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A B S T R A C T

In a federated learning system, it is often the case that the more clients it involves, the less increment of the
outcome it achieves. It is thus essential to design a client selection strategy to choose an appropriate subset of
the clients to participate in federated learning. However, client selection is not easy due to the heterogeneity
of clients and the long-term energy budget of each client. Moreover, long-term energy budgets intertwined
with the short-term client selection often make the problem NP-hard. In this paper, we propose an online
strategy Energy-Aware Client Selection for Federated Learning (EACS-FL) to address this problem. The problem
is formulated with a joint energy and delay optimization objective, and the Combinatorial Multi-Armed Bandit
(CMAB) is introduced to solve the problem in an online manner. We take advantage of Lyapunov optimization
to manage energy consumption of clients, which enables us to deal with independent energy budgets through
minimizing virtual energy deficit queues. Theoretical analysis shows that EACS-FL achieves sublinear regret
and keeps all queues stable. Experiment results exhibit that the proposed approach outperforms the existing
works and achieves close-to-optimal delay and energy consumption performance.

1. Introduction

Federated learning (FL) has been extensively studied recently in
machine learning as an approach to training models while keeping the
raw data decentralized. On one hand, FL gathers models from clients
and bridges the data islands among clients; on the other hand, as clients
only upload models instead of data, privacy can be well preserved. An
FL system consists of a central server and a crowd of clients (e.g., mobile
phones, wearable devices, or autonomous vehicles) [1], aiming at
learning a global model on the central server by iteratively aggregating
local models trained on clients using the clients’ own data. As shown
in Fig. 1, the server X is used for the global model aggregation, and the
clients A, C, and E are selected for the local model training.

The FL system often has ‘‘submodularity’’. That is, when the number
of the clients reaches a certain scale, the increment of the outcome
by involving more clients will become less, but the cost of using more
clients usually continues to increase. In other words, the increment of
the outcome by using more clients is not worth the cost [2]. Therefore,
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it is of great importance to select a group of clients with effective
contributions to the FL system. Indeed, there are many factors making
the client selection problem non-trivial. First of all, as clients in the
FL system are often heterogeneous, varying in data quality, hardware
performance, etc., an arbitrary selection decision could have a negative
impact on the training effectiveness [3]. Furthermore, mobile clients
typically have limited energy. The selection strategy has to abide by the
energy constraints through the whole training process. Thus, it is never
easy to design a client selection strategy that considers these factors.
The fundamental challenges behind these factors are as follows.

First, clients in FL systems often have different hardware settings
and software systems, making their computational performance and
energy consumption different. In general, the overall training effec-
tiveness of the selected set of clients in each round depends on the
slowest one, namely the straggler [4,5]. As depicted in Fig. 1, the
client D is a mobile device with very limited computational capability.
If it participates in the FL local model training, the FL aggregation
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Fig. 1. A federated learning system.

may be delayed due to the extended local training process of D.
Moreover, the central server X lacks priori knowledge about such client
information. Despite the server’s inability to foresee future information
such as training time and energy consumption, it must make selection
decisions. Given that these inputs are time-varying and unpredictable,
the problem is inherently online.

Second, the heterogeneity of clients may mislead the selection strat-
egy. As some clients outperform others, the strategy may frequently
select those good clients after some iterations, while overlooking oth-
ers. This is not acceptable for the preferred clients, as they are not
specialized equipments for model training and have other tasks to
process [6]. Even worse, the above-mentioned phenomenon could lead
to unbalanced data being engaged in the training process, resulting in a
poor global model. For instance, as shown in Fig. 1 again, the client A
might be chosen too frequently for local model training due to its high
computation capability. However, the data collection of A may be so
slow that there is no new data collected between different FL training
rounds, resulting in no update to local model parameters. Hence,
careful design is needed for the strategy to avoid this phenomenon.

Third, each client has its own energy budget. The energy budget is a
long-term constraint that the client selection strategy needs to respect.
With such long-term constraints, the problem can often be NP-hard,
making it difficult to design online algorithms and strike the balance
between training effectiveness and energy consumption.

Existing studies cannot fully address the aforementioned challenges.
Those works on client selection fall insufficient, as the central server
requests resource information of clients and estimates the their perfor-
mance in prior [7,8]. Other works [9,10] adopt the Multi-Armed Bandit
(MAB) theory and focus on selection fairness while overlooking the
energy budget of clients. The rest [11–13] focus on client scheduling
and radio/network resource allocation, out of the scope of our study.

In this paper, we design an online algorithm named Energy-Aware
Client Selection for Federated Learning (EACS-FL), based on the Com-
binatorial Multi-Armed Bandit (CMAB) [14–20] with heterogeneous
energy budget constraints, for FL systems to select clients dynamically
without foreseeing future information of clients. We formulate the
client selection problem to optimize the energy consumption and the
training delay, which is an NP-hard problem even in the offline setting.

We further reformulate the problem as an online problem for each
single round. Then we propose the EACS-FL algorithm by leveraging
CMAB to estimate the quality function based on energy consumption
and training delay using the UCB1 algorithm [21]. We define a virtual
energy deficit queue and apply Lyapunov optimization to manage the
energy budget of clients and balance the client selection frequency.
The theoretical analysis suggests that our proposed algorithm can reach
a close-to-optimal solution. The simulation results show that our pro-
posed algorithm saves 54.5% energy compared with the state-of-the-art
while maintaining the same accuracy level of FL models.

The main contributions of this paper are summarized as follows:

• We study the client selection in FL systems and develop a novel
CMAB-based algorithm to alleviate the straggler effect by jointly
considering training time, model download and upload time, and
energy consumption. We rigorously prove that the time-averaged
regret bound of our algorithm is O(ln T _T ).

• We combine Lyapunov optimization with CMAB to deal with the
heterogeneous energy budget constraints. We creatively use a
virtual energy deficit queue into the objective function of CMAB
as a penalty to control the selection, which enables our algorithm
to be aware of the selection frequency of clients. An upper bound
of the time-averaged total queue is found.

• Extensive simulations are carried out to evaluate the performance
of the proposed algorithm and validate our theoretical findings.
The results show that our algorithm outperforms existing works
and achieves close-to-optimal performance compared with the
Oracle [22] that knows information such as training time and
energy consumption of the clients in advance.

