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Abstract— We introduce a hybrid model that synergisti-
cally combines machine learning (ML) with semiconductor
device physics to simulate nanoscale transistors. This
approach integrates a physics-based (PB) ballistic tran-
sistor model with an ML model that predicts ballisticity,
enabling flexibility to interface the model with device data.
The inclusion of device physics not only enhances the
interpretability of the ML model but also streamlines its
training process, reducing the necessity for extensive
training data. The model’s effectiveness is validated on
both silicon nanotransistors and carbon nanotube (CNT)
field-effect transistors (FETs), demonstrating high model
accuracy with a simplified ML component. We assess
the impacts of various ML models—multilayer perceptron
(MLP), recurrent neural network (RNN), and RandomFore-
stRegressor (RFR)—on predictive accuracy and training
data requirements. Notably, hybrid models incorporating
these components can maintain high accuracy with a small
training dataset, with the RNN-based model exhibiting bet-
ter accuracy compared with the MLP and RFR models. The
trained hybrid model provides significant speedup com-
pared to device simulations and can be applied to predict
circuit characteristics based on the modeled nanotransis-
tors.

Index Terms—Carbon nanotube (CNT) transistors,
hybrid model, machine learning (ML), nanoscale
transistors, silicon nanotransistors.

[. INTRODUCTION

HE scaling of silicon transistors has led to metal-oxide—
Tsemiconductor field-effect transistors (MOSFETs) with
a gate length in the 10-nm-scale regime. As silicon tran-
sistors near their scaling limits, exploration into transistors
based on new nanoscale materials, such as carbon nanotubes
(CNTs), graphene, and 2-D layered semiconductors, has
intensified [1], [2]. Both silicon nanotransistors and nan-
otransistors based on new nanomaterials can operate in
near-ballistic or quasi-ballistic transport regimes.

Transistor models have played an important role in semi-
conductor designs. Traditionally, transistor models are based
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on device physics. As the transistors scale down and new
physical phenomena need to be incorporated, a larger amount
of empirical fitting parameters have been induced. For exam-
ple, the widely used Berkeley short-channel IGFET model
(BSIM) [3] has hundreds of parameters and requires significant
domain knowledge for parameter extraction. On the other
hand, physics-based (PB) ballistic transistor models have a
much smaller number of parameters, but a transistor does
not operate perfectly at the ballistic limit. PB quasi-ballistic
transistor models have also been developed [4], but these
models have limited flexibility to accurately describe the
device data.

Recently, machine learning (ML)-based models have
emerged as a new tool for modeling transistor device char-
acteristics [5], [6], [7], [8], [9]. Predominantly data-driven,
these ML models harness extensive datasets to learn and
predict transistor behaviors, displaying a promising aptitude
for replicating detailed TCAD simulation results. Nonetheless,
ML models in the physical domain face certain challenges.
A challenging issue is their propensity to yield unphysical
device characteristics, especially when extrapolating beyond
the training data’s scope. Furthermore, the complexity and
effectiveness of these models are closely linked to the
training data’s volume and quality. Larger, more complex
models require extensive datasets for optimal functionality.
Conversely, smaller models, though less demanding of data,
often struggle to fully capture complex data relationships.
In addition, training these models, particularly with sparse
or limited datasets, can be a painstaking process, necessitat-
ing meticulous tuning and validation to ensure accurate and
reliable predictions. The choice of ML algorithm is another
critical factor, as different algorithms may exhibit varying
performance characteristics and sensitivities to the nature and
quantity of training data.

In this work, we adopt a hybrid approach, merging the
device physics knowledge of ballistic transistors with an
ML methodology to interface the model with data. Through
this approach, we demonstrate that the hybrid model can
not only flexibly interface with nanotransistor data but also
significantly alleviate the training complexity of the ML
component, by simplifying the task. The hybrid physics-ML
model is applied to two types of nanotransistors: a double-
gated ultrathin-body (UTB) silicon field-effect transistor (FET)
and a CNTFET. In semiconductor device technology, obtaining
an accurate large dataset for ML model training is often
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Fig. 1. Flowchart of the hybrid physics-ML model. The ballistic transistor
model part is PB with two parameters extracted from data, which pre-
dicts ballistic transistor I~V characteristics. The ML model part predicts
the ballisticity of a nanotransistor. The product of the ballistic current and
the ballisticity gives the predicted transistor current. The model is trained
by a cost function defined by the difference between the prediction and
the data.

time-consuming and expensive. We also investigate the effects
of ML model selection in training the hybrid model with
limited data. The accuracy of various choices of the ML model
components in the hybrid model is compared by varying and
reducing the size of the training dataset. The results indicate
the possibility of high model accuracy with small device
training data by using the hybrid physics-ML device modeling
approach.

Il. APPROACH

The hybrid ML and PB device model for nanotransistors is
discussed in Section II-A. The PB component, which is based
on the ballistic transistor theory, is summarized in Section II-B.
The ML model component is described in Section II-C. The
training procedure of the hybrid physics-ML device model is
described in Section II-D.

