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Abstract: We consider a discrete time stochastic Markovian control problem under model uncer-
tainty. Such uncertainty not only comes from the fact that the true probability law
of the underlying stochastic process is unknown, but the parametric family of prob-
ability distributions which the true law belongs to is also unknown. We propose a
nonparametric adaptive robust control methodology to deal with such problem where
the relevant system random noise is, for simplicity, assumed to be i.i.d. and one-
dimensional. Our approach hinges on the following building concepts: first, using the
adaptive robust paradigm to incorporate online learning and uncertainty reduction into
the robust control problem; second, learning the unknown probability law through the
empirical distribution, and representing uncertainty reduction in terms of a sequence of
Wasserstein balls around the empirical distribution; third, using Lagrangian duality to
convert the optimization over Wasserstein balls to a scalar optimization problem, and
adopting a machine learning technique to achieve efficient computation of the optimal
control. We illustrate our methodology by considering a utility maximization problem.
Numerical comparisons show that the nonparametric adaptive robust control approach
is preferable to the traditional robust frameworks.
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1 Introduction

In this paper we propose a new methodology for solving a stochastic Markovian control problem
in discrete time under model uncertainty. Unlike many works in this area that assume the un-
known probability law of the underlying stochastic process belongs to some parametric family of
distributions, we avoid making such postulation to prevent model misspecification. When it comes
to handling model uncertainty, there are different approaches, parametric and nonparametric, de-
veloped in the past decades to incorporate learning into solving control problems with unknown
system models (cf. [KV15], [CG91], [Rie75], [CM20]). However, earlier studies show that a pure
learning approach without awareness of the model risk is prone to risk caused by estimation error
and often leads to overly aggressive controls and system outcomes with high variances. On the other
hand, the central idea of robust control goes back to [GS89]. A large body of research have been
devoted to this area since then, and produced fruitful resutls which are briefly summarized below.
Robust techniques are extremely successful in dealing with model risk but if the learning phase is
lacking in the framework, corresponding controls can be overly conservative and even trivial. Our
work aims to address all the issues mentioned above when handling a Markovian control problem by
proposing a nonparametric adaptive robust methodology and develop an efficient numerical scheme
for implementing such method.

A robust control problem can be viewed as a game between the controller and the nature. In the
traditional setup, the nature chooses the worst case model against the controller at the beginning of
the game. To respond, the controller adopts a control law which determines the game strategies at
all time steps through the timeline. In a sense, both counterparties’ strategies are pre-committed.
Mathematically, the controller takes a set of considered models, solves the optimization problem
for every model in such set, and chooses the strategy corresponding to the worst model against
the controller. We refer to [HSTW06], [HS08], and [BB95], for more information regarding this
setup. More recent works consider a robust control problem as a sequential game: from a fixed
set of models, at each time step the nature chooses one that is the worst for the controller, and
the controller will apply an optimal control in response (cf. [Sir14], [BCP16]). The main difference
between the two approaches mentioned so far is that the worst case model is time independent
in the former case and time dependent in the latter. In [Nut16], the author presented a robust
framework for solving a utility maximization problem in finance where the nature chooses models
from a general time dependent set. In other words, the nature can pick strategies from different sets
of available actions at different stages of the game. However, no example of such time dependent set
of models is given, and the main goal of [Nut16] is to study the existence of optimal portfolio under
nondominated model uncertainty. In [BCC+19], the authors consider general robust stochastic
control problem and specify the time dependent set of models via recursive confidence regions
of the unknown model parameters. We refer to [BCC17] for the detailed discussion of recursive
construction of confidence regions. Such idea is also utilized in this work. The advantage of using
confidence regions are twofold. On one hand, as new realizations of the random noise in the system
are observed between the decision-making time points, the confidence region updates itself and
naturally represents the learning of the unknown system model. On the other hand, such sequence
of sets is asymptotically shrinking in size which leads to reduction of the model uncertainty. To
the best of our knowledge, [BCC+19] is the first work that incorporates the idea of online learning
into the robust control paradigm. A follow-up work in [BC21] is an attempt to extend the adaptive
robust control to the continuous time setup.

Note that the methods in [BCC+19] and [BC21] are parametric and the practical usage of such
methods relies on the assumption that the family of the unknown probability law of the underlying
stochastic process is known to the controller. Some researchers have realized this drawback and
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adopted nonparametric statistical methods by assuming uncertainty for the family of parametric
models. To formulate a robust setup, one will define a set of probability distributions that includes
the estimated distribution. For example, in [KENA19] and [OW21], the authors take a Wasserstein
ball around the empirical distribution and use the ball as the set of considered models. However,
such setup has only been implemented in one-period control problems so far, and the feasibility
of this approach in multi-period setup remains to be investigated. To overcome this obstacle,
we develop a nonparametric adaptive robust control methodology in this work to handle multi-
period stochastic control problems where the family of distributions which the true law of the
system model belongs to is unknown. Naturally, we use the empirical distribution as the estimate
of the distribution of the underlying stochastic process. Another candidate for this purpose is the
perturbed empirical distribution when such distribution is known to be continuous. For construction
of confidence regions in this setup, we utilize the Wasserstein ball around the empirical distribution.
There are several works on the concentration results regarding the empirical distribution and the
Wasserstein distance (cf. [DBGM99], [FG15]). Backed by these papers, one obtains a CLT-type
of result for the empirical distribution that leads to the construction of confidence regions through
Wasserstein distance under rather mild assumptions. Practically, numerical search of the worst case
model in a set of probability distributions is extremely difficult. Another advantage of using the
Wasserstein ball as the confidecnce region is that the aforementioned task of searching for the worst
case model in a Wasserstein ball can be converted to a scalar optimization problem. Last but not
the least, we implement a machine learning technique via the Gaussian process surrogates [RW06]
to build regression models for the relevent value function and the optimal control. The former
surrogate enables us to proceed the backward recursion according to the dynamic programming
principle, and the latter allows us for fast computation of the optimal control when applying our
framework.

The rest of the paper is organized as follows. We begin Section 2 with setting up the model and
in Section 2.1 we discuss the contruction of confidence region for the unknown true probability law
in terms of the Wasserstein ball. Such sets of distributions represent the uncertainty of the system
model. Section 2.2 is dedicated to the formulation of the nonparametric adaptive robust control
framework. We investigate the solution of the nonparametric adaptive robust control problem
and derive the associated Bellman equations in Section 2.3. Also in this section, we prove the
Bellman principle of optimality for the problem and show the existence of measurable worst-case
model selector as well as the existence of measurable optimal control. In Section 2.4, we discuss
the convergence and deviation of the adaptive robust value function to the true value function.
Finally, in Section 3 we consider an illustrative example. Namely, the uncertain utility maximization
problem where the investor needs to allocate the wealth between the money market account and
the risky asset without knowing the true distribution of the risky asset’s return process. We
apply the nonparametric adaptive robust control approach to solve such problem and provide a
numerical solver by using machine learning techniques. Numerical results presented in this section
show the favorable aspects of the proposed methodology compared to the traditional robust control
framework and the case of knowing the true model.

2 Nonparametric Stochastic Control Problem Subject to Model
Uncertainty

Let (Ω,F ) be a measurable space, and T ∈ N be a fixed time horizon. Let T = {0, 1, 2, . . . , T},
T ′ = {0, 1, 2, . . . , T − 1}, and T ′′ = {1, 2, . . . , T}. On the space (Ω,F ) we consider a controlled
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random process X = {Xt, t ∈ T } taking values in Rn with dynamics

Xt+1 = S(Xt, φt, Zt+1), t ∈ T ′, X0 = x0 ∈ Rn. (2.1)

The above Z = {Zt, t ∈ T } is an i.i.d. real valued random sequence of which the natural filtration
is denoted by F = (Ft, t ∈ T ). The process φ = {φt, t ∈ T ′} is F-adapted and takes values in a
compact set A. The function S : Rn×A×R → Rn is deterministic and continuous. For every t ∈ T ′,
we denote by At the set of all processes that take values in A and are adapted to the filtration
Ft := (Fs, t ≤ s ≤ T − 1). Each element in At is called an admissible control starting at time t,
and we use the convention A = A0. In this work, we assume that the process Z is observable but
the distribution F ∗ of each Zt is unknown. We write P(R) as the set of all distributions on R and
PF as the probability measure on (Ω,F ) corresponds to F ∈ P(R). The expectation associated to
PF is EF , and ℓ : Rn → R is the loss function which is continuous and bounded from below. In this
work we will formulate and solve a robust optimization problem aiming to minimize the expected
loss when taking into consideration that the true distribution F ∗ of Z is unknown. In order to
avoid model misspecification caused by assuming a wrong parametric family of distrubtions, we
will conduct online learning of the underlying system in a nonparametric manner via empirical
distribution. In the spirit of [BCC+19], we define the sets of model candidates as approximated
confidence regions around the empirical distribution. Such sets are Wasserstein balls and their
sizes decreases as time goes on in general. Therefore, in our robust framework, the uncertainty is
dynamically reduced through online learning and shrinkage of the Wasserstein balls.

