brückerhoff at al. [9].

We will study one further characterisation of the increasing supermartingale coupling πI ,

which is also satisfied by πHF and πlc in their respective settings. A fundamental result in

the theory of OT is Brenier’s theorem (see Brenier [8] and Rüschendorf and Rachev [38]).

It considers the optimal transport problem (in Rd and) in the particular case c(x, y) = |x −
y|2, where |·| denotes the Euclidean norm on Rd. Under some regularity conditions on the

initial measure µ, the optimal coupling is supported by the graph of the gradient of a convex

function. In dimension one, the supporting function is monotonically increasing and the

optimal coupling coincides with the quantile coupling πHF . More precisely, πHF is supported

on the graph of Gν ◦ Fµ, where Gν is a quantile function of ν while Fµ is the cumulative

distribution function of µ. In the martingale setting, Beiglböck and Juillet [6] established a

Brenier-type result for the left-curtain coupling as well. Given that the initial measure µ does
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not contain atoms, the authors showed that πlc is supported by the graphs of two functions

Tu, Td : R 7→ R satisfying certain monotonicity properties (see Definition 3.4). While the

result of Beiglböck and Juillet [6] is purely an existence result, Henry-Labordère and Touzi [23]

used an ordinary differential equation approach and showed how to explicitly determine Td
and Tu under some further assumptions on µ and ν of technical nature. The most general

result regarding the functional representation of πlc is due to Hobson and Norgilas [31]. The

authors showed (for arbitrary µ and ν) how to recover the property that the left-curtain

coupling is supported on a graph of two (explicitly constructed) functions, provided that we

generalise the notion of a coupling. The main limitation of Hobson and Norgilas [31] is that

the authors construct the left-curtain coupling on a single ‘irreducible component’ of µ ≤c ν
(such component corresponds to an interval I, such that all mass starting in I is transported

to a point in I; in general, for any µ ≤c ν, there could be countably many such intervals,

giving rise to the irreducible decomposition (see Lemma 5.3)). A global construction can be

achieved, however, by carefully pasting together the left-curtain couplings of each irreducible

component (such extension is part of Theorem 1.1 (see also Theorem 4.1)).

The main insight of Hobson and Norgilas [31] is that the supporting functions of the left-

curtain martingale coupling can be identified from the so-called shadow measure (see Defi-

nition 3.1), or more precisely, from the graph of the potential function of this measure. In

particular, πlc is the unique martingale coupling such that, for each t, νπlct corresponds to

the shadow of µ|(−∞,t] in ν. On the other hand, the results of Beiglböck et al. [5] allows to

determine the shadow measure by explicitly constructing the associated potential function.

Hobson and Norgilas [31] took this one step further and showed that, for each t, the graph

of the potential function of νπlct determines (at most) two locations to which (under πlc) any

mass started at t is mapped to. In the present paper we use a similar approach. First, we

extend the results of Beiglböck et al. [5] to the sueprmartingale setting by explicitly con-

structing the supermartingale shadow measure (see Theorem 3.1). Then we use the potential

of the shadow measure to determine the supporting functions of πI .

Finally we would like to note that the results of this paper apply to the measures µ, ν on

R only. On R, the study of measures satisfying µ ≤cd ν reduces to the study of the potential

functions of µ and ν (see Section 5.1). In particular, all the aforementioned explicit construc-

tions of martingale transports plans rely on the potential representation of measures from

which the supporting functions are derived. Furthermore, the graphs of potential functions

allow to identify the irreducible components of µ ≤cd ν which are independent of (and thus

universal) particular supermartingale coupling (see Lemma 5.3). On Rd this is no longer the

case, and the characterization and construction of the supermartingale couplings are much

more delicate. See, for example, Ob lój and Siorpaes [36], Ghoussoub et al. [22], De March

[13, 14, 15] and De March and Touzi [16] for the multi-dimensional MOT problem.

Our contribution. In the present paper, our main effort is dedicated to proving the

following Brenier-type result that provides the functional representation of the (generalised)

increasing supermartingale coupling πI .

Theorem 1.1. Let (Ω,F ,P) = ((0, 1) × (0, 1),B(Ω),Leb(Ω)). Let ω = (u, v) and let (U, V )

be the canonical random variables on (Ω,F ,P) given by (U(ω), V (ω)) = (u, v) so that U and
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V are independent U(0, 1) random variables. Let F = (F1 = σ(U),F2 = σ(U, V )}) and set

S = (Ω,F ,F,P).

Fix µ ≤cd ν and let G = Gµ be a quantile function of µ.

Then there exists the unique regime-switching point u∗ ∈ [0, 1] and a triple of functions

R,S : (0, u∗] 7→ R (a pair of supporting functions to the left of u∗) and T : (u∗, 1) 7→ R (a

single supporting functions to the right of u∗) such that

• R ≤ G ≤ S on I = (0, u∗], S is non-decreasing on I, R(u′) /∈ (R(u), S(u)) for all

u, u′ ∈ I with u < u′,

• T < G on Î = (u∗, 1), T is non-increasing on Î, T (u′) /∈ (R(u), S(u)) for all u ∈ I
and u′ ∈ Î.

Furthermore, if we define X(u, v) = X(u) = G(u) and Y (u, v) ∈ {R(u), S(u), T (u)} by

Y (u, v) = I{u≤u∗}∩{R(u)=S(u)}G(u)

+ I{u≤u∗}∩{R(u)<S(u)}

{
R(u)I{v≤S(u)−G(u)

S(u)−R(u)
} + S(u)I{v>S(u)−G(u)

S(u)−R(u)
}

}
+ I{u>u∗}T (u),

then S = (X(U), Y (U, V )) is a S-supermartingale for which L(X) = µ and L(Y ) = ν. In

particular, S is a martingale to the left of u∗ and a (strict) supermartingale to the right of u∗.

We will prove Theorem 1.1 by explicitly constructing the triple of supporting functions

(R,S, T ), see Figure 1. Furthermore we will determine the unique regime-switching point u∗ ∈
[0, 1] such that, to the left of Gµ(u∗), πI coincides with the left-curtain martingale coupling

and concentrates on R and S, while to the right of G(u∗), πI concentrates on a deterministic

decreasing map T , and thus corresponds to the classical antitone coupling πAT , which is

the symmetric counterpart of πHF (if πHF concentrates on Gν ◦ Fµ, then πAT concentrates

on Gν ◦ (1 − Fµ)). Finally, Nutz and Stebegg [34] showed that the set M appearing in the

definition of the first-order right-monotonicity of πI (see Definition 3.3) is such that πI |M×R
is a martingale. From our construction it will follow that the set of ‘martingale points’ M is

in fact an interval (−∞, G(u∗)] (and extra care will be needed if µ has an atom at Gµ(u∗)).

There are two special cases of Theorem 1.1, namely, u∗ = 0 and u∗ = 1. When u∗ = 1, then

we have that, for the given µ, ν with µ ≤cd ν, the set of supermartingale couplings coincides

with the set of martingale couplings. In this case the function T is irrelevant. In particular,

our construction then corresponds to the generalised, or lifted, left-curtain martingale cou-

pling. Hobson and Norgilas [31] constructed R and S for (generalised version of) πlc on a

single ‘irreducible’ component only. Our construction, on the other hand, does not place any

irreducibility conditions. The second special case is when u∗ = 0, so that the functions R and

S do not play any role. In particular, the generalised increasing supermartingale coupling

then concentrates on the deterministic decreasing map T and we have that πI = πAT . To

achieve this we will show that u∗ = 0 if and only if the support of µ is (strictly) to the right

of the support of ν, and thus no part of µ can be embedded into ν using a martingale.
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TR

0 1 x∗u∗

T ◦G−1

S ◦G−1

R ◦G−1

Figure 1. On the left is the sketch of R,G, S and T in the case u∗ ∈ (0, 1).

For each u ∈ (0, u∗] the mass at G(u) either remains at G(u) or it splits and

is mapped either to R(u) or to S(u), while for each u ∈ (u∗, 1) the mass at

G(u) is mapped to a single point located at T (u) < G(u). When µ is atom-

less, (R,S, T ) can be used to define a triple of functions (on R) that supports

πI . This corresponds to the transformation x 7→ (R ◦G−1(x), S ◦G−1(x), T ◦
G−1(x)) with the regime-switching point x∗ = G(u∗), and is depicted on the

right hand side of the figure. More generally, on the atoms of µ, G is flat,

and R ◦ G−1, S ◦ G−1 and T ◦ G−1 are multi-valued, but R,S and T remain

well-defined.

Nutz and Stebegg [34] introduced the notion of positive convex-decreasing order of two

measures, denoted by ≤pcd, which compares measures of possibly different total mass. If a

pair of measures µ, ν is such that µ ≤pcd ν, then the set of measures η with µ ≤cd η ≤ ν is

non-empty, and each such η corresponds to a terminal law of a supermartingale that embeds

µ into ν. Nutz and Stebegg [34] also proved that there exists a canonical choice of such η

with respect to ≤cd: the shadow of µ in ν, denoted by Sν(µ), is the unique measure such that

Sν(µ) ≤cd η for all η satisfying µ ≤cd η ≤ ν. Our interest in the shadow measure lies in the

fact that the increasing supermartingale coupling can be defined as the unique measure πI
on R2 such that, for each x ∈ R, πI |(−∞,x]×R has the first marginal µ|(−∞,x] and the second

marginal Sν(µ|(−∞,x]). One of our main achievement is that, for arbitrary µ and ν with

µ ≤pcd ν, we are able to explicitly construct the potential function of the shadow measure

(and then the shadow measure itself can be identified as the second derivative of the potential

function in the sense of distributions). This generalises the recent results of Beiglböck et al.

[5], where the authors showed how to construct the potential of the shadow measure in the

martingale setting. Surprisingly, in both supermartingale and martingale cases, the potential

of the shadow measure has the same functional representation.

The ability to explicitly determine the shadow measure will be the key asset in constructing

the triple (R,S, T ) that supports the increasing supermartingale coupling. In particular,

for each x ∈ R, the graph of the potential function of Sν(µ|(−∞,x]) will suggest candidate

locations to which the mass of µ at x should be mapped. The remarkable property of the



EXPLICIT CONSTRUCTION OF THE INCREASING SUPERMARTINGALE COUPLING 7

supermartingale shadow measure is that it is able to determine both the left-curtain martingale

coupling in the case u∗ = 1 and also the antitone coupling in the case u∗ = 0. This is of

independent interest.

The paper is structured as follows. In Section 2 we discuss the relevant notions of probability

measures and (positive) convex-decreasing order, and some important (for our main theorems)

results regarding the convex hull of a function. In Section 3 we introduce the supermartingale

shadow measure and the increasing supermartingale coupling. Section 4 is dedicated to our

main results. In Section 4.1 we first determine the regime-switching point u∗ ∈ [0, 1]. Then in

Section 4.2 we prove Theorem 1.1, first in the case u∗ = 1, then we cover the case u∗ = 0, and

finally we prove the general case u∗ ∈ (0, 1). Some proofs are deferred until the appendix.

2. Preliminaries

In this section we briefly recall the relevant notions of potential functions of measures and

various important stochastic orders (some further results and properties are presented in the

appendix; see Section 5.1.

LetM (respectively P) be the set of measures (respectively probability measures) on R with

finite total mass and finite first moment, i.e., if η ∈M, then η(R) <∞ and
∫
R|x|η(dx) <∞.

Given a measure η ∈ M (not necessarily a probability measure), define η =
∫
R xη(dx) to be

the first moment of η (and then η/η(R) is the barycentre of η). Let Iη be the smallest interval

containing the support of η, and let {`η, rη} be the endpoints of Iη. If η has an atom at `η
then `η is included in Iη, and otherwise it is excluded, and similarly for rη.

For η ∈ M, by Fη : R 7→ [0, η(R)] we denote the right-continuous cumulative distribution

function of η. Let Gη : (0, η(R)) 7→ R be a quantile function of η, i.e., a generalised inverse of

Fη. In Section 4 we will work with the left-continuous version of Gη, see Section 5.1.1.

2.1. Potential functions. For η ∈M, define the functions Pη, Cη : R 7→ R+ by

Pη(k) :=

∫
R

(k − x)+η(dx), k ∈ R, Cη(k) :=

∫
R

(x− k)+η(dx), k ∈ R,

respectively. Then Pη(k) ≥ 0∨(η(R)k−η) and Cη(k) ≥ 0∨(η−η(R)k). Also Cη(k)−Pη(k) =

(η − η(R)k). Pη, Cη are the so-called potential functions of a measure η (see Section 5.1.2).

For α ≥ 0 and β ∈ R let D(α, β) denote the set of non-negative, non-decreasing and convex

functions f : R 7→ R+ such that

lim
z↓−∞

{f(z)} = 0, lim
z↑∞
{f(z)− (αz − β)} = 0.

Then, when α = 0, D(0, β) is empty unless β = 0 and then D(0, 0) contains one element, the

zero function.

For η, χ ∈M, let Dη := {D(η(R), η̄ − q) : q ∈ R+} and

P(η, χ) := {P̃ ∈ Dη : Pχ − P̃ is convex and Pη ≤ P̃}.

(P(η, χ) allows to identify those measures η (in terms of their potential functions Pη) that

can be embedded in χ in a supermartingale way; see the definition of η ≤pcd χ below and

Sections 3.1 and 3.2.)
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2.2. Stochastic orders and supermartingale couplings. For η, χ ∈ M, we write η ≤ χ

if η(A) ≤ χ(A) for all Borel measurable subsets A of R, or equivalently if∫
fdη ≤

∫
fdχ, for all non-negative f : R 7→ R+.

Since η and χ can be identified as second derivatives of Pχ and Pη respectively, we have η ≤ χ
if and only if Pχ − Pη is convex, i.e., Pη has a smaller curvature than Pχ.

Two measures η, χ ∈M are in convex (resp. convex-decreasing) order, and we write η ≤c χ
(resp. η ≤cd χ), if

(2.1)

∫
fdη ≤

∫
fdχ, for all convex (resp. convex and non-increasing) f : R 7→ R.

Note that, if η ≤c χ or η ≤cd χ, then η(R) = χ(R) and η̄ ≤ χ̄. However, a reversed inequality

η̄ ≥ χ̄ holds only in the case η ≤c χ.

For η, χ ∈ P , let Π(η, χ) be the set of probability measures on R2 with the first marginal

η and second marginal χ. Let ΠS(η, χ) be the set of supermartingale couplings of η and χ.

