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We consider a discrete time stochastic Markovian control problem under model uncer-
tainty. Such uncertainty not only comes from the fact that the true probability law
of the underlying stochastic process is unknown, but the parametric family of prob-
ability distributions which the true law belongs to is also unknown. We propose a
nonparametric adaptive robust control methodology to deal with such problem where
the relevant system random noise is, for simplicity, assumed to be i.i.d. and one-
dimensional. Our approach hinges on the following building concepts: first, using the
adaptive robust paradigm to incorporate online learning and uncertainty reduction into
the robust control problem; second, learning the unknown probability law through the
empirical distribution, and representing uncertainty reduction in terms of a sequence of
Wasserstein balls around the empirical distribution; third, using Lagrangian duality to
convert the optimization over Wasserstein balls to a scalar optimization problem, and
adopting a machine learning technique to achieve efficient computation of the optimal
control. We illustrate our methodology by considering a utility maximization problem.
Numerical comparisons show that the nonparametric adaptive robust control approach
is preferable to the traditional robust frameworks.
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1 Introduction

In this paper we propose a new methodology for solving a stochastic Markovian control problem
in discrete time under model uncertainty. Unlike many works in this area that assume the un-
known probability law of the underlying stochastic process belongs to some parametric family of
distributions, we avoid making such postulation to prevent model misspecification. When it comes
to handling model uncertainty, there are different approaches, parametric and nonparametric, de-
veloped in the past decades to incorporate learning into solving control problems with unknown
system models (cf. [KV15], [CGI1], [Rie75], [CM20]). However, earlier studies show that a pure
learning approach without awareness of the model risk is prone to risk caused by estimation error
and often leads to overly aggressive controls and system outcomes with high variances. On the other
hand, the central idea of robust control goes back to [GS89]. A large body of research have been
devoted to this area since then, and produced fruitful resutls which are briefly summarized below.
Robust techniques are extremely successful in dealing with model risk but if the learning phase is
lacking in the framework, corresponding controls can be overly conservative and even trivial. Our
work aims to address all the issues mentioned above when handling a Markovian control problem by
proposing a nonparametric adaptive robust methodology and develop an efficient numerical scheme
for implementing such method.

A robust control problem can be viewed as a game between the controller and the nature. In the
traditional setup, the nature chooses the worst case model against the controller at the beginning of
the game. To respond, the controller adopts a control law which determines the game strategies at
all time steps through the timeline. In a sense, both counterparties’ strategies are pre-committed.
Mathematically, the controller takes a set of considered models, solves the optimization problem
for every model in such set, and chooses the strategy corresponding to the worst model against
the controller. We refer to [HSTWO06], [HS08], and [BB95], for more information regarding this
setup. More recent works consider a robust control problem as a sequential game: from a fixed
set of models, at each time step the nature chooses one that is the worst for the controller, and
the controller will apply an optimal control in response (cf. [Sirl4], [BCP16]). The main difference
between the two approaches mentioned so far is that the worst case model is time independent
in the former case and time dependent in the latter. In [Nutl6], the author presented a robust
framework for solving a utility maximization problem in finance where the nature chooses models
from a general time dependent set. In other words, the nature can pick strategies from different sets
of available actions at different stages of the game. However, no example of such time dependent set
of models is given, and the main goal of [Nut16] is to study the existence of optimal portfolio under
nondominated model uncertainty. In [BCCT19], the authors consider general robust stochastic
control problem and specify the time dependent set of models via recursive confidence regions
of the unknown model parameters. We refer to [BCC17] for the detailed discussion of recursive
construction of confidence regions. Such idea is also utilized in this work. The advantage of using
confidence regions are twofold. On one hand, as new realizations of the random noise in the system
are observed between the decision-making time points, the confidence region updates itself and
naturally represents the learning of the unknown system model. On the other hand, such sequence
of sets is asymptotically shrinking in size which leads to reduction of the model uncertainty. To
the best of our knowledge, [BCC™19] is the first work that incorporates the idea of online learning
into the robust control paradigm. A follow-up work in [BC21] is an attempt to extend the adaptive
robust control to the continuous time setup.

Note that the methods in [BCCT19] and [BC21] are parametric and the practical usage of such
methods relies on the assumption that the family of the unknown probability law of the underlying
stochastic process is known to the controller. Some researchers have realized this drawback and



adopted nonparametric statistical methods by assuming uncertainty for the family of parametric
models. To formulate a robust setup, one will define a set of probability distributions that includes
the estimated distribution. For example, in [KENA19] and [OW21], the authors take a Wasserstein
ball around the empirical distribution and use the ball as the set of considered models. However,
such setup has only been implemented in one-period control problems so far, and the feasibility
of this approach in multi-period setup remains to be investigated. To overcome this obstacle,
we develop a nonparametric adaptive robust control methodology in this work to handle multi-
period stochastic control problems where the family of distributions which the true law of the
system model belongs to is unknown. Naturally, we use the empirical distribution as the estimate
of the distribution of the underlying stochastic process. Another candidate for this purpose is the
perturbed empirical distribution when such distribution is known to be continuous. For construction
of confidence regions in this setup, we utilize the Wasserstein ball around the empirical distribution.
There are several works on the concentration results regarding the empirical distribution and the
Wasserstein distance (cf. [DBGM99], [FG15]). Backed by these papers, one obtains a CLT-type
of result for the empirical distribution that leads to the construction of confidence regions through
Wasserstein distance under rather mild assumptions. Practically, numerical search of the worst case
model in a set of probability distributions is extremely difficult. Another advantage of using the
Wasserstein ball as the confidecnce region is that the aforementioned task of searching for the worst
case model in a Wasserstein ball can be converted to a scalar optimization problem. Last but not
the least, we implement a machine learning technique via the Gaussian process surrogates [RWO06]
to build regression models for the relevent value function and the optimal control. The former
surrogate enables us to proceed the backward recursion according to the dynamic programming
principle, and the latter allows us for fast computation of the optimal control when applying our
framework.

The rest of the paper is organized as follows. We begin Section 2 with setting up the model and
in Section 2.1 we discuss the contruction of confidence region for the unknown true probability law
in terms of the Wasserstein ball. Such sets of distributions represent the uncertainty of the system
model. Section 2.2 is dedicated to the formulation of the nonparametric adaptive robust control
framework. We investigate the solution of the nonparametric adaptive robust control problem
and derive the associated Bellman equations in Section 2.3. Also in this section, we prove the
Bellman principle of optimality for the problem and show the existence of measurable worst-case
model selector as well as the existence of measurable optimal control. In Section 2.4, we discuss
the convergence and deviation of the adaptive robust value function to the true value function.
Finally, in Section 3 we consider an illustrative example. Namely, the uncertain utility maximization
problem where the investor needs to allocate the wealth between the money market account and
the risky asset without knowing the true distribution of the risky asset’s return process. We
apply the nonparametric adaptive robust control approach to solve such problem and provide a
numerical solver by using machine learning techniques. Numerical results presented in this section
show the favorable aspects of the proposed methodology compared to the traditional robust control
framework and the case of knowing the true model.

