
Simulating Partial Differential Equations
with Neural Networks

Alina Chertock and Christopher Leonard

Abstract In this paper, we present a novel approach for simulating solutions of
partial differential equations using neural networks. We consider a time-stepping
method similar to the finite-volume method, where the flux terms are computed using
neural networks. To train the neural network, we collect ’sensor’ data on small subsets
of the computational domain. Thus, our neural network learns the local behavior of
the solution rather than the global one. This leads to a much more versatile method
that can simulate the solution to equations whose initial conditions are not in the
same form as the initial conditions we train with. Also, using sensor data from a
small portion of the domain is much more realistic than methods where a neural
network is trained using data over a large domain.

Keywords Neural networks · Partial differential equations · Finite-volume
methods

1 Introduction

Consider the time-dependent partial differential equation (PDE)

..U t + ∇x · F(U) = ε!U, (1)

where .U = (u1(x, t), . . . , uNe(x, t))
⊤ is a vector function of the spatial variable

.x = (x1, . . . , xd) ∈ Rd and the time variable .t ≥ 0, .F = (F1, . . . , Fd)⊤ is the non-
linear convection flux, and.ε = diag(ε1, . . . , εNe) is a constant diagonal matrix with
positive entries. Among others, Eq. (1) is used to describe hyperbolic systems of
conservation laws (.ε ≡ 0) and systems of convection-diffusion equations. Models
spanned by (1) are widely used to describe a variety of phenomena in physical,
astrophysical, geophysical, meteorological, biological, chemical, financial, social,
and other scientific areas.

A. Chertock (B) · C. Leonard
North Carolina State University, Raleigh, NC, USA
e-mail: chertock@math.ncsu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Parés et al. (eds.), Hyperbolic Problems: Theory, Numerics, Applications. Volume II,
SEMA SIMAI Springer Series 35, https://doi.org/10.1007/978-3-031-55264-9_4

39

40 A. Chertock and C. Leonard

In recent years, machine learning techniques for solving PDEs and learning about
their solutions have been a growing field of interest. This is in part due to the suc-
cess machine learning has had in other fields, such as computer vision and speech
recognition. Along with these successes, another motivation to use neural networks
(NNs) is due to the universal approximation theorem, which proves that, under cer-
tain conditions, an artificial NN could approximate any continuous function, [3].
There are many different approaches to finding numerical solutions to PDEs with
the help of NNs. One of the most popular methods is known as a physics-informed
neural network (PINN), which can be trained to satisfy the differential equation and
the initial and boundary conditions; see, e.g., [5, 9]. While PINNs have been suc-
cessfully applied to various problems, one of its major drawbacks is that they need to
be retrained for any new initial or boundary conditions. Other approaches use NNs
alongside standard numerical methods and utilize the benefits of physics-informed
and deep learning-based techniques.

In this paper, we train NNs to simulate the solution to PDEs when the underly-
ing dynamics are unknown. The method of solving systems of ordinary differential
equations (ODEs) with NNs without information about the governing equations has
been introduced in [8]. Then, in [1], a similar method was implemented to simulate
PDEs. Whereas their method uses the entire discrete solution at a given time step
as input into a NN, our approach only considers local data for the NN input. Thus
we can train the NN with data collected on small areas in space and use the NN
to simulate solutions on arbitrarily big domains. This is a much more realistic data
collection setting, allowing one to simulate a wide range of initial value problems.

The outline of this paper is as follows. In Sect. 2, we briefly introduce NNs. Then,
in Sect. 3, we describe our NN method for solving systems of PDEs in the form of (1).
In Sect. 4, we illustrate the proposed approach’s performance on several numerical
examples. Lastly, in Sect. 5, we conclude the paper.

2 Neural Networks

An artificial NN is an operator .N#(·) with a parameter set .# = (#1, . . . ,#H+1),
where.#η is itself a parameter set for each layer.η = 1, 2, ..., H + 1 (see Eq. (3)). The
set. # can have hundreds, thousands, or even millions of parameters, which allows. N#

to represent a wide range of functions depending on which parameters are chosen.
Typically, the network is provided with a set of input-output pairs.{(U in

m,U
out
m)}Mm=1,

to “learn” which parameters to use by a training process. This training process tries
to find the parameter set .# such that .Uout

m ≈ N#(U in
m), m = 1, . . . ,M by minimize

a given loss function
.L# = L(N#, {(U in

m ,U
out
m)}Mm=1) (2)

that depends on the NN and the supplied set of data.
Training a NN from a set of input-output data pairs is known as supervised learn-

ing. Other training processes include unsupervised learning and reinforcement learn-

Simulating Partial Differential Equations with Neural Networks 41

ing. Unsupervised learning is a training algorithm that finds underlying patterns in
the data, such as clusters, and reinforcement learning is an algorithm that uses a
reward system to learn the best parameters for the machine learning model. While
all three learning processes have found success in different applications, supervised
learning has been the most successful approach to training NNs and is used for all
of the models in this paper.

