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ABSTRACT. The increasing supermartingale coupling, introduced by Nutz and Stebegg (Canon-
ical supermartingale couplings, Ann. Probab., 46(6):3351-3398, 2018) is an extreme point
of the set of ‘supermartingale’ couplings between two real probability measures in convex-
decreasing order. In the present paper we provide an explicit construction of a triple of
functions, on the graph of which the increasing supermartingale coupling concentrates. In
particular, we show that the increasing supermartingale coupling can be identified with the
left-curtain martingale coupling and the antitone coupling to the left and to the right of a
uniquely determined regime-switching point, respectively.

Our construction is based on the concept of the shadow measure. We show how to
determine the potential of the shadow measure associated to a supermartingale, extending the
recent results of Beiglbock et al. (The potential of the shadow measure, Electron. Commun.
Probab., 27, paper no. 16, 1-12, 2022) obtained in the martingale setting.
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1. INTRODUCTION

The joint distribution 7 of two real-valued random variables X and Y is called a super-
martingale coupling if E™[Y|X] < X. The classical result by Strassen [39] states that, for
two probability measures p and v on R, the set of supermartingale couplings of X ~ p and
Y ~ v is non-empty if and only if u <.4 v, i.e., u is smaller than v with respect to the
convex-decreasing order. The natural question is then whether there is any canonical choice
to couple p and v. Nutz and Stebegg [34] recently introduced the increasing supermartingale
coupling, denoted by 7y, and proved that it is canonical in several ways.

First, 77 solves the supermartingale optimal transport (SOT) problem for a class of cost
functions ¢ : R x R +— R (essentially those ¢ that are such that c(z2, ) — ¢(x1,-) is strictly
decreasing and strictly convex for all z; < x9):

minimise E"[¢(X,Y)] subject to X ~ pu,Y ~ v,

where the infimum is taken over all supermartingale couplings 7 (in this context the couplings
7 are often called transport plans). Second, the optimality of s is closely linked to the mono-
tonicity properties of its support. In particular, 77 is the unique supermartingale coupling
whose support is both, first-order right-monotone (see Definition 3.3) and second-order left
monotone (see Definition 3.2). Finally, the increasing supermartingale coupling has one fur-
ther, order-theoretic, characterisation: it is canonical with respect to the convex-decreasing
order. More precisely, for a transport plan 7 and any real number ¢ denote by v the terminal
law of 1(_oo ) Within v (for two measures 7, x on R, we say that n is within x if n(A4) < x(A)
for all Borel measurable subsets A of R) when a coupling 7 is used. Then 7 is such that, for
each t, v;'! <.q vf for all supermartingale couplings .

In this paper our goal is to establish a Brenier-type result (see, for example, Brenier [8] and
Beiglbock and Juillet [6]) for supermartingale couplings. In particular, we will explicitly con-
struct a triple of functions, on the graph of which the increasing supermartingale concentrates.
The following summarises the main achievement:

For measures p and v in convexr-decreasing order on R, there exists a
regime-switching point x* such that, to the left of x*, the increasing su-
permartingale coupling coincides with the left-curtain martingale coupling
and is supported on the graphs of two functions, and to the right of of x*,
it coincides with the antitone coupling and is supported on the graph of a
decresing function.

Literature Review. From the optimal transportation point of view, the SOT is a classical
Monge-Kantorovich optimal transport (OT) problem with an additional moment constraint.
On the other hand, the basic martingale optimal transport (MOT) problem (introduced by
Beiglbock et al. [3] (in a discrete time setting) and Galichon et al. [21] (in continuous time),
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and first solved by Hobson and Neuberger [28] and Hobson and Klimmek [27] for the specific
cost functions c(x,y) = —|y—=z| and ¢(x,y) = |y—z|, respectively) is to construct a martingale
M, with My ~ p and My ~ v, and such that E[c(M;, M>)] is minimal. Since the martingale
requirement can be expressed in terms of couplings 7 satisfying E"[Ma|M;] = M, the SOT
problem can be also seen as a relaxation of an MOT problem. (Similarly as MOT, SOT
has some natural applications in mathematical finance: see Fahim and Huang [19] for model-
independent hedging with portfolio constraints, Ewald and Yor [18] for robust pricing of Asian
and Australian options and Ewald and Yor [17] for applications to the economics theory of
risk and poverty measures.) Given the connectedness of the aforementioned three variations
of the transportation problem, we in fact have that they all share a similar theory.

It is a well-known fact in the classical OT setting that the support of an optimal coupling
is a c-cyclically monotone set (see, for example, Villani [40]). Furthermore, if one considers
the cost functions ¢ that can be represented as c¢(z,y) = h(y — x) for a strictly convex h
(the so-called Spence-Mirrlees condition), then the optimal coupling is given by the so-called
Hoeffding-Fréchet (or quantile) coupling g p. In particular, mpgp is canonical with respect to
THF

the first-order stochastic dominance in the sense that, for all ¢, v,

is the left-most measure
within v and with total mass p|(_o s (R) (so that F, JTHF > F), on R, for all measures 7 within
v and n(R) = (s (R)).

In the martingale setting, Beiglbock and Juillet [6] introduced the left-curtain coupling .
that can be viewed as a martingale counterpart to the monotone quantile coupling 7z p. Some
notable similarities are that 7. can also be described via three different characterizations:
order-theoretic, optimality, monotonicity of the support. First, m. is canonical with respect
to the convex order, denoted by <.: for each ¢, /' <. 1] for any martingale coupling 7.
Beiglbock and Juillet [6] also showed that the left-curtain coupling is optimal for a range
of different cost functions. Later Henry-Labordere and Touzi [23] extended their result and
proved that 7. is optimal for an even larger class of cost functions, namely those satisfying
the martingale Spence-Mirrlees condition czy, > 0. Finally m. can be characterized by its
support: it is the unique second-order left-monotone (see Definition 3.2) martingale coupling.
Several other authors further investigate the properties and extensions of the left-curtain
coupling, see Beiglbock et al. [4, 2, 5], Juillet [32, 33], Hobson and Norgilas [29], Nutz et al.
[34, 35], Campi et al. [10], Henry-Labordere et al. [24] and Briickerhoff at al. [9].

We will study one further characterisation of the increasing supermartingale coupling 77,
which is also satisfied by myr and 7. in their respective settings. A fundamental result in
the theory of OT is Brenier’s theorem (see Brenier [8] and Riischendorf and Rachev [38]).
It considers the optimal transport problem (in R? and) in the particular case ¢(z,y) = |z —
yl®
initial measure pu, the optimal coupling is supported by the graph of the gradient of a convex

, where |-| denotes the Euclidean norm on RY. Under some regularity conditions on the

function. In dimension one, the supporting function is monotonically increasing and the
optimal coupling coincides with the quantile coupling 7wy r. More precisely, 7y is supported
on the graph of G, o F),, where G, is a quantile function of v while F), is the cumulative
distribution function of u. In the martingale setting, Beiglbock and Juillet [6] established a
Brenier-type result for the left-curtain coupling as well. Given that the initial measure p does
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not contain atoms, the authors showed that . is supported by the graphs of two functions
Tu,T; : R — R satisfying certain monotonicity properties (see Definition 3.4). While the
result of Beiglbock and Juillet [6] is purely an existence result, Henry-Labordeére and Touzi [23]
used an ordinary differential equation approach and showed how to explicitly determine Ty
and T, under some further assumptions on p and v of technical nature. The most general
result regarding the functional representation of 7. is due to Hobson and Norgilas [31]. The
authors showed (for arbitrary g and v) how to recover the property that the left-curtain
coupling is supported on a graph of two (explicitly constructed) functions, provided that we
generalise the notion of a coupling. The main limitation of Hobson and Norgilas [31] is that
the authors construct the left-curtain coupling on a single ‘irreducible component’ of p <. v
(such component corresponds to an interval I, such that all mass starting in I is transported
to a point in I; in general, for any u <. v, there could be countably many such intervals,
giving rise to the irreducible decomposition (see Lemma 5.3)). A global construction can be
achieved, however, by carefully pasting together the left-curtain couplings of each irreducible
component (such extension is part of Theorem 1.1 (see also Theorem 4.1)).

The main insight of Hobson and Norgilas [31] is that the supporting functions of the left-
curtain martingale coupling can be identified from the so-called shadow measure (see Defi-
nition 3.1), or more precisely, from the graph of the potential function of this measure. In
particular, 7. is the unique martingale coupling such that, for each ¢, v/ corresponds to
the shadow of p|(_s 4 in v. On the other hand, the results of Beiglbock et al. [5] allows to
determine the shadow measure by explicitly constructing the associated potential function.
Hobson and Norgilas [31] took this one step further and showed that, for each ¢, the graph

of the potential function of ;"

determines (at most) two locations to which (under 7;.) any
mass started at ¢ is mapped to. In the present paper we use a similar approach. First, we
extend the results of Beiglbock et al. [5] to the sueprmartingale setting by explicitly con-
structing the supermartingale shadow measure (see Theorem 3.1). Then we use the potential
of the shadow measure to determine the supporting functions of 7y.

Finally we would like to note that the results of this paper apply to the measures pu,v on
R only. On R, the study of measures satisfying p <.q v reduces to the study of the potential
functions of 1 and v (see Section 5.1). In particular, all the aforementioned explicit construc-
tions of martingale transports plans rely on the potential representation of measures from
which the supporting functions are derived. Furthermore, the graphs of potential functions
allow to identify the irreducible components of p <.; v which are independent of (and thus
universal) particular supermartingale coupling (see Lemma 5.3). On R? this is no longer the
case, and the characterization and construction of the supermartingale couplings are much
more delicate. See, for example, Obl6j and Siorpaes [36], Ghoussoub et al. [22], De March
[13, 14, 15] and De March and Touzi [16] for the multi-dimensional MOT problem.

Our contribution. In the present paper, our main effort is dedicated to proving the
following Brenier-type result that provides the functional representation of the (generalised)
increasing supermartingale coupling ;.

Theorem 1.1. Let (2, F,P) = ((0,1) x (0,1),B(2), Leb(Q?)). Let w = (u,v) and let (U,V)
be the canonical random variables on (2, F,PP) given by (U(w),V(w)) = (u,v) so that U and
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V' are independent U(0,1) random variables. Let F = (Fy = o(U),Fa = o(U,V)}) and set
S =(Q,F,FDP).

Fiz p <.qv and let G = G, be a quantile function of .

Then there exists the unique regime-switching point u* € [0,1] and a triple of functions
R,S : (0,u*] = R (a pair of supporting functions to the left of u*) and T : (u*,1) — R (a
single supporting functions to the right of u*) such that

e R<G < S onZ=(0,u], S is non-decreasing on Z, R(v') ¢ (R(u),S(u)) for all
u, v’ € T with u < v/,

e T <G onT=(u1), T is non-increasing on I, T(u') ¢ (R(u),S(u)) for allu € T
and v’ € 7.

Furthermore, if we define X (u,v) = X (u) = G(u) and Y (u,v) € {R(u), S(u), T(u)} by

Y(u,0) = Lucun{mw=sw}G(u)
+ I{ugu*}m{R<u><s<u>}{R(“)I{vs% - S(“)I{w%}}

+ I{u>u*}T(u),

then S = (X (U),Y(U,V)) is a S-supermartingale for which L(X) = p and L(Y) = v. In

particular, S is a martingale to the left of u* and a (strict) supermartingale to the right of u*.

We will prove Theorem 1.1 by explicitly constructing the triple of supporting functions
(R, S,T), see Figure 1. Furthermore we will determine the unique regime-switching point u* €
[0,1] such that, to the left of G, (u*), 7 coincides with the left-curtain martingale coupling
and concentrates on R and S, while to the right of G(u*), 7y concentrates on a deterministic
decreasing map T', and thus corresponds to the classical antitone coupling 747, which is
the symmetric counterpart of mgp (if Tpp concentrates on G, o F,, then mar concentrates
on Gy, o (1 — F},)). Finally, Nutz and Stebegg [34] showed that the set M appearing in the
definition of the first-order right-monotonicity of 7; (see Definition 3.3) is such that m7|mxr
is a martingale. From our construction it will follow that the set of ‘martingale points’ M is
in fact an interval (—oo, G(u*)] (and extra care will be needed if ;¢ has an atom at G, (u")).