Then

ΠS(η, χ) =
{
π ∈ Π(η, χ) : (2.2) holds

}
,

where (2.2) is the supermartingale condition

(2.2)

∫
x∈B

∫
y∈R

yπ(dx, dy) ≤
∫
x∈B

∫
y∈R

xπ(dx, dy) =

∫
B
xη(dx), ∀ Borel B ⊆ R.

Equivalently, ΠS(η, χ) consists of all transport plans π (i.e., elements of Π(η, χ)) such that

the disintegration in probability measures (πx)x∈R with respect to η satisfies
∫
R yπx(dy) ≤ x

for η-almost every x.

The following is classical (see, for example, Föllmer and Schied [20, Theorem 2.58]).

Lemma 2.1. Let η, χ ∈ P. The following are equivalent:

(1) η ≤cd χ,

(2) η(R) = χ(R) and Pη ≤ Pχ on R,

(3) ΠS(η, χ) 6= ∅.

Remark 2.1. If η, χ ∈ P with η ≤cd χ, but η̄ = χ̄, then ΠS(η, χ) reduces to the set of

martingale couplings, denoted by ΠM (η, χ) (i.e., elements of Π(η, χ) for which (2.2) holds

with equality). Indeed, any supermartingale with constant mean is a martingale. In this case

η ≤c χ (see Strassen [39]).

For our purposes in the sequel we need a generalisation of the convex (resp. convex-

decreasing) order of two measures. We follow Beiglböck and Juillet [6] (resp. Nutz and

Stebegg [34]) and say η, χ ∈ M are in a positive convex (resp. positive convex-decreasing)

order, and write η ≤pc χ (resp. η ≤pcd χ), if
∫
fdη ≤

∫
fdχ, for all non-negative and convex

(resp. non-negative, convex and non-increasing) f : R 7→ R+.

If η ≤c χ (resp. η ≤cd χ) then also η ≤pc χ (resp. η ≤pcd χ). If η ≤ χ then both, η ≤pc χ
and η ≤pcd χ. Note that, if η ≤pc χ or η ≤pcd χ, then η(R) ≤ χ(R). On the other hand, if

η(R) = χ(R), then η ≤pc χ (resp. η ≤pcd χ) is equivalent to η ≤c χ (resp. η ≤cd χ).
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Example 2.1. Let η, χ ∈ M with η ≤cd χ (resp. η ≤c χ). Fix a Borel set B ⊆ R, and let

η|B∈M be a restriction of η to B. Then η|B≤pcd χ (resp. η|B≤pc χ).

For a pair of measures η, χ ∈ M, let the function Dη,χ : R 7→ R be defined by Dη,χ(k) =

Pχ(k)−Pη(k). Note that if η, χ have equal mass then η ≤cd χ is equivalent to Dη,χ ≥ 0 on R.

Notation: For x ∈ R let δx denote the unit point mass at x. For real numbers c, x, d with

c ≤ x ≤ d define the probability measure χc,x,d by χc,x,d = d−x
d−c δc + x−c

d−cδd with χc,x,d = δx if

(d− x)(x− c) = 0. Note that χc,x,d has mean x and is the law of a Brownian motion started

at x evaluated on the first exit from (c, d).

3. The shadow measure and πI

3.1. The maximal element. Let µ, ν ∈M with µ ≤pcd ν and defineMν
µ = {η ∈M : µ ≤cd

η ≤ ν}. Then Mν
µ is a set of terminal laws of a supermartingale that embeds µ into ν. Note

that η ∈Mν
µ if and only if Pη ∈ P(µ, ν).

Nutz and Stebegg [34] showed that there exists a measure inMν
µ that is minimal w.r.t. ≤cd

(see Section 3.2). The first step in their proof is to show that Mν
µ 6= ∅ by constructing the

‘left-most’ measure θ ≤ ν of mass µ(R). In this section we show that this left-most measure

is indeed the largest measure (w.r.t. ≤cd) in Mν
µ.

Let Gν : [0, ν(R)] 7→ R be a quantile function of ν. Define T ν(µ) ∈M by

(3.1) T ν(µ) := ν|(−∞,Gν(µ(R)))+(µ(R)− ν((−∞, Gν(µ(R))))δGν(µ(R)).

Note that T ν(µ) does not depend on the version of Gν . (In Proposition 3.1 we show that

T ν(µ) is precisely the aforementioned largest element (w.r.t. ≤cd) of Mν
µ.)

Remark 3.1. Let µ, ν ∈M with µ ≤cd ν. Then µ(R) = ν(R) and therefore T ν(µ) = ν. This

is consistent with the fact that if µ ≤cd ν then {η : µ ≤cd η ≤ ν} is the singleton {ν}.

Proposition 3.1. Let µ, ν ∈ M with µ ≤pcd ν. Then T ν(µ), defined in (3.1), is the unique

measure with the following properties:

(1) µ ≤cd T ν(µ),

(2) T ν(µ) ≤ ν,

(3) If η is another measure satisfying µ ≤cd η ≤ ν then η ≤cd T ν(µ).

Proof. First note that T ν(µ)(R) = µ(R). Furthermore, T ν(µ) satisfies Property 2 by defini-

tion, while the uniqueness is a direct consequence of Property 3.

Now define h : R 7→ R by

h(k) = µ(R)k − T ν(µ), k ∈ R.

Then h is the line tangent to Pν at Gν(µ(R)). In particular, PT ν(µ) is convex, PT ν(µ) = Pν on

(−∞, Gν(µ(R))], PT ν(µ) = h on (Gν(µ(R)),∞) and lim|x|→∞{PT ν(µ)(k) − h+(k)} = 0. Note

that, since Pν ≥ Pµ everywhere, T ν(µ) ≤ µ̄.

Now, since PT ν(µ) = Pν ≥ Pµ on (−∞, Gν(µ(R))], we have that PT ν(µ)(Gν(µ(R))) ≥
Pµ(Gν(µ(R))). However, Pµ is convex and P ′µ(Gν(µ(R))+) ≤ µ(R) = P ′T ν(µ)(Gν(µ(R))+). In

particular, if Pµ(k) > PT ν(µ)(k) = h(k) for some k ∈ (Gν(µ(R)),∞), then P ′µ(k+) > µ(R), a
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contradiction to the fact that Pµ ∈ D(µ(R), µ). It follows that PT ν(µ) ≥ Pµ everywhere, and

thus Property 1 holds.

Finally, we verify Property 3. Let θ ∈Mν
µ. Then, since T ν(µ) = ν ≥ θ on (−∞, Gν(µ(R))),

and by the continuity of PT ν(µ) and Pθ, we have that PT ν(µ) ≥ Pθ on (−∞, Gν(µ(R))]. Now

suppose that there exists k ∈ (Gν(µ(R)),∞) with PT ν(µ)(k) = h(k) = µ(R)k−T ν(µ) < Pθ(k).

Then, since P ′θ(k−) ≤ µ(R) = P ′T ν(µ)(k−), convexity of Pθ ensures that Pθ(Gν(µ(R))) >

PT ν(µ)(Gν(µ(R))), a contradiction. We conclude that PT ν(µ) ≥ Pθ everywhere, and since

θ ∈Mν
µ was arbitrary, Property 3 holds. �

The proof of the following lemma is similar to the proof of Beiglböck et al. [5, Lemma 6]

(replace ≤pc with ≤pcd and ≤c with ≤cd), and thus is omitted.

Lemma 3.1. Suppose µ, ν ∈M. The following are equivalent:

(i) µ ≤pcd ν;

(ii) there exists η ∈M such that µ ≤cd η ≤ ν;

(iii) there exists χ ∈M such that µ ≤ χ ≤cd ν.

Remark 3.2. If we replace ≤pcd with ≤pc and ≤cd with ≤c in Lemma 3.1, then its statement

remains true, see Beiglböck et al. [5, Lemma 6].

Let µ = µ1 + µ2 for some µ1, µ2 ∈ M and ν ∈ M with µ ≤pcd ν. Then Mν
µ1 6= ∅ and, in

particular, we can embed µ1 into ν using any supermartingale coupling π ∈ ΠS(µ1, T
ν(µ1)).

A natural question is then whether Mν−T ν(µ1)
µ2 is non-empty, so that the remaining mass µ2

can also be embedded in what remains of ν.

Example 3.1. Let µ = δ0 and ν = 1
2(δ−2 + δ1). Then µ ≤cd ν. Consider µ1 = µ2 = 1

2δ0.

Then T ν(µ1) = 1
2δ−2. However, µ2 ≤cd ν − T ν(µ1) does not hold. Indeed, ν − T ν(µ1) =

1
2δ1 ≤cd 1

2δ0 = µ2.

As Example 3.1 demonstrates, for µ1, µ2, ν ∈ M with µ1 + µ2 = µ ≤pcd ν, if we first

transport µ1 to T ν(µ1), then we cannot, in general, embed µ2 in ν − T ν(µ1) in a way which

respects the supermartingale property. As a consequence, for arbitrary measures in convex-

decreasing order we cannot expect the maximal element to induce a supermartingale coupling.

In Section 3.2 we study the minimal element ofMν
µ, namely the shadow measure. The shadow

measure has the property that if µ1 + µ2 = µ ≤pcd ν and we transport µ1 to the shadow

Sν(µ1) of µ1 in ν, then µ2 is in positive convex-decreasing order with what remains of ν, i.e.,

µ2 ≤pcd ν − Sν(µ1).

Let µ, ν ∈ M with µ ≤pcd ν and define M̃ν
µ := {η ∈ M : µ ≤c η ≤ ν} ⊆ Mν

µ, so that M̃ν
µ

is a set of terminal laws of a martingale that embeds µ into ν. Note that, by Lemma 3.1 and

Remark 3.2, if M̃ν
µ 6= ∅ then µ ≤pc ν. We close this section with the following result that

allows us to check whether ≤pcd is equivalent to ≤pc.

Lemma 3.2. Let µ, ν ∈M with µ ≤pcd ν. Then µ ≤pc ν if and only if Cµ ≤ Cν everywhere.

Proof. If µ ≤pc ν then Cµ ≤ Cν since, for each k ∈ R, x 7→ (x − k)+ is non-negative and

convex, and hence we are done.
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Now suppose that Cµ ≤ Cν everywhere. Let P̃ νµ : R 7→ R be defined by

P̃ νµ (k) = min{Pν(k), Cν(k) + (µ(R)k − µ)}, k ∈ R.

We will show that (P̃ νµ )c ∈ D(µ(R), µ), Pν − (P̃ νµ )c is convex and Pµ ≤ (P̃ νµ )c everywhere,

proving that the second derivative of (P̃ νµ )c corresponds to η ∈M with µ ≤c η ≤ ν.

First, since Cµ(k)− Pµ(k) = (µ− µ(R)k),

P̃ νµ (k) = Pµ(k) + min{Pν(k)− Pµ(k), Cν(k)− Cµ(k)} ≥ Pµ(k), k ∈ R.

Then from the convexity of Pµ and the definition of the convex hull it follows that Pµ ≤
(P̃ νµ )c ≤ P̃ νµ everywhere.

Second, since limk→−∞(Pν(k) − Pµ(k)) = limk→∞(Cν(k) − Cµ(k)) = 0, we have that

lim|k|→∞ P̃
ν
µ (k) = lim|k|→∞ Pµ(k). Then, since Pµ ∈ D(µ(R), µ), convexity of (P̃ νµ )c ensures

that (P̃ νµ )c ∈ D(µ(R), µ).

Finally we prove the convexity of Pν − (P̃ νµ )c. First note that P̃ νµ (k) = Pν(k) − ((ν(R) −
µ(R))k−(ν̄−µ̄))+, k ∈ R. Then, since p given by p(k) = ((ν(R)−µ(R))k−(ν̄−µ̄))+ is convex,

we can apply Lemma 5.5, with g = Pν and f = p. It follows that Pν − (Pν − p)c = Pν − (P̃ νµ )c

is convex, as required.

We showed that µ ≤c η ≤ ν, where η = ((P̃ νµ )c)′′ ∈ M. By Lemma 3.1 and Remark 3.2 it

follows that µ ≤pc ν. �

3.2. The shadow measure.

Definition 3.1 (Shadow measure). Let µ, ν ∈M and assume µ ≤pcd ν. The shadow of µ in

ν, denoted by Sν(µ), has the following properties

(1) µ ≤cd Sν(µ),

(2) Sν(µ) ≤ ν,

(3) If η is another measure satisfying µ ≤cd η ≤ ν, then Sν(µ) ≤cd η.

Lemma 3.3 (Nutz and Stebegg [34], Lemma 6.2). For µ, ν ∈M with µ ≤pcd ν, Sν(µ) exists

and is unique.

Remark 3.3. If µ ≤cd ν then, in the light of Remark 3.1. Sν(µ) = ν = T ν(µ).

Given µ and ν with µ ≤pcd ν (and, by Remark 3.3, with µ(R) < ν(R)) our goal in this

section is to construct the shadow measure Sν(µ). We do this by finding a corresponding

potential function PSν(µ) (and then Sν(µ) can be identified as the second derivative of PSν(µ)

in the sense of distributions).

Theorem 3.1. Let µ, ν ∈ M with µ ≤pcd ν. Then the shadow of µ in ν is uniquely defined

and given by

(3.2) PSν(µ) = Pν − (Pν − Pµ)c.

Proof. If µ ≤pcd ν and µ(R) = ν(R) then µ ≤cd ν and ν ≤ µ. Then limk→−∞{Pν(k)−Pµ(k)} =

0 and limk→∞{Pν(k)− Pµ(k)} = µ̄− ν̄ ≥ 0. Since 0 ≤ (Pν − Pµ)c ≤ Pν − Pµ, it follows that

(Pν − Pµ)c is the zero function which is the unique element in D(0, 0). Then (3.2) gives that
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PSν(µ) = Pν , and thus Sν(µ) = ν, which is consistent with Remark 3.3. In the rest of the

proof we assume that µ ≤pcd ν with µ(R) < ν(R).

First we will rephrase Definition 3.1 in terms of the potential function: h is the potential

of the shadow of µ in ν if

0. h ∈ D(µ(R), µ− c), for some c ∈ [0,∞),

1. Pµ ≤ h,

2. Pν − h is a potential function, i.e., Pν − h ∈ D(α, β) for some α ≥ 0, β ∈ R,

3. If p is another potential function satisfying properties 0,1,2 then h ≤ p.
Equivalently we can write this as

0. h ∈ D(µ(R), µ− c), for some c ∈ [0,∞),

1′. (Pν − h) ≤ (Pν − Pµ),

2. Pν − h is a potential function, i.e., Pν − h ∈ D(α, β) for some α ≥ 0, β ∈ R,

3′. If p is another potential function with properties 0,1′,2 then (Pν − h) ≥ (Pν − p).
By Lemma 5.7 with g = Pν and f = Pµ we have (Pν −Pµ)c ∈ D(ν(R)−µ(R), ν−µ+ cµ,ν),

where cµ,ν := supk∈R{(ν(R)− µ(R))k − (ν̄ − µ̄)− Pν(k) + Pµ(k)} ∈ [0,∞).

