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A magnetic field (MF) is generated to modify gravity in a laboratory. The MF produces a vertical force
that counteracts the gravitational field on a magnetic sphere. The perpendicular spin of particles is blocked,
thus allowing spin solely around the direction of the MF. The settling of spherical magnets in a quiescent
flow with a particle density of 8200 kg/m3 and Galileo number (Ga) in the range [100, 280] was studied
experimentally. The results obtained by varying Ga via gravity modification to those obtained with non-
magnetic spheres where Ga is modified by varying viscosity are compared. Findings showed that there is
no significant di↵erence in the trajectory angle between magnetic and non-magnetic cases, suggesting that
the method for compensating gravity does not produce any spurious e↵ect and that particle spinning has
no significant e↵ect on this aspect of the dynamics. Subtle di↵erences in trajectory planarity were observed
hinting at a possible dependence on particle spin. Results prove the validity of the method introduced here
to change the gravitational strength on particles in fluids.

I. INTRODUCTION

It is of the utmost di�culty to reduce or suppress the
e↵ect of gravity in a laboratory on Earth. In the context
of particle-laden flows research, only a handful of very
particular situations allow it, such as the use of neutrally
buoyant particles. This prevents the exploration of cru-
cial particle/fluid mechanisms including notably inertial
e↵ects, which are intimately related to particle-to-fluid
density ratio. Therefore, the means available to do exper-
imental research in a low gravity environment while pre-
serving the capacity to explore inertial e↵ects due to den-
sity contrast are expensive, scarce and lack repeatability.
The only options are drop towers, parabolic flights, or
space experiments in the International Space Station1–4.
In this article we present a method to compensate the
gravity acting on a particle in a flow by the application
of a magnetic induction. With this purpose, we revisit as
a proof of concept, the problem of the settling of spher-
ical particles in a quiescent fluid5–10, when magnetically
varying the e↵ective gravity experienced by the particles.
Relevant research on tangential topics is present in the
literature of which a brief summary follows.

The focus of using magnetic fields for gravity compen-
sation purposes has been mostly on diamagnetic objects,
e.g. DNA, water or proteins. For instance, when ways
to circumvent Earnshaw’s theorem came to light11,12, it
was possible to levitate living diamagnetic objects such
as frogs13. These studies were central for the tech-
nique of high-gradient magnetic separation that allows
the sorting of sample components with di↵erent magnetic
susceptibilities14–16. In parallel, the Magnetic Resonance
Imaging Community developed the technical aspects to
achieve an arbitrary magnetic field profile in a labora-
tory (or a hospital) with the use of coils17,18. These are
apart from the study of particles in conductive fluids un-
der the influence of external magnetic inductions, that

are central to a number of industrial situations, for in-
stance clean metal production19. On the other hand, the
profiles of the external magnetic induction needed to ob-
tain a constant vertical force that can counteract gravity
in a number of scenarios such as, for example, liquid he-
lium or oxygen were also studied20–23. With all these
tools in hand, some progress has also been made in the
particular situations that interest this work: paramag-
netic/ferromagnetic or permanently magnetised particles
in a weak diamagnetic liquid (i.e. water), subjected to
a weak external magnetic induction environment (thus
no liquid magnetisation occurs). Some studies explored
the e↵ects of a homogeneous magnetic induction on one
or more particles in non-magnetic fluids24–28. In these
studies, the main focus was exploring the role of parti-
cle/particle interactions on their coupling with the fluid,
using a homogeneous magnetic field as a way to tune
interactions between particles.

In the present study the aim is to disentangle the role
of particle inertia and gravity on particle coupling with
the surrounding fluid. This requires modification of the
settling properties of the particles independent of the in-
ertial couplings with the fluid. This question is partic-
ularly crucial for unveiling the mechanisms at play dur-
ing turbulent transport of inertial particles29, where in-
ertial e↵ects (such as dynamic filtering30 and preferen-
tial concentration31,32) generally parameterized by the
particles’ Stokes number St = ⌧p/⌧⌘ (with ⌧p the parti-
cle viscous relaxation time and ⌧⌘ the turbulence dissi-
pation time) interplay with particle settling. These ef-
fects can, for instance, be parameterized by the Rouse
number Ro = ⌧pg/urms, where g is the acceleration of
gravity and urms the turbulent fluctuating velocity. Ex-
ploring the role of inertia in experiments by varying the
Stokes number at fixed turbulent conditions (i.e. for
fixed ⌧⌘ and urms) requires variation of the particles’ re-
laxation time ⌧p, hence inevitably changing at the same
time their Rouse number and their settling properties.
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Being able to experimentally modify the e↵ective grav-
ity experienced by the particles would give a unique and
simple way to truly explore Rouse number e↵ects at fixed
Stokes number and reciprocally. Guided by this final mo-
tivation in the context of particle laden turbulent flows,
the present study first addresses, as a proof of concept
of the relevance of magnetic compensation of gravity, the
case of particles settling in a quiescent flow.

The rich dynamics of single spheres settling in qui-
escent flows has been extensively explored in previous
studies5–10,33, in particular the transitions between
di↵erent settling regimes that depend on the relative
importance of gravity and viscous e↵ects (parameterized
by the Galileo number) have been determined. This
problem o↵ers an appealing framework to validate the
magnetic method to compensate gravity and revisit nu-
merical simulation predictions8,34,35 as well as previous
experimental results in the literature6,9,10,36 with an
alternative method to explore the parameters space.

The problem of a single sphere settling in a qui-
escent viscous fluid is controlled by two adimensional
parameters9,10: particle-to-fluid density ratio � and
Galileo number Ga = Ugdp/⌫ =

p
|�� 1|gdpdp/⌫, with

Ug the buoyancy velocity, dp the particle diameter, g the
local acceleration of gravity and ⌫ the kinematic viscosity.
As a result of numerical and experimental e↵orts8,9,33 a
detailed � – Ga map has been devised showing the dif-
ferent regimes that a single sphere settling in a quiescent
flow undergoes. The trajectory dynamics are character-
ized by trajectory angle and planarity, leading to five
main regimes: Rectilinear; Steady Oblique; Oblique Os-
cillating; Planar or Rotating; and Chaotic.

In the context of this paper, the experiments pre-
viously carried out by our group9,10 are of particular
interest as those are the only reported experiments with
particle densities comparable to the magnetic particles
used here. The experiments performed in this article
introduce and validate an experimental technique that,
making use of magnetic forces, allows modification of
the e↵ective gravitational pull on a magnetic sphere,
thus changing Galileo number (recall that it depends
on the local acceleration of gravity g) while keeping all
other physical parameters of the problem unchanged.
Moreover, as an additional e↵ect of the magnetic field,
the particle dynamics with blocked spin are studied
experimentally for the first time and allows the experi-
mental probing of the numerical prediction that particle
spin should not a↵ect the path instability dynamics37.