There are two special cases of Theorem 1.1, namely, ©v* = 0 and «* = 1. When v* = 1, then
we have that, for the given u,v with pu <. v, the set of supermartingale couplings coincides
with the set of martingale couplings. In this case the function T is irrelevant. In particular,
our construction then corresponds to the generalised, or lifted, left-curtain martingale cou-
pling. Hobson and Norgilas [31] constructed R and S for (generalised version of) m,. on a
single ‘irreducible’ component only. Our construction, on the other hand, does not place any
irreducibility conditions. The second special case is when v* = 0, so that the functions R and
S do not play any role. In particular, the generalised increasing supermartingale coupling
then concentrates on the deterministic decreasing map 7' and we have that n7; = wa7. To
achieve this we will show that «* = 0 if and only if the support of p is (strictly) to the right
of the support of v, and thus no part of  can be embedded into v using a martingale.
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FIGURE 1. On the left is the sketch of R, G, S and T in the case u* € (0,1).
For each u € (0,u*] the mass at G(u) either remains at G(u) or it splits and
is mapped either to R(u) or to S(u), while for each u € (u*,1) the mass at
G(u) is mapped to a single point located at T'(u) < G(u). When p is atom-
less, (R, S,T) can be used to define a triple of functions (on R) that supports
77. This corresponds to the transformation x +— (Ro G~ '(x),S o G~ (z),T o
G~!(x)) with the regime-switching point z* = G(u*), and is depicted on the
right hand side of the figure. More generally, on the atoms of u, G is flat,
and RoG™!, SoG~ ! and T o G~! are multi-valued, but R, S and T remain
well-defined.

Nutz and Stebegg [34] introduced the notion of positive convex-decreasing order of two
measures, denoted by <,.q4, which compares measures of possibly different total mass. If a
pair of measures p,v is such that u <p.q v, then the set of measures n with u <.; 7 < v is
non-empty, and each such 7 corresponds to a terminal law of a supermartingale that embeds
p into v. Nutz and Stebegg [34] also proved that there exists a canonical choice of such n
with respect to <.4: the shadow of y in v, denoted by S¥(u), is the unique measure such that
SY (1) <cq m for all g satisfying p <.4 7 < v. Our interest in the shadow measure lies in the
fact that the increasing supermartingale coupling can be defined as the unique measure 7y
on R? such that, for each z € R, 71| (—o0,2]xr has the first marginal f_ ) and the second
marginal S”(p|(—ocy]). One of our main achievement is that, for arbitrary p and v with
B <peq V, we are able to explicitly construct the potential function of the shadow measure
(and then the shadow measure itself can be identified as the second derivative of the potential
function in the sense of distributions). This generalises the recent results of Beiglbock et al.
[5], where the authors showed how to construct the potential of the shadow measure in the
martingale setting. Surprisingly, in both supermartingale and martingale cases, the potential
of the shadow measure has the same functional representation.

The ability to explicitly determine the shadow measure will be the key asset in constructing
the triple (R,S,T') that supports the increasing supermartingale coupling. In particular,
for each # € R, the graph of the potential function of S¥(u|(_oq)) Will suggest candidate
locations to which the mass of u at x should be mapped. The remarkable property of the
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supermartingale shadow measure is that it is able to determine both the left-curtain martingale
coupling in the case uv* = 1 and also the antitone coupling in the case u* = 0. This is of
independent interest.

The paper is structured as follows. In Section 2 we discuss the relevant notions of probability
measures and (positive) convex-decreasing order, and some important (for our main theorems)
results regarding the convex hull of a function. In Section 3 we introduce the supermartingale
shadow measure and the increasing supermartingale coupling. Section 4 is dedicated to our
main results. In Section 4.1 we first determine the regime-switching point «* € [0, 1]. Then in
Section 4.2 we prove Theorem 1.1, first in the case u* = 1, then we cover the case ©* = 0, and
finally we prove the general case u* € (0,1). Some proofs are deferred until the appendix.

2. PRELIMINARIES

In this section we briefly recall the relevant notions of potential functions of measures and
various important stochastic orders (some further results and properties are presented in the
appendix; see Section 5.1.

Let M (respectively P) be the set of measures (respectively probability measures) on R with
finite total mass and finite first moment, i.e., if n € M, then n(R) < co and [p|z|n(dz) < co.
Given a measure 1 € M (not necessarily a probability measure), define 77 = [, n(dz) to be
the first moment of 7 (and then 77/n(R) is the barycentre of n). Let Z, be the smallest interval
containing the support of 7, and let {¢,,r,} be the endpoints of Z,. If  has an atom at ¢,
then ¢, is included in Z,, and otherwise it is excluded, and similarly for r,,.

For n € M, by F,, : R — [0,1(R)] we denote the right-continuous cumulative distribution
function of 7. Let G, : (0,7(R)) — R be a quantile function of 7, i.e., a generalised inverse of
F,. In Section 4 we will work with the left-continuous version of G, see Section 5.1.1.

2.1. Potential functions. For n € M, define the functions P,,C, : R — RT by

Py (k) = /R(k: _a)tn(dz), keER,  Cyk)i= /R(x —k)tn(dz), keR,

respectively. Then P, (k) > 0V (n(R)k—7) and Cy(k) > 0V (7—n(R)k). Also Cy (k) — P,(k) =
(7 —n(R)k). P,,C, are the so-called potential functions of a measure 1 (see Section 5.1.2).
For a > 0 and 3 € R let D(«, 3) denote the set of non-negative, non-decreasing and convex
functions f : R — Ry such that
lim {f(z)} =0, lim{f(z) - (az = f)} = 0.
z}—o0 zToo
Then, when a = 0, D(0, 8) is empty unless 8 = 0 and then D(0,0) contains one element, the

zero function.
For n,x € M, let D, := {D(n(R),7 —¢q) : ¢ € Ry} and

P(n,x) :={P €D, : P, — P is convex and P, < P}.

(P(n,x) allows to identify those measures 7 (in terms of their potential functions P,) that
can be embedded in x in a supermartingale way; see the definition of 7 <,.; x below and
Sections 3.1 and 3.2.)
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2.2. Stochastic orders and supermartingale couplings. For n, x € M, we write n < x
if n(A) < x(A) for all Borel measurable subsets A of R, or equivalently if

/fdn < /fdx, for all non-negative f: R — R.

Since 1 and x can be identified as second derivatives of P, and P, respectively, we have n < x
if and only if P, — P, is convex, i.e., P, has a smaller curvature than P,.
Two measures 7, x € M are in convex (resp. convex-decreasing) order, and we write n <. x

(resp. 1 <ca X), if
(2.1) /fdn < /fdx, for all convex (resp. convex and non-increasing) f: R — R.

Note that, if n <. x or n <. X, then n(R) = x(R) and 77 < Y. However, a reversed inequality
71 > X holds only in the case n <. x.

For n,x € P, let II(n, x) be the set of probability measures on R? with the first marginal
n and second marginal x. Let IIg(n,x) be the set of supermartingale couplings of 7 and ¥.
Then

Is(n,x) = {m € I(n, x) : (2.2) holds},

where (2.2) is the supermartingale condition

(2.2) / / ym(dz, dy) < / / xm(dz, dy) = / an(dz), V¥ Borel B C R.
zeB JyeR zeB JyeR B

Equivalently, I1g(n, x) consists of all transport plans 7 (i.e., elements of II(n, x)) such that
the disintegration in probability measures (7, )zer With respect to n satisfies [, ym,(dy) < =
for n-almost every x.

The following is classical (see, for example, Follmer and Schied [20, Theorem 2.58]).

Lemma 2.1. Let n,x € P. The following are equivalent:

(1) N <cd X;
(2) n(R) = x(R) and P, < Py on R,

(3) Ts(n,x) # 0.

Remark 2.1. If n,x € P with n <.q X, but 7 = X, then Ilg(n,x) reduces to the set of
martingale couplings, denoted by Ilpr(n,x) (i.e., elements of II(n,x) for which (2.2) holds
with equality). Indeed, any supermartingale with constant mean is a martingale. In this case
n <c x (see Strassen [39]).

For our purposes in the sequel we need a generalisation of the convex (resp. convex-
decreasing) order of two measures. We follow Beiglbock and Juillet [6] (resp. Nutz and
Stebegg [34]) and say n,x € M are in a positive convex (resp. positive convex-decreasing)
order, and write 7 <pe x (resp. 1 <peq X), if [ fdn < [ fdy, for all non-negative and convex
(resp. non-negative, convex and non-increasing) f: R +— R;.

If n <. x (resp. n <cq Xx) then also n <p. x (resp. 1 <peq x). If n < x then both, n <. x
and 1 <peq x. Note that, if n <, x or  <,cq X, then n(R) < x(R). On the other hand, if
n(R) = x(R), then n <. x (resp. 1 <peq x) is equivalent to n <. x (resp. 7 <cq X).
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Example 2.1. Let n,x € M with n <.q x (resp. 1 <. x). Fizx a Borel set B C R, and let
nlpE M be a restriction of n to B. Then n|p<pcd X (Tesp. n|B<pe X)-

For a pair of measures 1, x € M, let the function D, , : R — R be defined by D, , (k) =
P, (k) — P, (k). Note that if 7, x have equal mass then 1 <.4 x is equivalent to D, , > 0 on R.

Notation: For x € R let J, denote the unit point mass at . For real numbers ¢, z,d with
¢ < z < d define the probability measure x4 by Xcuz,a = %5(; + T=26q4 With Xx¢z.a = 05 if
(d—x)(z —c) = 0. Note that X, q has mean z and is the law of a Brownian motion started
at = evaluated on the first exit from (¢, d).

3. THE SHADOW MEASURE AND 7y

3.1. The maximal element. Let u,v € M with 1 <jcq v and define M}, = {n € M : p <cq
n < v}. Then Mj is a set of terminal laws of a supermartingale that embeds x into v. Note
that 7 € M, if and only if P € P(u,v).

Nutz and Stebegg [34] showed that there exists a measure in My, that is minimal w.r.t. <.
(see Section 3.2). The first step in their proof is to show that M}, # () by constructing the
‘left-most’ measure 6 < v of mass u(R). In this section we show that this left-most measure
is indeed the largest measure (w.r.t. <) in Mj,.

Let G, : [0,v(R)] — R be a quantile function of v. Define T"(u) € M by

(3.1) T% (1) = Vl(—o0,60 (um)) +(R) = v((—=00, Go(1(R))))da, (u(w)-

Note that T%(u) does not depend on the version of G,. (In Proposition 3.1 we show that
T"(u) is precisely the aforementioned largest element (w.r.t. <.q4) of MJ.)

Remark 3.1. Let p,v € M with p <.qv. Then p(R) = v(R) and therefore T"(u) = v. This
is consistent with the fact that if p <.q v then {n:pu <.qn < v} is the singleton {v}.

Proposition 3.1. Let p,v € M with p <pcq v. Then T"(u), defined in (3.1), is the unique
measure with the following properties:

(1) p<ea T" (1),

(2) T7(p) <v,

(3) If n is another measure satisfying p <cqn < v then n <.q T" ().

Proof. First note that T"(u)(R) = p(R). Furthermore, T% (1) satisfies Property 2 by defini-
tion, while the uniqueness is a direct consequence of Property 3.
Now define h : R +— R by

h(k) = u(R)Ek — T"(3), k€ R.

Then h is the line tangent to P, at Gy, (u(R)). In particular, Prv, is convex, Prv(,) = P, on
(=00, G, (1(R))], Prv(yy = h on (G (u(R)),00) and limy o0 { Prv(, (k) — h*(k)} = 0. Note
that, since P, > P, everywhere, T%(u) < .

Now, since Ppv(,) = P, > P, on (—00,G,(u(R))], we have that Prv(,) (G, (u(
P,(Gy(1(R))). However, P, is convex and P, (G, (u(R))+) < pu(R) = P:’FV(“)( »(1
particular, if P, (k) > Ppv(,)(k) = h(k) for some k € (G, (u(R)), 00), then P/ (k+)

z
v
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contradiction to the fact that P, € D(u(R), ). It follows that Ppv(,) > P, everywhere, and
thus Property 1 holds.

Finally, we verify Property 3. Let 6§ € M},. Then, since T"(u) = v > 6 on (—o0, G, (u(R))),
and by the continuity of Prv(,) and P, we have that P, > Py on (oo, G, (u(R))]. Now
suppose that there exists k € (G, (1(R)), 00) with Prv(,y(k) = h(k) = p(R)k—T" (1) < Py(k).
Then, since Pj(k—) < p(R) = P:’F,,(M)(k—), convexity of Py ensures that Py(G,(u(R))) >
Prv)(Gy(1(R))), a contradiction. We conclude that Prv(,) > Pp everywhere, and since
6 € M;, was arbitrary, Property 3 holds. U

The proof of the following lemma is similar to the proof of Beiglbock et al. [5, Lemma 6]
(replace <p. with <,q and <. with <.4), and thus is omitted.

Lemma 3.1. Suppose u,v € M. The following are equivalent:
(1> 12 Spcd vy
(i) there exists n € M such that p <.qn < v;
(iii) there exists x € M such that p < x <.q v.

Remark 3.2. If we replace <peq with <, and <.q with <. in Lemma 3.1, then its statement
remains true, see Beiglbock et al. [5, Lemma 6].

Let p = p1 + po for some py, 2 € M and v € M with p <peqg v. Then My # () and, in
particular, we can embed p; into v using any supermartingale coupling 7 € Ilg(u1, 7% (11)).