Remark 2.1. Note that the theory developed in this work can be easily generalized to the multi-
dimensional case. In fact, in the follow-up project [BC22], we study the adaptive robust control
problem under dependence uncertainty. The key point of this paper is that, by considering the
nonparametric framework, we avoid misspecification of the unknown model to mitigate the corre-
sponding model risk. Therefore, for the sake of simplicity, we consider one dimensional distribution
in this work. On the other hand, there are still many delicate details to be taken care of for non-i.i.d.
random factors, and we leave that for future investigation.

2.1 Empirical Distribution and Uncertainty Set

We make a standing postulation that F ∗ satisfies that∫ ∞

−∞

√
F ∗(z)(1− F ∗(z))dz <∞. (2.2)

We note that any distribution that has finite moments with order higher than 2 will satisfy the
above assumption (cf. (2.1’) in [DBGM99]). Next, denote by F̂t, t ∈ T ′, the empirical distribution
of Zt+1 given the initial guess F̂0 of F ∗ and the observations Z1:t := {Zi, i = 1, . . . , t}, where F̂0 is
the empirical distribution of Z1 based on historical data of Z with sample size t0. In other words,
F̂t is the contructed based Z−t0+1:t. Defined as an average of indicator functions, F̂t satisfies the
following recursion similarly to any estimated mean:

F̂t+1(z) =
(t0 + t)F̂t + 1{Zt+1<z}

t0 + t+ 1
:= R(t, F̂t, Zt+1), z ∈ R, t ∈ T ′. (2.3)

The map R defined above will be viewed as the dynamics of the process F̂ . Regarding other
properties of F̂ , it is well known that F̂ is a consistent estimator of F ∗:

lim
t→∞

F̂t(z) = F ∗(z), a.s..
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Moreover, by the assumption (2.2) and using the results in [DBGM99], we have that

√
t0 + tdW,1(F̂t, F

∗) =
√
t0 + t

∫ ∞

−∞
|F̂t(z)− F ∗(z)|dz →

∫ 1

0
|B(s)|dQ∗(s), (2.4)

where dW,1 is the Wasserstein distance of order 1, B(s), 0 ≤ s ≤ 1, and Q∗ are the Brownian bridge
and the quantile function of F ∗, respectively, and the convergence is in distribution. According to
(2.4), for any 0 < α < 1, if we denote by Hα the 1−α quantile of

∫ 1
0 |B(s)|dQ∗(s), we should have

that

P
(
dW,1(F̂t, F

∗) ≤ Hα

√
t0 + t

)
≥ 1− α,

asymptotically. Hence, we define the α-uncertainty set Cαt , 0 < α < 1, which is an approximated
confidence region for F ∗ as

Cαt (F̂t) =
{
F ∈ P1(R) : dW,1(F̂t, F ) ≤

Hα

√
t0 + t

}
, (2.5)

where P1(R) is the set of all distributions with finite first moment. Due to the discussion above,
the rationale behind (2.5) is that the probability that Cαt (F̂t) contains F

∗ is approximately 1− α.
Note that the constant Hα exists in theory, but in practice one does not know the value of Hα as
F ∗ is assumed to be unknown. In Section 3, we will discuss how we will approximate the constant
Hα.

The above construction of the uncertainty sets based on (2.4) is asymptotic, and there are non-
asymptotic results that can be used for obtaining such sets. For example, according to [FG15], by
postulating ∫

R
ec1|z|

c2
F ∗(dz) <∞, (2.6)

for some c1 > 0, and c2 > 1, one gets that for any fixed 0 < α < 1, there exists some constants C
and c such that

P

(
dW,1(F̂t, F

∗) ≤

√
log(C/α)

c(t+ t0)

)
≥ 1− α. (2.7)

The above inequality (2.7) provides a different formulation of the uncertainty sets in terms of the
Wasserstein balls. For each t ∈ T ′, such Wasserstein ball has a radius that is equal to a multiple
of 1√

t0+t
. Therefore, the size of the corresponding uncertainty set has the same order as Cαt .

Consequently, for large enough T and t ≤ T −1, the difference between Cαt and the uncertainty sets
obtained from (2.7) is not significant. On the other hand, the constants C and c are not explicitly
given in [FG15], in order to use (2.7), one can keep track of the constants in the proof in [FG15]
and get:

C =
2p − 1

2
, c =

(1− 2−η)(2p − 1)

23p/2+1(2p + 1)
,

where η ∈ (0, 3/2 − p) for p-Wasserstein distance. We will discuss the choice between uncertainty
sets defined via (2.4) and (2.7) in Section 3. The takeaway admitted by both constructions is that,
with slight abuse of notations, there exists a constant Hα > 0 based on which we can formulate an
uncertainty set Cαt as in (2.5).

Next, by using a different representation of the Wasserstein distance between probability dis-
tributions and by considering the product topology for P1(R)×R, we have the following technical
result regarding continuity of the map defined in (2.3).
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Lemma 2.2. For fixed t ∈ T ′, the mapping R(t, ·, ·) : P1(R)× R → P1(R) is continuous.

Proof. Assume that (Fn, zn) → (F, z) where Fn, F ∈ P1(R), zn, z ∈ R, n = 1, 2, , . . .. Then,
dW,1(Fn, F ) → 0 and zn → z. Denote µFn,zn = R(t, Fn, zn) and µF,z = R(t, F, z). For M := {f :
|f(x)− f(y)| ≤ |x− y|}, we have that

dW,1(µFn,zn , µF,z) = sup

{∫
R
fdµFn,zn −

∫
R
fdµF,z : f ∈ M

}
= sup

{
t0 + t

t0 + t+ 1

(∫
R
fdFn −

∫
R
fdF

)
+

1

t0 + t+ 1
(f(zn)− f(z)) : f ∈ M

}
≤ t0 + t

t0 + t+ 1
sup

{∫
R
fdFn −

∫
R
fdF : f ∈ M

}
+

1

t0 + t+ 1
|zn − z|

=
t0 + t

t0 + t+ 1
dW,1(Fn, F ) +

1

t0 + t+ 1
|zn − z|.

Therefore, we get that dW,1(µFn,zn , µF,z) → 0 and the mapping R(t, ·, ·) is continuous.

One property that the set valued function Cαt satisfies is upper hemicontinuity (u.h.c.). That
is for any for any F ∈ P1(R) and any open set E such that Cαt (F ) ⊂ E ⊂ P1(R), there exists a
neighborhood D of F such that for all F ′ ∈ D, Cαt (F ′) ⊂ E (cf. [Bor85, Definition 11.3]).

Lemma 2.3. For every t ∈ T ′, the set valued function Cαt is upper hemicontinuous.

Proof. Fix any F ∈ P1(R) and let E ⊂ P1(R) be an open set such that Cαt (F ) ⊂ E . Denote by ∂E
the boundary of E , and by dist(F, ∂E) the shortest distance between F and some point belongs to
∂E .

Because Cαt (F ) ⊂ E and it is a closed set, we have dist(F, ∂E) > Hα/
√
t0 + t, where the latter

is the radius of Cαt (F ). Let ε = dist(F, ∂E)−Hα/
√
t0 + t > 0, Then, take D ⊂ P1(R) as the open

ball centered at F with radius ε. Using the triangular inequality we see that for any F ′ ∈ D, we
have Cαt (F ′) ⊂ E .