Now set h = Pν−(Pν−Pµ)c. Since Pν−h = (Pν−Pµ)c, Property 2 is satisfied. Furthermore,

using the definition of the convex hull we have that Pν − h = (Pν −Pµ)c ≤ Pν −Pµ, and thus

Property 1′ is also satisfied.

We now verify that h ∈ D(µ(R), µ − cµ,ν). First note that h ≥ Pν − (Pν − Pµ) = Pµ ≥ 0

and limk→−∞ h(k) = limk→−∞ Pν(k)− limk→−∞(Pν−Pµ)c(k) = 0. Next, by applying Lemma

5.5, with g = Pν and f = Pµ, we have that h is convex (and thus also non-decreasing). We

are left to show that the asymptotic slope of h at ∞ is equal to µ− cµ,ν . But

lim
k→∞
{h(k)− µ(R)k + (µ̄− cµ,ν)}

= lim
k→∞

{
{Pν(k)− ν(R)k + ν̄} − {(Pν − Pµ)c(k)− (ν(R)− µ(R))k + (ν̄ − µ̄+ cµ,ν)}

}
= 0

and we conclude that h ∈ D(µ(R), µ− cµ,ν).

Finally we claim that Pν − h = (Pν − Pµ)c satisfies Property 3′. If p is another potential

satisfying Properties 0, 1′, 2′, then Pν − p ≤ Pν − Pµ and Pν − p is convex. Then by the

maximality of the convex hull we have that Pν − p ≤ Pν − h = (Pν − Pµ)c ≤ Pν − Pµ, which

concludes the proof. �

Remark 3.4. Suppose µ, ν ∈ M with µ ≤pc ν. Then replacing ≤pcd with ≤pc in Definition

3.1 we recover the definition of the shadow measure in the martingale case (see Beiglböck et

al. [5, Definition 2]). Surprisingly, the functional representation (3.2) of the potential PSν(µ)

is the same in both cases (see Beiglböck et al. [5, Theorem 2]).

We now turn to the associativity of the shadow measure. The proof in the martingale case,

given by Beiglböck and Juillet [6], is delicate and relies on the approximation of µ by atomic

measures. On the other hand, Nutz and Stebegg [34] only give a comment that the proof in

the supermartingale case can be obtained along the lines of Beiglböck and Juillet [6]. Thanks

to Theorem 3.1, and similarly to Beiglböck et al. [5, Theorem 3], we are able to give a direct

proof of the associativity of the supermartingale shadow.
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Proposition 3.2. Let µ1, µ2, ν ∈ M. Suppose µ = µ1 + µ2 and µ ≤pcd ν. Then µ2 ≤pcd
ν − Sν(µ1) and

(3.3) Sν(µ1 + µ2) = Sν(µ1) + Sν−S
ν(µ1)(µ2).

Proof. We first prove that µ2 ≤pcd ν − Sν(µ1). Define Pθ : R→ R+ by

Pθ(k) = (Pν − Pµ1)c(k)− ((Pν − Pµ1)c − Pµ2)c(k), k ∈ R.

We will show that Pθ ∈ P(µ2, ν − Sν(µ1)). Then the second derivative of Pθ corresponds to

a measure θ ∈Mν−Sν(µ1)
µ2 , which by Lemma 3.1 is enough to prove the assertion.

Convexity of Pθ is a direct consequence of Lemma 5.5 with g = (Pν − Pµ1)c and f = Pµ2 .

Moreover, since Pν−Sν(µ1) = Pν − PSν(µ1) = (Pν − Pµ1)c, we have that

Pν−Sν(µ1) − Pθ = ((Pν − Pµ1)c − Pµ2)c ≤ (Pν − Pµ1)c − Pµ2 ,

and it follows that (Pν−Sν(µ1)−Pθ) is convex and Pµ2 ≤ Pθ. To prove that µ2 ≤pcd ν−Sν(µ1)

it only remains to show that Pθ has the correct limiting behaviour to ensure that Pθ ∈
P(µ2, ν − Sν(µ1)). For this we will apply Lemma 5.7 to each of the convex hulls in the

definition of Pθ and then to Pθ itself.

First, since µ1 ≤pcd ν (so that Pµ1 ≤ Pν), and by Lemma 5.7 with g = Pν and f =

Pµ1 , we have that (Pν − Pµ1)c ∈ D(ν(R) − µ1(R), ν − µ1 + cµ1,ν), where we write cη,χ :=

supk∈R{(χ(R) − η(R))k − (χ̄ − η) − Pχ(k) + Pη(k)} for η, χ ∈ M with η ≤pcd χ (recall that

cη,χ ∈ [0,∞)). Similarly, since µ1 + µ2 = µ ≤pcd ν, (Pν − Pµ1 − Pµ2)c ∈ D(ν(R) − µ1(R) −
µ2(R), ν − µ1 − µ2+cµ,ν). But, by Lemma 5.6, with f = (Pν−Pµ1) and g = Pµ2 , we have that

((Pν−Pµ1)c−Pµ2)c = (Pν−Pµ1−Pµ2)c. Finally, recall that Pθ ≥ Pµ2 and, since Pθ is convex,

Pθ = P cθ . Therefore, by applying Lemma 5.7 with g = (Pν−Pµ1)c and f = ((Pν−Pµ1)c−Pµ2)c,

we conclude that Pθ ∈ D(µ2(R), µ2 − c̄), where c̄ = cµ,ν − cµ1,ν ≥ 0. (Note that c̄ ≥ 0 since

Pθ ≥ Pµ2 .)

We are left to prove the associativity property (3.3). However this follows from similar

arguments used in the proof of the associativity in the martingale case, see Beiglböck et al.

[5, Theorem 3]. Hence we omit the details. �

We give one further result which is easy to prove using Theorem 3.1 and which describes a

structural property of the shadow. (The proof can be obtained along the lines of the proof of

Beiglböck et al. [5, Proposition 2] with ≤pcd in place of ≤pc.)

Lemma 3.4. Suppose ξ, µ, ν ∈M with ξ ≤ µ ≤pcd ν. Then, ξ ≤pcd ν, ξ ≤pcd Sν(µ) and

SS
ν(µ)(ξ) = Sν(ξ).

In particular, Sν(ξ) ≤ Sν(µ).

Example 3.2. The assertion of Lemma 3.4 does not hold for ξ, µ, ν ∈M with ξ ≤pcd µ ≤pcd
ν. To see this, let ξ = 1

3δ0, µ = 1
3(δ−2 + δ2) and ν = 1

3(δ−2 + δ0 + δ2). Then Sν(µ) = µ and

SS
ν(µ)(ξ) = Sµ(ξ) = 1

6(δ−2 + δ2) 6= ξ = Sν(ξ).
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3.3. The increasing supermartingale coupling πI . The left-curtain martingale coupling

(introduced by Beiglböck and Juillet [6]), and the increasing supermartingale coupling (intro-

duced by Nutz and Stebegg [34]), and denoted by πlc and πI respectively, are the couplings

that arise via the shadow measure, created working from left to right. More specifically, when

µ ≤cd ν (resp. µ ≤c ν), πI (resp. πlc) is the unique measure in ΠS(µ, ν) (resp. ΠM (µ, ν))

which for each x ∈ R transports µ|(−∞,x] to the shadow Sν(µ|(−∞,x]), see Nutz and Ste-

begg [34, Theorem 6.6] (resp. Beiglböck and Juillet [6, Theorem 4.18]). In other words, for

each x, the first and second marginals of πI |(−∞,x]×R (resp. πlc|(−∞,x]×R) are µ|(−∞,x] and

Sν(µ|(−∞,x]), respectively.

An alternative characterization of πI and πlc is through their supports. As a consequence of

the minimality of the shadow measure with respect to convex order (when µ ≤c ν), πlc is also

the unique martingale coupling which is second-order left-monotone in the sense of Definition

3.2 (see Beiglböck and Juillet [6, Theorem 5.3]):

Definition 3.2. A transport plan π ∈ Π(µ, ν) is said to be second-order left-monotone if there

exists Γ ∈ B(R2) with π(Γ) = 1 and such that, if (x, y−), (x, y+), (x′, y′) ∈ Γ we cannot have

x < x′ and y− < y′ < y+.

While the second-order left-monotonicity (in the case µ ≤c ν) can be seen as a martingale

counterpart of the c-cyclical monotonicity in the classical OT theory, the supermartingale

constraint requires a novel distinction of the origins x. In particular, when µ ≤cd ν, the

support of the initial measure µ splits into a set M of ‘martingale points’ and their complement

(i.e., the ‘supermartingale points’). Nutz and Stebegg [34, Corollary 9.5] showed that there

exists (Γ,M) ∈ B(R2)× B(R) such that πI is concentrated on Γ, πI |M×R is a martingale and

πI is second-order left-monotone (w.r.t. Γ) and first-order right-monotone (w.r.t. (Γ,M)) in

the sense of Definition 3.3. Furthermore, the converse is also true. Suppose µ ≤cd ν and let

π ∈ ΠS(µ, ν). If, for some (Γ,M) ∈ B(R2) × B(R), π(Γ) = 1, π|M×R is a martingale and π

is both, second-order left-monotone (w.r.t. Γ) and first-order right-monotone (w.r.t. (Γ,M)),

then π = πI (see Nutz and Stebegg [34, Theorem 8.1]).

Definition 3.3. A transport plan π ∈ Π(µ, ν) is said to be first-order right-monotone if there

exists Γ ∈ B(R2) and M ∈ B(R) such that π(Γ) = 1 and, if (x1, y1), (x2, y2) ∈ Γ with x1 < x2

and x1 /∈M, then we cannot have y1 < y2.

When the initial law µ is continuous (i.e., µ({x}) = 0 for all x ∈ R), and if µ ≤c ν, the

left-curtain martingale coupling has a rather simple representation. In particular, for x ∈ R,

the element πxlc(·) in the disintegration πlc(dx, dy) = µ(dx)πxlc(dy) is a measure supported on

a set of at most two points.

Lemma 3.5 (Beiglböck and Juillet [6, Corollary 1.6]). Let µ, ν be probability measures in

convex order and assume that µ is continuous. Then there exists a pair of measurable functions

Td : R 7→ R and Tu : R 7→ R such that Td(x) ≤ x ≤ Tu(x), such that for all x < x′ we

have Tu(x) ≤ Tu(x′) and Td(x
′) /∈ (Td(x), Tu(x)), and such that, if we define π̄(dx, dy) =

µ(dx)χTd(x),x,Tu(x)(dy), then π̄ ∈ ΠM (µ, ν) and π̄ = πlc.
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Lemma 3.5 is expressed in terms of elements of ΠM . We can give an equivalent expression

in terms of a martingale. First we give an analogue of Definitions 3.2 and 3.3 for functions.

Definition 3.4. Given an interval I, Î ⊂ I and an increasing function g : I 7→ R, a triple of

functions (f, h, l), where f, h : Î 7→ R, l : I \ Î 7→ R, is said to be second-order left-monotone

and first-order right monotone with respect to (I, Î, g) if

• (f, h) is second-order left-monotone with respect to g on Î: f ≤ g ≤ h on Î and for

x, x′ ∈ Î with x < x′ we have h(x) ≤ h(x′) and f(x′) /∈ (f(x), h(x)),

• l is non-increasing and l ≤ g on I \ Î, and l(x′) /∈ (f(x), h(x)) for all x′ ∈ I \ Î and

x ∈ Î with x < x′.

Corollary 3.1. Let (Ω,F ,P) = (I × (0, 1),B(Ω),PX × Leb((0, 1))) where PX((−∞, x]) =

µ((−∞, x]). Let ω = (x, v) and let the canonical random variable (X,V ) on (Ω,F ,P) be given

by (X(ω), V (ω)) = (x, v). Then X has law µ, V is a U(0, 1) random variable and X and V

are independent. Let F = (F1 = σ(X),F2 = σ(X,V )) and set M = (Ω,F ,F,P).

Suppose µ is continuous. Then there exists Td, Tu : I 7→ R such that (Td, Tu) is second-

order left-monotone with respect to the identity function on I and such that if we define

Y (x, v) ∈ {Td(x), Tu(x)} by Y (x, v) = x on Td(x) = x = Tu(x) and

(3.4) Y (x, v) = Td(x)I{v≤ Tu(x)−x
Tu(x)−Td((x)

} + Tu(x)I{v> Tu(x)−x
Tu(x)−Td(x)

}

otherwise, then M = (X,Y (X,V )) is a M-martingale for which L(X) = µ and L(Y ) = ν.

In the case with atoms, Td and Tu cannot be constructed unless we allow them to be multi-

valued. By changing their viewpoint Hobson and Norgilas [31] constructed the generalised

lower and upper functions that support πlc.

Lemma 3.6 (Hobson and Norgilas [31, Theorem 7.8]). Let (Ω,F ,P) = ((0, 1)×(0, 1),B(Ω),Leb(Ω)).

Let ω = (u, v) and let (U, V ) be the canonical random variables on (Ω,F ,P) given by (U(ω), V (ω)) =

(u, v) so that U and V are independent U(0, 1) random variables. Let F = (F1 = σ(U),F2 =

σ(U, V )) and set M = (Ω,F ,F,P).

Fix µ ≤c ν and let G = Gµ be a quantile function of µ.

Then there exists R,S : (0, 1) 7→ R such that the pair (R,S) is second-order left-monotone

with respect to G on I = (0, 1) and such that if we define X(u, v) = X(u) = G(u) and

Y (u, v) ∈ {R(u), S(u)} by Y (u, v) = G(u) on R(u) = S(u) and

Y (u, v) = R(u)I{v≤S(u)−G(u)
S(u)−R(u)

} + S(u)I{v>S(u)−G(u)
S(u)−R(u)

}

otherwise, then M = (X(U), Y (U, V )) is a M-martingale for which L(X) = µ and L(Y ) = ν.

Our main goal in later sections is to construct the suitable supporting functions for πI
in the case when µ ≤cd ν, and prove a supermartingale version of Lemma 3.6 (recall the

statement of Theorem 1.1). In particular, we will show that the set M of martingale points

is actually an interval (−∞, x∗] whose right boundary x∗ will be determined explicitly. To

the left of x∗, πI is just a martingale left-curtain coupling (and we can use Corollary 3.1 or

Lemma 3.6 to embed µ|(−∞,x∗] into ν using the shadow Sν(µ|(−∞,x∗])), while to the right of

x∗ the supermartingale left-curtain coupling πI is concentrated on a deterministic decreasing
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map (and µ|(x∗,∞) is embedded into ν through the antitone coupling). Special care will be

needed in the case when µ has an atom at x∗.