2. Related works

Nishio et al. [7] estimate the time required for model download-
ing, updating, and uploading using information sent from clients such
as wireless channel states, computational capacities, and the size of
data resources relevant to the current training task. They develop an
algorithm based on the estimated time to select as many clients as pos-
sible before a defined deadline. They formulate the problem into 0–1
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knapsack problem and solve it greedily. AbdulRahman et al. [8] define
resource utilization as constraint considering availability of resources
such as CPU, memory and energy and predict it based on linear regres-
sion. Their algorithm selects as many clients that satisfy the resource
utilization constraint as possible in each round. They prove that their
problem can reduce to classical knapsack problem and solve it greedily
too. Xu et al. [12] take account of energy budgets and wireless channel
conditions of clients, and define virtual energy queue to manage energy
budgets of clients under the framework of Lyapunov optimization. The
utility function is based on dataset size of clients and the defined virtual
energy queue. They maximize utility under constraint of bandwidth
limit using a selection priority metric based on queue length and
channel gain. Wadu et al. [11] focus extensively on radio resource
allocation, aiming to minimize the empirical loss function of clients
within the constraints of bandwidth limits. They formulate the problem
as a stochastic optimization problem and subsequently transform it into
a series of optimization problems, which are solved at each round t

using the Lyapunov framework. On the other hand, Xia et al. [10]
take into account factors such as training time, client availability, and
selection fairness, and formulate a reward function based on training
time with the objective of minimizing regret. They employ the UCB
algorithm to solve the problem. Huang et al. [9] investigate how the
fairness of selection affects the training performance and define a
selection metric named model exchange time which equals to total of
model distribution time, training time and model upload time. Then
they designed a policy based on Contextual Combinatorial Multi-Armed
Bandit (CCMAB) to minimize model exchange time under the constraint
of fairness while overlooking energy budget of clients. Li et al. [23]
characterize the relationship between FL system performance and op-
timal aggregation round K, parameters, and the proportion of inactive
clients. Deng et al. [24] concentrated on the reduction of training
delays in FL while maintaining acceptable learning performance. Jin
et al. [13] incorporated the cumulative aggregation constraint in FL in
a non-stochastic setting. [25,26] placed excessive emphasis on various
different client selection strategies.

Our research in this paper differs from aforementioned works. Those
works such as [11,12] aim to optimize the utility of radio resource
which is impractical as the information of radio resource is not avail-
able for central server in the real FL system. Related works such
as [7,8] design some criteria for selection based on technique such
as linear regression which is insufficient to describe relevant metrics.
Other works such as [9,10] concentrate on training time and fairness
of selection while neglecting energy consumption of clients. The recent
work such as [13,24–26] primarily address specific facets of FL opti-
mization and do not adequately consider the overarching constraint
optimization problem. To sum up, none of the existing research, to
the best of our knowledge, have studied client selection problem of
FL from an online perspective with guaranteed training effectiveness
under long-term heterogeneous energy budget constraint.

3. System model and problem formulation

In this section, we introduce the system model firstly and then
describe the problem in detail. We further give the formulation of the
problem.

3.1. System overview

We study client selection problem in FL system, which includes a
central server and a crowd of heterogeneous clients. Each client has an
energy budget for training model. The whole FL process is carried out
under constraint that no client exceeds its energy budget. By defining
virtual energy deficit queue for each client and ensuring that all virtual
energy deficit queues remain stable, we make sure that there is no
energy budget is exceeded at the end of FL process. Moreover, the
computational resource of each client is heterogeneous and limited. We

define the quality function based on training delay for each client and
minimize it to avoid impact of straggler. There are several global models
on the central server. The initial global models are some random
generated models.

An initial phase in the whole process as shown in Fig. 2, in which the
server selects all clients to obtain their delay and energy consumption
information for initializing quality functions. At the beginning of each
training round, we assume that the server selects the same number of
clients, denoted by k, for each global model based on quality functions
of previous round. The total number of selected clients is denoted by
K. Then each global model is distributed to the corresponding selected
clients. After trained on the clients, these models are uploaded back
to the server for aggregation by Federated Average (FedAvg). At the
meantime, Parameters such as training delay and energy consumption
are uploaded to server for updating quality functions.

3.2. System modeling

Basic Model: Consider a FL system, composed of a central server
and a set of clients (or arms in the language of MAB theory), represented
as N = {1, 2,… ,N}, indexed by i, which can communicate with the
server via wireless networks. Considering that the system is dynamic,
we study it over a series of rounds T = {0, 1, 2,… , T }, indexed by
t. Each client i is equipped with built-in storage, CPUs and GPUs for
participating in FL, powered by the local battery of which available
capacity is Bi. There are a set of global models to be trained in the
system, denoted by J = {1, 2,… , J}, indexed by j. Specifically, these
models are trained on clients and aggregated on the server.

System Workflow: In each round t, the server selects K clients alto-
gether and divides them into groups of k, which gradually approaches
the theoretical optimal value with training instead of a fixed value.
In each round of training, the number of clients selected for each
global model j to be trained is k, which ensures the fairness of each
model training. Then the server distributes global models based on
data collected by clients, namely clients holding data required by some
global models are assigned to those models as much as possible. We
use notation Sj (t) to capture the set of the k clients involved for model
j. Here we assume that there are enough clients to satisfy all global
models. Then every selected client downloads its corresponding global
model, performs gradient-descent steps on the local training data to
update the model and then uploads the new model back to the server.

Energy Consumption of Clients: The energy consumption of clients
in each round is formulated as ci(t) =  � CiDif 2

i
[27] where  is the

effective switched capacitance that depends on CPU architecture, Ci is
the number of CPU cycles required for computing one sample data, Di
is the size of data of client i, fi is the CPU cycles per second.

According to [28,29], we can estimate that the energy consumption
of transmission is about 100 J, and the computational energy consump-
tion is about 102 J. The data upload for model updating may incur
a minor portion of the total energy budget, especially when network
bandwidth is ample. Despite potential network latency issues due to ge-
ographical dispersion of clients, our client selection algorithm mitigates
the impact on system performance. Therefore, we neglect the energy
consumption of transmission and formulate only the computational
energy consumption in our objective function for simplicity.

Reward of Clients: Aiming at improving training effectiveness, we
concern the model training time, model download and upload time. We
use Di(t) to describe the total of model training time, model download
and upload time of client i (if chosen) in round t. Di(t) is calculated
as Di(t) = di(t) + d

dl

i
(t) + d

up

i
(t) where di(t), ddli (t), dup

i
(t) are model

training time, model download and upload time of client i (if chosen)
respectively. Considering the transmission errors [30], we set an upper
bound Dmax for Di(t). In a certain round, if a client’s Di(t) exceeds the
upper bound due to unstable wireless network or other reasons, our
algorithm will set its Di(t) to Dmax and ignore the client during global
aggregation. We summarize the commonly used notations throughout
the paper in Table 1.
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Fig. 2. System workflow.

Table 1
Description of notations.

Variable Description

N , J the sets of clients and global models, respectively.
B
i

the energy budget of client i.
i, j, t the indexes for clients, global models and rounds.
k the number of selected clients for each global model.
K the total number of selected clients in each round.
S
j
(t) the set of selected clients for global model j in round t.

S(t) the set of all selected clients in round t.
c
i
(t) the energy consumption of client i (if selected) in round t.

D
i
(t) the training delay of client i (if selected) in round t.

n
i
(t) the number of client i being selected until round t.

q
i
(t) the quality function of client i until round t.
Ñq
i
(t) the estimated quality function of client i in round t.
Çq
i
(t) the UCB-based quality function of client i in round t.