2 Nonparametric Stochastic Control Problem Subject to Model
Uncertainty

Let (2,.%) be a measurable space, and T € N be a fixed time horizon. Let 7 = {0,1,2,...,T},
T =1{0,1,2,..., T — 1}, and 7" = {1,2,...,T}. On the space (,.%) we consider a controlled



random process X = {X;, ¢t € T} taking values in R"” with dynamics
Xiv1 = S(Xy, 00, Z111), t€T, Xo=mx0€R" (2.1)

The above Z = {Z;,t € T} is an i.i.d. real valued random sequence of which the natural filtration
is denoted by F = (F;,t € T). The process ¢ = {p,t € T'} is F-adapted and takes values in a
compact set A. The function S : R” x AxR — R" is deterministic and continuous. For every t € T,
we denote by A; the set of all processes that take values in A and are adapted to the filtration

= (Fs,t < s < T —1). Each element in A; is called an admissible control starting at time ¢,
and we use the convention A = Ap. In this work, we assume that the process Z is observable but
the distribution F* of each Z; is unknown. We write P(R) as the set of all distributions on R and
Pr as the probability measure on (£2,.#) corresponds to F' € P(R). The expectation associated to
Pr is Ep, and ¢ : R™ — R is the loss function which is continuous and bounded from below. In this
work we will formulate and solve a robust optimization problem aiming to minimize the expected
loss when taking into consideration that the true distribution F* of Z is unknown. In order to
avoid model misspecification caused by assuming a wrong parametric family of distrubtions, we
will conduct online learning of the underlying system in a nonparametric manner via empirical
distribution. In the spirit of [BCCT19], we define the sets of model candidates as approximated
confidence regions around the empirical distribution. Such sets are Wasserstein balls and their
sizes decreases as time goes on in general. Therefore, in our robust framework, the uncertainty is
dynamically reduced through online learning and shrinkage of the Wasserstein balls.

Remark 2.1. Note that the theory developed in this work can be easily generalized to the multi-
dimensional case. In fact, in the follow-up project [BC22], we study the adaptive robust control
problem under dependence uncertainty. The key point of this paper is that, by considering the
nonparametric framework, we avoid misspecification of the unknown model to mitigate the corre-
sponding model risk. Therefore, for the sake of simplicity, we consider one dimensional distribution
in this work. On the other hand, there are still many delicate details to be taken care of for non-i.i.d.
random factors, and we leave that for future investigation.

2.1 Empirical Distribution and Uncertainty Set

We make a standing postulation that F* satisfies that

/_OO VF*(2)(1 - F*(2))dz < . (2.2)

We note that any distribution that has finite moments with order higher than 2 will satisfy the
above assumption (cf. (2.1°) in [DBGM99]). Next, denote by Fy, t € T', the empirical distribution
of Z;11 given the initial guess 1/7\0 of F* and the observations Zy.; := {Z;,i = 1,...,t}, where ﬁo is
the empirical distribution of Z; based on historical data of Z with sample size to In other words,
Ft is the contructed based Z_;,41.+. Defined as an average of indicator functions, Ft satisfies the
following recursion similarly to any estimated mean:

. to+ ) 4+ 1
Fm(Z):(0 JFit Yzcs)
to+t+1

= R(t,F;, Zi41), z€R, teT. (2.3)
The map R defined above will be viewed as the dynamics of the process F. Regarding other

properties of F it is well known that F is a consistent estimator of F*:

lim Fi(z) = F*(2), as..

t—o00



Moreover, by the assumption (2.2) and using the results in [DBGM99], we have that

oo 1
Vio F tdwi(Fy, F*) = Vo + 1 / \Fy(2) — F*(2)|dz — /0 |B(s)|dQ* (s), (2.4)

where dyy; is the Wasserstein distance of order 1, B(s), 0 < s < 1, and Q* are the Brownian bridge
and the quantile function of F*, respectively, and the convergence is in distribution. According to
(2.4), for any 0 < a < 1, if we denote by H® the 1 — o quantile of fol |B(s)|dQ*(s), we should have
that

N Ha
P (dy (), F*) < >1—a,
(s P < 755)

asymptotically. Hence, we define the a-uncertainty set Cf*, 0 < a < 1, which is an approximated
confidence region for F* as

. . Ho
Ci'(Fr) = {F € Pi(R) : dwa(Fi, F) < m}a (2.5)
where P;(R) is the set of all distributions with finite first moment. Due to the discussion above,
the rationale behind (2.5) is that the probability that C{*(F;) contains F™* is approximately 1 — a.
Note that the constant H exists in theory, but in practice one does not know the value of H* as
F™* is assumed to be unknown. In Section 3, we will discuss how we will approximate the constant
He.
The above construction of the uncertainty sets based on (2.4) is asymptotic, and there are non-
asymptotic results that can be used for obtaining such sets. For example, according to [FG15], by
postulating

/ eZ? B (dz) < o0, (2.6)
R

for some ¢; > 0, and ¢o > 1, one gets that for any fixed 0 < a < 1, there exists some constants C
and c¢ such that

P (st < O] 5 27)

The above inequality (2.7) provides a different formulation of the uncertainty sets in terms of the
Wasserstein balls. For each ¢ € 7', such Wasserstein ball has a radius that is equal to a multiple
of \/t(l)? Therefore, the size of the corresponding uncertainty set has the same order as Cj.

Consequently, for large enough 7" and ¢t < T'— 1, the difference between C{* and the uncertainty sets
obtained from (2.7) is not significant. On the other hand, the constants C' and ¢ are not explicitly
given in [FG15], in order to use (2.7), one can keep track of the constants in the proof in [FG15]
and get:

oo 21 (1—277)(2F — 1)

9 0 T w4 1)

where 1 € (0,3/2 — p) for p-Wasserstein distance. We will discuss the choice between uncertainty
sets defined via (2.4) and (2.7) in Section 3. The takeaway admitted by both constructions is that,
with slight abuse of notations, there exists a constant H* > 0 based on which we can formulate an
uncertainty set Cf* as in (2.5).

Next, by using a different representation of the Wasserstein distance between probability dis-
tributions and by considering the product topology for P;(R) x R, we have the following technical
result regarding continuity of the map defined in (2.3).



Lemma 2.2. For fized t € T', the mapping R(t,-,-) : P1(R) x R — P1(R) is continuous.

Proof. Assume that (F,,z,) — (F,z) where F,,, ' € Pi(R), z,, z € R, n =1, 2, ,.... Then,
dwi(Fn, F) — 0 and z, — z. Denote up, ., = R(t, Fp,2,) and pp, = R(t,F,z). For M :={f:
|f(z) = f(y)| < |z —yl}, we have that

Aw,1(F, 2> F,z) = SUP {/ fdug, -, — / fdup.: f € M}
R R

to+t 1 ]
:sup{toﬂ+1 (/Rden—/Rde> (R OF feM}
fo+¢ sup{/den—/de: f€M}—|—1|zn—z|
R R

Tto+t+1 to+t+1
to+t 1
= O (B, F) 4+ ———— |z — 2.
to+t+1 wi(Fn )+t0+t+1|zn d
Therefore, we get that dw1(¢r, 2., tF,2) — 0 and the mapping R(t,-,-) is continuous. O

One property that the set valued function C;* satisfies is upper hemicontinuity (u.h.c.). That
is for any for any F' € P;(R) and any open set £ such that C}(F) C E C Pi(R), there exists a
neighborhood D of F such that for all F’ € D, C(F') C € (cf. [Bor85, Definition 11.3]).

Lemma 2.3. For everyt € T', the set valued function C§* is upper hemicontinuous.

Proof. Fix any F € P1(R) and let & C P1(R) be an open set such that C*(F) C £. Denote by 9&
the boundary of £, and by dist(F, dE) the shortest distance between F' and some point belongs to
o€.

