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THE NOVIKOV CONJECTURE, THE GROUP OF VOLUME
PRESERVING DIFFEOMORPHISMS AND

HILBERT-HADAMARD SPACES

Sherry Gong, Jianchao Wu and Guoliang Yu

Abstract. We prove that the Novikov conjecture holds for any discrete group admit-
ting an isometric and metrically proper action on an admissible Hilbert-Hadamard
space. Admissible Hilbert-Hadamard spaces are a class of (possibly infinite-dimen-
sional) non-positively curved metric spaces that contain dense sequences of closed
convex subsets isometric to Riemannian manifolds. Examples of admissible Hilbert-
Hadamard spaces include Hilbert spaces, certain simply connected and non-positi-
vely curved Riemannian-Hilbertian manifolds and infinite-dimensional symmetric
spaces. Thus our main theorem can be considered as an infinite-dimensional ana-
logue of Kasparov’s theorem on the Novikov conjecture for groups acting properly
and isometrically on complete, simply connected and non-positively curved mani-
folds. As a consequence, we show that the Novikov conjecture holds for geometrically
discrete subgroups of the group of volume preserving diffeomorphisms of a closed
smooth manifold. This result is inspired by Connes’ theorem that the Novikov con-
jecture holds for higher signatures associated to the Gelfand-Fuchs classes of groups
of diffeormorphisms.
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1 Introduction

A central problem in manifold topology is the Novikov conjecture. The Novikov
conjecture states that the higher signatures of closed oriented smooth manifolds
are invariant under orientation preserving homotopy equivalences. In the case of
aspherical manifolds, the Novikov conjecture is an infinitesimal version of the Borel
conjecture which states that all closed aspherical manifolds are topologically rigid,
i.e., if another closed manifold N is homotopy equivalent to the given closed aspher-
ical manifold M , then N is homeomorphic to M . To make this precise, recall that
a deep theorem of Novikov says that the rational Pontryagin classes are invariant
under orientation preserving homeomorphisms. Since for aspherical manifolds, infor-
mation about higher signatures is equivalent to that of rational Pontryagin classes,
the Novikov conjecture for closed aspherical manifolds follows from the Borel con-
jecture and Novikov’s theorem.

Noncommutative geometry provides a powerful approach to the Novikov con-
jecture (cf. [Con94, BC88, BCH94, Kas95, Mis74]). The Novikov conjecture follows
from the rational strong Novikov conjecture, which states that the rational Baum-
Connes assembly map is injective. Using this approach, the Novikov conjecture has
been proved when the fundamental group of the manifold is in one of the following
classes:

(1) groups acting properly and isometrically on simply connected and non-positi-
vely curved manifolds (cf. [Kas88]),

(2) groups acting properly and isometrically on Hilbert spaces (cf. [HK01]),
(3) hyperbolic groups (cf. [CM90]),
(4) torsion-free groups acting properly on locally compact buildings (cf. [KS91]),
(5) groups acting properly and isometrically on “bolic”, weakly geodesic metric

spaces of bounded geometry (cf. [KS03]),
(6) groups with finite asymptotic dimension (cf. [Yu98]),
(7) groups coarsely embeddable into Hilbert spaces (cf. [Yu00, Hig00, STY02]),
(8) groups coarsely embeddable into Banach spaces with property (H) (cf. [KY12]),
(9) all linear groups and subgroups of all almost connected Lie groups (cf.

[GHW05]),
(10) mapping class groups (cf. [Ham09, Kid08]), and
(11) Out(Fn), the outer automorphism groups of free groups (cf.

[BGH17]).
In the first three cases, an isometric action of a discrete group Γ on a metric space
X is said to be proper if d(x, g · x) → ∞ as g → ∞ for some (equivalently, all) x in
X.

The next most natural class of groups to study for the Novikov conjecture is
that of groups of diffeomorphisms, which can be highly nonlinear in nature. Connes
[Con86] and Connes-Gromov-Moscovici [CGM93] proved a very striking theorem
that the Novikov conjecture holds for higher signatures associated to Gelfand-Fuchs
classes of groups of diffeomorphisms. The proof of this result is a technical tour de
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force and uses the full power of noncommutative geometry. One important construc-
tion in this proof is the space of metrics on a smooth manifold.

Inspired by this work, we prove the following theorem and apply it to the ra-
tional strong Novikov conjecture for geometrically discrete subgroups of the volume
preserving diffeomorphism group on a closed smooth manifold.

Theorem 1.1. The rational strong Novikov conjecture holds for groups acting prop-
erly and isometrically on an admissible Hilbert-Hadamard space. More precisely, if a
countable discrete group Γ acts properly and isometrically on an admissible Hilbert-
Hadamard space, then the rational Baum-Connes assembly map

μ : K∗(BΓ) ⊗Z Q → K∗(C∗
r Γ) ⊗Z Q

is injective, where BΓ is the classifying space for free and proper Γ-actions, K∗(BΓ)
is the K-homology group of BΓ with compact supports, and K∗(C∗

r Γ) is the K-theory
of the reduced group C∗-algebra of Γ.

Hilbert-Hadamard spaces are a type of non-positively curved (i.e., CAT(0)) met-
ric spaces that include Hilbert spaces, complete connected and simply connected
(possibly infinite-dimensional) Riemannian-Hilbertian manifolds with non-positive
sectional curvature, and certain infinite-dimensional symmetric spaces. The precise
definition of Hilbert-Hadamard spaces is given in Section 3.

We say that a Hilbert-Hadamard space M is admissible if it has an increasing
sequence of closed and convex subsets Mn, whose union is dense in M , such that
each Mn, seen with its inherited metric from M , is isometric to a finite-dimensional
Riemannian manifold. Here a subset is convex if it contains the geodesic segment
between every pair of points in the subset. For example, a Hilbert space is clearly
admissible; so are some interesting infinite-dimensional symmetric spaces (see Sec-
tion 4). Gromov asked the third author when a Hilbert-Hadamard space M is admis-
sible. In particular, two related open questions are whether every infinite-dimensional
symmetric space is admissible and whether every complete connected and simply
connected Riemannian-Hilbertian manifold with non-positive sectional curvature is
admissible.

Theorem 1.1 can be viewed as an infinite-dimensional analogue of the aforemen-
tioned theorem of Kasparov [Kas88] on the Novikov conjecture for groups acting
properly and isometrically on complete, simply connected and non-positively curved
manifolds. In the case of Hilbert spaces, this theorem also follows from [HK01].

Our main theorem can be applied to study the Novikov conjecture for geomet-
rically discrete subgroups of the group of volume preserving diffeomorphisms of a
closed smooth manifold N . More precisely, we fix a density ω on N , which we regard
as a measure on N , which is, in each smooth chart, equivalent to the Lebesgue mea-
sure with a smooth Radon-Nikodym derivative. For an orientable smooth manifold,
a density is just a volume form without its orientation. Each Riemannian metric on
N induces a density in the same way as an inner product on Rn induces a volume
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form on Rn. Let Diff(N, ω) denote the group of diffeomorphisms on N that fix ω. We
remark that, up to isomorphism, the group Diff(N, ω) is independent of the choice
of ω. Indeed, by a result of Moser [Mos65]1, any other density ω′ on N is related to
ω through a diffeomorphism and a rescaling, that is, we have ω′ = k · ϕ∗ω, where k
is a positive number and ϕ∗ω is the push-forward of ω by a suitable diffeomorphism
ϕ. Hence the groups Diff(N, ω) and Diff(N, ω′) are isomorphic (through conjugation
by said diffeomorphism ϕ).

In order to define the concept of geometrically discrete subgroups of Diff(N, ω),
let us fix a Riemannian metric on N and define a length function λ on Diff(N, ω)
by taking, for all ϕ ∈ Diff(N, ω),

λ+(ϕ) =
(∫

N
(log(‖Dϕ‖))2dω

)1/2

and

λ(ϕ) = max
{
λ+(ϕ), λ+(ϕ−1)

}
,

where Dϕ is the Jacobian of ϕ, and the norm ‖ · ‖ denotes the operator norm, com-
puted using the chosen Riemannian metric on N . Intuitively speaking, this length
function measures how much a diffeomorphism ϕ deviates from an isometry in an
L2-sense.

Definition 1.2. A countable subgroup Γ of Diff(N, ω) is said to be a geometrically
discrete subgroup if λ(γ) → ∞ when γ → ∞ in Γ, i.e., for any R > 0, there exists
a finite subset F ⊂ Γ such that λ(γ) ≥ R if γ ∈ Γ\F .

We point out that this notion of geometric discreteness does not depend on the
above choice of the Riemannian metric, even though the length function λ does. The
following result is a consequence of our main theorem.

Theorem 1.3. Let N be a closed smooth manifold and let Diff(N, ω) be the group of
all volume preserving diffeomorphisms of N (for some density ω). Then the rational
strong Novikov conjecture holds for any geometrically discrete subgroup of Diff(N, ω).

Observe that if ϕ ∈ Diff(N, ω) preserves the Riemannian metric we chose in the
definition of λ, then λ(ϕ) = 0. This suggests that geometrically discrete subgroups
of Diff(N, ω) are, in a sense, conceptual antitheses to subgroups of isometries. We
remark that since the group of isometries of a closed Riemannian manifold is a Lie
group, all its countable subgroups satisfy the rational strong Novikov conjecture
by [GHW05]. This gives hope for a unified approach to prove the rational strong
Novikov conjecture for all countable subgroups of Diff(N, ω).

