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E�ective vector representation models, e.g., word2vec and node2vec, embed real-world objects such as images
and documents in high dimensional vector space. In the meanwhile, the objects are often associated with
attributes such as timestamps and prices. Many scenarios need to jointly query the vector representations
of the objects together with their attributes. These queries can be formalized as range-�ltering approximate
nearest neighbor search (ANNS) queries. Speci�cally, given a collection of data vectors, each associated with
an attribute value whose domain has a total order. The range-�ltering ANNS consists of a query range and
a query vector. It �nds the approximate nearest neighbors of the query vector among all the data vectors
whose attribute values fall in the query range. Existing approaches su�er from a rapidly degrading query
performance when the query range width shifts. The query performance can be optimized by a solution
that builds an ANNS index for every possible query range; however, the index time and index size become
prohibitive – the number of query ranges is quadratic to the number = of data vectors. To overcome these
challenges, for the query range contains all attribute values smaller than a user-provided threshold, we design
a structure called the segment graph whose index time and size are the same as a single ANNS index, yet can
losslessly compress the = ANNS indexes, reducing the indexing cost by a factor of ⌦(=). To handle general
range queries, we propose a 2D segment graph with average-case index size$ (= log=) to compress = segment
graphs, breaking the quadratic barrier. Extensive experiments conducted on real-world datasets show that our
proposed structures outperformed existing methods signi�cantly; our index also exhibits superior scalability.
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1 Introduction
In recent years, various machine learning models, e.g., word2vec [33, 35], doc2vec [25], and
node2vec [16], have been developed to e�ectively represent real-world objects such as images,
documents, and graphs as high-dimensional feature vectors. In the meanwhile, real-world objects
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are often associated with structured attributes/�elds such as timestamps, prices, and quantities. In
many scenarios, the feature vectors and the structured attributes of the objects need to be jointly
queried, as illustrated in the motivation examples below.
Example 1: Product Search. On e-commerce platforms like Amazon, a customer may search for
a wardrobe with conditions on price (less than $200) and style (visually similar to the one in an
image). The condition on the style can be formulated as an approximate nearest neighbor search
(ANNS) over the image feature vectors. However, the search should be conducted not over all the
wardrobes but over a subset of the wardrobes whose prices are less than $200.
Example 2: Vehicle Search. Consider a tra�c camera that monitors cars passing on a state
highway. The camera detects each car in the video stream, extracts a feature vector to represent it,
and stores the feature vector along with its corresponding timestamp in a database. When a query
arrives with a speci�c car image and a speci�ed time interval, the query processing performs an
ANNS on the feature vectors within the speci�ed time interval.

The above queries can be formulated as the range-�ltering approximate nearest neighbor search
queries. Consider a collection of objects where each object is represented as a pair of a data vector
(i.e., feature vector) and an attribute value whose domain has a total order. A range-�ltering ANNS
query consists of a query vector and a query range. The query reports the approximate nearest
neighbors of the query vector among all the data vectors whose attribute values fall in the query
range. The scenarios of range-�ltering ANNS can be found in many applications such as face
recognition [15], person/vehicle re-identi�cation [27, 47], and recommendation [39].

Existing methods for range-�ltering ANNS rely on two simple strategies, ANNS-�rst and range-
�rst [40]. ANNS-�rst builds an ANNS index over all the data vectors during the o�ine indexing
phase. In the online querying phase, when a range-�ltering ANNS query arrives, it progressively
�nds data vectors nearest to the query vector using the ANNS index. It stops when a data vector
whose attribute value falls in the query range. However, ANNS-�rst is very slow especially when the
query range is small: the portion of the data vectors falling into a small query range is small and it
is thus hard to meet one in the ANNS. On the other hand, the range-�rst strategy �lters the data
vector with the query range �rst based on their attribute values. Since there is no ANNS index over
the remaining data vectors available, it can only linearly scan all the data vectors in the query range
to �nd the nearest neighbor, which is rather ine�cient, especially when the query range is large.
Hierarchical Navigable Small World graph (HNSW) [30] is an e�cient index for ANNS query,

which has been widely used in both academia and industry. For example, the multi-modal feature
vector dataset LAION-5B, which contains 5.85 billion vectors [37], comes with an HNSW index for
e�cient ANNS. Lucene 9.0 implements HNSW to support ANNS [1]. Moreover, HNSW index also
serves as the backbone of various vector databases such as Weaviate [3], Zilliz [4], and Pinecone [2].
Using HNSW as a building block, one can build one ANNS index (HNSW) for every possible query
range: when a range-�ltering ANNS query arrives, use the corresponding ANNS index of the query
range to �nd and report a set of approximate nearest neighbors of the query vector. This solution
is query-e�cient, yet it faces the challenge of the excessively large index size and long index time:
the total number of possible query ranges is quadratic to the number of data vectors.

To address the above challenges, for a set of = data vectors, we �rst consider half-bounded range
queries where the query range includes all the attribute values smaller than a user-provided value.
Note that there are = possible half-bounded ranges which can be trivially answered if one constructs
= HNSW indexes. We propose a structure called segment graph which losslessly compresses all the
= HNSW indexes with indexing time and space the same as that of constructing a single HNSW
index. In other words, the segment graph reduces the indexing cost for half-bounded queries by a
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factor of ⌦(=). Note the construction of the segment graph does not necessitate the construction
of the = HNSW graphs.
When it comes to queries with general ranges, constructing = segment graphs is su�cient for

query processing, but the quadratic index size and time are not scalable to large datasets. We
propose 2⇡ segment graph to compress the = segment graphs. The average-case index size of 2⇡
segment graph is $ (= log=), breaking the quadratic barrier. We propose optimizations to further
reduce index time and size. Our experiments show that our 2⇡ segment graph can achieve superior
empirical performance.

In summary, this paper makes the following contributions.
• We propose, for half-bounded range-�ltering ANNS queries, a structure called segment graph to
losslessly compress = HNSW indexes with the time and space complexity that of a single HNSW
index, i.e., we reduce the index cost by a factor of ⌦(=).

• We propose, for general range-�ltering ANNS queries, an index called 2⇡ segment graph which
compresses = segment graphs with average-case index size breaking the quadratic barrier.

• Experiments on real-world datasets show that our indexes signi�cantly outperformed existing
methods and are highly scalable.
The paper is organized as follows. Section 2 de�nes the problem and introduces our building

block HNSW. Section 3 introduces segment graph while Section 4 presents the 2D segment graph
and index optimization techniques. Section 5 shows experimental results. Section 6 explains related
work. Section 7 concludes the paper.

2 Preliminary
This section introduces the notions that shall be used throughout the paper. Let 3 > 0 be an integer
and X a distance metric (e.g., the Euclidean distance metric) on the 3-dimensional space of R3 . Let
= > 0 be an integer and D be a set of = points in R3 .

D��������� 1 (N������ N�������� S�����). Given a query point @ 2 R3 and an integer : > 0,
the :-nearest neighbors of @, denoted as kNNX (@,D), is the set of : points in D with the smallest
distances to @ under metric X . Formally, kNNX (@,D) is a set S ✓ D of : points in D such that for
8D 2 S and 8E 2 D \ S, X (D,@)  X (E,@).

In particular, 1NNX (@,D) = {argminE2D X (E,@)}. We omit the subscription X when the context
is clear. Due to the notorious “curse of dimensionality” [19], a large body of existing nearest
neighbor search studies approximate nearest neighbors search (ANNS) [26] which reports a set
kANN(@,D) of : points aiming at an optimized recall 1

: |kANN(@,D) \ kNN(@,D)| for a point @
and integer : .

2.1 Problem Definition
This paper considers D with attributed data points and the nearest neighbor search with attribute
constraints. Speci�cally, let � be an attribute (e.g., dates, prices, quantities, etc.) whose domain
⇡><(�) has a total order. Each point E in D is associated with an �-attribute value E [�]. Let ��
be any interval on ⇡><(�). Denote by D[��] = {E 2 D|E [�] 2 ��} the set of points in D whose
�-attribute value falls in ��. Given a query point @ and an attribute interval �� on ⇡><(�), we aim
at reporting the nearest neighbors of @ in D[��].

To simplify the search, we sort the data points inD in ascending order of their�-attribute values
D = {E1, E2, · · · , E=} and call the index of each point its key. In other words, for any E8 , E 9 2 D,
their keys 8 < 9 implies E8 [�]  E 9 [�]. For an �-attribute interval ��, we can �nd two integers
8, 9 2 [=] such that D[��] = D8, 9 = {EG 2 D|G 2 [8, 9]} based on the predecessor operation: for any
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all data vectors ordered by their search key values
v1
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query range s = [4, 13]

all data vectors ordered by their search key values
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query range s = [4, 13]
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query range s =	 [4, 13]
71 28 11 8 19 27 9 13 24 5 12 21 45 3 15 6 2 22 1630*(!+ , ,):	

all data vectors ordered by their search key values

Fig. 1. An example of the range-filtering ANNS query.

attribute value 0 2 ⇡><(�), the point E in D with the largest key such that E [�] < 0 (or E [�]  0)
can be reported on D = {E1, E2, · · · , E=} in $ (log(=)) time. The nearest neighbor search with the
above attribute constraints then boils down to the problem de�ned below.

