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A Hybrid Machine Learning and Physics-Based
Model for Quasi-Ballistic Nanotransistors

Qimao Yang and Jing Guo , Senior Member, IEEE

AbstractÐ We introduce a hybrid model that synergisti-
cally combines machine learning (ML) with semiconductor
device physics to simulate nanoscale transistors. This
approach integrates a physics-based (PB) ballistic tran-
sistor model with an ML model that predicts ballisticity,
enabling flexibility to interface the model with device data.
The inclusion of device physics not only enhances the
interpretability of the ML model but also streamlines its
training process, reducing the necessity for extensive
training data. The model’s effectiveness is validated on
both silicon nanotransistors and carbon nanotube (CNT)
field-effect transistors (FETs), demonstrating high model
accuracy with a simplified ML component. We assess
the impacts of various ML modelsÐmultilayer perceptron
(MLP), recurrent neural network (RNN), and RandomFore-
stRegressor (RFR)Ðon predictive accuracy and training
data requirements. Notably, hybrid models incorporating
these components can maintain high accuracy with a small
training dataset, with the RNN-based model exhibiting bet-
ter accuracy compared with the MLP and RFR models. The
trained hybrid model provides significant speedup com-
pared to device simulations and can be applied to predict
circuit characteristics based on the modeled nanotransis-
tors.

Index TermsÐ Carbon nanotube (CNT) transistors,
hybrid model, machine learning (ML), nanoscale
transistors, silicon nanotransistors.

I. INTRODUCTION

T
HE scaling of silicon transistors has led to metal±oxide±

semiconductor field-effect transistors (MOSFETs) with

a gate length in the 10-nm-scale regime. As silicon tran-

sistors near their scaling limits, exploration into transistors

based on new nanoscale materials, such as carbon nanotubes

(CNTs), graphene, and 2-D layered semiconductors, has

intensified [1], [2]. Both silicon nanotransistors and nan-

otransistors based on new nanomaterials can operate in

near-ballistic or quasi-ballistic transport regimes.

Transistor models have played an important role in semi-

conductor designs. Traditionally, transistor models are based
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on device physics. As the transistors scale down and new

physical phenomena need to be incorporated, a larger amount

of empirical fitting parameters have been induced. For exam-

ple, the widely used Berkeley short-channel IGFET model

(BSIM) [3] has hundreds of parameters and requires significant

domain knowledge for parameter extraction. On the other

hand, physics-based (PB) ballistic transistor models have a

much smaller number of parameters, but a transistor does

not operate perfectly at the ballistic limit. PB quasi-ballistic

transistor models have also been developed [4], but these

models have limited flexibility to accurately describe the

device data.

Recently, machine learning (ML)-based models have

emerged as a new tool for modeling transistor device char-

acteristics [5], [6], [7], [8], [9]. Predominantly data-driven,

these ML models harness extensive datasets to learn and

predict transistor behaviors, displaying a promising aptitude

for replicating detailed TCAD simulation results. Nonetheless,

ML models in the physical domain face certain challenges.

A challenging issue is their propensity to yield unphysical

device characteristics, especially when extrapolating beyond

the training data’s scope. Furthermore, the complexity and

effectiveness of these models are closely linked to the

training data’s volume and quality. Larger, more complex

models require extensive datasets for optimal functionality.

Conversely, smaller models, though less demanding of data,

often struggle to fully capture complex data relationships.

In addition, training these models, particularly with sparse

or limited datasets, can be a painstaking process, necessitat-

ing meticulous tuning and validation to ensure accurate and

reliable predictions. The choice of ML algorithm is another

critical factor, as different algorithms may exhibit varying

performance characteristics and sensitivities to the nature and

quantity of training data.