The development of such an experimental method
to compensate gravity provides a unique and low-cost
way to study problems that were previously reserved to
numerical studies: where changing the value of gravity
is trivial, but where models for particle/fluid couplings,
in particular in the turbulent case, are still a matter of
active research. On the other hand, the experimental
validation of results in numerical simulations about the

influence of particle spin, previously very hard to falsify,
are here validated.

The article is organized as follows. We first present
the basic theoretical layout of the magnetic gravity com-
pensation method and experimental design in Section II.
The results of the sedimentation of magnetic particles
with a modified gravity are described in Section III.
Then, we discuss conclusions and perspectives of this
work in Section IV. Finally, the Appendix presents fur-
ther details on the theoretical foundation of the method,
its validation, and further experimental details.

II. MAGNETIC FIELD GRAVITY CONTROL

A. General Principles

The magnetic torque (TM ) and force (FM ) acting on a
particle with a magnetic dipoleM and massm in vacuum
and in the presence of an external magnetic induction B
and gravity gẑ, expressed in cylindrical coordinates, read:

FM = r(M ·B), (1)

TM = �M⇥B. (2)

Note that the magnetic torque TM is restorative, i.e.
M parallel to B is the stable orientation. Therefore, the
particle can only freely rotate around the direction of the
magnetic induction B. Considering an external magnetic
induction in the direction of gravity (ẑ) an e↵ective grav-
ity g̃ can be defined and the particle equation of motion
then reads:

F · ẑ = mg̃ = m
⇥
g �Mrz(B)cos( )/m

⇤
, (3)

where B = |B|,  is the angle between the vectors B
(fixed, external magnetic induction) andM (free, particle
orientation). Note that  is a constant equal to zero if
there is no torque besides TM .
It is detailed in Appendix B 1 that in order to optimally
compensate gravity a linear magnetic field is required:

B(r, z) = (�Gz/2 r) r̂+ (Gz z +B0) ẑ. (4)

It should be noted that because of the divergence-free
nature of magnetic fields, the requirement of imposing a
vertical magnetic gradient to compensate gravity requires
the applied magnetic field to have a radial component
(first term in the l.h.s. of Eq. (4)). This radial magnetic
component may induce an undesired radial drift of the
particle. Applying an additional vertical o↵set B0ẑ to
the applied magnetic field allows control of the relative
intensity of the radial force and certainty that it is negli-
gible with respect to other relevant forces of the problem
(see below). As an additional e↵ect, the vertical magnetic
o↵set also allows to fix and vertically orient the particle’s
magnetic moment, hence only allowing particles to rotate
around the vertical.
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These two e↵ects (importance of the radial magnetic
force and magnetic torque) can be quantitatively esti-
mated. Given the expression of the desired magnetic field
given by Eq. (4), the order of magnitude of the magnetic-
to-hydrodynamical radial force and torque reads (see Ap-
pendix B 1 for complete derivation):

FM
r /F fluid

=

|M| r (Gz)
2/4p

(Gz)2/4r2+(Gzz+B0)2

1/8CDd2p⇡⇢fv2
⇡ 10

�6
N m

10�3 N m
= 10

�3,

(5)

TM/T fluid
=

|M||B|
1/64C!d5p⇡⇢f!2

⇡ 10
�3

N m

10�13 N m
= 10

11. (6)

These values are obtained using typical values ex-
plored in this work: radial distance to axis r = 10 cm;
axial distance to tank geometrical center z = 10 cm;
magnetic field gradient Gz = 290 G/m; vertical mag-
netic field o↵set at tank geometrical center B0 = 20 G;
CD = 1; particle diameter dp = 1 mm; fluid density
⇢f = 103 kg/m3; v = 1 m/s; particle angular velocity
! = 2 rad/s; and rotational drag coe�cient C! = 1.
Relation 5 shows that in typical operating conditions,
the radial force is 3 orders of magnitude smaller than the
hydrodynamical forces. Hence, no significant spurious
radial drift induced by the applied magnetic field is
expected. The radial magnetic force can however become
significant if the applied magnetic gradient becomes
too large. This will set the smaller e↵ective gravity
that can be achieved with this experimental setup
without resulting in particle drift: g̃ = 0.43 m/s2 in the
current experimental setup. In that case the typical
ratio FM

r /F fluid is equal to 1.1, where a typical value
Gz = 476 G/m was used. Therefore, when the radial
magnetic force and the fluid force become comparable,
drift occurs.

On the other hand, relation B7 justifies the claim that
the angle  between the particle magnetic moment M
and B can be taken as approximately zero. The magnetic
torque is orders of magnitude larger than the hydrody-
namic torque, hence the particle can only rotate about
the magnetic field direction that is set as the vertical (see
Eq. 2).

B. Experimental Setup

The experiments are performed in a transparent
PMMA water tank with a square cross-section of 170 ⇥
170 mm2 and a height of 710 mm, shown in Fig. 1.
The tank is filled with di↵erent mixtures of pure glycerol
(Sigma-Aldrich W252506-25KG-K) and distilled water,
ranging from 0% to 40% glycerol concentration. Vis-
cosity is measured with a rheometer Kinexus ultra+
from Malvern industries with a maximum uncertainty
of 0.6%. The kinematic viscosity ⌫ ranges from 10�6 to
1.05⇥ 10�3 m2/s. Furthermore, an air-conditioning sys-
tem keeps a constant room temperature of (22 ± 0.6)�C
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FIG. 1. Experimental setup. Two cameras image the particles

inside the water tank. Six circular coils produce a magnetic

induction used to compensate gravity on magnetic particles.

yielding a 2% uncertainty on the precise value of the vis-
cosity.

A 150 mm region of fluid above and below the visu-
alization volume is set to ensure both the disappearance
of any initial condition imposed on the particles when
released and the e↵ects of the bottom of the tank. Fur-
thermore, a minimum distance of 20 mm between the
tank walls and the particles is maintained. In this con-
figuration and using correlations available38, the settling
velocity hindering due to wall e↵ects is estimated to be
lower than 3%, thus neglected.

To record the trajectory of the particles, two high-
speed cameras (model fps1000 from The Slow Motion
Company) image the water tank with a resolution of
720 ⇥ 1280 px2 and 2300 fps. These dual recordings al-
low the implementation of a 4D-LPT (Lagrangian Parti-
cle Tracking resolved in time and in three dimensions)39.
This method accurately tracks particles with a precision
of approximately 90µm. This level of precision is deter-
mined by assessing the disparity between rays during the
stereo-matching process between the two cameras. It is
important to note that the experimental noise a↵ecting
particle position is short-term in nature. However, this
noise is e↵ectively mitigated due to the temporal redun-
dancy achieved through oversampling at a high frame
rate of 2300Hz. Additionally, Gaussian filtering is ap-
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TABLE I. Characteristics of the coils used for the magnetic

compensation of gravity. Columns show the following param-

eters for each coil used: number of turns N, radius R, and

cross section �. Each coil is represented by a number as in

Fig. 1.

