GRAPHON MEAN FIELD SYSTEMS
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ABSTRACT. We consider heterogeneously interacting diffusive particle systems and their large
population limit. The interaction is of mean field type with weights characterized by an un-
derlying graphon. A law of large numbers result is established as the system size increases
and the underlying graphons converge. The limit is given by a graphon mean field system
consisting of independent but heterogeneous nonlinear diffusions whose probability distribu-
tions are fully coupled. Well-posedness, continuity and stability of such systems are provided.
We also consider a not-so-dense analogue of the finite particle system, obtained by percola-
tion with vanishing rates and suitable scaling of interactions. A law of large numbers result is
proved for the convergence of such systems to the corresponding graphon mean field system.
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1. INTRODUCTION

In this work we study mean field diffusive particle systems with heterogeneous interaction
and their large population limit. The interaction is of mean field type and is characterized
through a step graphon. More precisely, denoting by X' the state of the i-th particle,

XM(t) = X

i
n

O+ [ D0 b (). X7 s)) ds
j=1

t n
+/ %Z%U(X?(s),X?(s))dB%(s), ie{l,....n}, (1.1)
o "3

where b and o are some Lipschitz functions, {B,, : v € [0, 1]} are i.i.d. d-dimensional Brownian
motions, and X, (0) is a collection of independent R?-valued random variables, with probabil-
ity distribution 1,,(0) for each u € [0, 1], and independent of {B, : u € [0, 1]}. Here %€ [0, 1]
determines the interaction between particles ¢ and j, and depends on some step graphon G,
converging to a limiting graphon in the cut metric.

The classic mean field system with homogeneous interaction, which corresponds to =1
n (1.1), dates back to works of Boltzmann, Vlasov, McKean and others (see [30, 34, 43]
and references therein). While the original motivation for the study came from statistical
physics, similar models have arisen in many different application areas, including economics,
chemical and biological systems, communication networks and social sciences (see e.g. [12]
for an extensive list of references). Systems with inhomogeneity described by multi-type
populations, where the interaction between two particles depends on their types, have been
proposed in social sciences [20], statistical mechanics [19], neurosciences [1], and others [13,37].
In recent years, there have been an increasing attention on the study of mean field systems on
large networks, including [3,5,6,14,21-24, 26, 28, 33,35, 36, 38|, where the majority of focus is
on Erdds-Rényi type random graphs. Among these, [38] allows the edge probability between
two nodes to depend on independent random media variables associated with these two nodes,
and [23] analyzes the mean field game on Erdés-Rényi random graphs.

We extend the study of mean field models to a much larger class of graphs. To put our
work in context, let us describe the class of graphs that we are going to consider. We consider
sequences of dense graphs that converge to a limit in an appropriate sense (see [32] and
references therein). Roughly speaking, this limit theory treats a graph G,, on n vertices as a
function Gy, : I xI — R, where I := [0, 1]. This function is what we call a graphon. Then G, is
said to converge to the function G if and only if G,, converges to G in “cut metric” (see Section
2 for the definition). We consider mean field models on such converging graph sequences. The
motivation for considering such graph sequences is that aside from its theoretical implications,
many important graph models (both random and deterministic) have been shown to converge
to a limit. See [2,7,18,31] for many such examples. Unfortunately, the graph limit theory
only works for dense graphs (graphs with order of n? many edges). To extend our study to
the not-so-dense settings we also consider bond percolated models of graphs; see [8], and also
see [10,11] and references therein for more interests in and analysis on not-so-dense graphs.

Among the aforementioned works on mean field systems on large networks, the ones closest
to our setup are [33] and [5]. The work [33] considers large population of diffusions inter-
acting on a random directed inhomogeneous graph, and obtains quenched convergence of
particles, empirical measures, and also spatial fields (empirical measures of particle states and
positions/indices). Compared with our models and results, there are two main differences.
Firstly, [33] considers independent Bernoulli edges scaled by a certain dilution parameter and
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assumes the collection of scaled success probabilities, viewed as graphons/kernels, converges
in a sense stronger than the usual cut metric of graphons (Assumption 2.9), with Lipschitz
assumptions on initial states (Assumption 2.6) and suitable regularity assumptions on the
graphons (Assumptions 2.11 and 2.14). While we consider both Bernoulli edges and [0, 1]-
valued weighted edges, converging in the cut metric, with continuity assumptions on initial
states. Secondly, [33] obtains quenched convergence, conditioning on the realization of ran-
dom graphs; while we are mostly concerned with the annealed setup and some of our results
(in Theorems 3.1 and 4.1) could be applied to the quenched setup (see Condition 3.1(b) and
Remark 3.3(b)).

After the initial submission of this work, another paper on graphon particle systems ([5])
was posted on arXiv a few months later. [5] considers weakly interacting oscillators on dense
random graphs and obtains an annealed law of large numbers for the empirical measure. The
limiting system is given by describing the evolution of a particle uniformly chosen from I.
However, [5] does not consider not-so-dense graphs as in our Section 4, and their results do not
imply our results in Section 3 (and ours do not imply theirs either). In particular, [5] assumes
{0,1}-valued random adjacency matrix £" for n-particle systems converging to a possibly
random graphon in the cut distance (and the argument is expected to work for [0, 1]-valued
weighted edges as well), while we consider both such random £" and deterministic [0, 1]-valued
€". Also, [5] assumes homogeneous initial state distribution and constant diffusion coefficient,
while we allow for heterogeneous initial state distribution and state-and-interaction-dependent
diffusion coefficient. Lastly, particles’ state space is bounded (one dimensional torus) in [5],
and hence the system coefficients are bounded, while our work allows coefficients to have
linear growth.

We should point out that the use of graphons to analyze heterogeneous interaction in game
theory emerged recently (see e.g. [15,17,39]). Among these, [39] analyzes static graphon
games and the convergence of the n-player game with interaction network sampled from a
given graphon. Static graphon games are considered in [17] and the convergence of the n-
player game with general interaction network that converges to a given graphon is obtained.
The diffusive dynamics for the states of the particles, with constant diffusion coefficients, is
considered in [15] for continuum graphon mean field games. However, [15] does not address
the convergence problem of the finite particle system to the limiting problem they analyze.

The goal of this work is to study the asymptotics of the diffusive particle system (1.1)
with heterogeneous interaction, and their not-so-dense analogue in (1.2) below. Our first
main result is the existence, uniqueness, continuity, and stability property (Proposition 2.1
and Theorem 2.1) for the limiting graphon particle system (2.1), consisting of a continuum
of independent but non-identical nonlinear diffusions. Among these, the stability property
(Theorem 2.1(c)) in particular says that the system solution converges in a suitable sense
provided that the underlying graphon converges in the cut metric. The proof makes use of
a coupling argument but challenge is two fold: First, the cut metric is in general very weak,
in that the convergence G, — G does not necessarily imply the L?-convergence of G, as
operators on I x I, namely one may not have [} ;[Gn(z,y) — G(x,y)]* dzdy — 0. However,
one could alternatively view G,, as operators from L>(I) to L'(I) that are continuous with
respect to the cut metric (see Remark 2.1). This observation is actually an important building
block of many proofs in this work. Second, the interaction in the graphon particle system
(2.1) does not match with such a choice of operator, unless the coefficients b(z,y) and o(z,y)
could be decomposed as the product of functions of each variable. For this, a truncation and
approximation argument is applied to these coefficients, and the associated errors are carefully
analyzed (see Section 5.2).
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The second main result is the convergence of the n particle system (1.1) to the graphon
particle system (2.1), for a sequence of convergent underlying step graphons (graphons with
blockwise constant values; see (3.2)). A law of large numbers (LLN) is established in Theorem
3.1, which says that the empirical measure of n particles in (1.1) converges in probability to
the averaged distribution of a continuum particles in (2.1). This is first proved in Lemma 6.1
under certain regularity assumptions of the graphon (Condition 2.2(b)), by applying again
a truncation and approximation argument to the system coefficients. Then the stability
property (Theorem 2.1(c)) is used in Section 6.2 to show that the result also holds for general
graphons. In Theorem 3.2, we also obtain a precise particle-wise uniform convergence rate,
when the underlying step graphons are sampled from a given graphon with a certain continuity
property.