A. Hybrid ML and PB Model for Nanotransistors

The hybrid model proposed, as summarized in Fig. I,
combines a PB ballistic transistor model, which predicts
the ballistic limit of the transistor, with an ML model that
predicts ballisticity. The simple ballistic model captures the
qualitative feature of the transistor device characteristics. For
example, the source—drain current varies exponentially as a
function of the gate voltage in the subthreshold region, but
somewhere between linearly and quadratically in the above-
threshold region. Such strongly nonlinear, bias-dependent,
and orders of magnitude variation of the device /-V data
impose challenges to ML regression but are captured by a
PB model. The PB ballistic transistor model also provides
predictive and interpolative power. On the other hand, the
ballisticity of a nanotransistor is hard to accurately predict
from device physics. Although PB quasi-ballistic transistor
models have been developed, the important parameters in
the model are very difficult to determine accurately. The
hybrid model infuses device physics captured by the ballistic
transistor model with the data-driven ML modeling approach
for ballisticity.

B. Ballistic Transistor Model

Ballistic transistor theory computes the ballistic perfor-
mance limits of a transistor, which assumes that carrier
transport is ballistic and the source and drain contacts are
ideal [10], [11]. Ballistic transistor models have been devel-
oped for various types of nanotransistors, such as silicon

Egup(x)

Fig. 2. Schematic of the ballistic transistor model. The top of the
potential barrier is shown by the filled circle, with its potential energy
as U and electron density as n. Egyp(x) is the subband profile. The
capacitances Cg, Cp, and Cg are shown schematically.

transistors and CNT transistors. Here, we summarize the
ballistic transistor model below for completeness.

As schematically shown in Fig. 2, the potential at the top
of the channel barrier U is expressed as follows:

2

U= ~qlac(Ve ~ Vo) +apVpl + - (D
where Cy = Cs+ Cp + Cg and o = Cg/Cyx which implies
Cy = Cg/ag and ap = Cp/Cy which simplifies to ap =
(1 —ag)/2 if Cs = Cp, and the capacitances are defined as
shown in Fig. 2 [10], [11]. Vg plays a similar role as the flat
band voltage, which shifts the gate voltage Vi to an effective
gate voltage value of (Vg — Vo). The electron density at the
top of the potential barrier is related to the potential

1
n=— > FE®) — Eps)+ > f(EK) — Erp) | (2)

k>0 k<0

where Ers and Epp are the source and drain Fermi energy
levels, respectively. .4 = L or ./ = A is a normalization
length for a quasi-1-D channel or a normalization area for a
quasi-2-D channel.

After the potential U and charge density n are solved
from (1) and (2), and the source—drain current is computed
as follows:

1
1=— > AE®) —Eps)ue(k) + D f(E(K)— Erp)v, (k)

kx>0 k<0

where v, (k) = (1/h)(0E)/(dk,) is the band-structure-limited
velocity along the channel direction.

In the above model, the gate capacitance C¢g is computed
from the gate oxide thickness and dielectric constant, and
the E—k relation is determined by the band structure of
the channel material. The above ballistic transistor model is
simple and computationally efficient. It only contains two
fitting parameters, o and V9. The model sets the ballistic
performance limits of a transistor.

C. ML Model Component

In the hybrid physics-ML device model, the ML compo-
nent is crucial in defining the ballisticity of nanotransistors,
augmenting the PB ballistic model with data-driven insights.
We evaluate three distinct ML models in our approach, each
selected for its unique attributes and appropriateness in ana-
lyzing transistor behavior.
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Fig. 3. Three ML models used in this work. (a) Framework of MLP. Two hidden layers and four neurons for each layer are shown in this diagram,
while in practice, the number of hidden layers and neurons is adjustable. (b) Framework of BiGRU. The convolution kernel and the number of BIGRU
layers are adjustable. (c) Framework of RFR. The number of trees is adjustable.

1) Multilayer Perceptron (MLP): A fundamental form of
artificial neural networks (ANNs), the MLP [12] com-
prises multiple fully connected layers [Fig. 3(a)] and is
widely used in prior transistor simulation works [13],
[14]. As shown in Fig. 3(a), it takes device parameters
(tox,» Lcn) and voltage biases (Vig, Vp) as input and
predicts the corresponding ballisticity value b. Each
neuron evaluates h = f(Wx + b), where x is the
input for the current layer, W and b are the weights
and bias of the current neuron, and f is the nonlinear
activation function. While the MLP is effective across
various applications, its simple architecture may limit its
ability to process complex dependencies in data, which
is investigated in our experimental analysis.