1 2 3 4 5 6

N 965 103 450 452 101 969

R (cm) 16.3 22.1 15.6 15.4 21.8 16.1

� (cm
2
) 15.6 3.9 3.6 3.6 3.9 15.6

plied to the trajectories, further enhancing the accuracy
of particle velocity estimation. Consequently, the uncer-
tainty associated with instantaneous velocity along these
trajectories is less than 4 mm/s39. Moreover, when the
velocity is averaged over a specific trajectory, the associ-
ated uncertainty of the mean velocity estimate decreases
to within a few hundred microns per second.

Backlight illumination is used, as represented by the
dark blue rectangles in Fig. 1. The distance A from
the cameras to the exterior of the tank’s wall was var-
ied in order to change the extent of the tracking region,
which impacts the tracking resolution. However, for con-
sistency between datasets, the measurement volume was
restricted at a value of h ⇥ 100 ⇥ 100 mm3 by cropping
the images.

The particles used here are spherical permanent
neodymium magnets with: mass density ⇢p =
8200 kg/m3; diameter dp = 1 mm; and average arith-
metic roughness Ra = 15. The surface roughness of par-
ticles has been proved to influence the boundary layer,
therefore modifying several aspects of the dynamics40–42.
Note that the values of Ra/dp < 5⇥10�2 mm�1 obtained
are small and not expected to considerably modify the
dynamics41. Therefore, the ranges of adimensional num-
bers reached are Ga = [100, 280] and � = [6.8, 8.2].
Furthermore, the magnetic moment |M| is computed us-
ing Equation C1 yielding |M| = 4.96⇥ 10�4 Am2.
Particle dimensions and shapes were measured using a
microscope with a precision of 10 µm. In particular, no
significant deviation from the spherical shape or the doc-
umented diameter could be measured. Particle mass is
measured with a precision of 1 ⇥ 10�3 g via a standard
laboratory scale. The surface roughness of the parti-
cles was measured with a Scanning Electron Microscope
(SEM) model ZEISS SUPRA 55 VP, over an area of
200⇥ 500 µm2, and quantified by the average arithmetic
roughness Ra.

To produce the external magnetic induction, a six-coil
system has been put in place, as represented in Fig. 1.
They are placed at vertical distances Zi (i 2 [1, 6]) from
the origin of coordinates, set at the middle distance be-
tween coils 1 and 6. The position of the coils and electri-
cal current input in order to produce either a magnetic in-
duction or its gradient as homogeneous as possible within
the measurement volume was estimated based on the nu-
merical computation of the corresponding magneto-static

equations (see Sec. IIA). To simplify computations each
coil was modelled as an infinitesimal current loop. The
e↵ective number of turns and radius of the current loop
that models each finite size coil is experimentally deter-
mined in the following manner. Knowing the current
input, the axial (r = 0 in cylindrical coordinates) mag-
netic induction as a function of the distance to the coil
geometric center is measured for each coil using a Tes-
lameter Bell 7030. Later, the e↵ective number of turns
and radius are obtained via a non-linear fit of the mea-
surements to the theoretical axial magnetic induction of
a current loop of infinitesimal size:

B(z) = 2⇡10�7 R2NI

(z2 +R2)3/2
, (7)

with N the e↵ective number of turns; R the coil radius;
I the current; and z the distance from the coil individual
geometric center.
The coils’ e↵ective parameters are presented in Table I.
The uncertainty on N and R by the aforementioned
method are estimated to be 4% and 3%, respectively,
while the coils’ cross-section (�) uncertainty is 0.4 cm2.

C. Magnetic Field Production

The six circular coaxial coils used to generate the re-
quired magnetic induction (Eq. 4) are sketched in Fig. 1,
and their characteristics were shown in Table I. The coils
are modelled as infinitesimal current loops, therefore the
theoretical axial magnetic induction at the six-coil sys-
tem axis reads:

B · ẑ = 2⇡10�7
6X

i=1

R2
i Ni Ii

((z + Zi)2 +R2
i )

1.5
. (8)

In order to set the magnetic field presented in Eq. 4 at
the laboratory, a nonlinear least squares fit of Eq. 8 to
the axial component of Equation 4: Bz = Gz z + B0 is
performed. The fit’s fixed parameters are: Ni; Ri (coil’s
radius); Gz; B0; and Zfit the range at which the fit is
performed. The outputs are: Ii the current in each coil;
and Zi the distance between the coils geometrical cen-
ter and the origin of coordinates z = 0 (located at the
geometrical center of the coils).
Note that there is no radial dependence on Eq. 8.

The magnetic field outside the axis is estimated by
Maxwells’ equations, i.e. the inhomogeneity deduced
theoretically in Appendix B 1 (see Fig. 7) is used to
estimate the magnetic field out of the axis. The magnetic
induction homogeneity outside the axis was measured
with a Teslameter and it was found to be accurately
represented by Fig. 7.

Two sets of values for Gz, B0 and Zfit were chosen:

1. Case g0: homogeneous vertical magnetic in-
duction.
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TABLE II. Details of the two external magnetic inductions

implemented here: Case g0 and g⇤.

Non-linear fits Measurements
Case g0 Case g⇤ Case g0 Case g⇤

Gz (G/m) 0 -290 0± 20 -286±25
B0 (G) 20 26 20±1 22±1

Zfit (mm) (-150, 50) (-100, 0) 7 7

In this case rzB = 0 & B 6= 0, yielding no net
magnetic force and only impacting the particles’ ro-
tation through the blocking e↵ect of the magnetic
torque previously discussed.

2. Case g⇤: constant gradient vertical magnetic
induction.
In this case rzB 6= 0 & B 6= 0, yielding both a net
magnetic force (used to compensate gravity) and
a net magnetic torque, resulting in the rotation-
blocking e↵ect, respectively.

The two cases di↵er on the magnetic force magnitude
(proportional to rzB) that they impose on the particles:
whereas the Case g⇤ blocks the rotation and applies a
force, Case g0 blocks the rotation but the applied force is
negligible. In particular, the size of the fit window Zfit

needed to be shortened for Case g⇤, to minimise inho-
mogeneities in the magnetic force. The specific values of
these two sets of input parameters in the non-linear fit to
Eq. 8 are presented in Table II, which are with the cor-
responding magnetic induction measurements discussed
below. Details about coils’ parameters for both cases are
detailed in Appendix A.

Fig. 2 presents the profiles of axial magnetic induc-
tion Bz (first row) and its gradient rzB (second row)
obtained from the non-linear fit (black lines), and mea-
surements performed with a Teslameter Bell 7030 (blue
crosses), versus distance to the origin. Finally, the blue
shade represents the region (Zfit) where the fit was per-
formed. Note that because the magnetic field is measured
at the axis, and the equation fitted represents the cen-
ter of a current loop (where the magnetic field is purely
vertical): B = Bz ẑ.