Our third main result is the analysis of the not-so-dense analogue of (1.1):

X
n

X0 = X 0+ [ S (). XD ds+ [ oK) dBy(s), i€ (L)
nio
(1.2)

where 3, € (0,1] is some sequence of numbers that may converge to 0, and {£%} are indepen-
dent Bernoulli random variables with possibly vanishing probabilities (of order f3,,) associated
with the underlying step graphon. Similar to mean field systems on Erdés-Rényi random
graphs [6, 23, 38|, the strength of interaction here is scaled by the order of the number of
neighbors (see Remark 4.1 for more explanations). In Theorem 4.1, we show a LLN that the
limit of such systems is again given by a graphon particle system, provided that the underlying
step graphons converge and

lim nB, = oco.
n—oo

The main challenge lies in the heterogeneity of the system and the average of interactions
of order {%/f, that is unbounded in n. The unbounded interaction &%/, is taken care of
in [6,23, 38] using exchangeability. However, due to the lack of exchangeability here, a new
approach is needed. Indeed, besides the application of coupling, truncation and approximation
arguments, the key ingredient in the proof of Theorem 4.1 is (7.15) in Lemma 7.2, which
shows that the expected effect of unbounded interactions fZ/ By on the coupled difference
| X7 — X;| is roughly the same as E[(]/8,]E|XT — X, |, up to some constant multiples

and negli%ible errors. The proof of Lemma 7.2 appliesna collection of change of measure
arguments separately to each pair (resp. triplet) of certain auxiliary particles and the edge
(resp. edges) connecting them. For each change of measure, the Radon-Nikodym derivative
and the difference among pre-limit, limiting and auxiliary particles are carefully analyzed.
Due to the technical application of the Girsanov’s Theorem, the diffusion coefficient in (1.2)
is taken to be state-dependent only. Lastly, we also obtain a precise rate of convergence in
Theorem 4.2, when the underlying step graphons are sampled from a given graphon with a
certain continuity property.

1.1. Organization. The paper is organized as follows. In Section 2 we analyze the graphon
particle system (2.1). The existence and uniqueness is proved in Proposition 2.1. The con-
tinuity and stability of the system is presented in Theorem 2.1 in Section 2.1. Concrete
examples are given in Section 2.2. In Section 3 we study the convergence of the n particle
system (1.1). The LLN is given in Theorem 3.1, and a precise rate of convergence is given in
Theorem 3.2 under conditions. In Section 4 we study the convergence of the n particle system
with not-so-dense interaction (1.2). The LLN is given in Theorem 4.1, and a precise rate of
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convergence is given in Theorem 4.2 under conditions. Sections 5, 6 and 7 are devoted to the
proofs of results in Section 2, 3 and 4, respectively.
We close this section by introducing some frequently used notation.

1.2. Notation. Given a Polish space S, denote by P(S) the space of probability measures
on S endowed with the topology of Weak convergence For p € P(S) and a p-integrable
function f: S = R, let (f, u) == [¢ f( . For f: S =R, let ||f|lc := supges | f(z)|. The
probability law of a random varlable X W111 be denoted by L£(X). Fix T' € (0,00) and all
processes will be considered over the time horizon [0,7]. Denote by C([0,T] : S) the space
of continuous functions from [0,7] to S, endowed with the topology of uniform convergence.
Let Cq := C([0,7] : RY) and ||x|+; := Supg<s<y |2s| for z € C4 and ¢ € [0,T]. We will use
K to denote various constants in the paper and k(m) to emphasize the dependence on some
parameter m. Their values may change from line to line. Expectations under P will be
denoted by E. To simplify the notation, we will usually write E[X?] as EX?2.

2. GRAPHON PARTICLE SYSTEMS

We follow the notation used in [32, Chapters 7 and 8]. Let I := [0,1]. Denote by G the
space of all bounded symmetric measurable functions G: I x I — R. A graphon G is an
element of G with 0 < G < 1. The cut norm on G is defined by

|Gllo = sup G(u,v)dudvl,
S, TeB(I)

SxT

and the corresponding cut metric is defined by
do(Gr, Ge) == ||G1 — G2||o.
Remark 2.1. We will also view a graphon G as an operator from L>(I) to L'(I) with the
IGll := IGllcom1 := sup [[Gglli = sup

operator norm
/G(u,v)g(v) dv
llglloo<1 lglloo<1 /I 1/I

From [32, Lemma 8.11] it follows that if |G, — G||o — 0 for a sequence of graphons G, then
|Gn — G| — 0.

du.

Given a graphon G and an initial distribution p(0) := (1£,(0) € P(R?) : u € I), consider
the following graphon particle system:

X, (1) / / /R d G (1t 0) o o () o s

/ //Rd )G (1, v) p s (dx) dv dBy(s), pus = L(Xu(t)), uel. (2.1)

As introduced in Section 1, here {B,, : u € I} are i.i.d. d-dimensional Brownian motions, and
X, (0) is a collection of independent R-valued random variables, with law 1, (0) for each u € I,
and independent of {B, : u € I}, defined on some filtered probability space (Q2, F,P, {F:}).
We make the following assumptions on the initial states and system coefficients.

Condition 2.1. (a) The map I 3 u + p,(0) = L(X,(0)) € P(RY) is measurable. There
exists some € € (0,00) such that

sup E| X, (0)]**¢ < 0. (2.2)
uel
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(b) The coefficients b and o are Lipschitz functions, namely there exists some K € [0,00)
such that

b(z,y) — bz, y)| + |o(x,y) —o(a,y)| < K(|z — 2|+ |y —¢/]), Yz, y,y € R
Remark 2.2. The assumption that € > 0 is used for some technical arguments treating the

unboundedness of b and o. If b and o are bounded and Lipschitz functions, then one could
take ¢ = 0 (see Remarks 5.2 and 6.1).

The following proposition gives well-posedness for the system (2.1). For graphon mean field
games with diffusive dynamics, under certain regularity conditions, existence and uniqueness
were shown in [15, Theorem 2] (and the journal version [16, Theorem 3.12]). But we provide
a proof in Section 5.1 as our graphon G may not be continuous.

Proposition 2.1. Suppose Condition 2.1 holds. Then there exists a unique pathwise solution
{Xu} to the graphon particle system (2.1). Moreover, sup,c; E||X,| i}g < oo and the map

I>ur py, € P(Cy) is measurable.

Remark 2.3. (a) We note that processes {X,} in (2.1) are independent but not identically
distributed nonlinear diffusions. In particular, the Fokker—Planck equations for the prob-
ability distributions of {Xy,} are nonlinear and fully coupled. In general, each X, may
not be a McKean—Vlasov process, as the probability law p, plays a negligible role in its
evolution.

(b) We also note that we are not assuming w +— B, is measurable or claiming u — X, is
measurable. Proposition 2.1 gives a measurable dependence of the law p, on uw, which
is sufficient for later use since (2.1) involves integrals of p,, instead of X, or B,, with
respect to u € [0, 1].

In order to analyze the collection of probability laws p = (u,, : u € I), consider the following
space of probability measures

M:={v=(vy:uecl) e[PC)|I>u— v, €P(Cy) is measurable and
sup [ [J22 g va(d) < oo},
uel JCy4
For the convenience of analysis (see e.g. Remark 2.4), we make use of the following Wasserstein-

2 metrics

Wa(p, v) = (inf {E\X X2 LX) = p £(X) = 1/})1/2, v € P(RY, (2.3)

) . - 1/2
Wos(p,v) = (mf {IEHX — X2, LX) = p, £(X) = y}) L te[0,T], v e PCy),

Wé/:;l(ﬂa v) = SUII) W2,t(,uw vu), t € 10,71, p,v € M. (2.5)
ue

Remark 2.4. From (2.3), (2.4) and (2.5) clearly we have

Wa(pv) Zsup| | fl@)p(d) = | fl@)v(dz)|, mvePRY,
f R4 R4
Wastu) 2 s | [ foyutan) = [ fanias)|. v e P

WQ/};[(M,I/) > sup sup , M,V EM,

uel f

F@) pualde) = [ ) sl

R4
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for each t € [0,T], where the supremum is taken over all f: R* — R such that the integrals
exist and | f(z) — f(Z)| < |z — Z| for z,% € R?,

2.1. Continuity and stability of the system. In this section we are interested in establish-
ing the continuity and stability properties for the graphon particle system (2.1). We usually
make the following assumption on the initial distribution ;(0) and the graphon G.

Condition 2.2. There exists a finite collection of intervals {I; : i = 1,...,N} for some
N €N, such that UY,I; = I and for eachi € {1,...,N}:

(a) The map I; > u — py,(0) € P(RY) is continuous with respect to the Wy metric.

(b) For each interior point u € I;, there exists a subset A, C I such that A\j(Ay) = 0 and
G(u,v) is continuous at (u,v) € I x I for each v € I\ Ay, where A\ denotes the Lebesgue
measure on 1.