Because C*(F) C € and it is a closed set, we have dist(F,9E) > H*/\/tyo + t, where the latter
is the radius of C*(F'). Let e = dist(F,0FE) — H*/\/to +t > 0, Then, take D C P;(R) as the open
ball centered at F' with radius e. Using the triangular inequality we see that for any F’ € D, we
have C{(F") C €. O

2.2 Nonparametric Adaptive Robust Control Problem

Now we proceed to formulate the nonparametric adaptive robust control problem. For the rest of
the paper, we will consider P;(R) with the metric dy;. Since R is separable and complete, then
(P1(R), dw,1) is also separable and complete. Hence, P;(R) is a Polish space and thus a Borel space.
Define the augumented state process Y = {Y; = (X, ﬁt), t € T}, and the augumented state space
Ey = R"™ x P1(R). For Ey we equip the product topology, it is then a Borel space and the Borel
o-algebra £y conicides with the product o-algebra. The process Y has the following dynamics

1/vt-f—l - G(tv th7 Pt Zt+1) = (S(Xt7 ©t, Zt-i-l)a R(ta E'} Zt-l—l))v te T/' (28)

Also, we will write C{*(Y;) and Ct"‘(ﬁt) interchangeably through the rest of the paper.

Due to the assumption that S is continuous and Lemma 2.2, we get that G is continuous and
therefore Borel measurable. Next, given our setup, the process Y is F-adapted and Markovian. The
transition probability for the state process Y is defined as follows. For any ¢t € 77, (y,a) € Ey X A,
and F € P1(R), Q; is a probability measure on £y such that

Qt(D‘yvavF) = ]P)F(G(tvyuaa Zt-i—l) € D)a D e SY'

One important property of the stochastic kernel @), is that it is in fact Borel measurable which
will be proved below. Such property is crucial for showing the existence of measurable optimal
controls.



Proposition 2.4. For each t € T', the probability Qi( - |y, a, F) is a Borel measurable stochastic
kernel on Ey given Ey x A x Pi(R).

Proof. According to [BS78, Proposition 7.26], we just need to show that Q.(Dly,a, F') is a Borel
measurable function in (y,a, F') for any D € &y. To this end, recall that

Q¢(Dly,a,F) =Pp(G(t,y,a,Zi1) € D) = /IR 1p(G(t,y,a,z))dF(z).

Since dF'(z) is independent of y and a, then we can denote ¢(dz|y,a, F) = dF(z). The kernel ¢ is
Borel-measurable in (y, a, F), and we have

Qt(D|y7a’ F) :/R]lD(G(t7y7avz))Q(dZ|y7a7F)'

Next, note that 1p(G(t,y, a, z)) is Borel measurable in (y, a, F, z), and therefore by [BS78, Propo-
sition 7.29], we get that Q.(Dly,a, F') is Borel measurable in (y, a, F). O

In this work, we are dealing with a closed loop feedback control problem. To this end, a control
process ¢ is called Markovian if for every ¢t € T’ (with a slight abuse of notation)

o1 = pi(Y2)

where on the right hand side ¢; : Fy — A is a measurable mapping. Similarly, A process ¥ is
called a Markovian model selector if

Yy = Pe(Y2)
where 1, : Ey — P1(R) is measurable. In the adaptive robust framework, we consider the Marko-
vian control processes and Markovian model selectors such that ¢;(y) € C*(y) for any y € Ey. For
every t € T', any time t state y; € Ey, and control process ¢ € A;, we denote

= {wt:Tflvq/}s(ys) S Csa(ys)v dz e R, s.t. Ys+1 = G(S7ys,803(ys)7z)7t <s<T— 1} .

and
W, = {Ver—1,%s(ys) € CHys),Ja € A,z € R, s.t. ysp1 = G(s,¥s,a,2),t <s<T —1}.

Next, for every t € 7', any y; € Ey, ¢ € A, and ¢ € ¥y, ;, we define the probability measure Qyz "

on the concatenated canonical space XI_, 1By as

QEY(Byr x -+ x Br) = /B H Qul s o> (9, u(v).

Br u=t

Correspondingly, we define the family of probability measures Qytt = {Qyt L € Wy it In
particular, we let Qf, = ng, . Then, for given yy € FEy, the nonparametric adaptive robust
control problem is formulated as

inf sup Eg[l(X7)]. (2.9)

peA QeQf,
In a traditional robust setup, one would choose a fixed set Py in place of Ci*. Due to such reason, we
will call it the static robust framework throughout. In comparison, the advantage of (2.9) is that
such framework integrates robust control with learning and reducing uncertainty. The learning
of the unknown model is carried through via the evolution of the process Y, and reduction of
uncertainty is embedded in the construction of Qg since for any y; € Fy instead of finding the
worst case model in the fixed set Py, the selectors take values in the uncertainty sets Cy*(y:) which
is a sequence of random sets that shrink in size.



2.3 Solution of Nonparametric Adaptive Robust Control Problem

We will show that solution of the nonparametric adaptive robust control problem is given by solving
the following adaptive robust Bellman equations

Vr(y) = {(z), y € Ey,

Vi(y) = inf  sup / Vir1 (1) Qi(dyis1ly,a, F), y € Ey,t€T'. (2.10)
a€d pecy(y) By

Before we prove the main theorem in this section, let us first provide the following technical
result.

Lemma 2.5. Fizt € T, for any F € Py(R), let

CH(F) = {F € Pi(R) : dw 1 (F, F) < \/%} .

Then, N
o= |J {w} xCw)

yEEy

is an open set in Ey x Pi(R).

Proof. We prove the statement by contradiction. Assume there exists (yo, Fo) € Of, and there
exists a sequence (yn, Fr,) — (o, Fo), such that for any n > 0, (y,, F,) ¢ Of. Note that Fy € C{*(yo),

hence dw1(Fp, fg) < H*/\/tyg +t — € for some € > 0, where fj is the second component of yy. We
have

dw1(Fp, fn) < dwi(Fn, Fo) + dwa(Fo, fo) + dwa(fo, fn)-

For large enough n, we have dy(Fy, Fy) < /4, and dwyl(fo,fn) < g/4. Then, for such n, the

following equality holds true
A He

g
d Fn7 n S 9
W,l( f) m 9

which implies that F,, € C*(y,) and (yn, F,) € Of. This yields a contradiction from which we
conclude that the set Of is open. O

Next, we have the main result of this section which shows that the optimal control ¢ and model
selector 1 exist, and they are sequences of measurable functions. We also want to point out that
our proof for Theorem 2.6 below is based on results of existence of measurable selectors (cf. [BS78]),
and we refer to [Nutl6] where the same type of result is used to prove the existence of optimal
portfolio for a utility maximization problem.

Theorem 2.6. For everyt € T, the function V; is lower semicontinuous (l.s.c.) and upper semian-
alytic (u.s.a.). There exists Borel measurable optimal control o}, t € T', and analytically measurable
e-model selector ;™ , t € T".