3.4. Lifted supermartingale transport plans. Just as Corollary 3.1 has an equivalent ex-

pression via Lemma 3.5, Theorem 1.1 has an equivalent expression in terms of transport plans,

provided that we generalise the notion of a supermartingale transport plan. Let (µu)0≤u≤1

be a family of measures with µu(R) = u, µ1 = µ and µu ≤ µv for 0 ≤ u ≤ v ≤ 1, and

let λ denote the Lebesgue measure on the unit interval. Then a lift (Beiglböck and Juillet

[6, 7]) of µ with respect to (µu)0≤u≤1 is a probability measure µ̂ ∈ Π(λ, µ) such that, for all

u ∈ [0, 1] and Borel A ⊆ R, µ̂([0, u]×A) = µu(A). A lifted supermartingale transport plan is a

probability measure π̂ ∈ Π(µ̂, ν) such that
∫
R yπ̂u,x(dy) ≤ x, µ̂-a.e. (u, x), where π̂u,x denotes

the disintegration of π̂ ∈ Π(µ̂, ν) with respect to µ̂: π̂(du, dx, dy) = µ̂(du, dx)π̂u,x(dy).

One of the insights of Beiglböck and Juillet [6, 7] is that, when µ ≤c ν and (µu)0≤u≤1

as above, the (martingale) shadow measure induces a family of martingale couplings. In

particular the idea is that for all u ∈ [0, 1], µu is mapped to Sν(µu). A crucial result making

this possible is the fact that if 0 < u < v < 1 and µu ≤ µv then Sν(µu) ≤ Sν(µv) (recall

Lemma 3.4). More precisely, for any lift µ̂ ∈ Π(λ, µ), there exists the unique lifted martingale

transport plan π̂ such that for all u ∈ [0, 1] and Borel A,B ⊆ R, π̂([0, u] × A × R) = µu(A)

and π̂([0, u]× R×B) = Sν(µu)(B) (see Beiglböck and Juillet [7, Theorem 2.9]).

The proof of Beiglböck and Juillet [7, Theorem 2.9] relies on the associativity of the shadow

measure. Since this property also holds when µ ≤cd ν (see Proposition 3.2), we believe that,

by replacing ≤c and ≤pc with ≤cd and ≤pcd, respectively, the theorem can be extended to the

supermartingale case (for arbitrary lifts). The rigorous proof, however, is left for future work.

In this paper we work with a particular lift instead. In particular, we choose the quantile lift

µ̂Q whose support is of the form {(u,G(u)) : 0 < u < 1} where G is a quantile function of µ.

Then µ̂Q(du, dx) = duδG(u)(dx) and for a Borel set A, µ̂Q([0, w]×A) =
∫ w

0 duI{G(u)∈A}. (This

is precisely the lift used by Hobson and Norgilas [31] to construct the lifted left-curtain mar-

tingale coupling.) By analogy with the correspondence between Lemma 3.5 and Corollary 3.1

we have the following equivalent restatement of Theorem 1.1:

Let µ, ν be probability measures in convex-decreasing order and let µ̂Q be

the quantile lift of µ. Then there exists the unique regime-switching point

u∗ ∈ [0, 1] and a triple of measurable functions R,S : (0, u∗] 7→ R and

T (u∗, 1) 7→ R such that (R,S, T ) is second-order left-monotone and first-

order right-monotone with respect to ((0, 1), (0, u∗], G), and such that if

π̂Q(du, dx, dy) = duδG(u)(dx)π̂Qu,x(dy) (recall µ̂ has support on {(u,G(u)) :

0 < u < 1}) then

π̂Qu,x(dy) = I{u≤u∗}χR(u),G(u),S(u)(dy) + I{u>u∗}δT (u)

and π̂Q is the lifted increasing supermartingale transport plan which trans-

ports a second marginal µ to third marginal ν.

The existence (and uniqueness) of lifted supermartingale couplings that arise from the

shadow measure (for arbitrary lifts of the initial measure) is investigated in the companion

paper Bayraktar et al. [1].
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4. The geometric construction of πI

In this section we construct a generalized (or lifted) version of the supermartingale in-

creasing coupling for two measures µ, ν ∈ P with µ ≤cd ν. In particular, we will split the

construction into two parts, martingale and (strict) supermartingale, by explicitly determining

the unique regime-switching point.

We begin by introducing a particular parametrization of an initial measure µ. Let Gµ :

(0, 1) 7→ R be a quantile function of µ. For now, we use an arbitrary version of G = Gµ. For

each u ∈ (0, 1) define µu ∈M by

(4.1) µu = µ|(−∞,G(u))+(u− µ|(−∞,G(u))(R))δG(u).

It is easy to verify that µu does not depend on the choice of G. Note that µu(R) = u, u ∈ (0, 1).

For v, u ∈ (0, 1) with v < u, µu − µv ≥ 0 (i.e., (µu − µv) ∈ M), (µu − µv)(R) = (u − v) and

the support of (µu − µv) is contained in [G(v), G(u)]. Furthermore, we treat µ0 as the zero

measure, and set µ1 = µ.

Note that, for u ∈ (0, 1), we have Pµu(k) = Pµ(k) for k ≤ G(u), while Pµu(k) ≤ Pµ(k) for

k > G(u). In particular,

Pµu(k) = Pµ(k ∧G(u)) + u(k −G(u))+, k ∈ R,

and thus, Pµu(·) is linear on [G(u),∞) and u ∈ ∂Pµ(G(u)), so that P ′µ(G(u)−) ≤ u ≤
P ′µ(G(u)+).

4.1. The regime-switching point u∗. For η, χ ∈ M with η ≤pcd χ, recall the definition of

cη,χ := supk∈R{(χ(R) − η(R))k − (χ̄ − η̄) − Pχ(k) + Pη(k)} ∈ [0,∞), which was used in the

proof of Theorem 3.1, see Figure 2. Note that cη,χ = supk∈R{Cη(k)− Cχ(k)}.
We will use cη,χ with η = µu, for u ∈ [0, 1], and χ = ν. Define c : [0, 1] 7→ [0,∞) by

(4.2) c(u) := cµu,ν = sup
k∈R
{Cµu(k)− Cν(k)}, u ∈ (0, 1), c(0) = 0, c(1) = cµ,ν .

(That c(·) is non-negative is due to the fact that µu ≤ µ ≤cd ν, so that µu ≤pcd ν.) The

following lemma summarises the properties of c(·).

Lemma 4.1. c(·), defined in (4.2), is non-decreasing and lower semi-continuous, and thus

also left-continuous.

Proof. Fix u, v ∈ (0, 1) with u < v. Then µu ≤ µv. For each k ∈ R, x 7→ (x − k)+ is

non-negative, and therefore Cµu(k) ≤ Cµv(k). It follows that c(·) is non-decreasing:

c(u) = sup
k∈R
{Cµu(k)− Cν(k)} ≤ sup

k∈R
{Cµv(k)− Cν(k)} = c(v).

We now turn to the continuity of c(·).
If u < v, then the support of (µv − µu) is contained in [G(u), G(v)] and we have that, for

each k ∈ R,

0 ≤ Cµv(k)− Cµu(k) =

∫
R

(x− k)+(µv − µu)(dx) ≤ (G(v)− k)+(µv − µu)(R),
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and it follows that

0 ≤ lim
v↓u
{Cµv(k)− Cµu(k)} ≤ (G(u+)− k)+ lim

v↓u
(v − u) = 0.

On the other hand, if v < u, then the support of (µu − µv) is contained in [G(v), G(u)], and

therefore

0 ≤ Cµu(k)− Cµv(k) ≤ (G(u)− k)+(u− v), k ∈ R.
It follows that, for each k ∈ R,

0 ≤ lim
v↑u
{Cµu(k)− Cµv(k)} ≤ (G(u)− k)+ lim

v↑u
(u− v) = 0.

Combining both cases we have that, for each k ∈ R, u 7→ (Cµu(k) − Cν(k)) is continuous.

Since the supremum of any collection of continuous functions is lower semi-continuous (l.s.c.),

we conclude that c(·) is l.s.c.

Finally, fix u ∈ (0, 1]. Then c(v) ≤ c(u) ≤ lim infv↑u c(v) for all 0 < v < u. Letting v ↑ u
shows that c(·) is left-continuous. �

χ−η
χ(R)−η(R) k

χ−η
χ(R)−η(R) + cη,χ

k 7→ (l(k)− cη,χ)

k 7→ l(k)

k 7→ (Pχ(k)− Pη(k))

Figure 2. The geometrical representation of the case cη,χ > 0 for η ≤pcd χ.

The dashed curve represents (Pχ − Pη). The dotted line corresponds to k 7→
l(k) = (χ(R)k − χ) − (η(R)k − η). Note that (Pχ − Pη) converges to l at ∞.

The dash-dotted curve represents k 7→ (l(k)− cη,χ). Note that (l(k)− cη,χ) ≤
(Pχ(k)− Pη(k)) for all k ∈ R, but there exists (not necessarily unique) k ∈ R
such that (l(k)−cη,χ) = (Pχ(k)−Pη(k)). Note that the convex hull (Pχ−Pη)c

must be linear and coincide with k 7→ (l(k) − cη,χ) to the right of k, which

shows that (χ− Sχ(η)) does not charge (k,∞); recall Theorem 3.1.

We have the following representation of c(·).

Lemma 4.2. For each u ∈ (0, 1),

c(u) = µu − Sν(µu).
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Proof. By Lemma 5.7 with f = Pµu and g = Pν we have that (Pν − Pµu)c ∈ D(ν(R) −
u, ν − µu + c(u)). Let θu := ((Pν − Pµu)c)′′ ∈ M, then θu = ν − µu + c(u). By Theorem 3.1,

Sν(µu) = ν−θu, and therefore Sν(µu) = ν−θu = µu−c(u). It follows that µu−Sν(µu) = c(u),

as claimed. �

Let u, v ∈ (0, 1) with u < v. Then µu ≤ µv and, by Lemma 3.4, Sν(µu) ≤ Sν(µv).

Combining this with Lemma 4.2 and the associativity of the shadow measure (see Proposition

3.2) it follows that

c(v) = c(u) + µv − µu − Sν−Sν(µu)(µv − µu), u, v ∈ (0, 1) with u < v,

and thus we have the following property.

Corollary 4.1. Fix u, v ∈ (0, 1) with u < v. Then

c(u) = c(v) if and only if (µv − µu) ≤pc (ν − Sν(µu)).

Proof. Since (µv − µu) ≤pcd (ν − Sν(µu)), the statement follows immediately by noting that

(µv −µu) ≤pc (ν − Sν(µu)) if and only if µv − µu = Sν−Sν(µu)(µv − µu). See Remark 2.1. �

Corollary 4.1 motivates us to introduce a special point u∗ that will separate the construction

of the supermartingale coupling into two parts.

Define

u∗ := u∗µ,ν := sup{u ∈ (0, 1) : c(u) = 0} ∈ [0, 1],

with convention sup ∅ = 0. Note that, since c(·) is non-decreasing and left-continuous, c(u∗) =

0. Then by Lemma 4.2 and Remark 2.1 we have that µu∗ ≤c Sν(µu∗) ≤ ν, and thus we can

transport µu∗ to Sν(µu∗) using any martingale coupling π ∈ ΠM (µu∗ , S
ν(µu∗)) (in Section 4.2

for this we will actually choose the generalised left-curtain martingale coupling).

Now consider the remaining initial mass (µ− µu∗). We will show that if µu∗ is transported

to Sν(µu∗) then no portion of mass from (µ−µu∗) can be transported to (ν−Sν(µu∗)) using a

martingale. This proves that u∗ defines the unique regime-switching point: to the left of (and

including) u∗ we use a martingale, to the right of u∗ we must use a strict supermartingale.

Before we proceed observe that if c(u) = 0 for all u ∈ (0, 1), or equivalently if u∗ = 1,

then µ = ν and therefore µ ≤c ν, so that ΠS(µ, ν) = ΠM (µ, ν). Then by embedding µu
to Sν(µu) for each u ∈ (0, 1), in Section 4.2.1 we will recover the generalised version of the

martingale left-curtain coupling. In the rest of this section we focus on the supermartingale

case 0 ≤ u∗ < 1.

The following crucial result shows that there does not exist η, χ ∈ M with η ≤ (µ− µu∗),

χ ≤ (ν − Sν(µu∗)) and such that η ≤c χ.

Proposition 4.1. Suppose µ, ν ∈M with µ ≤cd ν and u∗ ∈ [0, 1).

Then the support of (µ− µu∗) is strictly to the right of the support of (ν − Sν(µu∗)):

rν−Sν(µu∗ ) ≤ `µ−µu∗ and (µ− µu∗)({`µ−µu∗}) ∧ (ν − Sν(µu∗))({`µ−µu∗}) = 0.

Proof. (Note that if u∗ = 1 then there is nothing to prove since in this case both µ− µu∗ and

ν − Sν(µu∗) are the zero measures.) First suppose that u∗ ∈ (0, 1).
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Case 1. Suppose (µ − µu∗)({G(u∗)}) > 0. We either have (ν − Sν(µu∗))({G(u∗)}) > 0

or (ν − Sν(µu∗))({G(u∗)}) = 0. In the former case let h := (µ − µu∗)({G(u∗)}) ∧ (ν −
Sν(µu∗))({G(u∗)}) > 0. Then

(µu∗+h − µu∗) = hδG(u∗) ≤ (ν − Sν(µu∗))({G(u∗)})δG(u∗) ≤ (ν − Sν(µu∗))

and therefore Cµu∗+h−µu∗ ≤ Cν−Sν(µu∗ ) everywhere. Using Lemma 3.2 we then have that

(µu∗+h − µu∗) ≤pc (ν − Sν(µu∗)). It follows that (µu∗+h − µu∗) ≤c Sν−S
ν(µu∗ )(µu∗+h − µu∗)

and therefore Sν−Sν(µu∗ )(µu∗+h − µu∗) = (µu∗+h − µu∗). Hence, c(u∗ + h) = c(u∗) = 0,

contradicting the maximality of u∗.

Now suppose that (ν − Sν(µu∗))({G(u∗)}) = 0. If Iν−Sν(µu∗ ) ⊆ (−∞, G(u∗)) then we

are done. On the other hand, if Iν−Sν(µu∗ ) ⊆ (G(u∗),∞), fix v ∈ (u∗, µ((−∞, G(u∗)])].