Artificial NNs are built from compositions of smaller functions (see Eq. (3)).
Each of these smaller functions corresponds to what is known as a layer of the NN.
Feedforward NNs are a specific form of a NN where the information is passed in one
direction without looping back. This is opposed to, say, recurrent NNs that contain
cycles in their NN architecture. All examples in this paper will use feedforward NNs,
although many could be extended to other types of architectures, such as recurrent
NNs.

A feedforward NN with .H hidden layers can be represented as the composition
of parameterized functions

. N# = N#H+1 ◦ N#H ◦ ... ◦ N#1 with N#η
(z) = ση(Aη), η = 1, 2, . . . , H + 1,

(3)
where .Aη is the connection between layers .η − 1 and . η, and .ση is the activation
function for the layer . η. Here, .η = 0 corresponds to the input layer and . η = H + 1
corresponds to the output layer. A layer is said to be fully connected if . Aη(z) =
Wη z + bη, where each element of .Wν ∈ Rων×ων−1 is nonzero, .bη ∈ Rωη . Here, .ωη is
the number of nodes for layer . η, .Wη is known as the weight matrix, and .bη is the
bias vector. Another type of layer is a convolutional layer, which in the simplest case
can be defined as .Aη(z) = cη ⋆ z + bη, where .cη ∈ Rκη , .bη ∈ R, and . ⋆ is the cross-
correlation operator. The vector .cη is known as a convolution kernel with a kernel
size of . κη. While the value of .bη is often a scalar value for convolution layers (this
is the default setting in PyTorch [7], and what is used in this paper), it can also be
set such that .b ∈ Rωη . The parameters in the sets .#η are the element values for .Wη,
. bη, and . cη. The activation functions . ση, .η = 1, . . . , H + 1, are functions prescribed
before the training process. Usually, these functions are nonlinear so the NN can
learn nonlinear relationships from the data.

Training the Neural Network

Before training a NN, the following hyperparameters need to be defined:

(a) Loss function: .L# (see (2)).
(b) Optimizer: The algorithm used to find the global minimum of the loss function.
(c) Initial learning rate: The initial step size that the optimization algorithm takes.

Depending on the optimization algorithm, the step sizes may change between
steps.

(d) Number of epochs: The number of times the optimization algorithm goes through
the entire training data set. Denote the number of epochs as .Me.

(e) Batch size: The number of samples from the training data that propagates through
the network for each update of the parameters. Denote the batch size as .Bs .

42 A. Chertock and C. Leonard

(f) Number of hidden layers: . H .
(g) Linear function for connection between layers.Aη (.Wη or. cη), and their sizes, i.e.

we need to define.ωη and.ωη−1 for fully connected layers and.κη for convolutional
layers.

(h) Activation functions: .ση, η = 1, . . . , H + 1.

We will identify the specific hyperparameters used for each example in their respec-
tive sections. We train .N# using the following algorithm.

Algorithm

Input:Data set .{(U in
m ,U

out
m)}Mm=1, initial NN model .N#(0) , and hyperparameters

(a)-(h) from above.
Output: Trained .N#.

1. Start: Randomly split the data set .{(U in
m ,U

out
m)}Mm=1 into three disjoint sets,

the training set of size .Mtr , .{U in
mi
,Uout

mi
}Mtr
i=1, the validation set of size .Mval ,

.{U in
ml
,Uout

ml
}Mval
l=1 , and the test set of size .Mtest , .{U in

mr
,Uout

mr
}Mval
r=1 , where . M =

Mtr + Mval + Mtest .

a. The optimization algorithm uses the training set to find the parameter set . #
that minimizes the loss function .L#.

b. The validation set checks that the NN can generalize to new data.
c. The test set is used to test the NN on data that does not influence the training

of the NN at all.