Proof. Since Vp(y) = ¢(x) which is continuous by assumption, then Vp is l.s.c. and u.s.a.. Next,
denote

vr_1(y,a, F) = /E Vi(yr)Qr—1 (dyrly, a, F).
Y



By using Proposition 2.4, we have that vy_1(y,a, F) is us.a.. Let D = U, o)epy, xal(y, @)} x
C%_,(y). Note that C$_; is w.h.c. from Lemma 2.3 and closed valued, by adopting the proof of
[BCC21] in our setup, we obtain that the graph of C;* |, which is D, is closed. Hence, the set D is
analytic. The (y, a) section of D is C¢_,(y), and according to [BS78, Proposition 7.50], we get that

vr—1(y,a) == sup vr_1(y,a,F)
FeCg_(y)

is w.s.a.. Moreover, for any € > 0, there exists an analytically measurable function ¢72" | : Ey x A
such that for any (y,a),

%T—l(yv CL) -5 if 5T—l(yv CL) < o0,

e (2.11)
1/e, if vr_1(y,a) = oo.

UT*l(yv a, ¢’?i1(ya CL)) > {
Now we prove that the function vp_1(y,a) is Ls.c.. To this end, we write

vr—1(y,a, F) = /RVT(G(T_ 1,y,a,z))dF(z).

Since Vp is Ls.c. and G(T — 1,y, a, 2) is continuous in (y, a, z), then Vp(G(T — 1,y,a, z)) is Ls.c..
On the other hand, F is clearly a continuous stochastic kernel on R given P;(R). In view of the
assumption that ¢ is bounded below, we know the function vy_1(y,a, F') is l.s.c.. Let us consider
the optimization problem
vr-1(y,a) = sup vr-1(y,a, F).
FeCi(y)
Lemma 2.5 shows that the set Of is open in Ey x P;(R), so it is also open in D" := Ey x Ax P1(R).
The set C(y) is the (y,a) section of D’. By [BS78, Proposition 7.34], we obtain that op_1(y, a) is
Ls.c.. Note for any y € Ey, the uncertainty set C2(y) is the closure of C*(y), it follows immediately
that vp_1(y,a) = Ur—1(y, a) and the former is therefore lLs.c..
It remains to show that

Vr— = inf vr_1(y,
r-1(y) = inf vr-1(y, a)
is l.s.c., and there exists a Borel measruable function ¢* : Ey — A such that

Vr_1(y) = vr-1(y, " (v)).

Towards this end, we note that D” := Ey x A is closed, and A by assumption is compact. The y
section of D" is A for any y € Fy. Thus, by [BS78, Proposition 7.33|, the function Vy_; is Ls.c.,
and the Borel measurable optimal control ¢* exists.

We shall prove the statement of all t = T — 2,...,0 by backward induction. Recall from
Proposition 2.4, the stochastic kernel Qr_o( - |y,a, F') is Borel measurable. Also, the function
Vir_1 is u.s.a.. Therefore,

vr—2(y,a, F) = [ Vr_1(yr—1)Qr—2(dyr—1ly,a, F)
Ey
is u.s.a.. By using a similar argument as above, the function
UT—2(3/7CL7F) = / VT—l(G(T_27y7a7 Z))dF<2)
Ey

is L.s.c.. The rest of the proof follows analogously. O



Finally, we show that the problem (2.9) will be solved by the adaptive robust Bellman equations
(2.10). To this end, we introduce the set A; = {¢r.7r—1,t € T'}, and provide the following technical
results for preparation.

Lemma 2.7. For every t € T', and any ¢ € Ay, the function

sup Eg[l(X7)]
QeQy,

s upper semianalytic in yy.

The proof for this lemma is a direct modification of Theorem 2.6 and hence we omit it here.
Such result ensures that the mentioned function is measurable and can be integrated. Now we are
ready to present the solution of the adaptive robust control problem.

Theorem 2.8. For everyt € T', and any y; € Ey, we have

Vi(ye) = inf  sup Eg[(Xr)].
peA: QEQZ t

Moreover, with ¢f, t € T', in Theorem 2.6, we get

inf sup Eq[l(X7)] = sup Eg[l(X7)].
veAL QeA?, |, QeA?”

Yit

Proof. We prove the result via backward induction in t =T —1,...,1,0.
First, for t =T — 1 and yp_1 € Ey, we have

inf sup  Eqg[¢(X7)] = inf  sup / Vr(yr)Qr—1(yrlyr-1, a, F) = Vr_1(yr-1)-
pedr-1QeQy | oo oA Fecs_ (yr) By

Next, fort =T —2,...,0 and y € Fy, by induction

inf sup Eol¢(Xr)] = inf sup / sup  Eq[l(X7)]Qu(dyer1lye, oe(ye), F)
peAr geo? |, (perper1:mr-1)€A Feco (yr) J By QGijLlfﬁl
> inf sup / Vit1 (We1) Qe (dye1|ye, oe(ye), F)
(ptrprr1:7-1)€A Feco (yr) J By

—inf  sup / Vit () Qu(dyeslye a F) = Vi(ye),
a€A Fecg (yi) J By

where the inequality is due to that

sup  Eg[l(X7)] > iﬁf sup  Eoll(X7)] = Vig1(ye41).
QGQ:ZL{}T_F? PEAL+1 QeQﬁb{»lﬂt"’l

On the other hand, for any ¢ > 0, let ©7, ;.. € Ai1 be an e-optimal control starting at time
t+ 1. We get

sup  Eg[l(X7)] < inf sup  Eq[l(X7)] = Vita(yet1) + &

w51 T €A1 ®
@egyfifﬂ? QeQy, 1 in

10



It is followed by

inj sup Eq[l(X7)] = inf sup / sup  Eqll(X1)|Qt(dyr+1lyt, or(yr), F)
PE€A: Qe? |, (pt.per1:7-1)€A FeCo (y,) J By QerlefZﬁl
< inf sup / sup  Eql[l(X7)]|Q¢(dyir1lys, oi(yr), F)
(perprr1:r-1)€A: Feco (yr) J By Q6Q¢§+1:T71

Yi41,t+1

< inf sup / Vit1 (Y1) Qe (dyesa|ye, 0, F) + €
aC€A pecy (y) J By

= Vi(yt) + e
Since ¢ is arbitrary, we obtain

inf  sup Eq[{(X7)] < Vi(y).
peAs QEQ“)

Yt t
Hence, we have

inf  sup Eq[l(X7)] = Vi(y).

veA Qeg? |,
Showing that ¢* in Theorem 2.6 solves the adaptive robust control problem is similar to proving
dynamical programming principle, and one just needs to note that ¢* is where V;, t € T, is
attained. Therefore, we omit the proof here. O

2.4 Convergence Analysis

A nice property of the combination of Wasserstein metric and adaptive robust control is that
convergence analysis can be done in such framework very easily. As shown in Theorem 2.6 and
2.8, to deal with (2.9) one employs the dynamic programming principle and solves the following
Bellman equation

‘/t(y> = inf sup EFU/tJrl(G(ta Yy, a, ZtJrl))]v S T/-
a€A Fpecs (y)

According to [BDOW21, Theorem 2], by assuming V and S to be differentiable w.r.t. =z, and
denoting

‘/ta(y) = Sup EF[%+1(G(ta Yy, a, Zt+1))]7
FeCi(y)

we get that

a — Ha a 1
‘/; (y) — EFt [VH_l(G(t,y,a, Zt+1))] -+ \/ﬁEFt |: %‘/t-‘rl(G(tuyaa; Zt-i—l))H +o0 <m> .