1 Although the main theorem in Moser [Mos65] refers to volume forms, the second footnote on
the first page supplies a remark by Calabi that the result extends to de Rham’s odd forms, which
are what we call densities.
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Theorem 1.3 can be derived from Theorem 1.1 as follows. A key point is to
model the geometry of Diff(N, ω) after a certain infinite-dimensional symmetric
space, which is a natural example of an admissible Hilbert-Hadamard space, thus
allowing us to apply Theorem 1.1. More precisely, Diff(N, ω) acts isometrically on
the infinite-dimensional symmetric space

L2(N, ω, SL(n, R)/ SO(n))

of L2-Riemannian metrics on an n-dimensional closed smooth manifold N with a
fixed density ω. This infinite-dimensional symmetric space can be defined as the
completion of the space of all bounded Borel maps from N to SL(n, R)/ SO(n) with
regard to the following metric:

d(ξ, η) =
(∫

y∈N
(dX(ξ(y), η(y)))2 dω(y)

) 1
2

for two such maps ξ and η ,

where dX is the standard Riemannian metric on the symmetric space
X = SL(n, R)/ SO(n). Observe that this symmetric space parametrizes all inner
products on Rn with a fixed volume form. Thus Riemannian metrics on N that
induce ω correspond to the smooth sections of an X-bundle over N . Upon taking
a Borel trivialization of this bundle, these smooth sections are embedded into the
space of all bounded Borel maps from N to X, and thus also into L2(N, ω, X), with
a dense image. This explains the terminology “L2-Riemannian metrics”.

The fact that L2(N, ω, X) constitutes a Hilbert-Hadamard space essentially fol-
lows from the fundamental point that X is non-positively curved as a symmetric
space. This construction is key to Theorem 1.3 since the group Diff(N, ω) acts iso-
metrically on L2(N, ω, X) in the same way as it permutes Riemannian metrics on N
(Construction 4.5). For a countable subgroup Γ of Diff(N, ω), the property of being
geometrically discrete corresponds precisely to the properness of the natural action
Γ � L2(N, ω, X) (cf. Proposition 4.12). This allows us to invoke Theorem 1.1.

We remark on two aspects in which our paper differs from previous known results
on the rational strong Novikov conjecture:

(1) Geometrically, most previous cases can be proved by coarse embeddings into
Hilbert spaces; however, groups of diffeomorphisms can be highly nonlinear
in nature, and Hilbert spaces seems inadequate to model the large-scale ge-
ometry of these groups (see Remark 4.13).

(2) K-theoretically, most previous cases can be proved by Kasparov’s Dirac-dual-
Dirac method; however, our proof takes a different route since we do not know
how to construct a Dirac element for infinite-dimensional curved spaces.

To overcome these difficulties in our situation, we make use of the following new
technical tools in the proof of Theorem 1.1:

(1) A construction of a C∗-algebra A(M) associated to the Hilbert-Hadamard
space M (see Section 5 and, in particular, Definition 5.14), which generalizes
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the algebra A(H) constructed by Higson and Kasparov [HK01] for a Hilbert
space H (cf. Remark 7.7) and is analogous to the one constructed by Kasparov
and Yu [KY12] for Banach spaces with property (H).

(2) A technique of deforming any isometric action on a Hilbert-Hadamard space
M into a trivial action on a “bigger” (typically infinite-dimensional) Hilbert-
Hadamard space (Proposition 3.18). This deformation technique allows us
to show the induced action on the C∗-algebra A(M) can be “trivialized” in
KK-theory (see Section 8). We remark that this deformation technique is
only accessible in the framework of infinite-dimensional spaces.

(3) KK-theory with real coefficients, developed recently by Antonini, Azzali, and
Skandalis [AAS14, AAS18]. This theory allows us to deal with groups with
torsion. See Lemma 2.9.

This paper is organized as follows. In Section 3, we introduce the notion of
(admissible) Hilbert-Hadamard spaces and prove that any isometric action on a
Hilbert-Hadamard space can be deformed into a trivial action on a “bigger” Hilbert-
Hadamard space. The latter procedure makes use of the general construction of
a continuum product of a Hilbert-Hadamard space over a finite measure space,
a topic that we revisit in the appendix (Section 9) in order to complete a few
technical proofs. In Section 4, we focus on our main example of admissible Hilbert-
Hadamard spaces, namely the space of L2-Riemannian metrics of a smooth manifold
with a fixed volume form (or more generally for non-orientable manifolds, a fixed
density), and discuss how volume-preserving (or density-preserving) diffeomorphisms
give rise to isometries of this Hilbert-Hadamard space and when a group of these
diffeomorphisms acts metrically properly on the space of L2-Riemannian metrics.
In Section 5, we construct a noncommutative C∗-algebra A(M) from a Hilbert-
Hadamard space M , which plays a key role in the proof of our main theorem. A
discussion of how isometries of M act on A(M) takes place in Section 6, and one
about the K-theory of A(M) ensues in Section 7. Finally, Section 8 completes the
proof of our main theorem.

2 Preliminaries

2.1 C∗-algebras. A basic tool in the operator-theoretic approach to the Novikov
conjecture is the notion of a C∗-algebra, defined to be a Banach space over the field C

of complex numbers, equipped with a compatible product structure and a conjugate-
linear involutive self-map, called the adjoint or the ∗-operation, satifying

(1) ‖ab‖ ≤ ‖a‖ ‖b‖,
(2) (ab)∗ = b∗a∗, and
(3) ‖aa∗‖ = ‖a‖2 (the C∗-identity)

for all elements a and b. Removing the role of the norm gives us the notion of a
∗-algebra.
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A C∗-algebra is unital if it contains a (necessarily unique) multiplicative identity,
denoted by 1. It is called separable if it contains a countable dense subset. An element
a in a C∗-algebra A is normal if aa∗ = a∗a, self-adjoint if a = a∗, and unitary if
A is unital and aa∗ = a∗a = 1. The center Z(A) of a C∗-subalgebra consisting of
elements that commute with every other element in A. First examples of C∗-algebras
include:

• B(H), the algebra of bounded linear operators from a complex Hilbert space H
into itself, equipped with operator multiplication and the operation of taking
Hermitian adjoints, and

• C0(X) for a locally compact Hausdorff space X, consisting of all continuous
functions f from X to C that vanish at infinity (i.e., given any ε > 0, there
is a compact set K ⊂ X such that f(x) < ε for x ∈ X\K) equipped with the
pointwise multiplication and conjugation.

A fundamental result of Gelfand and Naimark asserts that every C∗-algebra can be
realized as a closed subalgebra of B(H) that is closed under taking adjoint operators,
and moreover, every commutative C∗-algebra A can also be realized as C0(X) for
an up-to-homeomorphism unique locally compact Hausdorff space X, which can be
identified with the dual Â of the commutative C∗-algebra A, defined to be the space
of maximal ideals of A with the hull-kernel topology. A consequence of this is that
∗-homomorphisms between C∗-algebras, i.e., maps that preserve multiplication and
the ∗-operation, are norm semi-decreasing. It is also through the lens of this result
that the study of noncommutative C∗-algebras is sometimes called noncommutative
topology.

Observe that given a normal element a in a C∗-algebra A, the C∗-subalgebra
generated by a is commutative. It can be identified with C0(X\{0}) where X is
a closed subset of C called the spectrum of a, the element a corresponds to the
inclusion map X ↪→ C, and C0(∅) is understood to be {0}. Given a continuous
function f : X → C, we denote its corresponding element in A by f(a). Such a
correspondence is called continuous functional calculus.

In this paper, we make use of the following elementary constructions of C∗-
algebras:

(1) Generalizing the construction of C0(X), we define, for a C∗-algebra A and a
locally compact space X, the C∗-algebra C0(X, A) to consist of all continuous
functions f from X to A that vanish at infinity, equipped with the pointwise
algebraic and ∗-operations. This construction is covariant in A with respect to
∗-homomorphisms and contravariant in X with respect to proper continuous
maps, by means of composition of maps. When X is compact, the vanishing
condition is vacuous and thus we simply write C(X, A) (or simply C(X) when
A = C).

(2) Fix a discrete group Γ. Given a C∗-algebra A, embedded as a subalgebra
of B(H), and a (left) action α : Γ � A (i.e., a homomorphism from Γ to
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Aut(A), the group of ∗-automorphisms of A) we can construct the reduced
crossed product A �r,α Γ as a C∗-subalgebra of B(�2(G) ⊗ H) generated by

• the unitaries ug : δh ⊗ ξ �→ δgh ⊗ ξ, for g ∈ Γ, and
• the operators λa : δh ⊗ ξ �→ δh ⊗ α−1

h (a) · ξ, for a ∈ A,
where δh is the Dirac delta function at h ∈ Γ and ξ ∈ H. The generators thus
satisfy the covariance condition ugλau

∗
g = λαg(a). Up to ∗-isomorphism, this

construction does not depend on the embedding A ↪→ B(H). This construc-
tion is covariant in A with respect to Γ-equivariant ∗-homomorphisms. On the
other hand, we also construct the maximal crossed product A�αΓ as the com-
pletion of the ∗-algebra generated by the ug’s and λa’s by the largest possible
C∗-norm, that is, the norm of an element is given by supremum of the norms
of its images under all possible ∗-homomorphisms into B(K) for all possible
Hilbert spaces K. This construction is covariant not only in A with respect
to Γ-equivariant ∗-homomorphisms, but also more generally in both variables
with respect to pairs of the form (ϕ, ψ) where ϕ is a ∗-homomorphism, ψ is
a group homomorphism and the pair is equivariant in the sense that it inter-
twines the group actions. We often drop α from the notation if the action is
understood, and we view A as embedded in A �r Γ and A � Γ by identifying
λa with a. A prominent special case is when A = C, whereby we write C∗

r Γ
for C �r Γ and call it the reduced group C∗ -algebra of Γ.