D��������� 2 (R�����F�������� N������ N�������� S�����). Let D = {E1, E2, · · · , E=} be a set
of = points in R3 . The key of the point E8 2 D is 8 , for each 8 2 [=]. A range-�ltering nearest neighbors
search query & = (@, [8, 9],:) with integers 8, 9 2 [=] and 0 < :  9 � 8 + 1 returns kNN(@,D8, 9 ), a
:-sized subset R of D s.t.
• 8 EG 2 R, G 2 [8, 9], and
• 8 EG 2 R and 8 E~ 2 D \ R, either ~ 8 [8, 9] or X (EG ,@)  X (E~,@).

Example 1. Figure 1 shows an example: Consider the set of = = 20 points D = {E1, · · · , E20}.
The range-�ltering nearest neighbors search query & = (@, [4, 13], 1) consists of a query point @, a
query range [4, 13], and an integer : = 1. We show by the number under the point E8 its distance to
the query point X (E8 ,@). The query & returns 1NN(@,D4,13) = {E11}. Though E18 and E15 are closer
to the query point @ than E11, their keys 18 and 15 are not within the query range [4, 13], thus both
are �ltered by the range condition.

This paper studies the range-�ltering approximate nearest neighbors search (RFANNS) which
generalizes traditional approximate :-nearest neighbors search (ANNS) with range-�ltering con-
straints. The problem can be de�ned as follows.

D��������� 3 (RFANNS). Given a set D = {E1, E2, · · · , E=} of points in R3 , a range-�ltering
approximate nearest neighbors search query & = (@, [8, 9],:) aims at reporting kANN(@,D8, 9 ), a
subset of : points in D8, 9 , with an optimized recall |kANN(@,D8,9 )\kNN(@,D8,9 ) |

: .

As D1,= and D are identical, the traditional ANNS is essentially a special case (@, [1,=],:) of
RFANNS. Without loss of generality, we break distance ties with the ordering on keys, i.e., any two
points will have di�erent distances to another point.

2.2 Graph-based ANNS and HNSW
HNSW (Hierarchical Navigable Small-World graph) [30] is an e�cient and widely used graph-based
index for approximate nearest neighbor search [42]. This line of ANNS establishes a graph G on D
to navigate the nearest neighbor search: G has = nodes where each node in G is a point E8 2 D,
8 2 [=]. We de�ne the distance between two nodes E8 and E 9 in G as the X-distance X (E8 , E 9 ) of their
points. In our paper, nodes and points are interchangeable, indicating both the nodes in the graph
G and the points in D. We denote the edge set of G with adjacency lists. Speci�cally, for each node
E8 2 D, denote by G[E8 ] ✓ D the set of (outgoing) neighbors of E8 , i.e., for any 8, 9 2 [=], there is a
directed edge (E8 , E 9 ) in G i� E 9 2 G[E8 ].
HNSW is widely adopted for real-world ANNS and serves as a building block of our solution.

Next, we introduce the process of the ANNS in HNSW and the establishment of the HNSW graph.
ANN Search (Algorithm 1). Let @ be the query point and K � : be an integer. The search aims at
reporting K ANNs of @ with a priority search [36] over the HNSW graph G from an entry point 4? .
The entry point can be trivially E1 or a point in D (node in G) chosen by heuristics [42] (we used
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Algorithm 1: ANNS�����(G,@, 4?,K)
Input: G: HNSW graph, denote the neighbor set of a node E as G[E]; @: query point; 4?: entry

point ; K: an integer.
Output: ann: a set of K approximate nearest neighbors of @.
mark 4? as visited;1

push 4? to the min-heap pool in the order of distance to @;2

push 4? to the max-heap ann in the order of distance to @;3

while pool is not empty do4

E  the vector nearest to @ in pool, pop pool;5

D  the vector farthest to @ in ann;6

if X (@, E) > X (@,D) then break;7

foreach unvisited > 2 G[E] do8

mark > as visited;9

D  the vector farthest to @ in ann;10

if |ann| < K or X (@,>) < X (@,D) then11

push > to pool and ann;12

if |ann| > K then pop ann;13

return ann;14

Algorithm 2: E���I��������(>, 4?,M,K,G)
Input: > : a point in D; 4?: the entry point; M: the maximum degree; K: an integer; G: the

existing HNSW graph.
Output: G: the updated HNSW graph.
ann ANNS�����(G,>, 4?,K);1

G[>]  P����(>, ann,M);2

foreach D 2 G[>] do3

add > to G[D];4

if |G[D] | > M then G[D]  P����(D,G[D],M);5

return G;6

E1 in our paper). The search uses two heaps ann and pool both keeping a subset of points in D.
Initially, both ann and pool contain only the entry point 4? (Lines 2-3). ann is a max-heap which
keeps up to K visited nodes that are nearest – having the smallest X-distance – to the query point @:
it can pop the K-th ANN searched so far. pool is a min-heap that keeps all the unvisited neighbors
of all the visited nodes: it can pop the closest-to-@ unvisited neighbors of the visited nodes. The
search repeatedly picks the closest-to-@ point E from pool (Line 5), and adds E ’s unvisited neighbors
> in G to pool (Lines 8-13) while updating ann with > (Lines 11-13). The search stops when all the
points in pool are of longer distance to @ than all the points in ann (Lines 4,7,11). The size of ann is
kept no larger than K (Line 14). Eventually, the : points (in ann) that are nearest to @ are regarded
as the approximate :-nearest neighbors of @.
Graph Construction. HNSW graph is constructed with repetitive edge insertions. Let M be a
parameter indicating the maximum outdegree of the HNSW graph nodes. Starting with a graph G
on D without any edge, G is updated by visiting the points > in D one by one in an arbitrary order:
the visit to > adds to G the edges incident to > which may trigger the pruning of existing edges

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 69. Publication date: February 2024.



69:6 Chaoji Zuo, Miao Qiao, Wenchao Zhou, Feifei Li, and Dong Deng

(Algorithm 2). Speci�cally, when visiting > , the construction algorithm uses the current HNSW
graph to �nd a set, denote as ann, of approximate nearest neighbors of > by calling Algorithm 1
(Line 1). The tentative edges incident to > are the edges between > and the points in ann (Lines 2-5).
Note that, inserting these edges to G may trigger a pruning process (Lines 2 and 5). The pruning
process (will be detailed later) selects from ann a subset of points that are far away from each
other as >’s neighbors in the HNSW graph (Lines 2). Moreover, when adding > to its neighbor D’s
neighbor list G[D] causes an over�ow (� M outgoing edges, Line 5), the neighbor list G[D] will
also be pruned to keep only spatially diversi�ed nodes. The spatially diversi�ed neighbors of each
node ensure better coverage/connectivity for navigation, leading to a better recall.

The pruning process is based on a key concept of domination.

D��������� 4 (D���������). Given a point > 2 D (called the center) and two other points D and E
in D, D dominates E with respect to the center > if and only if X (>,D) < X (>, E) and X (D, E) < X (>, E).

> E
DD

Fig. 2. Who dominates E?

> D
E

Fig. 3. Who is dominated by D?

Example 2. Consider 2-dimensional Euclidean space R2 on which > is the center point. Figure 2
shades all the points D that dominate point E : the intersection of two X (>, E)-radius circles centered
at > and E , respectively. Figure 3 shades all the points E that are dominated by D: the area to the
right of the perpendicular of > and D outside the circle centered at > of radius X (>,D).
Algorithm 3 shows the pruning process. The tentative neighbors E in ann are checked one by

one in the ascending order of their distances to > (Line 2). E is selected as a neighbor of > only if it
is not dominated by any neighbor already selected (Lines 3-7). This pruning process is key to the
scalability of the HNSW graph. The average number of neighbors in the HNSW graph only grows
sublinearly with the dataset size empirically.

Example 3. Consider Figures 2-3. To include D to the neighbor list of > , there must be no selected
neighbors in the shaded area of Figure 2; by adding D to the neighbor list of > , no nodes in the
shaded area of Figure 3 can be selected as >’s neighbors.

Complexity Analysis. As each node in the HNSW graph G has at most M neighbors. The space
complexity is $ (=M).