(2.12)

For any given state y = (z, f) € Ey, denote by z_¢,+1.0 the historical sample points that generate

t
ey ; i= 1 z2; <z
Fy, and let 214 be the observations of Z such that f(z) = Ziztgrt Hepen)

P . The following expectation
is computed as

t
1
Eﬁt[%+1(G(ta Y, a, ZtJrl))] = ﬁ Z W+1(G(t,y,a,2i)),
it=—to+1

11



which is the sample mean of the random variable Vi11(G(t,y, a, Zi+1)) given sample z_¢,+1:¢. By

central limit theorem, we obtain that the convergence speed of Eg [Vi11(G(t,y, a, Zi11))] to the
1

Viot+t

adaptive robust control problem converges to the control problem without uncertainty and the

convergence speed is of order \/tiﬁ Moreover, we get by using the Chebyshev inequality that

expectation Ep«[Vi11(G(t,y,a, Zi1+1))] is asymptotically of order Thus, as ¢ increases the

Var (Eﬁz Vit1(G(t,y, a, Zt+1))])

D , (2.13)

P ([E5 Vs (Gl y 0, Zen))) =it | > <) <

where i}, = Ep«[Vi41(G(t,y,a, Zi11))]. Inequality (2.13) implies that the first term on the right
hand side in (2.12) has a high probability of being close to Ep«[Vi+1(G(t,y, a, Z;+1))]. For example,
1

taking e = T then (2.13) implies

P <‘Eﬁ [Vis1(G(t,y,a, Ze11))] — ﬁ?}‘ > ) < Var (Eﬁt Vi1(G(t, y, a, Zt+1))]> :

1
Vig+t
Clearly, the above probability will continue to decrease as t increases. Note that with a further
assumption given in the Cramer’s Theorem:

/ e*F*(dz) < 0o, VO €R, (2.14)
R
we have

. 1 —x —x

Jim 7 log P (‘Eﬁt Vir1 (Gt y, a, Zisa))] — uv‘ > 5) = - zgg((uv +¢)0 — log Ep-[e?71+1]).

As a result, the probability that Ep [Vit1(G(t,y,a, Zi41))] deviates from the true value function
for more than ¢ has an exponential decay in time with speed — supyer (773, +¢)0 — log Ep« [e?%t+1])
which is an obvious improvement over (2.13). In summary, if assuming (2.14) and using Ci*(y)

as the uncertainty set, even though the overall convergence speed of V; is still of order \/t(l)ﬁ’ we

obtain a more accurate value function compared to the true one.

Based on (2.12), we can compare the adaptive robust framework to the static robust setup in
a qualitative manner. For the latter, the uncertainty set is fixed for all ¢ € 7', and we denote
it by Pg. To solve the static robust control problem, one also utilizes the dynamic programming
principle and solves

‘Z(y) = inf sup EF[‘ZH(G@,%% Zin1))), teT,
acA FePy

where V is the corresponding value function. We consider the set Py defined as B(;(ﬁo) which is
a Wasserstein ball arond Fy with radius §. We also define a preference relation between value
functions via

Vily) = Vily) <= sup Ep[Viei(G(t,y,a,Zi11))] < sup  Ep[Viii(G(t,y, a, Ziy1))),
FeCg(y) FeBs(Fy)

for any a € A. Next, suppose that F* € Py which is the interior of the set Py. For large T" and ¢, we
have dyw 1 (F;, F*) < dw1(F*,0Py) with high probability, where dy 1 (F™*,0Pp) is the Wasserstein

12



distance from between F™* and the closest point on the boundary of Py. Consequently, C*(Y:) C Py
with high probability, and loosely speaking we get

Vi(y) = Vily), (2.15)

asymptotically. Note that such discussion is rather qualitative since it is not easy to compute
P(C*(Y;) C Po) and prove (2.15) rigorously. Nevertheless, we argue that adaptive robust framework
is more preferrable than static robust.

For a more quantitative analysis, we assume that Py = C§(yo). Similarly to (2.12), we have

Vi) = B, [Fosa (S(o,0.Zesa )] + g || 51 Teen(Sna Zi)| | + 000

It is obvious that the right hand side of the above equality does not converge with respect to t.
As a result, the static robust framework will produce strategies that in general distant from the
optimal strategies without uncertainty. Such strategies behave very conservatively while adaptive
robust has a better balance between being aggressive and conservative due to the embedded learning
feature. In view of such, the adaptive robust methodology is more favorable compared to the static
robust framework which offers no convergence to the true optimization problem.

Note that discussions in this section are possible since we are using the Wasserstein metric to
define the uncertainty sets. Similar analysis could be done when utilizing the Kullback-Leibler
divergence but stronger assumptions on the considered probability distributions are required.

3 Nonparametric Adaptive Robust Utility Maximization

In this section, we consider a utility maximization problem under model uncertainty and we will
solve it under the nonparametric adaptive robust framework. To this end, we take X to be the
investor’s wealth process. Any portfolio includes two assets: a banking account with 1-period
return 1 4 r, where r is the interest rate and fixed throughout, and a stock with i.i.d. log-return
Zy, t € T”, of which the distribution F* is unknown. For each t € 77, denote by ¢; the ratio of the
wealth invested in the stock. We rule out leverage and short selling, so ¢; takes values in A = [0, 1].
Imposing the self-financing strategy, and given Xy = xg > 0, the dynamics of X is given by

X1 = Xe(L =) (L4 7) + pe?+), teT.

Take n = 1, and the function S is defined on R x A x R. The prices of the risky asset are observable
and thus the return process Z of the risky asset is also observable. We will use the observations of
Z to construct the empirical distribution iteratively as in (2.3). Then, we build the a-uncertainty
sets for the distribution F' of Z according to (2.5). Next, by taking ¢(z) = # for some n > 0,
we formulate the nonparametric adaptive robust utility maximization problem as

inf sup Eg[¢(X7)],
vedqeos,

where yo = (xq, F\o) such that 130 is the initial guess of F*. Note that the funtion ¢ is bounded and
we are equivalently dealing with

1 — e &7
sup inf Eg [] (3.1)
@eAQGng n

13



which is a maximization problem of the exponential utility function. Due to Theorem 2.8, and with
slight abuse of notations, we will solve the following Bellman equations to get the solution of (3.1).

1—e™™
Vr(y) = ——,
(y) "
Vi(y) =sup _inf / Vit1 (Y1) Qi(dyisaly,a, F), teT'. (3.2)
acAFeC(y) JEy

Moreover, by applying Theorem 2.6, we get that the optimal trading strategies and worst case
models exist which are optimizers of (3.2).

Remark 3.1. Several types of utility functions satisfy the assumptions in Theorem 2.6 so that the
corresponding optimal trading strategies and worst case models exist, and the adaptive robust
control problem can be solved by utilizing the dynamic programming principle. Another example

of such utility functions is the power utility ‘”11__777771 where 1 > 1.

Note that the loss function ¢(z) = # is not only bounded from below but actually bounded.
Here we provide the following technical result regarding the corresponding value functions.

Proposition 3.2. The value function Vi(y) as in (3.2) is continuous for every t € T'.

Proof. First of all, Theorem 2.6 implies that V;, t € T, is u.s.c.. As a result, we just need to show
that V4, t € T, is Ls.c.. To this end, note that Vp(y) = % is continuous, and G(T — 1,y, a, 2)
is continuous in (y, a, z). Therefore, Vp(G(T — 1,y,a,2)) is Ls.c. in (y, a, z). Moreover,

vr—1(y,a, F) = /RVT(G(T 1,y,a,z))dF(2)

is l.s.c. and bounded, due to the fact that that V is bounded.
Consider the set D =, 4)epy x4 CF—1(y), and define the function

vr-1(y, a, F) if (y,a,F) € D,

fDT* a, F) =
1(y, ) ) {OO otherwise.