2) Recurrent Neural Network (RNN): To discern the
intricate interrelationships among device parameters,
we utilize a bidirectional gated recurrent unit (BiGRU)
[15], which is a variation of traditional RNNs. As shown
in Fig. 3(b), BiGRU takes ., Lc, Vg, and Vp
as input, and outputs the prediction of ballisticity
value b. BiGRU’s operation is represented as h, =
GRU(h¢_;, x¢) & GRU(h¢,1, X¢), where & denotes the
concatenation operation. Unlike MLP, BiGRU can
capture dependencies between sequential elements, pro-
viding a thorough analysis of the relationships among
various device parameters.

3) RandomForestRegressor (RFR): Fig. 3(c) shows the
framework of RFR [16]. Functioning as a regression
methods, RFR constructs an ensemble of decision trees,
each trained on a random subset of the data and features.
Its strength lies in diminishing prediction variance and
reducing the risk of overfitting, particularly in scenarios
with sparse data. The RFR’s proficiency in managing
complex, nonlinear relationships is invaluable for captur-
ing the nuanced interplay of device parameters in FETS.

The selection of these models underscores their distinct

roles in our hybrid approach, enabling a nuanced understand-
ing of the complex dynamics in nanoscale transistor behavior.
It is crucial for advancing the accuracy and applicability of
our hybrid modeling approach.

D. Model Training Procedure

The training procedure for the model is shown in Fig. 1
to predict the transistor /-V characteristics is described as
follows.

Lch

—

Gate
Oxide I tox

channel
Oxide
Gate

Fig. 4. Schematic of the double-gated UTB silicon MOSFET modeled.

1) From the transistor I, versus Vg data at Vp = Vpp,
compute the inverse subthreshold slope S(Vg) =
(dVg)/(d(logyq (Ip))).

2) Extract o of the ballistic transistor model as g =
So/(min(S(Vg))), where min() is the minimal value, and
So = (kT)/qIn10, which is the ideal subthreshold swing.

3) Extract the other parameter in the ballistic transistor
model Vgo by minimizing a cost function defined as
the difference of S(Vs) from the data and the ballistic
model. With both parameters of the ballistic transistor
model obtained, the ballistic current I, is obtained from
the ballistic model.

4) The ballisticity, b, as shown in Fig. 1, is obtained from
an ML regression model, and the cost function is defined
as the mean square error between the predicted /-V and
the /-V data. The ML model is trained to minimize the
cost function.

[1l. RESULTS

In this section, we illustrate the application of our hybrid
model to nanotransistor technologies through two distinct
examples. The first example applies the proposed hybrid model
to a silicon nanotransistor. The second example applies the
model to a CNT transistor, showcasing the model’s versatility
and generality across different nanoscale devices. To further
substantiate the practical utility of our hybrid model, we incor-
porate it into circuit-level simulations, specifically focusing on
inverter and ring oscillator (RO) circuits.

A. Model Double-Gated Ultrathin-Body Silicon Transistor
and FinFET

1) Data Generation: The modeled device is a double-gated
UTB silicon FET, as shown in Fig. 4. The device data are
obtained by numerical device simulations based on solving
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the Poisson equation self-consistently with the nonequilib-
rium Green’s function (NEGF) formalism, as implemented
in the simulation tool nanoMOS [17], [18]. In nanoMOS,
a Schrodinger equation is solved in the vertical confinement
direction to obtain the confinement subbands. In the transport
direction along the channel, the quantum transport equation
is solved by using the NEGF formalism. Scattering is treated
with the self-consistent Born approximation (SCBA) [18]. The
NEGF device simulations are computationally expensive; we
parallel the simulations over processors to obtain the device
data of multiple silicon nanotransistor devices for model
training and testing.

The simulated device in the data generation process has
a gate oxide thickness (#,x) equal to 2 nm with a dielectric
constant of 20. The silicon body has a thickness of 3 nm. The
gate length (L) is 10 nm. Room temperature 7 = 300 K
is assumed. For each individual device, the gate bias sweeps
from 0 to 0.5 V with a step of 0.0125 V/step, which results
in a total of Ng = 41 Vi points. The drain bias sweeps from
0.001 to 0.501 V with a step of 0.0125 V/step, which results
in an Np = 41Vp points. The total bias points in the dataset
of an individual device is Np x Ng = N? = 1681 points.
To investigate the possibility of small data training, we use a
subset of the full data with a larger step and smaller N value
to train the device model and investigate the dependence of
the accuracy of the trained model as a function of the size of
the dataset, as described later.

2) Model Evaluation: We divide the device data into two
sets: a training set and a test set, each containing approx-
imately half of the data points. The training set spanned
Vp values from 0.001 to 0.501 V in 40 equal steps, and
Vi values from 0 to 0.5 V in 20 equal steps. The test set
also covered Vp values from 0.001 V to 0.501 V in 40 equal
steps but Vi values from 0.0125 to 0.4875 V in 19 equal steps.
The Vp = 0 bias was excluded since the ballistic transistor
model gives Ippy(Vp = 0) = 0, which results in a zero
current at zero drain bias for the hybrid model.

