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Abstract

We present a game-theoretic model of pragmat-
ics that we call RECO (for Regularized Con-
ventions). This model formulates pragmatic
communication as a game in which players are
rewarded for communicating successfully and
penalized for deviating from a shared, “default”
semantics. As a result, players assign utter-
ances context-dependent meanings that jointly
optimize communicative success and natural-
ness with respect to speakers’ and listeners’
background knowledge of language. By using
established game-theoretic tools to compute
equilibrium strategies for this game, we obtain
principled pragmatic language generation pro-
cedures with formal guarantees of communica-
tive success. Across several datasets capturing
real and idealized human judgments about prag-
matic implicature, RECO matches, or slightly
improves upon, predictions made by Iterated
Best Response and Rational Speech Acts mod-
els of language understanding.

1 Introduction

Meaning in language is fluid and context-sensitive:
speakers can use the word blue to pick out a color
that in other contexts would be described as purple,
or identify a friend as the one with glasses in a

room in which everyone is wearing glasses (Fig-
ure 1). Such context-dependent meanings can arise
as conventions among language users communi-
cating repeatedly to solve a shared task (Clark and
Wilkes-Gibbs, 1986). But remarkably, they can
also arise without any interaction at all, among lan-
guage users who share only common knowledge of
words’ default meanings (Grice, 1975).

What makes this kind of context-dependent prag-
matic language use possible? Almost all exist-
ing computational models of pragmatics are im-
plemented as recursive reasoning procedures, in
which listeners interpret utterances by reasoning
about the intentions of less-sophisticated speakers
(Golland et al., 2010; Degen, 2023). These models
have been successful at explaining a number of as-
pects of pragmatics. But they can be challenging to
fit to real data: because they specify speaker and lis-
tener behavior procedurally, rather than in terms of
a shared objective, recursive reasoning models can
be highly sensitive to implementation-level details
(e.g. the number of “levels” of reasoning).

We present an alternative model of pragmatic
understanding based on equilibrium search rather
than recursive reasoning. In this model (which we
call Regularized Conventions, or RECO), speak-
ers and listeners solve communicative tasks like
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Figure 1: The RECO model. To communicate (or resolve) an intended meaning from a set of possibilities (a), language
users search for distributions over utterances and interpretations that are close to some “default semantics” (b) and close to a
(game-theoretically) optimal signaling convention (d). The resulting “regularized conventions” (c) predict human judgments on
a variety of pragmatic implicature tasks.
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those in Figure 1 by searching for utterance–
meaning mappings that are both close to a game-
theoretically optimal communicative convention (a
signaling equilibrium), and close to a shared ini-
tial semantics (which functions as a regularizer).
In Figure 1, for example, convention assigns high
probability to the use of blue to signal the intended
color, and low (but nonzero) probability to the use
of purple instead. This strategy is both close to one
of many optimal conventions (in which every utter-
ance arbitrarily, but uniquely, picks out one color),
and close to color terms’ standard interpretation
(in which the target color is improbably, but not
impossibly, described as blue).

RECO is by no means the first application of
game-theoretic tools to model pragmatic language
understanding (Parikh, 2000; Franke, 2013; Jäger,
2012)—in fact, many recursive reasoning models
(e.g. Franke, 2009a) also have a game-theoretic in-
terpretation. But by leveraging recently developed
algorithmic tools for computing regularized equi-
libria of games, RECO can efficiently learn mod-
els of pragmatic communication from data, while
providing formal guarantees about communicative
success and deviation from default semantics. The
algorithms that compute these equilibria turn out
to have a very similar structure to some probabilis-

tic recursive reasoning methods (e.g. Frank and
Goodman, 2012), offering a bridge between proce-
dural characterizations of pragmatic reasoning and
RECO’s optimality-based characterization.

Most importantly, RECO gives a good fit to hu-
man data: on classic exemplars of pragmatic im-
plicature, reference tasks eliciting graded human
judgments, and tasks featuring perceptually com-
plex meaning spaces, its predictions match (and
sometimes modestly outperform) standard recur-
sive reasoning models. These results show that
game-theoretic approaches offer a viable founda-
tion for expressive, learned models of pragmatic
communication, and highlight the usefulness of the
modern game-theoretic toolkit in more general sys-
tems for language production and comprehension.