T (p1)

A natural question is then whether M, is non-empty, so that the remaining mass puo

can also be embedded in what remains of v.

Example 3.1. Let u = 69 and v = %((5_2 +01). Then p <. v. Consider p1 = pz = %(50.
Then T"(p1) = $6—2. However, py <cq v — T" (1) does not hold. Indeed, v — T" (1) =
301 <ca 360 = pa.

As Example 3.1 demonstrates, for pi,pus,v € M with p1 + pe = p <peq v, if we first
transport g1 to T%(u1), then we cannot, in general, embed pg in v — T"(u1) in a way which
respects the supermartingale property. As a consequence, for arbitrary measures in convex-
decreasing order we cannot expect the maximal element to induce a supermartingale coupling.
In Section 3.2 we study the minimal element of M}, namely the shadow measure. The shadow
measure has the property that if u; + pus = p <,cq v and we transport pq to the shadow
S¥(p1) of wy in v, then ug is in positive convex-decreasing order with what remains of v, i.e.,
p2 Sped v — 5" (p1)- R R

Let p,v € M with p <,cq v and define M, := {n € M :p <.n < v} C My, so that M},
is a set of terminal laws of a martingale that embeds p into v. Note that, by Lemma 3.1 and
Remark 3.2, if MZ # () then p <,. v. We close this section with the following result that
allows us to check whether <,.4 is equivalent to <.

Lemma 3.2. Let p,v € M with pn <peq v. Then p <pe v if and only if C,, < C, everywhere.

Proof. If p <p. v then C, < C, since, for each k € R,  — (v — k)T is non-negative and
convex, and hence we are done.
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Now suppose that C, < C, everywhere. Let 155 : R +— R be defined by
PY(k) = min{P,(k), Cy (k) + (u(R)k — )}, K € R,

We will show that (15,’[ )¢ € D(M(R),ﬁ): P, — (155 )¢ is convex and P, < (155 )¢ everywhere,
proving that the second derivative of (P})¢ corresponds to n € M with u <.n <wv.
First, since Cy(k) — P, (k) = (7 — p(R)k),

BY(k) = Bu(k) + min{P,(K) — Pu(k), Cu(k) — Cu(k)} = Pu(k), k€ R.

Then from the convexity of P, and the definition of the convex hull it follows that P, <
(P/’j )¢ < ]5: everywhere.

Second, since limy_,_oo(P, (k) — Pu(k)) = limy_oo(Cy(k) — Cu(k)) = 0, we have that
lim o0 ]5;;(16) = lim}| 00 Pu(k). Then, since P, € D(u(R),z), convexity of (]5;[)0 ensures
that (PY)° € D(u(R), Tr).

Finally we prove the convexity of P, — (P})¢. First note that P;(k) = P, (k) — ((v(R) —
w(R)k—(rv—pn))*t, k € R. Then, since p given by p(k) = ((¢(R)—pu(R))k—(r—p))" is convex,
we can apply Lemma 5.5, with ¢ = P, and f = p. It follows that P, — (P, —p) =P, — (Pﬁ)c
is convex, as required.

We showed that p <. n < v, where n = ((]5;)0)” € M. By Lemma 3.1 and Remark 3.2 it
follows that p <,. v. (]

3.2. The shadow measure.

Definition 3.1 (Shadow measure). Let p,v € M and assume p1 <peq v. The shadow of p in
v, denoted by S¥(u), has the following properties

(1) p<ca S”(1),

(2) §7(p) <v,

(3) If n is another measure satisfying p <.qn < v, then S¥(u) <ca n.

Lemma 3.3 (Nutz and Stebegg [34], Lemma 6.2). For p,v € M with p <peq v, S¥ (1) exists
and s unique.

Remark 3.3. If u <.q v then, in the light of Remark 3.1. S¥(p) =v =T"(u).

Given p and v with g <,.q v (and, by Remark 3.3, with u(R) < v(R)) our goal in this
section is to construct the shadow measure S¥(u). We do this by finding a corresponding
potential function Pgv(,) (and then S”(u) can be identified as the second derivative of Pgu
in the sense of distributions).

Theorem 3.1. Let p,v € M with p <,cq v. Then the shadow of p in v is uniquely defined
and given by

(3.2) Pgv(uy = P, — (P, — P,)".
Proof. If p <peq v and p(R) = v(R) then pp <.g v and 7 < . Then limy_,_o{P,(k)—P,(k)} =

0 and limy_,oo{ P, (k) — Pu(k)} = i — v > 0. Since 0 < (P, — P,)¢ < P, — P,, it follows that
(P, — P,)¢ is the zero function which is the unique element in D(0,0). Then (3.2) gives that



12 EXPLICIT CONSTRUCTION OF THE INCREASING SUPERMARTINGALE COUPLING

Pgv(u) = Py, and thus S”(u) = v, which is consistent with Remark 3.3. In the rest of the
proof we assume that p <p,.q v with p(R) < v(R).
First we will rephrase Definition 3.1 in terms of the potential function: A is the potential

of the shadow of p in v if

0. h € D(u(R), — ¢), for some ¢ € [0, 00),

1. P, <h,

2. P, — h is a potential function, i.e., P, — h € D(a, ) for some o > 0,5 € R,

3. If p is another potential function satisfying properties 0,1,2 then h < p.

Equivalently we can write this as

0. h € D(u(R), — ¢), for some ¢ € [0, c0),

1. (P, —h) < (P, — Py,),

2. P, — h is a potential function, i.e., P, — h € D(a, ) for some o > 0,5 € R,

3. If p is another potential function with properties 0,1’,2 then (P, — h) > (P, — p).

By Lemma 5.7 with g = P, and f = P, we have (P, — P,)° € D(v(R) — u(R), 7 — i + cpp),
where ¢, 1= supyex {(V(R) — u(R)K — (7 — ) — Po(k) + Pulk)} € [0, 00).

Now set h = P,—(P,—P,)¢. Since P,—h = (P,—P,)¢, Property 2 is satisfied. Furthermore,
using the definition of the convex hull we have that P, —h = (P, — P,)° < P, — P,, and thus
Property 1’ is also satisfied.

We now verify that h € D(u(R), & — ¢u). First note that h > P, — (P, — P,) = P, > 0
and limy_, o h(k) = limy oo P, (k) —limg—, oo (P, — P,)¢(k) = 0. Next, by applying Lemma
5.5, with g = P, and f = P,, we have that h is convex (and thus also non-decreasing). We
are left to show that the asymptotic slope of h at oo is equal to 1z — ¢, ,,. But

Jim {A(k) = p(R)k + (4 = cup)}

= Tim {{P,(k) — v(R) + 7} = {(B, = Pa)°(k) — (/(R) = p(R))]e + (7 — i+ )} } = 0

and we conclude that h € D(u(R), 7t — cpup).

Finally we claim that P, — h = (P, — P,)¢ satisfies Property 3'. If p is another potential
satisfying Properties 0,1’,2’, then P, —p < P, — P, and P, — p is convex. Then by the
maximality of the convex hull we have that P, —p < P, — h = (P, — P,)° < P, — P, which
concludes the proof. O

Remark 3.4. Suppose j,v € M with i <p. v. Then replacing <,.q with <. in Definition
3.1 we recover the definition of the shadow measure in the martingale case (see Beiglbick et
al. [5, Definition 2] ). Surprisingly, the functional representation (3.2) of the potential Pgv )
is the same in both cases (see Beiglbock et al. [5, Theorem 2]).

We now turn to the associativity of the shadow measure. The proof in the martingale case,
given by Beiglbock and Juillet [6], is delicate and relies on the approximation of u by atomic
measures. On the other hand, Nutz and Stebegg [34] only give a comment that the proof in
the supermartingale case can be obtained along the lines of Beiglbock and Juillet [6]. Thanks
to Theorem 3.1, and similarly to Beiglbock et al. [5, Theorem 3], we are able to give a direct
proof of the associativity of the supermartingale shadow.
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Proposition 3.2. Let pu1,puz,v € M. Suppose p = p1 + pz and p <peq v. Then ps <peq
v—=5"(u1) and

(3.3) S¥ (1 + p2) = S (1) + 8775 (1g).
Proof. We first prove that ps <peq v — S”(p1). Define Py : R — Ry by
Py(k) = (P, = By )°(k) = (P, = By )* = Pu)(k),  keR.

We will show that Py € P(uz,v — S¥(p1)). Then the second derivative of Py corresponds to

a measure 6 € MZ;S (k1)

, which by Lemma 3.1 is enough to prove the assertion.
Convexity of Py is a direct consequence of Lemma 5.5 with g = (P, — P,,)¢ and f = P,,.

Moreover, since P,_gv(,,) = P, — Psv(,,) = (P, — Py, )¢, we have that
PV—SV(Ml) — Py = ((PV_Pm)C_Puz)Cg (PV—P#I)C_P,UQ?

and it follows that (P,_gv(,,)— FPp) is convex and P, < Py. To prove that pa <,.q v—S" (1)
it only remains to show that Py has the correct limiting behaviour to ensure that Py &
P(u,v — S”(p1)). For this we will apply Lemma 5.7 to each of the convex hulls in the
definition of Py and then to Py itself.

First, since p1 <peq v (so that P,, < P,), and by Lemma 5.7 with ¢ = P, and f =
P,,, we have that (P, — P, )¢ € D(v(R) — u1(R),7 — fi1 + ¢y, ), where we write ¢, :=
supges{ (((R) — n(R)k — (¥ — 1) — P(k) + Py(k)} for 1, X € M with 1 pea x (recall that
Cpx € [0,00)). Similarly, since p1 + p2 = p <pea v, (Py — Puy — Pyu,)¢ € D(v(R) — 1 (R) —
p2(R), v — p1 — pa+cp,). But, by Lemma 5.6, with f = (P, —P,,) and g = P,,, we have that
((Py =Py, )¢ —Pyu,)¢ = (P,— Py, — P,,)¢. Finally, recall that Py > P,, and, since Py is convex,
Py = Pj§. Therefore, by applying Lemma 5.7 with g = (P, —P,,)¢and f = ((P,— Py, )°—Py,)°",
we conclude that Py € D(u2(R), iz — ¢), where ¢ = ¢, — ¢y, > 0. (Note that ¢ > 0 since
Py> Py,

We are left to prove the associativity property (3.3). However this follows from similar
arguments used in the proof of the associativity in the martingale case, see Beiglbock et al.
[5, Theorem 3]. Hence we omit the details. O

We give one further result which is easy to prove using Theorem 3.1 and which describes a
structural property of the shadow. (The proof can be obtained along the lines of the proof of
Beiglbock et al. [5, Proposition 2] with <,.4 in place of <,..)

Lemma 3.4. Suppose &, pu,v € M with £ < pp <peq v. Then, & <peq V, & <pea S¥ (1) and
§5 U (€) = 57(¢).
In particular, S¥(§) < S”(u).

Example 3.2. The assertion of Lemma 3.4 does not hold for §, p,v € M with £ <pcq pt <ped
v. To see this, let & = %50, w= %(5,2 +d2) and v = %(5,2 + 00 + 02). Then S¥(u) = p and
SHW(g) = 51() = §(6-2+ 82) # £ = 5(¢).
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3.3. The increasing supermartingale coupling 7;. The left-curtain martingale coupling
(introduced by Beiglbock and Juillet [6]), and the increasing supermartingale coupling (intro-
duced by Nutz and Stebegg [34]), and denoted by m. and 7; respectively, are the couplings
that arise via the shadow measure, created working from left to right. More specifically, when
p <cq v (resp. p <. v), mr (resp. m.) is the unique measure in Ig(p,v) (resp. ps(p,v))
which for each x € R transports p|(_o 4 to the shadow S¥(if(_so4)), see Nutz and Ste-
begg [34, Theorem 6.6] (resp. Beiglbock and Juillet [6, Theorem 4.18]). In other words, for
each m, the first and second marginals of 77|(_oc z]xr (T€SP. Tic|(—00z]xR) aT€ f|(—00 ) and
S (11| (=o0,2]), Tespectively.

An alternative characterization of 7y and m is through their supports. As a consequence of
the minimality of the shadow measure with respect to convex order (when u <. v), m. is also
the unique martingale coupling which is second-order left-monotone in the sense of Definition
3.2 (see Beiglbock and Juillet [6, Theorem 5.3]):

Definition 3.2. A transport plan m € Il(p, v) is said to be second-order left-monotone if there
exists I € B(R?) with n(T) = 1 and such that, if (x,y7), (x,y "), (2',y") € T we cannot have
r<z andy <y <y'.