Then for any ηv ∈ M with ηv ≤ (ν − Sν(µu∗)) and ηv(R) = (v − u∗) we have that Iηv ⊆
(G(u∗),∞), and therefore ηv > (v − u∗)δG(u∗) = (µv − µu∗), contradicting the fact that

(µv − µu∗) ≤pcd ν − Sν(µu∗). Hence suppose that h̃ := (ν − Sν(µu∗))((−∞, G(u∗))) ∧ (ν −
Sν(µu∗))((G(u∗),∞)) ∈ (0, 1− u∗). Let ũ := (u∗ + h̃) ∧ µ((−∞, G(u∗)]).

Using Lemma 5.1 with η = (µũ − µu∗) and χ = (ν − Sν(µu∗)) we have that (µũ − µu∗) ≤pc
(ν − Sν(µu∗)). But then (µũ − µu∗) ≤c Sν−S

ν(µu∗ )(µũ − µu∗). It follows that µũ − µu∗ =

Sν−Sν(µu∗ )(µũ − µu∗), and hence c(ũ) = c(u∗) = 0, contradicting the maximality of u∗. We

conclude that (ν − Sν(µu∗))(R) = (ν − Sν(µu∗))((−∞, G(u∗))).

Case 2. Now supposeG(u∗) < G(u∗+) and (µ−µu∗)([G(u∗), G(u∗+)]) = (µ−µu∗)({G(u∗+)}) >
0. By replacing G(u∗) with G(u∗+) we can use the same arguments as in Case 1 and conclude

that (ν − Sν(µu∗))(R) = (ν − Sν(µu∗))((−∞, G(u∗+))).

Case 3. Suppose that (µ − µu∗)([G(u∗), G(u∗+)]) = 0. (Note that in this case G(u) >

G(u∗+) for all u ∈ (u∗, 1).) Then either Iµ−µu∗ = (G(u∗+), rµ) or Iµ−µu∗ = (G(u∗+), rµ]. To

ease the notation let µ̃ := (µ−µu∗) and ν̃ := (ν −Sν(µu∗)). If ν̃(R) = ν̃((−∞, G(u∗+)]), i.e.,

Iν̃ ⊆ (−∞, G(u∗+)], then we are done. Hence we can suppose that either ν̃((−∞, G(u∗+)])∧
ν̃((G(u∗+),∞)) > 0 or ν̃(R) = ν̃((G(u∗+),∞)).

We first argue that if ν̃((−∞, G(u∗+)]) ∧ ν̃((G(u∗+),∞)) > 0 then there exists û ∈ (u∗, 1)

with c(û) = c(u∗) = 0, contradicting the maximality of u∗. Indeed, let k > G(u∗+) belong

to the support of ν̃|(G(u∗+),∞). Then we can pick a small enough û > u∗ such that G(u∗) <

G(û) < k. Let h̄ := ν̃((−∞, G(u∗+)]) ∧ ν̃((G(û),∞)) ∧ (û − u∗) > 0. Then using Lemma

5.1 with η = (µu∗+h̄ − µu∗) and χ = ν̃|(−∞,G(u∗+)]∪(G(û),∞) we have that (µu∗+h̄ − µu∗) ≤pc
ν̃|(−∞,G(u∗+)]∪(G(û),∞)≤ ν̃ and therefore (µu∗+h̄ − µu∗) ≤pc ν̃. But then (µu∗+h̄ − µu∗) ≤c
S ν̃(µu∗+h̄ − µu∗). It follows that µu∗+h̄ − µu∗ = S ν̃(µu∗+h̄ − µu∗) and therefore c(u∗ + h̄) =

c(u∗) = 0, contradicting the maximality of u∗.

Finally suppose that ν̃(R) = ν̃((G(u∗+),∞)). Pick a small enough u ∈ (u∗, 1) such that

G(u∗+) < G(u) < (ν̃/ν̃(R)). Define g : R 7→ R+ by

g(k) =

Cµu−µu∗ (k), k ∈ (−∞, G(u∗+)) ∪ (G(u),∞),
Cµu−µu∗ (G(u∗+))

G(u)−G(u∗+) (G(u)− k), k ∈ [G(u∗+), G(u)].
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Then g(·) is convex. Furthermore, since the support of (µu−µu∗) is contained in (G(u∗+), G(u)]

and Cµu−µu∗ is convex, we have that

Cµu−µu∗ (k) ≤ g(k) ≤ (ν̃ − ν̃(R)k)+ ≤ Cν̃(k), k ∈ R.

By Lemma 3.2, (µu − µu∗) ≤pc ν̃. But then (µu − µu∗) ≤c S ν̃(µu − µu∗). It follows that

µu − µu∗ = S ν̃(µu − µu∗) and therefore c(u) = c(u∗) = 0, contradicting the maximality of u∗.

To finish the proof we must cover the case when u∗ = 0. However this can be achieved using

the same arguments as in the above three cases. To see this first note that G(u∗+) = G(0+) =

`µ. If µ({`µ}) > 0 then `µ > −∞, and we can use the arguments of Case 2 to conclude that

(ν − Sν(µu∗))(R) = ν(R) = ν((−∞, `µ)). On the other hand, if µ({`µ}) = µ({G(0+)}) = 0,

then the arguments of Case 3 show that ν(R) = ν((−∞, `µ]), as required. (Note that if

`µ = G(0+) = −∞, then ν(R) = ν({−∞}), a contradiction to the fact that ν is integrable.

Hence, if u∗ = 0 then we must have that `µ > −∞.) �

Corollary 4.2. c(·) is strictly increasing on (u∗, 1).

Proof. By Proposition 4.1, the support of ν − Sν(µu∗) is (strictly) to the left of the support

of µ − µu∗ . Since, for any u, v ∈ (0, 1) with u∗ < u < v, (µv − µu) ≤ (µ − µu∗) and

(Sν−S
ν(µu∗ )(µv − µu)) ≤ (ν − Sν(µu∗)), we have that µv − µu > Sν−Sν(µu∗ )(µv − µu) and

therefore c(v) > c(u), as claimed. �

4.2. Proof of Theorem 1.1. We will prove Theorem 1.1 by explicitly constructing the

functions that support the lifted increasing supermartingale coupling.

Fix µ, ν ∈ M with µ ≤cd ν. In this section we work with a left-continuous version of the

quantile function Gµ = G−µ of the initial measure µ. DefineDµ,ν : R 7→ R byDµ,ν(k) = Pν(k)−
Pµ(k), k ∈ R. Then Dµ,ν ≥ 0 everywhere, limk→−∞Dµ,ν(k) = 0 and limk→∞Dµ,ν(k) =

(µ− ν) ≥ 0.

Let mµ,ν := µ(R) = ν(R). For each u ∈ (0,mµ,ν) define Eµ,νu : R 7→ R+ by Eµ,νu = Pν −Pµu ,

so that

Eµ,νu (k) = Pν(k)− Pµu(k) = Dµ,ν(k) + Pµ(k)− Pµu(k), k ∈ R.

Then, by Theorem 3.1, we have that

PSν(µu)(k) = Pν(k)− (Eµ,νu )c(k), k ∈ R.

The underlying idea is that using the graph of k 7→ (Eµ,νu )c(k), for each u ∈ (0,mµ,ν), we can

define candidate functions that characterise the increasing supermartingale coupling.

Note that, Eµ,νu (k) = Dµ,ν(k) for k ≤ Gµ(u). Since Pµ −Pµu is non-negative on R, we have

that Eµ,νu (k) ≥ Dµ,ν(k) for k > Gµ(u). Moreover, since Pµu is linear on [Gµ(u),+∞), Eµ,νu is

convex on (Gµ(u),+∞). It is also easy to see that k 7→ Eµ,νu (k)−Dµ,ν(k) is non-decreasing.

Let Qµ,ν , Sµ,ν : (0,mµ,ν) 7→ [−∞,+∞] be given by

Qµ,ν(u) := XE
µ,ν
u (Gµ(u)),

Sµ,ν(u) := ZE
µ,ν
u (Gµ(u)).
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By definition, Qµ,ν(u) ≤ Gµ(u) ≤ Sµ,ν(u), for u ∈ (0,mµ,ν). Furthermore, for each u ∈
(0,mµ,ν), either Qµ,ν(u) < Gµ(u) < Sµ,ν(u) or Qµ,ν(u) = Gµ(u) = Sµ,ν(u), see Hobson and

Norgilas [31, Lemma 4.1].

We now introduce a function φµ,ν : (0,mµ,ν) 7→ R which represents the slope of (Eµ,νu )c(·)
at Gµ(u). If Qµ,ν(u) < Gµ(u) < Sµ,ν(u), then this slope is well defined. If Qµ,ν(u) = Gµ(u) =

Sµ,ν(u) then the slope of (Eµ,νu )c may not be well defined at Gµ(u). To cover all cases we

define:

Definition 4.1. φµ,ν : (0,mµ,ν) 7→ R is given by φµ,ν(u) = inf{ψ : ψ ∈ ∂(Eµ,νu )c(Gµ(u))}.

Now we can introduce our second candidate lower function.

Recall the definition of Lfa,b for any f : R 7→ R (see (5.1)), so that (in the case a < b) Lfa,b is

the line passing through (a, f(a)) and (b, f(b)). Define also Lf,ψa by Lf,ψa (y) = f(a) +ψ(y−a)

so that Lf,ψa is the line passing through (a, f(a)) with slope ψ. (Note that, in the case a = b,

Lfa,a = Lf,0a .) Define Rµ,ν : (0,mµ,ν) 7→ [−∞,∞] by

(4.3) Rµ,ν(u) := inf{k : k ≤ Gµ(u), Dµ,ν(k) = L
(Eµ,νu )c,φµ,ν(u)
Gµ(u) (k)}, u ∈ (0.mµ,ν).

If Qµ,ν(u) < Gµ(u) then the definition of Rµ,ν can be rewritten as Rµ,ν(u) = inf{k : k ≤
Gµ(u), Dµ,ν(k) = LE

µ,ν
u

Qµ,ν(u),Sµ,ν(u)(k)}. Note that Qµ,ν(u) ∈ {k : k ≤ Gµ(u), Dµ,ν(k) =

L
(Eµ,νu )c,φµ,ν(u)
Gµ(u) (k)} so that Rµ,ν(u) exists in all cases and satisfies Rµ,ν(u) ≤ Qµ,ν(u). (See, for

example, Figure 3 which corresponds to the martingale case when µ = ν).

If Qµ,ν(u) < Sµ,ν(u), then by construction, (Eµ,νu )c < Eµ,νu on (Qµ,ν(u), Sµ,ν(u)) and

(Eµ,νu )c ≤ Eµ,νu on [Rµ,ν(u), Sµ,ν(u)]. In particular, (Eµ,νu )c is linear on (Rµ,ν(u), Sµ,ν(u)),

whilst (Eµ,νu )c(Sµ,ν(u)) = Eµ,νu (Sµ,ν(u)), (Eµ,νu )c(Qµ,ν(u)) = Eµ,νu (Qµ,ν(u)) = Dµ,ν(Qµ,ν(u))

and (Eµ,νu )c(Rµ,ν(u)) = Eµ,νu (Rµ,ν(u)) = Dµ,ν(Rµ,ν(u)) (provided that Sµ,ν , Qµ,ν and Rµ,ν are

finite, respectively). Then we have that

φµ,ν(u) =
Eµ,νu (Sµ,ν(u))−Dµ,ν(Qµ,ν(u))

Sµ,ν(u)−Qµ,ν(u)
=
Eµ,νu (Sµ,ν(u))−Dµ,ν(Rµ,ν(u))

Sµ,ν(u)−Rµ,ν(u)
.

Further, φµ,ν(u) is an element of each of ∂Eµ,νu (Rµ,ν(u)), ∂Eµ,νu (Qµ,ν(u)) and ∂Eµ,νu (Sµ,ν(u))

together with ∂(Eµ,νu )c(Rµ,ν(u)), ∂(Eµ,νu )c(Qµ,ν(u)) and ∂(Eµ,νu )c(Sµ,ν(u)).

4.2.1. Martingale case: u∗ = 1. Suppose µ, ν ∈ P with µ ≤cd ν and u∗ = 1. Then µ = ν and

therefore µ ≤c ν, so that we are in the martingale set-up. Hobson and Norgilas [31] showed

how to construct the upper and lower functions that support the generalised left-curtain

martingale coupling, on a single irreducible component only. In this section we will extend

their result by gluing together the constructions obtained on separate irreducible components.

Let (Ii)i≥0 = (Iµ,νi )i≥0 := ((`i, ri))i≥0 denote the collection of irreducible components

associated to µ and ν, and let Ii = [`i, ri] denote the closure of Ii. Define

µi := µ|Ii , νi := Sν(µi), i ≥ 0.

Since each Ii is irreducible, µi is embedded in ν|Ii under any π ∈ ΠM (µ, ν). In particular,

νi = ν|Ii + αiδ`i + βiδri , i ≥ 0,
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where αi ∈ [0, ν({`i})] and βi ∈ [0, ν({ri})], recall Lemma 5.3.

Let G = Gµ and, for i ≥ 0, define

u`i := inf{u ∈ (0,mµ,ν) : G(u) > `i}, uri := sup{u ∈ (0,mµ,ν) : G(u) < ri},

and let (Ui)i≥1 be such that Ui := (u`i , u
r
i ). Since each Ii is irreducible, it is easy to see

that there exists u ∈ (0,mµ,ν) with G(u) ∈ (`i, ri), and therefore both u`i and uri are

well-defined (for example, we can take u ∈ (0,mµ,ν) with G(u) ≤ x ≤ G(u+), where

x ∈ argsupk∈IiDµ,ν(k)).

Lemma 4.3. If u ∈
⋃
i≥0 Ui then G(u) ∈

⋃
i≥0 Ii.

Proof. Since G is non-decreasing and left-continuous, we have G(uri ) ≤ ri. Suppose G(uri ) =

ri. If µ({ri}) = 0 then G(u) < ri for u < uri . If µ({ri}) > 0, then uri = Fµ(ri−) =

µ((−∞, ri)) and therefore G(u) < ri for u < uri . On the other hand, we have that either

G(u`i) = `i = G(u`i+) or G(u`i) ≤ `i < G(u`i+). If G(u`i) = `i = G(u`i+) and µ({`i}) > 0 then

u`i = Fµ(`i) = µ((−∞, `i]). In either case `i < G(u) for u > u`i . We conclude that G(u) ∈ Ii
for all u ∈ Ui. It follows that G(u) ∈

⋃
i≥1 Ii provided that u ∈

⋃
i≥0 Ui. �

Remark 4.1. The reverse statement of Lemma 4.3 is almost true. In fact we have that if

G(u) ∈
⋃
i≥0 Ii then u ∈

(⋃
i≥0 Ui

)
\ N for some Lebesgue null-set N .