2 Background and Preliminaries

Consider again the example in Figure 1. We wish to
understand the process by which a SPEAKER might
use blue to refer to the second color in the second
row, and by which a LISTENER might resolve it
correctly.

2.1 Signaling Games
The problem depicted in Figure 1 has often been
formulated as a signalling game (Lewis, 1971),
which features two players: the SPEAKER and the
LISTENER. In this game, a target meaning (rep-
resenting a communicative need) is first sampled
from a space of possible meanings m 2 M with
probability p(m). To communicate this meaning,
the SPEAKER produces an utterance u 2 U accord-
ing to a policy ⇡S(u | m). Finally, the LISTENER
produces an interpretation according to a policy
⇡L(m

0 | u).
Informally, communication is successful if the

LISTENER’s interpretation is the same as the
SPEAKER’s intended meaning. More formally (and
somewhat more generally), we may define commu-
nicative success in terms of rewards. Consider any
(meaning, utterance, interpretation) combination
(m,u,m0). The SPEAKER’s reward rS(m,u,m0)
in this interaction is the sum of:

• an utterance cost �c(u) that the SPEAKER in-
curs for producing utterance u (all else equal,
they may for example prefer short utterances);
and

• a success measure, equal to 1 only when m0

matches the target m, that is, 1[m0 = m] (the
SPEAKER wishes for the the LISTENER to iden-
tify their intended meaning).

Together,

rS(m,u,m0) := �c(u) + 1[m0 = m].

Most models assume that the LISTENER’s reward
rL(m,u,m0) depends only on communicative suc-
cess:

rL(m,u,m0) = 1[m0 = m].

Having specified rewards for all interactions,
the expected utility of each player given policies
(⇡S,⇡L) for the SPEAKER and LISTENER respec-
tively is defined as the expected reward when the
meanings m are sampled from a prior distribution
p(m), and agents sample from their policies:

ūi(⇡S,⇡L) := E
m⇠p

u⇠⇡S(·|m)
m0⇠⇡L(·|u)

ri(m,u,m0) (1)

for i 2 {S, L}.

2.2 Computing Policies for Signaling Games
How should a SPEAKER and LISTENER communi-
cate to maximize the probability of success? We
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call a pair of policies for the SPEAKER and for the
LISTENER a Nash equilibrium if neither agent is
incentivized to unilaterally modify their own policy
given that the other agent’s policy is fixed: for-
mally,

⇡i = argmax
⇡

ūi(⇡,⇡�i) .

where ⇡�i denotes the policy used by the player
other than i. In the bottom row of Figure 1(d), nei-
ther the SPEAKER nor LISTENER can improve their
reward by unilaterally deciding that blue refers to
a different color.

Notice that there may in general be multiple such
policies: returning to Figure 1(d), the bottom row
shows an equilibrium policy in which the intended
meaning is called blue and the alternative is called
purple, but the top row shows a different equilib-
rium policy in which the former is called purple

and the latter called green (in clear violation of
those words’ standard use in English!).

This fact underlines a major limitation of sig-
naling games (in their simplest form) as models
of communication—while they can explain which
utterance–meaning mappings correspond to stable
conventions, they cannot explain why particular

mappings are chosen in particular communicative
contexts against the background of a shared lan-
guage. In Figure 1(d), what prior knowledge of lan-
guage allows us to identify the second row as more
“natural” than the first one? When a SPEAKER and
LISTENER communicate for the first time, how can
they leverage this knowledge to ensure that they
both identify the same mapping from utterances to
meanings in context?