(3) Given a real Hilbert space H, we write ClCH for the complex Clifford C∗-
algebra generated by H. More precisely, consider the antisymmetric Fock
space

Λ∗HC :=
∞⊕

k=0

ΛkHC

where ΛkHC, the k-th complex exterior power of H, is defined to be the
complexification of the quotient of the real tensor vector space

⊗k H by
equating ξ1 ⊗ · · · ⊗ ξk with sgn(σ) ξσ(1) ⊗ · · · ⊗ ξσ(k) for any k-permutation σ,
with the equivalence class denoted by ξ1 ∧ · · · ∧ ξk. For each η ∈ H, we may
define its creation operator C(η) : Λ∗HC → Λ∗HC by

C(η)(ξ1 ∧ · · · ∧ ξk) = η ∧ ξ1 ∧ · · · ∧ ξk .

If we define a self-adjoint operator

η̂ := C(η) + C∗(η)

for each η ∈ H, then we have the relation

η̂ξ̂ + ξ̂η̂ = 2 〈η, ξ〉 (2.1)

for any η, ξ ∈ H. In particular,

η̂2 = ‖η‖2 , (2.2)
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which is a scalar multiplication. The (complex) Clifford algebra ClC(H) of
H is the subalgebra of B(Λ∗HC) generated by {η̂ : η ∈ H}. We remark
that the assignment H �→ ClCH is functorial with regard to isometric lin-
ear embeddings of Hilbert spaces and ∗-homomorphisms and it also pre-
serves direct limits in the respective categories. In particular, the involutive
isometry on H that takes each ξ to −ξ induces a distinguished involutive
∗-automorphism of ClC(H), which turns the latter into a graded C∗-algebra.
All ∗-homomorphisms induced from isometric linear embeddings of Hilbert
spaces also preserve the grading.

The first construction above provides a prototype for the following notion. Given
a locally compact Hausdorff space X, we say a C∗-algebra B is an X-C∗-algebra
if there is a continuous map from Ẑ(B), the dual of the center of B, to X. If, in
addition, a group Γ acts on B by automorphisms and on X by homeomorphisms and
the map Ẑ(B) → X is equivariant under the induced action of Γ on Ẑ(B), then we
say B is a Γ-X-C∗-algebra. For example, C0(X, A) is an X-C∗-algebra and if Γ acts
on both X and A, then C0(X, A), with the diagonal action (g · f)(x) = g · f(g−1 ·x),
becomes a Γ-X-C∗-algebra. Given an X-C∗-algebra B and x ∈ X, the fiber of B
at x is given by the quotient B/ (C0(X\{x}) · B). This is useful since, for example,
to prove an X-C∗-subalgebra B′ of B is equal to B, we just need to check that B′

maps surjectively onto each fiber.
From a noncommutative geometric point of view, a desirable condition for an

action of a discrete group Γ on a locally compact Hausdorff space X is being proper,
that is, for any compact subset K in X, we have K∩gK = ∅ for all but finitely many
g ∈ Γ. This topological notion of proper actions coincides with the metric notion
mentioned before Theorem 1.1 in the case of an isometric action on a proper metric
space, i.e., one where all the closed balls are compact. We say that a Γ-C∗-algebra
is proper if the induced action of Γ on the dual of its center is proper.

Two ∗-homomorphisms ϕ0, ϕ1 : A → B are called homotopic if there is a ∗-
homomorphism ψ : A → C([0, 1], B) such that for any a ∈ A and i = 0, 1, the image
ϕi(a) is the evaluation of ψ(a) at i ∈ [0, 1]. Two C∗-algebras A and B are called
homotopy-equivalent if there are ∗-homomorphisms ϕ : A → B and ψ : B → A, called
homotopy-equivalences, such that ψ◦ϕ and ϕ◦ψ are homotopic to the identity maps
on A and B, respectively. The notion of equivariant homotopy equivalence is defined
similarly.

We refer to reader to [Dav96] for a detailed account of the C∗-algebra theory.

2.2 KK-theory. An extremely potent tool in noncommutative geometry, par-
ticularly in relation with the Novikov conjecture, is Kasparov’s equivariant KK-
theory (cf. [Kas88, Kas95]), which associates to a locally compact and σ-compact
group Γ and two separable Γ-C∗-algebras A and B (meaning that Γ acts on them)
the abelian group KKΓ(A, B). The group KKΓ(A, B) contains, among other things,
elements [ϕ] induced from equivariant ∗-homomorphisms ϕ : A → B. It is contravari-
ant in A and covariant in B, both with respect to equivariant ∗-homomorphisms.
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It is equivariantly homotopy-invariant, stably invariant, preserves equivariant split
exact sequences, and satisfies Bott periodicity, i.e., there are natural isomorphisms

KKΓ(A, B) ∼= KKΓ(Σ2A, B) ∼= KKΓ(ΣA, ΣB) ∼= KKΓ(A, Σ2B)

where ΣiA stands for C0(Ri, A) with i ∈ N and Γ acting trivially on R. These
properties ensure that a short exact sequence 0 → J → E → A → 0 of Γ-C∗-
algebras and equivariant ∗-homomorphisms induces a six-term exact sequence in the
second variable, and with extra conditions such as that E is a nuclear (in particular,
commutative) proper Γ-C∗-algebra, it also induces a six-term exact sequence in the
first variable (see [KS03, Appendix] and [GHT00, Chapter VI]), though this fails
in general ([Ska91]). When one of the two variables is C, equivariant KK-theory
recovers

• equivariant K-theory: KKΓ(C, B) ∼= KΓ
0 (B);

• equivariant K-homology: KKΓ(A, C) ∼= K0
Γ(A).

Remark 2.1. The definition of equivariant KK-theory is usually tailored to the
theory of graded C∗-algebras. However, in this paper, when we take the equivariant
KK-groups of graded C∗-algebras, we disregard their gradings and treat them as
trivially graded.

The most striking feature that gives equivariant KK-theory its power is the
Kasparov product, which gives a group homomorphism

KKΓ(A, B) ⊗Z KKΓ(B, C) → KKΓ(A, C)

for any three separable Γ-C∗-algebras A, B, and C. The Kasparov product of two ele-
ments x ∈ KKΓ(A, B) and y ∈ KKΓ(B, C) is often denoted by x⊗By. The Kasparov
product is associative. Moreover, for an equivariant ∗-homomorphism ϕ : A → B,
the group homomorphisms

[ϕ]⊗B : KKΓ(B, C) → KKΓ(A, C) and ⊗A [ϕ] : KKΓ(D, A) → KKΓ(D, B)

induced by taking Kasparov products with [ϕ] ∈ KKΓ(A, B) coincide with the
homomorphisms given by the functorial properties of equivariant KK-theory.

When the acting group Γ is the trivial group, we simply write KK(A, B) for
KKΓ(A, B) and drop the word “equivariant” everywhere. There is a forgetful functor
from KKΓ to KK.

Remark 2.2. In some important special cases, we can turn an equivariant KK-
group KKΓ(A, B) into a related non-equivariant KK-group, which is often much
easier to study.

(1) When Γ is a countable discrete group and its action on B is trivial, it is imme-
diate from the definition that there is a natural isomorphism KKΓ(A, B) ∼=
KK(A � Γ, B) where A � Γ is the maximal crossed product. In particular, if
A = C0(X) for a locally compact second countable space X and Γ acts freely
and properly on X, then since C0(X) � Γ is stably isomorphic to C0(X/Γ),
we have a natural isomorphism KKΓ(C0(X), B) ∼= KK(C0(X/Γ), B).
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(2) When Γ is a countable discrete group and A = C0(Γ, D) with an action of Γ by
translation on the domain Γ, there is a natural isomorphism KKΓ(C0(Γ, D),
B)

∼=−→ KK(D, B) given by first applying the forgetful functor and then
composing with the embedding D ∼= C({1Γ}, D) ↪→ C0(Γ, D).

In this paper, we will focus on the case when the first variable A in KKΓ(A, B)
is commutative and view the theory as a homological theory on the spectrum of
A. In fact, we will need a variant of it that may be thought of as homology with
Γ-compact support. Recall that a subset of a topological space X, on which Γ acts,
is called Γ-compact if it is contained in {g · x : g ∈ Γ, x ∈ K} for some compact
subset K in X.

Definition 2.3. Given a countable discrete group Γ, a Hausdorff space X with a
Γ-action, a Γ-C∗-algebra B, and i ∈ N, we write KKΓ

i (X, B) for the inductive
limit of the equivariant KK-groups KKΓ

(
C0(Z), C0(Ri, A)

)
, where Z ranges over

Γ-invariant and Γ-compact subsets of X and A ranges over Γ-invariant separable
C∗-subalgebras of B, both directed by inclusion.

We write KΓ
i (X) for KKΓ

i (X, C) and call it the Γ-equivariant K-homology of X
with Γ-compact supports.

It is clear from Bott periodicity that there is a natural isomorphism KKΓ
i (X, B) ∼=

KKΓ
i+2(X, B). Thus we can view the index i as an element of Z/2Z. Also note that

this construction is covariant both in X with respect to continuous maps and in
B with respect to equivariant ∗-homomorphisms. Partially generalizing the func-
toriality in the second variable, the Kasparov product gives us a natural product
KKΓ

i (X, B)⊗ZKKΓ(B, C) → KKΓ
i (X, C) for any separable Γ-C∗-algebras B and C

(the separability condition can be dropped by extending the definition of KKΓ(B, C)
through taking limits).

We may think of KKΓ
i (−, B) as an extraordinary homology theory in the sense

of Eilenberg-Steenrod. In the non-equivariant case, the coefficient algebra B plays a
rather minor role in this picture.