While the second-order left-monotonicity (in the case p <. v) can be seen as a martingale
counterpart of the c-cyclical monotonicity in the classical OT theory, the supermartingale
constraint requires a novel distinction of the origins x. In particular, when u <.; v, the
support of the initial measure u splits into a set M of ‘martingale points’ and their complement
(i.e., the ‘supermartingale points’). Nutz and Stebegg [34, Corollary 9.5] showed that there
exists (I', M) € B(R?) x B(R) such that 7 is concentrated on T, m/|mxr is a martingale and
71 is second-order left-monotone (w.r.t. I') and first-order right-monotone (w.r.t. (I',M)) in
the sense of Definition 3.3. Furthermore, the converse is also true. Suppose p <. v and let
7 € Tlg(u,v). If, for some (I',M) € B(R?) x B(R), (') = 1, m|mxr is a martingale and 7
is both, second-order left-monotone (w.r.t. I') and first-order right-monotone (w.r.t. (I", M)),
then 7 = 77 (see Nutz and Stebegg [34, Theorem 8.1}).

Definition 3.3. A transport plan 7w € II(u,v) is said to be first-order right-monotone if there
exists I' € B(R?) and M € B(R) such that n(T') = 1 and, if (z1,y1), (x2,y2) € I' with 1 < x5
and x1 ¢ M, then we cannot have y; < ys.

When the initial law p is continuous (i.e., u({z}) = 0 for all x € R), and if p <. v, the
left-curtain martingale coupling has a rather simple representation. In particular, for = € R,
the element 7}’.(-) in the disintegration m.(dx,dy) = p(dx)n}(dy) is a measure supported on
a set of at most two points.

Lemma 3.5 (Beiglbock and Juillet [6, Corollary 1.6]). Let p,v be probability measures in
convex order and assume that p is continuous. Then there exists a pair of measurable functions
Ty : R— R and T, : R — R such that Ty(z) < z < T,(z), such that for all z < z’ we
have T, (z) < Ty (2") and Ty(z') ¢ (Ty(x),Tu(x)), and such that, if we define 7(dz,dy) =
p(dT)XTy(2) 0, Tu () (AY), then T € pr(p,v) and 7 = me.
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Lemma 3.5 is expressed in terms of elements of I1);. We can give an equivalent expression
in terms of a martingale. First we give an analogue of Definitions 3.2 and 3.3 for functions.

Definition 3.4. Given an interval I, I C I and an increasing function g : I — R, a triple of
functions (f, h,1), where f,h: I — R, 1:1\1+— R, is said to be second-order left-monotone
and first-order right monotone with respect to (I1,1,g) if

e (f,h) is second-order left-monotone with respect to g on I: f<g<hon I and for
z,2’ € I with x < 2’ we have h(z) < h(z') and f(z') ¢ (f(z), h(z)),

e | is non-increasing and | < g on I\ I, and I(z') ¢ (f(z),h(x)) for all &’ € T\ I and
zel withz <.

Corollary 3.1. Let (2, F,P) = (I x (0,1),B(2),Px x Leb((0,1))) where Px((—o0,z]) =
p((—o0,z]). Let w = (z,v) and let the canonical random variable (X, V') on (2, F,P) be given
by (X (w),V(w)) = (x,v). Then X has law pu, V is a U(0,1) random variable and X and V
are independent. Let F = (Fy = 0(X),F2 = 0(X,V)) and set M = (Q, F,F,P).

Suppose p is continuous. Then there exists Ty, T, : I — R such that (Ty,T,) is second-
order left-monotone with respect to the identity function on I and such that if we define
Y(z,v) € {Tg(x), Tu(x)} by Y(z,v) =2 on Ty(z) = x = Ty(x) and
(3.4) Y(z,v) = Td(m)l{ < {u)(z,)rdf(l)} + Tu(m)I{U>THT<Z<I)Td?1)}

otherwise, then M = (X, Y (X,V)) is a M-martingale for which L(X) = p and L(Y) = v.

In the case with atoms, Ty and T, cannot be constructed unless we allow them to be multi-
valued. By changing their viewpoint Hobson and Norgilas [31] constructed the generalised
lower and upper functions that support 7.

Lemma 3.6 (Hobson and Norgilas [31, Theorem 7.8]). Let (2, F,P) = ((0,1)x(0, 1), B(2), Leb(£2)).
Letw = (u,v) and let (U, V) be the canonical random variables on (Q, F,P) given by (U(w),V(w)) =
(u,v) so that U and V are independent U(0,1) random variables. Let F = (Fy = o(U), Fa =
o(U,V)) and set M = (Q, F,F,P).

Fiz pp <. v and let G = G}, be a quantile function of .

Then there exists R,S : (0,1) — R such that the pair (R, S) is second-order left-monotone
with respect to G on T = (0,1) and such that if we define X(u,v) = X(u) = G(u) and
Y (u,v) € {R(u), S(u)} by Y(u,v) = G(u) on R(u) = S(u) and

Y(u,v) = Ru)l, <=6t Gy +S(u)l

S(u)— G(u)}
S(w)—R(u) )

{ > S(u)—R(u

otherwise, then M = (X (U),Y (U,V)) is a M-martingale for which L(X) = p and L(Y) =

Our main goal in later sections is to construct the suitable supporting functions for =
in the case when pu <. v, and prove a supermartingale version of Lemma 3.6 (recall the
statement of Theorem 1.1). In particular, we will show that the set M of martingale points
is actually an interval (—oo,z*| whose right boundary z* will be determined explicitly. To
the left of z*, 7y is just a martingale left-curtain coupling (and we can use Corollary 3.1 or
Lemma 3.6 to embed i|(_og 4+ into v using the shadow S”(jf(—s0 2+])), While to the right of
x* the supermartingale left-curtain coupling 77 is concentrated on a deterministic decreasing
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map (and pf(y+ o) is embedded into v through the antitone coupling). Special care will be
needed in the case when p has an atom at z*.

3.4. Lifted supermartingale transport plans. Just as Corollary 3.1 has an equivalent ex-
pression via Lemma 3.5, Theorem 1.1 has an equivalent expression in terms of transport plans,
provided that we generalise the notion of a supermartingale transport plan. Let (uy)o<u<i
be a family of measures with p,(R) = w, g1 = p and gy < py for 0 < u < v < 1, and
let A\ denote the Lebesgue measure on the unit interval. Then a lift (Beiglbock and Juillet
[6, 7]) of p with respect to (fu)o<u<1 is a probability measure i € II(A, 1) such that, for all
u € [0,1] and Borel A C R, ([0, u] x A) = pyu(A). A lifted supermartingale transport plan is a
probability measure 7 € II(fi,v) such that [ yit,.(dy) < z, fi-a.e. (u,x), where 7, denotes
the disintegration of & € II(f, v) with respect to fi: 7(du, dz, dy) = ji(du, dz)w, . (dy).

One of the insights of Beiglbock and Juillet [6, 7] is that, when p <. v and (uy)o<u<i
as above, the (martingale) shadow measure induces a family of martingale couplings. In
particular the idea is that for all u € [0, 1], p,, is mapped to S¥(u,). A crucial result making
this possible is the fact that if 0 < u < v < 1 and py < py, then S”(py) < SY(uy) (recall
Lemma 3.4). More precisely, for any lift i € II(\, 1), there exists the unique lifted martingale
transport plan 7 such that for all u € [0,1] and Borel A, B C R, 7([0,u] x A X R) = p,(A)
and 7([0,u] x R x B) = S”(uy,)(B) (see Beiglbock and Juillet [7, Theorem 2.9]).

The proof of Beiglbock and Juillet [7, Theorem 2.9] relies on the associativity of the shadow
measure. Since this property also holds when p <.4 v (see Proposition 3.2), we believe that,
by replacing <. and <,. with <.q and <4, respectively, the theorem can be extended to the
supermartingale case (for arbitrary lifts). The rigorous proof, however, is left for future work.

In this paper we work with a particular lift instead. In particular, we choose the quantile lift
/i? whose support is of the form {(u, G(u)) : 0 < u < 1} where G is a quantile function of .
Then 49 (du,dz) = dudg(y)(dz) and for a Borel set A, [2([0,w] x A) = I duliGyeay- (This
is precisely the lift used by Hobson and Norgilas [31] to construct the lifted left-curtain mar-
tingale coupling.) By analogy with the correspondence between Lemma 3.5 and Corollary 3.1
we have the following equivalent restatement of Theorem 1.1:

Let p,v be probability measures in convez-decreasing order and let i€ be
the quantile lift of u. Then there exists the unique regime-switching point
u* € [0,1] and a triple of measurable functions R,S : (0,u*] — R and
T(u*,1) — R such that (R,S,T) is second-order left-monotone and first-
order right-monotone with respect to ((0,1),(0,u*],G), and such that if
#9(du, dx, dy) = dudc(u) (da:)fruQ,I(dy) (recall fv has support on {(u,G(u)) :
0 <u<1}) then

A2 (dy) = Tucu ) XR(w), ()8 @) (4Y) + Lusw 101 ()
and 79 is the lifted increasing supermartingale transport plan which trans-
ports a second marginal p to third marginal v.
The existence (and uniqueness) of lifted supermartingale couplings that arise from the
shadow measure (for arbitrary lifts of the initial measure) is investigated in the companion

paper Bayraktar et al. [1].
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4. THE GEOMETRIC CONSTRUCTION OF 7f

In this section we construct a generalized (or lifted) version of the supermartingale in-
creasing coupling for two measures p,v € P with p <. v. In particular, we will split the
construction into two parts, martingale and (strict) supermartingale, by explicitly determining
the unique regime-switching point.

We begin by introducing a particular parametrization of an initial measure p. Let G,
(0,1) = R be a quantile function of p. For now, we use an arbitrary version of G = G/,. For
each u € (0,1) define y, € M by

(4.1) = 1(—o0,a(u)) (U = Hl(—o0,c(w) (R))dc(u)-
It is easy to verify that p, does not depend on the choice of G. Note that p,(R) = u, u € (0,1).
For v,u € (0,1) with v < u, g — o, > 0 (i€, (g — ) € M), (y — piy)(R) = (u — v) and
the support of (p, — py) is contained in [G(v), G(u)]. Furthermore, we treat p as the zero
measure, and set j; = p.

Note that, for v € (0,1), we have P, (k) = P,(k) for k < G(u), while P, (k) < P,(k) for
k > G(u). In particular,

P,.(k) = P,(k A G(u) + u(k — G(u))T, kEeR,
and thus, P,,(-) is linear on [G(u),00) and u € OP,(G(u)), so that P, (G(u)—) < u <
P (G(u)+).

4.1. The regime-switching point u*. For 7, x € M with 1 <,.4 x, recall the definition of
ey = supger{(X(R) = n(R))k — (x — 7) — Py (k) + P,(k)} € [0,00), which was used in the
proof of Theorem 3.1, see Figure 2. Note that ¢, = supger{Cy(k) — Cy(k)}.

We will use ¢, with n = p,, for v € [0,1], and x = v. Define ¢ : [0, 1] — [0, 00) by

(4.2) c(u) = cp,p = 21615{@“ (k)= Cu(k)}, ue€(0,1), ¢(0)=0, c(1)=cup-

(That ¢(-) is non-negative is due to the fact that p, < p <. v, so that g, <pecq v.) The
following lemma summarises the properties of ¢(+).

Lemma 4.1. ¢(), defined in (4.2), is non-decreasing and lower semi-continuous, and thus
also left-continuous.

Proof. Fix u,v € (0,1) with u < v. Then p, < p,. For each k € R, x — (x — k)T is
non-negative, and therefore C,,, (k) < Cy, (k). It follows that c(-) is non-decreasing:

(1) = up{Cl, (k) — Cu(R)} < sup{Cl, (k) — Cy (k)} = (o).
keR keER

We now turn to the continuity of ¢(-).
If u < v, then the support of (u, — py) is contained in [G(u), G(v)] and we have that, for
each k € R,

0 < Cp (k) — Cp (k) = /R (& — K)o — i) () < (G(0) — ) (10 — ) (R),
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and it follows that
0< liin{C (k) = Cu (k) < (Glut) — k)T liin(v —u) =0.
On the other hand, if v < u, then the support of (p, — 1) is contained in [G(v), G(u)], and
therefore
0< Oy, (k) —Cuy (k) <(Gu) — k) (u—v), keR.
It follows that, for each k € R,

0 < lim{C,, (k) — Cp, (k)} < (G(u) — k)* lim(u — v) = 0.

v vt
Combining both cases we have that, for each k € R, v — (Cy, (k) — C,(k)) is continuous.
Since the supremum of any collection of continuous functions is lower semi-continuous (l.s.c.),
we conclude that ¢(-) is L.s.c.
Finally, fix u € (0,1]. Then c¢(v) < ¢(u) < liminf,p, ¢(v) for all 0 < v < u. Letting v 1T u
shows that ¢(-) is left-continuous. O

X=1
x(R)=n(R)

X—n
XR)—(®) T Cnx

FIGURE 2. The geometrical representation of the case ¢, , > 0 for n <,.q x.
The dashed curve represents (P, — P,). The dotted line corresponds to k —
l(k) = (x(R)k —X) — (n(R)k — 7). Note that (P, — P,) converges to [ at oco.
The dash-dotted curve represents k +— (I(k) — ¢;,). Note that (I(k) —¢;,y) <
(Py(k) — P,(k)) for all k € R, but there exists (not necessarily unique) k € R
such that (I(k) — ;) = (Py(k) — P,(k)). Note that the convex hull (P, — P,)¢
must be linear and coincide with k — (I(k) — ¢;) to the right of k, which
shows that (xy — SX(n)) does not charge (k, 0o); recall Theorem 3.1.