Recursive reasoning methods A popular family
of approaches answers these questions procedu-

rally. These approaches typically begin from an
assumption that SPEAKERs’ and LISTENERs’ com-
mon knowledge of language consists of a literal se-
mantics (which assigns context-independent mean-
ings to utterances). Agents then derive policies by
computing behaviors likely to be successful given
an interlocutor communicating literally, or given
an interlocutor themself attempting to respond to
a literal communicator. Approaches in this fam-
ily involve (Iterated) Best Response ((I)BR; Jäger,
2007; Franke, 2009a,b) and the Rational Speech
Acts model (RSA; Frank and Goodman, 2012).

(I)BR is an iterative algorithm in which speak-
ers (listeners) alternatingly compute the highest-
utility action keeping the listener’s (speaker’s) pol-

icy fixed:

⇡(t+1)
L

(m0 | u) = 1
h
m0 = argmax

m
⇡(t)

S
(u | m)

i

⇡(t+1)
S

(u | m) = 1


u = argmax

u0
⇡(t)

L
(m | u0)

�

RSA frames communication as a process in which
Bayesian listeners and speakers reason recursively
about each other’s beliefs in order to choose utter-
ances and meanings:

⇡(t)
L
(m | u) / ⇡(t)

S
(u | m) · p(m)

⇡(t)
S
(u | m) /

�
⇡(t)

L
(m | u)/c(u)

�↵

In both approaches, “good” policies are obtained
by assuming that speakers and listeners will run the
same inference procedure from a specific starting
point (rather than generically optimizing a fixed
objective). As a result, a key feature of both
algorithms is sensitivity to the choice of initial
(t = 0) policy and number of iterations; their con-
vergence behavior remains poorly understood in
all but the simplest settings (though see Zaslavsky
et al., 2021b for a discussion of the quantity opti-
mized by single-step updates).

Hedge and game-solving algorithms While not
widely used in the computational linguistics or nat-
ural language processing literature, techniques for
directly optimizing for communicative success, as
in Equation (1), may be found in the vast body of
work on online optimization and learning in games.
Hedge (Littlestone and Warmuth, 1994; Freund
and Schapire, 1997) is a popular iterative algorithm
in this family that converges to a coarse correlated
equilibrium (Hannan, 1957) and to a Nash equi-
librium in the special case of two-player zero-sum
games. However, in general it provides no guaran-
tees about which equilibrium will be found when
multiple such equilibria exist. This presents a chal-
lenge not just in signaling, but in any game where
strategies computed by equilibrium search will be
used to interact with human players adhering to
pre-established conventions.

Regularized search In order to sidestep this is-
sue while retaining the appealing properties of
learning in games, Jacob et al. (2022) introduced
piKL-Hedge, a procedure for finding regularized

equilibria that are close to chosen “anchor poli-
cies”. piKL-Hedge (discussed in more detail be-
low) has been applied to board games like Diplo-
macy (FAIR et al., 2022; Bakhtin et al., 2022) to
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find equilibria that are close to policies learned via
imitation from human play. Recently, piKL-Hedge
has also been applied to language model decoding,
with the objective of increasing consensus between
discriminative and generative approaches to lan-
guage model generation (Jacob et al., 2023b).

Regularization toward an anchor policy has also
been used in the context of recursive-reasoning
models of pragmatics. Hawkins et al. (2020, 2023)
model speakers as incurring a cost for deviating
from a predictions made by a language model,
corresponding to a form of “regularized RSA” in
which the entropy or mutual information penalties
present in RSA and RD-RSA respectively are re-
placed with a base model of language; below, we
describe how to apply this same kind of regulariza-
tion in the context of equilibrium search to derive
an alternative model of pragmatics.

3 Our Approach: Pragmatic Inference as
Regularized Equilibrium Search

The key idea underlying RECO is to use regularized
equilibrium concepts to describe pragmatic commu-
nication, by modeling LISTENERs and SPEAKERs
as directly optimizing both communicative success
and adherence to existing linguistic conventions.
As noted in Section 2.2, simply searching for high-
utility equilibria of signaling games is unlikely to
predict the behavior of human language users, or
result in successful communication with new inter-
locutors: instead, we must guide inference toward
policies that look like natural language. In RECO,
we do so by optimizing utilities of the following
form:

ũS(⇡S,⇡L) := ūS(⇡S,⇡L)� �S ·DKL(⇡S k ⌧S),

ũL(⇡S,⇡L) := ūL(⇡S,⇡L)� �L ·DKL(⇡L k ⌧L).