In this work, we adopt a hybrid approach, merging the

device physics knowledge of ballistic transistors with an

ML methodology to interface the model with data. Through

this approach, we demonstrate that the hybrid model can

not only flexibly interface with nanotransistor data but also

significantly alleviate the training complexity of the ML

component, by simplifying the task. The hybrid physics-ML

model is applied to two types of nanotransistors: a double-

gated ultrathin-body (UTB) silicon field-effect transistor (FET)

and a CNTFET. In semiconductor device technology, obtaining

an accurate large dataset for ML model training is often
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Fig. 1. Flowchart of the hybrid physics-ML model. The ballistic transistor
model part is PB with two parameters extracted from data, which pre-
dicts ballistic transistor I±V characteristics. The ML model part predicts
the ballisticity of a nanotransistor. The product of the ballistic current and
the ballisticity gives the predicted transistor current. The model is trained
by a cost function defined by the difference between the prediction and
the data.

time-consuming and expensive. We also investigate the effects

of ML model selection in training the hybrid model with

limited data. The accuracy of various choices of the ML model

components in the hybrid model is compared by varying and

reducing the size of the training dataset. The results indicate

the possibility of high model accuracy with small device

training data by using the hybrid physics-ML device modeling

approach.

II. APPROACH

The hybrid ML and PB device model for nanotransistors is

discussed in Section II-A. The PB component, which is based

on the ballistic transistor theory, is summarized in Section II-B.

The ML model component is described in Section II-C. The

training procedure of the hybrid physics-ML device model is

described in Section II-D.

A. Hybrid ML and PB Model for Nanotransistors

The hybrid model proposed, as summarized in Fig. 1,

combines a PB ballistic transistor model, which predicts

the ballistic limit of the transistor, with an ML model that

predicts ballisticity. The simple ballistic model captures the

qualitative feature of the transistor device characteristics. For

example, the source±drain current varies exponentially as a

function of the gate voltage in the subthreshold region, but

somewhere between linearly and quadratically in the above-

threshold region. Such strongly nonlinear, bias-dependent,

and orders of magnitude variation of the device I ±V data

impose challenges to ML regression but are captured by a

PB model. The PB ballistic transistor model also provides

predictive and interpolative power. On the other hand, the

ballisticity of a nanotransistor is hard to accurately predict

from device physics. Although PB quasi-ballistic transistor

models have been developed, the important parameters in

the model are very difficult to determine accurately. The

hybrid model infuses device physics captured by the ballistic

transistor model with the data-driven ML modeling approach

for ballisticity.

B. Ballistic Transistor Model

Ballistic transistor theory computes the ballistic perfor-

mance limits of a transistor, which assumes that carrier

transport is ballistic and the source and drain contacts are

ideal [10], [11]. Ballistic transistor models have been devel-

oped for various types of nanotransistors, such as silicon

Fig. 2. Schematic of the ballistic transistor model. The top of the
potential barrier is shown by the filled circle, with its potential energy
as U and electron density as n. Esub(x) is the subband profile. The
capacitances CS, CD, and CG are shown schematically.

transistors and CNT transistors. Here, we summarize the

ballistic transistor model below for completeness.

As schematically shown in Fig. 2, the potential at the top

of the channel barrier U is expressed as follows:

U = −q[αG(VG − VG0) + αD VD] +
q2n

C6

(1)

where C6 = CS + CD + CG and αG = CG/C6 which implies

C6 = CG/αG and αD = CD/C6 which simplifies to αD =

(1 − αG)/2 if CS = CD , and the capacitances are defined as

shown in Fig. 2 [10], [11]. VG0 plays a similar role as the flat

band voltage, which shifts the gate voltage VG to an effective

gate voltage value of (VG − VG0). The electron density at the

top of the potential barrier is related to the potential

n =
1

N





∑

kx >0

f (E(k) − EFS)+
∑

kx <0

f (E(k) − EFD)



 (2)

where EFS and EFD are the source and drain Fermi energy

levels, respectively. N = L or N = A is a normalization

length for a quasi-1-D channel or a normalization area for a

quasi-2-D channel.

After the potential U and charge density n are solved

from (1) and (2), and the source±drain current is computed

as follows:

I =
1

N





∑

kx >0

f(E(k)−EFS)υx (k) +

∑

kx <0

f (E(k)−EFD)υx (k)





where υx (k) = (1/h̄)(∂ E)/(∂kx ) is the band-structure-limited

velocity along the channel direction.