Remark 2.5. Condition 2.2(b) is not necessary for, but will help strengthen, convergence

results in Sections 3 and 4. It holds naturally if G is continuous, or if G is continuous when

restricted to each block Ij x I. For example, it holds for graphons G(u,v) = 1 112 (u,v) and
)

G(U, ’U) - 1{‘u7v‘gi}(u, U).

Sometimes we may work with a special class of (1(0) and G having certain Lipschitz prop-
erties.

Condition 2.3. There exists some k € (0,00) and a finite collection of intervals {I; : i =
1,...,N} for some N € N, such that UN I, = I and

W2(:u’u1(0)7luu2(0)) §/€|U1—U2|, Uy, u2 GI’L'a (&S {L"'vN})
|G (u1,v1) — G(ug,v2)| < K(lug — uz| + [v1 — val), (u1,v1), (uz,v2) € I; x Ij, 4,5 € {1,...,N}.

The following theorem gives continuity and stability of the graphon particle system (2.1).
The proof is given in Section 5.2.

Theorem 2.1. Suppose Condition 2.1 holds.

(a) (Continuity) Suppose Condition 2.2 holds. Then for each i € {1,...,N}, the map I; >
u = fi, € P(Cq) is continuous with respect to the Wo r metric.

(b) (Lipschitz continuity) Suppose Condition 2.3 holds. Then there exists some k € (0,00)
such that Wo r(fiu, pw) < k|lu — v| whenever u,v € I; for somei € {1,...,N}.

(c) (Stability) Let u© be the probability law of (2.1) associated with G. The map G — u© is
continuous in the sense that [[[Wor(uS™, u$))? du — 0 if a sequence of graphons G, — G
in the cut metric.

Remark 2.6. (a) Theorem 2.1 (a,b) will be needed in Sections 3 and 4 to analyze the con-
vergence of n-particle systems with graphon mean field interactions.

(b) Theorem 2.1(c) implies that the solution law to (2.1) depends on the underlying graphon G
mn a continuous manner. This and Proposition 2.1 together guarantees that the analysis of
(2.1) is “well-posed” according to Hadamard’s principle (cf. [4, Page 368] and [27, Page
38]). It will also be used in Sections 3 and 4 to analyze the convergence of n-particle
systems when G is not necessarily continuous.

2.2. Some special graphon particle systems. In this section we introduce two special
scenarios under which the system (2.1) is more tractable.
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Example 2.1. Suppose G is blockwise constant (which arises as a limit of the stochastic block
model), that is, there exists a finite collection of intervals {I; : i = 1,..., N} and constants
{pij =pji €10,1] 14,5 =1,...,N} for some N € N, such that UN,I; = I and

G(u,v):pij, (U,U)EL‘XI]', i,jE{l,...,N}.
Also suppose the initial distribution is the same within each interval:

1u(0) = py(0), w,vel;, ie€{l,...,N}.

Due to the homogeneity in this case, the system (2.1) could be written in terms of just N
representatives u; € I;, i € {1,...,N}:

t N
X0 = %00+ [ 3 5o ([ 60X 61,0 1 a0) ) s
0 = R
7=1
t N
[ ([ o060 ) ) 5], s = £ )
0 R
j=1
where |A| denotes the Lebesgue measure of A C I. Note that this is simply a finite collection
of multi-type McKean—Vliasov processes.
Example 2.2. Suppose b(x,y) = c1 + cox + c3y is linear, o is constant, and the initial

distributions {p,(0) : w € I} are Gaussian. Then the system (2.1) is just consisting of a
collection of Gaussian processes. Letting m,(t) := E[X,(t)] and M,(t) := E[X2(t)], we have

t 1
malt) = ma0) + [ [ e+ camas) + camu(s) G, ) dods,
M, (t) = M,(0)+E [/Ot 2X,(s) qu(s)} + o? (/01 G (u,v) dv>2 t

t ol
= M,(0) + 2/0 /0 (c1my(s) + caMy(s) + camy(s)my(s))G(u, v) dv ds

(s [ et dvft.

This is a system of coupled ordinary differential equations.

Remark 2.7. We note that even in the above two examples, it may not be an easy work
to obtain explicit forms of solutions L£(X,(t)). In the next two sections we will show the
convergence of finite particle systems (1.1) and (1.2) to the graphon particle system (2.1).
On one hand, such results could be used to approximate large finite particle systems with
heterogeneous interactions by a graphon particle system. On the other hand, for graphon
particle systems that are not tractable, one may choose a suitable finite particle system (and
even its Euler discretizations) to approximate the former.
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3. MEAN-FIELD PARTICLE SYSTEMS ON DENSE GRAPHS

In this section, we consider a sequence of n interacting diffusions (1.1) with the strength of
interaction governed by & associated with some kernel G,:

X2(t) / wa b(X2(s), X7 (s)) ds

/ wa (X7'(8), X]'(5)) dBs(s), i€ {L,...,n}. (3.1)

Here the pathwise existence and uniqueness of the solution is guaranteed by the Lipschitz
property of b and o.

We would like to consider the natural correspondence between the adjacency matrix {5"}
and a function on I x I with constant value £ on each block (”;1, H] X (] L Z] of side length

%. So we make the following assumption on the strength of interaction &5 and the associated
kernel G,,.

Condition 3.1. (a) The kernel G, is a step graphon, that is, 0 < Gy, < 1 and

Gn(u,v) = Gy, (M, ﬁw]) ,  for (u,v) el x1I. (3.2)

n n

(b) The strength of interaction &y is generated by the kernel G, as follows. Fither one of the
followmg two cases holds for all {&h i, 5 €{1,...,n},n € N}:

(b.1) &; (n, L);
(b.2) & = =Bernoulli(Gy, (%, %)) independently for 1 < i < j < n, and independent
of{Bu,X (0) :uel}.
(¢) Gn — G in the cut metric as n — oco.

Remark 3.1. Although in this work we consider G,, — G in the cut metric, it is also possible
to analyze the convergence to the limiting graphon particle system (2.1) when G, — G in the
cut distance, with suitable additional assumptions, illustrated as follows.

The cut distance on G is defined by

60(G1,Ge) == inf [|G1 — G¥||o,
pEST
where St denotes the set of all invertible measure preserving maps I — I, and G¥(u,v) =

G(o(u), p(v)). If 5D(Gn,G) — 0 for a sequence of step graphons Gp, then it follows from
32, Theorem 11.59] that |G, — G|lg — 0, where Gy, is a suitable relabeling of Gy. That is,

there exists some permutation @, on {1,...,n} such that, letting o, € St be
) D (1 1
gpn(——u):@no—u, 0<u<—, i€e{l,...,n},
n n n

and Gn = G}, one has d[’(én,G) — 0.

Therefore Condition 3.1(c) could be replaced by the following one, in terms of the cut
distance with an additional assumption to guarantee that the initial conditions are matching
(which holds naturally if {X]*(0)} are i.i.d.):

(c*) 00(Gn,G) — 0 as n — oo, so that there exists some invertible measure preserving map
on: I — I, interpreted as a relabeling of the graph G, such that do(GE™,G) — 0.
Also suppose X['(0) = Xwﬁl(i)(o)'
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One could then apply results in this work to Y;" := X:L:O (4) with the kernel én = Gi", on
noting that Y;*(0) = X:;p (1)(0) = X.(0). This would also imply, as one would naturally

expect, the convergence of empirical measures is independent of the labeling of the particles;
see e.g. [5] for more discussions on this.

The following convergence holds for the system (3.1). The proof is given in Section 6.2.
Theorem 3.1. Suppose Conditions 2.1, 2.2(a) and 3.1 hold. Then
w" — @oin P(Cq) in probability (3.3)

as n — 0o, where

1 n
p" ¢=EZ5X;5 MZZ/MudU-
i=1 1

If in addition Condition 2.2(b) holds, then
1 n
LS BIX - X, 2 0 (3.4
i=1 "

as n — 0.

Remark 3.2. We note that the regularity assumption (Condition 2.2(b)) of G is not needed
to obtain the convergence in (3.3), but it helps obtain the L* convergence in (3.4).

Remark 3.3. We also note that the interaction {5} in Condition 3.1(b) could be either
weighted or random.

(a) When Condition 3.1(b.2) holds so that {{:} are random, the convergence in Theorem
3.1 (and Theorem 4.1) is understood in the annealed sense, where the probability and
expectation are taken with respect to all the randomness in the Brownian motions, initial
states, and random {&f5}.

(b) When Condition 3.1(b.1) holds so that {3} are deterministic, the convergence (3.3) in
Theorem 3.1 (and (4.3) in Theorem 4.1) could be interpreted in the quenched sense under
suitable assumptions, given the realization of {ﬁl’;} possibly generated in a random manner.