It can be seen that, for Case g0, the magnetic induction
measurements (Fig. 2(a)) overlap with the simulations,
whereas the magnetic induction gradient (Fig. 2(c))
presents an average di↵erence of 10%, with maximum val-
ues of 30% that occur near the extremes of Zfit. On the
other hand, Case g⇤ has a 10% discrepancy on the mag-
netic induction gradient rzB (Fig. 2(d)), while the mag-
netic field overlaps with the measurements in the range
Zfit 2 (�0.1, 0) m (Fig. 2(b)). Additionally, note that
the radial-to-axial force ratio (Equation B5) takes the
following maximum values for Cases g0 and g⇤: 1⇥ 10�2

and 1.5⇥ 10�1, respectively.
In the case of the 1mm spherical permanent magnets

that are studied here, these inhomogeneities in the mag-
netic induction gradient produce a 5% variability in the
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FIG. 2. Gradient of Bz computed from the axial magnetic

induction measurements (blue points) and simulations (black

line). The insets present the measurements and simulation

results of the axial magnetic induction as a function of the

distance to the origin z=0. Finally, a horizontal arrow denotes

the rightwards gravity direction.

e↵ective gravity value for Case g⇤, and an e↵ective grav-
ity between g̃ = 9.5 m s�2 and 9.8 m s�2 for Case g0.
The presence of oscillations in the magnetic field can

be explained as the interference between the higher har-
monics that compose the total magnetic induction of each
coil, as observed in the literature20. The interaction be-
tween these higher harmonics can be modified consider-
ably by small errors in the coil positioning. To explore
this idea Fig. 3 shows the theoretical magnetic induction
(a) and gradient (b) for Case g⇤, evaluated at di↵erent
Coil 1 positions Z1: its original position (black); 5mm
downwards (red); and 5mm upwards (magenta). While
the magnetic inductions are indistinguishable (Fig. 3
(a)), the gradients show clear di↵erences (Fig. 3 (b)):
within the measurement region (blue shade) a di↵erence
of up to 3% is present. Note that the coil positioning
error is estimated to be 5mm, this value includes the ap-
proximation of the coils by an infinitesimal loop at its
geometrical centre and the 2mm precision in positioning
due to the tools used. These factors are hypothesized
to produce the di↵erence between the experimental mea-
surements and the simulated values encountered in Fig. 2.

D. Data Sets

The camera-tank distance A was varied to obtain two
di↵erent measurement volume heights h (see Fig. 1):
h = 100 mm and h = 200 mm. This translates into dif-
ferent maximum particle dimensionless trajectory lengths
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FIG. 3. Theoretical magnetic field (a) and gradient (b) for

Case g⇤, evaluated at di↵erent coil Z1 positions. The original

coil position (black); 5mm downwards (red); and 5mm up-

wards (magenta) are shown.

l⇤max = h/dp = 100 & 200 (recall that dp is 1 mm for all
cases), while the measured volume has a 150⇥ 150 mm2

transverse section. In order to reduce experimental noise
(due to inevitable particle detection errors in the La-
grangian particle tracking treatment43), the raw trajecto-
ries are smoothed by convolution with a Gaussian kernel
of width � = 12 frames; acting as a low-pass filter with a
cut-o↵ frequency fc = fps/� = 2300 Hz/� = 192 Hz.
Quantities in this report are non-dimensionalized (de-
noted by a superscript asterisk, for instance U⇤) by the
following time, length and velocity scales: dp/Ug; dp; and
Ug, respectively.

The experimental procedure is as follows: Initially, the
tank is filled with a water-glycerol mixture, and approx-
imately 24 hours are allowed to pass. During this time,
the temperature at various locations within the bulk of
the fluid stabilizes to within a temperature di↵erence of
less than 0.6�C. Subsequently, a standard calibration
process for the 4D-LPT system is executed39. Once cal-
ibration is complete, the magnetic field is activated, and
spherical particles are released from a 0.5cm-diameter
plastic tube positioned at the center of the tank, approx-
imately 5cm above the region of interest (ROI). The par-
ticles are carefully introduced one by one into the tube,
where they settle due to gravitational forces. To ensure
that the fluid remains undisturbed between successive
particle releases, a minimum waiting time of 120 seconds
is observed. This interval is chosen to be at least 12 times
the viscous relaxation time, denoted as ⌧ = d2p/⌫, not-
ing that the specific value of the viscous time may vary
across di↵erent experimental cases, resulting in a wait-
ing time of 1 ⇥ 103⌧ . Furthermore, temperature control
is critical to maintain the consistency of the experimen-
tal conditions. Therefore, the temperature of the coils is
continuously monitored and held constant, with an un-
certainty of ±0.5�C. Temperature control is necessary
due to the influence of temperature on wire resistance.

III. SINGLE MAGNETIC SPHERE SETTLING AT FIXED
ORIENTATION AND MODIFIED GRAVITY

In this Section the local gravitational pull is reduced
via the magnetic gravity compensation method presented

in the previous Section. It is proven that the Galileo num-
ber (and hence the settling regime) of spherical magnetic
particles can be magnetically tuned. Furthermore, these
results confirm the validity of the magnetic gravity com-
pensation method. This is the first step towards the de-
ployment of a global strategy to experimentally explore
the influence of gravity in particle/fluid interactions.

A. Parameters explored

The results of an experimental study on spherical
metallic particles settling in a quiescent flow at moder-
ate Reynolds numbers performed by our group9,10 are
used here as reference data to be compared against the
present measurements. Note that those experiments were
performed in the water tank presented in Fig. 1 and the
non-magnetic particles used had ⇢p = 7950 kg/m3, which
is comparable to the density of our magnetic particles.
Recall that the particles are a↵ected in two ways due

to the presence of the external magnetic inductions pro-
duced here: firstly, as the applied magnetic field is mostly
vertical on the region of interest, particle rotation is par-
tially blocked and only allowed around the vertical axis.
Secondly, the spatial profile of the imposed field is specif-
ically tailored to be as close as possible to a homogeneous
vertical gradient field in the region of interest, hence par-
ticles experience an almost constant magnetic force which
counteracts the gravitational force yielding di↵erent ef-
fective gravity values g̃.
In the sequel, the following nomenclature will be used

to refer to the di↵erent experiments:

• ØB
Reference case with no magnetic induction9,10.

• Case g0
Uniform magnetic induction (spin blocking e↵ect).
The magnetic induction profile was presented in
Fig. 2(a)-(c).

• Case g⇤

Uniform magnetic induction gradient (spin block-
ing and modified gravity). The magnetic induction
profile was presented in Fig. 2(b)-(d).

Additionally, as detailed in Section IID, the visualiza-
tion area in Case g⇤ has a maximum adimensional height
l⇤max = 100, whereas for Case g0 l⇤max = 200. This di↵er-
ence is due to the finite size of the coils: it is possible to
produce a homogeneous magnetic induction (Case g0) in
a larger region of space compared to the production of a
homogeneous magnetic induction gradient (Case g⇤).
For the Case g⇤, Table III summarizes the di↵erent

e↵ective gravities g̃ explored (details about the estima-
tion of g̃ are given in the next Subsection). The e↵ective
gravity will be given from now on in dimensionless form
g⇤ = g̃/g. In practice, changing the e↵ective gravity is
simply achieved by multiplying the currents given by the
optimized configuration g⇤ by a constant value.