In the above model, the gate capacitance CG is computed

from the gate oxide thickness and dielectric constant, and

the E±k relation is determined by the band structure of

the channel material. The above ballistic transistor model is

simple and computationally efficient. It only contains two

fitting parameters, αG and VG0. The model sets the ballistic

performance limits of a transistor.

C. ML Model Component

In the hybrid physics-ML device model, the ML compo-

nent is crucial in defining the ballisticity of nanotransistors,

augmenting the PB ballistic model with data-driven insights.

We evaluate three distinct ML models in our approach, each

selected for its unique attributes and appropriateness in ana-

lyzing transistor behavior.
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Fig. 3. Three ML models used in this work. (a) Framework of MLP. Two hidden layers and four neurons for each layer are shown in this diagram,
while in practice, the number of hidden layers and neurons is adjustable. (b) Framework of BiGRU. The convolution kernel and the number of BiGRU
layers are adjustable. (c) Framework of RFR. The number of trees is adjustable.

1) Multilayer Perceptron (MLP): A fundamental form of

artificial neural networks (ANNs), the MLP [12] com-

prises multiple fully connected layers [Fig. 3(a)] and is

widely used in prior transistor simulation works [13],

[14]. As shown in Fig. 3(a), it takes device parameters

(tox, Lch) and voltage biases (VG , VD) as input and

predicts the corresponding ballisticity value b. Each

neuron evaluates h = f (Wx + b), where x is the

input for the current layer, W and b are the weights

and bias of the current neuron, and f is the nonlinear

activation function. While the MLP is effective across

various applications, its simple architecture may limit its

ability to process complex dependencies in data, which

is investigated in our experimental analysis.

2) Recurrent Neural Network (RNN): To discern the

intricate interrelationships among device parameters,

we utilize a bidirectional gated recurrent unit (BiGRU)

[15], which is a variation of traditional RNNs. As shown

in Fig. 3(b), BiGRU takes tox, Lch, VG , and VD

as input, and outputs the prediction of ballisticity

value b. BiGRU’s operation is represented as ht =

GRU(ht−1, xt) ⊕ GRU(ht+1, xt), where ⊕ denotes the

concatenation operation. Unlike MLP, BiGRU can

capture dependencies between sequential elements, pro-

viding a thorough analysis of the relationships among

various device parameters.

3) RandomForestRegressor (RFR): Fig. 3(c) shows the

framework of RFR [16]. Functioning as a regression

methods, RFR constructs an ensemble of decision trees,

each trained on a random subset of the data and features.

Its strength lies in diminishing prediction variance and

reducing the risk of overfitting, particularly in scenarios

with sparse data. The RFR’s proficiency in managing

complex, nonlinear relationships is invaluable for captur-

ing the nuanced interplay of device parameters in FETs.

The selection of these models underscores their distinct

roles in our hybrid approach, enabling a nuanced understand-

ing of the complex dynamics in nanoscale transistor behavior.

It is crucial for advancing the accuracy and applicability of

our hybrid modeling approach.

D. Model Training Procedure

The training procedure for the model is shown in Fig. 1

to predict the transistor I ±V characteristics is described as

follows.

Fig. 4. Schematic of the double-gated UTB silicon MOSFET modeled.

1) From the transistor ID versus VG data at VD = VDD ,

compute the inverse subthreshold slope S(VG) =

(dVG)/(d(log10 (ID))).

2) Extract α of the ballistic transistor model as αG =

S0/(min(S(VG))), where min() is the minimal value, and

S0 = (kT )/qln10, which is the ideal subthreshold swing.

3) Extract the other parameter in the ballistic transistor

model VG0 by minimizing a cost function defined as

the difference of S(VG) from the data and the ballistic

model. With both parameters of the ballistic transistor

model obtained, the ballistic current Ibal is obtained from

the ballistic model.

4) The ballisticity, b, as shown in Fig. 1, is obtained from

an ML regression model, and the cost function is defined

as the mean square error between the predicted I ±V and

the I ±V data. The ML model is trained to minimize the

cost function.