3 RFANNS with Half-bounded�ery Ranges
This section considers half-bounded (query) ranges, a special type of ranges, in range-�ltering
approximate nearest neighbor search (RFANNS). Compared to the range [8, 9] in De�nition 3, a
half-bounded range has one side, either the left side or the right side, aligned with the domain [1,=]
of the keys. Speci�cally, for a given key I 2 [=], half-bounded range is either [1, I] (left-bounded)
or [I,=] (right-bounded). Next, we focus on left-bounded ranges [1, I] because all the techniques
developed for left-bounded ranges can be symmetrically applied to right-bounded ranges.
A straightforward solution to RFANNS with left-bounded ranges is to build = HNSW graphs:

an HNSW graph GG on the set of DG = {E1, E2, · · · , EG } for each G 2 [=]. Upon the arrival of an
RFANNS query & = (@, [1, I],:), call Algorithm 1 on the HNSW graph GI to report the : ANNs of
@ in DI . The query processing is thus e�cient. However, the drawback lies in the quadratic cost in
constructing and storing the = HNSW graphs – the space complexity of$ (M=2) is prohibitive on a
set D with millions of data points.
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Algorithm 3: P����(>, ann,M)
Input: > : a point; ann: a set of >’s approximate nearest neighbors; M: the max number of

neighbors to keep.
Output: =486⌘1>AB ✓ ann: >’s neighbors after pruning.
=486⌘1>AB  ;;1

foreach E 2 ann in the ascending order of X (>, E) do2

not_dominated true;3

foreach D 2 =486⌘1>AB do4

if D dominates E as >’s neighbors then5

not_dominated false and break;6

if not_dominated then add E to =486⌘1>AB;7

if |=486⌘1>AB | � M then break;8

return =486⌘1>AB ;9

Algorithm 4: G����C�����������(M,K,D)
Input: M: the maximum degree; K: an integer; D: the ordered set of points {E1, E2, · · · , E=}
Output: G1, G2, · · · ,G= : the HNSW graphs for D1, · · · , D= .
G1  a graph with only node E1 without edges;1

foreach 8 2 [2,=] do G8  E���I��������(E8 , E1,M,K,G8�1);2

return G1,G2, · · · ,G= ;3

In the following, Section 3.1 shows how to incrementally construct=HNSWgraphsG1,G2, · · · ,G=

for D1,D2, · · · ,D= , respectively, and Section 3.2 proposes a structure called segment graph to
losslessly compress the = HNSW graphs in one graph of $ (=M) size, saving the space complexity
by a factor of =. Note that the segment graph can be constructed directly fromD without physically
compressing the = HNSW graphs, leading to e�cient indexing.

3.1 HNSW Graphs for Half-bounded Ranges
Recall that in Section 2.2, the HNSW graph of D is constructed by i) vising the nodes > inD one by
one in an arbitrary order and ii) when visiting > , inserting the edges incidents on > to the HNSW
graph using Algorithm 2. If we use the ordering of the points in D = {E1, E2, · · · , E=} as the node
visiting order, it turns out that for each G 2 [=], the snapshot GG of the HNSW graph after inserting
EG is the HNSW graph of DG . Algorithm 4 shows the construction of the HNSW graphs G1, · · · ,G=

for point sets D1,D2, · · · ,D= , respectively. Lemma 1 shows the proof of correctness.
When sequentially inserting points, the original HNSW algorithm updates the HNSW graph

in-place while Algorithm 4 does it out-of-place, i.e., it creates a new graph after each insertion
(Line 2). Under the same node order, the produced graphs are identical.

L���� 1. Under the same parameters M and K, the HNSW graph constructed after inserting nodes
in DG = {E1, E2, · · · , EG } sequentially is the graph GG reported by Algorithm 4, for each G 2 [=].

P����. G1 is a graph with a single point E1, it is the HNSW graph of D1 = {E1} (Line 1). If, for
8 = G � 1, GG�1 is an HNSW graph of DG�1 = {E1, · · · , EG�1}, then when we insert E8 (i.e., 8 = G ) to
GG�1 by calling Algorithm 2 (Line 2), we �rst use EG as the query vector and perform the ANN
search (Line 1 Algorithm 2) over the HNSW graph GG�1 to �nd a set ann of approximate nearest
neighbors of EG in DG�1. Then we prune ann to get a set of spatially diversi�ed neighbors of EG ,
forming the neighbor list GG [EG ] of graph GG . For any point E 9 2 DG�1, if E 9 8 GG [EG ], its neighbor
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Algorithm 5: S������G����C�����������
Input: D: {E1, E2, · · · , E=}; K: an integer; M: the max degree.
Output: G: segment HNSW graph for half-bounded ranges.
G a graph with node E1 without any edge;1

foreach 1 < G  = do2

ann S������ANNS�����(G, EG , [1, G � 1], E1,K);3

foreach E8 2 P����(EG , ann,M) do4

add (E8 , G,=) to G[EG ];5

add (EG , G,=) to G[E8 ];6

=486⌘1>AB  {E | (E,1,=) 2 G[E8 ]};7

if |=486⌘1>AB | > M then8

=1AB  P����(E8 ,=486⌘1>AB,M);9

foreach E 2 =486⌘1>AB \ =1AB do10

update (E,1,=) 2 G[E8 ] as (E,1, G � 1);11

return G;12

M=5, inserting ")* triggers 
"9’s neighborhood pruning

after pruning, only a subset 
of neighbors are kept

"4"3 "6 "9 "12 "16"14
b=9 b=9 b=9 b=12 b=14 b=16

… …

!4!3 !6 !9 !12 !16!14
e=15e=15 e=15

… …

"4"3 "6 "9 "12 "16"14
e=15 e=15 e=15

… …

after pruning, only a subset 
of neighbors are kept

Fig. 4. The evolution of a point’s neighbors.

list remains the same, i.e., GG [E 9 ] = GG�1 [E 9 ]; otherwise we append EG to E 9 ’s neighbor list, i.e.,
GG [E 9 ] = GG�1 [E 9 ] [ {EG }. Note that if E 9 has more than M neighbors, we prune its neighbor list
GG [E 9 ]. Since DG = DG�1 [ {EG }, GG is an HNSW graph of DG . ⇤

Complexity Analysis. Each HNSW graph GG takes $ (=M) space. There are = graphs in total.
Thus the space complexity is $ (=2M). This prohibitive space complexity motivates us to develop a
lossless compression of the = HNSW graphs, totaling only $ (=M) space.

3.2 Segment Graph
To compress the = HNSW graphs, we make a key observation below.

O���������� 1. Consider a point E8 and its neighbor E 9 in anHNSW graphGG built by Algorithm 4.
Formally, E 9 2 GG [E8 ]. It can be observed that i) 1  8 < 9  G and ii) E 9 is E8 ’s neighbor inGG ,GG+1, · · · ,
GC , C 2 [G,=] with (1) either C = = or (2) upon the insertion of EC+1, the neighborhood pruning process
is triggered (Line 5, Algorithm 2) and E 9 is dominated and pruned by another neighbor of E8 (Lines 5-6,
Algorithm 3). In this case, E 9 cannot be E8 ’s neighbor for any GC 0 , C 0 > C : only the unvisited nodes can
be E8 ’s new neighbors.

Observation 1 shows that in Algorithm 4, once a node E8 becomes the neighbor of another node
E 9 , it remains to be E 9 ’s neighbor until it is pruned from E 9 ’s neighbor list. The prune is permanent,
i.e., E8 will not be added back to E 9 ’s neighbor list thereafter.

Example 4. Figure 4 shows the neighbors of E9 in Algorithm 4 under the max degree M = 5. When
visiting E9, after ANNSearch and neighborhood pruning, E3, E4, and E6 become E9’s neighbors, and
thus G9 [E9] = {E3, E4, E6}. When visiting E12, E9 becomes E12’s neighbor and thus G12 [E9] becomes
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Algorithm 6: S������ANNS�����(G,@, [1, I], 4?,K)
Input: G: segment HNSW graph; [1, I]: a query range.
Output: ann: K approximate nearest neighbors of @ in DI .
// replace Line 8, Algorithm 1 with the line below
foreach unvisited > with (>,1, 4) 2 G[E] do if I 2 [1, 4] then1

{E3, E4, E6, E12}. Similarly, G14 [E9] becomes {E3, E4, E6, E12, E14} after visiting E14. When E16 is visited,
E9 is selected as E16’s neighbor; however, adding E16 to E9’s neighbor list triggers E9’s neighborhood
pruning process: E9 now has more than M = 5 outgoing neighbors. Three neighbors of E9, i.e., E3, E4,
and E14, are dominated and pruned and we have G16 [E9] = {E6, E12, E16}. Since then, only EC 0 with
C 0 > 16 can be added as E9’s neighbor; E3, E4, and E14 won’t be E9’s neighbors again.

Based on Observation 1, we de�ne the segment graph, a structure that stores all the = HNSW
graphs in a single graph where each edge is associated with a segment [1, 4] indicating the edge
exists exclusively in GG with G 2 [1, 4], as formalized below.
D��������� 5. Given a set D = {E1, E2, · · · , E=}, denote by G1, G2, · · · ,G= the HNSW graphs

constructed by Algorithm 4. A segment graph G of D is a graph on D. Each node E8 has an outgoing
neighbor list G[E8 ] where each neighbor is represented as a triple (E 9 ,1, 4) 2 G[E8 ] with 1  1  4  =
indicating that node E 9 is an outgoing neighbor of E8 on the HNSW graphs of G1,G1+1, · · · ,G4 only.
We call 1 the beginning timestamp and 4 the ending timestamp.

