
Selecting Top-𝑘 Data Science Models by Example Dataset
Mengying Wang

Case Western Reserve University
Cleveland, Ohio, USA
mxw767@case.edu

Sheng Guan
Case Western Reserve University

Cleveland, Ohio, USA
sxg967@case.edu

Hanchao Ma
Case Western Reserve University

Cleveland, Ohio, USA
hxm382@case.edu

Yiyang Bian
Haolai Che

yxb227@case.edu
hxc859@case.edu

Case Western Reserve University
Cleveland, Ohio, USA

Abhishek Daundkar
Case Western Reserve University

Cleveland, Ohio, USA
aad157@case.edu

Alp Sehirlioglu
Yinghui Wu

axs461@case.edu
yxw1650@case.edu

Case Western Reserve University
Cleveland, Ohio, USA

ABSTRACT
Data analytical pipelines routinely involve various domain-specific
data science models. Such models require expensive manual or
training effort and often incur expensive validation costs (e.g., via
scientific simulation analysis). Meanwhile, high-value models re-
main to be ad-hocly created, isolated, and underutilized for a broad
community. Searching and accessing proper models for data anal-
ysis pipelines is desirable yet challenging for users without do-
main knowledge. This paper introduces ModsNet, a novel MODel
SelectioN framework that only requires an Example daTaset. (1)
We investigate the following problem: Given a library of pre-trained
models, a limited amount of historical observations of their perfor-
mance, and an “example” dataset as a query, return 𝑘 models that
are expected to perform the best over the query dataset. (2) We for-
mulate a regression problem and introduce a knowledge-enhanced
framework using a model-data interaction graph. Unlike traditional
methods, (1)ModsNet uses a dynamic, cost-bounded “probe-and-
select” strategy to incrementally identify promising pre-trained
models in a strict cold-start scenario (when a new dataset without
any interaction with existing models is given). (2) To reduce the
learning cost, we develop a clustering-based sparsification strategy
to prune unpromising models and their interactions. (3) We show-
caseModsNet built on top of a crowdsourced materials knowledge
base platform. Our experiments verified its effectiveness, efficiency,
and applications over real-world analytical pipelines.

CCS CONCEPTS
• Information systems→ Data management systems; Infor-
mation retrieval; Top-k retrieval in databases.

KEYWORDS
Model Selection; GNN-Based Recommendation; Knowledge Graph

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0124-5/23/10. . . $15.00
https://doi.org/10.1145/3583780.3615051

Figure 1: Selecting “Peek-finding” models to support peak
analysis in X-Ray Diffraction Data (XRD).

ACM Reference Format:
Mengying Wang, Sheng Guan, Hanchao Ma, Yiyang Bian, Haolai Che,
Abhishek Daundkar, Alp Sehirlioglu, and Yinghui Wu. 2023. Selecting Top-
𝑘 Data Science Models by Example Dataset. In Proceedings of the 32nd ACM
International Conference on Information and Knowledge Management (CIKM
’23), October 21–25, 2023, Birmingham, United Kingdom. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3583780.3615051

1 INTRODUCTION
The emerging data-driven analytical pipelines [19, 21] highlight
the need to utilize various pre-trained data science models effec-
tively. Unlike large-scale models with abundant training data from
Web, such models are typically learned from small-scale, domain-
specific datasets (e.g., material science, biology, chemistry, physics),
rely heavily on domain knowledge, and often take a great manual
effort to tune due to high-dimensional in-situ configuration (e.g.,
experiments, processing methods, devices access). In addition, vali-
dating the performance of data science models can be costly due to
the lack of “ground-truth”, equipment access, and time-consuming
simulation, which easily takes weeks or months.

One may want to fine-tune pre-trained domain-specific mod-
els [10] without training a new model from scratch. Nevertheless,
there lacks proper methods to make them “searchable”, particularly
for users who have little domain knowledge yet still need to ensure

2686

https://doi.org/10.1145/3583780.3615051
https://doi.org/10.1145/3583780.3615051
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583780.3615051&domain=pdf&date_stamp=2023-10-21

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Mengying Wang et al.

the performance of the models (e.g., accuracy). Some platforms,
such as Hugging Face [12], Kaggle [2], and Github [1], gathered
abundant pre-trained models, scripts, and associated datasets with
search functions supported. For example, a research lab may publish
its pre-trained models and related X-ray Diffraction (XRD) datasets
for peak-finding on Hugging Face. However, whether this particular
model performs well or can be adapted with fine-tuning for new
XRD datasets from another lab remains unclear.

Example 1: A material scientist has a new XRD sample dataset to
be analyzed and wants to find proper models that can automate the
process of peak detection, a cornerstone task that seeks for peaks
to infer the crystalline structures. By accessing Hugging Face, she
may issue a keyword query to find some pre-trained models for
“Peak analysis”. However, this alone limits the results to be content-
or textual-relevant models, with no guarantee on e.g., accuracy.

A more desirable case is a “search by dataset” feature: directly
search by giving an XRD dataset as a representative “example”.
This would identify the top-𝑘 pre-trained peak-finding models for
the “query” datasets, based on their historical performance over
existing XRD datas. Ideally, this process should avoid expensive ad-
hoc inference and validation processes. Moreover, valuable auxiliary
metadata should also be suggested (such as training setup, hyper-
parameter settings, experimental parameters, and data providers)
to help the querier validate the suggested models [19]. ✷

Such need is evident in promoting underutilized domain-specific
models for accelerating scientific collaboration and improving the
collaboration’s trustworthiness. How to enable a “search by dataset”
mechanism to find high-quality domain-specific models, such that
they are expected to perform well for the “query” dataset?

In particular, we are interested in the following problem:
◦ Input: a set of pre-trained models M, a (limited) amount of
historical performance H , a model performance measure 𝑃 ,
integer 𝑘 , and an example dataset 𝑑𝑞 (a “query”);

◦ Output: a set of 𝑘 pre-trained models fromM that are ex-
pected to have good performance 𝑃 over 𝑑𝑞 .

There are several possible approaches.
(1) Fine-tuning models for new data. Tools such as AutoML [6] auto-
mate tuning pipelines over feature and parameter space. However,
validating domain-specific models without domain knowledge re-
mains expensive, especially given the large parameter search space.
(2) Several methods are proposed to select pre-trained source mod-
els for transfer learning [35]. These approaches often require re-
training or inference tests, and rely on a “transferability score” that
only quantifies the source-target relations. Instead, we recommend
pre-trained models with good user-defined performances and elim-
inate costly testing, especially in scientific data analysis.
(3) Recommendation approaches can be applied to build a model
that ranks and recommends models. A challenge remains to tackle
the “cold-start” issue: how to recommend models for a dataset that
has never been seen before? Robust recommendations should be
made with limited historical observations.

In response, we propose ModsNet, a model selection frame-
work to promote utilizing high-quality models. It is optimized with
several unique features that are not addressed by existing methods.