III. RESULTS

In this section, we illustrate the application of our hybrid

model to nanotransistor technologies through two distinct

examples. The first example applies the proposed hybrid model

to a silicon nanotransistor. The second example applies the

model to a CNT transistor, showcasing the model’s versatility

and generality across different nanoscale devices. To further

substantiate the practical utility of our hybrid model, we incor-

porate it into circuit-level simulations, specifically focusing on

inverter and ring oscillator (RO) circuits.

A. Model Double-Gated Ultrathin-Body Silicon Transistor

and FinFET

1) Data Generation: The modeled device is a double-gated

UTB silicon FET, as shown in Fig. 4. The device data are

obtained by numerical device simulations based on solving
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the Poisson equation self-consistently with the nonequilib-

rium Green’s function (NEGF) formalism, as implemented

in the simulation tool nanoMOS [17], [18]. In nanoMOS,

a Schrodinger equation is solved in the vertical confinement

direction to obtain the confinement subbands. In the transport

direction along the channel, the quantum transport equation

is solved by using the NEGF formalism. Scattering is treated

with the self-consistent Born approximation (SCBA) [18]. The

NEGF device simulations are computationally expensive; we

parallel the simulations over processors to obtain the device

data of multiple silicon nanotransistor devices for model

training and testing.

The simulated device in the data generation process has

a gate oxide thickness (tox) equal to 2 nm with a dielectric

constant of 20. The silicon body has a thickness of 3 nm. The

gate length (Lch) is 10 nm. Room temperature T = 300 K

is assumed. For each individual device, the gate bias sweeps

from 0 to 0.5 V with a step of 0.0125 V/step, which results

in a total of NG = 41 VG points. The drain bias sweeps from

0.001 to 0.501 V with a step of 0.0125 V/step, which results

in an ND = 41VD points. The total bias points in the dataset

of an individual device is ND × NG = N 2 = 1681 points.

To investigate the possibility of small data training, we use a

subset of the full data with a larger step and smaller N value

to train the device model and investigate the dependence of

the accuracy of the trained model as a function of the size of

the dataset, as described later.

2) Model Evaluation: We divide the device data into two

sets: a training set and a test set, each containing approx-

imately half of the data points. The training set spanned

VD values from 0.001 to 0.501 V in 40 equal steps, and

VG values from 0 to 0.5 V in 20 equal steps. The test set

also covered VD values from 0.001 V to 0.501 V in 40 equal

steps but VG values from 0.0125 to 0.4875 V in 19 equal steps.

The VD = 0 bias was excluded since the ballistic transistor

model gives ID,bal(VD = 0) = 0, which results in a zero

current at zero drain bias for the hybrid model.

The above data partition ensures that the test data does not

overlap with the training data, so that information leakage

between training and testing is avoided. Three ML mod-

els as described before are trained, and the comparison

between the model prediction with the test data is shown

in Fig. 5(a) and (b), which illustrate the ID±VD and ID±VG

characteristics, respectively. The MLP model comprises two

hidden layers, each with ten nodes using ReLU activation,

and a single-node output layer for ID prediction. The RNN

model, a two-layer BiGRU, includes an input layer with

a 1 × 1 kernel for embedding each device parameter into

an 8-D tensor, followed by a sequence processing model

with eight nodes in each hidden layer, and a single-node

output layer for ID prediction. Both models utilize the Adam

optimization algorithm with a learning rate of 0.001, a batch

size of 32, and 5000 epochs. The RFR model is implemented

using RFR in Scikit-learn with 100 estimators.

The results, as depicted in the figures, reveal that all

models achieve remarkable accuracy, with half of the dataset

used for training and the rest half for testing. This finding

is particularly noteworthy considering that most ML studies

Fig. 5. Comparison between the hybrid physics-ML device models
(lines) with the NEGF simulation data (dots) for the Si MOSFET as
shown in Fig. 4. (a) ID versus VD characteristics at VG = 0.0125±
0.4875 V at 0.025 V/step and (b) ID versus VG characteristics at VD =

0.001±0.501 V at 0.0125 V/step. Three different ML model components
are tested: RFR (blue solid lines), MLP (gray dashed-dotted lines), and
RNN (green dashed lines).