Here ⌧S and ⌧L represent the SPEAKER’s and LIS-
TENER’s prior knowledge of language (independent
of any specific communicative goal or context). We
refer to these policies as the default semantics in
the language used for communication. They play
a similar role to the literal semantics used by RSA
and other iterated response models. But here, we
need not assume that they correspond specifically
to literal semantics—instead, they model agents’
prior expectations about how utterances are likely
to be produced and interpreted in general by prag-
matic language users.

The regularization parameters �S and �L control
the tradeoff between optimizing for communicative

success and proximity to default semantics ⌧S, ⌧L.
When the value of �i is large, an agent i 2 {S, L}
will consider only policies extremely close to ⌧i;
conversely, when �i is close to zero, the agent will
not be penalized for adopting semantics that differ
significantly from ⌧i.

3.1 Notation and Representation of Policies
Before describing how to optimize the utilities
given above, we first establish some notation that
will be useful for describing the optimization pro-
cedure and the policies it produces.

Each agent’s policy consists of a mapping from
that agent’s observations to a distribution over ac-
tions. For the SPEAKER, the set of observations
coincides with the set of meanings available in a
given communicative context, and the set of ac-
tions coincides with the set of possible utterances.
For the LISTENER, observations are utterances and
actions are meanings. See Figure 2 for examples.

In order to provide a compact description of the
algorithm, as well as an efficient vectorized im-
plementation, we represent this mapping as a row-
stochastic matrix, with rows indexed by observa-
tions and columns indexed by actions. We denote
with S(t) 2 RM⇥U the policy of the speaker at time
t, and with L(t) 2 RU⇥M that of the listener repre-
sented in this matrix form. We similarly represent
the anchor policies (i.e., default semantics) ⌧S, ⌧L

in this representation as matrices ⌧S 2 RM⇥U and
⌧L 2 RU⇥M . Instances of these matrix objects can
be seen in Figure 2.

3.2 RECO: Computation of Approximate
Convention-Regularized Equilibria

Given the regularized utilities ũS and ũL defined
above, we use the piKL-Hedge algorithm (Ja-
cob et al., 2022) to progressively refine a pair of
SPEAKER and LISTENER policies toward equilib-
rium (in the sense of Section 2.2). Intuitively, piKL-
Hedge performs a variant of projected gradient
ascent in the geometry of entropic regularization
where projections are equivalent to softmax (nor-
malized exponentiation). In order to apply piKL-
Hedge, we start by computing the gradients of the
unregularized utility functions ūS, ūL defined in
Equation (1).

Let p 2 RM be the vector whose entries corre-
spond to p(m), the prior distribution over mean-
ings. Similarly, we let c 2 RU denote the vector
of utterance costs. Finally, let P 2 RM⇥M be the
diagonal matrix whose diagonal equals p. For
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notational convenience, define:

rūS(L) := rS(ūS(S,L))

rūL(S) := rL(ūL(S,L))

With this notation, the gradient of the unregularized
utility function ūS of the SPEAKER, is a function
of the matrix-form policy L only.

rūS(L) = �pc> +PL> 2 RM⇥U . (2)

Similarly, for the LISTENER we have:

rūL(S) := S>P 2 RU⇥M . (3)

With the above gradients, piKL-Hedge (Jacob et al.,
2022) prescribes the following algorithm for pro-
gressively refining policies: first, at time 0, we set

S̄(0) = L̄(0) := 0; (4)

then, at each time t � 0, the next policy
S(t+1),L(t+1) is chosen according to the update
rules:

S(t+1) row/ exp

(
rūS(L̄

(t)) + �S log ⌧S

1/(⌘St) + �S

)
,

L(t+1) row/ exp

(
rūL(S̄

(t))> + �L log ⌧L

1/(⌘Lt) + �L

)
,

S̄(t+1) =
t

t+ 1
S̄(t) +

1

t+ 1
S(t+1),

L̄(t+1) =
t

t+ 1
L̄(t) +

1

t+ 1
L(t+1),

where row/ denotes row-wise proportionality and
exponentiation is performed elementwise. These
dynamics strike a balance between playing propor-
tional to the exponential of the utility gradient, and
remaining in a neighborhood of the default seman-
tics ⌧ . Concretely, taking the SPEAKER player as
an example, when �S = 0, then the update rule for
S(t+1) reduces to S(t+1) row/ exp{⌘S ·trūS(L̄

(t))},
which corresponds to Hedge. Conversely, in the
other extreme when �S ! 1, then the update rule
for S(t+1) reduces to S(t+1) row/ exp{log ⌧S} = ⌧S,
that is, the dynamics do not move at all from the
default semantics.

piKL-Hedge dynamics have strong guarantees,
including the following (see Jacob et al., 2022):

• the average correlated distribution of play of
SPEAKER and LISTENER converges to the set
of coarse-correlated equilibria of the game
defined by the regularized utilities ũS, ũL;

• for any i 2 {S, L}, the K-L divergence be-
tween Player i’s policy and the default seman-
tics ⌧i scales as approximately 1/�i.

3.3 Special Case: Uniform Priors, No Costs
When the prior over the meanings is uniform, and
utterance costs are all set to zero, the gradients
rūS(L) and rūL(S), defined in (2) and (3), sim-
plify into:

rūS(L) =
1

|M |L, rūL(S) =
1

|M |S.

Hence, piKL-Hedge reduces to the simple algo-
rithm that repeatedly updates and renormalizes pol-
icy matrices according to

S(t+1) row/ exp

(
(L̄(t))> + �̂S log ⌧S

1/(⌘̂St) + �̂S

)
,

L(t+1) row/ exp

(
(S̄(t))> + �̂L log ⌧L

1/(⌘̂Lt) + �̂L

)
,

where we let �̂i := |M |�i and ⌘̂i := ⌘i/|M | for all
i 2 {S, L}.

The above procedure has a striking similarity to
the Rational Speech Acts model (Frank and Good-
man, 2012), a widely used probabilistic iterated
response model of pragmatics. In particular, us-
ing the same matrix notation from above, we may
express RSA (in its simplest form) as:

L̄(0) = ⌧L

S(t+1) row/ (L̄(t))>, S̄(t+1) = S(t+1),

L(t+1) row/ (S̄(t))>, L̄(t+1) = L(t+1).

Thus, it is also possible to interpret RECO as an
RSA variant in which (1) the final policy at level t
is a weighted average of policies computed at lower
levels, (2) both speakers and listeners downweight
actions that are low-probability under the default
semantics. In this interpretation, speakers and

listeners incur an additional “communication cost”
proportional to the log-probability of a given
utterance or interpretation under the prior ⌧ . As we
will see, however, the more general formulation of
RECO in Section 3.2 enables it to make predictions
that are not achievable with RSA in its standard
form.

Having defined the RECO objective and proce-
dures for optimizing it, the remainder of this pa-
per evaluates whether RECO can successfully pre-
dict human judgments across standard test-beds for
pragmatic implicature.
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4 Two Model Problems: Q-implicature
and M-implicature

We begin with two simple, widely studied “model
problems” in pragmatics: Quantity implicature and
Manner implicature. The experiments in this sec-
tion aim to demonstrate that RECO makes predic-
tions that agree qualitatively with key motivating
examples in theories of pragmatics.

4.1 Quantity Implicature
Quantity (or “scalar”) implicatures are those in
which a weak assertion is interpreted to mean that
a stronger assertion does not hold. (For example,
Avery ate some of the cookies +�> Avery did not

eat all of the cookies, where +�> denotes pragmatic
implication; Huang, 1991). The reference game we
use as a model of scalar implicature is adopted from
Jäger (2012); its associated default semantics is
shown in Figure 2. Here, the utterances none, some,
and all are used to communicate meanings none,
some (not all), and all. Some can (literally)
denote all (as we may felicitously say Avery ate

some of the cookies; in fact, Avery ate all of them),
but is generally understood to implicate not all.
The policy found by RECO is shown in Figure 2,
where it can be seen that it makes precisely this
prediction.