For any c € R, we have

{(y7a7F) € EY X A X Pl(R) ‘ ’DT,l(y,CL,F)
:{(y7a7F) € EY X A X Pl(R) ‘ UTfl(y7a7F)

¢}

<
<ec}ND.

Since vy_; is Ls.c., and D is closed, then the set {(y,a,F) € By x A x P1(R) | v7_1(y,a, F) < c}
is closed and v7_1(y, a, F) is l.s.c.. Next, for any ¢ € R,

,a) € By x A inf -1(y,a, F) <
{oemnal gt maten) <cf

—d(ya) e By x A| inf dpq(y,a,F)<cb.
{aes xal it oraar <cf

Fix (y,a) and let {F,,n > 0} C P1(R) be such that

®<y7 a, Fn) \lf quT—l(y7 a) = F€i71311f(]R) 77T—1(fU7 a, F)
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By definition of ¥7_1, we know for large enough n, F;,, € C$_;(y) which is a weakly compact
set. Then, there exists F* such that v7_1(y,a,F*) = vr_1(y,a). Let {(yn,an),n > 0} be a
sequence that converges to some (yo,ap). We choose a sequence {F,,n > 0} C P(R) such that
U171 (Yn, @y Fr) = U7-1(Yn, an). Obviously, for each n > 0, F,, € C%_;(yn). Due to the fact that
{yn,n > 0} converges to yo, the set D = U,,C¢_;(yn) is bounded. Hence, there exists F' € D and
§ > 0 such that D C Bs(F’) where the latter is a Wasserstein ball around F’ with radius 4.

Now we consider the topology consistent with the weak convergence for the argument F' in the
function 7_1(y,a, F'). In such case, 07— is still Ls.c.. There exists a subsequence (yn, , an,, Fn,),
k > 0, such that

lim inf U1 (yn7 Qp, Fn) = lim U7—1 (ynka Any, s Fnk)
n—00 k—o0

As Bs(F') is compact under the Prokhorov metric, there exists Fy that is a limit point of {F},, ,n >
0}. We obtain

lim inf 071 (yn, an) = Hminf 671 (yn, an, Fn) = Jim 71 (Yny» Gy Fry)

> 07-1(Yo, a0, Fo) > vr—1(yo, ao).

This shows that vr_1(y,a) is l.s.c.. Next, take set O = Ey x (0,1) and such set is open. The y
section of O is the interval (0,1). By [BS78, Proposition 7.34]

Vr_i(y) = sup or_1(y,a)
a€(0,1)

is Ls.c.. Note that A = [0, 1] is the closure of (0, 1), thus

Vr_1(y) = supr_1(y,a) = sup Or—1(y,a) = Vr_1(y),
acA a€(0,1)

and Vr_i(y) is Ls.c.. Following the backward induction for t =T —2,...,0, the proof is complete.
O

Proposition 3.2 is of great importance for numerical computation of Bellman equations (3.2).
As in [KENA19], when V44 is Ls.c., for any fixed (y,a) € Ey x A, the inner optimization problem
can be solved as follows

inf Vi d F)= inf Vig1(G(t dr
pint [ Vi @dinlya Py = nf [ Vi (G(0,0,0,2)dF ()

HOC
- E- [V, (G(ty,a,Z _ }
’Sygl()){ F[ t+1( ( Yy, a t+1>)] \/W

where V.1 (G(t,y,a, Ziy1)) = inf.cr {Vig1(G(t,y, a, 2)) + ¥z — Zi41]}, and y = (z, F). With such
results in hand, the Bellman equation (3.2) becomes

1—e™
Vely) = L
T(y) ;
Viy) = sup {EA[W (Gt 9.0, Zi))] — —e } (33)
4eA >0 FLYt+1 s Iy Wy + to Ti ) .
V;—Y&—I(G(tayv a, ZtJrl)) = irelﬂg{erl(G(t’yv a, Z)) + rﬂz - Zt+1|}' (34)

In the sequel, we will dicuss the challenges in the numerical computation of (3.3) and (3.4) and
explain our algorithm for dealing with such problem.
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3.1 Algorithm

In this practice, we will mainly follow the idea represented in [CL21] and propose a similar numerical
scheme that uses regression Monte Carlo and GP surrogates to solve the Bellman equations (3.3)
and (3.4). Then, we analyze the performance of the obtained optimal control on out-of-sample
paths by simulating the realized terminal utility and estimating the expected utility.

Towards this end, we begin with discretizing the state space by choosing yi = (i, F\;) € by,
i=1,...,N,t & T. These yi’s are called design points. Then, we solve the equation (3.3) for the
design points y = ¢, i = 1,...,N, t = T,T —1...,0. One of the main tasks in the numerical
algorithm is computing Ez[V7(G(¢t,y},a, Zy41)] for i = 1,...,N, t € T. In view of F! being an
empirical distribution and assuming that

ﬁti( Z 1 ’<z7

]— to+1
we have
t
1 i i
En V(G yhe Zea)l = 7 D2 Via(Gltvia,2) (3.5)
j=—to+1

Remark 3.3. In our current setup, ﬁo is defined to be an empirical distribution constructed from
historical data prior to the beginning of the investment, but it does not have to be. For ex-
ample, there are estimation techniques that produce continuous prior distribution ﬁo (cf. per-
turbed empirical distribution), and in such case Monte Carlo method will be needed to compute
Ex[Vii1(G(t,y,a, Zi11))] due to the fact that F is no longer a discrete distrubtion anymore.

Since the value function Vi1, and in turn ‘/;11, cannot be computed analytically, we will need a
regression model for Vi1 so that we can estimate the right hand side of (3.5). The general strategy
is then, for every t € T', we use (yt'H, Vt+1(yt'+1)), i =1,...,N, called training points to build a
regression model for V;41, and use it to evaluate V) IBE Thus we have an optimize-train—optimize

loop in our algorithm. The state component F ' is a probablhty distribution which is infinitely
dimensional, or can be equivalently replaced by the vector 2*, .,,. In both cases, we are dealing
with a high dimensional problem and facing the challenge of “curse of dimensionality”. Due to such
reason, the traditional grid-based method for choosing the design points v}, i = 1,...,N, t € T,
will be inefficient. To overcome this difficulty, we use the idea of randomized control so that we
can focus on the points in the state space that are hkely to be visited by the state process Y. In
particular, for ¢ € 77, given the design points y,... ,yt , we will uniformly generate a!,...,a"

from A and use them to update y}, ...,y to yl,,...,y;%, respectively, according to
3/%-5—1 :G(tayivai;Zti_i_l), izl,...,N’

where Z;,, is the simulated random noise.