TABLE I

R 2 VALUES ACROSS DIFFERENT ML MODELS WITH SINGLE Si

MOSFET DEVICE AND 55 Si MOSFET DEVICE INSTANCES

typically require 70%±80% of the data for training. This

efficiency demonstrates the proposed hybrid model’s ability

to reduce the demand for extensive training data, which is

often time-consuming to acquire. Table I provides a summary

of the hybrid models’ performance in fitting both a single

device and a dataset encompassing 55 device instances, with

the channel length varying from 10 to 20 nm with 1 nm/step,

and the oxide thicknesses varying from 1.5 to 3.5 nm with

0.5 nm/step. All other parameters are the same as the single-

device simulation. As we scale the models to larger datasets,

an increase in model size is usually necessary to accommodate

the increased complexity of the data. However, as Table I

illustrates, almost all models, particularly the BiGRU model,

maintain consistently high accuracy across both single and

multiple device datasets.

3) Why Does the Hybrid Device Model Work Well?: The

reason that the hybrid model works well is that the approach

significantly simplifies the ML training task. The ballistic

device I ±V characteristics are predicted by a PB model, and

the ML part only describes the ballisticity of the transistor.

To illustrate this point, we plot the ballistic current of the

modeled device as shown in Fig. 6(a) and (b). One key

challenge of modeling transistor data is that the current varies

by orders of magnitude from the OFF-state to the ON-state

in a highly nonlinear manner. The PB part of the hybrid

model predicts the ballistic I ±V , which captures the qualitative

features and orders of magnitude variation of the data. The

ML component only predicts ballisticity, as shown in Fig. 1,

which is defined as the ratio of the device I ±V data to its

corresponding ballistic limit. The dependence of the ballisticity

on VD and VG are shown in Fig. 6(c) and (d), respectively.

Although the current changes orders of magnitude from the

subthreshold to the above threshold regime, the ballisticity

value has a relatively weak dependence on the applied gate

and drain voltages in the entire bias regime from subthreshold

to above threshold for VG , and from the linear region to
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Fig. 6. Ballistic I±V and ballisticity of Si MOSFET. (a) ID versus VD and (b) logarithmic ID versus VG predicted by the ballistic transistor model (red
dashed lines) and the NEGF simulation data (blue solid lines). (c) Ballisticity b versus VD at different VG values and (d) ballisticity b versus VG at
different VD values. (a) and (c) are simulated at VG = 0±0.5 V at 0.05 V/step and (b) and (d) are simulated at VD = 0±0.5 V at 0.025 V/step.

saturation region for VD . The ballisticity varies on a much

smaller relative scale compared with the variations of ID . As a

result, by using the hybrid approach, the ML training task

to fit the ballisticity is significantly simplified compared to

directly fitting the transistor I ±V data. This advantage can

enable easier training with a simple ML model component

and high prediction accuracy.

4) Application of the Hybrid Physics-ML Model to FinFET

Dataset: To demonstrate the adaptability of the hybrid model

to datasets created for industrial FinFET devices, we generated

the device I ±V characteristics data by using the BSIM-CMG

model [19]. The BSIM-CMG model has a large number of

model parameters and has been shown to agree with experi-

mental and TCAD simulation data for FinFET devices [19].

We train the hybrid model through the same procedure as

shown in Fig. 1 and compare the trained model with the MLP,

RNN, and RFR ML model components with the device data

as shown in Fig. 7. The results confirm that the hybrid models

with the RNN ML model and RFR can describe the FinFET

dataset with high accuracy.

We further explore the extrapolation capability of the hybrid

model. Fig. 7 also shows the comparison between the data

and the hybrid models that extend into extrapolated regions,

illustrated by the bold sections in our figures. Although the

extrapolation performance of MLP and random forest in the

extrapolation regions is not good enough, especially with a

high VG , the results show that the RNN-based hybrid model

retains its predictive accuracy even when applied to the I ±V

data outside its immediate training range.