Lemma 2.4. For any CW-complex X, any C∗-algebra B, and any i ∈ Z/2Z, there
is a natural isomorphism

KKi(X, B) ⊗Z Q ∼=
⊕

j∈Z/2Z

Kj(X) ⊗Z Ki−j(B) ⊗Z Q.

This follows from a version of the Künneth Theorem [RS87]. For the sake of
completeness, we provide a brief proof.

Proof. For j ∈ Z/2Z, there are natural homomorphisms

Kj(X) ⊗Z Ki−j(B) ∼= KKj(X, C) ⊗Z KKi−j(C, B) → KKi(X, B)

given by the Kasparov product. We claim that taking the direct sum of these two ho-
momorphisms gives us the desired isomorphism after rationalization (i.e., tensoring
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by Q). This is clear when X is a point, since K0(X) ∼= Z and K1(X) ∼= 0. The ho-
motopy invariance of KK-theory thus generalizes the isomorphism to the case when
X is contractible. A standard cutting-and-pasting argument using Mayer-Vietoris
sequences and the five lemma then generalizes it to the case when X is a finite
CW-complex. Here it becomes clear that the summand with j = 1 is needed for di-
mension shifts and rationalization is needed to preserve exactness after taking tensor
products with K∗(B). The general case follows by taking a direct limit. ��

Given a countable discrete group Γ, following [BCH94], we use the term proper
Γ-space for a metrizable space X with a proper Γ-action such that the quotient space
is again metrizable. It is a free and proper Γ-space if the action is, in addition, free.
Proper Γ-spaces satisfy the so-called slice theorem. We shall only need the following
special case.

Lemma 2.5. Let X be a free and proper Γ-space. Then every point x ∈ X has a
neighborhood U such that {g · U : g ∈ Γ} is a family of disjoint sets.

Let EΓ denote a universal space for free and proper Γ-actions, that is, EΓ is a free
and proper Γ-space such that any free and proper Γ-space X admits a Γ-equivariant
continuous map into EΓ that is unique up to Γ-equivariant homotopy. Let BΓ be the
quotient of EΓ by Γ. Similarly, EΓ denotes a universal space for proper Γ-actions.
These constructions are unique up to (Γ-equivariant) homotopy equivalence, and
thus there is no ambiguity in writing KKΓ

i (EΓ, B), KKi(BΓ, B) and KKΓ
i (EΓ, B)

for a Γ-C∗-algebra B. By definition, there is a Γ-equivariant continuous map EΓ →
EΓ, regardless of the choice of models.

The reduced Baum-Connes assembly map for a countable discrete group Γ and a
Γ-C∗-algebra B is a group homomorphism

μ : KKΓ
i (EΓ, B) → Ki(B �r Γ) .

It is natural in B with respect to Γ-equivariant ∗-homomorphisms or more gen-
erally with respect to taking Kasparov products, in the sense that any element
δ ∈ KKΓ(B, C) induces a commuting diagram

KKΓ
i (EΓ, B)

μ ��

δ
��

Ki(B �r Γ)

δ�rΓ

��
KKΓ

i (EΓ, C)
μ �� Ki(C �r Γ)

(2.3)

for an induced group homomorphism δ �r Γ.
The case when B = C is of special interest. The rational strong Novikov conjecture

asserts that the composition

KΓ
i (EΓ) → KΓ

i (EΓ)
μ→ Ki(C∗

r Γ)
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is injective after tensoring each term by Q. It implies the Novikov conjecture, the
Gromov-Lawson conjecture on the nonexistence of positive scalar curvature for as-
pherical manifolds (cf. [Ros83]) and Gromov’s zero-in-the-spectrum conjecture.

On the other hand, it has proven extremely useful to have the flexibility of a
general Γ-algebra B in the picture, largely due to the following key observation,
which is based on a theorem of Green [Gre82] and Julg [Jul81] and an equivariant
cutting-and-pasting argument on B.

Theorem 2.6 (cf. [GHT00, Theorem 13.1]). For any countable discrete group Γ,
and a Γ-C∗-algebra B, if B is a proper Γ-X-C∗-algebra for some locally compact
Hausdorff space X, then the reduced Baum-Connes assembly map

μ : KKΓ
i (EΓ, B) → Ki(B �r Γ)

is a bijection. ��
This is the basis of the Dirac-dual-Dirac method (cf. [Kas88, Kas95]; also see

[Val02, Chapter 9]), which was applied very successfully to the study of the Baum-
Connes assembly map. It is based on the construction of a proper Γ-X-C∗-algebra B
together with KK-elements α ∈ KKΓ(B, C) and β ∈ KKΓ(C, B) such that β ⊗B α
is equal to the identity element in KKΓ(C, C). When this is possible, Theorem 2.6
allows us to conclude that the Baum-Connes assembly map for Γ is an isomorpism
and the rational strong Novikov conjecture for Γ follows. Although we do not directly
apply this method to prove Theorem 1.1, our strategy still calls for a proper Γ-X-
C∗-algebra B and a KK-element β ∈ KKΓ(C, B).

It is not hard to see that whenever Γ is infinite and B is a proper Γ-X-C∗-
algebra, there is no Γ-equivariant ∗-homomorphism from C to B. Thus one must look
beyond Γ-equivariant ∗-homomorphisms in order to construct a suitable element β ∈
KKΓ(C, B). Many of such elements come from Γ-equivariant asymptotic morphisms
(cf. [CH90, GHT00]). We will only make use of a special type of such morphisms,
given below.

Construction 2.7. Let B be a Γ-C∗-algebra and let ϕt : C0(R) → B be a family of
∗-homomorphisms indexed by t ∈ [1, ∞) that is

(1) pointwise continuous, i.e., t �→ ϕt(f) is continuous for any f ∈ C0(R), and
(2) asymptotically invariant, i.e., limt→∞ ‖g · (ϕt(f)) − ϕt(f)‖ = 0 for any f ∈

C0(R) and any g ∈ Γ.

Then by [HK01, Definition 7.4], there is an element

[(ϕt)] ∈ KKΓ
0 (C0(R), B) ∼= KKΓ

1 (C, B)

whose image under the forgetful map

KKΓ
0 (C, C0(R, B)) → KK(C, C0(R, B)) ∼= KK(C0(R), B)

is equal to the element [ϕt] induced by the homomorphism ϕt, for any t ∈ [0, ∞).
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To conclude our preparation of equivariant KK-theory, we recall the construction
of equivariant KK-theory with real coefficients, recently introduced by Antonini,
Azzali and Skandalis.

Construction 2.8 (cf. [AAS16]). The equivariant KK-theory with real coefficients
is a bivariant theory that associates, to each pair (A, B) of Γ-C∗-algebras, the groups

KKΓ
R
(A, B) = lim−→

N

KKΓ(A, B ⊗ N)

where ⊗ stands for the minimal tensor product and the inductive limit is taken over
all II1-factors N with unital ∗-homomorphisms as connecting maps. This theory is
contravariant in the first variable and covariant in the second, and there is a natural
map from KKΓ(A, B) ⊗Z R to KKΓ

R
(A, B) since K0(N) ∼= R for any II1-factor N .

This map is an isomorphism when Γ is trivial, A = C and B is in the bootstrap
class (i.e., the class N in [RS87]). Moreover, the Kasparov product extends to this
theory.

Given a discrete group Γ, a Hausdorff space X with a Γ-action, and a C∗-
algebra B with a Γ-action, we define KKΓ

R,∗(X, B) in the same way as in Construc-
tion 2.3. Then the universal coefficient theorem allows us to identify KKR,∗(X, C)
with K∗(X) ⊗Z R in a natural way.

The key reason we consider KK-theory with real coefficients is the following
convenient fact.

Lemma 2.9. For any discrete group Γ and Γ-C∗-algebra A, the homomorphism

π∗ : KKΓ
R,∗(EΓ, A) → KKΓ

R,∗(EΓ, A) ,

which is induced by the natural Γ-equivariant continuous map π : EΓ → EΓ, is
injective.

Proof. It follows from [AAS18, Section 5] that the above homomorphism gives rise
to an isomorphism between KKΓ

R,∗(EΓ, A) and KKΓ
R,∗(EΓ, A)τ , which is a subgroup

of KKΓ
R,∗(EΓ, A) called its τ -part. ��

2.3 Metric geometry. Let us give some background on metric geometry, in
particular concerning the tangent cone of a metric space and properties of CAT(0)
spaces. This is a summary of some of the material in [BBI01], most notably, Sec-
tions 3.6.2, 3.6.5, 3.6.6, and 9.1.8, as well as [BH99, Part II].

Let (X, d) be a metric space. The length of a continuous path α : [a, b] → X,
denoted by |α|, is the supremum of

n∑
i=1

d(α(t1), α(tn))

where (t1, . . . , tn) ranges over all finite tuples in [a, b] with t1 ≤ t2 ≤ . . . tn. Such a
path is called a geodesic segment if |α| = d(α(a), α(b)). The metric space (X, d) is
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called a geodesic space if any two points are connected by a geodesic segment. It is
called a uniquely geodesic space if any two points are connected by a unique geodesic
segment, up to monotonous reparametrization of the domain. For any two points x
and y in a unique geodesic space X, we write

[x, y] : [0, 1] → X (2.4)

for the unique affinely parametrized geodesic segment connecting x to y, i.e., [x, y](0)
= x and [x, y](1) = y, and d(x, [x, y](t)) = td(x, y). If there is no confusion, we also
use [x, y] to denote the image of this geodesic segment.

A geodesic triangle in a metric space consists of three geodesic segments, every
two of which share a common endpoint. Given a geodesic triangle, an (Euclidean)
comparison triangle is a triangle in R2 whose three sides have the same lengths as the
three geodesic segments. Up to congruence, the comparison triangle is uniquely de-
fined and depends only on the distances between the three endpoints on the original
geodesic triangle. Thus we often write p̃qr for the comparison triangle of a geodesic
triangle whose three endpoints are p, q, and r.