Next, we discuss the choise of regression model for the value function Vi in detail. From
above we see that for each t € T, Vi can be viewed as a function of (Tt41, Z—tg+1:t+1) Where
Z—to+1:t+1 yields the empirical dlstrlbutlon Ft+1 Therefore, it is natural to regress Viy1 against
(Tt41, 2—tg+1:t+1) instead of (2441, Ft+1) Such treatment will reduce an infinite dimensional prob-
lem to a finite one. However, note that (z441,2_ty+1:4+1) has a dimension of ¢y + ¢ + 2 and to
regress V41 against such high dimensional input requires an enormous amount of training points
(241,24 41441)> © = 1,...,N, so that we can obtain an accurate regression model for Vii;.
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Hence, solely for the regression purpose, we will approximate ﬁt“ with its first d moments denote
by mgﬂ, .. .,me, and regress Viy1 against (xt+1,mg'+1, .. ,mfﬂ). By doing so, we effectively
approximate a tg + t + 2-dimensional function with a d+ 1-dimensional regression model. Since the
moments of a distrubtion capture the features of the distribution quite well, our strategy is a sound
way to reduce the dimension of the problem that we are facing. To this end, we propose to use
the GP surrogate to build regression models for Vi1, t € T'. Gaussian process is a popular tool in
machine learning that is suitable for dealing with regression problem with mid-range dimensions.
It produces nonparametric functional approximations of functions by utilizing the location infor-
mation of the function input. Namely, for some “usual” function g, if |ju; — uz|| is small, then a GP
user assumes that ||g(u1) — g(u2)|| should be relatively small as well. Recall that Proposition 3.2
states that the value function V;, t € 77, is continuous. Hence, GP is the ideal tool for us to build
the statistical surrogates for each Vi, t € T”, so that we can proceed with the backward iteration
and solve the Bellman equations. To be more specific, we approximate each of the design points
Yii1, i =1,...,N, by gi 4 := (2}, m;il, e ,m;fl), and denote by Vi, the GP surrogate of V.
Then, in the context of GP regression, the values Vi (9 41), ©=1,..., N, are jointly normal dis-
tributed. For any y € Ey, the predicted value Vi1 (y) that approximates Vi1 (y) is then computed
as

Vi1 (y) = k(Y Gig), - -- 7k(yayﬁ1))[K + 17 (Vir (Ggn)s - - - aViH@ﬁrl))Ta

where I is the N x N identity matrix and entries of K has the form K;; = k(g§+1,g{+1), i,j =
1,...,N. The function k(-,-) is called the kernel function of the GP surrogate and in this project,
we choose it from the Matern-5/2 family (cf. [Gen02]). We fit Viy; to the training points
{1, Vir1(i41)),4 =1,..., N} and during this process the hyperparameters inside of k(-, ) will
be estimated. For a comprehensive discussion of the Gaussian process surrogates, we refer to the
book [RWO06].

We summarize our algorithm for solving (3.3) and (3.4) as follows:

1. (Assume that Viy1(-) and ¢}, (-) are computed (estimated) at design points y/,1,...,yp\ 1,

t € T”, and the GP surrogates V11 and ¢}, ; ! are fitted.)

2. For time t, any a € A, v > 0, z € R, and each of the design points {y,i = 1,..., N} C Ey,
use the GP surrogate Viy; and command scipy.optimize.minimize_scalar in the scipy
package for Python to compute

V(G yiha,2) = it (Vi (Gl ghha,2) + 912 = 2D} i =L, ,

and V]| is an approximation of Vil
3. For time ¢, any a € A, and each of the design points {yi, = 1,..., N} C Ey, approximate
Eﬁ[vtll(c’(ta y%? a, Zt+1))] as

t

Z ‘V/;Jyrl(G(taygaa) Z;))
Jj=—to+1

EﬁWtZrl(G(ta yg,a, Zy1))] =

t+ 1o

4. Use the command scipy.optimize.minimize_scalar to compute

t
) 1 . X . H
(1) _ _ v v C
Vi (yt,a) = ;ré% P Z Vi (G(t yt,a,25)) + i t1=1,...,N,

j=—to+1

1_The GP surrogate @i11 is the Gaussian process regression model constructed by using the training data
{(gl7 §0:+1(y1))7i = 17 RS N}
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and

Vi(yi) = — inf (=V (g}, a)),
acA
where we also obtain the optimizer o} (yi), i =1,...,N.

5. Fit the GP surrogate V; by using (7, Vi(y})), i = 1,..., N, as the training points. Similarly,
fit ¢; by using (93, p¢(yp)), i =1,...,N.

6. Goto 1.: start the next recursion for ¢t — 1.

To analyze the performance of the optimal control we obtain from solving the Bellman equations,
we generate N’ forward simulated paths by starting with the initial state yo = (2o, Fy) and applying
the control ¢ (9¢), i = 1,..., N’, to obtain the next-step state yiﬂ for t € T’ according to

Yir1 = Gyt & (U1)s Zisn)-
The corresponding forward Monte Carlo algorithm is summarized as
1. Take y = (xo,ﬁo), i=1,...,N'.
2. Fort=1,...,T, generate Z},i=1,...,N".

3. Approximate y{ as 9! and use the GP surrogates to compute the control ai = @ (3i), i =
1,....,.N, teT.

4. Update the states y§+1 = G(t,yg,ai,Zf_H), 1=1,...,N',t=0,...,T — 1.

5. Compute Vo(yo) = ]\1f’ Z]\Z 17€:ZT'

The average ‘70(3/0) is then the Monte Carlo estimator of the expected utility. In addition, we
are interested in the distribution of the utility

~ 1 — e "1 1-— e_”m¥,
Ul(yo) = ()

Ui n

and the numerical results will be reported in the sequel.

3.2 Numerical Results

In this section, we apply the machine learning algorithm described above to solve the utility maxi-
mization problem under model uncertainty. To this end, recall that we need to specify the constant
H® in the uncertainty set C;*. If we choose H® based on (2.4), then due to the assumption that Q*
is unknown, we will approximate it by using @t which is the quantile function of Fy. At time t, the

integral fol |B(s)|dQ*(s) is then approximated as
L to+1

where 2(1).(z,4¢) 18 the order statistics of z_¢,414. In theory, one can derive the distribution of
Zt“t ! |B(t0+t)|(2(i+1) — 2(3)). But since B(3 ' +t) i=1,...,t0+t—1, are not independent, then

to+t—1

1
/O BE)IQ (s~ S

=1

(2(i1) = 2()) »
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Figure 1: Comparison of different formulations of the uncertainty sets. Left panel: Evolution of

the radius of the uncertainty set obtained from (2.4). Right panel: Evolution of the radius of the
uncertainty set obtained from (2.7).

such computation will be too tedious. Hence, we will estimate the relevant quantile via simulation
instead.

Another choice of H* is based on (2.7). Recall that in this case

o J18(C/e)
c

and the formulas of C' and ¢ are given in Section 2.1. Note that these constants might not be
optimal and the corresponding radius of the Wasserstein ball can be too large. In fact, our numerical
experiment shows that for the distribution F* considered in our example, and for a relatively small
sample size (small ¢y and ¢), the approximated quantile of Zﬁoztt_l |B (toﬁ)](z(iﬂ) — 2(j)) is much
smaller than \/log(C/a)/c. We refer to Figure 1 for visualization of such comparison. Due to such
observation, in this work we will choose H® based on (2.4) as the simulated 1 — a quantile He
of Zggtfl |B(#;rt)|(z(i+1) — 2(;))- Such choice gives us the advantage of computing the optimal
control under less uncertainty about the unknown true distribution, and obtaining less conservative
optimal control as a result.

Remark 3.4. If a weaker assumption compared to (2.14) is made, for example assuming F* has
finite moments of order higher than 2 (which implies (2.2)), then we get that

log(C"/a)

P | dwq(F, F*) <
(W’l( b ) < (t+ to)

+ 6(&,t0,t>> 2 1 - aa

log(C'/a)

where €(a, tg,t) is a higher order term than (i)

. In this case the overall order of the radius
is still the same as Cj".