Suppose G(u) ∈
⋃
i≥0 Ii for some u ∈ (0, 1). Then G(u) ∈ Ii for some i ≥ 0, and therefore

`i < G(u) < ri. It follows that u`i ≤ u ≤ uri . If u`i = u, then G(u`i) > `i. But his cannot

happen since G is left-continuous. It follows that u`i < u ≤ uri . Now suppose that u = uri , so

that G(uri ) < ri. This, however is a possible situation. It happens when G(uri ) < ri ≤ G(uri+).

Since there are countably many uri ’s the assertion follows.

We will now define candidate functions that support the left-curtain martingale coupling

on each irreducible component.

For i ≥ 0, let Gi : (0, uri − u`i) 7→ R be a (left-continuous) quantile function of µi, i.e.,

Gi = Gµi . By construction, G(u) = Gi(u − u`i) for u ∈ Ui, and therefore, for a uniform

random variable U on [0, 1] we have that L(I{U∈Ui}G(U)) = L(I{U∈Ui}Gi(U − u`i)) = µi.

Define Ri, Si : (0, uri − u`i) 7→ [−∞,∞] by

Ri(u) = Rµi,νi(u), Si(u) = Sµi,νi(u), u ∈ (0, uri − u`i).

The next result shows that Ri and Si are real-valued. The proof is presented in Section 5.3.

Lemma 4.4. For i ≥ 0, Ri(u), Si(u) ∈ [`i, ri] for all u ∈ Ui. If `i = −∞ (resp. ri =∞) then

Ri(u), Si(u) ∈ (`i, ri] (resp. Ri(u), Si(u) ∈ [`i, ri)).

Let N :=
⋃
i≥0{uri : G(uri ) < ri)}, recall Remark 4.1. Finally, define R̃µ,ν , S̃µ,ν : (0, 1) 7→ R

by

R̃µ,ν(u) = I{u/∈(
⋃
i≥0 Ui)

⋃
N}G(u) +

∑
i≥0

(
I{u∈Ui}Ri(u− u

`
i) + I{u=uri∈N}`i

)
,(4.4)

S̃µ,ν(u) = I{u/∈(
⋃
i≥0 Ui)

⋃
N}G(u) +

∑
i≥0

I{u∈Ui}

(
Si(u− u`i) + I{u=uri∈N}ri

)
.(4.5)
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When µ ≤c ν, for each i ≥ 0, the pair (Ri, Si) provides a construction of the (lifted) left-

curtain martingale coupling on Ii, while (R̃µ,ν , S̃µ,ν) gives a construction on the whole space

(Ii)i≥0 (see Theorem 4.1). In the case µ ≤cd ν, we will identify special subprobability measures

µ̃ ≤ µ and ν̃ ≤ ν with µ̃ ≤c ν̃, and then use (R̃µ̃,ν̃ , S̃µ̃,ν̃) (see (4.8) and (4.9)) to construct

the (lifted) increasing supermartingale coupling πI on the ‘martingale points’ of this coupling

(see Theorem 4.3).

R(u) Q(u) G(u) S(u)

y 7→ Eu(y)

y 7→ D(y)

slope φ(u)

Figure 3. Plot of locations of R(u) = Rµ,ν(u), Q(u) = Qµ,ν(u), G(u) =

Gµ(u) and S(u) = Sµ,ν(u) in the case where R(u) < Q(u) < G(u) < S(u) and

such that {k : Dµ,ν(u)(k) > 0} is an interval. The dashed curve represents

D = Dµ,ν(u). The dotted curve corresponds to the graph of Eu = Eµ,νu . Note

that D = Eu on (−∞, G(u)], while Eu is convex and D ≤ Eu on (G(u),∞). The

solid curve below Eu represents Ecu. The convex hull Ecu is linear on [R(u), S(u)],

and its slope is given by φ(u) = φµ,ν(u).

Remark 4.2. The intuition behind our choice of R and S is because (at least in regular cases)

they do satisfy the mean and mass preservation conditions

(4.6)

∫ G(u)

R(u)
xiµ(dx) =

∫ S(u)

R(u)
xiν(dx), i = 0, 1,

which are also satisfied by the pair of upper and lower functions (Td, Tu) constructed by Henry-

Labordère and Touzi [23] when µ is continuous.

Indeed, suppose µ, ν are atomless with positive density everywhere. In this case Dµ,ν and

Eµ,νu , for u ∈ (0, 1), are differentiable. Then if R(u) < G(u) ≤ S(u), by construction (see

Figure 3) we have that

D′(R(u)) = E ′u(S(u)) and D(R(u)) +D′(R(u))(S(u)−R(u)) = Eu(S(u)),

which, using the definition of D and Eu, can be easily shown to be equivalent to (4.6).
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We are now ready to present the main result of this section. Since u∗ = 1, the function T

in Theorem 1.1 is irrelevant. In particular, Theorem 1.1 is now a direct consequence of the

following result.

Theorem 4.1. Suppose µ ≤c ν. Define R̃ and S̃ as in (4.4) and (4.5), respectively. Then

they are second-order left-monotone with respect to G on (0, 1) and define a construction as

in Theorem 1.1 such that L(Y ) = ν. In particular, R̃ and S̃ define the (lifted) left-curtain

martingale coupling.

Proof. We have L(X(U, V )) = L(X(U)) = L(G(U)) = µ. Furthermore, since L(I{U∈Ui}G(U)) =

µi and P[{U ∈ N}] = 0, we still have that L(I{U∈Ui∪N}G(U)) = µi. Since Ui’s are disjoint, we

conclude that L(I{U∈(
⋃
i≥0 Ui)∪N}G(U)) =

∑
i≥0 µi, and therefore L(I{U /∈(

⋃
i≥0 Ui)∪N}G(U)) =

µ−1.

We now turn to Y (U, V ). For y ∈ R we have

P[I{U /∈
⋃
i≥0 Ui}Y (U, V ) ≤ y]

= P[I{U /∈(
⋃
i≥0 Ui)∪N}G(U) ≤ y] + P[I{U∈N}Y (U, V ) ≤ y] = µ−1((−∞, y]),

where we used that P[U ∈ N ] = 0 and therefore

P[IU∈NY (U, V ) ≤ y] ≤
∫
N

∑
i≥0

I{u=uri :`i≤y}du ≤
∫
N
du = 0.

We will now show that L(I{U∈
⋃
i≥0 Ui}Y (U, V )) =

∑
i≥0 νi. Note that it is enough to show

that L(I{U∈Ui}Y (U, V )) = νi, i ≥ 0. But this follows from the results of Hobson and Norgilas

[31]. Indeed, if for a fixed i ≥ 0 we define

Yi(u, v) = I{Ri(u)=Si(u)}Gi(u) + I{Ri(u)<Si(u)}

{
Ri(u)I{v≤Si(u)−Gi(u)

Si(u)−Ri(u)
} + Si(u)I{v>Si(u)−Gi(u)

Si(u)−Ri(u)
}

}
,

for u ∈ (0, uri − u`i) and v ∈ (0, 1), then L(I{U∈Ui}Y (U, V )) = L(Yi(Ui, V )) where Ui is a

uniform random variable on [0, uri − u`i ] that is independent of V . By Hobson and Norgilas

[31, Theorem 7.8] we have that L(Yi(Ui, V )) = νi, and therefore L(I{U∈Ui}Y (U, V )) = νi as

required.

The martingale property of Y follows by construction. Hence we are left to show that

R̃ = R̃µ,ν and S̃ = S̃µ,ν are second-order left-monotone with respect to G on (0, 1). Fix

u, v ∈ (0, 1) with u < v. If u /∈ (
⋃
i≥0 Ui)∪N , then R̃(u) = G(u) = S̃(u) and the second-order

left-monotonicity property trivially holds. Hence we can assume that either u ∈
⋃
i≥0 Ui or

u ∈ N .

Case 1: u ∈
⋃
i≥0 Ui. Suppose u ∈ Ui for some i ≥ 0. We know that u 7→ Ri(u − u`i) and

u 7→ Si(u − u`i) are second-order left-monotone with respect to G(·) = Gi(· − u`i) on Ui (see

Hobson and Norgilas [31, Theorem 7.8]). Hence if v ∈ Ui we are done. On the other hand if

v ∈ Uj with i 6= j, then using Lemma 4.4 we have that either `i ≤ R̃(u) ≤ S̃(u) ≤ ri ≤ `j ≤
R̃(v) or R̃(v) ≤ rj ≤ `i ≤ R̃(u) ≤ S̃(u) ≤ ri. In either case we have that R̃(v) /∈ (R̃(u), S̃(u))

as required.

Now suppose that v ∈ N , so that v = urj for some j ≥ 0. If i = j, then (using Lemma 4.4

again) we have that R̃(v) = `i ≤ R̃(u) ≤ S̃(u) as required.
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Suppose v /∈
⋃
i≥0 Ui and v /∈ N . Then R̃(v) = G(v) = S̃(v). Since v /∈ Ui and u < v,

v ≥ uri . Recall that G(uri ) ≤ ri. If G(uri ) = ri then (using Lemma 4.4) R̃(u) ≤ S̃(u) ≤ ri ≤
G(v). On the other hand if G(uri ) < ri, then uri < v. By the definition of uri we have that

G(uri ) < ri ≤ G(uri+), and then it follows that R̃(u) ≤ S̃(u) ≤ ri ≤ G(uri+) ≤ G(v). In both

cases the second-order left-monotonicity property holds.

Case 2: u ∈ N . In this case u = uri for some i ≥ 0 and R̃(u) = `i < ri = S̃(u). If

v ∈ N then uri = u < v = urj for some i 6= j. Then ri < rj and we have that R̃(u) =

`i < ri = S̃(u) < `j = R̃(v). On the other hand, if v ∈ Uj for some j ≥ 0, then i 6= j and

`j ≤ R̃(v) ≤ rj . Then either ri ≤ `j or rj ≤ `i. In either case R̃(v) /∈ (R̃(u), S̃(u)). Finally,

suppose v /∈
(⋃

i≥0 Ui
)

and v /∈ N , so that R̃(v) = G(v) = S̃(v). Then uri = u < v. By

definition of uri and since uri ∈ N we have that G(u) < ri ≤ G(u+) ≤ G(ũ) for all ũ > u. It

follows that R̃(u) = `i < ri = S̃(u) ≤ G(u+) ≤ G(v) = R̃(v) as required. �

We finish this section with a remark that will be useful in Section 4.2.3.

Remark 4.3. Suppose x ∈ R with R̃µ,ν(u) < x < S̃µ,ν(u) for some u ∈ (0, 1). Then

u ∈ Ui ∪ ({uri } ∩ N ) for some i ≥ 0. Combining Lemma 4.4 and the definitions of R̃µ,ν and

S̃µ,ν on N , we have that `i ≤ R̃µ,ν(u) < x < S̃µ,ν(u) ≤ ri and therefore x ∈ Iµ,νi .

4.2.2. The (strict) supermartingale case: u∗ = 0. In this section we consider µ, ν ∈ P with

rν ≤ `µ and µ({`µ})∧ ν({`µ}) = 0. Then the support of ν is strictly to the left of the support

of µ and we automatically have that µ ≤cd ν and u∗ = 0. Note that the converse is also true

(recall Proposition 4.1): if µ ≤cd ν and u∗ = 0 the the support of ν is strictly to the left of

the support of µ.

Recall the definition of D(k) = Dµ,ν(k) = Pν(k) − Pµ(k), k ∈ R. Note that D(k) = Pν(k)

for k ≤ `µ and D(k) = (k − ν) − Pµ(k) for k > `µ. It follows that D is continuous, non-

decreasing, convex on (−∞, `µ) and concave on (`µ,∞). Furthermore limk→−∞D(k) = 0 but

limk→∞D(k) = µ− ν > 0.

Now, as in Section 4.2.1, for each u ∈ (0, 1) we will use the function Eu(k) = Eµ,νu (k) =

Pν(k)−Pµu(k), k ∈ R, and its convex hull Ecu. First note that Eu(k) = D(k) +Pµ(k)−Pµu(k)

for all k ∈ R, and therefore Eu ≥ D everywhere. Similarly as D, Eu is continuous, non-

decreasing, convex on (−∞, `µ) and concave on (`µ,∞). In fact, since µu coincides with µ

on (−∞, G(u)) and does not charge (G(u),∞), we have that Eu = D on (−∞, G(u+)) and

Eu = (k − ν)− (uk − µu) (so that it is linear with slope (1 − u)) on (G(u+),∞).

We now introduce our candidate supporting function for the increasing supermartingale

coupling. Define T : (0, 1) 7→ R by

(4.7) T (u) := Tµ,ν := Rµ,ν(u) =: R(u), u ∈ (0, 1),

where Rµ,ν is given by (4.3). (Note that we chose the lower function from the martingale

set-up to be the only supporting function in the strict supermartingale case.) See Figure 4.

Let Fν and Gν denote the (right-continuous) cumulative distribution function of ν and

(left-continuous) quantile function of ν, respectively. Let U be a uniform random variable on

[0, 1].
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Proposition 4.2. T , defined in (4.7), is non-increasing, right-continuous, T < G on (0, 1)

and L(T (U)) = ν.

Proof. Fix u ∈ (0, 1). By definition of Gν we have that (1− u) ∈ ∂Pν(Gν(1− u)). Moreover,

since Gν is non-decreasing and left-continuous, we immediately have that u 7→ Gν(1 − u) is

non-increasing and right-continuous. Furthermore, Gν(1 − u) ≤ rν ≤ `µ ≤ G(u). Since µ

(and thus also µu, for each u ∈ (0, 1)) and ν cannot have atom at `µ simultaneously, it follows

that Gν(1 − u) < G(u) for all u ∈ (0, 1). Finally, since Ũ = 1 − U is still a uniform random

variable on [0, 1], L(Gν(1− U)) = ν. We are left to show that T (u) = Gν(1− u), u ∈ (0, 1).

Let hu : R 7→ R be defined by

hu(k) =

{
Pν(k), k ≤ Gν(1− u),

LPν ,1−uGν(1−u)(k), k > Gν(1− u).