V the parameter for Lyapunov optimization.
⇥
i
(t) the virtual energy deficit queue of client i in round t.

I{�} the indicator function.

3.3. Problem formulation

In each round t, the FL server decides whether client i is chosen
or not, which is captured by Ii(t) = {0, 1}. Ii(t) = 1 means client
i is selected in round t while Ii(t) = 0 means otherwise. We use
S(t) to describe the set of all selected clients in round t, i.e. S(t) =
‰jÀJ Sj (t), and let K = S(t). Let P = {SS À 2N , S = K}. Firstly,
a quality function is defined to describe performance of each client
which equals the reward of clients, namely Di(t). Because the training
speed of all users depends on the slower computational training among
users, we define a utility function for Sj (t) to capture the utility of
the set of clients who train the same global model j, which is uj (t) =
maxiÀSj (t)Di(t). The objective is to minimize the utility function. Based
on the above definitions, we formulate the client selection problem as
follows:

(P1) min�
Sj (1),Sj (2),…,Sj (T )

�
jÀJ

T…
t=1

…
jÀJ

uj (t),

s.t.
T…
t=1

…
jÀJ

I{i À Sj (t)}ci(t) f Bi,≈i À N , (1)

Sj (t) = k,≈j À J , t = 1, 2,… , T . (2)

where Sj (t) is our optimized target which captures the selected clients
for global model j in each round. Constraint (1) is a long-term con-
straint which means that the total energy consumption of each client i
should not exceed its budget Bi. Constraint (2) means that the server
selects k clients for global model j in each round.

Note that (P1) is a time-coupling optimization problem, with re-
spect to the long-term objective and the energy budget constraint (1),
meaning that the required training parameters can only be uploaded to
the server after users participate in training. Such a problem is NP-hard
as the problem can be reduced to a standard knapsack problem where
the energy budget is corresponding to capacity of knapsack; the energy
consumption is corresponding to weight of item and uj (t) is as value
of item. Furthermore, the information on quality function can only
be observed after involving the clients in training. Nevertheless, the
server is supposed to make a selection decision before the real training
process when the actual value of quality function is unachievable. The
nature behind this fact is that the server have to make decision without
foreseeing future information. Therefore, for an alternative sub-optimal
solution, we transform the offline problem to a round-by-round online
problem under the framework of MAB theory.

(P1) is to minimize the total maximum training delay, the training
delay ui(t) = maxiÀSj (t)Di(t) = maxiÀSj (t)(di(t) + d

dl

i
(t) + dup

i
(t)). The di(t)

may increase if the loss function involves complex calculations or a
large amount of data manipulation. In addition, the effectiveness of the
loss function directly affects the speed of convergence of the system
model; a more effective loss function will allow the model to converge
faster, thus reducing training latency.

3.4. Problem transformation

P1 is a time coupled optimization problem, taking into account
long-term goals and energy budget constraints. In the overall training
process, if we are only aiming to find the optimal decision that means
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single optimal user in each round of training, the MAB theory will
be a good solution. However, in this paper, the problem is to find
the optimal set of clients S(t) for each global model in each round of
training, which correspond to the CMAB theory. Therefore, we adopt
CMAB theory to transform (P1) to online fashion. The estimated Upper
Confidence Bound of quality function is defined as follows,
ÇDi(t) = ÑDi(t) *Qi(t), (3)

where

ÑDi(t) =
≥t*1
⌧=0 I{i À S(⌧)}Di(⌧)

ni(t * 1) , (4)

is the empirical mean of Di(t), Qi(t) =
t

(K+1) ln t
ni(t*1)

[31], and ni(t) denotes
the number of times that client i has been chosen till round t.

Remark 1. The notation t = 0 in Eq. (4) means the initialization phase
of our algorithm rather than the literal meaning. Actually the Upper
Confidence Bound aforementioned is the Lower Confidence Bound of
quality function. This is the language of MAB theory and does not
change the nature of our algorithm as we minimize it. Therefore, we
still adopt the expression of Upper Confidence Bound.

Replacing Di(t) with ÇDi(t) in P1, we now introduce the transformed
form of our problem as follows,

(P2) min�
Sj (t)

�
jÀJ

…
jÀJ

max
iÀSj (t)

ÇDi(t),

s.t. (1), (2).

According to [32], CMAB will stick to some certain group of clients
after several iterations, which is not acceptable for those clients as they
have other tasks to process. To balance selection among clients, we
define a virtual energy deficit queue for each client i shown as follows:

⇥i(t + 1) =
L
⇥i(t) +

…
jÀJ

Ii,j (t)ci(t) *
Bi

T0

M+

, (5)

where [�]+ = max{�, 0}, Ii,j (t) = I{i À Sj (t)}. T0 means upper bound
of total round of our algorithm. In real implementations, it is difficult
to obtain the exact value of T0. However, a reasonably good estimate
of T0 can be obtained based on the history data, e.g., setting T0 as the
maximum T that has been observed. One can notice that the virtual
energy deficit queue ⇥i(t) will remain small if a client is less selected
otherwise it will increase rapidly. Through minimize ⇥i(t), we can guide
our algorithm to choose clients who are less selected. Another effect of
virtual energy deficit queue ⇥i(t) is to manage energy consumption of
clients and constraint (1) shall be satisfied as long as the queues remain
stable, formally (see Theorem 3):

lim sup
Tôÿ

1
T

T…
t=1

…

iÀN
E{⇥i(t)} < ÿ. (6)

Now we present Theorem 1 to justify the rationale for this state-
ment.

Theorem 1. Long-term energy budget constraint (1) holds if all virtual
energy deficit queues remain stable across the FL process.

Proof. According to the queue theory (Theorem 2.5, [33]), if all the
virtual queues ⇥i(t) remain stable across the FL process, we have:

lim
Tôÿ

1
T

T…
t=0

E
L…
jÀJ

Ii,j (t)ci(t) *
Bmin
T0

M
f 0. (7)

We transform the (P1) offline problem into a round by round online
problem (P2) through the MAB theoretical framework. Under this
framework, we can divide the total energy budget in constraint (1) into
each t(t = 1, 2,… , T0) round on average, T0 is an upper bound of the
number of training rounds. In actual implementation, it is difficult to

obtain the exact value of T0 directly. Thus we can apply expectations
and limits to solve it, which provides convenience for subsequent
calculations. Rearranging Bmin

T0
in inequality (7) to its right-hand side

and multiplying both side by T yields constraint (1). This completes
the proof. ∏

Combining CMAB and Lyapunov [34,35], we rewrite the quality
function as follows:

qi(t) = V �Di(t) + ⇥i(t)ci(t), (8)

and the estimate of qi(t) is

Ñqi(t) = V � ÑDi(t) + ⇥i(t) Ñci(t), (9)

where Ñci(t) =
≥t*1
⌧=0 I{iÀS(⌧)}ci(⌧)

ni(t*1)
, then the Upper Confidence Bound of

quality function is

Çqi(t) = Ñqi(t) *Qi(t). (10)

We give the final form of the problem, as shown in the following:

(P3) min�
Sj (t)

�
jÀJ

…
jÀJ

max
iÀSj (t)

Çqi(t),

s.t. (6),(2)

The final problem (P3) is indeed theoretically solvable as the server
only needs to sort the estimated quality function values of all clients,
and then select the K smallest ones.