The above data partition ensures that the test data does not
overlap with the training data, so that information leakage
between training and testing is avoided. Three ML mod-
els as described before are trained, and the comparison
between the model prediction with the test data is shown
in Fig. 5(a) and (b), which illustrate the Ip—Vp and Ip—Vg
characteristics, respectively. The MLP model comprises two
hidden layers, each with ten nodes using ReLU activation,
and a single-node output layer for I, prediction. The RNN
model, a two-layer BiGRU, includes an input layer with
a 1 x 1 kernel for embedding each device parameter into
an 8-D tensor, followed by a sequence processing model
with eight nodes in each hidden layer, and a single-node
output layer for /p prediction. Both models utilize the Adam
optimization algorithm with a learning rate of 0.001, a batch
size of 32, and 5000 epochs. The RFR model is implemented
using RFR in Scikit-learn with 100 estimators.

The results, as depicted in the figures, reveal that all
models achieve remarkable accuracy, with half of the dataset
used for training and the rest half for testing. This finding
is particularly noteworthy considering that most ML studies
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Fig. 5. Comparison between the hybrid physics-ML device models

(lines) with the NEGF simulation data (dots) for the Si MOSFET as
shown in Fig. 4. (a) Ip versus Vp characteristics at Vg = 0.0125—
0.4875 V at 0.025 V/step and (b) Ip versus Vg characteristics at Vp =
0.001-0.501 V at 0.0125 V/step. Three different ML model components
are tested: RFR (blue solid lines), MLP (gray dashed-dotted lines), and
RNN (green dashed lines).

TABLE |

R? VALUES ACROSS DIFFERENT ML MODELS WITH SINGLE Si
MOSFET DEVICE AND 55 Si MOSFET DEVICE INSTANCES

RNN model

99.997%
99.995%

RandomForests
99.575%
99.600%

Model
Single device
Cross devices

MLP model
99.801%
95.685%

typically require 70%—-80% of the data for training. This
efficiency demonstrates the proposed hybrid model’s ability
to reduce the demand for extensive training data, which is
often time-consuming to acquire. Table I provides a summary
of the hybrid models’ performance in fitting both a single
device and a dataset encompassing 55 device instances, with
the channel length varying from 10 to 20 nm with 1 nm/step,
and the oxide thicknesses varying from 1.5 to 3.5 nm with
0.5 nm/step. All other parameters are the same as the single-
device simulation. As we scale the models to larger datasets,
an increase in model size is usually necessary to accommodate
the increased complexity of the data. However, as Table I
illustrates, almost all models, particularly the BiGRU model,
maintain consistently high accuracy across both single and
multiple device datasets.

3) Why Does the Hybrid Device Model Work Well?: The
reason that the hybrid model works well is that the approach
significantly simplifies the ML training task. The ballistic
device I-V characteristics are predicted by a PB model, and
the ML part only describes the ballisticity of the transistor.
To illustrate this point, we plot the ballistic current of the
modeled device as shown in Fig. 6(a) and (b). One key
challenge of modeling transistor data is that the current varies
by orders of magnitude from the OFF-state to the ON-state
in a highly nonlinear manner. The PB part of the hybrid
model predicts the ballistic /-V, which captures the qualitative
features and orders of magnitude variation of the data. The
ML component only predicts ballisticity, as shown in Fig. 1,
which is defined as the ratio of the device /-V data to its
corresponding ballistic limit. The dependence of the ballisticity
on Vp and Vi are shown in Fig. 6(c) and (d), respectively.
Although the current changes orders of magnitude from the
subthreshold to the above threshold regime, the ballisticity
value has a relatively weak dependence on the applied gate
and drain voltages in the entire bias regime from subthreshold
to above threshold for Vg, and from the linear region to
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Fig. 6. Ballistic I~V and ballisticity of Si MOSFET. (a) Ip versus Vp and (b) logarithmic /p versus Vg predicted by the ballistic transistor model (red
dashed lines) and the NEGF simulation data (blue solid lines). (c) Ballisticity b versus Vp at different Vg values and (d) ballisticity b versus Vg at
different Vp values. (a) and (c) are simulated at Vg = 0—0.5 V at 0.05 V/step and (b) and (d) are simulated at Vp = 0-0.5 V at 0.025 V/step.

saturation region for Vp. The ballisticity varies on a much
smaller relative scale compared with the variations of /. As a
result, by using the hybrid approach, the ML training task
to fit the ballisticity is significantly simplified compared to
directly fitting the transistor /-V data. This advantage can
enable easier training with a simple ML model component
and high prediction accuracy.

4) Application of the Hybrid Physics-ML Model to FinFET
Dataset: To demonstrate the adaptability of the hybrid model
to datasets created for industrial FinFET devices, we generated
the device I-V characteristics data by using the BSIM-CMG
model [19]. The BSIM-CMG model has a large number of
model parameters and has been shown to agree with experi-
mental and TCAD simulation data for FinFET devices [19].
We train the hybrid model through the same procedure as
shown in Fig. 1 and compare the trained model with the MLP,
RNN, and RFR ML model components with the device data
as shown in Fig. 7. The results confirm that the hybrid models
with the RNN ML model and RFR can describe the FinFET
dataset with high accuracy.