We have the following representation of c¢(-).

Lemma 4.2. For each u € (0,1),
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Proof. By Lemma 5.7 with f = P,, and g = P, we have that (P, — P,, )¢ € D(v(R) —
U,V — Ty + c(u)). Let 0, := ((P, — P,,)¢)" € M, then 0, = U — [i, + ¢(u). By Theorem 3.1,
SY(py) = v—0,, and therefore S (p,) = v—0, = fiy, —c(u). It follows that i, —S¥ (1) = c(u),
as claimed. O

Let u,v € (0,1) with v < v. Then p, < p, and, by Lemma 3.4, S”(u,) < S”(uy).
Combining this with Lemma 4.2 and the associativity of the shadow measure (see Proposition
3.2) it follows that

c(v) = c(u) + ty — fg — Y75 B0) (g — py),  w,v € (0,1) with u < v,
and thus we have the following property.
Corollary 4.1. Fiz u,v € (0,1) with u < v. Then
c(u) = c(v) if and only if (o — pu) <pe (v = 5" ().

Proof. Since (pty — ptu) <pea (v — S” (1)), the statement follows immediately by noting that
(o — tu) <pe (v — 5" () if and only if 1, — g, = S¥—5" () (1 — o). See Remark 2.1. [

Corollary 4.1 motivates us to introduce a special point u* that will separate the construction
of the supermartingale coupling into two parts.
Define

u* =y, = sup{u € (0,1) : ¢(u) = 0} € [0,1],

with convention sup () = 0. Note that, since ¢(+) is non-decreasing and left-continuous, c(u*) =
0. Then by Lemma 4.2 and Remark 2.1 we have that p,» <. S”(py+) < v, and thus we can
transport i« to SY(p,+) using any martingale coupling 7 € ITps(pty=, S” (ty+)) (in Section 4.2
for this we will actually choose the generalised left-curtain martingale coupling).

Now consider the remaining initial mass (u — py+). We will show that if u,~ is transported
to SY(y+) then no portion of mass from (u— i+ ) can be transported to (v —.S” (,+)) using a
martingale. This proves that u* defines the unique regime-switching point: to the left of (and
including) u* we use a martingale, to the right of u* we must use a strict supermartingale.

Before we proceed observe that if c(u) = 0 for all u € (0,1), or equivalently if u* = 1,
then @ = 7 and therefore p <. v, so that IIg(u,v) = p(u,v). Then by embedding p,
to S¥(p,) for each u € (0,1), in Section 4.2.1 we will recover the generalised version of the
martingale left-curtain coupling. In the rest of this section we focus on the supermartingale
case 0 < u* < 1.

The following crucial result shows that there does not exist n, x € M with n < (1 — piy+),
X < (v — 58%(uy+)) and such that n <. x.

Proposition 4.1. Suppose p,v € M with pu <.q4 v and u* € [0,1).
Then the support of (u — puy+) is strictly to the right of the support of (v — SY (py+)):

Ty SV () Cy—pn  and (u— Mu*)({gu—uu* HA@W-— SV(NU*))({EM—M* }) =0.

Proof. (Note that if u* = 1 then there is nothing to prove since in this case both g — p,+ and
v — SY(uy+) are the zero measures.) First suppose that u* € (0,1).
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Case 1. Suppose (u — py+)({G(u*)}) > 0. We either have (v — S¥(uy+)){G(u*)}) > 0
or (v — 8"(uy+)){Gw*)}) = 0. In the former case let h = (u — py+)({G(u*)}) A (v —
5" (pu))({G(u¥)}) > 0. Then

(s h = pur) = hogey < (v = 87 )) ({G(u) oGy < (v = 57 (1))

and therefore C, ., .-

(s 41— frur) <pe (v = ¥ (pur)). Tt follows that (puein — prur) <o S5 W) (e — )
and therefore SY=5"(u) (s 4 — piur) = (furyn — pur). Hence, c(u* + h) = c(u*) = 0,

< Cy_sv(u,.) everywhere. Using Lemma 3.2 we then have that

contradicting the maximality of u*.

Now suppose that (v — S¥(y+))({G(u*)}) = 0. If T, gv(y,.) S (—00,G(u*)) then we
are done. On the other hand, if Z,_gv(, .) € (G(u*),00), fix v € (u*, u((—o0, G(u*)])].
Then for any 7, € M with n, < (v — S¥(pu+)) and 7,(R) = (v — u*) we have that Z,, C
(G(u*),0), and therefore 7, > (v — u*)dg(u+) = (tw — p+), contradicting the fact that
(Nv Hou* ) Sped V — SV(Mu*)' Hence suppose that il = (V SY ( ))((—OO,G( ))) (V -
5" (pu))((G(u*),00)) € (0,1 —w*). Let @:= (u + h) A p((—o00, G(u™)]).

Using Lemma 5.1 with n = (ug — py+) and x = (v — S¥ (py= )) we have that (pg — pur) <pe
(v — 8%(py+)). But then (pg — pur) <e Y75 u) (g — puy+). Tt follows that g — i =
Sv=5(1u*) (g — iy ), and hence c(i) = c(u*) = 0, contradicting the maximality of u*. We
conclude that (v — SY(py+))(R) = (v — SY(pu+)) ((—o0, G(u*))).

Case 2. Now suppose G(u*) < G(u*+) and (j—p,-) ([G(u*), Gu*+)]) = (=) (G +)}) >

0. By replacing G(u*) with G(u*+) we can use the same arguments as in Case 1 and conclude
that (v — 8" (pu-))(R) = (v = 5% (pu=)) (=00, G(U’“r)))-

Case 3. Suppose that (g — py+)([G(u*), G(u*+)]) = (Note that in this case G(u) >
G(u*+) for all w € (u*,1).) Then either Z,,_, . = (G(u*+ ) ru)or Ly, . = (Gu*+),r,. To
ease the notation let i := (u — py+) and v := (v — S”(py»)). If #(R) = 0((—o0, G(u*+)]), i.e
Ty C (—o0, G(u*+)], then we are done. Hence we can suppose that either 7((—oo, G(u*+)]) A
7((G(u*+),00)) > 0 or 7(R) = v((G(u*+), 00)).

We first argue that if 7((—oo, G(u*+)]) A 7((G(u*+),00)) > 0 then there exists 4 € (u*,1)
with ¢(a) = c(u*) = 0, contradicting the maximality of u*. Indeed, let k > G(u*+) belong
to the support of 7|y 4),00)- Then we can pick a small enough @ > u* such that G(u*) <
G(u) < k. Let h := v((—o0,G(u*+)]) A 7((G(@),00)) A (4 — u*) > 0. Then using Lemma
5.1 with 7 = (i — fur) and X = D|(_oo G(u*+))U(G(a),00) W€ have that (f,.« p — fur) <pe
U] (—o0,G(u*1)|U(G(0),00)S P and therefore (p,. f, — pur) <pe P. But then (g, — pur) <¢
S”(foye 17, — Hur)- It follows that fi,. 5 — pur = S”(ftye 1, — Hu~) and therefore c(u* + h) =

c(u*) = 0, contradicting the maximality of u*.
Finally suppose that 7(R) = 0((G(u*+),00)). Pick a small enough u € (u*,1) such that
G(u*+) < G(u) < (7/7(R)). Define g : R — R, by

Cry—pu (K), k€ (=00, G(u"+)) U (G(u),0),

g(k:) = Cuuif,u *(G(U*+)) *
{cmhmwwwm,kﬂmuﬂﬂWN
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Then g(-) is convex. Furthermore, since the support of (g, —fty+) is contained in (G(u*+), G(u)]
and CM_M* is convex, we have that

Corn (k) < g(k) < 7 — #(R)K)T < Co(k), keER.

By Lemma 3.2, (py — pur) <pe 7. But then (py — pur) <c S”(pty — prur). It follows that
Hy — o = S7(py — py+) and therefore c(u) = c¢(u*) = 0, contradicting the maximality of u*.

To finish the proof we must cover the case when u* = 0. However this can be achieved using
the same arguments as in the above three cases. To see this first note that G(u*+) = G(0+) =
Oy If p({€,}) > 0 then ¢, > —oo, and we can use the arguments of Case 2 to conclude that
(v — 5" (pur))(R) = v(R) = v((—00,£,)). On the other hand, if p({¢,}) = p({G(0+)}) =0,
then the arguments of Case & show that v(R) = v((—o0,£,]), as required. (Note that if
l, = G(04+) = —oo, then v(R) = v({—00}), a contradiction to the fact that v is integrable.
Hence, if u* = 0 then we must have that £, > —o0.) O

Corollary 4.2. ¢(-) is strictly increasing on (u*,1).

Proof. By Proposition 4.1, the support of v — S¥(pu,+) is (strictly) to the left of the support
of u — py+. Since, for any u,v € (0,1) with v* < u < v, (py — p) < (0 — o) and

(S5 W) (py — ) < (v — 8 (pur)), we have that f, — g > S¥=5" () (1, — pr,) and
therefore c¢(v) > c(u), as claimed. O

4.2. Proof of Theorem 1.1. We will prove Theorem 1.1 by explicitly constructing the
functions that support the lifted increasing supermartingale coupling.

Fix p,v € M with p <.4 v. In this section we work with a left-continuous version of the
quantile function G, = G, of the initial measure p. Define D, ,, : R — Rby D, (k) = B, (k)—
P,(k), k € R. Then D,, > 0 everywhere, limy_, o D, (k) = 0 and lim_,o, D, (k) =
(7i—7) > 0.

Let my,, := p(R) = v(R). For each u € (0,m,,) define &"” : R — Ry by &Y = P, — P,,,,
so that

&7 (k) = Py(k) = Pu, (k) = Dyy(k) + Bu(k) = By, (k),  keR.
Then, by Theorem 3.1, we have that
Pgv () (k) = Py(k) — (EY)°(k), kel

The underlying idea is that using the graph of k — (£"7)¢(k), for each u € (0,m,, ), we can
define candidate functions that characterise the increasing supermartingale coupling.

Note that, &""(k) = D, (k) for k < G, (u). Since P, — P, is non-negative on R, we have
that & (k) > D, (k) for k > G,(u). Moreover, since P,, is linear on [G,(u), +o0), " is
convex on (G, (u),+00). It is also easy to see that k — E"" (k) — D,, (k) is non-decreasing.

Let Quu, Sy (0,my,,) — [—o0,+00] be given by

Quu(u) == X (G (w)),
Sp(u) = Z5 (G ().
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By definition, Q. (u) < Gu(u) < S, (u), for uw € (0,m,,). Furthermore, for each u €
(0,my,,), either Qu.(u) < Gu(u) < Syp(u) or Quu(u) = Gu(u) = S, (u), see Hobson and
Norgilas [31, Lemma 4.1].

We now introduce a function ¢, : (0,m,,,) — R which represents the slope of (£§"")(")
at Gu(u). If Quu(u) < Gu(u) < Suu(u), then this slope is well defined. If Q. (u) = G(u) =
Sy (u) then the slope of (&€/"Y)¢ may not be well defined at G, (u). To cover all cases we
define:

Definition 4.1. ¢, , : (0,m,,) — R is given by ¢,,,(u) = inf{e) : ¢ € A(ELY)(Gp(u))}.

Now we can introduce our second candidate lower function.

Recall the definition of Lf;b for any f: R — R (see (5.1)), so that (in the case a < b) Lib is
the line passing through (a, f(a)) and (b, f(b)). Define also LLY by Li¥ (y) = f(a) +1(y — a)
so that L&Y is the line passing through (a, f(a)) with slope 1. (Note that, in the case a = b,
Lgva = Lg’o.) Define R, , : (0,m,,,) — [—o00, 00] by
(4.3) Ry (u) = inf{k : k < Gpu(u), Dy (k) = L") (1)}, w € (0mpy).

If Quu(u) < Gu(u) then the definition of R, , can be rewritten as R, ,(u) = inf{k : k <

G (), Dw(k) = ng(u)sw k)}. Note that Q. (u) € {k : k < Gu(u), D, (k) =

L(Gu(u; Suv( ( )} so that R, (u) exists in all cases and satisfies R, (u) < Qu.(u). (See, for
example, Figure 3 which corresponds to the martingale case when 1 = 7).