It turns out that the construction of the segment graph G does not necessitate the construction
of the = HNSW graphs of G1, · · · ,G= . In the following, Algorithm 5 shows the construction of G
and Theorem 6 shows that G is a lossless compression of G1,G2, · · · ,G= .
Segment Graph Construction. Algorithm 5 shows the segment graph construction. It tracks a
neighbor’s beginning timestamp, i.e., when the neighbor is added to the neighbor list, and ending
timestamp, i.e., when the neighbor is pruned. Speci�cally, when inserting a point EG , edges (EG , E8 )
and (E8 , EG ) incident to EG are constructed and we assign them a beginning timestamp G (Lines 5-6).
If adding the edge to E8 triggers the neighborhood pruning process, we update the ending timestamp
of the pruned edges as G � 1 (Lines 9 to 11). Note that the ending timestamp of every edge is set
to be = when the edge is constructed and is updated when the edge is removed. Thus we only
take into account the neighbors whose ending timestamps are = when determining whether the
neighborhood pruning process should be triggered (Lines 7 to 8).
ANNSearch on Segment Graph. Algorithm 6 takes a segment graph G, a query vector @, a
left-bounded query range [1, I], and an integer K as input and outputs a set of K approximate
nearest neighbors of @ in DI . The search is similar to the ordinary ANNSearch over the HNSW
graph GI (i.e., Algorithm 1). The only di�erence is that for each neighbor (>,1, 4) in the neighbor
list to explore, we visit the neighbor > only if I 2 [1, 4] which leads to an additional check before
visiting a neighbor (Line 5). This is because the edge from E to > does not exist in the graph GI if
I 8 [1, 4]. As shall be proved in Theorem 6, the segment graph G is a lossless compression of the =
HNSW graphs G1, · · · ,G= . Thus, Algorithm 6 produces the same results as Algorithm 1 on GI .

Example 5. Consider the construction of an HNSW graph on a set of 2-dimentional points. Let
G4 in Figure 5(a) be the HNSW graph after inserting 4 nodes {E1, E2, E3, E4} sequentially. Suppose
the neighbors found for E5 after pruning are E1 and E2. After inserting the node E5 to G4, G5 in
Figure 5(b) retains all the edges in G4 with only one exception: edge (E2, E1) is removed because
E1 was dominated by E5 in the neighbor list of E2. Three new edges (E5, E1), (E5, E2), and (E2, E5)
are inserted. Note that node E5 was not able to enter E1’s neighbor list as it was dominated by E3.
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Fig. 5. An example of segment graph construction.

Combining Figure 5(a) and 5(c), we can update the segment graph G: edge (E2, E1) has an ending
timestamp of 4 while the three new edges have the beginning timestamp of 5. Note that all the
new edges upon the insertion of E5 are incident on E5, therefore, after (E2, E1) is removed, it will
not be added back in the future – both E2 and E1 had been inserted before the removal of the edge.
In other words, each edge will be inserted to / removed from the HNSW graph by at most once
during the construction.

As another example, Figure 4 shows the beginning timestamps and ending timestamps of the
point E9’s neighbors before and after inserting E16 into the segment graph.

T������ 6. Consider the segment graph G. For each edge from E8 to E 9 in G, 88, 9 2 [=], i.e., there
is a triple (E 9 ,1, 4) in the neighbor list of E8 in G, we call [1, 4] the range of edge (E8 , E 9 ). For any
1  G  =, denote by G[G] the subgraph of the segment graph G containing all edges whose range
has 1  G  4 ; let GG be the G-th HNSW graphs produced by Alg. 4. We have G[G] = GG , for all
G 2 [=]; in other words, the segment graph G produced by Alg. 5 is a lossless compression of the =
HNSW graphs produced by Alg. 4.

P����. Consider the loop in Line 3 Alg. 4: for each G 2 [1,=], denote by G0G the graph G[G]
by the end of the iteration of G . Since Line 11 shows that setting the ending timestamp to A < =
only happens in iteration A + 1, in the iteration of G , no edge in G has ending timestamp in range
[G,=], and thus G[G] = G[=]. We prove by induction that edge-wise, G0G = GG for all G 2 [=].
Firstly, when G = 1, G0G = GG : both graph have no edges. Assume that for G = ~ 2 [1,=) we have
G0~ = G~ , we prove below that when G = ~ + 1, G0G = GG . Denote by ⌧� the HNSW graph being
constructed in Alg. 4, which is G~ before inserting EG . Line 1, Alg. 2 gets the ANN set ( of EG from
G~ . Line 3, Alg. 5 searches the ANN set ( 0 of EG on G[G] = G0~ . Thus, ( = ( 0. Line 2, Alg. 2 prunes
set ( and Line 5, Alg. 5 prunes ( 0 using the same procedure, after prunning so ( = ( 0. Alg. 2 set (
as EG ’s neighbor in ⌧� and Line 5, Alg. 5 set ( as EG ’s neighbor in G[=]. To add edges from ( to
EG , Lines 4,6-11, Alg. 4 updates ⌧� and Lines 3-5, Alg. 2 update G[=] in the same way. Thus, by
the end of iteration G , G[=] = G[G] = G0G = G� = GG . This completes the induction. Next we show
that by the end of iteration of =, G[G] = G0G edge-wise. Line 11 indicates that setting the ending
timestamp to A < = can only happen in iteration A + 1. In other words, G0G is a subgraph of G[G].
Lines 5-6 show that all the inserted edges in iteration G has starting timestamp G . Thus, the edge
set of G[G] is a subset of that of G0G , completing the proof. ⇤

Complexity Analysis. Inserting a node to the segment graph creates no more than 2M edges; the
total number of edges in a segment graph is no more than 2=M. In contrast, in an HNSW graph,
the outdegree of each node is bounded by M, and the total number of edges in an HNSW graph is
no more than =M. The space complexity of both structures is $ (=M).

4 RFANNS with Arbitrary�ery Ranges
This section considers RFANNS on arbitrary ranges, i.e., the range can be [G,~] with arbitrary
1  G  ~  =. A naive method is to build = segment graphs G1,G2, · · · ,G= . For each I 2 [1,=],
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Algorithm 7: 2DS������ANNS�����(G,@, [G,~], 4?,K)
Input: G: 2D segment graph; [G,~]: a query range.
Output: ann: K approximate nearest neighbors of @ in DG,~ .
// replace Line 8, Algorithm 1 with the line below
foreach unvisited > with (;, A ,>,1, 4) 2 G[E] do if G 2 [;, A ] and ~ 2 [1, 4] then1

GI answers half-bounded queries on DI = {EI, EI+1, · · · , E=}. This is su�cient because an arbitrary
range [G,~] is a half-bounded range on DG and thus we can use Algorithm 6 on GG to process the
query range [G,~]. The main drawback of the naive approach is the quadratic space complexity of
$ (=2M), which is excessively large.
4.1 Two Dimensional Segment Graph
We propose a structure called two dimensional (2D) segment graph that can compress the = segment
graphs in the naive solution based on the observation below.

O���������� 2. Consider a point E8 2 D. If the triple (E 9 ,1, 4) exists in E8 ’s neighbor list on a
consecutive list of segment graphs G; ,G;+1, · · · ,GA , we can use a single tuple (;, A , E 9 ,1, 4) to show the
A � ; + 1 copies of the triple in these segment graphs. In other words, the two segments [;, A ] and [1, 4]
compress the copies of the edge from E8 to E 9 in the segment graphs for RFANNS with arbitrary ranges.

Based on the observation above, we �rst formally de�ne a 2D segment graph G and then discuss
its properties and construction.

D��������� 6. A 2D segment graph G of D = {E1, · · · , E=} contains = nodes E1, E2, · · · , E= . Each
node E8 has an outgoing neighbor listG[E8 ] where each neighbor is represented as a tuple (;, A , E 9 ,1, 4) 2
G[E8 ] where 1  ;  A  1  4  = when triple (E 9 ,1, 4) is in the neighbor list of E8 on each of the
segment graphs G; ,G;+1, · · · ,GA .

Based on De�nition 6, Algorithm 7 adapts S������ANNS�����. To discuss how e�ectively a 2D
segment graph can compress the = segment graphs, we consider the neighbor list of a node EI in two
consecutive segment graphsG8 andG8+1. There are essentially three steps when a point EG , G > I > 8 ,
is inserted (Line 3-11, Algorithm 5) into the two segment graphs respectively. Step 1 (Line 3) �nds a
list of nearest neighbors for EG in D8,G�1 = {E8 , E8+1, · · · , EG�1} and D8+1,G�1 = {E8+1, E8+2, · · · , EG�1},
respectively. Step 2 (Lines 4-6) prunes the nearest neighbors to form the neighbor list of EG and
insert the reverse edges to the two segment graphs, respectively. Step 3 (Line 4, Lines 7-11) prunes
the neighbor list of the neighbors of EG in both segment graphs if necessary. For the three steps, we
make the following two observations.

L���� 2. Based on De�nition 2, for an integer K, kNN(EG , [8, G � 1],K) denotes the set of K-
nearest neighbors of EG in D8,G�1 and kNN(EG , [8 + 1, G � 1],K) denotes that in D8+1,G�1. If E8 8
kNN(EG , [8, G � 1],K), we have kNN(EG , [8, G � 1],K) = kNN(EG , [8 + 1, G � 1],K).