2. Iterate: For . e = 1, 2, . . . ,Me

a. Let .Mtr = (β − 1)Bs + rb, where.β, rb ∈ N and.rb ≤ Bs and randomly split
the training set into. β separate batches each of size.Bs except the last, which
is of size . rb.

(b) Iterate: For each batch .= 1,2,.. . .,. β

• Update the NN parameters using one step of the optimization algorithm.

(c) With the current parameter set .#(e), calculate the loss value .L#(e) using the
new model .N#(e) and the validation set .{U in

ml
,Uout

ml
}Mval
l=1 as the input into the

model (see (2)).
(d) If .L#(e) < L#(i) for all .i = 1, . . . , e − 1, set .# = #(e), i.e. if this loss value

is less than the loss value at the end of every other epoch before it, update. #.

Remark 1 Finding good hyperparameters is often done by running multiple trials of
the training algorithm using different hyperparameters and identifying which results
in the best outcome.

Simulating Partial Differential Equations with Neural Networks 43

Remark 2 We will use the PyTorch [7] machine learning framework for all the NN
models in this paper. The initial parameters in the set.#(0) are the random parameters
set by PyTorch.

3 Simulating PDEs with the Help of Neural Networks

In this section, we assume that Eq. (1) is discretized using a finite-volume (FV)
approach and demonstrate how its numerical solution can be evolved in time using
NNs. For the rest of this section, we consider (1) in one spatial dimension (.D = 1),
but note that the method is very similar for other dimensions.

3.1 The Finite-Volume Method

Consider the one-dimensional (1-D) version of the system (1) rewritten as

.U t + H(U)x = 0, H(U) = F(U) − εU x , (4)

Assume that the computational domain is divided into uniform cells. C j = (x j− 1
2
, x j+ 1

2
)

of size.!x centered at.x j with.x j+ 1
2
− x j− 1

2
≡ !x . Then, the computed discrete quan-

tities are the cell averages, .U j (t) ≈ 1
!x

∫
C j

U(x, t) dx , that are evolved in time by
solving the following system of ODEs:

.
d
dt

U j (t) = −
F j+ 1

2
(t) − F j− 1

2
(t)

!x
, (5)

where .F j+ 1
2
are numerical fluxes across cell interfaces .x j+ 1

2
. The numerical fluxes

.F j+ 1
2
in (5) are typically computed using point values of the computed solution at

the cell interfaces, that is,.F j+ 1
2
= F (U−

j+ 1
2
,U+

j+ 1
2
), where.U±

j+ 1
2

≈ U(x j+ 1
2
± 0, t),

and the accuracy of the the method depends on the accuracy with which these point
values are reconstructed. Finally, the semi-discrete FV scheme in (5) is a system
of ODEs, which is to be integrated numerically by an accurate ODE solver with a
suitable time step .!t , chosen to satisfy a proper CFL stability condition.

3.2 Time-Stepping Neural Network

In this section, a time stepping NN, .F# : RN f ×Ne → RNe to solve (5) numeri-
cally is introduced. The NN is trained such that for stencils of size .N f in the
spatial domain,.F#(U

n
j+N f /2, ...,U

n
j−N f /2+1) ≈ F n

j+ 1
2
, where.U

n
j+N f /2 is the numer-

44 A. Chertock and C. Leonard

ical solution at time .t = tn and .# is the NN’s internal parameter set. Denote
.F̂n

j+ 1
2
:= F#x (U

n
j+N f /2, ...,U

n
j−N f /2+1) and set

. Ûn+1
j (#) = Ū

n
j − !t

F̂n
j+ 1

2
− F̂n

j− 1
2

!x
.

The NNs are trained to find the parameter sets .# such that .Ûn+1
j ≈ Ū

n+1
j .

To prepare the neural network for training, it’s essential to gather the data it
will learn from. To do so, assume the initial condition to (1) is some parame-
terized function, .U0(x; p̂) with parameters . p̂ = [p̂1, . . . , p̂Np]. Randomly draw
.Ns parameter vectors . p̂i , i = 1 . . . , Ns, from a uniform distribution, with each
parameter . p̂iℓ ∼ U[αℓ,βℓ), .i = 1, . . . , Ns and .ℓ = 1, . . . , Np. With the .Ns initial
conditions, simulate the solution of (1) for .Nt time steps, using highly accurate
solvers to collect data at discrete points in space and time. To collect data, assume
there are ’sensors’ in the spatial domain, which collect stencil data located around
the discrete points for every time step of the simulation. Then, collect the data
.U

n
js+α, α = −N f /2, . . . , N f /2, s = 1, . . . , S, n = 0, . . . , Nt at. S sensor locations