B. Apply the Hybrid Physics-ML Device Model to

CNTFETs

1) Device Structure and Data Generation: The hybrid model

approach can be applied to other types of nanotransistors.

In this section, we apply the hybrid model to CNTFETs. The

modeled CNTFET, as shown in Fig. 8, is a MOSFET-like

CNTFET with doped source and drain extensions [20] and

a gate±all±around structure [21].

NEGF device simulations are performed in a pz-orbital

tight-binding Hamiltonian, and scattering by acoustic and

optical phonons are treated in the NEGF simulations by using

the SCBA [22], [23]. The batch of devices simulated has a gate

oxide thickness varying from 1 to 3 nm with 0.5 nm/step.

The dielectric constant is set to 20. The gate length varies

from 10 to 30 nm with 2 nm/step. The NEGF device simulation

Fig. 7. Comparison between the hybrid physics-ML model with the
BSIM-CMG data. (a) ID±VD characteristics at VG = 0.0125±0.5875 V
at 0.025 V/step. (b) ID±VG characteristics at VD = 0.001±0.601 V at
0.0125 V/step. The modeled n-type FinFET has a single fin with a gate
length of 20 nm and a Fin thickness of 5 nm, a gate oxide thickness of
1.2 nm with a relative dielectric constant of 3.9, and a metal gate work
function of 4.3 eV. All other parameters have default values of the BSIM-
CMG model. The hybrid models were trained with data in the range of
0 < VG < 0.5 V and 0.001 < VD < 0.501 V. The model prediction out
of this range is extrapolation.

Fig. 8. (a) Schematic device structure of the modeled CNTFET.
Comparison of the test data (not used in ML model training) from NEGF
simulations to the physics-ML device model prediction for (b) ID±VD

characteristics at VG = 0.0125±0.4875 V at 0.025 V/step and
(c) ID±VG characteristics at VD = 0.001±0.501 V at 0.0125 V/step. The
gate length is LG = 12 nm.

data generated are partitioned to the training and test data

in a similar manner as in the previous example of silicon

nanotransistors.

2) Model Evaluation: The comparative analysis of different

ML models for CNTFETs is presented in Fig. 8(b) and (c).

Despite the small variation in their R2 scores (Table II),

a significant performance disparity is observed with CNTFET

data. This discrepancy is attributed to the dense clustering of
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TABLE II

R 2 VALUES ACROSS DIFFERENT ML MODELS WITH SINGLE

CNTFET DEVICE AND 55 CNTFET DEVICE INSTANCES

TABLE III

MODEL PERFORMANCE QUANTIFIED BY R 2 VALUES VERSUS THE SIZE

OF THE TRAINING DATASET. THE GRID POINTS N = NG = ND

AND THE TOTAL NUMBER OF TRAINING DATA = N 2

data points with almost zero current, which artificially inflates

the R2 scores while diminishing the impact of outliers.

3) Reduce the Training Data Size for Small Data Training:

A large set of training data is either computationally or

experimentally expensive to generate. Achieving high model

accuracy with a small training dataset is preferred to reduce

the cost of obtaining training data. To further investigate the

capabilities of the three ML models under varying training

set sizes, we adjust the step sizes for both VG and VD from

0.025 to 0.125 V. The number of grid points NG and ND

are approximately inversely proportional to the step size, and

the total size of the data is NG × ND . To account for the

influence of randomness in the ML model training, each

ML training experiment was repeated 10 times, recording

the minimum, maximum, and average R2 scores, and the

results are displayed in Table III. It is evident that the MLP

is more susceptible to random variations. However, the RNN

model displayed remarkable accuracy, which could achieve an

accuracy of nearly 99.9% even under extremely low training

data density. Furthermore, the average performance of the

RNN model consistently outperformed the RFR by an order

of magnitude, indicating a reduced dependency on extensive

datasets compared with the RFR. As shown in Table III,

a small data training with N = ND = NG = 6 and a total

data size of N 2 = 36 can still maintain the high accuracy of

the model by using the RNN ML model.