A geodesic metric space (X, d) is said to be CAT(0) if for any points x and y on
a geodesic triangle � in X, if �̃ is its Euclidean comparison triangle and x̃ and ỹ
are the points on �̃ corresponding to x and y, respectively (i.e., the distances from
x to its two adjacent endpoints are the same as those from x̃ to its two adjacent
vertices on the comparison triangle, and the same for y), then we have

d (x̃, ỹ) ≤ d(x, y) .

Intuitively, this says “every geodesic triangle is thinner than its Euclidean compari-
son triangle”. A less intuitive but very useful equivalent definition is the following.

Remark 2.10. A metric space (X, d) is CAT(0) if and only if for any p, q, r, m ∈ X
satisfying d(q, m) = d(r, m) = 1

2d(q, r), we have

d(p, q)2 + d(p, r)2 ≥ 2d(m, p)2 +
1
2
d(q, r)2 .

This is the CN inequality of Bruhat and Tits [BT72], also called the semi parallelo-
gram law (cf. [Lan99, XI, §3]).

Remark 2.11. Here are some facts about CAT(0) spaces. Let X be a CAT(0) space.

(1) The metric space X is uniquely geodesic.
(2) The map

X × X × [0, 1] → X , (x, y, t) �→ [x, y](t)

is continuous and is referred to as the geodesic bicombing. It follows that X is
contractible.
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(3) For any x, y, x′, y′ in X, we have

d
(
[x, y](t), [x′, y′](t)

) ≤ max{d(x, y), d(x′, y′)} .

Examples of CAT(0) spaces include Hilbert spaces, trees, and the so-called
Hadamard manifolds, i.e., complete connected and simply connected Riemannian
manifolds with non-positive sectional curvature, e.g., hyperbolic spaces Hn and Rie-
mannian symmetric spaces of noncompact type. This terminology comes from the
following fundamental theorem.

Theorem 2.12 (Cartan-Hadamard Theorem; cf., e.g., [Lan99, XI, §3]). Given a
Hadamard manifold M and a point x0 ∈ M , the exponential map expx0

from the
tangent space Tx0M to M is a diffeomorphism and is metric semi-increasing, that
is, d(expx0

(v), expx0
(w)) ≥ ‖v − w‖ for any v, w ∈ Tx0M .

Next we review the notions of angle and tangent cone. Let (X, d) be a geodesic
metric space. For three distinct points x, y, z ∈ X, we define the comparison angle
∠̃xyz to be the angle at ỹ of the Euclidean comparison triangle x̃yz. More explicitly,
we have

∠̃xyz = arccos
(

d(x, y)2 + d(y, z)2 − d(x, z)2

2d(x, y)d(y, z)

)
.

Given two nontrivial geodesic segments α and β emanating from a point p in X,
meaning that α(0) = β(0) = p, we define the angle between them, ∠(α, β), to be

∠(α, β) = lim
s,t→0

∠̃(α(s), p, β(t)) ,

provided that the limit exists. By [BBI01, Theorem 3.6.34], angles satisfy the triangle
inequality.

Remark 2.13. Using the notion of comparison angles, we get another equivalent
definition for CAT(0) spaces. Namely, a metric space (X, d) is CAT(0) if it is geodesic
and for any points p, q, r, x, y in X with x on a geodesic segment connecting p and
q and y on a geodesic segment connecting p and r, we have

∠̃xpy ≤ ∠̃qpr .

It follows from this definition that in a CAT(0) space, the angle between any two
nontrivial geodesic segments emanating at the same point exists.

Now suppose the geodesic metric space (X, d) satisfies that the angle between
any two nontrivial geodesic segments emanating at the same point exists. For a
point p ∈ X, let Σ′

p denote the metric space consisting of all equivalence classes
of geodesic segments emanating from p, where two geodesic segments are identified
if they have zero angle and the distance d([α], [β]) between two classes of geodesic
segments is the angle ∠(α, β). Note, in particular, from our definition of angles, that



222 S. GONG ET AL. GAFA

d([α], [β]) ≤ π for any geodesic segments α and β emanating from p. Let Σp denote
the completion of Σ′

p.
The tangent cone Tp at a point p in X is then defined to be a metric space which

is, as a topological space, the cone of Σp, that is,

Σp × [0, ∞)/Σp × {0} .

The metric on it is given as follows. For two points p, q ∈ Tp we can express them
as p = [(α, t)] and q = [(β, s)]. Then the metric is given by

d(p, q) =
√

t2 + s2 − 2st cos(d([α], [β])) .

In other words, it is what the distance would be if we went along straight lines
in a Euclidean plane with the same angle between them as the angle between the
corresponding directions in X. A key motivation for this definition is that when X
is a Riemannian manifold, this construction of the tangent cone at a point recovers
the tangent space equipped with the metric induced by the inner product.

We remark that some authors do not take the completion when talking about
the space of directions. This does not affect our main definition (3.1).

Observe that if ϕ : X → Y is an isometry between two such geodesic metric
spaces X and Y , then for any x ∈ X, it induces an isometry

Dxϕ : Tx → Tϕ(x) , [(α, t)] �→ [(ϕ ◦ α, t)] ,

which we can think of as the derivative of ϕ at x. This association is functorial,
i.e., it is compatible with composition of isometries. We conclude our preparation in
metric geometry with a discussion of isometric embeddings into Hilbert spaces.

Construction 2.14. It is well known from the work of Schoenberg [Sch38] that
a metric space (X, d) embeds isometrically into a Hilbert space if and only if the
bivariant function (x1, x2) �→ (d(x1, x2))

2 is a conditionally negative-type kernel.
Given such a metric space (X, d) and a fixed base point x0 ∈ X, there is a canonical
way to construct the smallest Hilbert space that contains it with x0 being the origin.
See, for example, [HG04, Proposition 3.1]. More precisely, we define HX,d,x0 , the
Hilbert space spanned by (X, d) centered at x0, to be the completion of the real
vector space R0[X], which consists of formal finite linear combinations of elements
in X whose coefficients sum up to zero, under the pseudometric induced from the
positive semidefinite blinear form〈∑

x∈X

axx,
∑
y∈X

byy

〉
= −1

2

∑
x,y∈X

axby (d(x, y))2 .

Here a completion under a pseudometric is meant to also identify elements of zero
distance to each other. There is a canonical isometric embedding from (X, d) into
HX,x0,d that maps each x ∈ X to the linear combination x − x0. Given an isometric
embedding from (X, d) to another metric space (Y, d′) that maps x0 to y0, there is
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a unique isometric linear embedding from HX,d,x0 to HY,d′,y0 that intertwines the
canonical embeddings. It is straightforward to see that these assignments form a
functor from the category of pointed metric spaces and isometric base-point-fixing
embeddings to the category of Hilbert spaces and linear isometric embeddings.

3 Hilbert-Hadamard spaces and deformation of isometric actions

In this section, we introduce a class of metric spaces that we call Hilbert-Hadamard
spaces, and we prove that any isometric action on a Hilbert-Hadamard space can be
deformed into a trivial action on a “bigger” Hilbert-Hadamard space.

The concept of Hilbert-Hadamard spaces is inspired by [FS08, Page 2]. Roughly
speaking, this is a class of (possibly infinite-dimensional) non-positively curved
spaces. The deformation result for isometric actions plays an essential role in the
proof of our main theorem. The “bigger” Hilbert-Hadamard space in this deforma-
tion result is obtained by a general construction called the continuum product (cf.
[FS08, Page 3]). We explain in detail how continuum products provide new examples
of typically infinite-dimensional Hilbert-Hadamard spaces.

Definition 3.1. A Hilbert-Hadamard space is a complete geodesic CAT(0) metric
space (i.e., a Hadamard space) all of whose tangent cones are isometrically embed-
dable into Hilbert spaces.

For any point x in a Hilbert-Hadamard space X, we define the tangent Hilbert
space HxM to be the Hilbert space HTxM spanned by the tangent cone TxM such
that the origin is at the tip of the cone, following Construction 2.14.

We mostly focus on separable Hilbert-Hadamard spaces, i.e., those that contain
countable dense subsets.

Example 3.2. A Riemannian manifold without boundary is a Hilbert-Hadamard
space if and only if it is complete, connected, and simply connected, and has non-
positive sectional curvature. The same statement holds for Riemannian-Hilbertian
manifolds (cf. [Lan99]), which are a kind of infinite-dimensional generalizations of
Riemannian manifolds defined using charts which are open subsets in Hilbert spaces,
instead of Euclidean spaces, in a way that a large part of differential geometry, in-
cluding sectional curvatures, still makes sense. To see why the statement holds,
observe that in this case, every tangent cone is itself a Hilbert space, and the equiv-
alence between the CAT(0) condition and being connected, simply connected and
non-positively curved follows from [Lan99, XI, Proposition 3.4 and Theorem 3.5].

Construction 3.3. A CAT(0) space X is always uniquely geodesic. For any x0 ∈ X,
using the notation in Equation (2.4), we define the logarithm function at x0 by

logx0
: X → Tx0X , x �→ [([x0, x], d(x0, x))] .
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The CAT(0) condition (e.g., Remark 2.13) implies logx0
is non-expansive (also called

weakly contractive or short by some authors), i.e.,

d
(
logx0

(x), logx0
(x′)
) ≤ d(x, x′)

for any x, x′ ∈ X and, in particular, continuous. Moreover, it preserves the metric
on each geodesic emanating from x0, that is,

d
(
logx0

(x0), logx0
(x)
)

= d(x0, x)

for any x ∈ X.