With the choice of H* been clarified, we will compare the performance of nonparametric adap-
tive robust control method to the performance of some other frameworks for dealing with model
uncertainty. Theoretically, the optimal control is attained when there is no model uncertainty.
Therefore, performance of such strategy will also be included in our comparison. To this end, we
consider three types of investors: the one who knows the true model with terminal utility U TR (y0)
and expected utility 170TR(y0); the one that applies the nonparametric adaptive robust with termi-
nal utility U AR (y0) and expected utility %AR(yo); finally, the one uses the static robust methods,
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meaning the corresponding uncertainty sets do not change with respect to the state and time. In
particular, the static robust investor utilizes the nonparametric setup and builds the uncertainty
set as a Wasserstein ball around the empirical distribution generated by historical data with sam-
ple size tg. The terminal utility and expected terminal utility of the nonparametic static robust
investor are USR(yo) and ‘70SR(yo), respectively.

010 015 020 025 030 035

Figure 2: Histogram of He for to =20 and o = 0.1.

AR TR SR
Vo | 65.425570 | 66.805075 |  63.947066
var(U) | 36.679199 | 108.601415 | 6.451175 - 10~2
qo20(U) || 59.682528 | 58.740896 |  63.947003
qo.00(0) || 72.937869 | 78.899913 |  63.947173
max(U) | 82.953448 | 90.773115 |  63.947302
min(U) || 46.192910 | 26.307049 |  63.946811

Table 1: Mean, variance, 20%-quantile, 90%-quantile, maximum, and minimum of the out-of-
sample terminal utility for the AR, TR and SR methods; H* = 0.199165.

Note that we can easily modify the above algorithm to compute U R 170TR, U SR and 170SR. In
fact, by taking Cf*(y) = Bo(F™) which is the Wasserstein ball around F™* with 0 radius, we are able
to compute UTR and 170TR. For USR and YA/OSR, we take Cit(y) = C§(vo)-

We choose the terminal time to be 1 year with T" = 10 time steps which means one unit of
time is 0.1 year. The annual insterest rate is 0.02 so that » = 0.02/10 = 0.002. Initial endowment
is g = 100. Some other parameters are a« = 0.1, n = 0.01, and m = 4. The number of paths is
N = 1000 for nonparametric adaptive robust and 200 for other methods. The reason for such choice
is that the state space of adaptive robust has dimension m + 1 while the others have dimension
1. For the sampling measure and test measure, we consider a Gaussian mixture model: with
40% probability, Z; ~ N(0.06/10,0.42/10), and with 60% probability, Z; ~ N(0.16/10,0.252/10).
Recall that the parametric static robust investor assumes that Z; ~ N(u,0?) and constructs the
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confidence region for p and o2. We will compute and compare the distributions of utlities among
the mentioned four frameworks with the above choice of parameters for ¢y = 20. We also want
to point out that the behavior of the optlmal strategies would depend on the simulated H®. In
this exercise, we present two cases with H® = 0.199165 and H® = 0. 092942. Note that among
1000 simulated paths, 0.199165 sits very closely to the average value of H which is 0.200395, and
0.092942 is below the 1% quantile which is 0.115721. We refer to Figure 2 for the histogram of
simulated H®.

AR TR SR
Vo | 65.440839 | 66.805075 |  63.947067
var(U) | 41.907675 | 108.601415 | 6.776359 - 10~°
qo20(U) || 59.575356 | 58.740896 |  63.946997
qo.00(U) || 73.363772 | 78.899913 |  63.947175
max(U) | 85.322523 | 90.773115 |  63.947367
min(U) || 45.40310 | 26.307049 |  63.946763

Table 2: Mean, variance, 20%-quantile, 90%-quantile, maximum, and minimum of the out-of-
sample terminal utility for the AR, TR and SR methods; H* = 0.092942.

For H® = 0.199165, comparison among AR, TR, and SR are reported in Table 1. Since TR
knows the true model of the risky asset return, the corresponding strategy will be optimal and
%TR will outperform any other optimal control provided by investors who do not know the true
model. Nevertheless, AR does better in three indices of risky management: AR has lower variance,
higher 20% quantile, and minimum value of the simulated terminal utilities than TR. AR also beats
SR quite significantly in regard to the mean, 90% quantile and maximum value of the simulated
terminal utility. In addition, by viewing the Figure 3, we argue that AR produces wealth paths with
more favorable distribution than TR. On the other hand, SR generates trivial optimal strategies
similarly to the observations made in some earlier work (cf. [BCC*19], [CM20]). By ignoring the
numerical instability, the terminal wealth produced by SR is a constant 102.018 which means all
the money is invested in the banking account. With no surprises, as such a conservative control
method, SR performs well in the department of risk management: it has apparent minimal variance,
higher 20% quantile and minimum value of the terminal utility compared to AR and TR.

For H® = 0.092942, comparison of the performance of AR, TR, and SR on the same out-of-
sample paths as in the previous case are reported in Table 2. Since that H? is smaller, the size
of Cf* along the simulated paths is in general smaller as a consequence. Hence, we expect more
aggressive strategies given by the robust approaches. One needs to be aware that He = 0.092942
has an extremely low probability. Thus, we expect the value of H @, and in turn the radius of Cf* to
be heavily oscillating after ¢t = 0. Nevertheless, we see from Table 2 that there is an improvement
of AR in this case. Estimated expected utility ‘/}()AR and the 90% quantile of UAR are marginally
larger than in the case of H® = 0.199165. Increase in the maximum value of UAR on the other hand
is somewhat significant. An unavoidable trade-off is that, even though only slightly, the strategy
becomes more risky as the variance increases and 20% quantile, as well as the minimum value, of
UAR both decrease. In line with our discussion, we also observe in Figure 3 that the distribution
of UAR in the right panel has moderately larger tails on both left and right sides compared to that
in the left panel. Such change is expected to be more significant if the computation is done for
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Figure 3: Histogram of the out-of-sample terminal utility U: AR vs TR. Left panel: He =
0.199165; right panel: H* = 0.092942.

larger ¢y and 7. To conclude, AR is more aggressive when the size of C{* is smaller but it is in
general stable for our choice of parameters in the computation. Regarding SR, we observe changes
following a similar pattern as for AR. However, such changes are so tiny and almost negligible.
Consequently, the computed SR strategies are considered as trivial and one needs to further reduce
H® in order to obtain a non-trivial SR optimal control.

The main argument for why SR being so conservative is that for relatively small historical
data size tg, the corresponding confidence region is usually too large. On top of that, there is no
shrinkage of the confidence region in static robust. Hence, no matter at which time step, the worst
case model in such a large set is strongly against the controller which implies that, in the context of
optimal portfolio, the money should only be invested in the banking account. Dynamic reduction of
uncertainty is thereby an apparent advantage maintained by AR over SR. In practice, static robust
control should only be used when there is sufficient historical data. One still needs be cautious of
potential estimation error as, for uncertainty set with small size, the SR optimal control will heavily
depend on the initial guess of the unknown distribution. Due to the lack of dynamic learning, SR
optimal control in such case will be biased if the initial guess has large distance to the true model.
On the contrary, learning is incorporated in adaptive robust and thus the corresponding control
will be almost optimal for time steps close to T', and this feature will be carried out to earlier time
steps following the dynamic programming principle.
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