4.2 Manner Implicature
Another important class of implicatures are Manner
implicatures, in which (for example) an atypical
utterance is used to denote that a situation occurred
in an atypical way (I started the car +�> The car

started normally; but I got the car to start +�> The

car started abnormally; Levinson, 2000). The ref-
erence game we adopt as a model of such implica-
tures is due to Bergen et al. (2016). In this model,
we assume that our language contains two utter-
ances (short and long) and two meanings (freq
and rare) satisfying the following properties: (1)
freq occurs as the intended meaning with probabil-
ity 2

3 and rare occurs with probability 1
3 ; (2) long

has production cost of 0.2 and short has a produc-
tion cost of 0.1; finally (3) either long or short may,
by default, denote freq or rare. In such situations,
short is understood to implicate freq and long to
implicate rare; as noted by Bergen et al. (2016),
RSA and related theories cannot make these predic-
tions natively, and require substantial modification
to derive them.

When using RECO to perform equilibrium
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Figure 2: Quantity implicatures in RECO. (Left) Matrices rep-
resenting conditional probabilities that represent the default
semantics ⌧S and ⌧L. (Right) Matrices representing conditional
probabilities that represent the resulting regularized conven-
tions ⇡S and ⇡L. In this setting, RECO is able to predict the
correct set of interpretations.
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Figure 3: Manner implicatures in RECO. (Left) Matrices rep-
resenting conditional probabilities that represent the default
semantics ⌧S and ⌧L. (Right) Matrices representing condi-
tional probabilities that represent the resulting regularized
conventions ⇡S and ⇡L. By incorporate prior probabilities of
meanings and costs for utterances, RECO is able to predict the
correct set of interpretations.

search with these costs and priors, it immediately
predicts the correct set of interpretations (Figure 3).
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Literal BR
LISTENER SPEAKER RSA RD-RSA RECO

ALL 73.57% 90.04% 95.07% 94.98% 95.96%

SIMPLE 70.10% 88.16% 96.02% 96.02% 96.02%
COMPLEX 83.86% 97.83% 94.74% 94.35% 98.18%
TWINS 97.61% 93.43% 97.61% 98.98% 97.61%
ODDMAN 94.97% 94.97% 94.97% 94.97% 94.97%

Table 1: Correlation across different methods with graded
human judgements in four reference games Frank (2016) (with
the best hyperparameter settings). RECO performs better than
the alternatives in ALL .

5 Probabilistic Human Judgments

We next study a family of four reference tasks
introduced by Frank (2016), which we refer to
as SIMPLE , COMPLEX , TWINS and ODDMAN .
We refer readers to the original work for the default
meanings that define each of these tasks. Frank
gathered graded human judgments about the proba-
bility that particular utterances might carry particu-
lar meanings. As RECO, like RSA-family models,
captures probabilistic associations between utter-
ances and meanings, we evaluate its predictions
by measuring their correlation between human
judgments. Specifically, for each task (and all
tasks jointly), we compute the correlation between
p(meaning | utterance) predicted by the model,
and the average p(meaning | utterance) predicted
by humans (with one data point for each (meaning,
utterance, context) triple). We refer the reader to
Frank (2016) for more details about the experimen-
tal setup.

Comparisons between RECO, RSA, BR
SPEAKER (i.e., best-response to a literal speaker)
and RD-RSA (Zaslavsky et al., 2021a) are shown
in Table 1, with additional information about pa-
rameters in Figure 4. In these figures, ALL denotes
correlations computed across all four tasks. RECO
modestly improves upon the best predictions of
RSA-family methods, both overall and on 3/4 tasks
individually. In addition, it is robust across a wide
range of speaker hyperparameters.