7

TABLE III. Di↵erent magnetic induction gradients applied

and regimes of e↵ective gravity g̃ explored. The columns

present the five di↵erent variants of the magnetic field Case

g⇤. The rows show the dimensionless gravities g⇤ defined as

the ratio between the e↵ective gravity g̃ and the usual gravity

acceleration g = 9.8 m/s
2
, and the values of rzB evaluated

at r = 0 (i.e. the coils’ axis) previously denoted Gz.

g⇤ = g̃/g Gz (G/m)

0.43± 0.02 �476± 42

0.65± 0.02 �286± 25

0.77± 0.02 �191± 16

0.80± 0.02 �171± 15

0.90± 0.02 �95± 8

The exploration of settling regimes is performed by in-
dependently changing the e↵ective gravity and the fluid
viscosity according to the following protocol. For a given
value of fluid viscosity, all the di↵erent values of g̃ are
applied to sweep Galileo number. In this way, with a
fixed viscosity, the Galileo number can be swept by vary-
ing the e↵ective gravity in between 65% and 100% of its
value at g = 9.8 m/s2. Overall, the range of Ga values
explored is [100, 280].

Finally, the trajectory planarity is quantified by the
ratio of eigenvalues �2/�1 (with �1 � �2) of the dimen-
sionless perpendicular (to gravity) velocity correlation
matrix, defined as37:

hv⇤
? v⇤T

? i =

< v⇤x

2 > < v⇤xv
⇤
y >

< v⇤yv
⇤
x > < v⇤y

2 >

�
, (9)

with v⇤ = v/Ug. Perfect planar (non-planar) trajectories
yield �2/�1=1 (=0), while the ratio represents interme-
diate cases.

B. Terminal Velocity & E↵ective Gravity Homogeneity
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FIG. 4. Representative settling velocities (i.e. component

parallel to gravity) of spheres, versus dimensionless distance

to origin, under the two external magnetic field Cases studied:

g0 and g⇤. (a) Three settling velocities for Case g0 at low

Ga. (b) One settling velocity for each of the following three

variants of Case g⇤: g⇤ = 0.43 & Ga = (103 ± 5), g⇤ =

0.65 & Ga = (125± 5), and g⇤ = 0.80 & Ga = (125± 5).

It is important to verify that the particles reach a

terminal velocity, and that there is no global devia-
tion caused by the magnetic induction gradient inhomo-
geneities measured in Section IIC. In this sense, Fig. 4
presents some examples of the evolution of vertical veloc-
ities versus distance to the origin (set at the geometrical
center of the coils, see Section II B). Note that the fig-
ure presents single realization settling velocities while the
ensemble average of tens of drops are used in all the anal-
yses that follow.
Fig. 4(a) shows the e↵ect of rotation blockage intro-

duced by the magnetic induction set up of Case g0. A
terminal regime with a constant settling velocity is ob-
served with typical variations between realizations of less
than 3%. Fluctuations of this order of magnitude match
those present in the non-magnetic spheres reference case.
Hence the fluctuations seen in the figure are attributed
to the usual variability of particles settling9,10,36, there-
fore no major e↵ect of rotation blockage is seen on the
terminal velocity.
On the other hand, Fig. 4(b) shows one representative

settling velocity at Ga = (103±5), (125±5), and (126±5)
for three dimensionless gravity values of Case g⇤: g⇤ =
0.43, 0.65, and 0.80, respectively. As will be reflected
in the trajectory angle discussion in what follows, the
magnetic field to produce the lowest dimensionless grav-
ity g⇤ = 0.43 is too strong and produces an horizon-
tal drift, i.e. the perpendicular magnetic force becomes
stronger than the fluid drag. In this sense, this sub-
panel shows that the settling velocity in that case (blue
curve) is a↵ected much more than in the other g⇤ cases:
at |z⇤| = |z/dp| = 46 the velocity value increases by 8%
for g⇤ = 0.43, whereas it increases less than 2% for the
other cases. It is then concluded that measurements up
to g⇤ = 0.65 can be expected to behave analogously to
non-magnetic spheres. This claim will be confirmed in
what follows and can be understood with the magnetic-
to-drag radial force ratio presented in Eq. B5. That rela-
tion was computed for values of the magnetic field from
Case g⇤ ⇡ 0.65 resulting in values lower than 10�3, while
the force ratio for Case g⇤ ⇡ 0.43 is of order 10�1 there-
fore allowing the radial magnetic force to drift particles,
a↵ecting their settling velocity.
The fact that particles reach a terminal velocity al-

lows for the definition of a constant e↵ective gravity, and
determining its precise value is crucial. Recall the equa-
tion linking g̃ with the experimental parameters (see Sec-
tion IIA): g̃ = g�|M|rz|B|/m. As previously discussed,
the value of M can be computed from the manufacturer’s
data and rzB was measured (see Subsection IIC). The
values of g̃ can then be computed.
The e↵ective gravity can as well be obtained by mea-

suring the terminal settling velocity with no external
magnetic induction applied vs,0 and comparing it to that
of particles settling in the same flow but with its grav-
ity being modified vs,M . Recall that the particle settling
velocity can be calculated as:

vs =
r

mg
⇡
8CD(Rep)d2p⇢f

. (10)
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The ratio m/(⇡8 d
2
p⇢f ) is identical as the same particles

are used, therefore:

g⇤ =
g̃

9.8 m/s2
=

v2s,MCD(Rep,M )

v2s,0CD(Rep,0)
, (11)

with Rep,0 = vs,0dp/⌫, and Rep,M = vs,Mdp/⌫. Then,
using usual drag correlations9,10,44, it is possible to ex-
tract g̃ for all the multiples of Case g⇤ studied.
Values of g̃ that overlap with the computed ones are inde-
pendently obtained from particle terminal settling veloc-
ities. Therefore the values of e↵ective gravity g̃ presented
in Table III are validated.

C. Path instability Results

The di↵erent path instabilities of a single spherical
magnetic particle settling in a quiescent flow are pre-
sented here. The dynamics are controlled by Galileo
number Ga, which varies as the square root of gravity.
It is shown that by changing gravity the path instability
in action can be tuned. First the trajectory angle and
planarity are compared to the non-magnetic Reference
Case9,10, and, later on, the same comparison is done for
trajectory oscillations.

1. Trajectories Geometry

Fig. 5 presents some representative 3D trajectories
(first column) alongside a top view (second column). All
these trajectories belong to Case g0, as those of Case g⇤

present the same dynamics but with shorter trajectories.
Each sub-panel presents results with Ga in the main four
regimes previously identified:

(1) Steady Oblique – Ga = {153, 158}. Fig. 5(a)
presents some trajectories in this regime. The trajec-
tories are planar and have a well defined angle with the
vertical that, after centering, form a cone in 3D space.
These trajectories are less planar (although still overall
planar) than those of Case ØB. This di↵erence can be
observed from the planarity quantification done in the
sequel (Fig. 6) where the magnetic particles have a value
of

p
�2/�1 ⇡ 0.2 versus 0.05 for Case ØB9.