P����. D8,G�1 = {E8 } [ D8+1,G�1 and thus, E8 8 kNN(EG , [8, G � 1],K) means that there are
K points in D8+1,G�1 that are closer to EG than E8 . Based on our assumption that for each point
EG , all other points in D have di�erent distances to EG (Section 3.1), kNN(EG , [8, G � 1],K) =
kNN(EG , [8 + 1, G � 1],K). ⇤

L���� 3. Let 80 be the minimum key of points in the K-nearest neighbors kNN(EG , [8, G � 1],K) in
D8,G�1, we have kNN(EG , [8, G � 1],K) = kNN(EG , [8 + 1, G � 1],K) = · · · = kNN(EG , [80, G � 1],K).
P����. When 80 = 8 , the lemma holds trivially. If E8 8 kNN(EG , [8+1, G�1],K), then kNN(EG , [8, G�

1],K) = kNN(EG , [8+1, G�1], ) (Lemma 2). If E8+1 8 kNN(EG , [8+1, G�1],K), then kNN(EG , [8+1, G�
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Algorithm 8: 2DS������G����C�����������
Input: D = {E1, E2, · · · , E=}; K: an integer; M: the max degree.
Output: G: 2D segment graph for D.
foreach 1 < 9  = do1

8 = 1;2

while 8 < 9 do3

ann 2DS������ANNS�����(G, E 9 , [8, 9 � 1], E8 ,K);4

80 = min{G |EG 2 ann};5

foreach E 2 P����(E 9 , ann,M) do6

add (8, 80, E, 9,=) to G[E 9 ];7

add (8, 80, E 9 , 9,=) to G[E];8

8 = 80 + 1 ;9

return G;10

1],K) = kNN(EG , [8+2, G�1],K (Lemma 2). As none of E8 , E8+1, · · · , E80�1 is in kNN(EG , [8+1, G�1],K),
the lemma can be proved by iteratively applying Lemma 2. ⇤

Lemma 2 shows that if Line 3, Algorithm 5 returns accurate range-�ltering nearest neighbors of
EG , then the neighbor lists of EG in G8 and G8+1 must be the same, even after pruning (Line 4).

L���� 4. On a segment graph G constructed with Algorithm 5 opting out Step 3, in the neighbor
list of any node E8 2 D, every triple (E 9 ,1, 4) must have 1 = max{8, 9} and 4 = =.

P����. Every edge (E8 , E 9 ) in G is inserted upon the insertion of node E1 where 1 = max{8, 9}.
Since Step 3 is opted out, once an edge is inserted, it will never be deleted, therefore, 4 = =. ⇤

Algorithm 8 constructs a 2D segment graphGwhich compresses the= segment graphsG1,G2, · · · ,G=

constructed by Algorithm 5 whose Step 3 (Lines 7-11) is opted out. Note that G is constructed
directly without constructing the = segment graphs. Speci�cally, the points in D are added into G
sequentially. For the 9-th point E 9 , it �rst �nds a set ann of approximate nearest neighbors of E 9 in
D8, 9 (Line 4), where 8 = 1 initially (Line 2). Let 80 be the smallest key of the points in ann (Line 5).
We insert the edges between E 9 and the nodes in the pruned ann with 2D segment [8, 80] and [ 9,=]
(Lemma 4) in Lines 6-8. After that, we make a “leap” by setting 8 = 80 + 1 and repeat the above steps
until 8 � 9 .

L���� 5. The worst-case size of a 2DSegmentGraph is $ (=2M). The worst-case 2DSegmentGraph
construction time has two parts: 1) $ (=2) calls of online searches (Algorithm 7), and 2) indexing time
$ (=2M2) excluding the online search.

P����. For each pair of 8, 9 2 [=], 2DSegmentGraph adds up to $ (M) edges (Lines 6-8) after an
online search (Line 4) and an $ (M2) time pruning (Line 6 can be done once for all nodes E). ⇤

T������ 7. Under the assumption that the attribute values of points in D are independent1, the
expected number of rounds in Lines 4-9 of Algorithm 8 is $ (= log=), and thus in the average-case,
the index size of 2DSegmentGraph is $ (=M log=) and index time has two parts: 1) $ (= log=) calls of
online searches (Algorithm 7), and 2) indexing time $ (=M2 log=) excluding the online search.
1That is, for any 8 2 [1,=], each point in D appears in the 8-th position of the ordering of D with an equal probability.
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P����. Consider the iteration (Line 1) of 9 2 [1,=]. Fix 9 , we analyze the expected number of
rounds I (8 = 1, 9), i.e., the number of di�erent values 8 could take from initial value 1 before it reaches
9 in Line 9. Each value of 8 calls the online search once (Line 4), performs an $ (M2) time prunning
process (Line 6) and adds $ (M) edges to the 2D segment graph (Lines 6-8). Based on our attribute
value independence assumption, for each EG with G 2 [8, 9 � K], the probability of EG 2 ann is K

9�8 ;
besides, I ( 9 �K, 9) = K. We have I (8, 9) = K

9�8 (I (8 +1, 9) +1) + (1� K
9�8 )I (8 +1, 9) = I (8 +1, 9) + K

9�8 for
every 8 2 [1, 9 �K). Solving this recurrence, we have I (1, 9) = K +Õ~2 [K, 9�1]

K
~ if 9 �  ; otherwise,

i.e., 9 < K, I (1, 9) = 9 . Take K as a constant and denote by ⌘(~) = Õ
G2 [1,~ ]

1
~ = $ (ln~), we have the

expected total number of rounds
Õ

92 [1,=] I (1, 9) = $ (= + = · ⌘(=)) = $ (= ln=). Thus in expectation
(average-case), the graph size is $ (=M ln=), the number of calls of online search is $ (= log=) and
the construction time excluding online search is $ (=M2 log=), completing the proof. ⇤

T������ 8. The 2D segment graph produced by Algorithm 8 is a lossless compression of = segment
graphs G1,G2, · · · ,G= constructed by Algorithm 5 with Step 3 opted out under an assumption that the
procedures S������ANNS����� and 2DS������ANNS����� return the exact K-nearest neighbors of
the query point.

P����. If all the ANN searches are exact searches and Step 3 is opted out (no edge will be
removed after insertion), then consider an edge 4 between E 9 and E 9 0 with 9 0 < 9 in the segment
graph G800 with a segment [1, 4]. We have E 9 0 must be in the pruned kNN list of E 9 on D800, 9�1, 1 = 9 ,
4 = = and 800  9 . We argue that there must be an edge between E 9 and E 9 0 (essentially undirected
since Step 3 is opted out) in the 2D segment graph with tuple (8, 80, ⇤,10, 40) such that 8  800  80,
10 = 9 and 40 = = and thus the 2D segment graph achieves a lossless compression. Since in inserting
E 9 in the 2D segment graph, 8 leaps from 1 to 9 � 1, partitioning [1, 9 � 1] into concatenated disjoint
segments of [8, 80] that jointly cover [1, 9 � 1]. Thus, there must exist 8 and 80 during the leap such
that 800 2 [8, 80]. Based on Lemma 3, if ann obtained in Line 4, Algorithm 8 is the set of exact
nearest neighbors of E 9 on D8, 9�1, then it contains the top-K exact nearest neighbors of E 9 on
D8, 9�1, D8+1, 9�1, · · · , D80, 9�1 where 80 is the smallest key of the points in ann. When constructing
G8 ,G8+1, · · · ,G80 , upon the insertion of E 9 , the nearest neighbor sets found for E 9 are all ann. The
pruned ann w.r.t. the center node E 9 is deterministic. Thus, the neighbor list of E 9 to the nodes
inserted before E 9 is the same (the pruned ann) on G8 ,G8+1, · · · ,G80 . Furthermore, because Step 3
is opted out and all the nodes in ann have keys smaller than 9 , Lemma 4 shows that [ 9,=] is the
segment for all the edges between E 9 and pruned ann on segment graphs G8 ,G8+1, · · · ,G80 . Because
E 9 0 is in the pruned nearest neighbor list of E 9 on set D800, 9�1, it is in the pruned ann on the 2D
segment graph, proving the compression is lossless. ⇤

Remarks: Due to the approximate nature of ANNS, without the assumption in Theorem 8, which
is not likely to be achieved practically, it is hard to envision the relation between 2D segment graph
and the = segment graphs. On the other hand, whether the assumption is upheld or not does not
a�ect the index size of 2D segment graph: our experiment Exp-5 in Section 5.2 shows that the
index size of 2D segment graph with or without assumption A1 are approximately the same (the
di�erence is less than 2%) on all of the evaluated datasets. The actual e�ciency is mainly evaluated
with empirical studies following the common practice of ANNS.

Example 9. As shown in Figure 6, consider adding E9 into the 2D segment graph. Suppose K = 3
and M = 2. The algorithm �rst �nds a set of K = 3 approximate nearest neighbors of E9 in D1,8,
which are E2, E5, and E7. The smallest key of the three points is 80 = 2. In the neighborhood pruning
process, E2 is dominated and pruned. Thus we add two neighbors (1, 2, E5, 9,=) and (1, 2, E7, 9,=)
to the neighbor list G[E9] and the reverse neighbor (1, 2, E9, 9,=) to two neighbor lists G[E5] and
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leap by the leftmost K-nearest neighbor leap by the leftmost neighbor after pruning 
Fig. 6. Examples of leap strategies.

G[E7]. Then the algorithm sets 8 = 80 + 1 = 3 and �nds a set of 3 approximate nearest neighbors of
E9 in D3,8, which are E4, E5, and E7. Next, it repeatedly prunes the three neighbors and adds edges
to the 2D segment graph.

4.2 Leap Optimizations
This section discusses the techniques for further optimizing the index time and index size based on
the following observation.

O���������� 3. Inserting a point into the 2D segment graph necessitates repeated “leaps” from 8 to
80 + 1 where 80 is determined by the leftmost approximate nearest neighbor, i.e., the ann node with the
smallest key. Larger step sizes of the leaps lead to a shorter index time and smaller index size.