6 Complex Referents and Utterances

Our final experiments focus on Colors in Context
( CIC ), a dataset of color reference tasks like the
one in Figure 1 featuring a more complex space of
meanings and a larger space of utterances. Another
example from the dataset (introduced by Monroe
et al., 2017) is given in Table 2. For this task, we
use human-generated utterances collected by the

. Context Utterance

1. purple

2. blue

3. blue

Table 2: Example of the Colors in Context task (Monroe et al.,
2017). The SPEAKER produces an utterance that enables the
LISTENER to distinguish the taraget color (in the black box)
from others in the context.

Literal BR
LISTENER SPEAKER RSA RD-RSA RECO

CIC (val.) 84.88% 75.90% 84.18% 84.18% 85.17%
CIC (test) 83.34% 74.28% 83.41% 83.41% 83.62%

Table 3: Performance of different models on Colors in Context
(Monroe et al., 2017). All approaches aside from BR perform
well on this task – as even literal models have access to all
three referents. RECO performs best on both validation and
test sets.

authors across 948 games yielding a total of 46,994
utterances. We divide this data into 80% / 10% /
10% train / validation / test splits. Here, we evalu-
ate models by measuring the accuracy with which
they can infer the intended meaning produced by a
human SPEAKER.

Base models Following past work (Monroe et al.,
2017), we first train a transformer-based literal
listener as a model that takes in the three colors
and a natural language utterance, and uses these
to predict the index of the referent. We also train
a transformer-based speaker model, which takes
in the context and target referent and generates a
natural language utterance.

Candidate utterances The set of utterances are
produced by first sampling 5 candidate utterances
for each of the 3 possible targets from the speaker
model along with the produced utterance, for a
total of 16 candidates. Model and hyperparameter
details can be found in Appendix B.

Results are shown in Figure 5 and Table 3. As
with past work (McDowell and Goodman, 2019;
Monroe et al., 2017), all models aside from BR per-
form well (even the literal listener); RECO matches
(or perhaps slightly improves upon) these results.

7 Conclusion

We have presented RECO, a model of pragmatic
language understanding based on game-theoretic
equilibrium search. In this model, speakers and
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Figure 4: Pearson’s correlation ⇢ on the full dataset of graded human judgments from (Frank, 2016). (Left) Correlation for
RECO as a function of �L and �S represented as a contour plot. (Middle) Correlation between RSA at different levels of ↵ and
recursive depth (Right) Correlation between RD-RSA at different levels of ↵ and recursive depth. (Middle, Right) RECO with
the best setting of �L and �S is indicated with a red dashed line. Stars indicate the best ↵ value at different depths.
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Figure 5: Top-1 accuracy of predicting meanings on the validation set of the Colors in Context task (Monroe et al., 2017). (Left)
Accuracy for RECO as a function of �L and �S represented as a contour plot. (Middle) Accuracy of RSA at different levels of ↵
and recursive depth (Right) Accuracy of RD-RSA at different levels of ↵ and recursive depth. (Middle, Right) RECO with the
best setting of �L and �S is indicated with a red dashed line. Stars indicate the best ↵ value at different depths.

listeners solve communicative tasks by searching
for utterance-meaning mappings that that simulta-
neously optimize reward and similarity to a distri-
bution encoding default meanings.

Our work can be interpreted as a response to
the observation by Jäger (2012) that “it is not so

clear whether the solution concept of a Nash equi-

librium (or strengthenings thereof) is really appro-

priate to model the action of rational agents in

one-shot [communication] games.” Equilibrium-
finding models of language understanding have
been widely studied in the context of iterated com-
munication and language evolution, where there is
a clear mechanism by which groups of language
users might collectively arrive at one of many
game-theoretically optimal equilibria (Jäger, 2007,
2008b,a; Trapa and Nowak, 2000). These stud-
ies characterize the stability of population-level
conventions in game-theoretic terms. However,
as noted in Jäger (2008a), such approaches have
historically struggled to explain how language un-
derstanding occurs in one-shot settings. RECO, by

way of “regularized equilibrium” concepts, offers
an explanation for these behaviors, and in doing
so bridges the gap between past evolutionary work
and the one-shot inference problems that are of
special interest in pragmatics.