.{x js }Ss=1.
Once the data is collected, train the NNs to minimize a loss function of the form

.L# =
M∑

m=1

∥Ûnm+1, p̂im

jm −U
nm+1, p̂im

jm ∥1 + µ

M∑

m=1

∥Ûnm+1, p̂im

jm ∥1, (6)

where .∥ · ∥1 is the .l1 norm, and the term on the right is a regularization term

with constant . µ used to help stabilize the numerical method. Here, .Ûnm+1, p̂im

jm and

.U
nm+1, p̂im

jm correspond to the NN solution and reference solution, respectively, from
the . mth data in our data set, where .nm ∈ {0, . . . , Nt − 1}, . jm ∈ {1, . . . , Nx }, and
.im ∈ {1, . . . , Ns}.

4 Numerical Examples

In this section, we illustrate the performance of the method described above when
applied to a 1-D scalar nonlinear equation, as well as a two-dimensional (2-D) non-
linear system of equations.

To train the NNs, a feedforward NN with four hidden layers is used, alternating
between fully connected and convolutional layers. For each NN, the convolutional
layers have a kernel of length . 5. We use .M = 200,000 data points for the NNs,
splitting it into training, testing, and validation sets with sizes of .Mtrain = 120,000,
.Mtest = 40,000, and.Mval = 40,000 for each of the respective sets. During the train-
ing procedure, a batch size of 32 is used and the NNs are trained for 1000 epochs

Simulating Partial Differential Equations with Neural Networks 45

using the Adam optimizer [7] with an initial learning rate of .10−4. The loss function
for our training algorithm is the one given in (6) with .µ = 0.1. The only changes
between the two examples are the number of nodes for each fully connected layer
and the number of inputs and outputs for the NN. We will state these values in the
section of their respective examples.

To collect accurate data to train the NN with, we compute the numerical solution
using the second-order semi-discrete central-upwind (CU) scheme from [4] on a
fine grid with.Ñx = mx Nx , where.mx > 1 and then map the fine grid solution to the
coarser grid the NN is trained on.

Once the NN is trained, to simulate the solution from time. tn to time.tn+1, we use
all the appropriate stencils from the solution

. Ûn = [Ûn
1, . . . , Û

n
Nx
] ∈ RNx ,

as one input batch into the NN, .F#. Thus we benefit from the machine learning
libraries’ parallelization capabilities, instead of looping through the data points man-
ually to calculate every flux value.

4.1 Burgers Equation

In this example, we consider the 1-D viscous Burgers equation with .U = u and
.F(U) = 1

2u
2 in (4), subject to the initial conditions

.u(x, 0) = a0 + a1 cos(x)+ b1 sin(x), (7)

where .a0, a1, b1 ∈ [−1, 1), and .ε = 0.01. To collect training data for our NN,
the computational domain .x ∈ [−π,π] is discretized into .Nx = 100 cells of uni-
form size .!x = 2π

Nx
. We then simulate .Ns = 1000 solutions where the parameters

.ai0, a
i
1, b

i
1 ∼ U[−1, 1), .i = 1, . . . , Ns , are used to define the initial conditions. To

simulate the data, we use a fine grid with.Ñx = 1000 using the second-order semidis-
crete CU scheme [4] for spatial discretization and the IMEX-SSP2(3,3,2) method
[6] for time integration of the ODE system (5). We ran the simulation for . Nt = 500
time steps collecting the data at every.tn = n!t , with.!t = 0.02 (note that this time
step satisfied the CFL condition on the known solution for all steps. To train the NN,

we collect the data .un, p̂
i

j,in = [un, p̂
i

j−2,u
n, p̂i

j−1,u
n, p̂i

j ,un, p̂
i

j+1, ū
n, p̂i

j+2], un+1, p̂i

j,out = ūn+1, p̂i

j , for

. j = 10, 20, . . . , 90 and .n = 0, . . . Nt − 1, where .ūn, p̂ij is the cell average approxi-
mation at .(x j , tn) of the . i th simulation. Note that .{x10, x20, . . . , x90} are our sensor
locations.

We use.80 nodes for each fully connected layer for this NN. The number of inputs
into the NN is . 4 data points around the cell interfaces and only one output, the NN
flux around that cell interface.