4) Model Inference and Training Time: The trained hybrid

physics-ML device model predicts I ±V characteristics much

faster compared to the NEGF simulations. We sampled a large

number of (VG , VD) bias points to obtain ID from both the

NEGF simulations and the trained hybrid models. On average,

hybrid model inference is 18 000× faster than the NEGF

device simulations.

On the other hand, the major cost of the hybrid ML model

is a one-time investment in data generation and training.

We have discussed the possibility of small data training above.

Next, we examine the training time. The training duration for

each model is summarized in Table IV. Due to the inherent

characteristics of their gradient descent learning algorithms,

TABLE IV

TRAINING TIME IN SECOND ACROSS DIFFERENT ML MODELS WITH

SINGLE CNTFET DEVICE AND DIFFERENT VG AND VD STEP SIZE

ANNs generally require longer training times compared to

the RFR.

While RFR models train substantially faster due to simpler

computations and parallel estimator training, the performance

gap between it and BiGRU especially under different training

set sizes is also important because retrieving device data is

really time-consuming. The performance disparity between

BiGRU and RFR, particularly under varying training data

densities, will be further explored in the subsequent circuit

simulation section.

C. Application of the Model to Circuit Simulations

We conduct simulations on two circuits to validate the

proposed hybrid model and to explore the performance dif-

ferences between RNN-based and RFR-based hybrid models.

The circuit simulations were performed by implementing KCL

and KVL laws in Python. The circuits included an inverter with

1 p-CNTFET and 1 n-CNTFET, featuring RS = RD = 100 k�

parasitic source and drain resistances and CGS = CGD =

20 aF parasitic gate-to-source and gate-to-drain capacitance as

depicted in Fig. 9(a), and an RO comprising three inverters to

examine transient operation reliability. Detailed simulation and

model training can also be processed in a similar manner for

p-CNTFETs. Due to symmetric conduction and valence bands

of a CNT, we, however, simplify the p-CNTFET character-

istics by assuming it is perfectly balanced with n-CNTFET,

ID,p(−VG, −VD) = −ID,n(VG, VD). The NEGF simulation

is used to generate Q±V characteristics data, Q(VG, VD),

where Q is the total charge in the CNTFET channel. A ridge

regression model with RBF kernel is used to train and fit the

NEGF Q±V data of the intrinsic CNTFET, and it is used in the

transient RO simulations. Parasitic gate-to-source and gate-to-

drain capacitance often have charges significantly larger than

the intrinsic channel in a nanoscale CNTFET. As the terminal

bias varies, charge variation on the parasitic capacitors often

dominates over that of the intrinsic CNTFET, especially in the

subthreshold region.

In addressing the ground truth for circuit characteristics

for assessing the ML model, we encountered the challenge

that directly performing NEGF simulations is exceedingly

time-consuming within the context of circuit simulation.

To circumvent this, we generated a dataset with very high

density and large data points and trained a device model

from this dense dataset. We generated a data grid comprising

81 × 81 points. The interpolated ID values, derived from

this grid data, served as our ground truth. To validate the

reliability of our approach, we quantify its uncertainty by

varying the data size and interpolation model. We examine

various subsets of this grid dataÐspecifically, a half-size

data corresponding to a reduction according to twice the
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Fig. 9. Apply the hybrid physics-ML model of CNTFET to inverter simulations. (a) Schematic circuit of the modeled inverter with transistors. The
parasitic source and drain resistance are shown. The parasitic resistance is RS = RD = 100 kΩ for both n-type and p-type CNTFETs. Comparison of
simulated inverter transfer characteristics between different ML model components and the hybrid device models trained with different total training
data sizes of N 2 with N = NG = ND. (b) N = 21, (c) N = 7, and (d) N = 5.

step size of VG , a half-size data pertaining to a reduction

according to twice the step size of VD , and a quarter-size

data resulting from halving both VG and VD . We also explore

different interpolation methods, including multiquadric, cubic,

and linear methods, to assess performance. The average error

(1 − R2) value less than 10−5 for the inverter, along with

the average amplitude discrepancy less than 10−4 and average

period difference less than 10−14 underscore the sufficiency

of our device data density. These uncertainties in the ground

truth are order-of-magnitude smaller compared to the scale of

model error investigated next, which indicates the sufficiency

of the above approach.