4. Energy-aware client selection algorithm

In this section, we present basic solution of problem (P3), describe
the detail of our proposed algorithm, and give the related analysis.

4.1. Basic solution

To address (P3), we model it as a heterogeneous budget-limited
CMAB problem, where each client is seen as an arm, training delay
is seen as corresponding reward, and selecting clients is treated as
pulling arms. Pulling an arm will generate corresponding energy con-
sumption and the actions must be taken under constraint of no client
exceeds its energy budget. To deal with the heterogeneous budget, we
combine Lyapunov optimization with CMAB algorithm. By minimizing
the defined virtual energy deficit queue and ensuring its stability, the
constraint on energy budgets will not be violated. Before the beginning
of FL process, the proposed algorithm will select all clients to estimate
their delay and energy consumption to initialize virtual energy deficit
queue and quality function. Our algorithm selects the K arms with
smallest quality function and updates estimate of training delay and
energy consumption using feedback from clients iteratively. Each group
of k clients is assigned to its corresponding global model as shown in
Fig. 3 where the clients are sorted by the UCB-based quality function
in ascending order. The correspondence between global models and
groups of clients is based on the information about datasets of clients
in those groups.

4.2. Detailed algorithm

We propose Energy Aware Client Selection FL (EACS-FL) algorithm
(Algorithm 1) to solve the online problem (P3). The proposed algorithm
is comprised of two main phases. The first is initial phase shown in Line
1 where the server selects all clients and observes the feedback. In the
initial phase, all of the clients are selected andDt

i
and ct

i
of all clients are

gathered by the server to initialize our algorithm. The second is main
loop shown in Line 3Ì8, where the server selects clients according to
historical performance of clients. One could notice that in Line 3, Çqt*1

i
,

rather than Çq
t

i
, because the server cannot access Çq

t

i
at the beginning

of round t since it is observed at the end of round t. The reason is
the server cannot access Çq

t

i
at the beginning of round t since it is
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Fig. 3. Assignment of K selected clients.

observed at the end of round t. The CMAB theory is utilized to estimate
performance of clients. The optimization problem, which is a sorting
problem with computational complexity O(N logN), in Line 3 aims to
minimize a weighted sum of the delay and energy consumption where
the weight depends on the current virtual energy deficit queue length
and is varying over time. Here the Lyapunov optimization enables us
to manage energy consumption of clients, making sure that no client
exceeds its energy budget. After selection, invokes algorithm 2 to assign
a group of clients to each global model in Line 4. Next clients involved
conduct FL process and upload local model to server in Line 5, then
server observes and updates relevant parameters as shown in Line 6Ì9.

The data held by each client is different, and the data required by
each global model on the server may also be different. Therefore, an
algorithm is needed to match clients possessing data required by some
global models. Algorithm 2 determines the correspondence between
global models and client groups. Specifically, a bipartite graph G = {J ‰
�(t), E ,X} is built to describe the correlation between datasets of client
groups and each global model, where �(t) = {Sl(t), l = 1, 2,… , J}. E
indicates the set of edges (i.e., client group-global model pairs) in the
bipartite graph. Sl(t) represents the selected client set of global model
j in round t. We use Sl(t) represent the best matching relationship
between the clients and the global models to be trained based on
the maximum weight matching algorithm. X = {xl,j ,≈j À J ,Sl(t) À
�(t)} represents the weights of corresponding edges. The weight xl,j
is defined as total size of data relevant to global model j on clients
in Sl(t). We use mi,j to capture size of data relevant to global model
j on client i, which represents the weight value of the edge between
the user set �(t) and the global model J . Then xl,j = ≥

iÀSl (t) mi,j .
Algorithm 2 takes global models J , �(t), mi,j as input and outputs the
correspondence. Each weight xl,j in the bipartite graph G is initialized
as 0 as shown in Line 1. In Line 2Ì6, Algorithm 2 calculates weight
xl,j for all Sl(t) À �(t) and j À J . Finally in Line 7, the maximum
weight matching algorithm [36] is invoked to find a subset of edges
X that has the maximum sum of weights. This yields the desired cor-
respondence. The computational complexity of Algorithm 2 is O(N

5
2 )

according to [36]. Although the optimization problem mentioned in
Line 3 of Algorithm 1 involves a computational complexity associated
with sorting, its execution frequency throughout the entire algorithm
is relatively limited. Moreover, the time complexity of O(N logN) for
this sorting optimization problem is considerably smaller compared to
the O(N

5
2 ) complexity of Algorithm 2. The remaining operations within

the loop are of constant time complexity. Therefore, the overall time
complexity of Algorithm 1 is dominated by the time complexity of
Algorithm 2, specifically O(N

5
2 ), where N is the number of edges in

the bipartite graph G. Since Algorithm 1 and Algorithm 2 are both
applied to the FL system, which is generally composed of multiple
clients, meaning that the algorithms can be well extended in clients.

4.3. Theoretical analysis

The client assignment shown in Fig. 3 is a solution of (P3) which
presented as follows:

Algorithm 1 The EACS-FL algorithm
Input: J ,N ,Bi for i À N , k, V , T0
Output: Sj (t) for j À J , t = 0, 1, 2, 3,… , T

1: Initialization:
t } 0,⇥i(0) } 0, ni(0) } 1, ci(0) } 0,Bi(0) } Bi; select all clients,
i.e. S(0) } N , observe Di(0) and ci(0) for all i À N .

2: for t in 1, 2,5 , T do
3: Get Sj (t) for ≈j À J such that

{Sj (t)}jÀJ À argmin
Sj (t)ÀP ,jÀJ

…
jÀJ

max
iÀSj (t)

Çqi(t * 1)

4: Invoke algorithm 2 to assign selected clients for each global
model

5: Conduct FL process at selected clients
6: Observe Di(t), ci(t), for i À ‰jÀJ Sj (t)
7: Update ni(t), ÑDi(t),⇥i(t), Ñqi(t),Qi(t), Çqi(t)
8: Bi(t) } Bi(t * 1) * ci(t) for i À ‰jÀJ Sj (t)
9: t} t + 1
10: end for

Theorem 2. Given the sequence of quality functions of clients in N , the
sequence of subsets SGmj (t),≈Gmj À J shown in Fig. 3 is a valid solution
of (P3).

Proof. Suppose that a sequence of subsets S®
j
(t) denotes any assignment

that split any K clients into several groups of k clients. For convenience
of description, we assume that clients in all S®

j
(t) are sorted by the

UCB-based quality function in ascending order. Then we have
…
jÀJ

max
iÀS®

j
(t)

Çqi(t) =
…
jÀJ

Çqkj
(t),

where Çqkj
(t) is the UCB-based quality function of kth client in subset

S
®
j
(t). For all SGmj (t), we have

…
GmjÀJ

max
iÀS®

Gmj
(t)

Çqi(t) =
J…
i=1

Çqik(t).