For example, suppose G is sampled from G as follows: sample n points z7,..., ) i.i.d.
from the uniform distribution on I and relabel the indices so that 7 < x5 < --- < z7.
Define Gy, as the step graphon with Gy (%, L) =Bernoulli(G(z},2})) independently for

1 <i<j<mn, and independent of {By, Xy(0) : uw € I}. It then follows from [32, Lemma
10.16] and a Borel-Cantelli lemma argument (see e.g. [17, Remark 6] and [39, Theorem
5 1) that one has the following almost sure convergence in the cut distance

65(Gn,G) = 0, asn — oo.

As illustrated in Remark 3.1, one can then find a relabeling G, of G, such that
do(Gn, G) — 0 almost surely, namely Condition 3.1(b.1) holds. Now suppose the ini-
tial states are i.i.d. so that the empirical measure is not affected by relabeling. Then
one can apply (3.3) to almost every graph realization G, to get a quenched law of large
numbers, that is,

w — foin P(Cq) in Pl | {Gm}men] as n — oo,

for almost every graph realization G,.
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If the interaction &} is sampled from a common graphon G that is Lipschitz, one could get
a uniform rate of convergence.

Condition 3.2. Suppose the strength of interaction &l is generated as follows. FEither one of
the following two cases holds for all {£; = 4,5 € {1,...,n},n € N}:
(i) & = G, 1) -
(ii) & =& =Bernoulli(G(+, 2)) independently for 1 < i < j < n, and independent of
{Bu, X,(0) : u € I}.

The proof of the following rate of convergence is given in Section 6.3. We note that the
rate is consistent with that in the classic mean-field setup (in e.g. [43]).

Theorem 3.2. Suppose Conditions 2.1, 2.3 and 3.2 hold. Then there exists some k € (0,00)
such that

‘max E|X" — X: |2, <2, VneN (3.5)
n ’ mn

i=1,...,n

4. MEAN-FIELD PARTICLE SYSTEMS ON NOT-SO-DENSE GRAPHS

In this section we consider a sequence of n interacting diffusions (1.2) with the strength of
interaction governed by & associated with some kernel G, in a not-so-dense manner:

XP(t) = X1 (0) + tiZ%b(X;l(s),Xy(s))dH ta(Xi”(s))dBi-(s), ie{l,...,n}.
(4.1)

We make the following assumptions on the initial states and system coefficients. The forms
and assumptions on b and ¢ are taken for technical requirements, in order to apply certain
Girsanov’s arguments.

Condition 4.1. (a) The map I > u > py(0) = L(X,(0)) € P(R?) is measurable. Moreover,

sup E| X, (0)]* < .
uel
(b) The function b is bounded and Lipschitz.

(¢) The function o is bounded, Lipschitz and invertible with bounded inverse 1/c.
(d) Br € (0,1] and lim,_yoo nB;, = oo.

We make the following assumptions on the strength of interaction §;; and the associated
kernel G,,.

Condition 4.2. (a) G, is a step graphon, that is, (3.2) holds: Gy, (u,v) = Gn(@, M—ﬁ) for
(u,v) e I x 1.

(b) & = &5 :Bemoulli(ﬁnGn(%, %)) independently for 1 < i < j < n, and independent of
{Buy, Xu(0) :u € I}.

(¢) Gp, = G in the cut metric as n — 0.

Remark 4.1. (a) The interaction in (4.1) is locally mean-field, where the strength of interac-
tion between particles i and j is & scaled down by nfy,, the order of number of neighbors
of i orj.
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(b) Condition 4.2(b) is also known as bond percolation, which has been studied for converging
graph sequences in [8]. If we take lim, o Bn = 0 then graphs that we obtain are not-
so-dense, in that for a graph G, with an order of n® edges, the percolated graph will
have approxzimately an order of n?B, edges. Therefore B, can be interpreted as the global
sparsity parameter.

The limiting graphon particle system is given by

Xo(t ///Rd )G (u, v) pro s (d) dv ds

+/ o Bu(s), pus = L(Xu(t)), wel (4.2)
0

This is a special case of (2.1) and hence Proposition 2.1 and Theorem 2.1 (with Remark 5.2)
still hold.
The following theorem gives a LLN for the system (4.1). The proof is given in Section 7.2.

Theorem 4.1. Suppose Conditions 2.2(a), 4.1 and 4.2 hold. Then
w" — fin P(Cq) in probability (4.3)

as n — 0o, where

1
:—Z&Xin, ,u::/uudu.
i 1

If in addition Condition 2.2(b) holds, then
1 - n 2
LS BN - X2 0 (4.4)

as n — o0.

If the interaction & 1s sampled from a common graphon G that is Lipschitz, one could get
a precise rate of convergence.

Condition 4.3. ¢ = &%, :Bemoulli(ﬂnG(%,%)) independently for 1 < i < j < n, and
independent of {By, X,(0) : u € I}.

The proof of the following rate of convergence is given in Section 7.2.
Theorem 4.2. Suppose Conditions 2.3, 4.1 and 4.3 hold. Then for each q € (1,00) there

exists some k(q) € (0,00) such that

—ZEHX" Xillir < (Biq))l/Q’ Vn e N. (4.5)

5. PROOFS FOR SECTION 2

In this section we prove Proposition 2.1 and Theorem 2.1.
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5.1. Proof of Proposition 2.1. Define the map M > u + ®(u) € [P(Cq)]! by ®(u) :=
(L(X)) :u € I), where X/ is the solution of

X (t) // Rdb , )G (u, ) py,s(dx) dv ds
+/0/1 RdU(quf(s),IE)G(u,v)uvys(dx)dvdBu(s). (5.1)

Note that the pathwise uniqueness of { X4, : u € I'} is guaranteed by the Lipschitz properties
of b and o (see e.g. [29, Theorem 5.2.5]). We claim that

the pathwise existence of {X/ : u € I'} holds and ®(u) € M for u € M. (5.2)

The proof of (5.2) is deferred to the end.
Next we claim that

)

W (D (), ®(v)) < /1/0 Wé}g(u,u) ds, p,ve M. (5.3)

Note that the right hand side is well-defined since the integrand WQ/\;’ (u,v) is increasing and
hence measurable in s € [0, T]. To show (5.3), consider the coupling

XE(#) ///Rd )G (1, 0) o s (der) dv ds
+ / / Rda<X5<s>7w>G<u,v>uv,swx)dvdBu(s),
XV (t) = / / [ X(5),2)G 0 ) vs(da) v ds
+ /O /1 [ 0(X(5),2)G (1 ) vis(d) dv dBus)

It then follows from Holder’s inequality and the Burkholder-Davis-Gundy inequality that
EllXE - X112,

<ot [ ][ 00806000600 o) = [ 676100600 s l)

t
JrliE//
0o JI

By adding and subtracting terms, we have

2
dvds

2
dv ds.

/ o (X (), 2)G (11, 0) i () — / o(X2(5), 2)G (1, v) i o (d)
Rd Rd

2

/ b(XE(s), 2)G(u, 0) p,(d) — / B(XY(5), 2)G (11, v) vy o (d)
Rd R4

2

<2

[ B, 2) = B (9. ]G, 0) )

2

+ 2

o b(X,(8), )G (u,v) [po,s — Vo,s](dx)

< K|XE(s) — XU(8)[? + kW5 ()%,
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where the last line uses the Lipschitz property of b and Remark 2.4. The same estimate holds
when b is replaced by o in the last display. It then follows from Gronwall’s inequality that

t
BIXE - XU, < x| (W34 ds.
0
Therefore the claim (5.3) holds.

Using the claim (5.3), we can immediately get pathwise uniqueness for the solution of (2.1).
The pathwise existence also follows from (5.3) and a standard contraction argument (see e.g.
[43, Section I.1]). To be precise, taking v = (L£(Yy) : u € I) where Y, (t) = X,(0) for u € I
and t € [0, T, iterating (5.3) gives
Tk
k!
Using (2.2), the Lipschitz properties of b and o, and the fact that ®(v) € M, one clearly
has W%((I)(V), v) < oo. Therefore ®*(v) is a Cauchy sequence, and hence there exists some
1= (pu)uer € [P(Cy)]F such that limy, e W%(@k(y),u) =0 and sup,¢; fcd ]| 7 pru(di) <
oo. This gives the existence in law of the solution of (2.1), which together with the pathwise
uniqueness gives the pathwise existence of the solution of (2.1). Using the claim (5.2), we
have ®*(v) € M and hence u — [®*(v)], is measurable by the definition of M. Since P(Cy) is
Polish and limy_, W%(fbk(y), 1) = 0, we have the measurability of I > u — p, € P(Cq) (cf.
2+ < 00.
~ T

Finally we verify the claim (5.2). Fix u € M. Let X2(¢) = X,(0) for t € [0,7] and u € I.
For n € N, let

X(t) = X 10) + /0 /I/Rd b(XT(s), 2)G(u,v) prys(dz) dv ds

W%(@k“(u), O (v)) < KF Wi (®(v),v), keN.