2.2 Nonparametric Adaptive Robust Control Problem

Now we proceed to formulate the nonparametric adaptive robust control problem. For the rest of
the paper, we will consider P1(R) with the metric dW,1. Since R is separable and complete, then
(P1(R), dW,1) is also separable and complete. Hence, P1(R) is a Polish space and thus a Borel space.

Define the augumented state process Y = {Yt = (Xt, F̂t), t ∈ T }, and the augumented state space
EY = Rn × P1(R). For EY we equip the product topology, it is then a Borel space and the Borel
σ-algebra EY conicides with the product σ-algebra. The process Y has the following dynamics

Yt+1 = G(t, Yt, φt, Zt+1) := (S(Xt, φt, Zt+1), R(t, F̂t, Zt+1)), t ∈ T ′. (2.8)

Also, we will write Cαt (Yt) and Cαt (F̂t) interchangeably through the rest of the paper.
Due to the assumption that S is continuous and Lemma 2.2, we get that G is continuous and

therefore Borel measurable. Next, given our setup, the process Y is F-adapted and Markovian. The
transition probability for the state process Y is defined as follows. For any t ∈ T ′, (y, a) ∈ EY ×A,
and F ∈ P1(R), Qt is a probability measure on EY such that

Qt(D|y, a, F ) = PF (G(t, y, a, Zt+1) ∈ D), D ∈ EY .

One important property of the stochastic kernel Qt is that it is in fact Borel measurable which
will be proved below. Such property is crucial for showing the existence of measurable optimal
controls.
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Proposition 2.4. For each t ∈ T ′, the probability Qt( · |y, a, F ) is a Borel measurable stochastic
kernel on EY given EY ×A× P1(R).

Proof. According to [BS78, Proposition 7.26], we just need to show that Qt(D|y, a, F ) is a Borel
measurable function in (y, a, F ) for any D ∈ EY . To this end, recall that

Qt(D|y, a, F ) = PF (G(t, y, a, Zt+1) ∈ D) =

∫
R
1D(G(t, y, a, z))dF (z).

Since dF (z) is independent of y and a, then we can denote q(dz|y, a, F ) = dF (z). The kernel q is
Borel-measurable in (y, a, F ), and we have

Qt(D|y, a, F ) =
∫
R
1D(G(t, y, a, z))q(dz|y, a, F ).

Next, note that 1D(G(t, y, a, z)) is Borel measurable in (y, a, F, z), and therefore by [BS78, Propo-
sition 7.29], we get that Qt(D|y, a, F ) is Borel measurable in (y, a, F ).

In this work, we are dealing with a closed loop feedback control problem. To this end, a control
process φ is called Markovian if for every t ∈ T ′ (with a slight abuse of notation)

φt = φt(Yt)

where on the right hand side φt : EY → A is a measurable mapping. Similarly, A process ψ is
called a Markovian model selector if

ψt = ψt(Yt)

where ψt : EY → P1(R) is measurable. In the adaptive robust framework, we consider the Marko-
vian control processes and Markovian model selectors such that ψt(y) ∈ Cαt (y) for any y ∈ EY . For
every t ∈ T ′, any time t state yt ∈ EY , and control process φ ∈ At, we denote

Ψφ
yt,t = {ψt:T−1, ψs(ys) ∈ Cαs (ys), ∃z ∈ R, s.t. ys+1 = G(s, ys, φs(ys), z), t ≤ s < T − 1} .

and

Ψyt,t = {ψt:T−1, ψs(ys) ∈ Cαs (ys), ∃a ∈ A, z ∈ R, s.t. ys+1 = G(s, ys, a, z), t ≤ s < T − 1} .

Next, for every t ∈ T ′, any yt ∈ EY , φ ∈ At, and ψ ∈ Ψyt,t, we define the probability measure Qφ,ψ
yt,t

on the concatenated canonical space XTs=t+1EY as

Qφ,ψ
yt,t(Bt+1 × · · · ×BT ) =

∫
Bt+1

· · ·
∫
BT

T−1∏
u=t

Qu(dyu+1|yu, φu(yu), ψu(yu)).

Correspondingly, we define the family of probability measures Qφ
yt,t = {Qφ,ψ

yt,t , ψ ∈ Ψyt,t}. In
particular, we let Qφ

y0 = Qφ
y0,0

. Then, for given y0 ∈ EY , the nonparametric adaptive robust
control problem is formulated as

inf
φ∈A

sup
Q∈Qφ

y0

EQ[ℓ(XT )]. (2.9)

In a traditional robust setup, one would choose a fixed set P0 in place of Cαt . Due to such reason, we
will call it the static robust framework throughout. In comparison, the advantage of (2.9) is that
such framework integrates robust control with learning and reducing uncertainty. The learning
of the unknown model is carried through via the evolution of the process Y , and reduction of
uncertainty is embedded in the construction of Qφ

y0 since for any yt ∈ EY instead of finding the
worst case model in the fixed set P0, the selectors take values in the uncertainty sets Cαt (yt) which
is a sequence of random sets that shrink in size.
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2.3 Solution of Nonparametric Adaptive Robust Control Problem

We will show that solution of the nonparametric adaptive robust control problem is given by solving
the following adaptive robust Bellman equations

VT (y) = ℓ(x), y ∈ EY ,

Vt(y) = inf
a∈A

sup
F∈Cα

t (y)

∫
EY

Vt+1(yt+1)Qt(dyt+1|y, a, F ), y ∈ EY , t ∈ T ′. (2.10)

Before we prove the main theorem in this section, let us first provide the following technical
result.

Lemma 2.5. Fix t ∈ T ′, for any F̂ ∈ P1(R), let

C̃αt (F̂ ) =
{
F ∈ P1(R) : dW,1(F, F̂ ) <

Hα

√
t0 + t

}
.

Then,

Oα
t :=

⋃
y∈EY

{y} × C̃αt (y)

is an open set in EY × P1(R).

Proof. We prove the statement by contradiction. Assume there exists (y0, F0) ∈ Oα
t , and there

exists a sequence (yn, Fn) → (y0, F0), such that for any n > 0, (yn, Fn) /∈ Oα
t . Note that F0 ∈ C̃αt (y0),

hence dW,1(F0, f̂0) < Hα/
√
t0 + t− ε for some ε > 0, where f̂0 is the second component of y0. We

have

dW,1(Fn, f̂n) ≤ dW,1(Fn, F0) + dW,1(F0, f̂0) + dW,1(f̂0, f̂n).

For large enough n, we have dW,1(Fn, F0) < ε/4, and dW,1(f̂0, f̂n) < ε/4. Then, for such n, the
following equality holds true

dW,1(Fn, f̂n) ≤
Hα

√
t0 + t

− ε

2
,

which implies that Fn ∈ C̃αt (yn) and (yn, Fn) ∈ Oα
t . This yields a contradiction from which we

conclude that the set Oα
t is open.

Next, we have the main result of this section which shows that the optimal control φ and model
selector ψ exist, and they are sequences of measurable functions. We also want to point out that
our proof for Theorem 2.6 below is based on results of existence of measurable selectors (cf. [BS78]),
and we refer to [Nut16] where the same type of result is used to prove the existence of optimal
portfolio for a utility maximization problem.

Theorem 2.6. For every t ∈ T , the function Vt is lower semicontinuous (l.s.c.) and upper semian-
alytic (u.s.a.). There exists Borel measurable optimal control φ∗

t , t ∈ T ′, and analytically measurable
ε-model selector ψε,∗t , t ∈ T ′.

Proof. Since VT (y) = ℓ(x) which is continuous by assumption, then VT is l.s.c. and u.s.a.. Next,
denote

vT−1(y, a, F ) =

∫
EY

VT (yT )QT−1(dyT |y, a, F ).
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By using Proposition 2.4, we have that vT−1(y, a, F ) is u.s.a.. Let D =
⋃

(y,a)∈EY ×A{(y, a)} ×
CαT−1(y). Note that CαT−1 is u.h.c. from Lemma 2.3 and closed valued, by adopting the proof of
[BCC21] in our setup, we obtain that the graph of Cαt−1, which is D, is closed. Hence, the set D is
analytic. The (y, a) section of D is CαT−1(y), and according to [BS78, Proposition 7.50], we get that

ṽT−1(y, a) := sup
F∈Cα

T−1(y)
vT−1(y, a, F )

is u.s.a.. Moreover, for any ε > 0, there exists an analytically measurable function ψε,∗T−1 : EY × A
such that for any (y, a),

vT−1(y, a, ψ
ε,∗
T−1(y, a)) ≥

{
ṽT−1(y, a)− ε, if ṽT−1(y, a) <∞,

1/ε, if ṽT−1(y, a) = ∞.
(2.11)

Now we prove that the function ṽT−1(y, a) is l.s.c.. To this end, we write

vT−1(y, a, F ) =

∫
R
VT (G(T − 1, y, a, z))dF (z).