We propose two optimizations to increase the step sizes.
Optimization 1: Leap (by setting 80) to the leftmost neighbor after pruning the approximate
nearest neighbors ann. The pruned ann is a subset of ann, and thus, the smallest key in the pruned
ann is no less than the smallest key in ann. The step size is thus increased.

Example 10. As illustrated in Figure 6 on the right. Let the 3-nearest neighbors of E9 in D1,8 be
{E2, E5, E7}. After neighborhood pruning, the neighbor list of E9 becomes {E5, E7}. We propose to use
{E5, E7} as the neighbor list of E9 in each and every consecutive segment graph G1,G2, · · · ,G80=5
where 80 = 5 is determined by the smallest key in the neighbor list after pruning. Then we repeat
the process to build the neighbor lists of E9 in the remaining segment graphs G6,G7,G8.

Algorithm 9 shows the optimization. When inserting a point E 9 into the 2D segment graph, we
�rst �nd a set ann of approximate nearest neighbors of E 9 in D8, 9�1 where 8 = 1 initially. Then we
prune ann to get a neighbor list =1A of EG (Line 1, Algorithm 9). Let 80 be the smallest key in =1A
(Line 2, Algorithm 9). Then, for every EG 2 ann where 8  G < 80, EG must be dominated and pruned
as E80 is the leftmost neighbor after pruning. We use =1A as an “approximate” of the neighbor list of
E 9 in the segment graphs G8 ,G8+1, · · · ,G80 . We argue that =1A and the neighbor lists of E 9 in these
segment graphs are highly similar. To see this, consider the exact K-nearest neighbors # and # 0
of EG in D8, 9�1 and D8+1, 9�1 where E8 2 # and E8 is dominated and pruned during neighborhood
pruning. We have # 0 = # \ {E8 } [ {E} where E must be the K-th nearest neighbor of E 9 in D8+1, 9�1.
For example, as shown in Figure 6 on the left. Consider the 3-nearest neighbors of E9 in D2,8 and
D3,8. We have # = {E2, E5, E7} and # 0 = {E4, E5, E7}. Then E4 must be the 3-rd nearest neighbor of
E9 in D3,8.

On the one hand, when pruning the K-nearest neighbors # of E 9 , as E8 2 # is dominated and
pruned by another neighbor, the neighbor list after pruning # must be identical to the neighbor
list after pruning # \ {E8 }. On the other hand, when pruning # 0 = # \ {E8 } [ {E}, if E is dominated
and pruned by another neighbor, the neighbor list after pruning # 0 must also be identical to the
neighbor list after pruning # \ {E8 }. Thus when E is dominated and pruned, the neighbor lists of E 9
after pruning in G8 and G8+1 must be the same. Note that, since E is the K-th nearest neighbor, it is
likely to be pruned and dominated by another neighbor as it is tested lastly in Algorithm 3 (Line 2).
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Algorithm 9: 2DS������G����C�����������MIN
// replace Lines 5-6, Algorithm 8 with lines below
=1A  P����(E 9 , ann,M) ;1

80 = min{G |EG 2 =1A };2

foreach E 2 =1A do3

Optimization 2: Leap to the rightmost neighbor in the pruned ann (by setting 80 tomax{G |EG 2 =1A }
in Line 2, Algorithm 9). The step sizes can be dramatically increased by leaping to the rightmost
node in the pruned ann. While signi�cantly reducing the index time and index size, we may need
to apply a minor extension to the ANNSearch over the 2D segment graph to achieve a better recall.
Speci�cally, for query range [G,~], even if a data point E8 does not fall into the query range, i.e.,
8 < G or 8 > ~, we can add it to the list-to-explore pool (Line 12, Algorithm 1). However, it will
never be added to the candidate list ann. As a tradeo�, we can also use the median key in =1A as 80
for the next leap (by setting 80 to median{G |EG 2 =1A } in Line 2, Algorithm 9).

4.3 Discussions
Until now, we have assumed that to process a RFANNS query on D, one 2D segment graph on
one attribute is used as an index. For certain queries, we may use multiple indices if they exist or
one index on multiple attributes. For simplicity, we assume below that each point in D has two
attributes �1 and �2; however, our discussions can be easily extended to D with more attributes.
Using Multiple Single-Attribute Indices. Assume that one index has been established for each
attribute using our 2D segment graph. A conjunctive query with query point @, integer : , �lters
A1 (�1) AND A2 (�2) where A1 (�1) is a range on the domain of attribute�1 and A2 (�2) that of attribute
�2, aims at reporting : ANN of @ among all the points in D that satis�es both A1 and A2. To answer
this query, we may select the index of one attribute (e.g., �1), use its 2D segment graph, and adapt
Line 12, Algorithm 1 to “push > to ann only if > satis�es query conditions A1 (�1) AND A2 (�2)” to
complete the search. For a disjunctive query with conditions A1 (�1) OR A2 (�2), use the indexes
for �1 and �2, resp., to get '1, the : ANN w.r.t. A1, and '2 that to A2. Report the : ANN to @ in the
merged set '1 [ '2 as the results. Note that when multiple indices are constructed, we can store
the points in D with one copy, which gives each point in D a unique ID, and build the 2D segment
graph as a secondary index for each attribute: the merge of '1 [ '2 can be performed in the level
of IDs before the distance computation.
Using One Index on Multiple Attributes. For multiple attributes that follow a lexicographic
ordering in the search, we may formulate a composite attribute, e.g., (�1,�2) for two attributes �1
and�2. The lexicographic ordering ensures that for two composite attribute values (11,12) < (21, 22)
if 11 < 21 or (11 = 21 and 12 < 22), which is essentially a total ordering. Thus, building one 2D
segment graph on the composite attribute is su�cient for such RFANNS queries.
Limitation 1. The use of our structure in supporting queries on multiple attributes is still primitive.
For example, the conjunctive query can only choose one attribute for indexed search, leaving �lter
on other attributes to the online search. There lies an open question of building multi-dimensional
index and developing query optimization techniques for multi-attribute RFANNS queries.
Limitation 2. Our method is closely entangled with HNSW and is suitable for static dataset
D and/or append-only insertions in which the inserted point always has the largest attribute
value. Speci�cally, our 2D segment graph leverages the incremental insertion of HNSW and its
heuristic pruning properties. Some other graph-based indexes, such as NSG [11] and DiskANN [21],
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are constructed using approximate KNN graphs or random graphs, employing similar pruning
techniques. There lies an opportunity to apply our insights to these alternative indexes and coping
with other types of updates. We leave these research as our future work.

5 Experiment

Environment. Our methods2 and the baseline approaches are all implemented in C++ and compiled
using GCC 9.2.0 with -O3 optimization. All experiments were run on a server with an Intel(R)
Xeon(R) Platinum 8358 CPU@2.60GHz with 64 cores and 256GB of RAM. We ran every experi-
ment multiple times and reported the average result. We used a single thread and disabled SIMD
optimization.
Datasets.We used three real-world public datasets. (1) DEEP3: each point is a 96-dimensional image
feature vector, which is acquired from the last fully-connected layer of the GoogLeNet model [9].
Each point is assigned a random number as the synthetic key. (2) YouTube-Audio: each point is a
128-dimensional audio feature vector of a YouTube video. This dataset is from YouTube8M4. For
each video, we crawled the corresponding release time and used it as the search key. (3)WIT-Image5

(Wikipedia-based Image Text Dataset): each point is a 2048-dimensional ResNet-50 embedding of
an image from Wikipedia. We obtained the size of the image and used it as the search key. For each
dataset, we randomly draw 1 million points to do the experiments by default.

5.1 Evaluating Graph Construction
Exp-1: Segment Graph.We �rst compare the construction cost of SegmentGraph with that of
ordinary HNSW graph. Figure 7 shows index time and size when varying either parameter M (the
max outdegree) or K (the number of candidate neighbors), �x the other ones. SegmentGraph and
HNSW graph had almost the same index time: when M = 32 and K = 400, it took 1592s and 1572s
respectively to build the SegmentGraph and HNSW graph for theDEEP dataset. The extra overhead
of building the SegmentGraph is in marking the pruned edges with timestamps. Moreover, we
observe the index time grew sublinearly with M and roughly linearly with K. For example, when
M increased 8 times from 8 to 64, on the YouTube-Audio dataset, the graph construction time only
increased 2.17 times. The reason is that M a�ects the neighborhood pruning. The �rst step of edge
insertion, �nding a set ann of K approximate nearest neighbors, is more time-consuming than the
second step, neighborhood pruning. The index size of SegmentGraph was only slightly larger than
that of the HNSW graph: when M = 64 and K = 400, the index sizes of SegmentGraph and HNSW
graph for the YouTube-Audio dataset were 0.62GB and 0.59GB respectively. This is because they
had the same node set, while the average outdegrees of SegmentGraph and HNSW graph cannot
exceed 2M and M.
Exp-2: 2D SegmentGraph.We then evaluate the 2DSegmentGraph construction.We implemented
three leap strategies MinLeap, MidLeap, and MaxLeap, which leaps by the leftmost neighbor, the
one in the middle, and the rightmost neighbor after pruning. As shown in Figure 8,MinLeap always
has the largest index size andMaxLeap the smallest. Similarly,MinLeap has the longest index time,
whileMaxLeap the shortest. For example, on DEEP, when M = 32 and K = 100, it took respectively
4573s, 4988s, and 8981s to build the 2DSegmentGraph. This is because the step size of MaxLeap is
large, leading to a smaller number of rounds running Lines 4-9 in Algorithm 8. The impact of M
and K on the 2DSegmentGraph was similar to what we observed on the SegmentGraph.