[25, Theorem 4.2.2]). Using the Lipschitz properties of b and o, one has sup,,c; E|| X, ||

t
+ / // o(XI(s),2)G (u,v) pry.s(dx) dv dBy(s). (5.4)
0o J1Jrd
Since i € M, it follows that X" and integrals in (5.4) are well-defined for all u € I and n € N.
We will prove by induction that
I35uw— L(X", B,) € P(Cq x Cq) is measurable for each n = 0,1,... (5.5)

By construction and Condition 2.1(a), (5.5) holds for n = 0. Next suppose (5.5) holds up to
k — 1 for some k € N. To complete the proof of (5.5), it suffices to show that

I3 u— LXE), Bu(ty), ..., X (tm), Bu(tm)) € P((R? x RH™)
is measurable for all 0 < ¢; < .-- < ¢, <T and m € N. It then suffices to show that

m
15um E (] (f(XEt)0:(Bu(t:) | €R
i=1
is measurable for all 0 < t; < --- < t,, < T, m € N and bounded and continuous functions
{fi,gi:i=1,...,m} on R% Now consider the following auxiliary processes

kO _ vk— ! vhk—101% T U. v s x) dvds
X0 = X0+ [ HEEG19. 00600 ) dod

' ck—1/1 5
+/O/I/Rda(Xu (1518),2)G (1, 0) o, 315(dx) dv dBu(s),
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where § € (0,1). Clearly, X}’f’(s(t) converges to X%(t) in probability as § — 0 for each u € I.
So it suffices to prove that

[5umE [H (fz XES (4, gz(Bu(tz))> cR

=1

is measurable for all 0 < t; < --- < t,, < T, m € N and bounded and continuous functions
{fi,gi:i=1,...,m} on R% Fix t € [0,T). Slnce (5.5) holds for k — 1, it further suffices to
show that

X30(t) = h(u, X§7", By)

for some measurable function h: I x Cy x Cg — R. Noting that X5 k0 is in fact a finite sum of

terms depending on {X*~1(0), X*¥-1(9),..., Xk~ Y(1%4]0)} and {B,(0), Bu(6),...,Bu(|£]6)}
continuously, we have that h(u,-,-) is contlnuous on Cd x Cq for each u € I, and that h(-, z,w)
is measurable on [ for each (z,w) € Cyq x C4. Therefore h is measurable and this verifies (5.5)

by induction. Using the Lipschitz Properties of b and o, from (5.4) we can get
~ ~ t ~ ~
sup B[ X - X2, < v [ sup IRy - X3 s
u€l ’ 0 wuel ’

Therefore {X{} : n € N} is Cauchy and converges uniformly in u € I in probability to some X}/
that satisfies (5.1). Since P(Cq) is Polish, the measurability of u — £(X") then guarantees
that I > u — L(X}) € P(Cy) is measurable (cf. [25, Theorem 4.2.2]). Also noting that
SUP,,cN SUPyer ]EHX{}HET < 00, we see that ® is actually a well-defined map from M to M.
This verifies (5.2) and completes the proof of Proposition 2.1. |

From the proof of the claim (5.2) we can also get the following joint measurability, which
will be used in the proof of Theorem 2.1.

Remark 5.1. Given graphons G; and measures p®i, i = 1,2, let XuG“O(t) = Xu(0) for
t€]0,T] anduw e I. Forn €N, let

t
XGin(t) = XGim=1(0) —|—/ / b(XEim=1(s), 2)Gy(u,v) ub “(dx) dvds
0 J1Jrd

t
—l—// U(Xfi’”_l(s),:r)Gi(u,v)uﬁg(dx)dvdBu(s).
0o J1JRrd

A similar proof to that of (5.5) shows that I > u — L(XS", X$?™ B,) € P(Cq x Cq X
Cq) is measurable for eachn = 0,1,.... It then follows that {(XS*™, X5*") : n € N} is

G1 G2
xGr ,XEQ’“ ), where

Cauchy and converges uniformly in w € I in probability to some (
xGir satisfies (5.1) with G and p replaced by G; and pCi. Therefore we have the joint

measurability of I > u v L(X, XGrnh X527“G2) € P(Cq x Cyg).
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5.2. Proof of Theorem 2.1. (a) (b) Fix uj,u2 € I. Consider the following diffusions:

X, (t) = X, (0) + /0 t /1 /R , b( Xy, (8), 2)G(u1,v) iy s(dz) dv ds
[ 606010 o) v aBs),

X, (t) = X, (0) + /0 t /] /R , b( X, (8), ©)G(ug, v) iy s(dz) dv ds
X /0 t /I /R (X (), 2)G 3, 0) s (d) do dB(s).

Here B is a d-dimensional Brownian motion independent of {X4,(0), X0, (0)}, L£(Xy,(0) =
fur (0); £(Xu, (0)) = f1u, (0), but Xy, (0) and Xy, (0) may not be independent. From Proposi-
tion 2.1 we have £(X,,) = pty, and L£(Xy,) = pu,. Also note that

EHXUI - XUQ z,t
< KE| Xy, (0) — Xy, (0)]2

b(Xu, (8),2)G(uy,v) — b()z'u2 (s),2)G(uz,v) ‘2 oy, s(dx) dv ds

U(X'u1 (s),2)G(u1,v) — 0(Xu, (), 2)G(uz,v) ’2 o s(dx) dv ds

< HE|XU1 (0) — Xu2(0)|2 + kE |Xu1(s) — XW(S)\Q ds + H/ |G (u1,v) — G(ug, v)|2 dv,
0 I

where the last line follows on adding and subtracting terms, using the Lipschitz properties of
b and o, and uniformly finite second moment of p,,. It then follows from Gronwall’s inequality
that

[WZ,T(:U’M?HUQ)F < EHXM - XUQHE,T < ’{E|Xu1 (0) - Xu2(0)|2 + ’{/I |G(u1’v) - G(u2,0)|2 dv.

Taking the infimum over random variables Xy, (0) and X, (0) such that £(Xy,(0)) = pu, (0)
and L£(Xy,(0)) = gy, (0), we have

(Warr(ttur s p)1* < 6[Wa (s (0), 1 (0))] + H/I |G (ur,v) = G(uz, v)|* dv.

Part (a) and Part (b) then follow from Condition 2.2 and Condition 2.3, respectively.
(c) Fix G, — G in the cut metric as n — oo. Let X%y (resp. X, u%) be the solution
of (2.1) associated with the graphon G, (resp. G). Fix ¢t € [0,T]. Using Remark 5.1, the left
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hand side below is well-defined and we have

t
/Enxfn—xfnztdusﬁ/ /E
I ’ o JI

_ / / b(XC(s), 2)G(u, v) uC,(dx) dv
I JRA

t
+/<;//E
o JI

_ /I /]R o(X§(5),2)Gu,v) u(da) du

/ / b(XCn (5), ) Gin (1, 0) S (d) v
I JRd

2
duds

/I /Rd (X7 (5), 2)Gn(u,v) 1173 (der) dv

2
duds. (5.6)

We will analyze the first integrand above for fixed s € [0, ¢], and the analysis for o is similar.
By adding and subtracting terms, we have

2
Gin Gn - G S),x u,v ¢ xX ) av u
JE|[ ] o8 .60 nztanydo= [ [ o (0).a)6 00 1 (o) do] a
2
<k /1 /[ p /R X (), 0) — DX (), )]G, ) i ()| o
2
+ /@/I/IIE /Rd b(XC(s),2)Gn(u,v) [,ugg —,u,g':s](dx) dv du
2
+ R/IE /I/]Rd b(XC (s),2)[Cp(u,v) — G(u,v)]ug’js(dac) dv| du
=k (TP + TP+ T (5.7)

Now we analyze each term jsn’k, k =1,2,3. Using the Lipschitz property of b we have
Jm < &/IIE|XUG"(5) — X5%(s)|? du. (5.8)
Using Remark 2.4 and the Lipschitz property of b we have
T2 < w [ (Waulu nf)? do. (59)

For the last term 7%, fix M € (0,00) and write

b (w,y) = b(, y) Ljo|<n |yl <} (5.10)

Since b is Lipschitz continuous, it follows from [42, Corollary 2 of Theorem 3.1] that there
exist some m = m(M) € N and polynomials

m
b (2, y) = Y ak (@) ()1 {jaj<ar,yi<arys (5.11)
k=1
where ay(z) and ci(y) are powers of = and y respectively, for each k =1,...,m, such that

bar(2,y) = bn(2,y)] < 1/M,  z,y € R% (5.12)
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By adding and subtracting terms, we have