Since VT is l.s.c. and G(T − 1, y, a, z) is continuous in (y, a, z), then VT (G(T − 1, y, a, z)) is l.s.c..
On the other hand, F is clearly a continuous stochastic kernel on R given P1(R). In view of the
assumption that ℓ is bounded below, we know the function vT−1(y, a, F ) is l.s.c.. Let us consider
the optimization problem

v̂T−1(y, a) = sup
F∈C̃α

t (y)

vT−1(y, a, F ).

Lemma 2.5 shows that the set Oα
t is open in EY ×P1(R), so it is also open in D′ := EY ×A×P1(R).

The set C̃αt (y) is the (y, a) section of D′. By [BS78, Proposition 7.34], we obtain that v̂T−1(y, a) is
l.s.c.. Note for any y ∈ EY , the uncertainty set Cαt (y) is the closure of C̃αt (y), it follows immediately
that ṽT−1(y, a) = v̂T−1(y, a) and the former is therefore l.s.c..

It remains to show that

VT−1(y) = inf
a∈A

ṽT−1(y, a)

is l.s.c., and there exists a Borel measruable function φ∗ : EY → A such that

VT−1(y) = ṽT−1(y, φ
∗(y)).

Towards this end, we note that D′′ := EY × A is closed, and A by assumption is compact. The y
section of D′′ is A for any y ∈ EY . Thus, by [BS78, Proposition 7.33], the function VT−1 is l.s.c.,
and the Borel measurable optimal control φ∗ exists.

We shall prove the statement of all t = T − 2, . . . , 0 by backward induction. Recall from
Proposition 2.4, the stochastic kernel QT−2( · |y, a, F ) is Borel measurable. Also, the function
VT−1 is u.s.a.. Therefore,

vT−2(y, a, F ) =

∫
EY

VT−1(yT−1)QT−2(dyT−1|y, a, F )

is u.s.a.. By using a similar argument as above, the function

vT−2(y, a, F ) =

∫
EY

VT−1(G(T − 2, y, a, z))dF (z)

is l.s.c.. The rest of the proof follows analogously.
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Finally, we show that the problem (2.9) will be solved by the adaptive robust Bellman equations
(2.10). To this end, we introduce the set At = {φt:T−1, t ∈ T ′}, and provide the following technical
results for preparation.

Lemma 2.7. For every t ∈ T ′, and any φ ∈ At, the function

sup
Q∈Qφ

yt,t

EQ[ℓ(XT )]

is upper semianalytic in yt.

The proof for this lemma is a direct modification of Theorem 2.6 and hence we omit it here.
Such result ensures that the mentioned function is measurable and can be integrated. Now we are
ready to present the solution of the adaptive robust control problem.

Theorem 2.8. For every t ∈ T ′, and any yt ∈ EY , we have

Vt(yt) = inf
φ∈At

sup
Q∈Qφ

yt,t

EQ[ℓ(XT )].

Moreover, with φ∗
t , t ∈ T ′, in Theorem 2.6, we get

inf
φ∈At

sup
Q∈Aφ

yt,t

EQ[ℓ(XT )] = sup
Q∈Aφ∗

yt,t

EQ[ℓ(XT )].

Proof. We prove the result via backward induction in t = T − 1, . . . , 1, 0.

First, for t = T − 1 and yT−1 ∈ EY , we have

inf
φ∈AT−1

sup
Q∈Qφ

yT−1,T−1

EQ[ℓ(XT )] = inf
a∈A

sup
F∈Cα

T−1(yT−1)

∫
EY

VT (yT )QT−1(yT |yT−1, a, F ) = VT−1(yT−1).

Next, for t = T − 2, . . . , 0 and yt ∈ EY , by induction

inf
φ∈At

sup
Q∈Qφ

yt,t

EQ[ℓ(XT )] = inf
(φt,φt+1:T−1)∈At

sup
F∈Cα

t (yt)

∫
EY

sup
Q∈Q

φt+1:T−1
yt+1,t+1

EQ[ℓ(XT )]Qt(dyt+1|yt, φt(yt), F )

≥ inf
(φt,φt+1:T−1)∈At

sup
F∈Cα

t (yt)

∫
EY

Vt+1(yt+1)Qt(dyt+1|yt, φt(yt), F )

= inf
a∈A

sup
F∈Cα

t (yt)

∫
EY

Vt+1(yt+1)Qt(dyt+1|yt, a, F ) = Vt(yt),

where the inequality is due to that

sup
Q∈Q

φt+1:T−1
yt+1,t+1

EQ[ℓ(XT )] ≥ inf
φ∈At+1

sup
Q∈Qφ

yt+1,t+1

EQ[ℓ(XT )] = Vt+1(yt+1).

On the other hand, for any ε > 0, let φεt+1:T−1 ∈ At+1 be an ε-optimal control starting at time
t+ 1. We get

sup

Q∈Q
φε
t+1:T−1

yt+1,t+1

EQ[ℓ(XT )] ≤ inf
φ∈At+1

sup
Q∈Qφ

yt+1,t+1

EQ[ℓ(XT )] = Vt+1(yt+1) + ε.
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It is followed by

inf
φ∈At

sup
Q∈Qφ

yt,t

EQ[ℓ(XT )] = inf
(φt,φt+1:T−1)∈At

sup
F∈Cα

t (yt)

∫
EY

sup
Q∈Q

φt+1:T−1
yt+1,t+1

EQ[ℓ(XT )]Qt(dyt+1|yt, φt(yt), F )

≤ inf
(φt,φt+1:T−1)∈At

sup
F∈Cα

t (yt)

∫
EY

sup

Q∈Q
φε
t+1:T−1

yt+1,t+1

EQ[ℓ(XT )]Qt(dyt+1|yt, φt(yt), F )

≤ inf
a∈A

sup
F∈Cα

t (yt)

∫
EY

Vt+1(yt+1)Qt(dyt+1|yt, a, F ) + ε

= Vt(yt) + ε.

Since ε is arbitrary, we obtain

inf
φ∈At

sup
Q∈Qφ

yt,t

EQ[ℓ(XT )] ≤ Vt(yt).

Hence, we have
inf
φ∈At

sup
Q∈Qφ

yt,t

EQ[ℓ(XT )] = Vt(yt).

Showing that φ∗ in Theorem 2.6 solves the adaptive robust control problem is similar to proving
dynamical programming principle, and one just needs to note that φ∗ is where Vt, t ∈ T ′, is
attained. Therefore, we omit the proof here.

2.4 Convergence Analysis

A nice property of the combination of Wasserstein metric and adaptive robust control is that
convergence analysis can be done in such framework very easily. As shown in Theorem 2.6 and
2.8, to deal with (2.9) one employs the dynamic programming principle and solves the following
Bellman equation

Vt(y) = inf
a∈A

sup
F∈Cα

t (y)
EF [Vt+1(G(t, y, a, Zt+1))], t ∈ T ′.

According to [BDOW21, Theorem 2], by assuming V and S to be differentiable w.r.t. x, and
denoting

V a
t (y) = sup

F∈Cα
t (y)

EF [Vt+1(G(t, y, a, Zt+1))],

we get that

V a
t (y) = E

F̂t
[Vt+1(G(t, y, a, Zt+1))] +

Hα

√
t0 + t

E
F̂t

[∣∣∣∣ ∂∂xVt+1(G(t, y, a, Zt+1))

∣∣∣∣]+ o

(
1√
t0 + t

)
.