(2) Oblique Oscillating – Ga = 206 (Fig. 5(b)). While
trajectories at Ga = 206 would be expected to be in the
Oblique Oscillating regime according to numerical sim-
ulations, non planar trajectories are observed, as repre-
sented in Fig. 5(b). The trajectories here are not planar
as will be identified in the following planarity analysis.
Overall these properties are similar with the trajectories
belonging to the Planar or Rotating regime (Fig. 5(c)).
It is likely that, considering the uncertainty in Ga, and
the vicinity with the frontier to the Planar or Rotating
Regime, these measurements could be attributed to the
Planar or Rotating regime.

(3) Planar or Rotating – Ga = {213, 217}. Fig. 5(c)
presents some trajectories in this regime. They are com-
posed of weakly non-planar trajectories (black) and some
helicoids with diameter D ⇡ 10 and pitch P ⇡ 500
(equivalent to those of Case ØB). Note that these values
are adimensionalized by the particle diameter dp. Recall
that a bi-stable region is predicted by numerical simu-
lations and experimentally confirmed for these ranges of
Ga. Apart from the e↵ects on angle and planarity (dis-
cussed in the Case ØB), this sub-panel makes explicit the
presence of two regimes at these Ga numbers: helicoid-
like trajectories coexist with oblique non-planar ones.
(4) Chaotic – Ga = 275. Finally, the Chaotic regime

correctly matches the characteristics found for the Case
ØB: all trajectories are di↵erent, non-planar and oblique.

The trajectories found when the particle rotation is
blocked and an e↵ective gravity is set are indistinguish-
able from those found in the Reference Case of non-
magnetic particles. This supports the hypothesis that
rotation blockage and the addition of a magnetic force do
not a↵ect the regimes that a settling particle undergoes37.
Furthermore, this confirms that the magnetic method to
compensate gravity presented here indeed modifies grav-
ity without any spurious e↵ect.

2. Trajectories Angle & Planarity

Fig. 6 presents the trajectories’ angle and planarity
versus Ga number, alongside the reference measurements
from our group9,10 (empty circles). Additionally, the
vertical dashed lines show the onsets for the di↵erent
settling regimes: Rectilinear, Steady Oblique, Oblique
Oscillating, Planar or Rotating, and Chaotic. In par-
ticular, Fig. 6(b) and Fig. 6(d) present the measure-
ments against a Galileo number Ga(g̃) that was calcu-
lated with the e↵ective gravity value g̃, whereas Fig. 6(a)
and Fig. 6(c) show the measurements as a function of
Ga(g) number based on the actual non-perturbed grav-
ity, i.e. g̃ = 9.8 m/s2. Red crosses denote the measure-
ments from Case g0, for which only the particle rotation is
blocked and no net magnetic force modifying the e↵ective
gravity exists. The empty circles are the non-magnetic
Reference Data9, and the rest of the markers are the dif-
ferent configurations of Case g⇤ previously defined, for
which e↵ective gravity is magnetically tuned. Note that
in the Reference Case ØB and Case g0, the points keep
the same abscissa between rows because in the Case g0
g̃ = g = 9.8 m/s2.
The trajectory planarity is quantified by the ratio of

eigenvalues �2/�1 (with �1 � �2) of the dimensionless
perpendicular (to gravity) velocity correlation matrix de-
fined as:

hv⇤
? v⇤T

? i =

< v⇤x

2 > < v⇤xv
⇤
y >

< v⇤yv
⇤
x > < v⇤y

2 >

�
, (12)

with v⇤s = vs/Ug. Perfectly planar (non-planar) trajec-
tories yield �2/�1=0 (=1), while non-vanishing values of
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FIG. 5. Representative 3D trajectories alongside a Top View, for results with Ga in the main four regimes presented in the

Introduction. Sub-panel (a) – Ga = {153, 158}, Steady Oblique regime. Sub-panel (b) – Ga = 206, Oblique Oscillating regime.

Sub-panel (c) – Ga = {213, 217}, Planar or Rotating regime. Sub-panel (d) – Ga = 275, Chaotic regime. All these trajectories

belong to Case g0.

this ratio indicate a departure from planarity37.

For both the trajectory planarity and angle, it is ob-
served that the data points collapse into a single trend
when the corrected Ga(g̃) is used. This is consistent with
the Reference Data case, including the transitions be-
tween settling regimes, whose detailed description has
been reported in Cabrera-Booman et al9. Besides, it can
be seen that the Case g0, for which no magnetic modifica-
tion to Ga is applied, presents an identical behaviour as
the reference Case ØB. The latter implies that there is no
measurable e↵ect of the particle rotation blockage on the
trajectory angle or planarity. Hence, it can be inferred
that the rotation blockage in the Case g⇤ has no major
e↵ect. On the other hand, the uniform magnetic gradi-
ent strategy indeed allows exploration of Galileo number
e↵ects and settling regimes by simply varying the ampli-
tude of the applied field (and thus of its gradient); which

turns out to be equivalent, in terms of variations of Ga,
to viscosity modifications.
Note that the single point with g̃ = (4.2 ± 0.2) m/s2

and Ga = 103 (light blue circle) that corresponds to the
strongest magnetic gradient applied (Case g⇤ ⇡ 0.43), is
o↵ the trend in Fig. 6(c). This is due to the spurious
radial magnetic force which, as already pointed out in
Section III B, cannot be fully neglected for such strong
e↵ective gravity modifications. As a consequence, tra-
jectories in this range of e↵ective gravity acquire a small
radial drift and tend to become slightly more oblique.

IV. CONCLUSIONS

This article presents both a magnetic method to mod-
ify gravity on particles in a laboratory, and experimental
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FIG. 6. Trajectory angles with the vertical (a-b) and planarity (c-d) versus Ga number, alongside reference measurements

(empty circles)
9,10

. Additionally, vertical dashed lines and color bars
9
show the onsets for the di↵erent regimes presented in the

Introduction following the nomenclature introduced in Cabrera-Booman et al.
9
. The bottom row shows measurements against

a Galileo number that was calculated with the corrected gravity value g̃. The top row presents measurements as a function of

a Ga number computed assuming that the gravity did not change with the application of the external magnetic induction (i.e.

g̃ = 9.8 m/s
2
). Finally, di↵erent markers and colors are used to distinguish the data points as denoted in the legend.

studies on the settling of single spheres in a quiescent
flow with modified gravity. A magnetic method to mod-
ify gravity is developed, validated and tested. Its theo-
retical foundation is presented, including details on how
the addition of an external magnetic induction can pro-
duce a vertical force that counteracts the gravitational
force on a magnetic particle. This experimental method
also blocks the perpendicular spin of magnetic particles,
thus the only spin allowed is around the magnetic field
direction. The homogeneity of the theoretically derived
magnetic field needed to compensate gravity is detailed,
showing a high level of homogeneity. The coils’ posi-
tions and currents to produce the desired magnetic field
are obtained from a non-linear fit, and the resulting field
measured in the real world is compared to the theoretical
field finding good agreement.