2Our source code is publicly available at: https://github.com/rutgers-db/SeRF
3https://research.yandex.com/blog/benchmarks-for-billion-scale-similarity-search
4https://research.google.com/youtube8m/download.html
5https://github.com/google-research-datasets/wit
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(f) WIT-Image (M = 64)
Fig. 7. Evaluating SegmentGraph construction.
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(f) WIT-Image (M = 64)
Fig. 8. Evaluating 2DSegmentGraph construction.

5.2 Evaluating�ery Processing

Exp-3: Half-bouned Query Ranges. In this section, we evaluate the impact of the parameters on
RFANNS query performance. Note S������ANNS����� (i.e., Algorithm 6) is used both in index
construction and in query processing. To distinguish from its parameter K for index construction,
we denote the parameter as K_Search during query processing. Speci�cally, we varied one of the
three parameters M (from 8 to 64), K (from 100 to 400), and K_Search (from 100 to 400), �xed the
other two (default parameters are listed in the sub-captions), and report the query-per-second
(QPS) and recall. Note that : , the number of approximate nearest neighbors to report, is �xed to
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Fig. 9. Evaluating SegmentGraph for RFANNS with half-bounded query ranges.

be 10. We randomly selected 500 points outside of the 1 million data points as the query points
and equipped each point with a �xed-width query range (G% means the query range includes
G% of data points). Figure 9 shows the results. As we can see, with the increase of M, the recall
rapidly went up and approached perfect, while the QPS went down sublinearly. For example, when
K_Search = 200 and M increased from 8 to 32, on DEEP dataset, at 20% query range width, the
recall increased from 0.933 to 0.999, while the QPS decreased from 2606 to 1220. This is because
when M increases, the SegmentGraph’s average outdegree grows. Thus the SegmentGraph is more
connected and the greedy search explores more data points, which bene�ts recall while hurting
QPS. Similarly, with the increase of K, the recall slightly went up and the QPS slightly went down.
This is because K had a smaller impact on the average outdegree than M, which is consistent with
our previous experimental result as shown in Figure 7. The trends were similar when we increased
K_Search. This is because K_Search determines when the greedy search terminates, the larger the
more data points in the graph are visited. In addition, the recall and QPS of small query range
widths were slightly higher than those of large query range widths. This is because query range
width determines how many data points are visited during the greedy search in the SegmentGraph.
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Fig. 10. Evaluating 2DSegmentGraph for RFANNS with arbitrary query ranges.

It is relatively easier to search a small number of data points than a large number of data points.
Note that the QPS onWIT-Image was signi�cantly lower than that on DEEP and YouTube-Audio.
This is because the dimensionalities of the latter two datasets were 10⇥ lower than that of the
former dataset and it took a much shorter time to calculate the distance of two points.
Exp-4: Arbitrary Query Ranges. We then evaluate the query performance of the three leap
strategies on arbitrary query ranges. We �xed the query range width as 10%. Figure 10 shows the
results. We observe that, although the average outdegree of the 2DSegmentGraph constructed
byMaxLeap was signi�cantly smaller than that byMinLeap, the query performance of MaxLeap
was on par with that of MinLeap. For example, when M = 32, K = 100 and K_Search = 300, on
DEEP dataset, the recall of MaxLeap andMinLeap was respectively 0.997 and 1.0, while the QPS of
MaxLeap and MinLeap was respectively 599 and 311. This is because MinLeap led a larger average
outdegree and thus explored more data points thanMaxLeap. In addition, the QPS of MaxLeap
was almost always higher than that of MinLeap. This is because MaxLeap has the lowest average
outdegree and index size.
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Exp-5: Impact of the Assumption in Theorem 8. In this experiment, we replace the approximate
nearest neighbor search in Line 4, Algorithm 8 with the brute-force exact nearest neighbor search
and denote the constructed graph as exact-2DSegmentGraph. The exact-2DSegmentGraph and
2DSegmentGraph over 100,000 data points in the DEEP dataset had average outdegrees of 1459 and
1451, respectively, and index sizes 0.68GB and 0.67GB, respectively. In addition, they had similar
query performances. With a query range width of 50%, both graphs achieved a recall of 0.999. The
QPS was 552 for exact-2DSegmentGraph and 668 for 2DSegmentGraph.

5.3 Comparing with Existing Methods
This section compares our proposed techniques with the following six baseline approaches. (1)
ANNS-first: we adapted the HNSW implementation in nmslib6 for RFANNS as discussed in Section 1.
(2) range-first linearly scans the data points that satisfy the query range condition. (3) FAISS7 is a
popular library for ANNS. It has a function IDSeletorRange that supports RFANNS. Speci�cally,
using IVFPQ, the function ignores the data point if its key is outside the query range. (4) Rii scans
all the PQ codes in the query range if the query range width is within a threshold; otherwise, it
�lters the PQ codes using a traditional inverted index before checking the range condition [31].
We used the authors’ implementation8. (5) Filtered-DiskANN9 is designed for categorical attribute
�ltering ANNS [14]. In this scenario, vectors are assigned with label sets. It �nds approximate
nearest neighbors whose label sets match the query labels. We adapted Filtered-DiskANN for
range-�ltering ANNS by evenly dividing the keys into 10 buckets and assigning a label to each
bucket. The buckets overlapping with the query range become query labels. (6) Milvus10 [40] is a
vector database that supports attribute-�ltering ANNS. We used HNSW as its index.

We use grid search to �nd the optimal parameters. Speci�cally, In Rii and FAISS, the number
of subspaces was 48 for DEEP, 64 for YouTube-Audio, and 1024 forWIT-Image, respectively. The
number of centroids in each subspace was set to 256 for all datasets. In addition, Rii has a search
parameter L, which trades o� search speed and accuracy. It was 64000, 16000, and 64000 in DEEP,
YouTube-Audio, and WIT-Image. The number of coarse centroids in FAISS was �xed as 256 for all
datasets, while the number of partitions to probe was �xed as 40. ANNS-first, Filtered-DiskANN,
and Milvus are graph-based methods, which have 3 common parameters: K, M and K_Search. We
set K = 400 in all these methods for all datasets. All three methods had the same M, which was 16
for DEEP, 16 for YouTube-Audio, and 64 forWIT-Image. In ANNS-first, K_Search was set to 200,
300, and 400 for DEEP, YouTube-Audio, and WIT-Image respectively. In Milvus, K_Search was 100
for all datasets. In Filtered-DiskANN, we set K_Search as 200, the number of buckets as 10, and the
neighbor pruning threshold U as 1.2 for all datasets. The parameters in the baselines were the same
for half-bounded and arbitrary ranges.
Exp-6: Half-bounded Query Range. We �rst evaluate the half-bounded query range. We varied
the query range width from 0.1% to 100% and reported the recall and QPS. Figure 11 shows the
results. Note that the recall of range-first is ignored as it is always perfect (i.e., 1.0) due to the linear
scan. In almost all query range widths, our SegmentGraph not only achieved the highest recall
but also the highest QPS. For example, on DEEP dataset, with 20% query range width, the recall of
SegmentGraph, ANNS-first,FAISS, Rii, Filtered-DiskANN, Milvus, range-first were respectively
0.999, 0.999, 0.902, 0.870, 0.999, 0.999, 1.0, while the QPS were respectively 855, 348, 261, 139, 314,
29, 65. SegmentGraph’s high query performance is attributed to its ability to losslessly compress

6https://github.com/nmslib/hnswlib
7https://github.com/facebookresearch/faiss
8https://github.com/matsui528/rii
9https://github.com/microsoft/DiskANN
10https://milvus.io/docs/v2.0.x
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M = 32,K = 400,K_Search = 200
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(b) YouTube-Audio
M = 16,K = 400,K_Search = 400
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(c) WIT-Image
M = 64,K = 400,K_Search = 400

Fig. 11. Comparing SegmentGraph with existing methods for RFANNS with half-bounded ranges.