(2.12)

For any given state y = (x, f̂) ∈ EY , denote by z−t0+1:0 the historical sample points that generate

F̂0, and let z1:t be the observations of Z such that f̂(z) =

∑t
i=−t0+1 1{zi<z}

t0+t
. The following expectation

is computed as

E
F̂t
[Vt+1(G(t, y, a, Zt+1))] =

1

t0 + t

t∑
i=−t0+1

Vt+1(G(t, y, a, zi)),

11



which is the sample mean of the random variable Vt+1(G(t, y, a, Zt+1)) given sample z−t0+1:t. By
central limit theorem, we obtain that the convergence speed of E

F̂t
[Vt+1(G(t, y, a, Zt+1))] to the

expectation EF ∗ [Vt+1(G(t, y, a, Zt+1))] is asymptotically of order 1√
t0+t

. Thus, as t increases the

adaptive robust control problem converges to the control problem without uncertainty and the
convergence speed is of order 1√

t0+t
. Moreover, we get by using the Chebyshev inequality that

P
(∣∣∣EF̂t

[Vt+1(G(t, y, a, Zt+1))]− µ∗V

∣∣∣ > ε
)
≤

Var
(
E
F̂t
[Vt+1(G(t, y, a, Zt+1))]

)
(t0 + t)ε2

, (2.13)

where µ∗V = EF ∗ [Vt+1(G(t, y, a, Zt+1))]. Inequality (2.13) implies that the first term on the right
hand side in (2.12) has a high probability of being close to EF ∗ [Vt+1(G(t, y, a, Zt+1))]. For example,
taking ε = 1√

t0+t
, then (2.13) implies

P
(∣∣∣EF̂t

[Vt+1(G(t, y, a, Zt+1))]− µ∗V

∣∣∣ > 1√
t0 + t

)
≤ Var

(
E
F̂t
[Vt+1(G(t, y, a, Zt+1))]

)
.

Clearly, the above probability will continue to decrease as t increases. Note that with a further
assumption given in the Cramer’s Theorem:∫

R
eθzF ∗(dz) <∞, ∀θ ∈ R, (2.14)

we have

lim
t→∞

1

t+ t0
logP

(∣∣∣EF̂t
[Vt+1(G(t, y, a, Zt+1))]− µ∗V

∣∣∣ > ε
)
= − sup

θ∈R
((µ∗V + ε)θ − logEF ∗ [eθZt+1 ]).

As a result, the probability that E
F̂t
[Vt+1(G(t, y, a, Zt+1))] deviates from the true value function

for more than ε has an exponential decay in time with speed − supθ∈R((µ
∗
V + ε)θ− logEF ∗ [eθZt+1 ])

which is an obvious improvement over (2.13). In summary, if assuming (2.14) and using Cαt (y)
as the uncertainty set, even though the overall convergence speed of Vt is still of order 1√

t0+t
, we

obtain a more accurate value function compared to the true one.

Based on (2.12), we can compare the adaptive robust framework to the static robust setup in
a qualitative manner. For the latter, the uncertainty set is fixed for all t ∈ T ′, and we denote
it by P0. To solve the static robust control problem, one also utilizes the dynamic programming
principle and solves

Ṽt(y) = inf
a∈A

sup
F∈P0

EF [Ṽt+1(G(t, y, a, Zt+1))], t ∈ T ′,

where Ṽ is the corresponding value function. We consider the set P0 defined as Bδ(F̂0) which is
a Wasserstein ball arond F̂0 with radius δ. We also define a preference relation between value
functions via

Vt(y) ⪰ Ṽt(y) ⇐⇒ sup
F∈Cα

t (y)
EF [Vt+1(G(t, y, a, Zt+1))] ≤ sup

F∈Bδ(F̂0)

EF [Ṽt+1(G(t, y, a, Zt+1))],

for any a ∈ A. Next, suppose that F ∗ ∈ Po
0 which is the interior of the set P0. For large T and t, we

have dW,1(F̂t, F
∗) < dW,1(F

∗, ∂P0) with high probability, where dW,1(F
∗, ∂P0) is the Wasserstein
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distance from between F ∗ and the closest point on the boundary of P0. Consequently, Cαt (Yt) ⊂ P0

with high probability, and loosely speaking we get

Vt(y) ⪰ Ṽt(y), (2.15)

asymptotically. Note that such discussion is rather qualitative since it is not easy to compute
P(Cαt (Yt) ⊂ P0) and prove (2.15) rigorously. Nevertheless, we argue that adaptive robust framework
is more preferrable than static robust.

For a more quantitative analysis, we assume that P0 = Cα0 (y0). Similarly to (2.12), we have

Ṽ a
t (x) = E

F̂0
[Ṽt+1(S(x, a, Zt+1))] +

Hα

√
t0
E
F̂0

[∣∣∣∣ ∂∂xṼt+1(S(x, a, Zt+1))

∣∣∣∣]+ o(1).

It is obvious that the right hand side of the above equality does not converge with respect to t.
As a result, the static robust framework will produce strategies that in general distant from the
optimal strategies without uncertainty. Such strategies behave very conservatively while adaptive
robust has a better balance between being aggressive and conservative due to the embedded learning
feature. In view of such, the adaptive robust methodology is more favorable compared to the static
robust framework which offers no convergence to the true optimization problem.

Note that discussions in this section are possible since we are using the Wasserstein metric to
define the uncertainty sets. Similar analysis could be done when utilizing the Kullback-Leibler
divergence but stronger assumptions on the considered probability distributions are required.

3 Nonparametric Adaptive Robust Utility Maximization

In this section, we consider a utility maximization problem under model uncertainty and we will
solve it under the nonparametric adaptive robust framework. To this end, we take X to be the
investor’s wealth process. Any portfolio includes two assets: a banking account with 1-period
return 1 + r, where r is the interest rate and fixed throughout, and a stock with i.i.d. log-return
Zt, t ∈ T ′′, of which the distribution F ∗ is unknown. For each t ∈ T ′, denote by φt the ratio of the
wealth invested in the stock. We rule out leverage and short selling, so φt takes values in A = [0, 1].
Imposing the self-financing strategy, and given X0 = x0 > 0, the dynamics of X is given by

Xt+1 = Xt((1− φt)(1 + r) + φte
Zt+1), t ∈ T ′.

Take n = 1, and the function S is defined on R×A×R. The prices of the risky asset are observable
and thus the return process Z of the risky asset is also observable. We will use the observations of
Z to construct the empirical distribution iteratively as in (2.3). Then, we build the α-uncertainty

sets for the distribution F of Z according to (2.5). Next, by taking ℓ(x) = e−ηx−1
η for some η > 0,

we formulate the nonparametric adaptive robust utility maximization problem as

inf
φ∈A

sup
Q∈Qα

y0

EQ[ℓ(XT )],

where y0 = (x0, F̂0) such that F̂0 is the initial guess of F ∗. Note that the funtion ℓ is bounded and
we are equivalently dealing with

sup
φ∈A

inf
Q∈Qα

y0

EQ

[
1− e−ηXT

η

]
(3.1)
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which is a maximization problem of the exponential utility function. Due to Theorem 2.8, and with
slight abuse of notations, we will solve the following Bellman equations to get the solution of (3.1).

VT (y) =
1− e−ηx

η
,

Vt(y) = sup
a∈A

inf
F∈Cα

t (y)

∫
EY

Vt+1(yt+1)Qt(dyt+1|y, a, F ), t ∈ T ′. (3.2)

Moreover, by applying Theorem 2.6, we get that the optimal trading strategies and worst case
models exist which are optimizers of (3.2).

Remark 3.1. Several types of utility functions satisfy the assumptions in Theorem 2.6 so that the
corresponding optimal trading strategies and worst case models exist, and the adaptive robust
control problem can be solved by utilizing the dynamic programming principle. Another example
of such utility functions is the power utility x1−η−1

1−η where η > 1.

Note that the loss function ℓ(x) = e−ηx−1
η is not only bounded from below but actually bounded.

Here we provide the following technical result regarding the corresponding value functions.

Proposition 3.2. The value function Vt(y) as in (3.2) is continuous for every t ∈ T ′.

Proof. First of all, Theorem 2.6 implies that Vt, t ∈ T ′, is u.s.c.. As a result, we just need to show
that Vt, t ∈ T ′, is l.s.c.. To this end, note that VT (y) =

1−e−ηx

η is continuous, and G(T − 1, y, a, z)
is continuous in (y, a, z). Therefore, VT (G(T − 1, y, a, z)) is l.s.c. in (y, a, z). Moreover,

vT−1(y, a, F ) =

∫
R
VT (G(T − 1, y, a, z))dF (z)

is l.s.c. and bounded, due to the fact that that VT is bounded.