Example 3.4. When M is a complete, connected and simply connected Riemannian
manifold with non-positive sectional curvature, the logarithm map as defined above
is the inverse to the exponential map

expξ0 : Tx0X → X

in Riemannian geometry. In this case, both maps are also diffeomorphisms by the
Cartan-Hadamard theorem (cf. 2.12).

Recall that a subset of a geodesic metric space is called convex if it is again a
geodesic metric space when equipped with the restricted metric. We observe that
a closed convex subset of a Hilbert-Hadamard space is itself a Hilbert-Hadamard
space.

Definition 3.5. A separable Hilbert-Hadamard space M is called admissible if there
is an increasing sequence of closed convex subsets isometric to finite-dimensional
Riemannian manifolds, whose union is dense in M .

Remark 3.6. In Definition 3.5, observe that by Example 3.2, each closed convex
subset in this sequence is isometric to a Hadamard manifold, i.e., a complete, con-
nected, and simply connected manifold with non-positive sectional curvature. By
the classical Cartan-Hadamard theorem, the logarithm map at any point provides a
diffeomorphism between the manifold and the corresponding tangent space.

Example 3.7. Apart from finite-dimensional Hadamard manifolds, examples of ad-
missible Hilbert-Hadamard spaces include separable Hilbert spaces. More examples
can be obtained by the continuum product construction we are about to discuss.

The notion of Hilbert-Hadamard spaces is more general than Example 3.2, due
to the following construction.

Construction 3.8 [cf. [FS08]]. Let X be a metric space. Let (Y, μ) be a measure
space with μ(Y ) < ∞. The (L2-)continuum product of X over (Y, μ) is the space
L2(Y, μ, X) of equivalence classes of measurable maps ξ from Y to X satisfying∫

Y
dX(ξ(y), x0)2 dμ(y) < ∞ ,
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where x0 is a fixed point in X and two functions are identified if they differ only on
a measure-zero subset of Y . It follows from the triangle inequality that the above
condition does not depend on the choice of x0. Moreover, the Minkowski inequality
implies that the formula

d(ξ, η) =
(∫

Y
dX(ξ(y), η(y))2 dμ(y)

) 1
2

defines a metric on L2(Y, μ, X).

Remark 3.9. The continuum product construction is functorial in the following
sense: given an isometric embedding X1 → X2 of metric spaces and a measurable
map (Y2, μ2) → (Y1, μ1) that is also measure-preserving (i.e., the push-forward of μ2

is equal to μ1), composition of maps induces an isometric embedding L2(Y1, μ1, X1) →
L2(Y2, μ2, X2).

Example 3.10. As a first example, we consider the case when Y is a finite set
{y1, . . . , yn} with μ defined on every subset of Y . Notice that μ is determined by the
weights μ({yi}) for all yi ∈ Y . Let supp μ be the support of μ, that is, the set of yi

such that μ({yi}) > 0. Then the continuum product L2(Y, μ, X) is nothing but the
Cartesian product Xsupp μ, equipped with a weighted �2-metric.

In particular, when X is a Riemannian manifold, then so is L2(Y, μ, X), where for
any point ξ ∈ L2(Y, μ, X), the tangent space TξL

2(Y, μ, X) is canonically identified
with

⊕
yi∈supp μ

Tξ(yi)X as vector spaces and the Riemannian metric on L2(Y, μ, X)

at ξ is given, under the above identification, by the weighted sum

TξL
2(Y, μ, X) × TξL

2(Y, μ, X) � (v, w) �→
∑

yi∈supp μ

μ({yi}) · gξ(yi)(v(yi), w(yi)) ,

where gξ(yi)(−, −) is the Riemannian metric on X at ξ(yi).

Proposition 3.11. For any CAT(0) space X and measure space (Y, μ), the contin-
uum product L2(Y, μ, X) is again a CAT(0) space.

Proof. We are going to check the CN inequality of Bruhat and Tits (cf. Remark 2.10).
Given any ξ, η, θ, λ ∈ L2(Y, μ, X) satisfying d(η, λ) = d(θ, λ) = 1

2d(η, θ), we first
observe that these equalities imply that the Minkowski inequality

d(η, λ) + d(θ, λ) ≥
(∫

Y
(dX(η(y), λ(y)) + dX(θ(y), λ(y)))2 dμ(y)

) 1
2

must reach equality, which happens if and only if there is a nonzero vector (u, v) ∈ R2

such that u dX(η(y), λ(y)) = v dX(θ(y), λ(y)) for almost every y in Y . It follows that

dX(η(y), λ(y)) = dX(θ(y), λ(y)) =
1
2
dX(η(y), θ(y))
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for almost every y in Y . Hence the CN inequality for X states that

dX(ξ(y), η(y))2 + dX(ξ(y), θ(y))2 ≥ 2dX(λ(y), ξ(y))2 +
1
2
dX(η(y), θ(y))2 .

for almost every y in Y . Integrating this over Y yields the CN inequality for L2

(Y, μ, X). ��
Remark 3.12. For any CAT(0) space X and measure space (Y, μ), an argument
similar to that in the first half of the proof of Proposition 3.11 shows that for any
distinct ξ and η in L2(Y, μ, X), the unique geodesic segment [ξ, η] is given by

[ξ, η](t)(y) = [ξ(y), η(y)] (t)

for almost every y in Y .

As hinted above, the class of Hilbert-Hadamard spaces is also closed under tak-
ing continuum products. To streamline our presentation, we place the somewhat
technical proofs in the appendix and merely summarize the main results here.

Recall that a measure space (Y, μ) is called separable if there is a countable family
{An : n ∈ N} of measurable subsets such that for any ε > 0 and any measurable
subset A in Y , we have μ(A � An) < ε for some n. For example, it is easy to
see that any outer regular finite measure on a separable metric space is separable.
This includes, in particular, any measure induced from a density on a closed smooth
manifold.

Proposition 3.13. Let M be a Hilbert-Hadamard space and (Y, μ) be a finite mea-
sure space. Then

(1) the continuum product L2(Y, μ, M) is again a Hilbert-Hadamard space;
(2) if (Y, μ) is separable and M is admissible (respectively, separable), then L2

(Y, μ, M) is also admissible (respectively, separable).

Proof. See Propositions 9.3, 9.6 and 9.7. ��
We conclude this section with a discussion of the group of isometries of a Hilbert-

Hadamard space.

Definition 3.14. Let M be a Hilbert-Hadamard space. We denote by Isom(M) the
group of all isometries of M , equipped with the topology of pointwise convergence,
namely, the weakest topology such that the orbit maps

Isom(M) → M , ϕ �→ ϕ · x ,

for x ∈ M , are continuous.

Remark 3.15. A helpful tool in the study of Isom(M) are the length functions

�x : Isom(M) → [0, ∞) , ϕ �→ dM (x, ϕ(x))

for x ∈ M . Their usefulness is reflected in the following properties:
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(1) The topology on Isom(M) is the weakest one that makes every �x continuous.
(2) Triangle inequality implies that |�x(ϕ) − �x′(ϕ)| ≤ 2dM (x, x′). Thus for any

dense subset D in M , the topology on Isom(M) is the weakest one that makes
�x continuous for all x in D.

(3) A subgroup of Isom(M), when viewed as a discrete group, acts on M metri-
cally properly, i.e., d(x, g · x) → ∞ as g → ∞ for some (equivalently, all) x in
X, if and only if for some (equivalently, for all) x ∈ M , the restriction of �x

on the subgroup is a proper function, i.e., the preimage of any compact set is
again compact (or rather finite in the case of a discrete group).

Finally, we discuss a construction that serves as the base for a deformation tech-
nique we will use in Section 8.

Construction 3.16. Let M be a Hilbert-Hadamard space and let (Y, μ) be a finite
measure space. Then Isom(M) embeds into Isom(L2(Y, μ, M)) canonically by com-
position of maps, i.e., for any ϕ ∈ Isom(M), we define ϕ(Y,μ) ∈ Isom(L2(Y, μ, M))
by

ϕ(Y,μ)(ξ)(y) = ϕ(ξ(y))

for any ξ ∈ L2(Y, μ, M) and y ∈ Y .
We will focus on the case when (Y, μ) is given by the unit interval [0, 1] equipped

with the Lebesgue measure. In this case, we write M [0,1] for L2([0, 1], m, M) and
ϕ[0,1] for ϕ(Y,μ).

Lemma 3.17. Let M be a Hilbert-Hadamard space and let (Y, μ) be a measure space.
Then for any ϕ ∈ Isom(M) and ξ ∈ L2(Y, μ, M), we have

�ξ

(
ϕ(Y,μ)

)
=
(∫

Y

(
�ξ(y)(ϕ)

)2
dμ(y)

) 1
2

.

Proof. This is an immediate consequence of the definition of the length function in
Remark 3.15 and the definition of the metric of the continuum product in Construc-
tion 3.8. ��

The following two propositions tell us that the canonical embedding

Isom(M) ↪→ Isom(M [0,1])

makes the topological aspect of Isom(M) more tractable while keeping the large-scale
behavior intact.

Proposition 3.18. Let M be a Hilbert-Hadamard space. Then there is a homotopy
of group homomorphisms connecting the canonical embedding

Isom(M) ↪→ Isom(M [0,1])

to the trivial homomorphism, that is, there is a continuous map

H : Isom(M) × [0, 1] → Isom(M [0,1])

such that
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(1) ϕ �→ H(ϕ, t) is a group homomorphism for each t ∈ [0, 1],
(2) H(ϕ, 0) = Id for any ϕ ∈ Isom(M), and
(3) H(ϕ, 1)(ξ)(s) = ϕ(ξ(s)) for any ϕ ∈ Isom(M), ξ ∈ M [0,1] and s ∈ [0, 1].