multiple HNSW graphs, making its search operation equivalent to a greedy search on the HNSW
graph over data points in the query range. Moreover, when the query range width was very large
(� 90%), SegmentGraph was on par with ANNS-first. With the decrease of the query range width,
the QPS of ANNS-first went down, while the QPS of the other methods (excludingMilvus) went
up. The reason is that ANNS-first searches in the HNSW graph over all the data points, while the
other methods, including SegmentGraph, focus solely on the data points falling within the query
range.Milvus behaved similarly to ANNS-first, as it employs HNSW as the internal search index
and utilizes a bitset to restrict results during the search process. It is worth noting that Milvus,
with its system overhead and optimization, attained high recall at the expense of search speed.
Conversely, when the query range width was exceedingly narrow ( 0.5%), range-first’s QPS
outperformed other methods, except SegmentGraph and Rii. This is because Rii is equipped with a
cost model that favors linear scanning when the query range width is extremely small. Additionally,
graph-based methods (ANNS-first, SegmentGraph, and Milvus) consistently achieved higher recall
than PQ-based methods (FAISS and Rii), primarily owing to the lossy nature of PQ compression.
Besides, Filtered-DiskANN can only attain high recall when the query range width is large. When
the query’s range width exceeded 10%, Filtered-DiskANN needed to search multiple buckets, which
led to a reduction in QPS.
The index size of the PQ-based methods (i.e., Rii and FAISS) depends on the code length. Rii’s

index sizes forDEEP, YouTube-Audio, andWIT-Imagewere respectively 0.20GB, 0.28GB, and 4.13GB,
while the corresponding indexing time were 702s, 340s, and 6345s. FAISS’s index sizes were 0.20GB,
0.28GB, and 4.23GB for DEEP, YouTube-Audio, and WIT-Image, while the indexing time were 955s,
970s, and 15977s, resp.. The index size of graph-based methods (i.e., SegmentGraph,ANNS-first,
Filtered-DiskANN andMilvus) was dominated by the size of raw data because it needs to load all
the raw vectors into memory, which is usually much larger than the edge set size. SegmentGraph’s
index sizes were 0.58GB, 0.61GB, and 8.30GB, while it took 1572s, 563s, and 18943s to construct the
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(a) DEEP
M = 8,K = 100,K_Search = 300
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(b) YouTube-Audio
M = 8,K = 100,K_Search = 200
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(c) WIT-Image
M = 64,K = 100,K_Search = 400

Fig. 12. Comparing 2DSegmentGraph with existing methods for RFANNS with arbitrary ranges.

index. ANNS-first’s index sizes for DEEP, YouTube-Audio, andWIT-Image were 0.49GB, 0.56GB,
and 8.29GB, while the indexing time were respectively 1562s, 983s, and 18262s. Filtered-DiskANN’s
index sizes were 0.91GB, 0.75GB, and 8.30GB for these three datasets, while the indexing time were
respectively 313s, 217s, and 2905s using 24 threads. Milvus’s index sizes were 1.79GB, 2.27GB, and
10.32GB, and the indexing time were respectively 4337s, 2046s, and 24488s.
Exp-7: Arbitrary Query Ranges. Next, we compare 2DSegmentGraph with the baseline ap-
proaches on RFANNSwith arbitrary query ranges. Note that here we use the leap strategyMaxLeap
to construct the 2DSegmentGraph as it leads to the smallest index size. Figure 12 shows the results.
When the query range width was very small (< 1%), our 2DSegmentGraph had a decrease in
recall with the decrement of query range width. But at this scale of range, the linear scan method
range-first would have the best QPS comparing to others. For middle and large scale query range
width (> 1%), 2DSegmentGraph had higher QPS than all baselines, while the recall was among the
highest ones. For example, on YouTube-Audio dataset, for 20% query range width, the recall of
2DSegmentGraph, ANNS-first, FAISS, Rii, Filtered-DiskANN,Milvus and range-first were respec-
tively 0.974, 0.959, 0.931, 0.912, 0.985, 0.990 and 1, while the QPS were respectively 530, 313, 64, 257,
110, 35 and 32. This is because 2DSegmentGraph can reconstruct HNSW graphs within arbitrary
ranges, which is e�cient for RFANNS, especially when the query range width is in the middle scale.
2DSegmentGraph’s index sizes were 0.64GB, 0.74GB, and 8.51GB for the three datasets, while the
index time was 2469s, 2487s, and 43851s.

The right most points in Figures 11 and 12 show the performance of un�ltered queries (i.e., 100%
query range width). Our methods SegmentGraph and 2DSegmentGraph had very similar recall and
QPS as HNSW based method (i.e., ANNS-first), while signi�cantly outperforming other baselines.
Exp-8: Quanti�cation Evaluation. To quantify the contributions to the performance gain of
di�erent sub-solutions, for each method, we �nd 8 settings in a grid search under which the query
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Fig. 13. The ratio of QPS of RFANNS over that of ANNS-first, varying query range width (recall � 90%).
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Fig. 14. Evaluating the scalability of SegmentGraph and 2DSegmentGraph on DEEP by varying the number
of points from 2 million to 10 million (M = 32, K = 400, K_Search = 200).

recall is � 90%, pick the best QPS, and show, in Figure 13, the ratio between the QPS of each method
over the QPS of ANNS-first (HNSW-based method) on 5 query ranges. A method is not displayed if
it cannot satisfy the recall requirement. We can see that the ratio of the QPSs of SegmentGraph and
2DSegmentGraph are constantly more than 1 and are up to 32.3 – these gains are contributed by
our approach. Furthermore, the HNSW-based method (i.e., ANNS-first) outperformed all the other
methods only on ranges larger than 8% while SegmentGraph and 2DSegmentGraph constantly
outperformed all the other methods on all the ranges.

5.4 Scalability
We evaluate the scalability of our approach by varying the number of points from 2 million to 10
million on DEEP. We �xed the parameters M = 32, K = 400, and K_Search = 200 and used 10%
query range width. Figure 14 shows the results. As we can see, with the increase of the dataset
size, the index size and index time increased almost linearly. For example, SegmentGraph took
3340s, 7377s, 11749s, 16512s, and 21354s to build the index for 2M, 4K, 6M, 8M, and 10M data points.
This is attributed to the neighborhood pruning process. As for the query performance, the recall
of SegmentGraph and 2DSegmentGraph remained above 0.99 for all dataset sizes, while the QPS
declined sublinearly with the increase of dataset size. For example, when the number of points
increased from 2M to 10M, the QPS of SegmentGraph decreased from 835 to 719, while the QPS
of 2DSegmentGraph declined from 541 to 417. This is because HNSW can achieve a high recall
and QPS in ANNS and our index is a compression of multiple HNSW indexes. In summary, our
approach achieved good scalability both in index construction and in query processing.

6 Related Work
Approximate Nearest Neighbor Search. Existing methods for approximate nearest neighbor
search (ANNS) can be broadly classi�ed into three categories: locality-sensitive hashing (LSH) [5, 12,
18, 19, 28, 38], product quantization [6, 13, 22, 23, 32, 43], and proximity graphs [7, 11, 17, 20, 24, 29,
30]. The seminal work by Indyk and Motwani [19] introduced LSH, where speci�c hash functions
are designed to ensure that nearby vectors are likely to be mapped to the same bucket. Di�erent
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variations and improvements of LSH have since been proposed, including Multi-Probe LSH [28],
Collision Counting LSH [12], and Query-Aware LSH [18]. Product quantization (PQ) is another
popular technique for ANNS that o�ers a memory-e�cient representation of high-dimensional
vectors. It involves partitioning the vector space into subspaces and quantizing each subspace
independently. Jegou et al. �rst introduce PQ as a way to e�ectively compress vectors and achieve
fast search [22]. Extensions and re�nements, such as OptimizedPQ [13] and PQFastScan [6], have
further improved the accuracy and e�ciency of product quantization-based methods. Proximity
graphs provide a graph-based representation of the dataset, where nodes represent vectors, and
edges encode proximity relationships. Various graph-based methods have been proposed for ANNS.
The Delaunay graph [8] guarantees that for any vector, at least one of its neighbors is closer to the
query. Randomized neighborhood graphs [7] o�er e�cient search complexity while ensuring a
certain level of accuracy. Hierarchical Navigable Small World (HNSW) graphs [30] use a hierarchical
structure to facilitate e�cient ANNS.
Attribute-Filtering Approximate Nearest Neighbor Search. Di�erent systems use various
terms to refer to the attributed-�ltering ANNS. Speci�cally, Ferhatosmanoglu et al. [10] study the
constrained nearest neighbor queries over multi-dimensional data. It is orthogonal to our work
as we focus on high-dimensional vectors. AnalyticDB-V introduces the “hybrid query”, which
incorporates structured attributes and vectors in an analytic database system [44]. It proposes a cost
model to optimize the hybrid query. Milvus introduces the attribute-�ltering ANNS and extends
the query plans developed in AnalyticDB-V by introducing a partition-based query plan [40].
Matsui et al. present the “subset query” and develop the recon�gurable inverted index (Rii) to
process it, employing di�erent strategies based on the size of the query subset [31]. Mohoney et al.
explore hybrid vector similarity search, combining vector similarity queries with predicates over
relational attributes [34]. The proposed system enables e�cient batch processing of o�ine hybrid
query workloads through workload-aware vector data partitioning and multi-query optimization
techniques. Zhao et al. investigate the constrained similarity search problem and propose three
optimization strategies: starting point selection, multi-direction search, and biased priority queue
selection [46]. Both NHQ [41] and HQANN [45] propose to design a fusion distance metric to
support the hybrid query with unstructured and structured constraints. Gollapudi et al. propose to
study ANNS with �lters on disk [14]. ARKGraph [48] proposes an index to retrieve the k-nearest-
neighbor graph among the given query range.

7 Conclusion
This paper studies theRFANNS querywith a querying vector and a range of attribute values. Existing
solutions are either ANNS-�rst or range-�rst, which are ine�cient for small query ranges and large
query ranges, respectively. This paper proposes a novel index that can e�ciently answer ANNS for
every possible query range. The index size and index time break the quadratic barrier in average-
case analysis. Experimental results show that the proposed index outperforms existing methods for
both small and large query ranges while maintaining a small index size. To handle updates, we can
adopt a process that makes deleted vectors dummy and rebuilds the index periodically. Our future
work will focus on developing more e�cient update methods.
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