We further explore the extrapolation capability of the hybrid
model. Fig. 7 also shows the comparison between the data
and the hybrid models that extend into extrapolated regions,
illustrated by the bold sections in our figures. Although the
extrapolation performance of MLP and random forest in the
extrapolation regions is not good enough, especially with a
high Vi, the results show that the RNN-based hybrid model
retains its predictive accuracy even when applied to the /-V
data outside its immediate training range.

B. Apply the Hybrid Physics-ML Device Model to
CNTFETs

1) Device Structure and Data Generation: The hybrid model
approach can be applied to other types of nanotransistors.
In this section, we apply the hybrid model to CNTFETSs. The
modeled CNTFET, as shown in Fig. 8, is a MOSFET-like
CNTFET with doped source and drain extensions [20] and
a gate—all-around structure [21].

NEGF device simulations are performed in a p -orbital
tight-binding Hamiltonian, and scattering by acoustic and
optical phonons are treated in the NEGF simulations by using
the SCBA [22], [23]. The batch of devices simulated has a gate
oxide thickness varying from 1 to 3 nm with 0.5 nm/step.
The dielectric constant is set to 20. The gate length varies
from 10 to 30 nm with 2 nm/step. The NEGF device simulation
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Fig. 7. Comparison between the hybrid physics-ML model with the
BSIM-CMG data. (a) Ip—Vp characteristics at Vg = 0.0125-0.5875 V
at 0.025 V/step. (b) Ip—Vg characteristics at Vp = 0.001-0.601 V at
0.0125 V/step. The modeled n-type FinFET has a single fin with a gate
length of 20 nm and a Fin thickness of 5 nm, a gate oxide thickness of
1.2 nm with a relative dielectric constant of 3.9, and a metal gate work
function of 4.3 eV. All other parameters have default values of the BSIM-
CMG model. The hybrid models were trained with data in the range of
0 < Vg <0.5Vand0.001 < Vp < 0.501 V. The model prediction out
of this range is extrapolation.
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Fig. 8.  (a) Schematic device structure of the modeled CNTFET.

Comparison of the test data (not used in ML model training) from NEGF
simulations to the physics-ML device model prediction for (b) Ip—Vp
characteristics at Vg = 0.0125-0.4875 V at 0.025 V/step and
(c) Ip—Vg characteristics at Vp = 0.001-0.501 V at 0.0125 V/step. The
gate lengthis Lg = 12 nm.

data generated are partitioned to the training and test data
in a similar manner as in the previous example of silicon
nanotransistors.

2) Model Evaluation: The comparative analysis of different
ML models for CNTFETSs is presented in Fig. 8(b) and (c).
Despite the small variation in their R? scores (Table II),
a significant performance disparity is observed with CNTFET
data. This discrepancy is attributed to the dense clustering of
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TABLE I
R? VALUES ACROSS DIFFERENT ML MODELS WITH SINGLE
CNTFET DEVICE AND 55 CNTFET DEVICE INSTANCES

Model MLP model RNN model RandomForests

Single device 96.580% 99.997% 98.657%

Cross devices 98.123% 99.986% 99.935%
TABLE Il

MODEL PERFORMANGE QUANTIFIED BY B2 VALUES VERSUS THE SIZE
OF THE TRAINING DATASET. THE GRID POINTS N= Ng = Np
AND THE TOTAL NUMBER OF TRAINING DATA = N2

Num of N 21 11 7 6 5
AVg and AVp [V] 0.025 0.05 0.075 0.1 0.125
max 0.945 0.866 0.599 0.564 0.348
MLP (Pytorch) min -0.619  -0.509 0.779  -0.479  -0.969
avg. 0.688 0.552 0.447  -0.443  -0.858
max 0.999 0.999 0.998 0.996 0.926
RNN (Pytorch) min 0.999 0.999 0.990 0.983 0.772
avg. 0.999 0.999 0.995 0.992 0.882
max 0.975 0.939 0.826 0.774 0.507
RFR (Scikit-learn) min 0.974 0.936 0.810 0.751 0.402
avg. 0.974 0.938 0.822 0.767 0.470

data points with almost zero current, which artificially inflates
the R? scores while diminishing the impact of outliers.