The settling of spherical magnets in a quiescent flow is
studied and compared to a reference non-magnetic sphere
settling measured by our group9,10 as both a final valida-
tion of the method and a study of the influence of particle
spinning on the particle trajectories’ dynamics. The lat-
ter consists of the analysis of the dynamics of spheres in
the parameter space ��Ga, with a particle-to-fluid den-
sity ratio � = 8.2 and Galileo numbers Ga 2 [100, 280].
The terminal velocity of particles is discussed for each

e↵ective gravity value, showing that particles achieve a
homogeneous terminal velocity, thus implying that the
magnetic method modifies gravity homogeneously. Tra-
jectories in 3D that match benchmark results without
gravity are shown for each regime in the path instability
parameter space. The results on trajectory angle showed
no di↵erence between magnetic and non-magnetic cases
thus implying that the method to compensate gravity
performs well and particle spinning is not relevant for
that aspect of the dynamics. On the other hand, trajec-
tory planarity presents minimal di↵erences in the Planar
or Rotating region of the parameter space although the
present measurements do not allow to conclude whether
there is a rotation blockage e↵ect.

A novel experimental method to compensate gravity
on magnetic particles in a fluid has been demonstrated
to compensate gravity down to a homogeneous value
6.37 m/s2, or 65% of its full value, in the measurement
volume without inducing drift or any other spurious ef-
fect on the particle dynamics. Note that this value can be
further reduced by changing, for instance, the particles.
Although not discussed here, this experimental technique
can be minimally modified to increase the gravitational
pull. There is considerable value in the method as it al-
lows low-gravity experimentation in a laboratory bench
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that otherwise would need a big budget and facilities such
as parabolic flights, International Space Station or drop
towers.

Appendix A: Coils’ Input Parameters

The coils’ positions (Zi) and currents (Ii) given by the
fit, for both cases are presented in Table IV. Note that for
the Case CstB only four coils are used as that case does
not require more coils to achieve better homogeneity.

TABLE IV. Coils’ positions and currents given by the fit

method for both Cases CstB and CstrzB. The coils’ names

follow the nomenclature presented in Fig.1.

Case CstB Case CstrzB

Z (cm) I (A) Z (cm) I (A)

Coil 1 7 7 26.5 2.28

Coil 2 14.2 4.24 24.5 -1.77

Coil 3 12 0.20 12 1.70

Coil 4 -12 0.16 0 0.52

Coil 5 -14.2 4.46 -24.5 -3.06

Coil 6 7 7 -26.5 -1.16

Appendix B: Gravity Compensation Theory

1. Magnetic Field Derivation

To be able to homogeneously compensate gravity, the
magnetic force on gravity’s direction (FM · ẑ) needs to be
a constant independent of z here denoted Gz. Alongside
the previous condition, the external magnetic field B has
to be a solution of Maxwell’s equations, leading to the
following set of equations:

rz B = Gz, (B1)

r ·B = 0, (B2)

r⇥B = 0. (B3)

The present work focuses on axisymmetric solutions
where a linear magnetic induction in ẑ can be proposed,
resulting in: B(r, z) = Br(r) r̂+ (Gz z +B0) ẑ, in cylin-
drical coordinates. Later, Br can be obtained by solving
Eq. B2, leading to the following magnetic field induction:

B(r, z) = (�Gz/2 r) r̂+ (Gz z +B0) ẑ.

This magnetic induction respects the irrotational condi-
tion (Eq. B3), whereas Eq. B1 is only exactly satisfied
at r = 0. The latter is an unavoidable consequence of
the solenoidal nature of magnetic fields. A dependence
on the distance to the system axis (r) and the position
on the axis (z) are then present in the forces acting on

0.840.870.90.93

0.96

0.96

0.99

0.99

0.99

0 50 100
-150

-100

-50

0

50

0.75

0.8

0.85

0.9

0.95

0.720.750.780.81

0.84

0.87

0.87

0.9

0.9

0.9

0.93

0.93

0.93

0.96

0.96

0.96
0.99

0.99
0.99

0 50 100
-150

-100

-50

0

50

0.7

0.75

0.8

0.85

0.9

0.95

(a) (b)

FIG. 7. Contour plot of the axial (a) and radial (b) compo-

nent of the theoretical magnetic force, normalised by the axial

force at z=0: FM
z (r, z)/FM

z (0, 0) and 1-FM
r (r, z)/FM

z (0, 0),
respectively.

the particle:

FM
z (r, z) = M

@B
@z

= M
(Gzz +B0)Gzp

(Gz/2)2/4r2 + (Gzz +B0)
2
,

FM
r (r, z) = M

@B
@r

= M
r (Gz)

2/4p
(Gz)

2/4r2 + (Gzz +B0)
2
.

(B4)

Note that FM
r (r ! 0) = 0 and FM

z (r ! 0) = MGz.
Therefore, gravity can be fully compensated at r = 0,
without any radial force present. Note that this is not
in conflict with Earnshaw’s theorem11 because the equi-
librium is not stable, i.e. the Laplacian of the magnetic
energy is not zero.

2. Magnetic Field Homogeneity

Fig. 7 presents contour plots of FM
z (r, z)/FM

z (0, 0) and
1-FM

r (r, z)/FM
z (0, 0), note that the normalization chosen

is FM
z (0, 0) = MGz. Values of Gz = �250 G/m, B0 =

26 G, z 2 (�150, 50) mm andM = 4.96⇥10�8 G�1m2s�2

were used to compute the forces from Equations B4, as
these are typical magnitudes for the present experimen-
tal setup.
The axial component of the force FM

z has a weak depen-
dence on z and r, as quantified in Fig. 7(a): a maximum
axial force variation of 20% is achieved at z = 50 mm and
r = 100 mm. At z 2 (�150, 0) mm and r 2 (0, 20) mm,
the ranges used in this work, the axial magnetic force
has fluctuations below 2%. On the other hand, the ra-
dial force FM

r has a stronger dependence on r and z (see
Fig.7(b)). When r = 100 mm and z = 50, the radial
force becomes as high as 30% of the reference axial force
at the center FM

z (0, 0). At the ranges z 2 (�150, 0) mm
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and r 2 (0, 50) mm the maximum value of radial force is
reduced to 10% of its axial counterpart.

On the other hand, the relative magnitude of the axial
and radial forces can be calculated:

FM
r (r, z)

FM
z (r, z)

=
1

4

Gz r

Gz z +B0
. (B5)

As the aspiration is to solely counteract gravity, a radial
force is not desired and the latter ratio needs to be min-
imized. There are two ways to achieve it: keep r small
compared to (z + B0/Gz); and/or have the largest pos-
sible value for B0. The latter approach is ideal because
it allows a larger volume (r-z) where the axial force is
homogeneous and the radial forces are small. Albeit it
translates to more current on the coils (recall that B / I)
and, therefore, thicker coils winding that might lead to
the necessity of external cooling.