“Select by example dataset”. ModsNet only requires a sample
dataset to be provided to suggest pre-trained models. It exploits data
set features along with a set of “meta-features” including model
sketches, training environment, testing data features and run-time
performances to jointly predict the quality of pre-trained models
without performing transfer learning, re-training or fine-tuning.
“Cold-start” Selection. ModsNet supports “cold-start” search for a
new dataset that has not seen before at query time. Upon receiving
a new example dataset,ModsNet incrementally explores relevant
performance information, to decide a cost-bounded “probe” tests
and make suggestions. This is in particularly feasible in practical
search scenarios, where large amount of datasets (“queryworkload”)
requests a relatively smaller amount of models.
Knowledge-preserving. ModsNet is equipped with a knowledge
graph with auxiliary model-data interaction environment. The
knowledge graph is incrementally maintained to profile new mod-
els, datasets and test results. This unique architecture, featuring
an evolving, knowledge-preserving repository, makes ModsNet
sustainable as a self-evolving approach that preserves and “accumu-
lates” new knowledge from each query. That is, it learns to select
models better as more queries are issued in the long term.

Related work. We categorize related work as follows.
GNN-Based Recommendation. Graph neural networks have been
specified to improve recommender systems [8, 32], which can
be categorized into three types: User-item extension, such as
NGCF[27], lightGCN [11], and INMO-GCN [33]; Social network
enhanced [7, 30]; and Knowledge graph enhanced[23, 26].

GNN-based methods [11, 27] usually learn bipartite user-item
graph representations to predict missing links, assuming all nodes
are observed. INMO-GCN [33] learns graph representation induc-
tively without retraining but still requires test nodes to be in the
graph by default. Social network-enhanced methods use the pref-
erences of nearby users to improve user modeling. Knowledge-
enhanced methods [23, 26] aim to enrich the node features with
e.g., metapath features from a knowledge graph. They all utilize
link prediction and select items with high probabilities.

ModsNet is a knowledge graph-based model search system dis-
tinguishing the existing methods with the following. (1) ModsNet
selects high-quality models with estimated good performances by
a regression model instead of treating model search as a link pre-
diction problem [23, 26]. (2) The strict cold-start issue remains
not discussed for these methods. ModsNet performs cost-bounded
probe tests to strike a balance between search response time and
model quality. (3)ModsNet reduces costs and maintains good er-
formance by using a clustering-based sparsification strategy to
eliminate low-quality interactions from the large group of entities.
Model Selection for Transfer Learning. Transfer learning, in simple
terms is knowledge transferring between similar task domains[17],
which is a practical way to use pre-trained models to learn new
knowledge effectively and reduce the enormous training costs. Sev-
eral methods have been proposed to estimate transferability based
on the pre-trained model features and target dataset labels, such
as NEC[22], LEEP[15], and LogME[35].ModsNet can also be made
use for this task with an advantage that it incurs cost-bounded
inference tests for each candidate model over the target dataset.

2687

Selecting Top-𝑘 Data Science Models by Example Dataset CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Figure 2: ModsNet Framework and Architecture

2 MODEL SELECTION: A FORMULATION
We start with several notations used by ModsNet framework.

Interaction Graph.ModsNet works with a model-data interaction
graph G = (M,D,I, F), which is an attributed bipartite graph. (1)
M is a set of model nodes, where each node𝑚 ∈ M refers to a
user-registered data science model to be selected. A data science
model can be a machine learning model, or a statistical model. (2)D
is a set of dataset node, where each node 𝑑 ∈ D refers to a dataset
used for analytical tasks, e.g., experimental data, simulation data,
or measurement data. (3) I ⊆ M × D refers to a set of interaction
edges between models and dataset. Each edge (𝑚,𝑑) ∈ I denotes
an observed test of a model𝑚 ∈ M over a dataset 𝑑 ∈ D.
Attributes and features. Each node 𝑣 ∈ M ∪D (resp. edge (𝑚,𝑑) ∈
I) in G is assigned a tuple F (𝑣) (resp. F (𝑚,𝑑)) that encodes its
attributes and values. (1) For a dataset node 𝑣 ∈ D, F (𝑣) can carry
data features such as measurements, parameter values, experimen-
tal data or simulation data; (2) For a model node𝑚 ∈ M, F (𝑣) may
carry “meta-features” [18] such as statistics of model parameters,
hyper parameters, training environment, test settings, etc. (3) Given
an interaction (𝑚,𝑑) ∈ I, F (𝑚,𝑑) may carry a weight that quanti-
fies a performance measure 𝑃 of user’s interests of a model𝑚 ∈ M
over a dataset 𝑑 ∈ D, such as accuracy, 𝐹1 score, or training cost.
We provide a list of examples ModsNet used in Section 4.

Model-Data Knowledge Graph. ModsNet is enhanced with a
knowledge graph K = (V,R) that uniformly encodes auxiliary fac-
tual knowledge relevant to data science models, datasets and their
interactions. It consists of a set of real world entitiesV and their
relations R. Given an interaction graph G, (1) each model node in
M and dataset node inD from G has a counterpart entity inV , (2)
each (𝑚,𝑑) ∈ I has a counterpart relation in R, and (3) in addition,
V contains a set of relevant entities associated with data science
models e.g., contributors, libraries, providers, equipment, metadata,
and datasets such as authors, source, references. These auxiliary en-
tities in K are the main sources of the enriched attributes, features
and side information for M and D nodes in G (see Section 7).

By default, ModsNet initializes an interaction graph G simply
as a node-induced subgraph of K with M ∪ D. We remark that

ModsNet can cold-start with aK and G as simple as a single model
node without other information, as will be discussed.

“Search by Dataset”. Given a knowledge graph K with data sci-
ence modelsM, datasets D, and their interactions I with model
performance quantified by a performance measure 𝑃 , an example
dataset 𝑑𝑞 as a query, and integer 𝑘 , we aim to select 𝑘 models from
M, such that they are likely to have best performance in 𝑃 over 𝑑𝑞 .

ModsNet characterizes the problem by solving a regression task.
It aims to train a graph neural network (GNN)-based model (simply
denoted asModsNet) to minimize a model performance loss below:

L(D,M,I) = 1
|I |

∑︁
(𝑑,𝑚) ∈I

|𝑃 (𝑑,𝑚) − 𝑃 (𝑑,𝑚) |

Here 𝑃𝑑,𝑚 = 𝑓 (ModsNet(𝑑),ModsNet(𝑚)), where (1)ModsNet
(𝑑) andModsNet (𝑚) are the learned dataset and model representa-
tions, respectively, and (2) 𝑓 (·) is a score function that transforms
the representations to estimated model performance, consistently
measured by a user-specified metric 𝑃 (e.g., accuracy, learning cost).
That is, it learns to minimize the differences between the observed
performance 𝑃𝑑,𝑚 and estimated counterpart 𝑃𝑑,𝑚 , for each “model-
data” interaction (𝑚,𝑑) ∈ I. We present the details in Section 5.

Upon new dataset query 𝑑𝑞 , ModsNet adapts to 𝑑𝑞 in an induc-
tive manner without retraining, and predicts the performances of
M over 𝑑𝑞 . It chooses top the 𝑘 pre-trained models with the highest
expected performances for downstream fine-tuning or inspection.

3 FRAMEWORK OVERVIEW
As illustrated in Fig. 2, ModsNet framework has four components:
(1) a Container to manage a built-in model repository M and a
dataset repository D, (2) a model-data knowledge graph K main-
tained by theMaintainer, (3) an Extractor to construct the model-
data interaction graph G fromK with necessary feature generation;
and (4) a Selector to select models fromM for query datasets, aided
by a GNN-based Estimator model.