46 A. Chertock and C. Leonard

t NN CU Scheme
2 0.0013 0.0018
4 0.0017 0.0045
6 0.0015 0.0044
8 0.0017 0.0039
10 0.0018 0.0034

Fig. 1 Burgers equation: Solution computed with initial condition . u0 (x) = 0.9 − 0.2 cos(x)+
0.4 sin(x) (left) and relative. l1 errors for both NN and CU scheme (right).

In Fig. 1, we plot the solution computed at time .t = 10 with the initial data cor-
responding to .(a0, a1, b1) = (0.9,−0.2, 0.4) in (7) by both the NN approach and
CU scheme, along with the reference solution computed by the latter on a finer
grid. As one can see, the NN solution lines up very well with the reference solution
and can even produce a more accurate resolution near the sharp slope than the CU
scheme. The run time for the NN solution is.0.392 seconds with a constant time step
.!t = 0.02. The run time for the CU solution is .0.602 when implemented with a
variable time step determined by the CFL condition and.0.653 when using the same
fixed time step as in the NN simulations. In Fig. 1, we also show the relative. l1 errors
for the CU scheme and the NN method when the numerical solutions computed by
both approaches are compared with the reference solution.

As we can see, the NN can produce an accurate result when the initial condition
is the same as the initial condition in the training data. Below we illustrate that
our method can be generalized to initial conditions that look different from those
in the training data. We consider two different scenarios. In both scenarios, we use
the same NN used to produce the example in Fig. 1; thus, the NN is trained with
the initial data of the form (7). The first initial condition we consider is a periodic
Gaussian function with a period of.2π , on the computational domain.[−π,π]. Thus,
it is smooth, just like the initial conditions of the training data. Another example is
a piece-wise constant function, where the solution maintains a sharp slope.

From Fig. 2, we can see that our method can generalize to new initial conditions.
This is because the NN does not look at the values of the equation on the whole
computational domain but instead uses only local values for its input. Thus, our
method should work if the local values come from the same distribution as the
training data. As a result, our method can simulate the solution for a wider range of
initial conditions than the initial conditions it is trained with.

Simulating Partial Differential Equations with Neural Networks 47

Fig. 2 Burgers equation: Solutions computed at time .t = 10 with initial condition (i) . u0(x) =
0.9e−0.4x2 (left) and (ii) .u0(x) = 0.6 for.x ≤ 0 and.u0(x) = −0.2 for.x > 0 (right).

4.2 2-D Navier-Stokes Equations

In this final example, we consider the 2-D isentropic Navier-Stokes (N-S) equation

.

⎧
⎪⎨

⎪⎩

ρt + (ρu)x + (ρv)y = 0,

(ρu)t + (ρu2 + ργ)x + (ρuv)y = εuxx ,

(ρv)t + (ρuv)x + (ρv2 + ργ)y = εvyy,

x, y ∈ R, t > 0,

subject to the initial condition

. ρ(x, y, 0) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ1, x < 0.5 and y < 0.5,

ρ2, x < 0.5 and y ≥ 0.5,

ρ3, x ≥ 0.5 and y < 0.5,

ρ4, x ≥ 0.5 and y ≥ 0.5

, u(x, y, 0) = v(x, y, 0) = 0,

where .γ = 1.4, .ε = 0.005, and .ρ1, ρ2, ρ3, ρ4 ∈ [.5, 1.5). Here, . ρ, . u, and . v are the
density, .x- and.y-components of a fluid’s velocity, respectively, and we denote. q1 =
ρu, .q2 = ρv, and .U = [ρ, q1, q2]. To simulate the solution, the numerical domain
.[0, 1] × [0, 1] is discretized into.Nx = Ny = 80 cells, and.Ns = 1000 simulations are
run for.Nt = 150 time steps. We collect data after every time step of size.!t = 0.001,
and the parameters for the initial conditions are drawn from the uniform distribution
.ρi
1, ρ

i
2, ρ

i
3, ρ

i
4 ∼ U[0.5, 1.5), for all .i = 1 . . . , Ns . The data collected is

.