3. Equations of Motion

When applying this method to a particle in a fluid the
equations of motion need to include hydrodynamical ef-
fects. Neglecting added mass and history forces45,46, the
fluid adds drag44, torque47 and buoyancy e↵ects yielding
the following equations of motion:

F = (mp �V⇢f )g ẑ�M ·rB� 1

8
CD⇡d

2
p⇢fv|v|, (B6)

T = �1/64C!⇢f!|!|d5p �M⇥B, (B7)

with fluid density ⇢f and particle volume V , kinematic
viscosity ⌫, translational (CD) and rotational (C!) drag
coe�cients, particle velocity v, and angular velocity !.
Finally, note that if the Reynolds number is low (typically
below order one48, i.e. the Stokes regime) the fluid drag
and torque are simpler:

F = (mp � V ⇢f )g ẑ�r(M ·B)� 3⇡dp⌘v, (B8)

T = ⇡⌘d3p! �M⇥B. (B9)

Appendix C: Particle Material Discussion

Equation 1 can be rewritten if one specifies the particle
magnetic properties: in the ferromagnetic, paramagnetic,
or diamagnetic particle cases M / B; whereas for a per-
manent magnet (with B = |B| below its coercive field
strength) M = |M| is constant and FM = M ·rB. This
work focuses on the latter particle case as magnetic mo-
ment values are at least two orders of magnitude larger.
This translates into lower external magnetic induction
intensities (i.e. less power or smaller coils) to achieve a
certain magnetic force.

In particular, the magnetic moment M of a perma-
nent magnet can be computed, if one assumes that the

magnetic dipolar moment is dominant, in the following
manner:

M =
BresV

µ0
, (C1)

where V is the volume of the magnet, µ0 the vacuum
magnetic permeability (note that µ0 ⇡ µwater) and Bres

is the remnant magnetic flux density (for the particles
here used Bres = 1.192 T), in other words the magnet’s
magnetic flux density when the external coercive field
strength is zero.
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Bourgoin. Sedimentation of a suspension of paramagnetic par-
ticles in an external magnetic field. Phys. Rev. E, 102:023101,
Aug 2020.

26Eric E. Keaveny and Martin R. Maxey. Spiral swimming
of an artificial micro-swimmer. Journal of Fluid Mechanics,
598:293–319, 2008.

27V. Kumaran. Rheology of a suspension of conducting particles
in a magnetic field. Journal of Fluid Mechanics, 871:139–185,
2019.

28H. M. De La Rosa Zambrano, G. Verhille, and P. Le Gal. Frag-
mentation of magnetic particle aggregates in turbulence. Phys.

Rev.s Fluids, 3:084605, Aug 2018.
29Luca Brandt and Filippo Coletti. Particle-Laden Turbulence:
Progress and Perspectives. Annual Review of Fluid Mechanics,
54(1):159–189, 2022.

30C. M. Tchen. Mean value and correlation problems connected

with the motion of small particles suspended in a turbulent fluid.
PhD thesis, TU Delft, 1947.

31Kyle D. Squires and John K. Eaton. Preferential concentration
of particles by turbulence. Physics of Fluids A: Fluid Dynamics,
3(5):1169–1178, 1991.

32F. Falkinho↵, M. Obligado, M. Bourgoin, and P. D. Mininni.
Preferential concentration of free-falling heavy particles in tur-
bulence. Phys. Rev. Lett., 125:064504, Aug 2020.

33Shravan K.R. Raaghav, Christian Poelma, and Wim-Paul
Breugem. Path instabilities of a freely rising or falling sphere.
International Journal of Multiphase Flow, 153:104111, 2022.

34Mathieu Jenny, Gilles Bouchet, and Jan Dusek. Nonvertical as-
cension or fall of a free sphere in a newtonian fluid. Physics of

Fluids, 15(1):L9–L12, 2003.
35M. Jenny, J. Dusek, and G. Bouchet. Instabilities and transi-
tion of a sphere falling or ascending freely in a newtonian fluid.
Journal of Fluid Mechanics, 508:201–239, 2004.

36O. J. I. Kramer, P. J. de Moel, S. K. R. Raaghav, E. T. Baars,
W. H. van Vugt, W.-P. Breugem, J. T. Padding, and J. P. van der
Hoek. Can terminal settling velocity and drag of natural parti-
cles in water ever be predicted accurately? Drinking Water

Engineering and Science, 14(1):53–71, 2021.
37Wei Zhou. Instabilités de trajectoires de spheres, ellipsoides et

bulles. PhD thesis, 2016.
38R.P Chhabra, S Agarwal, and K Chaudhary. A note on wall e↵ect
on the terminal falling velocity of a sphere in quiescent newtonian
media in cylindrical tubes. Powder Technology, 129(1):53–58,
2003.

39M. Bourgoin and S. G. Huisman. Using ray-traversal for 3d par-
ticle matching in the context of particle tracking velocimetry in
fluid mechanics. Rev. Sci. Instr., 91(8):085105, 2020.

40Roger I. Tanner and Shaocong Dai. Particle roughness and rheol-
ogy in noncolloidal suspensions. Journal of Rheology, 60(4):809–
818, 2016.

41Yu Zhao and Robert H. Davis. Interaction of sedimenting spheres
with multiple surface roughness scales. Journal of Fluid Mechan-

ics, 492:101–129, 2003.
42Indresh Rampall, Je↵rey R. Smart, and David T. Lighton. The
influence of surface roughness on the particle-pair distribution
function of dilute suspensions of non-colloidal spheres in simple
shear flow. Journal of Fluid Mechanics, 339:1–24, 1997.

43Nicholas T Ouellette, Haitao Xu, and Eberhard Bodenschatz. A
quantitaive study of three-dimensional Lagrangian particle track-
ing algorithms. Experiments in Fluids, 39:722, 2005.

44Phillip P. Brown and Desmond F. Lawler. Sphere drag and set-
tling velocity revisited. Journal of Environmental Engineering,
129(3):222–231, 2003.

45R. Gatignol. The faxén formulae for a rigid particle in an un-
steady non-uniform stokes flow. J. Méc. Theor. Appl., 1(143),
1983.

46Martin R. Maxey and James J. Riley. Equation of motion for a
small rigid sphere in a nonuniform flow. The Physics of Fluids,
26(4):883–889, 1983.

47Nikolay Lukerchenko, Yury Kvurt, Alexander Kharlamov,
Zdenek Chara, and Pavel Vlasak. Experimental evaluation of the
drag force and drag torque acting on a rotating spherical parti-
cle moving in fluid. Journal of Hydrology and Hydromechanics,
56:88–94, 01 2008.

48F. Cabrera, M. Z. Sheikh, B. Mehlig, N. Plihon, M. Bourgoin,
A. Pumir, and A. Naso. Experimental validation of fluid inertia
models for a cylinder settling in a quiescent flow. Phys. Rev.

Fluids, 7:024301, Feb 2022.