3) Reduce the Training Data Size for Small Data Training:
A large set of training data is either computationally or
experimentally expensive to generate. Achieving high model
accuracy with a small training dataset is preferred to reduce
the cost of obtaining training data. To further investigate the
capabilities of the three ML models under varying training
set sizes, we adjust the step sizes for both Vs and Vp from
0.025 to 0.125 V. The number of grid points Ng and Np
are approximately inversely proportional to the step size, and
the total size of the data is Ng x Np. To account for the
influence of randomness in the ML model training, each
ML training experiment was repeated 10 times, recording
the minimum, maximum, and average R? scores, and the
results are displayed in Table III. It is evident that the MLP
is more susceptible to random variations. However, the RNN
model displayed remarkable accuracy, which could achieve an
accuracy of nearly 99.9% even under extremely low training
data density. Furthermore, the average performance of the
RNN model consistently outperformed the RFR by an order
of magnitude, indicating a reduced dependency on extensive
datasets compared with the RFR. As shown in Table III,
a small data training with N = Np = Ng = 6 and a total
data size of N? = 36 can still maintain the high accuracy of
the model by using the RNN ML model.

4) Model Inference and Training Time: The trained hybrid
physics-ML device model predicts /—V characteristics much
faster compared to the NEGF simulations. We sampled a large
number of (Vg, Vp) bias points to obtain /p from both the
NEGF simulations and the trained hybrid models. On average,
hybrid model inference is 18000x faster than the NEGF
device simulations.

On the other hand, the major cost of the hybrid ML model
is a one-time investment in data generation and training.
We have discussed the possibility of small data training above.
Next, we examine the training time. The training duration for
each model is summarized in Table IV. Due to the inherent
characteristics of their gradient descent learning algorithms,

TABLE IV
TRAINING TIME IN SECOND ACROSS DIFFERENT ML MODELS WITH
SINGLE CNTFET DEVICE AND DIFFERENT Vg AND Vp STEP SIZE

Num of N 21 11 7 6 5

AVg and AVp [V] 0.025 0.05 0.075 0.1 0.125
MLP (Pytorch) 99.804 85352  77.902 72430  71.050
RNN (Pytorch) 140.004  97.523  85.614  75.612  76.464
RFR (Scikit-learn) 0.050 0.036 0.032 0.031 0.033

ANNs generally require longer training times compared to
the RFR.

While RFR models train substantially faster due to simpler
computations and parallel estimator training, the performance
gap between it and BiGRU especially under different training
set sizes is also important because retrieving device data is
really time-consuming. The performance disparity between
BiGRU and RFR, particularly under varying training data
densities, will be further explored in the subsequent circuit
simulation section.

C. Application of the Model to Circuit Simulations

We conduct simulations on two circuits to validate the
proposed hybrid model and to explore the performance dif-
ferences between RNN-based and RFR-based hybrid models.
The circuit simulations were performed by implementing KCL
and KVL laws in Python. The circuits included an inverter with
1 p-CNTFET and 1 n-CNTFET, featuring Ry = Rp = 100 k2
parasitic source and drain resistances and Cgs = Cgp =
20 aF parasitic gate-to-source and gate-to-drain capacitance as
depicted in Fig. 9(a), and an RO comprising three inverters to
examine transient operation reliability. Detailed simulation and
model training can also be processed in a similar manner for
p-CNTFETs. Due to symmetric conduction and valence bands
of a CNT, we, however, simplify the p-CNTFET character-
istics by assuming it is perfectly balanced with n-CNTFET,
Ip.p(—=Vs,—Vp) = —Ip,(Vg, Vp). The NEGF simulation
is used to generate Q-V characteristics data, Q(Vg, Vp),
where Q is the total charge in the CNTFET channel. A ridge
regression model with RBF kernel is used to train and fit the
NEGF Q-V data of the intrinsic CNTFET, and it is used in the
transient RO simulations. Parasitic gate-to-source and gate-to-
drain capacitance often have charges significantly larger than
the intrinsic channel in a nanoscale CNTFET. As the terminal
bias varies, charge variation on the parasitic capacitors often
dominates over that of the intrinsic CNTFET, especially in the
subthreshold region.

In addressing the ground truth for circuit characteristics
for assessing the ML model, we encountered the challenge
that directly performing NEGF simulations is exceedingly
time-consuming within the context of circuit simulation.
To circumvent this, we generated a dataset with very high
density and large data points and trained a device model
from this dense dataset. We generated a data grid comprising
81 x 81 points. The interpolated Ip values, derived from
this grid data, served as our ground truth. To validate the
reliability of our approach, we quantify its uncertainty by
varying the data size and interpolation model. We examine
various subsets of this grid data—specifically, a half-size
data corresponding to a reduction according to twice the
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Fig. 9. Apply the hybrid physics-ML model of CNTFET to inverter simulations. (a) Schematic circuit of the modeled inverter with transistors. The
parasitic source and drain resistance are shown. The parasitic resistance is Rs = Rp = 100 k2 for both n-type and p-type CNTFETs. Comparison of
simulated inverter transfer characteristics between different ML model components and the hybrid device models trained with different total training
data sizes of N2 with N= Ng = Np. (b) N=21, (c) N=7, and (d) N=5.

step size of Vg, a half-size data pertaining to a reduction
according to twice the step size of Vp, and a quarter-size
data resulting from halving both Vi and V. We also explore
different interpolation methods, including multiquadric, cubic,
and linear methods, to assess performance. The average error
(1 — R?) value less than 107> for the inverter, along with
the average amplitude discrepancy less than 10~ and average
period difference less than 10~'* underscore the sufficiency
of our device data density. These uncertainties in the ground
truth are order-of-magnitude smaller compared to the scale of
model error investigated next, which indicates the sufficiency
of the above approach.