Looking ahead, RECO can be used as a platform
for studying related problems in context-dependent,
multi-party communication. For example, it might
be possible to study iterated conventions (Hawkins
et al., 2017), established over multiple rounds of
communication, by updating the default semantics
⌧ to the equilibrium policy at the previous round.
While our experiments here have focused on single-
turn interactions, tools for solving extensive-form

games might similarly be used to model commu-
nicative strategies that play out over multiple turns
of dialog. More generally, we hope these results
highlight the effectiveness of game theoretic tools
for understanding and enriching models of prag-
matic language production and comprehension.
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A Per-task results

In Figure 6, we compare RECO, RSA, BR and RD-RSA (Zaslavsky et al., 2021b) across each of the four
reference tasks based on graded human judgements that we consider in Section 5.
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Figure 6: Pearson’s correlation ⇢ on the each of the four reference tasks ( SIMPLE , COMPLEX , TWINS and ODDMAN )
of graded human judgments from (Frank, 2016). (First column) Correlation for RECO as a function of �L and �S represented as a
contour plot. (Second column) Correlation between RSA at different levels of ↵ and recursive depth (Third column) Correlation
between RD-RSA at different levels of ↵ and recursive depth. (Second, Third columns) RECO with the best setting of �L and �S

is indicated with a red dashed line. Stars indicate the best ↵ value at different depths.

B Model, Training and Hyperparameter Details

The speaker and listener models from Section 6 are based on the transformer architecture. Following
past work (Jacob et al., 2023a), the speaker model is based on the T5 model (Raffel et al., 2020) and
the listener is based on BERT (Devlin et al., 2019). We use the hyperparameter settings used in Jacob
et al. (2023a) for the speaker and listener models. The speaker model was trained with a batch size of 64
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using the Adam optimizer with learning rate 10�4 for 25 epochs. We trained the models using PyTorch
(Paszke et al., 2019) and Huggingface (Wolf et al., 2020) libraries. These models were trained using a
single V100 GPU for 3-4 hours. All other experiments were performed on an 8-core Intel CPUs and M2
Macbook Pro. For experiments in Section 5, RECO was run with 10 seeds and the run with the highest
sum of regularized utilities of the SPEAKER and LISTENER was used.

The parameter ⌘ was set to 0.1 in all our experiments.

C Computational Complexity

For each player, each iteration of the algorithm runs in time linear in the product of the number of utterances
|U | and the number of meanings |M |. So, one iteration of RECO is as expensive as one iteration of RSA.
We note however, that we might need a higher number of iterations to get to convergence; unlike RSA
(where increasing the number of iterations leads to undesirable behavior), in RECO more iterations simply
improve the approximation of the equilibrium point. We use 2000 iterations of RECO in our experiments.
As a practical implementation note, we remark that RECO (just like RSA) is very easy to implement in
pytorch using efficient vectorized tensor operations, and each of our experiments took only milliseconds
to complete 2000 iterations and approximate the regularized equilibrium.

D Examples of predictions

In Figure 7, we show the predictions generated by ReCo (for �S = 1,�L = 0.1) and by RSA (for the best
selection of hyperparameters: depth 3, alpha 0.95) in the Graded Human Judgements domain (complex
dataset). As shown in Figure 6 in our paper, in this domain RECO achieves substantially higher Pearson
correlation than even the best RSA hyperparameters. Qualitatively, you can see that, given the utterance
of glasses, RSA predicts meaning target with a significantly higher probability than what ReCo predicts.
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Figure 7: Predictions generated by ReCo (for �S = 1,�L = 0.1) and by RSA (for the best selection of hyperparameters: depth
3, alpha 0.95) in the Graded Human Judgements domain (complex dataset)

The figure shows well the effect the regularization parameters � in RECO. Indeed, because of the high
regularization in the speaker (�S = 1.0), the RECO strategy for the speaker has not moved much from the
default semantics. In contrast, the listener’s low regularization (�L = 0.1) enables the listener to deviate
significantly, and pick a more counterspeculative strategy (i.e., one that is more tuned to the speaker).
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