Since the sequence of SGmj (t) is generated in ascending order of quality
function, it is obviously that
J…
i=1

Çqik(t) f
…
jÀJ

Çqkj
(t).

As the sequence of S®
j
(t) denotes any assignment, the sequence of

SGmj
(t) is a valid solution of (P3). This complete the proof. ∏

In MAB theory, regret is used to measures the performance gap
between a given policy and the optimal policy. For ease of analysis,
we define time average regret of proposed algorithm.

Definition 1.

R(T ) = 1
T

T…
t=1

E
T…

jÀJ
max
iÀSj (t)

qi(t) *
…
jÀJ

max
iÀS<

j

qi(t)
U

, (11)
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Algorithm 2 The algorithm for assigning selected clients
Input: J ,�(t),mi,j
Output: the correspondence between J and �(t)
1: Initialization: xl,j = 0
2: for j = 1, 2,5 , J do
3: for l = 1, 2,5 , J do
4: xl,j =

≥
iÀSl (t) mi,j

5: end for
6: end for
7: Conduct the maximum weight matching algorithm [36] in terms of
the weight xl,j , and output the result.

where we use S<
j
to represent the selection made by the optimal policy.

Before our proof, there is an assumption we need to introduce.

Assumption 1. Let T0 denotes the upper bound of total round of our
algorithm, then
Bmin
T0

> cmax,

where Bmin = miniÀN {Bi}, cmax denotes the maximum of energy
consumption in a single round.

Assumption 1 means that clients have enough energy budget to par-
ticipate in each round of FL training. With definitions and assumptions
above, we now present strict upper bound of time-averaged total queue
length and time average regret as follows.

Theorem 3. Suppose system satisfies Assumption 1, then our algorithm
can achieve queue stability in the systems, i.e. there exist constants B and
✏, such that

lim sup
Tôÿ

1
T

T…
t=1

…

iÀN
E{⇥i(t)} f

1
✏
(B + V NcmaxDmax), (12)

where B = 1
2NJ 2c2max +

1
2N

B
2
max
T
2
0
, ✏ =

⇠
Bmin
T0

* cmax

⇡

Proof. See Appendix. ∏

Theorem 4. The worst time-averaged regret of our algorithm is bounded
as

R(T ) f B

V
+NcmaxDmax +

1
T
N(�1 ln T + �2)�max, (13)

where �1 = 4K2(K+1)
�
2
min

, �2 = 1 + K⇡
2

3

Proof. See Appendix. ∏

4.4. Convergence analysis of FL

In this work, we consider the following distributed optimization
model:

min
w

$
F (w) ç

N…
k=1

pkFk(w)
%
,

whereN is the number of devices, and pk is the weight of the kth device
such that pk g 0 and≥n

k=1. Suppose the kth device holds the nk training
data: xk,1, xk,2,… , xk,nk

. The local objective Fk(�) is defined by

Fk(w) ç
1
nk

nk…
j=1

l(w; xk,j ),

where l(�; �) is a user-specified loss function.

Here, we describe one around (say the tth) of the standard FedAvg
algorithm. First, the central server broadcasts the latest model, wt, to
all the devices. Second, every device (say the kth) lets wk

t
= wt and

then performs local updates:

wk
t+1 ⌥ wk

t
* ⌘t(Fk(wkt , ⇠

k

t
),

where ⌘t is the learning rate and ⇠kt is a sample uniformly chosen from
the local data belonging to kth client in tth round.

In each round t, the server chooses a subsetS(t) ” N of the clients
and then distributes the weight vector x(t) of the global model to the
selected clients. After receiving the global model weights, each of the
selected clients individually updates the global model by computing
the gradients of their local loss functions based on their own private
data and then uploads the updated gradients to the server for model
aggregation, i.e.

x(t + 1) = x(t) * �v(t), (14)

where v(t) = ≥n

k=1 pk(Fk(x(t)).
Then, we highlight the necessary assumptions and then provide the

convergence guarantee.

Assumption 2. F1,… ,FN are all L-smooth: for all v and w, we have

Fk(v) f Fk(w) + (v * w)T(Fk(w) +
L

2 Òv * wÒ22.

Assumption 3. F1,… ,FN are all �-strongly convex: for all v and w,we
have

Fk(v) g Fk(w) + (v * w)T(Fk(w) +
�

2 Òv * wÒ22.

Assumption 4 (Bounded Variance).: It is assumed that the difference
between any correct gradient estimator (F (x(t)) in any round t and the
gradient estimator (Fk(x(t)) of k users has upper bounded variance:

E
ÙÙÙÙÙ
(F (x(t)) *

n…
k=1

pk(Fk(x(t))
ÙÙÙÙÙ

2

2
f �

2
0 .

Theorem 5. Under Assumptions 2–4 and taking � f 1
L
f

1
�
, we have

E[F (x(T )) * F (x<)] f
�
2
0

2� + (1 * ��)T*1E
⌧
F (x(1)) * F (x<) *

�
2
0

2�

�
, (15)

where x< denotes the optimal weights.

Proof. See Appendix. ∏

5. Experiments

In this section, we exhibit our experimental setup and experiment
results.

5.1. Experimental setup

We implement the client selection algorithm, and construct the FL
framework using Flower [37] as the training pipeline. We conduct our
experiments on a desktop server with an Intel Xeon E5 CPU, 32 GB
RAM, 2TB HDD, 512 GB SSD, and the Linux Ubuntu 16.04.1 LTS
operating system. There are 20 clients emulated by Docker containers.
The energy budgets of clients vary from 1300 J to 1600 J randomly. To
maximize the global accuracy, the value of k is set to 2 according to a
series of experiments.

As the t increases, the system model will gradually converge; how-
ever, at this point, the amount of model updates for each client Di
will be very limited, and the selected client Sj (t) may be basically the
same in each round; In addition, the total energy consumption budget
Bi of each client will increase, but the clinet’s consumption budget
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Fig. 4. Energy and time consumption over parameter V (300 rounds).

Fig. 5. Time-averaged regret under different V over round.

ci(t) for each round will become smaller because Di will decrease as
t increases; the training delay Di(t) will also become smaller due to
the decrease in the amount of data. t can indeed be used as a decision
variable, but since t is less relevant to our optimization objective, we
set t to a fixed value.

Dataset and Global models: We utilize extended handwritten digit
classification dataset EMNIST [38] for FL. The digits part of EMNIST
contain 28 ù 28 gray-scale images in 10 classes, a training set of
240,000 examples and a test set of 40,000 examples. We combine
all 240,000 examples in training set and 32,000 examples in test set
together and split these examples into 20 groups for 20 clients as
their training set. The remaining 8,000 examples are utilized as the
test set for all clients. The are 3 global models of fully connected
network composed as follows: a fully connected layer as the input layer
followed by ReLU activation, another fully connected layer followed by
ReLU activation as hidden layer, and a final fully connected layer with
Softmax as output layer.