The workflow of ModsNet goes through the major steps below.
(1) One-time Initialization. ModsNet cold-starts with a default K ,
which can be as simple as a single pair of a model𝑚 and a dataset
𝑑 . The Extractor module then constructs an interaction graph G.

2688

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Mengying Wang et al.

Model:
◦ Metadata: contributor, licenses, languages, task
◦ Source code structure: AST topological features
◦ Training Record: training dataset, base model, environment
(CPU&GPU, o.s.), time cost, training performance

◦ Model Info: model type, # parameters, hyperparame-
ters, layers’ features, model size, flops, inference time per
step(CPU/GPU), topological depth of the network

Data:
◦ Metadata: contributor, licenses, languages, organization, ma-
terial sample, equipment, experiment settings: temperature,
pressure, statistics of angles (2𝜃), intensity ranges

◦ Activity: usability rating, hotness (#views, #votes, #down-
loads)

◦ Statistics: # classes, size categories
◦ Description: tasks/classes, textual descriptions

Interaction:
◦ Model-data Pair: model id, dataset id
◦ Evaluation Record: environment(GPU), testing cost
◦ Metrics: accuracy, balanced accuracy, AUC, f1_score, preci-
sion, recall, Cosine similarity, Jaccard similarity, hamming
loss, log loss

Figure 3: (Meta-) Features used byModsNet

(2) Query-time Selection. Upon receiving an example dataset 𝑑𝑞 (a
query), Selector select models for 𝑑𝑞 with the following cases.

◦ (a) If 𝑑𝑞 ∈ D, and ∃𝑚 ∈ M such that (𝑑𝑞,𝑚) ∈ I, e.g.,
𝑑1, one of the query datasets in Fig. 2, linked with𝑚1 and
𝑚2. ModsNet will skip the Probe Phase and invoke a typical
transductive setting, readily predicting the performance to
make regression-based ranking and selection with G.

◦ (b) Otherwise, if 𝑑𝑞 ∈ 𝐷 , but �𝑚 ∈ M such that (𝑑𝑞,𝑚) ∈ I,
or if 𝑑𝑞 ∉ D, which means 𝑑𝑞 is a new dataset without any
existing interactions in G, ModsNet will invoke the Probe
Phase to perform a bounded number of “probing tests” to es-
timate the performances of models inM over 𝑑𝑞 inductively,
by a GNN-based Estimator, with a slight delay cost.

(3)Knowledge Integration. Once processed,ModsNet invokesMain-
tainer to “recycle” 𝑑𝑞 and the results of probed tests, if any, as new
interactions to enrich the knowledge graphK and interaction graph
G. This keeps K “fresh” and consistent with new models, data and
interactions for future model selection.

We next introduce the Extractor and the Selector modules in
Sections 4 and Section 5, respectively.

4 EXTRACTION MODULE
The Extraction module extracts and optimizes the bipartite Interac-
tion graph G. It mainly executes two tasks: (1) feature generation, to
enrich node features with auxiliary knowledge from the knowledge
graph K ; and (2) interaction sparsification, to prune unnecessary
interactions and reduce the learning overhead of ModsNet.

4.1 Standadization and Feature Generation
ModsNet has built-in scripts to automate a data ingestion pipeline
below: (1) accepts user-registered models, datasets and test reports,
(2) uniformly document and store them into standadized JSON

objects over cloud-based databases, (3) exploits a built-in ontology
to extract node attributes, encode their values into (meta-)features,
and adopts established indexing to optimize the access.

Fig 3 provides a non-exhaustive list of (meta-)features and at-
tributes we have extracted from data science models, scripts and
datasets from real-world data repositories (see Section 6). These at-
tributes are transformed to their feature representationF viamatch-
ing encoding techniques, such as integer encoding, Word2Vec[14],
BoW for textual attributes, and ast2vec[16] for script structures.
The features can further be enriched by high-order path or topolog-
ical features [26]. The enriched features are naturally carried over
by the interaction graph G for downstream model selection.

4.2 Interaction Sparsification
ModsNet-based regression can be expensive when the interaction
graph G, if directly extracted from K remains large. On the other
hand, interactions may be pruned due to their similarity, or low
recorded performance. We consider three cases below.

◦ (1) similar models that differ from few (meta) features and
are tested over a dataset should yield similar representa-
tions [13], and (thus) with comparable good performance;

◦ (2) a model is tested over similar datasets should contribute
almost equally good performances;

◦ (3) if a model already performance well for some dataset,
then its low-performance interactions over other datasets
are less useful for model selection.

Intuitively, Case (1) and (2) can be jointly captured by “quasi-
bicliques” in the interaction graph G, with dense interactions be-
tween a group of similar models𝐶M and a group of similar datasets
𝐶D . These interactions can be pruned due to their similar contri-
butions for model performance regression. Case (3) captures inter-
actions with lower performance between a group 𝐶M from Case
(1) or Case (2) and another group 𝐶 ′

D , given that 𝐶M already have
higher performance interactions over a matching group 𝐶D .

Based on the above intuition, we introduce a clustering-based
sparsification strategy to extract a small G. The idea fully exploits
the similarity of models, datasets, and their interactions to compute
a set of quasi-bicliques in G that can maximally introduce the
interactions in Cases (1) - (3).

Similarity measures. We first introduce several similarity mea-
sures. (1) We say two model nodes𝑚,𝑚′ inM (resp. dataset nodes
𝑑 , 𝑑 ′ inD) are representationally similar w.r.t. a threshold 𝜃 ∈ [0, 1],
if sim (F (𝑚), F (𝑚′)) ≥ 𝛽𝑚 (resp. sim (F (𝑑), F (𝑑 ′)) ≥ 𝛽𝑑). Here
sim is a similarity metric that quantifies the feature similarity of
𝑚 and𝑚′ (resp. 𝑑 and 𝑑 ′). In practice, sim can be defined as cosine
similarity, centered kernel [13] or other metrics. (2) Given two in-
teractions 𝑒= (𝑚,𝑑), 𝑒 ′ =(𝑚′, 𝑑 ′) and a threshold 𝜃 , we say 𝑒 and 𝑒 ′
are similar if Isim ≥ 𝜃 . Here

Isim(𝑒, 𝑒 ′) = 𝛼

2
· ((sim(F (𝑚), F (𝑚′))

+ sim(F (𝑑), F (𝑑 ′)))

+ (1 − 𝛼) |𝑃 (𝑒) − 𝑃 (𝑒 ′) |
max(𝑃 (𝑒), 𝑃 (𝑒 ′))

In other words, two interactions are more similar, if they involve a
pair of more similar model nodes and similar datasets, with compa-
rable model performance.