2
g0 < [ [ B[ BOXE()2) ~ b (X (6), )Gl 0) ~ Gla,o)] ()| dvdu
IJI Rd
2
o [ [B|] d[bmxf(s),w)f6m<X§<s>,x>MGn<u,v>fG<u,v>]u§,s<dx> do du
2
/ Rd XG , ) [Gr(u,v) — G(u,v)]uﬁs(d:c)dv du
HZJ”“ (5.13)

Next we analyze each term Jo">%, k = 1,2,3. For J**!, using the Lipschitz property of b,
(5.10) and Proposition 2.1 we have

2

n K
Jrl < R/I/IE Rd(l + XS ()| + 2 (A x6 ()= ary + Ljapsnry) 1S s(da) | dv du < e
(5.14)
For J2"*?, using (5.12) we have
T2 < — (5.15)

For J72"*3 using the definition of the bounded function by, in (5.11) we have

T8 < (M) / B\ [ Bu(XE(6),2)(Gul0) = Gl )] . () do| du
Z/ |ax (X |1{|XG(8)|<M}]
: /I[Gn(u,v) — G(u,v)] [/Rd ck(m)1{|x|<M}u§S(da¢)] dv| du
M)|Gn =G, (5.16)

where k(M) is some constant that depends on M but not on n. Combining (5.6)-(5.9) and
(5.13)—(5.16) with Gronwall’s inequality, we have

/I W (G, 1O du < / E|XC — X9|?, du

<[ [ Wl 0 duds + 1+ 001G~ 61

It then follows from the Gronwall’s inequality again that

1
[, P du < (5 + D16, - 6.

Since G,, — G in the cut metric, from Remark 2.1 we have ||G),—G|| — 0 as n — oo. Therefore,
by taking limsup,,_,., and then limsup,,_,., in the last display, we have the desired result.
This gives part (c) and completes the proof of Theorem 2.1. |
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Remark 5.2. The assumption that € > 0 is used in (5.14). If b and o are bounded functions,
then one can allow € = 0 and replace the estimate in (5.14) by

jsn,3,1 é K///E
1JI1

In this section we prove Theorems 3.1 and 3.2.

2
K
/Rd(l{Xf(s)>M} + Ljgsary) 15 o (dz)| dvdu < ik

6. PROOFS FOR SECTION 3

6.1. Preliminary Estimates. We first provide some preliminary estimates under Condition
2.2.

Lemma 6.1. Suppose Conditions 2.1, 2.2 and 3.1(a,b) hold. Then there exist some k, k(M) €
(0,00) for each M € (0,00) such that

lim sup — ZEHX” X || 1 < K(M )hmsupHG -G+

n—s00 M e

Proof. Fix t € [0,T].

1 - n 2
=) B|X; - X2,
nis "

1 = 1 - n n n _ i (s). x EU X ) av S
_K/O n;E n;gijb(xi (s), X7 (s)) /I/Rdb(X;L( ), )G (. v) po,s(d) dv| | d
2

tl1 > 1 § . . - o iv ) do .
< DILOWACERHE) | o6 a)G o) ) o) | s
(6.1)

We will analyze the first integrand above for fixed s € [0, ], and the analysis for ¢ is similar.
By adding and subtracting terms, we have

1 & 1 & i
E E|= E nh( X" i — vs(dz)d
n =1 n 7j=1 N ( ’ (S //Rd E (n’v)u 7 ( x) Y

ZE me (bx7(5). X5 (5)) = b(x

n “ . n ’
=1 7j=1
+§§n:E 1§n:/ B(X 1 (5),2)Cn( L) ) (o) // VG 0) g o(d) d
i | =R w “'n’n 'uj o R4 % fhos

=3 (TP + T+ 1) (6.2)
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Fix s € [0,T]. For 7§n’1, using the Lipschitz property of b we have

For 7;”’2, using a weak LLN type argument, we have

IR nhX L (s §)) — .o LI

- n;nz 2 ke{w}E [< (X1 (s), X (s)) /Rd b(X 1 (s),2)Gn(— ) s (d )>
RO (60, X 6~ [ 00X (00602, )y () )|

= % (6.4)

where the second equality follows from the observation that the expectation is zero whenever
k ¢ {i,j} by Condition 3.1(b) and the independence of {X.} and {¢};}, and the inequality
uses the boundedness of §%,Gn, Lipschitz property of b, and the uniformly finite second
moment of X,,.

The analysis of 77 is similar to that of J2"® in the proof of Theorem 2.1(c) but is more
involved. Fix M € (0,00) and let by and by, be defined as in (5.10) and (5.11), such that
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(5.12) holds. By adding and subtracting terms, we have

ZE Z/Rd X (8),0) — bar(X s (), )]G L) oy ()

ISR //Rden ) — ba(X (s),x)]c(%,u)m,s(da;)du

F 2SR [ B (6).) = B (X (5). )G (2 Dy ()
Jj=1

ni:l n

K " i 2
+n;u§/ [ (X (9.2) = B (X (), )]G ) sl

ryg |l LN
i ZE Z/Rd % Gn(n’n)’u%vs(d)

2
/ [ (X 60,200 0 )
Rd n

”27?”“- (6.5)

=1

Next we analyze each term. For 72251 and 7?’3’2, using Proposition 2.1 and (5.10) we have

T < 5ZE nZ/ A+ 1Xs () + [2D[Lgx, (> + Lapsanl pa (d2)| < 0,
(6.6)
K 2 K
n,3,2 )
7; < E ZE /Iv/Rd(l + |X%(S)| + |$’)[1{|X%(s)\>M} + 1{‘$|>M}] ,uv,s(dx) dv| < I
(6.7)
For 7% and 7"**, using (5.12) we have
TS L T (6.8)
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For 7.*%”, using the step graphon structure (3.2) of G,, we have

T30 = b s),x U, V) o x) dv
s _/[E /[/Rdbm(XMnﬂ( )7 )Gn( ) )anT’s(d )d
—// I;m(Xynm (s),x)G((mﬂ,U)M,U,S(d:c)dv

I JRd n

<2/IIE /I/Rdgm(XW(s),w)[Gn(u,v)—G(u,v)]uw?s(d:v)dv

+2/E
I

- u
[ B (9. 006 ) )
I JRA n n
—. 7—sn,3,6 + 7;71,3,7' (6.9)
For 7;"*°, using the definition of the bounded function by, in (5.11) we have

s < H<M>kzi | [1€a) - Gy [ /. cﬁm)lunw}#@ﬁ(dx)} "

< w(M)[|Gr = G|,

where (M) depends on M but not on n. For 77**" using Condition 2.2 and Theorem 2.1(a)
we see that

[ b (X (5),2)G ) 111 () = [ B (X (9. )6
Rd n n R4 n

as n — oo, for each u € I and v € I\ A,. Since the set A, is assumed to have Lebesgue
measure zero in Condition 2.2(b), we have

2
du

2
du

/ / b (X tnat (5), 2)G (1 0) gt (d)
I JRd

»S
n n

2

[nu] du

du

[nu]

, ) oy s(dx) — 0

T
lim T3 ds = 0. (6.10)

n—oo 0

Combining (6.5)—(6.10) gives

T
. . K
hmsup/ T3 ds < k(M) limsup ||G,, — G|| + e (6.11)
n—00 0 n—oo
Combining (6.1)-(6.4) gives
LS EIxy - X, 12, < /”iEnX” X2 ds+ =+ /tT“?’d
— T — X k[ — " — X s+ —+k " ds.
n pt 7 P *,f — 0 P 7 = llx,s n 0 S
Using the Gronwall’s inequality and (6.11) completes the proof. |

Remark 6.1. The assumption that € > 0 is used in (6.6) and (6.7). If b and o are bounded
functions, then one can allow € =0 and replace the estimate in (6.6) and (6.7) by
2

. 1 & K
n3l o N Rl 1 1 (dz)| < —
e ”z; ”;/Rd[ X gy Ll i (d2)) < 7,

n 2
32 K <
TS n;E /I/Rd[l{xgsww} + jal> a1y Hvs(d2) dv) < 3.