Consider the set D =
⋃

(y,a)∈EY ×A CαT−1(y), and define the function

v̌T−1(y, a, F ) =

{
vT−1(y, a, F ) if (y, a, F ) ∈ D,
∞ otherwise.

For any c ∈ R, we have

{(y, a, F ) ∈ EY ×A× P1(R) | v̌T−1(y, a, F ) ≤ c}
= {(y, a, F ) ∈ EY ×A× P1(R) | vT−1(y, a, F ) ≤ c} ∩ D.

Since vT−1 is l.s.c., and D is closed, then the set {(y, a, F ) ∈ EY ×A× P1(R) | v̌T−1(y, a, F ) ≤ c}
is closed and v̌T−1(y, a, F ) is l.s.c.. Next, for any c ∈ R,{

(y, a) ∈ EY ×A | inf
F∈Cα

T−1(y)
vT−1(y, a, F ) ≤ c

}

=

{
(y, a) ∈ EY ×A | inf

F∈P1(R)
v̌T−1(y, a, F ) ≤ c

}
.

Fix (y, a) and let {Fn, n > 0} ⊂ P1(R) be such that

v̌(y, a, Fn) ↓ ṽT−1(y, a) := inf
F∈P1(R)

v̌T−1(y, a, F ).
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By definition of v̌T−1, we know for large enough n, Fn ∈ CαT−1(y) which is a weakly compact
set. Then, there exists F ∗ such that v̌T−1(y, a, F

∗) = ṽT−1(y, a). Let {(yn, an), n > 0} be a
sequence that converges to some (y0, a0). We choose a sequence {Fn, n > 0} ⊂ P(R) such that
v̌T−1(yn, an, Fn) = ṽT−1(yn, an). Obviously, for each n > 0, Fn ∈ CαT−1(yn). Due to the fact that

{yn, n > 0} converges to y0, the set D̃ =
⋃
n CαT−1(yn) is bounded. Hence, there exists F ′ ∈ D̃ and

δ > 0 such that D̃ ⊂ Bδ(F ′) where the latter is a Wasserstein ball around F ′ with radius δ.
Now we consider the topology consistent with the weak convergence for the argument F in the

function v̌T−1(y, a, F ). In such case, v̌T−1 is still l.s.c.. There exists a subsequence (ynk
, ank

, Fnk
),

k > 0, such that
lim inf
n→∞

v̌T−1(yn, an, Fn) = lim
k→∞

v̌T−1(ynk
, ank

, Fnk
).

As Bδ(F ′) is compact under the Prokhorov metric, there exists F0 that is a limit point of {Fnk
, n >

0}. We obtain

lim inf
n→∞

ṽT−1(yn, an) = lim inf
n→∞

v̌T−1(yn, an, Fn) = lim
k→∞

v̌T−1(ynk
, ank

, Fnk
)

≥ v̌T−1(y0, a0, F0) ≥ ṽT−1(y0, a0).

This shows that ṽT−1(y, a) is l.s.c.. Next, take set O = EY × (0, 1) and such set is open. The y
section of O is the interval (0, 1). By [BS78, Proposition 7.34]

V̂T−1(y) = sup
a∈(0,1)

ṽT−1(y, a)

is l.s.c.. Note that A = [0, 1] is the closure of (0, 1), thus

VT−1(y) = sup
a∈A

ṽT−1(y, a) = sup
a∈(0,1)

ṽT−1(y, a) = V̂T−1(y),

and VT−1(y) is l.s.c.. Following the backward induction for t = T − 2, . . . , 0, the proof is complete.

Proposition 3.2 is of great importance for numerical computation of Bellman equations (3.2).
As in [KENA19], when Vt+1 is l.s.c., for any fixed (y, a) ∈ EY ×A, the inner optimization problem
can be solved as follows

inf
F∈Cα

t (y)

∫
EY

Vt+1(yt+1)Qt(dyt+1|y, a, F ) = inf
F∈Cα

t (y)

∫
R
Vt+1(G(t, y, a, z))dF (z)

= sup
γ≥0

{
E
F̂

[
V γ
t+1(G(t, y, a, Zt+1))

]
− γHα

√
t0 + t

}
,

where V γ
t+1(G(t, y, a, Zt+1)) = infz∈R {Vt+1(G(t, y, a, z)) + γ|z − Zt+1|}, and y = (x, F̂ ). With such

results in hand, the Bellman equation (3.2) becomes

VT (y) =
1− e−ηx

η
,

Vt(y) = sup
a∈A,γ≥0

{
E
F̂
[V γ
t+1(G(t, y, a, Zt+1))]−

γHα

√
t0 + t

}
, (3.3)

V γ
t+1(G(t, y, a, Zt+1)) = inf

z∈R
{Vt+1(G(t, y, a, z)) + γ|z − Zt+1|}. (3.4)

In the sequel, we will dicuss the challenges in the numerical computation of (3.3) and (3.4) and
explain our algorithm for dealing with such problem.
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3.1 Algorithm

In this practice, we will mainly follow the idea represented in [CL21] and propose a similar numerical
scheme that uses regression Monte Carlo and GP surrogates to solve the Bellman equations (3.3)
and (3.4). Then, we analyze the performance of the obtained optimal control on out-of-sample
paths by simulating the realized terminal utility and estimating the expected utility.

Towards this end, we begin with discretizing the state space by choosing yit = (xit, F̂
i
t ) ∈ EY ,

i = 1, . . . , N , t ∈ T . These yit’s are called design points. Then, we solve the equation (3.3) for the
design points y = yit, i = 1, . . . , N , t = T, T − 1 . . . , 0. One of the main tasks in the numerical
algorithm is computing E

F̂
[V γ(G(t, yit, a, Zt+1)] for i = 1, . . . , N , t ∈ T . In view of F̂ it being an

empirical distribution and assuming that

F̂ it (z) =
1

t0 + t

t∑
j=−t0+1

1zij≤z
,

we have

E
F̂ i
t
[V γ
t+1(G(t, yit, a, Zt+1))] =

1

t+ t0

t∑
j=−t0+1

V γ
t+1(G(t, yit, a, z

i
j)). (3.5)

Remark 3.3. In our current setup, F̂0 is defined to be an empirical distribution constructed from
historical data prior to the beginning of the investment, but it does not have to be. For ex-
ample, there are estimation techniques that produce continuous prior distribution F̂0 (cf. per-
turbed empirical distribution), and in such case Monte Carlo method will be needed to compute
E
F̂
[V γ
t+1(G(t, y, a, Zt+1))] due to the fact that F̂ is no longer a discrete distrubtion anymore.

Since the value function Vt+1, and in turn V γ
t+1, cannot be computed analytically, we will need a

regression model for Vt+1 so that we can estimate the right hand side of (3.5). The general strategy
is then, for every t ∈ T ′, we use (yit+1, Vt+1(y

i
t+1)), i = 1, . . . , N , called training points to build a

regression model for Vt+1, and use it to evaluate V γ
t+1. Thus, we have an optimize–train–optimize

loop in our algorithm. The state component F̂ it is a probability distribution which is infinitely
dimensional, or can be equivalently replaced by the vector zi−t0+1:t. In both cases, we are dealing
with a high dimensional problem and facing the challenge of “curse of dimensionality”. Due to such
reason, the traditional grid-based method for choosing the design points yit, i = 1, . . . , N , t ∈ T ,
will be inefficient. To overcome this difficulty, we use the idea of randomized control so that we
can focus on the points in the state space that are likely to be visited by the state process Y . In
particular, for t ∈ T ′, given the design points yit, . . . , y