Note that hu is continuous and convex. Furthermore, hu ≤ Eu everywhere and hu < Eu on

(Gν((1− u)+),∞). To see this first observe that, hu = Pν = Eu on (−∞, Gν(1− u)]. Also, if

Gν(1− u) < Gν((1− u)+), then hu = LPν ,1−uGν(1−u) = Pν = Eu on (Gν(1− u), Gν((1− u)+)]. On

the other hand, for all k ∈ (Gν((1− u)+), G(u)), (1− u) < inf{θ : θ ∈ ∂Eu(k)}, and therefore

hu = LPν ,1−uGν(1−u) < Eu on (Gν((1 − u)+), G(u)]. Finally, since LEu,1−uG(u) = LD,1−uG(u) is parallel

to LPν ,1−uGν(1−u), we also have that hu = LPν ,1−uGν(1−u) < LD,1−uG(u) = Eu on (G(u),∞), as claimed. It

follows that hu ≤ Ecu ≤ Eu everywhere.

We claim that Ecu = hu everywhere. First, since Eu(k) = Pν(k) = hu(k) for k ≤ Gν((1−u)+)

we must have that Ecu = hu on (−∞, Gν((1− u)+)]. On the other hand, if Ecu(k) > hu(k) for

some k > Gν((1− u)+), then by convexity of Ecu we have that (1− u) < inf{θ : θ ∈ ∂Ecu(k)}.
Then, since Eu = LD,1−uG(u) on [G(u),∞), for large enough k̂ ≥ k we have that Eu(k̂) < Ecu(k̂), a

contradiction.

Finally, T (u) = R(u) = inf{k : k ≤ G(u), D(k) = L
Ecu,φ(u)
G(u) (k)} = inf{k : k ≤ G(u), D(k) =

LPν ,1−uGν(1−u)(k)} = inf{k : k ≤ G(u), Pν(k) = LPν ,1−uGν(1−u)(k)} = Gν(1 − u), which finishes the

proof. �

Using Proposition 4.2 we immediately have the following.

Theorem 4.2. Define T as in (4.7). Then it defines a construction as in Theorem 1.1 such

that L(Y ) = ν. In particular, T defines the (lifted) increasing supermartingale coupling, which

coincides with the (lifted) antitone coupling.

Proof. Since u∗ = 0, for (u, v) ∈ (0, 1)2 we have that Y (u, v) = T (u), where Y is defined

as in the statement of Theorem 1.1. (Note that the proof of Proposition 4.2 revealed that

T (u) = Gν(1 − u).) By Proposition 4.2 we then have that (X(U) = G(U), Y (U, V )) forms

a supermartingale with L(X) = µ and L(Y ) = ν. Finally, since the antitone coupling πAT
is such that πAT (A × B) = Leb({u ∈ (0, 1) : G(u) = Gµ(u) ∈ A,Gν(1 − u) ∈ B}), for all

Borel measurable subsets A,B of R, we have that our construction corresponds to the (lifted)

version of πAT . �
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`ν rν = `µ rµ
G(u)T (u)

y 7→ Eu(y)

y 7→ D(y)

y 7→ Ecu(y)

Figure 4. Plot of locations of G(u) = Gµ(u) and T (u) = Tµ,ν(u) in the case

where µ ≤cd ν and u∗ = 0. The dashed curve represents D = Dµ,ν . Since the

support of µ is (strictly) to the right of the support of ν, D is convex to the left

of rν , linear on (rν , `µ) and concave to the right of `ν . In particular, D = Pν
on (−∞, `µ] and D = Pδν/ν(R) − Pµ on (`µ,∞). The dotted curve corresponds

to the graph of Eu = Eµ,νu . Note that D = Eu on (−∞, G(u+)], while Eu is

linear (with slope 1−u) and D < Eu on (G(u+),∞). The solid curve below Eu
represents Ecu. The convex hull Ecu is linear on [T (u),∞), and its slope is given

by φ(u) = 1 − u. Note that the linear section of Eu on (G(u+),∞) is parallel

to the linear section of Ecu on (T (u),∞).

4.2.3. The general supermartingale case: u∗ ∈ (0, 1). In this section we combine the con-

structions of Sections 4.2.2 and 4.2.1, and show how to build the increasing supermartingale

coupling when u∗ ∈ (0, 1).

Let µ, ν ∈ P with µ ≤cd ν and suppose that u∗ ∈ (0, 1). Recall that in this case c(u∗) =

µu∗ − Sν(µu∗) = 0 and therefore µu∗ ≤c Sν(µu∗). Hence we can embed µu∗ into Sν(µu∗)

using a construction similar the one provided in Section 4.2.2. In particular, define D̂ :=

PSν(µu∗ ) − Pµu∗ and Êu := D̂ + Pµu∗ − Pµu , u ∈ (0, u∗]. (Êu serves the same role for µu∗ and

Sν(µu∗) as Eu did for µu and Pν in Section 4.2.2.)

Define R̂, Ŝ : (0, u∗] 7→ R by

R̂(u) := R̃µu∗ ,Sν(µu∗ ),(4.8)

Ŝ(u) := S̃µu∗ ,Sν(µu∗ ),(4.9)

where R̃ and S̃ are defined as in (4.4) and (4.5), respectively. Furthermore, for u ∈ (0, u∗]

and v ∈ (0, 1), define Ŷ (u, v) ∈ {R̂(u), Ŝ(u)} by Ŷ (u, v) = G(u) on R̂(u) = Ŝ(u) and

(4.10) Ŷ (u, v) = R̂(u)I
{v≤ Ŝ(u)−G(u)

Ŝ(u)−R̂(u)
}

+ Ŝ(u)I
{v> Ŝ(u)−G(u)

Ŝ(u)−R̂(u)
}

otherwise.
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We now deal with µ̃ := (µ− µu∗) and ν̃ := (ν − Sν(µu∗)). Recall that, by Proposition 4.1,

the support of ν̃ is strictly to the left of the support of µ̃. Let G̃ = Gµ̃ be the (left-continuous)

quantile function of µ̃. Consider the lift (µ̃u)u∈(0,1−u∗) of µ̃ defined as in (4.1) but with µ̃ and

G̃ in place of µ and G, respectively, and set µ̃0 to be the zero measure and µ̃1−u∗ = µ̃. Let

D̃ := Pν̃ − Pµ̃ and Ẽu := D̃ + Pµ̃ − Pµ̃u for u ∈ (0, 1− u∗).
Define T̃ : (0, 1− u∗) 7→ R by

T̃ (u) := Tµ̃,ν̃(u), u ∈ (0, 1− u∗),(4.11)

where Tµ̃,ν̃ is defined as in (4.7).

We are now ready to prove Theorem 1.1 in the case when u∗ ∈ (0, 1).

Theorem 4.3. Define R̂ and Ŝ as in (4.8) and (4.9), and T̃ as in (4.11). Then (R̂, Ŝ, T̃ ) is

second-order left-monotone and first-order right-monotone with respect to ((0, 1), (0, u∗], G).

Furthermore, let Ŷ be as in (4.10) and set

Y (u, v) = I{u∈(0,u∗]}Ŷ (u, v) + I{u∈(u∗,1)}T̃ (u− u∗), u, v ∈ (0, 1).

Then (R̂, Ŝ, T̃ ) defines a construction as in Theorem 1.1 such that L(Y ) = ν. In particular,

(R̂, Ŝ, T̃ ) defines the (lifted) increasing supermartingale coupling.

Proof. Let U, V be two independent uniform random variables on [0, 1]. Fix y ∈ R. Then using

Theorem 4.1 we have that P[Y (U, V ) ≤ y, U ≤ u∗] = P[Ŷ (Uu∗ , V ) ≤ y] = Sν(µu∗)((−∞, y]),

where Uu∗ is a uniform random variable on [0, u∗], independent of V . On the other hand,

using Theorem 4.2 we have that P[Y (U, V ) ≤ y, U > u∗] = P[T̃ (U1−u∗) ≤ y] = (ν −
Sν(µu∗))((−∞, y]), where U1−u∗ is a uniform random variable on [0, 1 − u∗], independent

of V . It follows that L(Y (U, V )) = ν.

Furthermore, from Theorem 4.1 we have that (R̂, Ŝ) is second-order left-monotone with

respect to G on (0, u∗]. On the other hand, from Theorem 4.2 it follows that u 7→ T̃ (u− u∗)
is non-increasing and T̃ (u − u∗) < G̃(u − u∗) = G(u) for all u ∈ (u∗, 1). We are left to show

that for all u, v ∈ (0, 1) with u ≤ u∗ < v, T̃ (v − u∗) /∈ (R̂(u), Ŝ(u)).

If R̂(u) < T̃ (v − u∗) < Ŝ(u), then by Remark 4.3 we have that T̃ (v − u∗) belongs to

an interior of an irreducible component of µu∗ and Sν(µu∗). We will show that this cannot

happen by proving that Dµu∗ ,Sν(µu∗ )(T̃ (v − u∗)) = 0.

By construction we have that, for v ∈ (u∗, 1), T̃ (v − u∗) = Gν−Sν(µu∗ )(1− v) and

(Eν−S
ν(µu∗ ),µ−µu∗

v−u∗ )c(k) =

Pν−Sν(µu∗ )(k), k ≤ Gν−Sν(µu∗ )(1− v),

L
Pν−Sν (µu∗ ),1−v
Gν−Sν (µu∗ )

(k), k > Gν−Sν(µu∗ )(1− v).

(see the proof Proposition 4.2). Furthermore, since Gν−Sν(µu∗ ) is taken to be left-continuous,

Pν−Sν(µu∗ ) > L
Pν−Sν (µu∗ ),1−v
Gν−Sν (µu∗ )

on (−∞, T̃ (v− u∗) = Gν−Sν(µu∗ )(1− v)). Note that this implies

that if Pν−Sν(µu∗ ) is linear on (x, T̃ (v − u∗)) for some x < T̃ (v − u∗), then the slope of this

linear section must be strictly smaller than 1 − v. In particular, there does not exist ε > 0

such that Pν−Sν(µu∗ ) is linear on (T̃ (v − u∗)− ε, T̃ (v − u∗) + ε).



30 EXPLICIT CONSTRUCTION OF THE INCREASING SUPERMARTINGALE COUPLING

`ν `µ̃

Gµ(u)T̃ (u− u∗)

y 7→ Eµ,νu (y)

y 7→ Pν̃−Sν̃(µ̃u−u∗ )(y)

y 7→ Dµ,ν(y)

y 7→ (Eµ,νu∗ )c(y)

Figure 5. Plot of locations of u∗, Gµ(u) = Gµ̃(u− u∗) and T̃ (u− u∗) in the

case µ ≤cd ν and 0 < u∗ < u < 1. The dashed curve represents Dµ,ν . The

dash-dotted curve corresponds to (Eµ,νu∗ )c = (Pν − Pµu∗ )c = Pν−Sν(µu∗ ) = Pν̃
(note that it is linear on (rν̃ = rν = rν−Sν(µu∗ ) = `µ̃,∞)). The dotted

curve represents Eµ,νu . Note that Eµ,νu ≥ Pν̃ on (−∞, rν) and Eµ,νu ≤ Pν̃ on

[rν ,∞). The solid curve below Eµ,νu and Pν̃ corresponds to Pν̃−Sν̃(µ̃u−u∗ ) =

(Pν̃ − Pµ̃u−u∗ )c. Note that Pν̃−Sν̃(µ̃u−u∗ ) = Pν̃ on (−∞, T̃ (u − u∗)] and

Pν̃−Sν̃(µ̃u−u∗ ) < (Pν̃ ∧ Eµ,νu ) on (T̃ (u − u∗),∞). Furthermore, Eµ,νu is linear

on (Gµ(u),∞) while Pν̃−Sν̃(µ̃u−u∗ ) is linear on (T̃ (u − u∗),∞), and both of

these linear sections are parallel to each other.

We claim that (Eµ,νu∗ )c(T̃ (v − u∗)) = Eµ,νu∗ (T̃ (v − u∗)), see Figure 5. Suppose not. Since

(Eµ,νu∗ )c and Eµ,νu∗ are both continuous, (Eµ,νu∗ )c < Eµ,νu∗ on (T̃ (v−u∗)− ε, T̃ (v−u∗) + ε) for some

ε > 0. Then by Lemma 5.4 we have that (Eµ,νu∗ )c is linear on (T̃ (v − u∗) − ε, T̃ (v − u∗) + ε).

But (Eµ,νu∗ )c = (Pν − Pµu∗ )c = Pν − PSν(µu∗ ) = Pν−Sν(µu∗ ), and we have a contradiction since

Pν−Sν(µu∗ ) cannot be linear on an open interval including T̃ (v − u∗).
Finally, note that

Dµ,ν −Dµu∗ ,Sν(µu∗ ) = Pν−Sν(µu∗ ) − (Pµ − Pµu∗ ) = (Eµ,νu∗ )c − Pµ−µu∗ .

Then since (Eµ,νu∗ )c(T̃ (v−u∗)) = Eµ,νu∗ (T̃ (v−u∗)) = Pν(T̃ (v−u∗))−Pµu∗ (T̃ (v−u∗)) we conclude

that Dµu∗ ,Sν(µu∗ )(T̃ (v − u∗)) = 0, which finishes the proof.

�
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5. Appendix

5.1. Measures, stochastic orders, couplings. The law of a random variable X will be

denoted by L(X).

5.1.1. Quantile function. For η ∈ M, there are two canonical versions of Gη: the left-

continuous and right-continuous versions correspond to G−η (u) = sup{k ∈ R : Fη(k) < u}
and G+

η (u) = inf{k ∈ R : Fη(k) > u}, for u ∈ (0, η(R)), respectively. However any G with

G−η (u) ≤ G(u) ≤ G+
η (u), for all u ∈ (0, η(R), is still called a quantile function of η, which

is motivated by the fact that for any such G we have that (up to the scaling w.r.t. η(R))

L(G(U)) = η, where U ∼ U [0, (η(R))]. (Note that Gη may take values −∞ and ∞ at the left

and right end-points of [0, η(R)], respectively.)

5.1.2. Potential functions. Let η ∈ M. The following properties of Pη can be found in

Chacon [11], and Chacon and Walsh [12]: Pη ∈ D(η(R), η) and {k : Pη(k) > (η(R)k− η)+} =

{k : Cη(k) > (η−η(R)k)+} = (`η, rη). Conversely (see, for example, Proposition 2.1 in Hirsch

et al. [25]), if h ∈ D(km, kf ) for some numbers km ≥ 0 and kf ∈ R (with kf = 0 if km = 0),

then there exists the unique measure η ∈ M, with total mass η(R) = km and first moment

η = kf , such that h = Pη. In particular, η is uniquely identified by the second derivative of h

in the sense of distributions. Furthermore, Pη and Cη are related to the potential Uη, defined

by

Uη(k) := −
∫
R
|k − x|η(dx), k ∈ R,

by −Uη = Cη + Pη. Finally note that all three second derivatives C ′′η , P
′′
η and −U ′′η /2 identify

the same underlying measure η (for this reason, we still call Pη and Cη the potential functions

of a measure η).