If Quuv(u) < S,u(u), then by construction, (E")¢ < &Y on (Quu(u), Sy (u)) and
(EPY)e < &Y on [Ruu(u),Suy(w)]. In particular, (E°7)¢ is linear on (R, (u), Sy (u)),
whilst (E6) (S (W) = EL (Spu(w)), (EL)(Quuw)) = EL(Quur(@)) = Dy (@)
and (EL7)¢(Ryu(w)) = ELY(Ry(u)) = Dy (Ry(u)) (provided that Sy, Q. and Ry, are
finite, respectively). Then we have that

b () = e (s v () = Dy (Quu(u)) _ E"(Suw () — Dy (Ryw(u))
a () = Qo (u) Sy (1) = Ry (u) '

Further, ¢,,,(u) is an element of each of dEL" (R, (u)), 0L (Qpu(w)) and OEL (S, (u))
together with O(EL")¢ (R, (u)), O(ELY)(Qur(u)) and (ELY ) (S (u)).

4.2.1. Martingale case: u* = 1. Suppose p,v € P with p <.q v and ©v* = 1. Then 1z =7 and
therefore p <. v, so that we are in the martingale set-up. Hobson and Norgilas [31] showed
how to construct the upper and lower functions that support the generalised left-curtain
martingale coupling, on a single irreducible component only. In this section we will extend
their result by gluing together the constructions obtained on separate irreducible components.

Let (Z;)i>0 = (Z!"")i>0 := ((¢;,7i))i>0 denote the collection of irreducible components
associated to p and v, and let Z; = [¢;, ;] denote the closure of Z;. Define

Hi = M|L‘7 Vi = SV(/‘i)v t>0.
Since each Z; is irreducible, y; is embedded in v|z under any 7 € Hj(p, v). In particular,

vi = v|g, + idy, + Bidr;, 120,
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where «; € [0,v({¢;})] and 5; € [0,v({r;})], recall Lemma 5.3.
Let G = G}, and, for i > 0, define

uf = inf{u € (0,my,,) : G(u) > &}, ul :=sup{u € (0,m,,): G(u) < r;},

and let (U;);>1 be such that U; := (uf,ul) Since each Z; is irreducible, it is easy to see
that there exists u € (0,my,) with G(u) € (4,7;), and therefore both uf and u! are
well-defined (for example, we can take u € (0,m,,) with G(u) < x < G(u+), where

T € argsupkez_Du,y(/ﬂ))‘
Lemma 4.3. Ifu € Uz'zo U; then G(u) € Uizo Z;

Proof. Since G is non-decreasing and left-continuous, we have G(u]) < r;. Suppose G(u]) =
ri. If p({r;}) = 0 then G(u) < r; for u < u]. If p({r;}) > 0, then u] = F,(r,—) =
p((—o0,7;)) and therefore G( ) < r; for v < u]. On the other hand, we have that either
G(uf) = ; = G(ul+) or G(uf) < £; < G(uf+). If G(uf) = £; = G(uf+) and p({4;}) >0 then
uf = F,(4;) = u(( 00, 4]). In either case £; < G(u) for u > uf. We conclude that G(u) €

for all u € U;. It follows that G(u) € |J;~; Z; provided that u € | J,~,U;. D

Remark 4.1. The reverse statement of Lemma 4.3 is almost true. In fact we have that if
G(u) € U;>Zi then u € (Ui>0 Z/Ii> \ N for some Lebesgue null-set N.

Suppose G(u) € ;o Z;i for some u € (0,1). Then G(u) € Z; for some i > 0, and therefore
6; < G(u) < 1. It follows that uf < u < ul. Ifu = u, then G(uf) > ¢;. But his cannot
happen since G is left-continuous. It follows that u < u < u;. Now suppose that u = u}, so
that G(u]) < r;. This, however is a possible situation. It happens when G(u]) <1 < G(ul+).
Since there are countably many uj ’s the assertion follows.

We will now define candidate functions that support the left-curtain martingale coupling
on each irreducible component.

For i > 0, let G; : (0,uf —uf) — R be a (left continuous) quantile function of u;, i.e.,
G; = G,,. By construction, G(u) = G;(u — uf) for u € U;, and therefore, for a un1f0rm
random variable U on [0, 1] we have that £(I;yeG(U)) = LU rey;3 Gi(U — uf)) = pi.

Define R;, S; : (0,u} — uf) + [—00,00] by

Ri(u) = Ry (), Si(u) = Sy (u),  w € (0,uf — ).
The next result shows that R; and S; are real-valued. The proof is presented in Section 5.3.

Lemma 4.4. For i >0, R;(u),S;(u) € [(;,r] for allu € U;. If {; = —o0 (resp. r; = 00) then
Ri(u), Si(u) € (4i,ri] (resp. Ri(u),S;i(u) € [€;,15)).

Let N := U;sof{uf : G(uf) < ry)}, recall Remark 4.1. Finally, define Ruv,Suw:(0,1) =R
by

(4.4)  Ruu(u) = Trug(Uys ot UNYG (1) + > (I{ueul}R (u—uf) + Iy e/\/}fz)»

>0

(4.5) Sy () = Tug (s U G (1) +ZI{UEL{}< (= uf) + Tfueur eN}Tz>
i>0
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When p <. v, for each ¢ > 0, the pair (R;,S;) provides a construction of the (lifted) left-
curtain martingale coupling on Z;, while (R,,,,,,, 5',,,71,) gives a construction on the whole space
(Zi)i>0 (see Theorem 4.1). In the case p <.q v, we will identify special subprobability measures
o < pand v < v with i <. 7, and then use (Rﬁvg,gﬁﬁg) (see (4.8) and (4.9)) to construct
the (lifted) increasing supermartingale coupling 7 on the ‘martingale points’ of this coupling
(see Theorem 4.3).

slope ¢(u)

R(u)

FIGURE 3. Plot of locations of R(u) = Ry, (u), Q(u) = Quu(u), G(u) =
Gu(u) and S(u) = S, (u) in the case where R(u) < Q(u) < G(u) < S(u) and
such that {k : D, ,(u)(k) > 0} is an interval. The dashed curve represents
D = D, ,(u). The dotted curve corresponds to the graph of &, = &"”. Note
that D = &, on (—oo, G(u)], while &, is convex and D < &, on (G(u),00). The
solid curve below &, represents £;. The convex hull £ is linear on [R(u), S(u)],
and its slope is given by ¢(u) = ¢, (u).

Remark 4.2. The intuition behind our choice of R and S is because (at least in regular cases)
they do satisfy the mean and mass preservation conditions

Gu) S(u)
(4.6) / x'u(dr) = / z'v(dx), 1=0,1,
R(u) R(u)

which are also satisfied by the pair of upper and lower functions (Ty, T,,) constructed by Henry-
Labordére and Touzi [23] when p is continuous.

Indeed, suppose p,v are atomless with positive density everywhere. In this case D, , and
ELY, for uw € (0,1), are differentiable. Then if R(u) < G(u) < S(u), by construction (see
Figure 3) we have that

D'(R(u)) = £,(S(u)) and D(R(u)) + D'(R(u))(S(u) — R(u)) = Eu(S(u)),

which, using the definition of D and &,, can be easily shown to be equivalent to (4.6).
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We are now ready to present the main result of this section. Since u* = 1, the function T’
in Theorem 1.1 is irrelevant. In particular, Theorem 1.1 is now a direct consequence of the
following result.

Theorem 4.1. Suppose pn <, v. Define R and S as in (4.4) and (4.5), respectively. Then
they are second-order left-monotone with respect to G on (0,1) and define a construction as
in Theorem 1.1 such that L(Y) = v. In particular, R and S define the (lifted) left-curtain
martingale coupling.

Proof. We have L(X (U, V)) = L(X(U)) = L(G(U)) = p. Fuarthermore, since L(I1yyG(U)) =
i and P{U € N'}] = 0, we still have that L(I;yecy,unyG(U)) = pi- Since U;’s are disjoint, we
conclude that ‘C(I{UE(UQO%)UN}G(U)) = ZiZO i, and therefore ‘C(I{U¢(Uizoui)UN}G(U)) =
H—1-

We now turn to Y (U, V). For y € R we have

Pllwey, ourY (U V) < 4]
= Plliug¢U,.otyunyGU) <yl + Pllipeny Y (U, V) < y] = p-a1((—00,9]),
where we used that P[U € N] = 0 and therefore

PlvenY (UV) €01 < [ S Hucupuspdu < [ du=o.

We will now show that L(Iipeyy.. ;Y (U, V)) = 350 vi- Note that it is enough to show
that L(Iiyeu, Y (U, V)) = v, 1 > 0. But this follows from the results of Hobson and Norgilas
[31]. Indeed, if for a fixed i > 0 we define

Yi(u,v) = Itp,w)=s, )} Gi(u) + I{Ri(u)<Si(u)}{Ri(u)I{U< si0=G; )y + Si(u) L o s00-65 }7

SR, (w) > Sw—rw

for w € (0,u] —uf) and v € (0,1), then L(I;yeY (U, V)) = L(Yi(U;,V)) where U; is a
uniform random variable on [0, u] — uf] that is independent of V. By Hobson and Norgilas
[31, Theorem 7.8] we have that L£(Y;(U;,V)) = v;, and therefore L(I{7¢,3Y (U, V)) = v; as
required.

The martingale property of Y follows by construction. Hence we are left to show that
R = RMV and S = SW, are second-order left-monotone with respect to G on (0,1). Fix
u,v € (0,1) with u < v. I u ¢ (U;jsoUs) UN, then R(u) = G(u) = S(u) and the second-order
left-monotonicity property triviall}_/ holds. Hence we can assume that either u € |J,~oU; or
ueN. -

Case 1: u € |J;>oU;. Suppose u € U; for some i > 0. We know that u — R;(u — uf) and
u > Si(u — uf) are second-order left-monotone with respect to G(-) = Gy(- — uf) on U; (see
Hobson and Norgilas [31, Theorem 7.8]). Hence if v € U; we are done. On the other hand if
v € Uj with ¢ # j, then using Lemma 4.4 we have that either ¢; < ]:Z(u) < S’(u) <r; <U{; <
R(v) or R(v) <7j < 4; < R(u) < S(u) < r;. In either case we have that R(v) ¢ (R(u),S(u))
as required.

Now suppose that v € N, so that v = u§ for some j > 0. If i = j, then (using Lemma 4.4

again) we have that R(v) = ¢; < R(u) < S(u) as required.
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Suppose v ¢ U;soUi and v ¢ N. Then R(v) = G(v) = S(v). Since v ¢ U; and u < v,
v > u}. Recall that G(u]) < r;. If G(u]) = r; then (using Lemma 4.4) R(u) < S(u) <r <
G(v). On the other hand if G(u]) < r;, then u] < v. By the definition of u] we have that
G(ul) < r; < G(uf+), and then it follows that R(u) < S(u) < r; < G(ui+) < G(v). In both
cases the second-order left-monotonicity property holds.

Case 2: w € N. In this case u = u} for some i > 0 and R(u) = £; < r; = S(u). If
v € N then uj = u < v = uj for some i # j. Then r; < r; and we have that R(u) =
¢; < r; = S(u) < £; = R(v). On the other hand, if v € U; for some j > 0, then i # j and
¢; < R(v) < rj. Then either ; < £; or 7; < £;. In either case R(v) ¢ (R(u),S(u)). Finally,
suppose v ¢ Ui>oui) and v ¢ N, so that R(v) = G(v) = S(v). Then u} = u < v. By
definition of u] and since u] € N we have that G(u) < r; < G(u+) < G(a) for all @ > u. It
follows that R(u) = £; < r; = S(u) < G(u+) < G(v) = R(v) as required. O

/N

=3

We finish this section with a remark that will be useful in Section 4.2.3.

Remark 4.3. Suppose * € R with R, ,(u) < = < S,,(u) for some u € (0,1). Then
uwelU; U({uly NN) for some i > 0. Combining Lemma 4.4 and the definitions of RW, and
5',17,, on N, we have that {; < Ru,,,(u) <z< SW,(U) < r; and therefore x € IZW/.

4.2.2. The (strict) supermartingale case: u* = 0. In this section we consider u,v € P with
ry <€, and p({¢,}) Av({€,}) = 0. Then the support of v is strictly to the left of the support
of © and we automatically have that u <.; v and u* = 0. Note that the converse is also true
(recall Proposition 4.1): if u <.4 v and u* = 0 the the support of v is strictly to the left of
the support of p.

Recall the definition of D(k) = D, (k) = P,(k) — P.(k), k € R. Note that D(k) = P, (k)
for k < ¢, and D(k) = (k —©) — Py(k) for &k > £,. It follows that D is continuous, non-
decreasing, convex on (—o00,£,,) and concave on (¢,,00). Furthermore limy_, o, D(k) = 0 but
limg_yoo D(k) =@ —7 > 0.