N




GRAPHON MEAN FIELD SYSTEMS 23

As a consequence, the result in Lemma 6.1 is rewritten as

lim sup — ZEHX" X H TS&(M)hmsupHG - G|+

n—o0 =1 M2

Lemma 6.2. Suppose Conditions 2.1 and 2.2 hold. Let p" := %Z?:l Ox, . Then u" — fi in
P(Cq) in probability as n — oo. h

Proof. Let o' := %Z?:l wi. For each bounded and continuous function f on C4, using the

independence of {X i }, we have

Ly i

E (/") — (f, ") =B (n > (rxs) - Ef(X;))> < Il
i=1

It then follows from Condition 2.2 and Theorem 2.1(a) that

o) = (i) = i) = [ (hogud du =0

=1

Combining these two estimates completes the proof. |

6.2. Proof of Theorem 3.1. If Condition 2.2(b) holds, then (3.4) follows on a direct appli-
cation of Lemma 6.1 by sending M — oco.

Next we prove (3.3) by an approximation argument that is commonly used to analyze
graphons (see e.g. [9]). Fix n € (0,1). Since 0 < G' < 1, using Lusin’s theorem ([41, Theorem
2.24]), we can approximate G by continuous functions G with 0 < G < 1. Namely, we can
find some continuous graphon G = G such that

IG—G| <.
It then follows from Theorem 2.1(c) that
W27T(ﬂGwa) < K1), (612)

where we denote by X G = ={X} G.uel } the solution of (2.1) corresponding to the graphon
G and let i% = [; L(X] G ) du. Since Condition 2.2 holds for G, from Lemma 6.2 we have

— Z 8a (6.13)
in P(C4) in probability as n — oo. Note that
_1 & .
(W §ya =y X - X912

2 T Z % n Zz; || i i ||*,T

Since Condition 2.2 holds for G, it follows from Lemma 6.1 and Remark 2.1 that
llrljl)solcl)pEWQT 25 l \/ )hmsup |Gr — Kk(M)n + ME

Taking n — 0 and then M — 00 gives

lim sup lim sup EWs 7(p Z 06 (6.14)

n—0 n—r00

L
n
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Combining (6.12)—(6.14), taking n — oo and then sending 7 — 0, we have (3.3). [

6.3. Proof of Theorem 3.2. Fix ¢t € [0,7] and ¢ € {1,...,n}. Similar to the proof of
Lemma 6.1, we have

EJIXT - X |2,

2
iy n m A — i (8),x i’v x)dv| ds
<t | L)) [ L X060 (i) ]
2
iy n v n — o(Xi(s),x iv x)dv| ds
oz [ 2 S X7 ) | [ o6 )G (o) do| ds. (615)

We will analyze the first integrand above for fixed s € [0, ¢], and the analysis for o is similar.
By adding and subtracting terms, we have

2
1 n n n n B () 2 1 v ) do
B G006 XG0 = [ [ 05 601G i)
2
< 32| L3 (X7 (5), XJ ) — (X1 (5), X, (5)))
=1
J ) ,
! 0 i (S S)) — i(s),x — T
+3E z;(éwb(Xﬁ()’Xi()) JRCACRICEROVINCE)
2
1 3 i (8), X 3 J r) — i (8),2)G(—,v ) dv
+ 38 n;/Rdb(X;( )} G Dy ()= [ [ 0089006 0) ol a
=3 (T + T2 4 ) (6.16)

For ﬁn’l, using the Lipschitz property of b we have

. 1 o n n
T < KE nZ; (1X7(s) = X () +1X](5) — X
p=

(5)1) | <25 max E|X[(s) — X (s

i
i=1,...,n n

(6.17)

For T2, using Condition 3.2, the independence of {X. } and {£]%}, the Lipschitz property of
b, Proposition 2.1, and a weak LLN type argument, we have

T < & (6.18)
n
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~n,3
For 7., we have

/I/Rd b(X i (5), 2)G(

2

7=k

n

3| .
3
3

) s oy dv = [ [ X (9. 006 0) o)
. 2

< 9E /I/R b(X 1 (s), ) [G(;, (?1)—0(;,@] o (d) do
+oE /I[/R DX (), ) s () dv—/Rd b(X 1 (s).2) uv,s(d:ﬂ)} G(%,v) ao|
< % (6.19)

where the last inequality uses Condition 2.3, Theorem 2.1(b) and Remark 2.4. Combining

(6.15)—(6.19) with Gronwall’s inequality gives (3.5) and completes the proof of Theorem 3.2.
|

7. PROOFS FOR SECTION 4

In this section we prove Theorems 4.1 and 4.2.

7.1. Preliminary Estimates. We first provide some preliminary estimates.

Lemma 7.1. Suppose Condition 4.1 holds. Suppose either Condition 4.2 or Condition 4.3
holds. Then

sup max E|[ X" —X;|[*; <oco, VkeN.
nENiZlv'"v” n o’

Proof of Lemma 7.1. Fix k € Nand ¢ € {1,...,n}. Since b and o are bounded, we have

k
1 n
EHX?—X%H&,TSRE WZ@% + K
nj:l

_ ShEle+ (S Ble)
=" (nBn)F

+ K < K,

where the second inequality follows from the Rosenthal’s inequality [40, Theorem 3] and the
last inequality uses the assumption lim,, ., nS, = occ. |

Lemma 7.2. Suppose Conditions 2.2, 4.1 and 4.2(a,b) hold. Then there exist some k, k(M) €
(0,00) for each M € (0,00) such that

1 n
lim sup - Z]EHXZ" - X%HET < k(M) limsup |G, — G| + .

n—00 =1 n—00 M?
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Proof. Fix t € [0, 7).
1 g n 2
Ly mxr - x, 2,
=1
o [ RSB S g X = [ [ 0G0 ol d
. P L . z - v,S X
o N |"Pn = v Rd 5 TZ’UM’ !
2
/[ ZE(X" X, )‘]ds. (7.1)

We will analyze the first integrand above for fixed s € [0,¢]. By adding and subtracting terms,
we have

IyE (5), 2)G( -, ) () do

Sl

1 - n n n _
G 2o R X)) JRE

—ZE Z 5 (X269, 25 60) — DX (9, 5 6)

2
+aDE - >3 (BCX+ (5), XJ() — (X1 (), X (5)))
2
4 n 1 n n .
+ = E|— ﬂb(Xi(s),Xl(s))— b(Xi(s),x)Gn(—,>) i (dx
3 2 2 (R0 Xy 0 = [ 0,006 F )

1 1 (). 2)G (2 Y s (d) — PRI o
ﬂé}E Z/RﬂX;( ), @)Gn(s ) ma (de) //Rdw;( ), )G, ) pos(da) d

= 4 (RP 4+ RI? + R 4+ RIA) (7.2)

Fix s € [0,T]. For R™! using the Lipschitz property of b we have

2
R 1< Hn ;:1 E ( g |)( - ;(s))

. 2
noen— B,.G, 1’1
ZE( 2. 5@1 = ")X?(S)X;(s)>

7=1

+ 12615 Ly (i
oL 1 g
n n 4 "\nn

Jj=1
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Since {5 — BnGn(L, %)} are centered and independent, we have

4

1 & — BuGn(E, 1)
N n; B
i 4
- 421&(@3 5.6l )
i 3.\ i k\?
DY (6 - w0t ) B (- s D)

i=1 k#j

< 1 n 3
~ (nBn)? (nﬁn)Q

From these two estimates, Cauchy—Schwarz inequality and Lemma 7.1 we have

R”1<7+ ZE\X") Xi(s)]% (7.3)

) -t
For R, using Condition 4.2, the independence of {X } and {¢}}}, the boundedness of b,
and a weak LLN type argument, we have

K

RIS < — (7.4)

For R%*, similar to the proof of (6.11) in Lemma 6.1 and Remark 6.1, using Conditions
2.2, 4.1 and 4.2(a,b) we could get

T
limsup/ R ds < k(M) limsup |G, — G| + ~— (7.5)
0

The analysis of R™? is based on a collection of change of measure arguments. First note
that

2
n

rit<n SE| ks 51x7(6) - X, 6)
fz nﬁ ZE[SUIX” X, (s)?]

+ 3OS B[ - X, 6)IXE) - X )] | (7.6)

J=1 k#j
Fix i,7 € {1,...,n}. We want to show that IE[ T‘-(X’-‘(s)—Xl(s))Q] is roughly
E [(X (s ) Xi(s)) } BnGn(L, n) up to some errors, namely & is kind of independent of

X7 (s) — ( ). For this, we want to compare L(X] ,X%] 7=1) and E(X]’?,X%) using
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Girsanov’s theorem. This heuristic suggests considering the following auxiliary processes

()= // [R50 016 0) el s + [ 0%

ol
+/a< g (6= 1) BT (). X () ds.

X%( X5 (0 ///Rdei (f v)uvs(dx)dvds—l—/ot (X %())dB i (s)

oK) n
+/0 mnﬁn (5 1) b(XF(s), Xi'(s)) ds.