Fig. 9(b)—(d) illustrates the performance evaluation of the
hybrid models using RNN and RFR, varying the Vs and
Vp step sizes, which equivalently varies the training data
size for the hybrid device model. The results indicate that
both models align closely with the ground truth at a step
size of 0.025 V, demonstrating effective learning with dense
training datasets. At this step size, the training data size is
N? = 441, indicating the promise of small data training.
However, as the step size increases to 0.075 V and further
to 0.125 V, the RFR model begins to diverge from the actual
device data, struggling to accurately replicate device behavior.
In contrast, the RNN models consistently match the ground
truth across all tested step sizes. Notably, at a step size of
0.125 V, the training dataset for a single device diminishes
to merely N> = 25 data points in the hybrid model training,
a challenging scenario for most ML models to discern valid
patterns.

The simulation results for a three-stage RO are presented
in Fig. 10(a) and (b), comparing the RNN-based and RFR-
based hybrid models at 0.025- and 0.1-V Vs and Vp step
sizes, respectively, with an initial voltage set to 0.25 V.
These findings corroborate the earlier observation of the
RNN model’s robustness against low training data density.
Its structure, capable of modeling interelement relationships,
facilitates a more accurate prediction of ballisticity. Moreover,
our hybrid model successfully captures the nonlinear transistor
behavior with remarkable accuracy, even with a simplistic
RFR model. The implementation of a two-layer RNN model
in circuit simulations demonstrates impressive accuracy under
extremely low training data density, potentially reducing the
time required to gather device data significantly. Fig. 11 shows
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Fig. 10.  Apply the hybrid device model to RO simulations: Comparison
of a simulated three-stage RO with different ML model components with
different training dataset sizes of N? with N = Ng = Np for (a) N = 21,
and (b) N= 6. The CNTFETs have a gate length of 12 nm.
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Fig. 11.  Error of period and amplitude in RO simulations versus the

data size for training the hybrid device model of the CNTFET. The bottom
axis shows N = Ng = Np for equally spaced training data points with
the corresponding step size shown on the top axis. The RNN and RFR
model results are shown.

the amplitude discrepancies and period differences under
different training data sizes. It is clear that the RNN model
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still outperforms the RFR model in circuit simulations. The
RNN model can achieve a high accuracy with a period error
of <1.52% and an amplitude error of <0.34% with a relatively
small data of Np = Ng = 9 in the application of the hybrid
device model to RO circuit simulations.

IV. CONCLUSION

A hybrid physics-ML model that combines a ballistic tran-
sistor model with an ML model component is developed
to model nanoscale transistors. The approach captures the
physics of quasi-ballistic transport in nanoscale transistors
and can flexibly interact with nanotransistor data. Although
the transistor current values vary orders of magnitude from
the OFF-state to the ON-state and have a strongly nonlinear
dependence on the bias voltages, the ballisticity has a much
weaker dependence on the bias voltage. The ML component,
focusing on ballisticity prediction, significantly simplifies ML
training and mitigates the requirement for extensive training
data in transistor modeling. Comparative analysis of various
ML models, including MLP, BiGRU, and RFR, revealed the
exceptional capability of the BiGRU model in processing
sparse datasets and maintaining high accuracy, even with
limited training data.

The application of this hybrid model to both silicon and
CNT transistors demonstrated its versatility and high accuracy
for modeling nanoscale transistors. Compared with NEGF
device simulations, the trained model predicts device char-
acteristics with a factor of >18000 speed improvement and
is useful in circuit simulations. Overall, this hybrid approach
not only achieves a balance between empirical ML methods
and PB modeling but also opens new avenues for efficient
and precise modeling of nanoscale transistors with small data
training.

ACKNOWLEDGMENT

The authors thank Prof. Hiu-Yung Wong from San Jose
State University, San Jose, CA, USA, for helpful technical
discussions.

REFERENCES

[1] G. Fiori et al., “Electronics based on two-dimensional materials,” Nature
Nanotechnol., vol. 9, no. 9, pp. 768-779, Aug. 2014.

[2] A. D. Franklin, M. C. Hersam, and H.-S.-P. Wong, “Carbon nanotube
transistors: Making electronics from molecules,” Science, vol. 378,
no. 6621, pp. 726-732, Nov. 2022.

[3] Y. S. Chauhan et al., “BSIM—Industry standard compact MOSFET
models,” in Proc. ESSCIRC, Sep. 2012, pp. 30-33.