2689

Selecting Top-𝑘 Data Science Models by Example Dataset CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Interaction Sparsification. We now characterize our sparsifica-
tion strategy. Given an interaction graph G = (M,D,I), we say a
clustering C = {𝐶1, . . .𝐶𝑛} of the node setM∪D is compatible if (1)
for any two model (resp. dataset) nodes𝑚,𝑚′ ∈ 𝐶𝑖 (resp. 𝑑, 𝑑 ′ ∈ 𝐶𝑖)
for some cluster 𝐶𝑖 ∈ C, 𝑚 and 𝑚′ (resp. 𝑑 and 𝑑 ′) are similar;
and (2) for any two interactions (𝑚,𝑑) and (𝑚′, 𝑑 ′) in I, where𝑚,
𝑚′, 𝑑 and 𝑑 ′ are all in 𝐶𝑖 , then (𝑚,𝑑) and (𝑚′, 𝑑 ′) are similar. Let
the set 𝐶I be the interactions with both of its end nodes in some
cluster, i.e., 𝐶I = {(𝑚,𝑑) |𝑚,𝑑 ∈ 𝐶𝑖 , 𝑖 ∈ [1,𝑚]}. We define the cost
of a compatible clustering as:

cost(C) = Σ (𝑚,𝑑) ∈M×D𝑋 (𝑚,𝑑)

where 𝑋 (𝑚,𝑑) is a Boolean indicator for each pair (𝑚,𝑑) ∈ M ×D),
and is defined as:

𝑋 (𝑚,𝑑) =

{
1, if (𝑚,𝑑) ∈ (I \𝐶I) ∪ (𝐶I \ I)
0, otherwise

The problem of interaction sparsification, denoted as MDIM,
is to compute a compatible clustering C with the smallest cost
cost(C). One can verify that computing an optimal clustering with
smallest cost is equivalent to maximize the prunable interactions
that are “within clusters” (Case (1) and (2)), as well as those that are
“cross clusters” (Case (3)), subject to the definition of compatible
clustering. We present the following result.

Theorem 1: Given an interaction graph G, and similarity thresholds
forM,D andI, (1)MDIM isNP-hard; (2) there is a 4-approximation
algorithm for MDIM and runs in time 𝑂 (|K | + |M||D|)). ✷

The hardness of MDIM can be verified by a reduction from the
Exact 3-Set Cover problem, a known NP-complete problem [9]
(see the detailed proof in [24]). We next outline an algorithm that
first computes a clustering C with the quality guarantee, and then
prunes G with induced interactions.

Algorithm. The algorithm, denoted as APXIM (illustrated in Fig. 4),
induces the sparsified bipartite G0 from knowledge graph K , by
performing the following two phases. (1) In the clustering step,
it initializes a single cluster 𝐶𝑐𝑢𝑟𝑟 by randomly selecting a model
node𝑚𝑠 fromM and adding𝑚𝑠 and its neighbors in G0 to a cur-
rent cluster 𝐶𝑐𝑢𝑟𝑟 with𝑚𝑠 (subject to compatability constraint on
dataset similarity - not shown) and removes𝑚𝑠 from𝑀 (lines 4-5);
b) it then iteratively checks if the cost can be reduced by adding a
new similar model node to 𝐶𝑐𝑢𝑟𝑟 (line 12), or instead asserts a new
singleton cluster (lines 14-15). More specifically, APXIM estimates
the impact of introducing a new node𝑚 with its neighbors to the
cost (lines 7-9), and exploits a randomization selection strategy
(line 11) to decide whether to include 𝑚 to 𝐶𝑐𝑢𝑟𝑟 , with guarded
conditions to ensure compatibility. This step simulates a random-
ized selection for maintaining a bipartite correlation clustering [3].
(2) Once a compatible clustering is formed, it invokes procedure
Prune (with details presented in [24]) to keep a small sample of sim-
ilar interactions within each cluster (Case (1) and (2)), and prunes
interactions that have better counterparts (Case (3)).

Example 2:As illustrated in the Extractor module in Fig. 2, with the
featured model-data bipartite graph G, APXIM: (1) clusters model
nodes {𝑚1,𝑚2,𝑚3,𝑚4} and dataset nodes {𝑑1, 𝑑2} into clusters 𝐶1
and 𝐶2 in “clustering” phase (line 2-17 in Fig 4), (2) it then prunes

Algorithm APXIM

Input: knowledge graph K , threshold 𝜃 .
Output: a sparsified bipartite graph G.
1. attributed bipartite graph G0 := Induce(K)

/* induce original interaction graph from knowledge graph K */
2. set C := ∅; set𝑀 := G0 .M;
3. while𝑀 ≠ ∅ do
4. model node𝑚𝑠 := randomSelect(𝑀);
5. set𝐶𝑐𝑢𝑟𝑟 := {𝑚𝑠 } ∪ neighbor(𝑚𝑠) ;𝑀 = 𝑀 \ {𝑚𝑠 };
6. for each𝑚 ∈ 𝑀 similar with𝑚𝑠 do
7. set 𝑆1 := neighbor(𝑚𝑠) \ neighbor(𝑚) ;
8. set 𝑆2 := neighbor(𝑚) \ neighbor(𝑚𝑠) ;
9. set 𝑆1,2 := neighbor(𝑚) ∩ neighbor(𝑚𝑠) ;
10. double 𝑠𝑒𝑒𝑑 := random(0, 1) ;
11. if 𝑠𝑒𝑒𝑑 ∈ [0,𝑚𝑖𝑛 (|𝑆1,2 ||𝑆2,1 | , 1] then
12. if |𝑆1,2 | ≥ |𝑆1 | then𝐶𝑐𝑢𝑟𝑟 := 𝐶𝑐𝑢𝑟𝑟 ∪ {𝑚};
13. else if |𝑆1,2 | < |𝑆1 | then
14. 𝐶𝑠𝑖𝑛𝑔𝑙𝑒 := {𝑚};
15. C := C ∪𝐶𝑠𝑖𝑛𝑔𝑙𝑒 ;
16. 𝑀 := 𝑀 \ {𝑚};
17. C := C ∪ {𝐶𝑐𝑢𝑟𝑟 };
18. G := Prune(C, 𝜃, G0) ;
19. return G;

Figure 4: Algorithm APXIM

interactions 𝑒3, as 𝑒3 and 𝑒4 are two “cross-cluster” interactions
bridging C1 and C2, where the performance of 𝑒3 is lower than
𝑒4. (3) It also prunes 𝑒6, as sim(𝑒5, 𝑒6) is found to be larger than a
pre-defined threshold 𝜃 = 0.5, and 𝑒5 performs better than 𝑒6. ✷

Analysis. APXIM ensures a 4-approximation forMDIM. We verify
this with an approximation preserving reduction from MDIM to a
bipartite correlation clustering problem (BCC) [3]. Given a bipartite
graph 𝐺 = (𝐿, 𝑅, 𝐸), where 𝐿 and 𝑅 are the set of nodes; and 𝐸 is
the edge set of 𝐺 . BCC computes a node clustering 𝐶𝑙 of 𝐿 ∪ 𝑅,
which are identified by a bipartite graph 𝐵 = (𝐿, 𝑅, 𝐵𝐸) such that 𝐵𝐸
only preserves edges within each cluster. It minimizes a symmetric
difference between 𝐸 and 𝐵𝐸 , for which our cost measure exactly
quantifies. As our algorithm simulates the randomized greedy se-
lection strategy that ensures a 4-approximation ratio for BCC [3],
the approximation ratio follows.

For the time cost, APXIM takes𝑂 (|K |) to initialize G. It takes at
most |M| rounds, and each round incurs a cost in𝑂 (|I| + |D|) time
to verify at least one model and its neighbors to decide whether to
enlarge a cluster or to create a new one (lines 7-19). The pruning
phase takes 𝑂 (|I|) time. As |I | ≤ |M||D|, APXIM takes in total
𝑂 (|K | + |M||D|) time to perform the interaction pruning.