N
t , we will uniformly generate a1, . . . , aN

from A and use them to update y1t , . . . , y
N
t to y1t+1, . . . , y

N
t+1, respectively, according to

yit+1 = G(t, yit, a
i, Zit+1), i = 1, . . . , N,

where Zit+1 is the simulated random noise.
Next, we discuss the choise of regression model for the value function Vt+1 in detail. From

above we see that for each t ∈ T ′, Vt+1 can be viewed as a function of (xt+1, z−t0+1:t+1) where
z−t0+1:t+1 yields the empirical distribution F̂t+1. Therefore, it is natural to regress Vt+1 against
(xt+1, z−t0+1:t+1) instead of (xt+1, F̂t+1). Such treatment will reduce an infinite dimensional prob-
lem to a finite one. However, note that (xt+1, z−t0+1:t+1) has a dimension of t0 + t + 2 and to
regress Vt+1 against such high dimensional input requires an enormous amount of training points
(xit+1, z

i
−t0+1:t+1), i = 1, . . . , N , so that we can obtain an accurate regression model for Vt+1.
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Hence, solely for the regression purpose, we will approximate F̂t+1 with its first d moments denote
by m1

t+1, . . . ,m
d
t+1, and regress Vt+1 against (xt+1,m

1
t+1, . . . ,m

d
t+1). By doing so, we effectively

approximate a t0+ t+2-dimensional function with a d+1-dimensional regression model. Since the
moments of a distrubtion capture the features of the distribution quite well, our strategy is a sound
way to reduce the dimension of the problem that we are facing. To this end, we propose to use
the GP surrogate to build regression models for Vt+1, t ∈ T ′. Gaussian process is a popular tool in
machine learning that is suitable for dealing with regression problem with mid-range dimensions.
It produces nonparametric functional approximations of functions by utilizing the location infor-
mation of the function input. Namely, for some “usual” function g, if ∥u1−u2∥ is small, then a GP
user assumes that ∥g(u1) − g(u2)∥ should be relatively small as well. Recall that Proposition 3.2
states that the value function Vt, t ∈ T ′, is continuous. Hence, GP is the ideal tool for us to build
the statistical surrogates for each Vt, t ∈ T ′′, so that we can proceed with the backward iteration
and solve the Bellman equations. To be more specific, we approximate each of the design points
yit+1, i = 1, . . . , N , by y̌it+1 := (xit+1,m

i,1
t+1, . . . ,m

i,d
t+1), and denote by V̌t+1 the GP surrogate of Vt+1.

Then, in the context of GP regression, the values V̌t+1(y̌
i
t+1), i = 1, . . . , N , are jointly normal dis-

tributed. For any y ∈ EY , the predicted value V̌t+1(y) that approximates Vt+1(y) is then computed
as

V̌t+1(y) = (k(y, y̌1t+1), . . . , k(y, y̌
N
t+1))[K+ ϵ2I]−1(Vt+1(y̌

1
t+1), . . . , Vt+1(y̌

N
t+1))

⊤,

where I is the N × N identity matrix and entries of K has the form Kij = k(y̌it+1, y̌
j
t+1), i, j =

1, . . . , N . The function k(·, ·) is called the kernel function of the GP surrogate and in this project,
we choose it from the Matern-5/2 family (cf. [Gen02]). We fit V̌t+1 to the training points
{(y̌it+1, Vt+1(y̌

i
t+1)), i = 1, . . . , N} and during this process the hyperparameters inside of k(·, ·) will

be estimated. For a comprehensive discussion of the Gaussian process surrogates, we refer to the
book [RW06].

We summarize our algorithm for solving (3.3) and (3.4) as follows:

1. (Assume that Vt+1(·) and φ∗
t+1(·) are computed (estimated) at design points y1t+1, . . . , y

N
t+1,

t ∈ T ′′, and the GP surrogates V̌t+1 and φ̌∗
t+1

1 are fitted.)

2. For time t, any a ∈ A, γ > 0, z ∈ R, and each of the design points {yit, i = 1, . . . , N} ⊂ EY ,
use the GP surrogate V̌t+1 and command scipy.optimize.minimize_scalar in the scipy
package for Python to compute

V̌ γ
t+1(G(t, yit, a, z)) := inf

z′∈R
{V̌t+1(G(t, yit, a, z)) + γ|z′ − z|)}, i = 1, . . . , N,

and V̌ γ
t+1 is an approximation of V γ

t+1.

3. For time t, any a ∈ A, and each of the design points {yit, i = 1, . . . , N} ⊂ EY , approximate
E
F̂
[V γ
t+1(G(t, yit, a, Zt+1))] as

E
F̂
[V γ
t+1(G(t, yit, a, Zt+1))] ≈

1

t+ t0

t∑
j=−t0+1

V̌ γ
t+1(G(t, yit, a, z

i
j)).

4. Use the command scipy.optimize.minimize_scalar to compute

V (1)(yit, a) = − inf
γ≥0

− 1

t+ t0

t∑
j=−t0+1

V̌ γ
t+1(G(t, yit, a, z

i
j)) +

γHα

√
t0 + t

 , i = 1, . . . , N,

1The GP surrogate φ̌∗
t+1 is the Gaussian process regression model constructed by using the training data

{(y̌i, φ∗
t+1(y

i)), i = 1, . . . , N}.
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and

Vt(y
i
t) = − inf

a∈A
(−V (1)(yit, a)),

where we also obtain the optimizer φ∗
t (y

i
t), i = 1, . . . , N .

5. Fit the GP surrogate V̌t by using (y̌it, Vt(y
i
t)), i = 1, . . . , N , as the training points. Similarly,

fit φ̌∗
t by using (y̌it, φt(y

i
t)), i = 1, . . . , N .

6. Goto 1.: start the next recursion for t− 1.

To analyze the performance of the optimal control we obtain from solving the Bellman equations,
we generate N ′ forward simulated paths by starting with the initial state y0 = (x0, F̂0) and applying
the control φ̌∗

t (y̌
i
t), i = 1, . . . , N ′, to obtain the next-step state yit+1 for t ∈ T ′ according to

yit+1 = G(t, yit, φ̌
∗
t (y̌

i
t), Z

i
t+1).

The corresponding forward Monte Carlo algorithm is summarized as

1. Take yi0 ≡ (x0, F̂0), i = 1, . . . , N ′.

2. For t = 1, . . . , T , generate Zit , i = 1, . . . , N ′.

3. Approximate yit as y̌it and use the GP surrogates to compute the control ait = φ̌t(y̌
i
t), i =

1, . . . , N ′, t ∈ T ′.

4. Update the states yit+1 = G(t, yit, a
i
t, Z

i
t+1), i = 1, . . . , N ′, t = 0, . . . , T − 1.

5. Compute V̂0(y0) =
1
N ′
∑N ′

i=1
1−e−ηxiT

η .

The average V̂0(y0) is then the Monte Carlo estimator of the expected utility. In addition, we
are interested in the distribution of the utility

Û(y0) =

(
1− e−ηx

1
T

η
, . . . ,

1− e−ηx
N′
T

η

)

and the numerical results will be reported in the sequel.

3.2 Numerical Results

In this section, we apply the machine learning algorithm described above to solve the utility maxi-
mization problem under model uncertainty. To this end, recall that we need to specify the constant
Hα in the uncertainty set Cαt . If we choose Hα based on (2.4), then due to the assumption that Q∗

is unknown, we will approximate it by using Q̂t which is the quantile function of F̂t. At time t, the
integral

∫ 1
0 |B(s)|dQ∗(s) is then approximated as

∫ 1

0
|B(s)|dQ∗(s) ≈

t0+t−1∑
i=1

∣∣∣∣B( i

t0 + t

)∣∣∣∣ (z(i+1) − z(i)
)
,

where z(1):(t0+t) is the order statistics of z−t0+1:t. In theory, one can derive the distribution of∑t0+t−1
i=1 |B( i

t0+t
)|(z(i+1) − z(i)). But since B( i

t0+t
), i = 1, . . . , t0 + t− 1, are not independent, then
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Figure 1: Comparison of different formulations of the uncertainty sets. Left panel: Evolution of
the radius of the uncertainty set obtained from (2.4). Right panel: Evolution of the radius of the
uncertainty set obtained from (2.7).

such computation will be too tedious. Hence, we will estimate the relevant quantile via simulation
instead.

Another choice of Hα is based on (2.7). Recall that in this case

Hα =

√
log(C/α)

c
,

and the formulas of C and c are given in Section 2.1. Note that these constants might not be
optimal and the corresponding radius of the Wasserstein ball can be too large. In fact, our numerical
experiment shows that for the distribution F ∗ considered in our example, and for a relatively small
sample size (small t0 and t), the approximated quantile of

∑t0+t−1
i=1 |B( i

t0+t
)|(z(i+1) − z(i)) is much

smaller than
√

log(C/α)/c. We refer to Figure 1 for visualization of such comparison. Due to such

observation, in this work we will choose Hα based on (2.4) as the simulated 1 − α quantile Ĥα

of
∑t0+t−1

i=1 |B( i
t0+t

)|(z(i+1) − z(i)). Such choice gives us the advantage of computing the optimal
control under less uncertainty about the unknown true distribution, and obtaining less conservative
optimal control as a result.