Now, as in Section 4.2.1, for each u € (0,1) we will use the function &, (k) = &Y (k) =
P,(k)—P,,(k), k € R, and its convex hull £;. First note that &,(k) = D(k)+ P,(k) — Py, (k)
for all £ € R, and therefore &, > D everywhere. Similarly as D, &, is continuous, non-
decreasing, convex on (—oo,£,) and concave on ({,,00). In fact, since p, coincides with p
on (—o0o0,G(u)) and does not charge (G(u),00), we have that £, = D on (—oo, G(u+)) and
Euw = (k —7) — (uk — 1) (so that it is linear with slope (1 —u)) on (G(u+),o0).

We now introduce our candidate supporting function for the increasing supermartingale
coupling. Define T": (0,1) — R by

(4.7) T(u) :=T,,:=R,,(u) = R(u), ue(0,1),

where R, , is given by (4.3). (Note that we chose the lower function from the martingale
set-up to be the only supporting function in the strict supermartingale case.) See Figure 4.

Let F, and G, denote the (right-continuous) cumulative distribution function of v and
(left-continuous) quantile function of v, respectively. Let U be a uniform random variable on
[0, 1].
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Proposition 4.2. T, defined in (4.7), is non-increasing, right-continuous, T < G on (0,1)
and L(T(U)) = v.

Proof. Fix u € (0,1). By definition of G, we have that (1 —u) € 9P,(G,(1 — u)). Moreover,

since G, is non-decreasing and left-continuous, we immediately have that v — G, (1 — u) is

non-increasing and right-continuous. Furthermore, G, (1 —u) < 7, < £, < G(u). Since p

(and thus also p,, for each v € (0,1)) and v cannot have atom at ¢, simultaneously, it follows

that G, (1 — u) < G(u) for all v € (0,1). Finally, since U = 1 — U is still a uniform random

variable on [0,1], £L(G,(1 —U)) = v. We are left to show that T'(u) = G, (1 —u), u € (0, 1).
Let hy : R +— R be defined by

hulh) = P,(k), k<G,(1—u),
ull) = Lei k), k> Gl —uw).

Note that h, is continuous and convex. Furthermore, h, < &, everywhere and h, < &, on
(G,((1 —u)+),00). To see this first observe that, h, = P, = &, on (—o00,G,(1 — u)]. Also, if
G,(1—u) <Gy((1 —u)+), then hy = Lg”u’(ll__z) =P, =&, on (Gy(1—u),G,((1 —u)+)]. On
the other hand, for all k € (G, ((1 —u)+),G(u)), (1 —u) < inf{f : 0 € 9E,(k)}, and therefore
hy = Lg’;’(ll_f;) < &, on (Gu((1 — u)+),G(u)]. Finally, since Lé"(’ul)_u = Lg&lu)_u is parallel
to Lg”y’(lf_“u , we also have that h, = Lg‘;’(lf_q;) < Lgii;u = &, on (G(u),00), as claimed. It
follows that h, < & < &, everywhere.

We claim that £ = h,, everywhere. First, since £, (k) = P, (k) = hy(k) for k < G, ((1—u)+)
we must have that £ = hy, on (—oo, G, ((1 — u)+)]. On the other hand, if ES(k) > hy (k) for
some k > G, ((1 — u)+), then by convexity of £ we have that (1 —u) < inf{f : 6 € 9ES(k)}.
Then, since &, = Lg(i)_u on [G(u), 00), for large enough k > k we have that &,(k) < £5(k), a
contradiction.

Finally, T'(u) = R(u) = inf{k : k < G(u), D(k) = LS (k)} = inf{k : k < G(u), D(k) =

P, 1—u . P, 1—u . .
LGV(lliu)(k)} = inf{k : k < G(u),P, (k) = LGV(llfu)(k)} = G,(1 — u), which finishes the
proof. O

Using Proposition 4.2 we immediately have the following.

Theorem 4.2. Define T as in (4.7). Then it defines a construction as in Theorem 1.1 such
that L(Y') = v. In particular, T defines the (lifted) increasing supermartingale coupling, which
coincides with the (lifted) antitone coupling.

Proof. Since u* = 0, for (u,v) € (0,1)® we have that Y (u,v) = T(u), where Y is defined
as in the statement of Theorem 1.1. (Note that the proof of Proposition 4.2 revealed that
T(u) = G,(1 —u).) By Proposition 4.2 we then have that (X(U) = G(U),Y (U,V)) forms
a supermartingale with £(X) = p and £(Y) = v. Finally, since the antitone coupling 747
is such that ma7(A x B) = Leb({u € (0,1) : G(u) = Gu(u) € A,G,(1 —u) € B}), for all
Borel measurable subsets A, B of R, we have that our construction corresponds to the (lifted)
version of wa7. O
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FIGURE 4. Plot of locations of G(u) = Gy (u) and T'(u) = T}, ,(u) in the case
where 1 <.q v and u* = 0. The dashed curve represents D = D,, ,,. Since the
support of p is (strictly) to the right of the support of v, D is convex to the left
of r,, linear on (r,,¥,) and concave to the right of ¢,. In particular, D = P,
on (—o0, ] and D = Py, . — P, on ({,,00). The dotted curve corresponds
to the graph of &, = &Y. Note that D = &, on (—oo, G(u+)], while &, is
linear (with slope 1 —u) and D < &, on (G(u+),00). The solid curve below &,
represents £S. The convex hull £ is linear on [T'(u), 00), and its slope is given
by ¢(u) = 1 — u. Note that the linear section of &, on (G(u+), o) is parallel
to the linear section of £ on (T'(u), 00).

4.2.3. The general supermartingale case: u* € (0,1). In this section we combine the con-
structions of Sections 4.2.2 and 4.2.1, and show how to build the increasing supermartingale
coupling when u* € (0,1).

Let p,v € P with p <.4 v and suppose that v* € (0,1). Recall that in this case c(u*) =
T — SY(py+) = 0 and therefore py,» <. S”(uy+). Hence we can embed i+ into SY(puy»

using a construction similar the one provided in Section 4.2.2. In particular, define D =
Psv(y,+) — Pu,~ and E,=D+P o — Py, u e (0,u”]. (€, serves the same role for p,+ and
SY (py+) as &, did for p,, and P, in Section 4.2.2.)

Define R, S : (0,u*] — R by

(4.8) R(u) :
(4.9) S
where R and S are defined as in (4.4) and (4.5), respectively. Furthermore, for u € (0, u"]
and v € (0,1), define Y (u,v) € {R(u), S(u)} by Y (u,v) = G(u) on R(u) = S(u) and

(4.10) Y(u,0) = R, s o, + S s cw
{vs 3 (u)—R(u) } {v> 3(w)—R(u) }

otherwise.
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We now deal with i := (1t — py+) and 0 := (v — S¥(uy+)). Recall that, by Proposition 4.1,
the support of 7 is strictly to the left of the support of fi. Let G = G, be the (left-continuous)
quantile function of i. Consider the lift (fiy)ye(0,1—u+) Of it defined as in (4.1) but with i and
G in place of u and G, respectively, and set fig to be the zero measure and fi;_,» = fi. Let
D:=P;—P;and £, := D+ Py — P, for u e (0,1 —u*).

Define T': (0,1 — u*) — R by

(4.11) T(u) :=Tsp(u), we(0,1—u"),

where T} 5 is defined as in (4.7).
We are now ready to prove Theorem 1.1 in the case when u* € (0, 1).

Theorem 4.3. Define R and S as in (4.8) and (4.9), and T as in (4.11). Then (R,S,T) is
second-order left-monotone and first-order right-monotone with respect to ((0,1), (0,u*], G).
Furthermore, let Y be as in (4.10) and set

Y (u,v) = I{ue(o’u*]}}}(u, v) + I{ue(u*71)}f(u —u*), wu,ve(0,1).

Then (R, S,T) defines a construction as in Theorem 1.1 such that L(Y) = v. In particular,
(R,S,T) defines the (lifted) increasing supermartingale coupling.

Proof. Let U,V be two independent uniform random variables on [0, 1]. Fix y € R. Then using
Theorem 4.1 we have that P[Y (U, V) < y,U < u*] = P[Y Uy, V) < y] = S (ptu) ((—00,7]),
where U,+ is a uniform random variable on [0, u*], independent of V. On the other hand,
using Theorem 4.2 we have that P[Y/(U,V) < y,U > u*] = P[T(U1_w:) < 9] = (v —
SY (py+))((—00,y]), where Uj_y+ is a uniform random variable on [0,1 — u*|, independent
of V. It follows that L(Y (U,V)) = v.

Furthermore, from Theorem 4.1 we have that (R, S) is second-order left-monotone with
respect to G on (0,u*]. On the other hand, from Theorem 4.2 it follows that u — T'(u — u*)
is non-increasing and T'(u — u*) < G(u — u*) = G(u) for all u € (u*,1). We are left to show
that for all u,v € (0,1) with u < u* < v, T(v — u*) ¢ (R(u), S(u)).

If R(u) < T(v—u*) < S(u), then by Remark 4.3 we have that T'(v — u*) belongs to
an interior of an irreducible component of pi,« and S”(u,+). We will show that this cannot

happen by proving that D, . ¢v(,,.)(T(v—u*)) = 0.

By construction we have that, for v € (u*, 1), T'(v — u*) = G, _gv(y,. (1 —v) and

e T L
Gyfsu(;;*> (k)y k > GV_SV(MU*)(l _ U).

(see the proof Proposition 4.2). Furthermore, since G, _gv .) is taken to be left-continuous,

("
on (—oo, T(v—u*) = Gy—sv(u,.)(1—v)). Note that this implies

=SV (e ) LY

P
PV_SV(Mu*) > LGV*S”(/J,M*) - /
that if P,_gv(,,.) is linear on (z,T(v — u*)) for some x < T'(v — u*), then the slope of this
linear section must be strictly smaller than 1 — v. In particular, there does not exist ¢ > 0

such that P,_gv(, .) is linear on (T(v—u*) — e, T(v—u*) + ).
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u*) Gu(u)

FIGURE 5. Plot of locations of u*, G, (u) = Gx(u — u*) and T'(u — u*) in the
case pt <q v and 0 < u* < u < 1. The dashed curve represents D, ,. The
dash-dotted curve corresponds to (£,:")¢ = (P, — Ppu,.)¢ = Py_gv(u,.) = P»
(note that it is linear on (r; = 1, = 7,_gv(u,.) = ¢a,00)). The dotted
curve represents £/"”. Note that & > P; on (—oo,r,) and & < P; on
[r,,00). The solid curve below &£/ and P; corresponds to By _so(iy_ ) =
(Py — Pa,_,.)° Note that P;_goz ..y = Py on (=00, T(u — u*)] and

Py, ) < (Po ANELS) o n (T(u — u*),00). Furthermore, 4" is linear
on (G(u),00) while P;_go¢s, .y is linear on (T(u — u*),o0), and both of

these linear sections are parallel to each other.

We claim that (£%)¢(T'(v — u*)) = EMY(T(v — u*)), see Figure 5. Suppose not. Since
(E-7) and M are both continuous, (£M7)¢ < €4 on (T(v —u*) — €, T(v —u*) +¢) for some
¢ > 0. Then by Lemma 5.4 we have that (£%2")¢ is linear on (T(v — u*) — €, T(v — u*) + €).
But (£}:")¢ = (P, — Py,.)° = P, — Psv(yu,.) = Py_sv(u,.), and we have a contradiction since
P,_sv(u,.) cannot be linear on an open interval including T'(v — u*).

Finally, note that

D/J,,l/ -D ) = PV_SV(:“’u*) B (P:L" - P.L"u*) = (8’5;‘”)6 - P:U'_/J'u* :

Moy ;S (Mu*

Then since (EX7)(T(v—u*)) = EXY(T(v—u*)) = P,(T(v—u*))— P, . (T (v—u*)) we conclude
that D, . sv(u, )(T(v u*)) = 0, which finishes the proof.
0
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5. APPENDIX

5.1. Measures, stochastic orders, couplings. The law of a random variable X will be
denoted by L£(X).

5.1.1. Quantile function. For n € M, there are two canonical versions of G,: the left-
continuous and right-continuous versions correspond to G, (u) = sup{k € R : Fy(k) < u}
and G} (u) = inf{k € R : Fy(k) > u}, for u € (0,n(R)), respectively. However any G with
G, (u) < G(u) < G (u), for all u € (0,n(R), is still called a quantile function of 7, which
is motivated by the fact that for any such G we have that (up to the scaling w.r.t. n(R))
L(G(U)) =n, where U ~ U|0, (n(R))]. (Note that G, may take values —oo and oo at the left

and right end-points of [0, n(R)], respectively.)