5.1.3. Stochastic orders. The following result allows us to verify (in a special case of disjoint

supports) whether η, χ ∈M satisfy η ≤pc χ.

Lemma 5.1. Let η, χ ∈M be such that η and χ have disjoint supports. If

0 < η(R) ≤ (χ((−∞, `η]) ∧ χ([rη,∞)))

then η ≤pc χ.

Proof. Let Gχ : [0, χ(R)] 7→ R be a quantile function of χ. Then each ζ ∈ [0, η(R)] defines a

measure

θζ = χ|(−∞,Gχ(ζ))+χ|(Gχ(ζ+χ(R)−η(R)),∞)+α
ζδGχ(ζ) + βζδGχ(ζ+χ(R)−η(R)),

where 0 ≤ αζ = ζ − χ((−∞, Gχ(ζ))) ≤ χ({Gχ(ζ)}) and 0 ≤ βζ = η(R) − ζ − χ((Gχ(ζ +

χ(R)− η(R)),∞)) ≤ χ({Gχ(ζ + χ(R)− η(R))}). By construction, θζ ≤ χ and θζ(R) = η(R).

Furthermore, θ0 ≥ η ≥ θη(R) and θζ is continuous and decreasing in ζ, and therefore there

exists ζ∗ such that θζ∗ = η.

Now let f : R 7→ R be convex and g : R 7→ R be linear with g = f on {`η, rη}. Then∫
R
fdη ≤

∫
R
gdη =

∫
R
gdθζ∗ ≤

∫
R
fdθζ∗ .
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For the the first inequality we use that, by convexity of f , g ≥ f on [`η, rη], and that η does

not charge R \ [`η, rη]. For the quality we use that θζ∗ = η, θζ∗(R) = η(R) and the linearity

of g. To deduce the second inequality we use that g ≤ f on R \ [`η, rη] and that θζ∗ does not

charge (`η, rη). Since f was arbitrary, η ≤c θζ∗ . By Lemma 3.1 and Remark 3.2 it follows

that η ≤pc χ. �

5.1.4. Irreducible decomposition. The following result (see Hobson [26, page 254] or Beiglböck

and Juillet [6, Section A.1]) tells us that, if η ≤cd χ and Dη,χ(x) = 0 for some x, then in

any supermartingale coupling of η and χ no mass can cross x. (Hobson [26] and Beiglböck

and Juillet [6] considered the case η ≤c χ, however the same arguments also work in the case

η ≤cd χ, see Nutz and Stebegg [34, Proposition 3.2].)

Lemma 5.2. Suppose η and χ are probability measures with η ≤cd χ. Suppose that Dη,χ(x) =

0. If π ∈ ΠS(η, χ), then we have π((−∞, x), (x,∞)) + π((x,∞), (−∞, x)) = 0.

It follows from Lemma 5.2 that, if there is a point x ∈ (`η, rη) such that Dη,χ(x) = 0, then

the problem of constructing supermartingale couplings of η to χ can be separated into a pair

of subproblems involving mass to the left and right of x (and by carefully choosing how to

allocate the mass of χ at x). In particular, if there are multiple {xi}i≥1 with Dη,χ(xi) = 0,

then the problem splits into a sequence of ‘irreducible’ problems, each taking place on an

interval Ij , j ≥ 1, such that Dη,χ > 0 on the interior of Ij and D = 0 at the endpoints.

All mass starting in the interior of Ij is transported to a point in Ij . This is summarised in

the following lemma, which generalises the notion of irreducible decomposition (introduced

in Beiglböck and Juillet [6] for martingales) to the supermartingale setting (see also Remark

5.1).

Lemma 5.3 (Nutz and Stebegg [34, Proposition 3.4]). Let η, χ ∈ M with η ≤cd χ. Set

xη,χ := sup{k ∈ R : Dη,χ(k) = 0} ∈ [−∞,∞].

Define Iη,χ0 := (xη,χ,∞) and let (Iη,χi )i≥1 be the open components of {k ∈ R : Dη,χ(k) >

0} ∩ (−∞, xη,χ). Define a closed set Iη,χ−1 by Iη,χ−1 = R \
⋃
i≥0 I

η,χ
i .

Set ηi = η|Iη,χi , i ≥ −1, so that η =
∑

i≥−1 ηi.

Then there exists the unique decomposition χ =
∑

i≥−1 χi such that

η−1 = χ−1, η0 ≤cd χ0 and ηi ≤c χi, for all i ≥ 1.

Set Iη,χi = (`i, ri), i ≥ 0 (here ri ≤ `0 = xη,χ ≤ r0 =∞, i ≥ 1).

Then for all i ≥ 0,

Dηi,χi > 0 on Iη,χi and Dηi,χi = 0 on R \ Iη,χi ,

and there exists the unique choice for 0 ≤ αi ≤ ν({`i}) and 0 ≤ βi ≤ ν({ri}) satisfying

χi = χ|Iη,χi +αiδ`i + βiδri .

Finally, any π ∈ ΠS(η, χ) admits the unique decomposition π =
∑

i≥−1 πi such that π0 ∈
ΠS(η0, χ0) and πi ∈ ΠM (ηi, χi) for all i ≥ −1 with i 6= 0.

Remark 5.1. When η ≤c χ then ΠS(η, χ) = ΠM (η, χ) and therefore we also have that

η0 ≤c χ0.



EXPLICIT CONSTRUCTION OF THE INCREASING SUPERMARTINGALE COUPLING 33

5.2. Convex hull. Our key results will be expressed in terms of the convex hull. For f : R 7→
(−∞,∞) let f c be the largest convex function which lies below f . In our typical application

f will be non-negative and this property will be inherited by f c. However, in general we may

have f c equal to −∞ on R, and the results of this section are stated in a way which includes

this case. Note that if a function g is equal to −∞ (or ∞) everywhere, then we deem it to be

both linear and convex, and set gc equal to g.

Recall the definition of the sub-differential ∂f(x) of a (measurable) function f : R 7→ R at

x:

∂f(x) = {φ ∈ R : f(y) ≥ f(x) + φ(y − x) for all y ∈ R}.
If f is convex then ∂f is non-empty everywhere, but this is not the case for non-convex

functions. Instead we have that ∂f(x) is non-empty if and only if f(x) = f c(x) and then

∂f c(x) = ∂f(x). We also write f ′(·−) and f ′(·+) for the left and right derivatives (provided

they exist) of a function f .

Fix x, z ∈ R with x ≤ z, and define Lfx,z : R 7→ R by

(5.1) Lfx,z(y) =

{
f(x) + f(z)−f(x)

z−x (y − x), if x < z,

f(x), if x = z.

Then, see Rockafellar [37, Corollary 17.1.5],

(5.2) f c(y) = inf
x≤y≤z

Lfx,z(y), y ∈ R.

Moreover, it is not hard to see (at least pictorially, by drawing the graphs of f and f c)

that f c replaces the non-convex segments of f by straight lines. (The proof of the following

lemma is standard, see, for example, Hobson and Norgilas [31, Lemma 2.2].)

Lemma 5.4. Let f : R 7→ R be lower semi-continuous. Suppose f > f c on (a, b) ⊆ R. Then

f c is linear on (a, b).

The following definition, for a given function f and y ∈ R, will allow us to identify the

values x, z ∈ R with x ≤ y ≤ z which attain the infimum in (5.2).

Definition 5.1. Let f : R 7→ (−∞,∞) be a measurable function and f c denote its convex

hull. For y ∈ R, define

Xf (y) = X(y) = sup{x : x ≤ y, f c(x) = f(x)},

Zf (y) = Z(y) = inf{z : z ≥ y, f c(z) = f(z)},

with the convention that sup ∅ = −∞ and inf ∅ =∞.

Remark 5.2. If f is continuous, then f c(y) = LfX(y),Z(y)(y) (see Hobson and Norgilas [31,

Lemma 2.4]). Note, however, that Xf and Zf may take values −∞ and∞, respectively. Hence

for the aforementioned equality to remain valid, one has to carefully extend the definition of

Lfx,z allowing for x = −∞ and z =∞.

The following lemmas are the main ingredients in the proofs of Theorem 3.1 and Proposition

3.2 (we will present the proof of Lemma 5.7, while the proofs of the remaining two can be

found in Beiglböck et al. [5]).
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Lemma 5.5. Let f, g : R 7→ R be convex and lower semi-continuous. Define ψ : R 7→
(−∞,∞) by ψ = g − (g − f)c. Then ψ is convex.

Lemma 5.6. Let f : R 7→ R be measurable and let g : R 7→ R be convex. Then

(f − g)c = (f c − g)c.

Lemma 5.7. Assume that f ∈ D(α, β) and g ∈ D(a, b) for some α, a ≥ 0, β, b ∈ R. Let

h : R 7→ R be defined by h(k) := (a− α)k − (b− β). Define η := supk∈R{h(k)− g(k) + f(k)}.
Suppose that g ≥ f . Then α ≤ a. If α = a then β ≥ b. Furthermore, η ∈ [0,∞) and

(g − f)c ∈ D(a− α, b− β + η).

Proof. Since g ∈ D(a, b) and f ∈ D(α, β) with g ≥ f , we have that

0 ≤ lim
k→∞
{g(k)− f(k)} = lim

k→∞
{g(k)− (ak − b)− f(k) + (αk − β) + (a− α)k − (b− β)}

= lim
k→∞
{(a− α)k − (b− β)} = lim

k→∞
h(k),

and therefore a ≥ α. Also, if α = a then β ≥ b.
Now suppose f ≤ g and g−f ≥ h. Note that in this case η = 0, since limk→∞{g(k)−f(k)} =

limk→∞ h(k). Then g− f ≥ h+ and since h+ is convex, we have that (g− f) ≥ (g− f)c ≥ h+.

Then, lim|k|→∞{g(k)− f(k)− h+(k)} = 0, and it follows that (g − f)c ∈ D(a− α, b− β).

Now suppose that {k ∈ R : h(k) > g(k) − f(k) 6= ∅. Then η > 0. We claim that η < ∞.

Let {kn}n≥1 be such that limn→∞{h(kn)− g(kn) + f(kn)} = η. Then (up to a subsequence)

limn→∞ kn exists. Set k̄ := limn→∞ kn.

Suppose k̄ =∞. Then η = limn→∞{h(kn)−g(kn)+f(kn)} = limk→∞{h(k)−g(k)+f(k)} =

0, contradicting the fact that η > 0. Hence k̄ < ∞. Then, by the continuity (and finiteness

on R) of k 7→ h(k)− g(k) + f(k), η = h(k̄)− g(k̄) + f(k̄) <∞.

Finally, since g − f ≥ 0 and g − f ≥ h̃ := h − η, we have that g − f ≥ (g − f)c ≥ h̃+.

Then, since g(k̄) − f(k̄) = h̃(k̄), convexity of (g − f)c ensures that (g − f)c = h̃ on [k̄,∞).

It follows that (g − f)c ∈ D(a − α, b − β + η). (We will usually take g = Pν , f = Pµ and

h(k) = (ν(R)−µ(R))k−(ν−µ), where µ ≤pcd ν. In this case, a = ν(R), α = µ(R), b = ν, β = µ

and η = cµ,ν := supk∈R{(ν(R)−µ(R))k− (ν̄− µ̄)−Pν(k)+Pµ(k)} ∈ [0,∞); see Figure 2.) �

5.3. Proofs.

Proof of Lemma 4.4. Fix u ∈ (0, uri − u`i). Consider the case Si(u) ≤ ri < ∞ first. We will

prove it by contradiction: suppose ri < Si(u) ≤ ∞. Since Gi(u) = G(u − u`i) < ri < Si(u),

Ri(u) ≤ Qµi,νi(u) < Gi(u) < ri < Si(u) (see Hobson and Norgilas [31, Lemma 4.1]). Therefore

(Eµi,νiu )c is linear on (Ri(u), Si(u)). But since (Eµi,νiu )c = Pνi−Sνi (µi,u) (where µi,u is defined as

in (4.1) just with respect to µi), (Eµi,νiu )c is linear on (ri,∞), and we conclude that (Eµi,νiu )c is

linear on (Ri(u),∞). It follows that (νi−Sνi(µi,u))(Ri(u),∞) = 0. But (µi−µi,u)(Ri(u),∞) =

(µi−µi,u)(R) = 1−u > 0. Therefore µi − µi,u > (1−u)Ri(u) ≥ (νi − Sνi(µi,u)), contradicting

the fact that (µi − µi,u) ≤c (νi − Sνi(µi,u)).

Consider the case ri = Si(u) = ∞. Then again, Ri(u) < Gi(u) < Si(u) and therefore

(Eµi,νiu )c is linear on (Ri(u),∞). It follows that (νi − Sνi(µi,u)) does not charge (Ri(u),∞),

while the support of (µi−µi,u) is contained (Ri(u),∞). We conclude as in the previous case.
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We now turn to Ri. We need to show that either −∞ < `i ≤ Ri(u) or −∞ = `i < Ri(u).

Suppose −∞ ≤ Ri(u) < `i. Then Ri(u) < Gi(u) ≤ Si(u), and (Eµi,νiu )c is linear on

(Ri(u), Si(u)). Since 0 ≤ (Eµi,νiu )c ≤ Dµi,νi = 0 on (−∞, `i], it follows that φµi,νi(u) = 0

and then in fact we have that Ri(u) = −∞. Hence, (Eµi,νiu )c=0 on (−∞, Si(u)]. Since

(Eµi,νiu )c(Si(u)) = Eµi,νiu (Si(u)) ≥ Dµi,νi(Si(u)) we also have that Dµi,νi(Si(u)) = 0 and there-

fore Si(u) = ri. It follows that (νi − Sνi(µi,u)) is supported on {Si(u) = ri}. But the support

of (µi − µi,u) is contained in [Gi(u), ri). Hence (µi − µi,u) and (νi − Sνi(µi,u)) cannot be in

convex order, a contradiction.

Finally suppose −∞ = Ri(u) = `i. Then either φµi,νi(u) = 0 or φµi,νi(u) > 0. If φµi,νi(u) =

0 then we can argue as in the previous case when −∞ ≤ Ri(u) < `i. If φµi,νi(u) > 0, then,

since (Eµi,νiu )c is linear on (−∞, Si(u)), we must have that (νi − Sνi(µi,u)) has an atom at

Ri(u) = −∞, contradicting the fact that νi is integrable. �
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