Remark 3.4. If a weaker assumption compared to (2.14) is made, for example assuming F ∗ has
finite moments of order higher than 2 (which implies (2.2)), then we get that

P

(
dW,1(F̂t, F

∗) ≤

√
log(C ′/α)

c′(t+ t0)
+ ϵ(α, t0, t)

)
≥ 1− α,

where ϵ(α, t0, t) is a higher order term than
√

log(C′/α)
c′(t+t0)

. In this case the overall order of the radius

is still the same as Cαt .
With the choice of Hα been clarified, we will compare the performance of nonparametric adap-

tive robust control method to the performance of some other frameworks for dealing with model
uncertainty. Theoretically, the optimal control is attained when there is no model uncertainty.
Therefore, performance of such strategy will also be included in our comparison. To this end, we
consider three types of investors: the one who knows the true model with terminal utility ÛTR(y0)
and expected utility V̂ TR

0 (y0); the one that applies the nonparametric adaptive robust with termi-

nal utility ÛAR(y0) and expected utility V̂ AR
0 (y0); finally, the one uses the static robust methods,
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meaning the corresponding uncertainty sets do not change with respect to the state and time. In
particular, the static robust investor utilizes the nonparametric setup and builds the uncertainty
set as a Wasserstein ball around the empirical distribution generated by historical data with sam-
ple size t0. The terminal utility and expected terminal utility of the nonparametic static robust
investor are ÛSR(y0) and V̂

SR
0 (y0), respectively.

Figure 2: Histogram of Ĥα for t0 = 20 and α = 0.1.

AR TR SR

V̂0 65.425570 66.805075 63.947066

var(Û) 36.679199 108.601415 6.451175 · 10−9

q0.20(Û) 59.682528 58.740896 63.947003

q0.90(Û) 72.937869 78.899913 63.947173

max(Û) 82.953448 90.773115 63.947302

min(Û) 46.192910 26.307049 63.946811

Table 1: Mean, variance, 20%-quantile, 90%-quantile, maximum, and minimum of the out-of-
sample terminal utility for the AR, TR and SR methods; Ĥα = 0.199165.

Note that we can easily modify the above algorithm to compute ÛTR, V̂ TR
0 , ÛSR, and V̂ SR

0 . In
fact, by taking Cαt (y) ≡ B0(F

∗) which is the Wasserstein ball around F ∗ with 0 radius, we are able
to compute ÛTR and V̂ TR

0 . For ÛSR and V̂ SR
0 , we take Cαt (y) ≡ Cα0 (y0).

We choose the terminal time to be 1 year with T = 10 time steps which means one unit of
time is 0.1 year. The annual insterest rate is 0.02 so that r = 0.02/10 = 0.002. Initial endowment
is x0 = 100. Some other parameters are α = 0.1, η = 0.01, and m = 4. The number of paths is
N = 1000 for nonparametric adaptive robust and 200 for other methods. The reason for such choice
is that the state space of adaptive robust has dimension m + 1 while the others have dimension
1. For the sampling measure and test measure, we consider a Gaussian mixture model: with
40% probability, Zt ∼ N(0.06/10, 0.42/10), and with 60% probability, Zt ∼ N(0.16/10, 0.252/10).
Recall that the parametric static robust investor assumes that Zt ∼ N(µ, σ2) and constructs the
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confidence region for µ and σ2. We will compute and compare the distributions of utlities among
the mentioned four frameworks with the above choice of parameters for t0 = 20. We also want
to point out that the behavior of the optimal strategies would depend on the simulated Ĥα. In
this exercise, we present two cases with Ĥα = 0.199165 and Ĥα = 0.092942. Note that among
1000 simulated paths, 0.199165 sits very closely to the average value of Ĥα which is 0.200395, and
0.092942 is below the 1% quantile which is 0.115721. We refer to Figure 2 for the histogram of
simulated Ĥα.

AR TR SR

V̂0 65.440839 66.805075 63.947067

var(Û) 41.907675 108.601415 6.776359 · 10−9

q0.20(Û) 59.575356 58.740896 63.946997

q0.90(Û) 73.363772 78.899913 63.947175

max(Û) 85.322523 90.773115 63.947367

min(Û) 45.40310 26.307049 63.946763

Table 2: Mean, variance, 20%-quantile, 90%-quantile, maximum, and minimum of the out-of-
sample terminal utility for the AR, TR and SR methods; Ĥα = 0.092942.

For Ĥα = 0.199165, comparison among AR, TR, and SR are reported in Table 1. Since TR
knows the true model of the risky asset return, the corresponding strategy will be optimal and
V̂ TR
0 will outperform any other optimal control provided by investors who do not know the true

model. Nevertheless, AR does better in three indices of risky management: AR has lower variance,
higher 20% quantile, and minimum value of the simulated terminal utilities than TR. AR also beats
SR quite significantly in regard to the mean, 90% quantile and maximum value of the simulated
terminal utility. In addition, by viewing the Figure 3, we argue that AR produces wealth paths with
more favorable distribution than TR. On the other hand, SR generates trivial optimal strategies
similarly to the observations made in some earlier work (cf. [BCC+19], [CM20]). By ignoring the
numerical instability, the terminal wealth produced by SR is a constant 102.018 which means all
the money is invested in the banking account. With no surprises, as such a conservative control
method, SR performs well in the department of risk management: it has apparent minimal variance,
higher 20% quantile and minimum value of the terminal utility compared to AR and TR.

For Ĥα = 0.092942, comparison of the performance of AR, TR, and SR on the same out-of-
sample paths as in the previous case are reported in Table 2. Since that Ĥα is smaller, the size
of Cαt along the simulated paths is in general smaller as a consequence. Hence, we expect more
aggressive strategies given by the robust approaches. One needs to be aware that Ĥα = 0.092942
has an extremely low probability. Thus, we expect the value of Ĥα, and in turn the radius of Cαt to
be heavily oscillating after t = 0. Nevertheless, we see from Table 2 that there is an improvement
of AR in this case. Estimated expected utility V̂ AR

0 and the 90% quantile of ÛAR are marginally

larger than in the case of Ĥα = 0.199165. Increase in the maximum value of ÛAR on the other hand
is somewhat significant. An unavoidable trade-off is that, even though only slightly, the strategy
becomes more risky as the variance increases and 20% quantile, as well as the minimum value, of
ÛAR both decrease. In line with our discussion, we also observe in Figure 3 that the distribution
of ÛAR in the right panel has moderately larger tails on both left and right sides compared to that
in the left panel. Such change is expected to be more significant if the computation is done for
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Figure 3: Histogram of the out-of-sample terminal utility U : AR vs TR. Left panel: Ĥα =
0.199165; right panel: Ĥα = 0.092942.

larger t0 and T . To conclude, AR is more aggressive when the size of Cαt is smaller but it is in
general stable for our choice of parameters in the computation. Regarding SR, we observe changes
following a similar pattern as for AR. However, such changes are so tiny and almost negligible.
Consequently, the computed SR strategies are considered as trivial and one needs to further reduce
Ĥα in order to obtain a non-trivial SR optimal control.

The main argument for why SR being so conservative is that for relatively small historical
data size t0, the corresponding confidence region is usually too large. On top of that, there is no
shrinkage of the confidence region in static robust. Hence, no matter at which time step, the worst
case model in such a large set is strongly against the controller which implies that, in the context of
optimal portfolio, the money should only be invested in the banking account. Dynamic reduction of
uncertainty is thereby an apparent advantage maintained by AR over SR. In practice, static robust
control should only be used when there is sufficient historical data. One still needs be cautious of
potential estimation error as, for uncertainty set with small size, the SR optimal control will heavily
depend on the initial guess of the unknown distribution. Due to the lack of dynamic learning, SR
optimal control in such case will be biased if the initial guess has large distance to the true model.
On the contrary, learning is incorporated in adaptive robust and thus the corresponding control
will be almost optimal for time steps close to T , and this feature will be carried out to earlier time
steps following the dynamic programming principle.
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