5 SELECTION MODULE
The Selection module will select top-k pre-trained models for a
query dataset 𝑑𝑞 based on the bipartite graph G refined by Ex-
tractor. The kernel of this module is the Probe-and-Select Strategy,
with a GNN-based Estimator as the foundation. It is competent in
tackling the strict cold-start scenarios (case(2)(b) in Section 3), and
furnishes new factual knowledge for Maintainer into K .
5.1 Probe and Select
As remarked earlier, a model tends to produce similar represen-
tations and performance over two datasets 𝑑 and 𝑑 ′, if 𝑑 and 𝑑 ′

2690

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Mengying Wang et al.

Figure 5: Probe Phase

are similar in terms of their representations [13]. Consistently fol-
lowing this intuition, we introduce a Probe-and-Select algorithm
(illustrated in Fig. 5), which performs two steps: (1) Probe: for a new
example dataset 𝑑𝑞 (a “query”), we select a set of modelsM𝑝𝑟𝑜𝑏 and
insert “probing” interactions I𝑝𝑟𝑜𝑏 to be verified; (2) Select: for each
selected model𝑚 in (1), we predict its performance on 𝑑𝑞 by the
GNN-based Estimator and return the top-𝑘 ones, and synchronize
K with new interactions. Below we outline the algorithm.
Initialization. The algorithm first induces a subgraph G𝑠 = (M𝑠 ∪
D𝑠 ,I𝑠 , F𝑠) of (sparsified) G, whereD𝑠 refers to a set of 𝑙 most simi-
lar datasets with 𝑑𝑞 ,M𝑠 refers to the neighbors of D𝑠 as candidate
models for probing, along with induced interactions and features.
Probe Phase. Given G𝑠 , we rank candidate models with a score as:

𝑆𝑐𝑜𝑟𝑒 (𝑚) = 1
|I𝑠 |

∑︁
𝑒∈I𝑠

lsim′((𝑑𝑞,𝑚), 𝑒) · 𝑃 (𝑒)

Here lsim′ is a variant of lsim with the second term ignored. That
is, we rank the candidate consistently with the normalized interac-
tion similarity as defined in Section 4.2, between (𝑑𝑞,𝑚) and each
interaction 𝑒 in I𝑠 . The only difference is that the second term in
lsim is replaced by a “reward” term 𝑃 (𝑒), as 𝑃 (𝑑𝑞,𝑚) is not known
yet in the strict cold-start scenario. Indeed, the score favors the
models for 𝑑𝑞 that have good performance over similar datasets.

The algorithm then chooses the top 𝑏 models with the highest
scores fromM𝑠 as the probing modelsM𝑝𝑟𝑜𝑏 , and then connect 𝑑𝑞
with each model in M𝑝𝑟𝑜𝑏 to create probing interactions I𝑝𝑟𝑜𝑏 . At
this point, we get the updated probed graphG𝑝 = (M∪D𝑝 ,I𝑝 , F𝑝),
where D𝑝 = D ∪ {𝑑𝑝 }, I𝑝 = I ∪ I𝑝𝑟𝑜𝑏𝑒 , and F𝑝 = F ∪ {F (𝑑𝑞)}.
Select Phase. In this phase, we feed the probed graph G𝑝 into a GNN-
based Estimator trained on G for inference, to get the predicted
performances of models in M over 𝑑𝑝 . The top-𝑘 models with
the best estimated performance are returned for 𝑑𝑞 . The predicted
results with the corresponding interactions are synchronized by
Maintainer to enrich the K .
Cost analysis. For strict cold-start, the probe and select phase
takes 𝑂 (|D𝑠 | +|I𝑠 |+ |M𝑠 | log |M𝑠 |) time and 𝑂 (𝑘 ∗ Inf + 𝑘 log𝑘)
time for choosing top 𝑘 models, where Inf is the cost of a single
inference determined by |F |, |𝐺𝑠 | = |M| + |D| and the number of
layers of the ModsNet model.
5.2 GNN-based Estimator
The foundation of our Selection module is a GNN-based Regression
Model, which serves as an Estimator to estimate the performance

of a particular model𝑚 over a given query dataset 𝑑𝑝 , even 𝑑𝑝 is
unseen in the training graph.

Inductive Embedding Generation layer. In order to generate
the global inductive embeddings for all old and new datasets in-
volved in the training or testing part incrementally, we design a
pre-module at the top of our GNN architecture, as an Inductive
Embedding Generation layer. This layer reform the Inductive Em-
beddings Generation module of [33], which requires at least some
observed interactions at the test phase to cope with new users; ours
is equipped to generate the global embeddings for new dataset 𝑑𝑝
inductively without any real interactions by seamless fusion with
the Probe strategy, which is described in Section 5.1.

Upon the graph G𝑝 = (M ∪ D𝑝 ,I𝑝 , F𝑝) produced by the Probe
Phase, for any𝑚 ∈ M and 𝑑𝑞 ∈ D𝑝 , we select several template
models and datasets which have similar interaction patterns to
𝑚 and 𝑑𝑞 from M and D, and aggregate their embeddings by a
weighted sum approach to get 𝑒𝑚𝑡

and 𝑒𝑑𝑡 . Then generate the
inductive embeddings 𝑒𝑚 and 𝑒𝑑𝑞 for𝑚 and 𝑑𝑞 as:

𝑒𝑚 =
1

(|D𝑚 | + 1)𝛼 (
∑︁

𝑑∈D𝑚

𝑒𝑑 + 𝑒𝑚𝑡
),

𝑒𝑑𝑞 =
1

(|M𝑑𝑞 | + 1)𝛼 (
∑︁

𝑚∈M𝑑𝑞

𝑒𝑚 + 𝑒𝑑𝑡),
(1)

whereD𝑚 denotes a set of datasets interacted with𝑚,M𝑑𝑞 denotes
a set of models interacted with 𝑑𝑞 . 𝛼 is used to dynamically control
the degree of normalization. In the training phase, 𝛼 gradually
increases from 0.5 to 1. In the test phase, 𝛼 is fixed as 1.

Graph Convolution Layers. ModsNet adopts typical graph con-
volution layers for GNN-based recommendations [4, 11, 27, 31].
Prior work shows that a trainable weight matrix has a negative
effect, and nonlinear activation has no positive effect on recommen-
dations.ModsNet uses a linear weighted sum aggregator for two
main reasons. Firstly, this aggregator allows for fast computation of
information propagation, making it suitable for Query-time Selec-
tion. Secondly, it helps to mitigate the problem of over-smoothing
when capturing high-order relations in the graph [11].

For the performance prediction loss, we employ the mean
squared loss as the objective function. It encourages ModsNet to
predict performance scores with the observed performance mea-
surements as closely as possible. Then, in the testing phase, it sorts
the model nodes according to the predicted performance score to
recommend the top 𝑘 models with predicted best performances.
The loss function formulates as follows:

Lpred =
1

|Itrain |
∑︁

(𝑑𝑖 ,𝑚 𝑗) ∈Itrain
(𝑃 (𝑑𝑖 ,𝑚 𝑗) − 𝑃 (𝑑𝑖 ,𝑚 𝑗))

2 + 𝜆∥Θ∥22 (2)

Lpred further adds a 𝐿2 regularization term parameterized by 𝜆

to prevent overfitting. Θ denotes all trainable model parameters.