Proof. Define

H : Isom(M) × [0, 1] → Isom(M [0,1])

by

H(ϕ, t)(ξ)(s) =

{
ϕ(ξ(s)) , s ∈ [0, t]
ξ(s) , s ∈ (t, 1]

for any ϕ ∈ Isom(M), t ∈ [0, 1], ξ ∈ M [0,1] and s ∈ [0, 1]. It is straightforward to
check the three conditions above. Moreover, by Lemma 3.17, we have

�ξ (H(ϕ, t)) =
(∫ t

0

(
�ξ(s)(ϕ)

)2
ds

) 1
2

for any ϕ ∈ Isom(M), t ∈ [0, 1] and ξ ∈ M [0,1]. Remark 3.15(2) guarantees the use of
the dominated convergence theorem to this integral, which implies that �ξ (H(ϕ, t))
is continuous in ϕ and in t. Thus continuity of H follows from Remark 3.15(1). ��
Proposition 3.19. Let Γ be a discrete group, let α : Γ → Isom(M) be an isometric,
metrically proper action on M , and let (Y, μ) be a nontrivial measure space. Then
composing this homomorphism with the canonical embedding

Isom(M) ↪→ Isom(L2(Y, μ, M))

gives an isometric, metrically proper action of Γ on L2(Y, μ, M).

Proof. This follows from Remark 3.15(3) and Lemma 3.17. ��

4 The space of L2-Riemannian metrics

In this section, we focus on a prominent example of admissible Hilbert-Hadamard
spaces—he space of L2-Riemannian metrics on a closed smooth manifold with a fixed
density. This example makes use of the general construction of continuum products
described in Section 3 and may be considered as an infinite-dimensional symmetric
space. It is also pivotal in obtaining Theorem 1.3 from Theorem 1.1.

Throughout the section, we let N be an n-dimensional closed smooth manifold.
We regard a density ω as a measure on N which is, in each smooth chart, equivalent
to the Lebesgue measure with a smooth Radon-Nikodym derivative. A Riemannian
metric g on N naturally induces a density: in local coordinates, it can be expressed
as

dωg = (|det(gij)|)
1
2 dm ,
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where (gij) is the positive definite symmetric matrix corresponding to the Rie-
mannian metric in the local coordinates, det(gij) is its determinant, and m is the
Lebesgue measure. If ωg = ω, we say g induces ω.

Construction 4.1. Consider the symmetric space P (n) of positive definite sym-
metric real matrices in Mn(R) with determinant 1, which can be identified, through
the congruence action of SL(n, R) (or more generally, the group S̃L(n, R) = {ϕ ∈
GL(n, R) : det ϕ = ±1}) on P (n), with the quotient space SL(n, R)/ SO(n) (and
also S̃L(n, R)/ O(n)), with a base point chosen to be the identity matrix In, which
is identified with the class [e] of the identity element in SL(n, R). As an irreducible
Riemannian symmetric space of noncompact type, P (n) is a complete simply con-
nected Riemannian manifold with non-positive curvature, and in particular, also an
admissible Hilbert-Hadamard space.

Definition 4.2. The continuum product L2(N, ω, P (n)) is called the space of L2-
Riemannian metrics on N with the density ω. It is an admissible Hilbert-Hadamard
space by Proposition 3.13.

We point out that the space of L2-Riemannian metrics is not a Riemannian-
Hilbertian manifold (see Remark 9.8).

Remark 4.3. The rationale behind this terminology is the following: The set of all
Riemannian metrics on N that induce ω is identified with sections on a P (n)-bundle
over N . Fixing a Riemannian metric g on N that induces ω and a Borel trivialization
of the tangent bundle TN such that the inner product gx on TxN corresponds to
In for all x ∈ N , we see that the set of all Riemannian metrics embeds densely into
L2(N, ω, P (n)), since the closedness of N implies d(g′, g) < ∞ for any Riemannian
metric g′ on N inducing ω.

Remark 4.4. We make a few remarks on the metric of P (n). The tangent space
TIn

P (n) is canonically identified with the linear space of all symmetric real matrices
in Mn(R) with trace 0, on which the Riemannian metric is given by 〈A, B〉 = Tr(AB)
for A, B ∈ TIn

P (n) and the Riemannian-geometric exponential map agrees with the
matrix exponential map. Thus for any D ∈ P (n), the distance dP (n)(D, In) is given
by ‖ log D‖HS, the Hilbert-Schmidt norm of the logarithm of the positive definite ma-
trix D. Equivalently, for any T ∈ S̃L(n, R), we have dP (n)([T ], [e]) = ‖ log(T ∗T )‖HS.
Since S̃L(n, R) acts isometrically on P (n), the assignment T �→ dP (n)([T ], [e]) defines
a length function on S̃L(n, R), which is bilipschitz to the length function

T �→ max
{
log(‖T‖), log(‖T−1‖)

}
,

where ‖ · ‖ denotes the operator norm, because we have

2 log(‖T‖) = log(‖T ∗T‖) = ‖ log(T ∗T )‖
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and diagonalizing T ∗T yields

‖ log(T ∗T )‖ ≤ ‖ log(T ∗T )‖HS ≤ √
n‖ log(T ∗T )‖ (4.1)

for any T ∈ S̃L(n, R). We also note that

log(‖T‖) ≤ (n − 1) log(‖T−1‖) (4.2)

and vice versa.

The main reason we consider L2(N, ω, P (n)) is that any diffeomorphism ϕ of N
preserving ω induces an isometry on L2(N, ω, P (n)).

Construction 4.5. Fix a measurable trivialization of the P (n)-bundle over N . For
any diffeomorphism ϕ of N preserving ω. Define an isometry ϕ∗ of L2(N, ω, P (n))
by

ϕ∗(f)(x) = (Dϕ−1(x)ϕ) · f(ϕ−1(x)) ,

where Dϕ−1(x)ϕ : Tϕ−1(x)N → TxN is the derivative of ϕ at ϕ−1(x), which, under
the trivialization we chose, is identified with an element of S̃L(n, R) and thus acts
on P (n). The prescription ϕ �→ ϕ∗ extends the formula for the pushing forward Rie-
mannian metrics under diffeomorphisms and is easily verified to be functorial and
implements an embedding of the group Diff(N, ω) of volume preserving diffeomor-
phisms of N into the group Isom(L2(N, ω, P (n))) of isometries of L2(N, ω, P (n)).

There are two special types of isometries of Isom(L2(N, ω, P (n))) that are of par-
ticular interest: those that “dial” the individual fibers P (n), and those that “rotate”
the base space. We study them separately.

An isometry of the first type can be viewed as a measurable function from N to
Isom(P (n)), which is identified with S̃L(n, R), satisfying an integrability condition.
We make this precise.

Lemma 4.6. Let M(N, ω, S̃L(n, R)) be the group of (equivalence classes of) all mea-
surable functions from N to S̃L(n, R), where the product is defined pointwise and two
functions are identified if they only differ on a measure-zero set. Then the function

λ+ : M(N, ω, S̃L(n, R)) → [0, ∞] , f �→
(∫

N
log2(‖f(x)‖) dω(x)

) 1
2

(4.3)

satisfies
λ+(ff ′) ≤ λ+(f) + λ+(f ′) (4.4)

and
λ+(f−1) ≤ (n − 1) λ+(f) (4.5)

for any f and f ′ in M(N, ω, S̃L(n, R)). In particular, the subset{
f ∈ M(N, ω, S̃L(n, R)) | λ+(f) < ∞

}
(4.6)

is a subgroup.
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Proof. For any f, f ′ ∈ M(N, ω, SL(n, R)), we compute

λ+(ff ′) =
(∫

N
log2(‖(ff ′)(x)‖) dω(x)

) 1
2

≤
(∫

N
log2(‖f(x)‖‖f ′(x)‖) dω(x)

) 1
2

≤
(∫

N

(
log(‖f(x)‖) + log(‖f ′(x)‖)

)2
dω(x)

) 1
2

≤
(∫

N
log2(‖f(x)‖) dω(x)

) 1
2

+
(∫

N
log2(‖f ′(x)‖) dω(x)

) 1
2

≤ λ+(f) + λ+(f ′) .

Similarly, we have λ+(f−1) ≤ (n − 1) λ+(f). ��

Construction 4.7. We define the group L2(N, ω, S̃L(n, R)) to be the subgroup of
M(N, ω, S̃L(n, R)) given in Equation (4.6).

We embed L2(N, ω, S̃L(n, R)) into Isom(L2(N, ω, P (n))) by applying pointwise
the congruence action of S̃L(n, R) on P (n), which is well-defined thanks to Equa-
tion (4.1).

Remark 4.8. We make the following observations:

(1) The action of L2(N, ω, S̃L(n, R)) on L2(N, ω, P (n)) is transitive, which can
be seen by making measurable lifts of functions in L2(N, ω, P (n)).

(2) When we endow L2(N, ω, S̃L(n, R)) with the pointwise convergence topol-
ogy, i.e., the topology as a subgroup of Isom(M), it is not hard to see that
L2(N, ω, P (n)) is homeomorphic to the quotient

L2(N, ω, S̃L(n, R))/L(N, ω, O(n))

where L(N, ω, O(n)) is the group of all measurable functions from N to the
compact group O(n), identified up to measure 0. Here L(N, ω, O(n)) is iden-
tified with the stabilizer group of the constant function In in L2(N, ω, P (n)).
Moreover, L(N, ω, O(n)) is the fixed point set of the involutive automorphism
of L2(N, ω, S̃L(n, R)) given by taking the transpose inverse on S̃L(n, R). In
view of this, we regard L2(N, ω, P (n)) as an infinite-dimensional symmetric
space.