Un, p̂i

j,k,inx = [Ūn, p̂i

j−2,k, Ū
n, p̂i

j−1,k, Ū
n, p̂i

j,k , Ū
n, p̂i

j+1,k, Ū
n, p̂i

j+2,k]

Un, p̂i

j,k,iny
= [Ūn, p̂i

j,k−2, Ū
n, p̂i

j,k−1, Ū
n, p̂i

j,k , Ū
n, p̂i

k, j+1, Ū
n, p̂i

k, j+2]
, Un+1, p̂i

j,k,out = Ū
n+1, p̂i

j,k ,

48 A. Chertock and C. Leonard

Fig. 3 Isentropic N-S equations: Density . ρ at .t = 0.15 for the reference solution (left) and NN
solution (right) with.ρ1 = 0.79,.ρ2 = 1.32,.ρ3 = 0.55, and.ρ4 = 0.99.

Table 1 Isentropic N-S equations: relative. l1 errors
t NN CU scheme

.ρ .ρu .ρv .ρ .ρu . ρv

0.05 0.0016 0.0207 0.0497 0.0031 0.0687 0.0700

0.10 0.0019 0.0173 0.0317 0.0035 0.0395 0.0415

0.15 0.0021 0.0147 0.0243 0.0037 0.0289 0.0308

for . j, k = 10, 20, . . . , 70, .n = 0, 1, . . . Nt − 1, and .i = 1, . . . , Ns . Here .Ū
n, p̂i

j,k is
the cell average approximation of .U(x, y, tn; p̂i) over the cell . [x j−1/2, x j+1/2] ×
[yk−1/2, yk+1/2], which is computed using a fine grid simulation with . Ñx = Ñy =
240, using the CU scheme to find the numerical fluxes and the third-order strong
stability-preserving Runge-Kutta method [2] for the time integration.

We use.300 nodes for each fully connected layer of this NN. The number of inputs
into the NN is.12 data points,. 4 for each equation around the cell interfaces, and there
are . 3 outputs, the NN fluxes around the cell interfaces. In Fig. 3, we consider the
case with .ρ1 = 0.79, .ρ2 = 1.32, .ρ3 = 0.55, and .ρ4 = 0.99. The reference solution
is found using a fine grid simulation with .800 × 800 cells. The plots show almost
no discernible difference between the NN and reference solutions. We also compute
relative .l1 errors for the NN and the CU solution when comparing them with the
reference solution and depict the results in Table 1, indicating that the NN solution
is comparable to the solution obtained by the CU scheme. The run time for the NN
solution is.3.45 seconds using the GPU and.7.05 seconds using the CPU. For the CU
scheme, the run time is.36.88 second. The NN solution uses a time step.!t = 0.001,
which, based on observed simulations, is a much smaller time step than the CFL
condition requires. The CU scheme is run using an adaptive time step based on the
CFL condition.

Simulating Partial Differential Equations with Neural Networks 49

5 Conclusion

In this paper, we have shown that we the solution to time-dependent PDEs can be
simulated using only solution data and NNs. Specifically, we demonstrated that a
NN could be used to calculate numerical flux values. Since the flux terms do not
explicitly depend on the solution’s spatial location, data from a small subset of the
computational domain was used to train the NNs. Because the NN only learns from
local data, the presented method can generalize to initial conditions not seen in the
training set, allowing one to solve a wide range of problems.

Acknowledgements The work of A. Chertock and C. Leonard were supported in part by NSF
grants DMS-1818684 and DMS-2208438.

References

1. Chen, Z., Churchill, V., Wu, K., Xiu, D.: Deep neural network modeling of unknown partial
differential equations in nodal space. J. Comput. Phys. 449, Paper No. 110782, 20 (2022)

2. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization
methods. SIAM Rev. 43, 89–112 (2001)

3. Hornik, K., Stinchombe, M., White, H.: Multilayer feedforward networks are universal approx-
imators. Neural Netw. 2, 359–366 (1989)

4. Kurganov, A., Noelle, S., Petrova, G.: Semidiscrete central-upwind schemes for hyperbolic
conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23, 707–740 (2001)

5. Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial
differential equations. IEEE Trans. Neural Netw. 9, 987–1000 (1998)

6. Pareschi, L., Russo, G.: Implicit-Explicit Runge-Kutta schemes and applications to hyperbolic
systems with relaxation. J. Sci. Comput. 25, 129–155 (2005)

7. PyTorch. https://pytorch.org
8. Qin, T., Wu, K., Xiu, D.: Data driven governing equations approximation using deep neural

networks. J. Comput. Phys. 395, 620–635 (2019)
9. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning

framework for solving forward and inverse problems involving nonlinear partial differential
equations. J. Comput. Phys. 378, 686–707 (2019)