To evaluate the performance of the proposed EACS-FL algorithm,
we vary the value of V and compare our algorithm with two baseline
algorithms.

• Random: in each round, the clients participating in FL process are
selected randomly.

• CS-UCB-Q [10]: the server selects clients with smallest delay
under the constraint of fairness.

Metrics including training delay (or total time consumption), total
energy consumption, time-averaged regret of selection, time-averaged
total queue, total quality functions, test accuracy of global models are
evaluated in our experiments.

5.2. Experimental results

Fig. 4 depicts the impact of the control parameter V on the total
time consumption and total energy consumption. As seen in Fig. 4,
parameter V influences the focus of our algorithm. By increasing V
from 10 to 102.3, EACS-FL cares more about the delay performance, and

Fig. 6. Time-averaged total queue under different V over round.

Fig. 7. Cumulative energy consumption of different strategies over round.

Fig. 8. Training delay of different strategies over round.

Fig. 9. Quality function of different strategies over round.

thus the total time consumption decreases from 5, 500 s to 4, 600 s. How-
ever, with less concern on the energy consumption when V increases
from 10 to 102.3, the total energy consumption increases from 8, 300 J
to 9, 700 J. In addition, it obviously shows that the time and energy
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Fig. 10. Global accuracy over time.

consumption follows the [O(1_V ),O(V )] tradeoff. With the increase
of V , the total energy consumption increases linearly and the time
consumption decreases inversely.

We explore time-averaged regret of our algorithm under different
settings of parameter V , as shown in Fig. 5. After several iterations,
the bigger parameter V is, the smaller time-averaged regret returns.
One can easily find this trend from t = 6 to t = 100. When t =
250, the time-averaged regret gradually becomes stable and finally
stabilizes at about 4. Furthermore, the time-averaged regret increases
first and then decreases over round which has the form of O(ln T _T ),
by which Theorem 4 is verified.

Fig. 6 demonstrates the trend of time-averaged total queue over
round. According to Fig. 6, the time-averaged total queue increases
first, then decreases and becomes stable finally. Moreover, as parameter
V increases, the upper bound of time-averaged total queue increases
too, which verifies Theorem 3.

We compare our algorithm with two baseline strategies that are
commonly used in the field, i.e. random and CS-UCB-Q. Note that we
have made an adaptation to CS-UCB-Q in order to tailor it to our
context, but the basic idea is the same as the vanilla one.

We evaluate the energy performance of our algorithm which is
presented in Fig. 7. Since CS-UCB-Q does not consider the influence
of energy [10], its energy consumption is close to random selection
strategy and is significantly higher than our algorithm under different
settings of control parameter V . We can find that when V = 200,
the energy consumption of our algorithm is 54.6% of CS-UCB-Q and
it is only 45.5% of CS-UCB-Q when V = 10. Compared with random
strategy, the energy consumption of our algorithm is 54.0% of it with
V = 200 and 45.0% with V = 10.

Fig. 8 exhibits delay performance of different strategies. As CS-
UCB-Q is more concerned with the effect of delay, the total time
consumption of it is smaller than that of ours, since we focus on both
delay and energy consumption. The total time consumption of our
algorithm is 44% more than that of CS-UCB-Q with V = 10 and it is
only 19% more than that of CS-UCB-Q with V = 200. Compared with
random policy, our algorithm is more concerned about the influence of
energy consumption when the parameter V is small, so that the delay
performance of EACS-FL is worse than it, yet when the parameter V
becomes big, our algorithm outperforms the random strategy. It should
be noted that the design motivation of the CS-UCB-Q is to enable
server to select clients with minimal latency under the constraint of
fairness. In our approach, we consider a holistic set of criteria when
choosing clients, including training delay, total energy consumption,
time-averaged regret of selection. In comparison to our algorithm, CS-
UCB-Q tends to excessively prioritize performance in terms of training
latency while potentially undervaluing the impact of other constraints
on the federated system. While this may lead to outstanding perfor-
mance in terms of training latency, it could result in sub-optimal overall
system performance.

Fig. 11. Global accuracy over time when ⌘ = 0.005.

Fig. 12. Global accuracy over time when ⌘ = 0.01.

Fig. 13. Global accuracy over time when ⌘ = 0.05.

The performance of quality function is shown in Fig. 9. The quality
function is a composite indicator combining delay and energy, which
comprehensively reflects the performance of a selection strategy. With
reference to Fig. 4, we can see that increasing the value of V will
increase the energy budget and delay. Therefore, when we increase
the value of V , the starting point of the quality function does not start
from 0. The reader can see that quality function of our algorithm is
obviously lower than that of CS-UCB-Q and random. It is obviously
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shown that quality function of CS-UCB-Q increases linearly and that
of random fluctuates a lot but also grows almost in linear pattern.

As shown in Fig. 10, we simulate the average accuracy of global
model. The simulation results validate that our algorithm takes less
time than random under the condition of achieving the same accu-
racy, and achieves the same performance as CS-UCB-Q in general.
Take global accuracy reaching 80% for example, the training delay of
EACS-FL is 89.53% of CS-UCB-Q and 74.35% of random strategy.

We validate the FL settings also by adapting to different hyperpa-
rameters, with batch sizes of 64, 128, and 256, and learning rates of
0.005, 0.01, and 0.05. V is set to 200. Figs. 11–13 shows the accuracy
of FL in learning rate of 0.005, 0.01 and 0.05. Three figures show
the same trend that the accuracy is higher when the batch size is
set bigger. Overall, Fig. 12 illustrates that a batch size of 256 and a
learning rate of 0.01 achieve the best accuracy in the shortest time. This
combination is chosen for our experiments due to its high accuracy,
albeit with a higher energy cost during the process. This heightened
energy cost accentuates the changes in results, making this combination
more pronounced.

6. Conclusion

In this paper, we propose a novel algorithm for client selection in
FL system, considering the long term energy constraints of the client,
and design an online selection strategy based on CMAB theory and
Lyapunov optimization to minimize the energy consumption and delay
at the same time. By theoretical proof and experimental verification,
our algorithm can achieve close to optimal performance of delay and
energy. In addition, by adjusting the control parameter V , our algo-
rithm can make a trade-off between delay and energy consumption
to meet the needs of the FL system. Experiment results show that
the proposed algorithm saves 54.5% energy compared with the state-
of-the-art while maintaining the same level of test accuracy of FL
system.
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Appendix

Before proof, we introduce a counter Ci(t) for each client which is
defined as follows. Each round a non-optimal set of arms is selected,
that is S(t) ë S

<, we increase the smallest counter in S(t):

Cj (t) } Cj (t * 1) + 1, j = argmin
jÀS(t)

Cj (t * 1)

Now we introduce a lemma shown as follows,

Lemma 1. Upon termination of proposed algorithm, the upper bound of
E
⌅
Ci(T )

⇧
is:

E
⌅
Ci(T )

⇧
f

4K2(K + 1) ln T
�
2
min

+ 1 + K⇡
2

3

Proof.