Cost analysis. The only model parameters are embeddings for all
nodes on the 0-th layer. This makesModsNet feasible to be trained
for large graphs. The space complexity is 𝑂 ((𝑠 + 𝑛)𝑑), where 𝑠 =
|D| + 1 and 𝑛 = |M| denote the number of datasets and models,
respectively, 𝑑 is the dimension of the trainable node embeddings.

2691

Selecting Top-𝑘 Data Science Models by Example Dataset CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Figure 6: A fraction of ModsNet-KB

6 PROTOTYPE SYSTEM
As a proof of concept, we have built a prototype system ofModsNet.
The system is supported by an established crowdsourced scientific
knowledge graph system CRUX [25], which integrates data science
models and datasets for material sciences. CRUX currently consists
of a knowledge graph K with 462 data science models, 289 data
repository including XRD datasets, 98,257 interactions, and in to-
tal 195,089 entities and 493,561 relations. The system uniformly
stores K entities as JSON objects with a standardized format called
“cards”, specifying model cards, data cards, user cards, test cards
(for interactions), and task cards (for task description), all managed
in MongoDB. The datasets and model registration are supported
by Google Cloud. A user-friendly query interface is developed to
support “model search by example dataset”. The registration and
integration of datasets into K (Maintainer) is supported by an
internal information extraction toolkit CRUX-IE [25].

7 EXPERIMENT STUDY
7.1 Experiment settings
We experimentally evaluate ModsNet with three real-world
datasets. We investigate the following questions. (RQ1): The ef-
fectiveness of ModsNet in estimating performance of data science
models over query datasets and in regression-based model selec-
tion. (RQ2): How well ModsNet perform with the varied amount
of observed performances, the quality of data science models, and
the amount of allowed “probes”? (RQ3): The efficiency ofModsNet,
in terms of the training cost, and response time to new datasets as
query workload. We also performed case analysis to show the real
applications of ModsNet on peak finding and image classification.

Models, Datasets, and Knowledge Graphs. We gathered three
real-world model-data repositories and constructed their knowl-
edge graphs, including (1)KIZoo, which is a collection of Keras CNN
models and image datasets for image classification sourced from
Kaggle; (2) PKZoo, a repository of peak-finding models and XRD
datasets from the crowdsourced materials knowledge base platform
we developed and introduced in Section 6; and (3) HFZoo, which
contains text classifiers, text datasets, and related information from
Hugging Face [12]. See Table 1 for dataset details.
Model Selection Methods. We adapt 11 methods (including 3
variants of ModsNet) for model selection, categorized as follows:

(1) ModsNet and its three variants: ModsNet-NoKG is ModsNet
without the knowledge graph equipped, it only relies on a weighted
bipartite graph to make predictions; ModsNet-C is our method
optimized by the clustering-based sparsification with high-quality
interactions preserved;ModsNet-RProb randomly performs probes,
without quality filtering for potential probing interactions. We use
these variants to evaluate the ability of each module in Section 3.
(2) GNN-based methods: We use probe strategy from ModsNet
to help three GNN-based methods handle the "cold-start" sce-
nario. lightGCN [11], generates embeddings for collaborative fil-
tering using linear propagation and a weighted sum function;
IDCF-GCN [31], an inductive GCN framework that integrates ma-
trix factorization and attention-based structure learning to predict
links and their weights; INMO-GCN [33], which generates induc-
tive embeddings for entities and reduces neighborhood bias through
their interactions with template users/items.
(3) Non-GNN collaborative filtering methods: CF [29], predicts the
rate matrix by interaction records and incorporates the new datasets
based on the datasets’ similarity; andMatchbox [20], which com-
bined original CF and content-based filtering, solved the cold-start
problem by leveraging the side information of the nodes. They
always benefit greatly from dense interactions but with high delay.
(4) Supervised learning methods: LinearRegression, a simple linear
regression model, andWide&Deep [5], generalizes linear models
with jointly learned deep neural networks to combinememorization
and generalization for recommendation. These methods can solve
cold-start problems and easily incorporate features into regression
predictions, but struggle to capture high-order information.
Evaluation metrics and factors. We evaluateModsNet and base-
line methods in effectiveness and efficiency.

For effectiveness, we report Precision@k, Recall@k, and
NDCG@k, given a relevant set containing a set of pre-trained mod-
els with groundtruth performance higher than a specified threshold
𝛿 over the query datasets. This ensures that we fairly evaluate all
the methods in identifying and suggesting “high-quality” models.

We control the number of interactions of model-data bipartite
graphs with a factor 𝜃 , the ratio to the initial amount of interactions
in the original knowledge graph K between all the models M and
datasets D. We use random sampling to tune the size. We also
evaluate the Probe Strategy by monitoring NDCG@10 with varying
numbers of probes for GNN-Based methods. The default settings
of 𝑘 , 𝜃 , 𝛿 and number of probes are reported in Table 1.

For efficiency, we report the training time of ModsNet, and the
response time for a given set of queries.
Environment. All Experiments were executed on a Unix environ-
ment with Intel 2.6GHz CPUs, and 16GB memory. Each experiment
was run 5 times with random query datasets and reported themean.
7.2 Experiment results
Exp-1: Accuracy@k (RQ1). We report the performance of PKZoo
and KIZoo in Tables 2 and 3, respectively, with a performance
threshold of 0.8 for relevant sets.
(1)ModsNet outperforms all other approaches in all effectiveness
metrics we recorded, regardless of the interaction density and the
richness of the side information of the dataset.

2692

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Mengying Wang et al.

Dataset # models # datasets # interactions # features density task performance metric # probes k 𝛿 𝜃

KIZoo 1800 72 9304 41 0.07179 image classification balanced accuracy 50 10 0.8 100%
PKZoo 462 289 98257 21 0.73591 peak finding F1_score 200 10 0.8 100%
HFZoo 932 66 974 13 0.01583 text classification accuracy 10 10 0.8 100%

Table 1: Datasets Information

metrics Precision@5 Precision@10 Recall@5 Recall@10 NDCG@5 NDCG@10
ModsNet 0.938 0.874 0.118 0.201 0.950 0.906

ModsNet-C 0.887 0.841 0.108 0.208 0.888 0.862
ModsNet-RProb 0.867 0.733 0.112 0.186 0.859 0.777
ModsNet-NoKG 0.313 0.507 0.070 0.147 0.310 0.452

CF 0.882 0.797 0.092 0.168 0.875 0.815
Wide&Deep 0.79 0.687 0.084 0.14 0.808 0.726
lightGCN 0.759 0.654 0.07 0.122 0.749 0.674
Matchbox 0.641 0.61 0.093 0.162 0.701 0.655
IDCF-GCN 0.677 0.574 0.077 0.135 0.679 0.607
INMO-GCN 0.615 0.549 0.068 0.11 0.592 0.549

LinearRegression 0.528 0.482 0.033 0.058 0.484 0.465

Table 2: Effectiveness: PKZoo

metrics Precision@5 Precision@10 Recall@5 Recall@10 NDCG@5 NDCG@10
ModsNet 0.78 0.78 0.198 0.366 0.724 0.747