5.1.2. Potential functions. Let n € M. The following properties of P, can be found in
Chacon [11], and Chacon and Walsh [12]: P, € D(n(R),7) and {k : P,(k) > (n(R)k —7)*} =
{k: Cy(k) > (M—n(R)k)*} = (£, 1y). Conversely (see, for example, Proposition 2.1 in Hirsch
et al. [25]), if h € D(kp, ky) for some numbers k,, > 0 and ky € R (with kf = 0 if k,, = 0),
then there exists the unique measure n € M, with total mass n(R) = k,, and first moment
1 = ky, such that h = P,. In particular, n is uniquely identified by the second derivative of h
in the sense of distributions. Furthermore, P, and C,, are related to the potential U, defined
by

Uy (k) := —/ |k — z|n(dx), keR,
R
by —U, = C;; + P,. Finally note that all three second derivatives C}/, P,/ and —U, /2 identify

the same underlying measure 7 (for this reason, we still call P, and C), the potential functions
of a measure 7).

5.1.3. Stochastic orders. The following result allows us to verify (in a special case of disjoint
supports) whether 7, x € M satisfy 7 <,. x.

Lemma 5.1. Let n,x € M be such that n and x have disjoint supports. If

0 <n(R) < (x((=00,£y]) A x([ry, 0)))

then 1 <pc X.

Proof. Let Gy : [0, x(R)] = R be a quantile function of x. Then each ¢ € [0,n(R)] defines a
measure

0 = Xl (=006 () XN (Ex (CHe® —n(®).00)F0 0y (¢) F B0, (cx®—n(R):
where 0 < o = ¢ = x((-00,Gx(())) < Xx({Gx(¢)}) and 0 < B¢ = n(R) = ¢ — x((Gx(¢ +
X(R) = 1(R)), 00)) < x({Gx(¢ + x(R) = n(R))}). By construction, §° < x and 6°(R) = n(R).
Furthermore, 0 > 77 > 67(®) and #¢ is continuous and decreasing in (, and therefore there
exists (4 such that 0% = 7.
Now let f: R +— R be convex and g : R — R be linear with g = f on {¢,,r,}. Then

/ fdn < / g = / gdtS < / Jdo.
R R R R
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For the the first inequality we use that, by convexity of f, g > f on [¢,,r,], and that n does
not charge R\ [¢,,7,]. For the quality we use that 6¢- =7, 6 (R) = n(R) and the linearity
of g. To deduce the second inequality we use that g < f on R\ [¢,,r,] and that § does not

charge (¢,,r,). Since f was arbitrary, n <. 6¢. By Lemma 3.1 and Remark 3.2 it follows
that 7 <p¢ x. O

5.1.4. Irreducible decomposition. The following result (see Hobson [26, page 254] or Beiglbock
and Juillet [6, Section A.1]) tells us that, if n <.4 x and D, (z) = 0 for some z, then in
any supermartingale coupling of  and x no mass can cross z. (Hobson [26] and Beiglbock
and Juillet [6] considered the case nn <. x, however the same arguments also work in the case
1 <ed X, see Nutz and Stebegg [34, Proposition 3.2].)

Lemma 5.2. Suppose n and x are probability measures with n <.q x. Suppose that Dy, \(x) =
0. If m € lls(n, x), then we have w((—o0, ), (x,0)) + 7((z,00), (—o0,z)) = 0.

It follows from Lemma 5.2 that, if there is a point « € (¢y, ry) such that D, ,(z) = 0, then
the problem of constructing supermartingale couplings of 7 to x can be separated into a pair
of subproblems involving mass to the left and right of x (and by carefully choosing how to
allocate the mass of x at x). In particular, if there are multiple {z;};>1 with D, ,(x;) = 0,
then the problem splits into a sequence of ‘irreducible’ problems, each taking place on an
interval Z;, j > 1, such that D, , > 0 on the interior of Z; and D = 0 at the endpoints.
All mass starting in the interior of Z; is transported to a point in Z;. This is summarised in
the following lemma, which generalises the notion of irreducible decomposition (introduced
in Beiglbock and Juillet [6] for martingales) to the supermartingale setting (see also Remark
5.1).

Lemma 5.3 (Nutz and Stebegg [34, Proposition 3.4]). Let n,x € M with n <.4 x. Set
Ty :=sup{k € R: D, (k) =0} € [—o0,0].

Define IiJ* = (2,5, 00) and let (Z"*)i>1 be the open components of {k € R : Dy, (k) >
0} N (=00, 2y ). Define a closed set T by T = R\ U0 T

Set m; = nlgnx, i > —1, so that n =73 ;5 1 n;-

Then there exists the unique decomposition x = Zizfl Xi such that

N-1=X-1, 10 <ed X0 and 1; <¢Xi, for alli>1.

Set T = (Ui, ri), 1 >0 (here r; < by =y, <19 =00,17>1).

Then for all i > 0,

Dy, v, >0 on I and Dy, ,, =0 on R\ "X,
and there exists the unique choice for 0 < a; < v({l;}) and 0 < B; < v({r;}) satisfying
Xi = Xlzpx+aide; + Bidr,.

Finally, any m € ls(n, x) admits the unique decomposition m = 3~ m; such that mo €
Is(no, xo0) and m; € ar(ni, xi) for all i > —1 with i # 0.
Remark 5.1. When n <. x then Ig(n,x) = pn(n,x) and therefore we also have that
M0 <c X0-
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5.2. Convex hull. Our key results will be expressed in terms of the convex hull. For f: R —
(—o00,00) let f€ be the largest convex function which lies below f. In our typical application
f will be non-negative and this property will be inherited by f¢. However, in general we may
have f€ equal to —oo on R, and the results of this section are stated in a way which includes
this case. Note that if a function g is equal to —oo (or co) everywhere, then we deem it to be
both linear and convex, and set g¢ equal to g.

Recall the definition of the sub-differential 0f(x) of a (measurable) function f : R — R at

Of(@) = {6 €R: f(y) = f(x) + 6y — 2) for all y € R}.
If f is convex then Of is non-empty everywhere, but this is not the case for non-convex
functions. Instead we have that 0f(x) is non-empty if and only if f(z) = f¢(x) and then
df¢(x) = 0f(x). We also write f/(-—) and f’(-4) for the left and right derivatives (provided
they exist) of a function f.

Fix z,z € R with x < z, and define Lg;z :R+— R by

(5.1) L (y) = fla)+ L8 (G —a), ife <,
z,2 f(=), if v = 2.

Then, see Rockafellar [37, Corollary 17.1.5],

52) F)= i L), yek

z<y<z
Moreover, it is not hard to see (at least pictorially, by drawing the graphs of f and f€)
that f¢ replaces the non-convex segments of f by straight lines. (The proof of the following
lemma is standard, see, for example, Hobson and Norgilas [31, Lemma 2.2].)

Lemma 5.4. Let f: R+ R be lower semi-continuous. Suppose f > f¢ on (a,b) CR. Then
f€ is linear on (a,b).

The following definition, for a given function f and y € R, will allow us to identify the
values z, z € R with 2 <y < z which attain the infimum in (5.2).

Definition 5.1. Let f : R — (—o00,00) be a measurable function and f¢ denote its convex
hull. Fory € R, define

X'(y) = X(y) = sup{z : & <y, f(x) = f(2)},
ZH(y) = Z(y) = inf{z : 2 > y, f°(2) = f(2)},
with the convention that sup () = —oo and inf () = oco.

Remark 5.2. If f is continuous, then f°(y) = L‘J;(y) Z(y)(y) (see Hobson and Norgilas [31,

Lemma 2.4] ). Note, however, that X7 and ZT may take values —oo and oo, respectively. Hence
for the aforementioned equality to remain valid, one has to carefully extend the definition of
Lﬁ;z allowing for x = —oo and z = co.

The following lemmas are the main ingredients in the proofs of Theorem 3.1 and Proposition
3.2 (we will present the proof of Lemma 5.7, while the proofs of the remaining two can be
found in Beiglbock et al. [5]).
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Lemma 5.5. Let f,g : R — R be conver and lower semi-continuous. Define 1 : R —
(—o00,00) by =g— (g — f)°. Then ¢ is convex.

Lemma 5.6. Let f: R +— R be measurable and let g : R — R be convex. Then
(f=9)=(=g)"
Lemma 5.7. Assume that f € D(«, ) and g € D(a,b) for some a,a > 0, 5,b € R. Let
h:R— R be defined by h(k) := (a — a)k — (b— ). Define n := supyerp{h(k) — g(k) + f(k)}.
Suppose that g > f. Then o < a. If a« = a then B > b. Furthermore, n € [0,00) and
(9 1) €Dla—a,b—pB+mn).

Proof. Since g € D(a,b) and f € D(«, 5) with g > f, we have that
0.< lim {g(k) ~ f()) = lim {g(k) — (ak ~ ) ~ F(R) + (ak — B) + (a — )k — (b~ B)}
= lim {(a —a)k — (b= f)} = lim h(k),

and therefore a > «. Also, if @« = a then 8 > b.

Now suppose f < gand g—f > h. Note that in this case n = 0, since limy_,{g(k)—f(k)} =
limy_ o0 h(k). Then g — f > h™ and since h™ is convex, we have that (g — f) > (g— f)¢ > h™.
Then, limgoo{g(k) — f(k) = h*(k)} = 0, and it follows that (g — f)° € D(a — a,b — j3).

Now suppose that {k € R : h(k) > g(k) — f(k) # 0. Then n > 0. We claim that 7 < oo.
Let {ky,}n>1 be such that lim,_,oo{h(ky,) — g(kn) + f(kn)} = n. Then (up to a subsequence)
limy, o0 kb exists. Set k := limy,_yo0 k.

Suppose k = co. Then 1 = limy, o0 {h(kn) —g(kn)+ f(kn)} = limy_oo {h(k)—g(k)+f(k)} =
0, contradicting the fact that > 0. Hence k < oo. Then, by the continuity (and finiteness
on R) of k — h(k) — g(k) + f(k), n = h(k) — g(k) + f(k) < oo.

Finally, since g — f > 0 and g — f > h := h — 1, we have that g — f > (g — f)¢ > ht.
Then, since g(k) — f(k) = h(k), convexity of (g — f)¢ ensures that (g — f)¢ = h on [k, c0).
It follows that (¢ — f)¢ € D(a — a,b — 4+ n). (We will usually take ¢ = P,, f = P, and
h(k) = (v(R)—pu(R))k—(7—n), where 1 <pcq v. In this case, a = v(R),a = p(R), b =7,8 =1
and 1 = ¢, = supep{(V(R) —u(R))k — (7 — ) — P (k) + P.,(k)} € [0,00); see Figure 2.) O

5.3. Proofs.

Proof of Lemma 4.4. Fix u € (0,u} — uf). Consider the case S;(u) < r; < oo first. We will
prove it by contradiction: suppose 7; < S;(u) < co. Since G;(u) = G(u — uf) < r; < Si(u),
Ri(u) < Qu v, (u) < Gi(u) < r; < Si(u) (see Hobson and Norgilas [31, Lemma 4.1]). Therefore
(EL77)¢ s linear on (R;(u), Si(u)). But since (E4"")° = Py, _gvi(y, ) (Where pu;,, is defined as
in (4.1) just with respect to p;), (E4")¢ is linear on (r;, 00), and we conclude that (E4")¢ is
linear on (R;(u), 00). It follows that (v;—S" (i w))(Ri(u), 00) = 0. But (i —piwu)(Ri(u), 00) =
(i — priw)(R) = 1—u > 0. Therefore p1; — i > (1—u)R;i(u) > (v; — SVi(in)), contradicting
the fact that (p; — piw) <c (Vi —SY (1iw))-

Consider the case r; = S;(u) = oco. Then again, R;(u) < Gj(u) < Si(u) and therefore
(EL77)¢ is linear on (R;(u),00). It follows that (1; — S¥i(p;.)) does not charge (R;(u),0),
while the support of (1; — p1i4,) is contained (R;(u), 00). We conclude as in the previous case.
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We now turn to R;. We need to show that either —oo < ¢; < R;(u) or —oo = ¢; < R;(u).

Suppose —oo < R;(u) < ¢. Then R;(u) < G;(u) < Si(u), and (E,"")¢ is linear on
(Ri(w), Si(uw)). Since 0 < (E4"")¢ < Dy, ., = 0 on (—o00,4;], it follows that ¢, ,,(u) = 0
and then in fact we have that R;(u) = —oo. Hence, (£/"")°=0 on (—o0,S;(u)]. Since
(ELPYE(Si(u)) = ELPY(Si(u)) > Dy, i (Si(u)) we also have that Dy, ,,(Si(u)) = 0 and there-
fore S;(u) = r;. It follows that (v; —S" (u;)) is supported on {S;(u) = r;}. But the support
of (i — tin) is contained in [Gj(u),r;). Hence (p; — pin) and (v; — S¥(piy)) cannot be in
convex order, a contradiction.

Finally suppose —oo = R;(u) = £;. Then either ¢, ,,(u) =0 or ¢, ,(w) > 0. If ¢, 1, (u) =
0 then we can argue as in the previous case when —oo < R;(u) < ¢;. If ¢, ,,(u) > 0, then,

since (&7"")¢ is linear on (—o0,S;(u)), we must have that (v; — S"(u;,)) has an atom at

R;(u) = —o0, contradicting the fact that v; is integrable. O
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