Ci(⌧) =
⌧…
t=1

I
�
Ii(t) = 1

�

= l +
⌧…
t=1

I
�
Ii(t) = 1,Ci(t) g l

�

= l +
⌧…
t=1

I
T…

jÀJ
max
i®ÀSj (t)

Çqi® (t * 1) f
…
jÀJ

max
i®ÀS<

j

Çqi® (t * 1),Ci(t) g l

U

= l +
⌧…
t=1

I
T…

jÀJ

L …
i®ÀS(t)

 
i
®
j
(t) Çqi® (t * 1)

M

f

…
jÀJ

L <…
i®ÀS

 
<i®
j
Çqi® (t * 1)

M
,Ci(t) g l

U

= l +
⌧…
t=2

I
T …

i®ÀS(t)
�i® (t * 1) Çqi® (t * 1) f

…
i<ÀS<

�i< (t * 1) Çqi< (t * 1), Ci(t) g l

U

(16)

where

 
i
®
j
(t) = I{i® = argmax

i®®ÀSj (t)
Çqi®® (t * 1)}

 
<i®
j
= I{i® = argmax

i®®ÀS<
j

Çqi®® (t * 1)}

�i® (t * 1) =
…
jÀJ

I
T
i
® = argmax

i®®ÀSj (t)
Çqi®® (t * 1)

U

�i< (t * 1) =
…
jÀJ

I
T
i
< =

<
argmax
i®®ÀSj

Çqi®® (t * 1)
U

Then, we continue Eq. (16)

Ci(⌧) f l +
⌧…
t=1

I
T

min
lfns(1)f5fns(K)ft

K…
x=1

�s(x)(t * 1) Çqs(x)(t * 1) f

max
1fns< (1)f5fns< (K)ft

K…
x=1

�s<(x)(t * 1) Çqs<(x)(t * 1)
U

where s(x) denotes the xth element of S(t), and s<(x) denotes the xth
element of S<.

Therefore

Ci(⌧) f l +
⌧…
t=1

t…
ns(1)=l

5
t…

ns(K)=l

t…
ns< (1)=1

5
t…

ns< (K)=1

I
T

K…
x=1

�s(x)(t * 1) Çqs(x)(t * 1) f

K…
x=1

�s<(x)(t * 1) Çqs<(x)(t * 1)
U

(17)
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Following event holds:

K…
x=1
�s(x)(t * 1)

⌅
Ñqs(x)(t * 1) *Qs(x)(t * 1)

⇧
f

K…
x=1

�s<(x)(t * 1)
⌅
Ñqs<(x)(t * 1) *Qs<(x)(t * 1)

⇧

means that at least one of the following three events must holds:

K…
x=1
�s<(x)(t * 1)

⌅
qs<(x) +Qs<(x)(t * 1)

⇧

f

K…
x=1

�s<(x)(t * 1) Ñqs<(x)(t * 1)

(18)

K…
x=1
�s(x)(t * 1) Ñqs(x)(t * 1) f

K…
x=1

�s(x)(t * 1)
⌅
qs(x) *Qs(x)(t * 1)

⇧
(19)

K…
x=1
�s(x)(t * 1)

⌅
qs(x) * 2Qs(x)(t * 1)

⇧
<

K…
x=1

�s<(x)(t * 1)qs<(x)

(20)

For event (18),

P
T

K…
x=1

�s<(x)(t * 1)[qs<(x) +Qs<(x)(t * 1)]

f

K…
x=1

�s<(x)(t * 1) Ñqs<(x)(t * 1)
U

f

K…
x=1

P
�
Ñqs<(x)(t * 1) g qs<(x) +Qs<(x)(t * 1)

�
(21)

Apply Chernoff–Hoeffding bound to Eq. (21), we have

P
�
Ñqs<(x)(t * 1) g qs<(x) +Qs<(x)(t * 1)

�

f e

*2ns< (x)(t*1)
0

(K+1) ln(t)
n
s< (x) (t*1)

1

= t
*2(K+1)

Then the upper bound of event (18) is

P
T

K…
x=1

�s<(x)(t * 1) Ñqs<(x)(t * 1)

g

K…
x=1

�s<(x)(t * 1)[qs<(x) +Qs<(x)(t * 1)]
U

f K � t*2(K+1)

(22)

For event (19), we have similar upper bound.
When l g 4K2(K+1) ln T

�
2
min

, event (20) is always false because

K…
x=1

�s(x)(t * 1)qs(x) *
K…
x=1

�s<(x)(t * 1)qs<(x)

* 2
K…
x=1

�s(x)(t * 1)Qs(x)(t * 1)

g �t * 2K
u

(K + 1) ln t
l

g �min * 2K
yxxxw

(K + 1) ln T
4K2(K+1) ln T

�
2
min

= 0

Now we continue inequality (17)

Ci(⌧) f
R
4K2(K + 1) ln T

�
2
min

S
+ 1 +

⌧…
t=1

t…
ns(1)=l

5
t…

ns(K)=l

t…
ns< (1)=1

5
t…

ns< (K)=1
2K � t*2(K+1)

(23)

f
4K2(K + 1) ln T

�
2
min

+ 1 +
⌧…
t=1

2K � t*2

f
4K2(K + 1)

�
2
min

≠́≠≠≠≠Ø≠≠≠≠≠̈

=:�1

ln T + 1 + K⇡
2

3
≠́≠Ø≠≠̈

=:�2

∏ (24)

Recall Theorem 3

lim sup
Tôÿ

1
T

T…
t=1

…

iÀN
E{⇥i(t)} f

1
✏
(B + V NcmaxDmax)

and Theorem 4

R(T ) f B

V
+NcmaxDmax +

1
T
N(�1 ln T + �2)�max

Proof. To obtain the results of Theorem 3 and Theorem 4, we firstly
define some useful notation:

Lyapunov function: L[ôôí⇥(t)] ç 1
2
…

iÀN
⇥

2
i
(t)

Lyapunov drift: �[ôôí⇥(t)] = L[ôôí⇥(t + 1)] * L[ôôí⇥(t)]

Next we bound Lyapunov drift E{�[ôôí⇥(t)]} as follows,

E{�[ôôí⇥(t)]} = E{ 12
…

iÀN
⇥

2
i
(t + 1) * 1

2
…

iÀN
⇥

2
i
(t)}

f E
T

1
2
…

iÀN
[⇥i(t) +

…
jÀJ

Ii,j (t)ci(t) *
Bi

T0
]2 * 1

2
…

iÀN
⇥

2
i
(t)
U

= E
h
n
l
nj

1
2
…

iÀN

L…
jÀJ

Ii,j (t)ci(t)
M2

+ 1
2
…

iÀN

0
Bi

T0

12

+
…

iÀN
⇥i(t)