ModsNet-C 0.72 0.72 0.158 0.322 0.705 0.707
ModsNet-NoKG 0.72 0.660 0.186 0.322 0.692 0.665
ModsNet-RProb 0.660 0.69 0.172 0.335 0.619 0.656

Matchbox 0.64 0.68 0.149 0.3 0.602 0.642
Wide&Deep 0.6 0.59 0.147 0.269 0.591 0.589
INMO-GCN 0.52 0.59 0.145 0.278 0.514 0.564

CF 0.52 0.54 0.147 0.293 0.513 0.533
IDCF-GCN 0.48 0.48 0.123 0.225 0.483 0.479
lightGCN 0.48 0.45 0.093 0.178 0.46 0.444

LinearRegression 0.4 0.32 0.098 0.141 0.357 0.321

Table 3: Effectiveness: KIZoo

(2) We evaluate individual module’s effectiveness by three variants:
ModsNet-C achieved a comparable performance with ModsNet,
yet with a sparsified model-data interaction graph with 31% in-
teractions pruned, and reduced the learning cost of ModsNet by
22.85%. This verifies the effectiveness of the optimization. Also, the
apparent gap between ModsNet and ModsNet-RProb highlights
the advantage of the Probe Strategy, which means we accurately
pick the high-quality probe interactions based on the interaction
correlation we defined in Section 4. ModsNet-NoKG gets a poor
score, while other methods here also incorporate the information
fromModsNet-KG, which shows that the underlying knowledge
graph provides strong support for this framework.
(3) Besides ModsNet, CF achieves good performance, in particu-
lar over PKZoo. However, its performance is not stable for other
datasets. We observed that CF benefited greatly from the dense
initial interactions over PKZoo, and it incurs much higher prepro-
cessing costs, as will be discussed, which also makes it lose credits.

Exp-2:Impact of factors (RQ2). We next investigate the impact of
the performance lowerbound 𝛿 , interaction ratio 𝜃 and number of
probes to the effectiveness ofModsNet. We report the performances
of the methods we introduced in Sec 7.1.
Varying 𝛿 . Fixing 𝑘 = 10 and 𝜃 = 100%, we varied the threshold 𝛿

from 0.5 to 0.9 and reports the NDCG@10 in Fig. 7(a). All meth-
ods are getting worse, as it is harder to select higher-quality mod-
els, which will lead to a smaller relevant set. ModsNet is clearly
ahead of others and exhibits stronger robustness across varying rel-
evance thresholds, as our framework keeps identifying, preserving,
and probing high-quality interactions. It also confirms the effec-
tiveness of the probe strategy and knowledge graph, compared to
ModsNet-RProb and ModsNet-NoKG variants.

Figure 7: Effectiveness: impact of relevant set and 𝑘 (PKZoo)

Varying 𝑘 . As illustrated in Fig. 7(b), most of the methods perform
worse as 𝑘 varies from 3 to 18. As expected, selecting larger amount
of pre-trained models allows ill-ranked models to contribute less in
NDCGmeasures [28]. The performance ofModsNet is less sensitive
to 𝑘 , and remains the best among all the baseline methods. As 𝑘
increases, ModsNet-NoKG’s performance remains consistent due
to its reliance on interaction performance alone. This may mean
less accurate predictions, but they are stable.
Varying 𝜃 . We next evaluate the impact of the amount of available
interactions. Fixing 𝑘 = 10 and 𝛿 = 0.8, we varied 𝜃 from 20% to
100% and report the results in Fig. 8(a) and (b), over HFZoo and
KIZoo. Most methods obviously benefit from dense interactions.
WhileModsNet illustrates robust performance over all cases, and
outperforms other baselines in most cases as 𝜃 is larger.
Varying training set quality. We next investigate the impact of pre-
trained models’ quality in the training set. Fig. 8(c) depicts how
NCDG@10 changes with the variation of the performance threshold
𝛿 on the training set from 0.4 to 0.9. It confirms that ModsNet
maintains high-performance accuracy (∼ 0.7) and effectively learns
from pre-trained models with varying performance. Conversely,
other approaches like Matchbox exhibit significant performance
variations across different training sets, indicating the practical
applicability ofModsNet, especially when model quality cannot be
controlled or high-quality models are not always available.
Varying probe budget. We evaluate the effectiveness of the “probe-
and-select” strategy over the number of interactions that are al-
lowed to be performed, as shown in Fig. 8 (d). We only report the
performance of GNN-based baselines, which need probes to cope
with the “cold-start” issue. We observe that they do not always
benefit from larger budgets as introducing too many less important
nodes can decrease accuracy. Nevertheless,ModsNet maintains a
higher NDCG@10 for a larger number of probes, and the decline
occurs later, which shows our probe strategy accurately identifies
the high-quality interactions to probing.

Exp-3:Efficiency (RQ3). In this set of tests, we report the learning
cost and query response time of ModsNet.

2693

Selecting Top-𝑘 Data Science Models by Example Dataset CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Figure 8: Impact of Factors

Training cost. Fig. 9(a) and (b) reports the impact of training cost of
GNN-based methods. We found the following. (1) It is feasible to
learnModsNet. For KIZoo with 1800 models and 9304 interactions,
it takes less than 25 seconds. As verified earlier,ModsNet-C further
reduces the learning cost by 22.85% without sacrificing much in
selection effectiveness. (2) As expected, All models take longer to
train over more interactions. On the other hand,ModsNet provides
the best results that outperform other methods, as verified earlier.
Query response time. We compare ModsNet and other methods
with a queryworkload of 10 datasets and show the results in Fig. 9(c).
(1)ModsNet is comparable withGNN-based approches. In all cases,
it takes 0.1 seconds to recommend top-10models for 10 datasets. (2)
For KIZoo, it outperformsMatchbox, CF andWide&Deep by 23.25,
33.64 and 239.09 times. Indeed, to maintain a good recommendation
accuracy for new datasets, CF always incurs overhead on obtaining
a fully evaluated Model-data matrix as in a user-item matrix. (3)
While LinearRegression incurs the smallest cost, it does not provide
desired selection accuracy in most of the cases as verified earlier.
Varying the size of query workload. Keeping the default setting as
in Table 1, we varied the query workload size from 5 to 25. As
shown in Fig. 9(d),ModsNet scales well with query workloads, and
takes no more than 0.3 seconds to suggest all the answers. CF is
the most sensitive method for various query loads.

Exp-4: Case Study. We next perform case studies to evaluate
ModsNet with real applications, as illustrated in Fig. 10.
Model selection for scientific image classification. In the first case, a
query (medical image of chest X-ray from Kaggle [34]) is issued
toModsNet, and it returns a set of 𝑘 pre-trained image classifiers
from KIZoo with historically observed accuracy at least 0.8 over all
registered datasets. The selected model correctly labeled the image.
The classifiers suggested by other methods e.g.,LinearRegression
has low performance on labeling the same image.
Model selection for XRD peak finding. A second case considers a
query that issues XRD data. We present 2D data and ground truth
peaks annotated by domain experts in Fig. 10. ModsNet recom-
mends a pre-trained peak finding model with 𝐹_1 score of 0.807. In

Figure 9: Efficiency of ModsNet

Figure 10: Case study on application scenarios

contrast, the model selected by Linear Regression gets much lower
accuracy than ours and misses major peaks.