Note that the existence and uniqueness of such processes are guaranteed by the bounded and

Lipschitz properties of b, ¢ and o~!. Also using these properties and Gronwall’s inequality
we can show that

: (5)) dBi(s)

:!\
:\ﬁ

E|X, - X, |7 < m > 0. (7.7)

Define Q%™ by

Q- L (s i (s
dP 5T</0 ( ())nﬂn( gw)( ()Xg())dB (s)

' 1 1 n(g (s
+/0 ey - EUX <>Xi<>>dBi<>>,

3l

where
1
Et(M) = exp {Mt — 2[M]t}
is the Doleans exponentlal for a semi-martingale M;. Since b and o' are bounded,
we have that B - b=t Xn(s))nﬁn(l = §HO(X](s), X]'(s)) ds, By () = IR m%u —

Tb(XT (s ),XZ"( )) ds and By, k # 1, j, are independent Brownian motion under Q%"  and

P ((X}l,X;l,Xi,Xl) €-|¢h = 1) = Qi ((X?,X}?,f(i,f(l) S ) (7.8)

by Girsanov’s theorem, and

dQHm\"™ m|m — 1|k
() ooz o

From this it then follows that

dQiin m | dQisim 2 dQiim 2m—2
_ < _ _
E H dP 1‘ ] <3 [B ’ dP IE ‘ dP
[/ dQiin 2 dQi-s:
< —
<,|E ( P > 1] k(m)E ‘ 1P +1

< \/[1 + wm) 1] k(m) < rm) m > 1, (7.9)
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where the third inequality uses the assumption that lim,_,o 13, = co. From (7.8) we have

j
2

E [ (X} (5) = X1 ()] = E [(X](5) = X1 (5))* | € = 1] BuGin

Note that

Bousn [(X716) = Xy (6)] = | (57 (6) - Xy (0 dcfm»]

Zsz,]n

<2E [(X?(S) X)) = ] 1 9E [(X  (y2d@7"

() = X4 ()0

S

For the first term, using Holder’s inequality, Lemma 7.1 and (7.9) we have

e - x| e - xy ]
< (2[00 -xge)” (244 1] ])
> (n,;(:))l/q’ Vg > 1.

For the second term, using Holder’s inequality and (7.7) we have

[ (xy0- %y0)" 5] < JE (i %,00) |2

Combining these three estimates gives

E [gg(x;?(s) ~X

3.

7] < (22 0070~ X, 0P] + 507 ) mGu D (o)

Now fix 4,5,k € {l,...,n} with j # k. The following argument is sim-
ilar to the above change of measure, but we provide the proof for complete-

ness. The intuition is again that E{ nERIXT(s) = X ()| X7(s) —Xﬁ(s)@ is roughly

E[I1X7(s) = X, ()| X[ (5) — X (s >|} B2Gn(£, 1)Ga(E, £) up to some errors, namely (€]}, £1)
is kind of mdependent of (X7'(s) — X, (s))(Xy(s) — Xx(s)). For this, we want to compare

E(X]’-"”,Xl, X7, Xk |£ =1,¢&.=1)a nd E(Xj , X, X}, X&) using Girsanov’s theorem. This
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heuristic suggests considering the following auxiliary processes

Xi(0)= X4 (0 ///R X, (9. 0)G e 0) sl dvds + [ o(X, () B, (5)
o(Xi(s) 1 .
lj,k/O T i (G~ DX, X7 ) s
t . t
X, (t) = X, X, (s),z J v z) dvds o(X; (s i (s
2,0 -%,0+ | [ E @G ) sty dvds + [ o(%, () B, (o
v Sy (€ D). X0 d

+/tU(X§(S))1< i — 1) b(X} (s), X['(s)) ds.
0 k

Note that the existence and uniqueness of such processes are again guaranteed by the bounded
and Lipschitz properties of b, ¢ and o~!. Also using these properties and Gronwall’s inequality

we can show that

_ lm)
E|X; X E|X, — X > 0. A1
I, = X, + BIX, = Xyl < 0 m=0 (r11)
Define Q%" by
sz,]kn . . N
| X / 5o (1= 61X (3). X7 (5)) B,

Since b and ¢! are bounded, we have
P ((XZ’L7X]717X1?1X%7XL7X’“) € ’ ij = 175’“6 - 1)
_ Qi ((Xﬁ,X” X0, X, X—,Xﬁ) c ) (7.12)

by Girsanov’s theorem, and

dQuikn\™ m|m — 1|k
=|[(5F) | =or "} 2

= o0, we have

Using this and the assumption that lim,_, n8,

inz.j:n m 2 dQ’L,],TL
_ < _
R 1WE THES.

nB’

2m—2 H(m)
s ] < m>1. (7.13)

'in,j,n
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From (7.12) we have

E €631 (5) = X, () [XE () = Xi(9)]
= E [IX](5) = X, ()| | XE(s) = X ()] [ € = 1.l = ] g2ea(t, Dyen(, by
= Egunn [1X7(5) = X SIXE(S) — Xa ()] Gl D162, ),
Note that
Equoin [1X](5) = X1 (s)IX} () = X (5)]
< $Equunn [IX3(9) — X3 (0] + 3Equinn X2 () - X (o))
= g [0 - £, ]+ fm [ox) - a2
<[00 - X, 0P L e o0 - 2,02
+E [(X;;(s) — X (s))? dQ;;k’n] +E [(XZ (5) = X (s))? dQ;;k’n] :

Similar to the derivation of (7.10), using Holder’s inequality, Lemma 7.1, (7.13), and (7.11)
we have

E [€5€R1X7 () — X, ()[|XE(s) - X§<s>\} (7.19)
. Kq i G, ik
< <E [(X7(5) = X3 (5)°] + B[(XE(5) = X (5))°] + (n,@n)uq> BaGn(G (o)
Applying (7.10) and (7.14) to (7.6) gives
Ry < O3 EIX(s) - Xy () + (n;ff))l/q‘ (7.15)

Finally, combining (7.1)—(7.4) and (7.15) gives

—ZEHX” X H <m/tlzn:EHX"—X-HQ —i-ﬁ(Q)—l—/i/tRnAds
*,t ni:1 A % *,8 (nﬂn)l/q 0 s .

Using the Gronwall’s inequality and (7.5) completes the proof. |

7.2. Proof of Theorem 4.1. The proof is similar to that of Theorem 3.1. If Condition
2.2(b) holds, then (4.4) follows on a direct application of Lemma 7.2 by sending M — oo.
Next we prove (4.3). Fix n € (0,1). Since 0 < G < 1, using Lusin’s theorem ([41, Theorem
2.24]), we can approximate G by continuous functions G with 0 < G < 1. Namely, we can
find some continuous graphon G = G such that
IG G|l <n.

It then follows from Theorem 2.1(c) that

Wor (i, i) < wn (7.16)
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where we denote by X ¢ = {X3 Gouel } the solution of (4. 2) corresponding to the graphon
G and let 5© = [; L(X} G ) du. Since Condition 2.2 holds for G, from Lemma 6.2 we have

1 n

L ST 7.17)
=1 7w

in P(C4) in probability as n — co. Note that
n
(W §.a)* < LS e - x9)e
TS WSVIERS e

" i=1

Since Condition 2.2 holds for G it follows from Lemma 7.2 and Remark 2.1 that

lim sup EW5 7 (p Z(SXG < \/ )hmsupHG —GH—}——< (M)n—l—]w6
n—oo -
Taking n — 0 and then M — oo gives
lim sup lim sup EW: 0 7.18
77—>0p n—>oop 2T Z Xi ( )
Combining (7.16)—(7.18), taking n — oo and then sending 7 — 0, we have (4.3). [ |

7.3. Proof of Theorem 4.2. Note that the estimates in (7.1)—(7.4) and (7.15) still hold
under Conditions 2.3, 4.1 and 4.3. In order to show (4.5), it suffices to argue

n,4 K
R4 < &
n

For this, using Condition 4.3 we have

wa T |1 & ¢ J
i=1 Jj=1

_/I/Rd DX 4 (5), 2)G( - ) () o

= ;ZE /I/Rd b(X%(S),:E)G(%v [T;ﬂ)urrf] ,s(d:U) dv

//Rd " (%, V) o5 (dz) dv

g2i;E / /R 00 |G ) 60 i (a0

2
n

+2iizn;1a /I[/Rdb(X:l(s),:c);zr,::w’s(dx)—/Rdb(X:L() )Mvs(daj)} G(;,v)df
<.

where the last inequality uses Condition 2.3, Theorem 2.1(b) and Remark 2.4. This completes
the proof of Theorem 4.2. |
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