Fig. 9(b)±(d) illustrates the performance evaluation of the

hybrid models using RNN and RFR, varying the VG and

VD step sizes, which equivalently varies the training data

size for the hybrid device model. The results indicate that

both models align closely with the ground truth at a step

size of 0.025 V, demonstrating effective learning with dense

training datasets. At this step size, the training data size is

N 2 = 441, indicating the promise of small data training.

However, as the step size increases to 0.075 V and further

to 0.125 V, the RFR model begins to diverge from the actual

device data, struggling to accurately replicate device behavior.

In contrast, the RNN models consistently match the ground

truth across all tested step sizes. Notably, at a step size of

0.125 V, the training dataset for a single device diminishes

to merely N 2 = 25 data points in the hybrid model training,

a challenging scenario for most ML models to discern valid

patterns.

The simulation results for a three-stage RO are presented

in Fig. 10(a) and (b), comparing the RNN-based and RFR-

based hybrid models at 0.025- and 0.1-V VG and VD step

sizes, respectively, with an initial voltage set to 0.25 V.

These findings corroborate the earlier observation of the

RNN model’s robustness against low training data density.

Its structure, capable of modeling interelement relationships,

facilitates a more accurate prediction of ballisticity. Moreover,

our hybrid model successfully captures the nonlinear transistor

behavior with remarkable accuracy, even with a simplistic

RFR model. The implementation of a two-layer RNN model

in circuit simulations demonstrates impressive accuracy under

extremely low training data density, potentially reducing the

time required to gather device data significantly. Fig. 11 shows

Fig. 10. Apply the hybrid device model to RO simulations: Comparison
of a simulated three-stage RO with different ML model components with
different training dataset sizes of N 2 with N = NG = ND for (a) N = 21,
and (b) N = 6. The CNTFETs have a gate length of 12 nm.

Fig. 11. Error of period and amplitude in RO simulations versus the
data size for training the hybrid device model of the CNTFET. The bottom
axis shows N = NG = ND for equally spaced training data points with
the corresponding step size shown on the top axis. The RNN and RFR
model results are shown.

the amplitude discrepancies and period differences under

different training data sizes. It is clear that the RNN model
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still outperforms the RFR model in circuit simulations. The

RNN model can achieve a high accuracy with a period error

of <1.52% and an amplitude error of <0.34% with a relatively

small data of ND = NG = 9 in the application of the hybrid

device model to RO circuit simulations.

IV. CONCLUSION

A hybrid physics-ML model that combines a ballistic tran-

sistor model with an ML model component is developed

to model nanoscale transistors. The approach captures the

physics of quasi-ballistic transport in nanoscale transistors

and can flexibly interact with nanotransistor data. Although

the transistor current values vary orders of magnitude from

the OFF-state to the ON-state and have a strongly nonlinear

dependence on the bias voltages, the ballisticity has a much

weaker dependence on the bias voltage. The ML component,

focusing on ballisticity prediction, significantly simplifies ML

training and mitigates the requirement for extensive training

data in transistor modeling. Comparative analysis of various

ML models, including MLP, BiGRU, and RFR, revealed the

exceptional capability of the BiGRU model in processing

sparse datasets and maintaining high accuracy, even with

limited training data.

The application of this hybrid model to both silicon and

CNT transistors demonstrated its versatility and high accuracy

for modeling nanoscale transistors. Compared with NEGF

device simulations, the trained model predicts device char-

acteristics with a factor of >18 000 speed improvement and

is useful in circuit simulations. Overall, this hybrid approach

not only achieves a balance between empirical ML methods

and PB modeling but also opens new avenues for efficient

and precise modeling of nanoscale transistors with small data

training.
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