8 CONCLUSION
We have investigated the problem of model selection with example
dataset. We introduced ModsNet, a knowledge-enhanced frame-
work that exploits graph learning over an interaction bipartite
graph, with an auxiliary knowledge graph to select promising
pre-trained models. We have also developed effective strategies
to improve the learning efficiency with provable optimality guar-
antees, and to cope with cold-start scenarios. Our experimental
study verified the effectiveness and efficiency ofModsNet. These
result verified its application for model selection in analytical appli-
cations. A future topic is to deploy ModsNet over distributed data,
and extend it to more domain-specific applications.

ACKNOWLEDGMENTS
This work is supported by NSF under CNS-1932574, ECCS-1933279,
CNS-2028748 and OAC-2104007. Wu is funded in part by the U.S.
Department of Energy under DE-EE0009353, and DE-NA0004104.

2694

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Mengying Wang et al.

REFERENCES
[1] [n.d.]. Github. https://github.com/
[2] [n.d.]. Kaggle: Your Home for Data Science. https://www.kaggle.com/
[3] Nir Ailon, Noa Avigdor-Elgrabli, Edo Liberty, and Anke Van Zuylen. 2012. Im-

proved approximation algorithms for bipartite correlation clustering. SIAM J.
Comput. (2012).

[4] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2017. Graph convolu-
tional matrix completion. arXiv preprint arXiv:1706.02263 (2017).

[5] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In DLRS.

[6] Radwa Elshawi, Mohamed Maher, and Sherif Sakr. 2019. Automated machine
learning: State-of-the-art and open challenges. arXiv preprint arXiv:1906.02287
(2019).

[7] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph neural networks for social recommendation. InWWW.

[8] Chen Gao, Yu Zheng, Nian Li, Yinfeng Li, Yingrong Qin, Jinghua Piao, Yuhan
Quan, Jianxin Chang, Depeng Jin, Xiangnan He, et al. 2022. A Survey of Graph
Neural Networks for Recommender Systems: Challenges, Methods, and Direc-
tions. TORS (2022).

[9] Michael R. Garey and David S. Johnson. 1990. Computers and Intractability; A
Guide to the Theory of NP-Completeness.

[10] Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo, Jiezhong
Qiu, Yuan Yao, Ao Zhang, Liang Zhang, et al. 2021. Pre-trained models: Past,
present and future. AI Open 2 (2021), 225–250.

[11] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In SIGIR.

[12] Hugging Face AI [n.d.]. Hugging Face – The AI Community Building the Future.
https://huggingface.co/

[13] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. 2019.
Similarity of neural network representations revisited. In ICML. 3519–3529.

[14] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[15] Cuong Nguyen, Tal Hassner, Matthias Seeger, and Cedric Archambeau. 2020.
Leep: A new measure to evaluate transferability of learned representations. In
ICML.

[16] Benjamin Paassen, Jessica McBroom, Bryn Jeffries, Irena Koprinska, Kalina Yacef,
et al. 2021. Mapping python programs to vectors using recursive neural encodings.
JEDM 13, 3 (2021), 1–35.

[17] Sinno Jialin Pan and Qiang Yang. 2010. A survey on transfer learning. TKDE 22,
10 (2010), 1345–1359.

[18] Adriano Rivolli, Luís PF Garcia, Carlos Soares, Joaquin Vanschoren, and An-
dré CPLF de Carvalho. 2022. Meta-features for meta-learning. Knowledge-Based
Systems 240 (2022), 108101.

[19] Ribana Roscher, Bastian Bohn, Marco F Duarte, and Jochen Garcke. 2020. Ex-
plainable machine learning for scientific insights and discoveries. IEEE Access 8
(2020), 42200–42216.

[20] David H Stern, Ralf Herbrich, and Thore Graepel. 2009. Matchbox: large scale
online bayesian recommendations. InWWW.

[21] Jeyan Thiyagalingam, Mallikarjun Shankar, Geoffrey Fox, and Tony Hey. 2022.
Scientific machine learning benchmarks. Nature Reviews Physics 4, 6 (2022),
413–420.

[22] Anh T Tran, Cuong V Nguyen, and Tal Hassner. 2019. Transferability and
hardness of supervised classification tasks. In ICCV.

[23] HongweiWang,Miao Zhao, Xing Xie,Wenjie Li, andMinyi Guo. 2019. Knowledge
graph convolutional networks for recommender systems. InWWW.

[24] Mengying Wang, Sheng Guan, Hanchao Ma, Yiyang Bian, Haolai Che, Abhishek
Daundkar, Alpi Sehirlioglu, and Yinghui Wu. 2023. ModsNet(Full Version). https:
//crux-project.github.io/assets/docs/ModsNet_Full.pdf

[25] Mengying Wang, Hanchao Ma, Abhishek Daundkar, Sheng Guan, Yiyang Bian,
Alpi Sehirlioglu, and Yinghui Wu. 2022. CRUX: Crowdsourced Materials Science
Resource and Workflow Exploration. In CIKM.

[26] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. Kgat:
Knowledge graph attention network for recommendation. In KDD.

[27] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In SIGIR.

[28] YiningWang, Liwei Wang, Yuanzhi Li, Di He, and Tie-Yan Liu. 2013. A theoretical
analysis of NDCG type ranking measures. In COLT.

[29] Le Wu, Xiangnan He, Xiang Wang, Kun Zhang, and Meng Wang. 2022. A survey
on accuracy-oriented neural recommendation: From collaborative filtering to
information-rich recommendation. TKDE 35, 5 (2022), 4425–4445.

[30] Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang, and Meng Wang. 2019.
A neural influence diffusion model for social recommendation. In SIGIR.

[31] Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Junchi Yan, and Hongyuan Zha. 2021.
Towards open-world recommendation: An inductive model-based collaborative
filtering approach. In ICML.

[32] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2022. Graph neural
networks in recommender systems: a survey. Comput. Surveys 55, 5 (2022), 1–37.

[33] Yunfan Wu, Qi Cao, Huawei Shen, Shuchang Tao, and Xueqi Cheng. 2022. INMO:
A Model-Agnostic and Scalable Module for Inductive Collaborative Filtering. In
SIGIR.

[34] xray dataset [n.d.]. tolgadincer/labeled-chest-xray-images. https://www.kaggle.
com/datasets/tolgadincer/labeled-chest-xray-images

[35] Kaichao You, Yong Liu, Jianmin Wang, and Mingsheng Long. 2021. Logme:
Practical assessment of pre-trained models for transfer learning. In ICML.

2695

https://github.com/
https://www.kaggle.com/
https://huggingface.co/
https://crux-project.github.io/assets/docs/ModsNet_Full.pdf
https://crux-project.github.io/assets/docs/ModsNet_Full.pdf
https://www.kaggle.com/datasets/tolgadincer/labeled-chest-xray-images
https://www.kaggle.com/datasets/tolgadincer/labeled-chest-xray-images

	Abstract
	1 Introduction
	2 Model Selection: A Formulation
	3 Framework Overview
	4 Extraction Module
	4.1 Standadization and Feature Generation
	4.2 Interaction Sparsification

	5 Selection Module
	5.1 Probe and Select
	5.2 GNN-based Estimator

	6 Prototype System
	7 Experiment Study
	7.1 Experiment settings
	7.2 Experiment results

	8 Conclusion
	Acknowledgments
	References