[4] A. Rahman and M. S. Lundstrom, “A compact scattering model for
the nanoscale double-gate MOSFET,” IEEE Trans. Electron Devices,
vol. 49, no. 3, pp. 481-489, Mar. 2002.

[5] J. Wang, Y.-H. Kim, J. Ryu, C. Jeong, W. Choi, and D. Kim,
“Artificial neural network-based compact modeling methodology for
advanced transistors,” IEEE Trans. Electron Devices, vol. 68, no. 3,
pp. 1318-1325, Mar. 2021.

[6] K. Mehta and H.-Y. Wong, “Prediction of FinFET current-voltage and
capacitance-voltage curves using machine learning with autoencoder,”
IEEE Electron Device Lett., vol. 42, no. 2, pp. 136-139, Feb. 2021.

[71 M. Kao, H. Kam, and C. Hu, “Deep-learning-assisted physics-driven
MOSFET current-voltage modeling,” IEEE Electron Device Lett.,
vol. 43, no. 6, pp. 974-977, Jun. 2022.

[8] N. Chatterjee, J. Ortega, I. Meric, P. Xiao, and I. Tsameret, “Machine
learning on transistor aging data: Test time reduction and modeling for
novel devices,” in Proc. IEEE Int. Rel. Phys. Symp. (IRPS), Mar. 2021,
pp. 1-9.

[9] F. Klemme, J. Prinz, V. M. van Santen, J. Henkel, and H. Amrouch,
“Modeling emerging technologies using machine learning: Challenges
and opportunities,” in Proc. IEEE/ACM Int. Conf. Comput. Aided
Design, Nov. 2020, pp. 1-9.

[10] A. Rahman, J. Guo, S. Datta, and M. S. Lundstrom, “Theory of
ballistic nanotransistors,” IEEE Trans. Electron Devices, vol. 50, no. 9,
pp- 1853-1864, Sep. 2003.

[11] M. Lundstrom and J. Guo, Nanoscale Transistors: Device Physics,
Modeling and Simulation. Berlin, Germany: Springer, 2006.

[12] S. Amari, “A theory of adaptive pattern classifiers,” IEEE Trans.
Electron. Comput., vol. EC-16, no. 3, pp. 299-307, Jun. 1967.

[13] Y.-W. Ho et al, “Neuroevolution-based efficient field effect
transistor compact device models,” IEEE Access, vol. 9,
pp. 159048-159058, 2021.

[14] H. M. Xie, D. Y. Lei, Z. C. Zhang, Y. Q. Chen, Z. H. He, and Y. Liu,
“Compact modeling of metal-oxide TFTs based on the Bayesian search-
based artificial neural network and genetic algorithm,” AIP Adyv., vol. 13,
no. 8, Aug. 2023.

[15] C. Li, Y. He, X. Li, and X. Jing, “BiGRU network for human activity
recognition in high resolution range profile,” in Proc. Int. Radar Conf.
(RADAR), Sep. 2019, pp. 1-5.

[16] L. Breiman, “Random forests,” Mach. Learn., vol.
Oct. 2001.

[17] Z. Ren, R. Venugopal, S. Goasguen, S. Datta, and M. S. Lundstrom,
“nanoMOS 2.5: A two-dimensional simulator for quantum transport in
double-gate MOSFETS,” IEEE Trans. Electron Devices, vol. 50, no. 9,
pp. 1914-1925, Sep. 2003.

[18] Z. Ren et al., “Nanomos,” 2016. [Online]. Available: https://nanohub.
org/resources/nanomos

[19] J. P. Duarte et al., “BSIM-CMG: Standard FinFET compact model for
advanced circuit design,” in Proc. 41st Eur. Solid-State Circuits Conf.
(ESSCIRC), 2015, pp. 196-201.

[20] A. Javey, R. Tu, D. B. Farmer, J. Guo, R. G. Gordon, and H. Dai,
“High performance n-type carbon nanotube field-effect transistors with
chemically doped contacts,” Nano Lett., vol. 5, no. 2, pp. 345-348,
Feb. 2005.

[21] A. D. Franklin et al., “Carbon nanotube complementary wrap-gate
transistors,” Nano Lett., vol. 13, no. 6, pp. 2490-2495, Jun. 2013.

[22] J. Guo, S. Datta, M. Lundstrom, and M. P. Anantam, “Toward multiscale
modeling of carbon nanotube transistors,” Int. J. Multiscale Comput.
Eng., vol. 2, no. 2, pp. 257-276, 2004.

[23] J. Guo, “A quantum-mechanical treatment of phonon scattering in
carbon nanotube transistors,” J. Appl. Phys., vol. 98, no. 6, Sep. 2005,
Art. no. 063519.

45, pp. 5-32,

Authorized licensed use limited to: University of Florida. Downloaded on August 25,2024 at 14:26:43 UTC from IEEE Xplore. Restrictions apply.