L…
jÀJ

Ii,j (t)ci(t) *
Bi

T0

Mi
n
m
nk

f
1
2NJ 2c2max +

1
2N

B
2
max

T
2
0

≠́≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠Ø≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠̈

=:B

+E
T…

iÀN
⇥i(t)

L…
jÀJ

Ii,j (t)ci(t) *
Bi

T0

MU

= B * E
T…

iÀN
⇥i(t)

Bi

T0

U
+ E

T…

iÀN
⇥i(t)

…
jÀJ

Ii,j (t)ci(t)
U

f B * E
T…

iÀN
⇥i(t)

U
Bmin
T0

+ E
T…

iÀN
⇥i(t)

U
cmax

f B * E
T…

iÀN
⇥i(t)

U
Bmin
T0

+ E
T…

iÀN

⌅
V ÑDi(t) + ⇥i(t)

⇧
U
cmax

f B *
0
Bmin
T0

* cmax

1

≠́≠≠≠≠≠≠≠Ø≠≠≠≠≠≠≠≠̈

=:✏

E
T…

iÀN
⇥i(t)

U
+ V NcmaxDmax (25)

We bring in Eq. (5) and obtained the first inequality. Aiming to the
second and third inequality,we according to the implication of Ii,j (t)
and ci(t) to scaling down to obtain threshold range for energy bud-
geting. In the fourth inequality, we introduce ÑDi(t) for the subsequent
optimization of the objective function connection. Then we focus on
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drift-plus-penalty function, which is shown as follows,

E{�[ôôí⇥(t)]} + V E
T…

jÀJ
max
iÀSj (t)

qi(t) *
…
jÀJ

max
iÀS<

j

qi(t)
U

(26)

Substituting inequality (25) into inequality (26) yields, then according
to use the sum transformation, the operation of summing the order of
model j À J is transformed into the operation of summing user i À S(t)
and i À S

<.

E{�[ôôí⇥(t)]} + V E
T…

jÀJ
max
iÀSj (t)

qi(t) *
…
jÀJ

max
iÀS<

j

qi(t)
U

f B + V NcmaxDmax * ✏ � E
T…

iÀN
⇥i(t)

U

+ V E
T …

iÀS(t)
ri(t) *

…
iÀS<

r
<
i

U
(27)

where

ri(t) ç
…
jÀJ

I
T
i = argmax

i®ÀSj (t)
qi® (t)

U
qi(t)

r
<
i

ç

…
jÀJ

I
T
i =

<
argmax
i®ÀSj

qi® (t)
U
qi(t)

Summing both sides of inequality (27) over t = 1, 2, 3,… , T yields

L[ôôí⇥(T + 1)] * L[ôôí⇥(1)] + V
T…
t=1

E
T…

jÀJ
max
iÀSj (t)

qi(t) *
…
jÀJ

max
iÀS<

j

qi(t)
U

f T (B + V NcmaxDmax) * ✏
T…
t=1

E
T…

iÀN
⇥i(t)

U

+ V

T…
t=1

E
T …

iÀS(t)
ri(t) *

…
iÀS<

r
<
i

U

Rearranging inequality 1 yields

✏ � 1
T

T…
t=1

E{
…

iÀN
⇥i(t)} f B + V NcmaxDmax (28)

taking lim-sup over T ô ÿ yields Theorem 3.
Rearranging inequality 1 also yields

R(T ) = 1
T

T…
t=1

E
T…

jÀJ
max
iÀSj (t)

qi(t) *
…
jÀJ

max
iÀS<

j

qi(t)
U

f
B

V
+NcmaxDmax +

1
T

T…
t=1

E
T …

iÀS(t)
ri(t) *

<…
iÀS

r
<
i

U

= B

V
+NcmaxDmax +

1
T

…
S(t)ëS<

E
T …

iÀS(t)
ri(t) *

…
iÀS<

r
<
i

U

f
B

V
+NcmaxDmax +

1
T

…

iÀN
Ci(T )�max

f
B

V
+NcmaxDmax +

1
T
N(�1 ln T + �2)�max (29)

This completes the proof of Theorem 4. ∏

Proof of Theorem 5. According to Assumption 3 and taking � f
1
L
,

we have

F (x(t + 1)) * F (x(t)) f *�(F (x(t))v(t) + �

2Òv(t)Ò
2
2

= * �2Ò(F (x(t))Ò
2
2 +

�

2Ò(F (x(t)) * v(t)Ò22. (30)

The initial inequality involves substituting x(t + 1) = v and x(t) = w

into Assumption 3, followed by incorporating Eq. (17). In the first
equation, we utilize the inverse operation of the square difference
formula to expand the aforementioned inequality. Subsequently, we
take the expectation over v(t), leading to the following expression:

E[F (x(t + 1)) * F (x(t))] f * �2Ò(F (x(t))Ò
2
2

+ �

2E
T

Ò(F (x(t)) *
…
k”S(t)

(Fk(x(t))Ò22
U

f * �2Ò(F [x(t)]Ò
2
2 +

��
2
0
2 , (31)

where the last inequality holds because of Assumption. 4. Now we
define a new function

F ( Çx) = F (x(t)) + (F (x(t))( Çx * x(t)) + �

2 Ò Çx * x(t)Ò22 (32)

whose minimal value is achieved when all the partial derivatives are
0’s.
)F ( Çx)
) Çx = (F (x(t)) + �[ Çx(t) * x(t)] = 0 (33)

The optimal point is Çx< = x(t) * (G(x(t))
�

and the minimal value is

Fmin = F (x(t)) * Ò(F (x(t))Ò2
2� (34)

We can derive the following inequality based on Eqs. (32), (34) and
Assumption 3:

F (x<) g F (x<) g Fmin, (35)

which implies that:

F (x<) g Fmin

2�[F (x(t)) * F (x<)] f Ò(F (x(t))Ò22 (36)

Then we combine Eqs. (31) and (36), eliminating Ò(F (x(t))Ò22:

E[F (x(t + 1)) * F (x(t))] f *��[F (x(t)) * F (x<)] +
��

2
0
2 . (37)

We define �t+1 = F (x(t + 1)) * F (x(t)) rearrange Eq. (37) as:

E[�t+1] f (1 * ��)�t +
��

2
0
2 . (38)

We just need to prove that �t+1 decreases as t increases, then we take
E(�) on both sides of the equation, and iterate t times on �t to obtain:

E[�t+1 *
�
2
0

2� ] f E[(1 * ��)(�t *
�
2
0

2� )]

f E[(1 * ��)t(�1 *
�
2
0

2� )] (39)

Because of 0 < � f
1
�
, the 1 * �� < 1, following that (1 * ��)t decreases

as t increases, we take T = t+1 and we can obtain

E[F (x(T )) * F (x<)] f
�
2
0

2� + (1 * ��)T*1E
⌧
F (x(1)) * F (x<) *

�
2
0

2�

�
(40)

It is observed from Eq. (40) that as t increases, the gap between
F (x(T )) and F (x<) becomes smaller, suggesting a better convergence
performance. ∏
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