(3) The function

λ : L2(N, ω, S̃L(n, R)) → R≥0 , f �→ max
(
λ+(f), λ+(f−1)

)
(4.7)

is a length function.
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Construction 4.9. The group T (N, ω) of ω-preserving measurable transformations
of N , which embeds into Isom(L2(N, ω, P (n))) by composition of maps.

We observe that T (N, ω) normalizes L2(N, ω, S̃L(n, R)) and thus the subgroup of
Isom(L2(N, ω, P (n))) they generate is isomorphic to a semidirect product L2(N, ω,

S̃L(n, R)) � T (N, ω).

Remark 4.10. We make the following observations:

(1) It is clear from Construction 4.5 that the image of the map

Diff(N, ω) → Isom(L2(N, ω, P (n)))

is contained in L2(N, ω, S̃L(n, R)) � T (N, ω).
(2) The length function in Equation (4.7) is invariant under the conjugation action

of T (N, ω) and thus extends to a length function on L2(N, ω, S̃L(n, R)) �

T (N, ω) by taking the value 0 on T (N, ω).

This length function has appeared in Definition 1.2 in the introduction. It is
useful in the discussion of proper actions because the following lemma.

Lemma 4.11. For any ξ ∈ L2(N, ω, P (n)), the length functions �ξ (as defined in
Remark 3.15) and λ on the group L2(N, ω, S̃L(n, R)) � T (N, ω) are large-scale bilip-
schitz to each other.

Proof. Thanks to Remark 3.15(2), we know that any two length functions �ξ1 and
�ξ2 are large-scale bilipschitz. Thus without loss of generality, we may choose ξ to
be the constant function In. Then it is clear from Construction 3.8 that for any
f ∈ L2(N, ω, S̃L(n, R)) and τ ∈ T (N, ω), we have

�In
(fτ) = d(fτ · In, In) = d(f · In, In) =

(∫
N

(
dP (n)([f(x)], In)

)2
dω(x)

) 1
2

.

By Remark 4.4, we see that the right-hand side is equal to
(∫

N

(∥∥log
(
f(x)Tf(x)

)∥∥
HS

)2
dω(x)

) 1
2

.

Hence again by Remark 4.4, we see that �In
is bilipschitz to the function

fτ �→ λ+(f) =
(∫

N
(log ‖f(x)‖)2 dω(x)

) 1
2

and thus, by Equation (4.5), it is also bilipschitz to λ. ��
Proposition 4.12. Let Γ be a subgroup of Diff(N, ω), or more generally a subgroup
of L2(N, ω, S̃L(n, R)) � T (N, ω). It inherits an action on L2(N, ω, P (n)). When we
consider Γ as a discrete group, the following are equivalent:
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(1) the action on L2(N, ω, P (n)) by Γ is metrically proper;
(2) the length function λ is proper on Γ;
(3) the metric induced by λ is a proper metric.

Proof. This follows from Lemma 4.11 and Remark 3.15(3). ��
Remark 4.13. It follows from Equation (4.5) that for a subgroup Γ of Diff(N, ω),
the length function λ is proper on Γ if and only if λ+ is proper on Γ, which is
equivalent to

(∫
N

(log(‖Dxϕ‖))2dω(x)
)1/2

→ ∞ as γ → ∞ in Γ . (4.8)

Observe that this is weaker than requiring

inf
x∈N

‖Dxϕ‖ → ∞ as γ → ∞ in Γ . (4.9)

This latter condition would imply that there is a coarse embedding ι of Γ into
P (n), that is, ι satisfies the property that there are unbounded increasing functions
f+, f− : [0, ∞) → [0, ∞) such that

f−(dΓ(γ, γ′)) ≤ dPn
(ι(γ), ι(γ′)) ≤ f+(dΓ(γ, γ′))

for any γ, γ′ ∈ Γ, where dΓ is a fixed right-invariant proper metric on Γ. The best
possible such functions f+ and f− are called the dilation and the compression, re-
spectively, of ι. Such an embedding ι can be constructed by fixing a family of triv-
ializations for the tangent spaces of N and realizing the derivative Dx0ϕ at a fixed
point x0 as an element in SL(n, R). By a Gram-Schmidt procedure, we see that P (n)
is coarsely equivalent to the group of upper triangular matrices, which is amenable
and thus coarsely embeds into a Hilbert space. It follows that any Γ that satisfies
(4.9) coarsely embeds into a Hilbert space and thus satisfies the strong Novikov
conjecture by [Yu00].

However, it is not clear whether any subgroup Γ that is geometrically discrete,
i.e., satisfies (4.8), also embeds into a Hilbert space. A naive attempt would be to
embed L2(N, ω, P (n)) into a Hilbert space by “integrating” over (N, ω) a coarse
embedding ε of P (n) into a Hilbert space H, that is, defining a map

ε(N,ω) : L2(N, ω, P (n)) → L2(N, ω, H) , ξ �→ ε ◦ ξ .

To see why this naive attempt is not enough, we let f+, f− : [0, ∞) → [0, ∞) be,
respectively, the dilation and compression of ε. While since P (n) is a geodesic
space, the dilation of ε, and thus also that of ε(N,ω), can be controlled by a lin-
ear function, yet there is an issue with the compression of ε(N,ω): as long as f−
is not bounded from below by a strictly increasing linear function, we can show
that the compression of ε(N,ω) fails to be unbounded, that is, there exist elements
ξn, ξ′

n ∈ L2(N, ω, P (n)), for n = 1, 2, . . ., such that d(ξn, ξ′
n) → ∞ as n → ∞ but
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d(ε(N,ω)(ξn), ε(N,ω)(ξ′
n)) is bounded. Indeed, by our assumption, we can find points

xn, x′
n ∈ P (n) for n = 1, 2, . . . such that d(ε(xn), ε(x′

n)) ≤ 1
nd(xn, x′

n). Since the
measure space (N, ω) is atomless, we can choose measurable subsets Yn ⊂ N with
ω(Yn) = (d(ε(xn), ε(x′

n)))−2. Then we define

ξn =

{
xn , y ∈ Yn

x1 , y ∈ N\Yn

and ξ′
n =

{
x′

n , y ∈ Yn

x1 , y ∈ N\Yn

.

It follows that for any positive integer n, we have d(ε(N,ω)(ξn), ε(N,ω)(ξ′
n)) ≤ 1 but

d(ξn, ξ′
n) ≥ n, as desired. This means ε(N,ω) is not a coarse embedding.

5 A C∗-algebra A(M) associated to a Hilbert-Hadamard space M

In this section, we define a C∗-algebra A(M) associated to a Hilbert-Hadamard
space M . This C∗-algebra and its K-theory will play a key role in our proof.

Throughout this section, we let M be a Hilbert-Hadamard space as in Defini-
tion 3.1. Recall that for any point x ∈ M , we use HxM to denote the tangent Hilbert
space at x.

Definition 5.1. Given a Hilbert-Hadamard space, we define the ∗-algebra

Π(M) =
∏

(x,t)∈M×[0,∞)

ClC(HxM ⊕ tR) ,

where

tR =

{
R , t > 0
{0} , t = 0

and R carries the canonical inner product (independent of t). We also define the
C∗-algebra

Πb(M) =

{
σ ∈ Π(M) : sup

(x,t)∈M×[0,∞)
‖σ(x, t)‖ < ∞

}

equipped with pointwise algebraic operations and the uniform norm.

Intuitively, these ∗-algebras can be viewed as built out of (typically discontinuous)
tangent vector fields over M × [0, ∞). Although Πb(M) is too large a C∗-algebra
to be of much use, it will contain our key object in this section, A(M), as a C∗-
subalgebra. A key ingredient is a following version of outward pointing Euler vector
fields.
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Definition 5.2. Let M be a Hilbert-Hadamard space. For any point x0 ∈ M , we
define the Clifford operator Cx0 ∈ Π(M) by

Cx0(x, t) = (− logx(x0), t) ∈ TxM × tR ⊂ ClC(HxM ⊕ tR)

for any x ∈ M and t ∈ [0, ∞). We also write CM
x0

when we need to emphasize the
Hilbert-Hadamard space M .

Note that Cx0 is unbounded, i.e., sup
(x,t)∈M×[0,∞)

‖Cx0(x, t)‖ = ∞, whenever M is

unbounded. Also observe that each Cx0(x, t) is self-adjoint.

Example 5.3. When M is a (real) Hilbert space, upon identifying M with its own
tangent cones TxM in the canonical way, we have

Cx0(x, t) = (x − x0, t) ∈ TxM ⊕ tR .

Thus in this case, Cx0 is a restriction of the classical Euler vector field on M × R

centered at (x0, 0), given by

(x, t) �→ (x − x0, t) .

Remark 5.4. We point out a standard fact regarding the functional calculus of
vectors inside the Clifford algebra. Let H be a Hilbert space and let ξ be a vector
in H, viewed as a self-adjoint element of the Clifford algebra ClCH. Let f and g
be bounded continuous functions on R with f even and g odd. Applying functional
calculus to ξ, we have

(1) the element f(ξ) in ClCH is equal to the scalar f(‖ξ‖), and
(2) the element g(ξ) in ClCH is equal to the vector in H with norm equal to

|g(‖ξ‖)|, and pointing in the same direction as ξ if g(‖ξ‖) ≥ 0 and otherwise
in the opposite direction. Note that when ξ = 0, we have g(‖ξ‖) = g(0) = 0,
so there is no ambiguity.

Proposition 5.5. For any point x0 ∈ M , the map

βx0 : C0(R) → Π(M)

is defined by functional calculus such that

βx0(f)(x, t) = f(Cx0(x, t))

for all x ∈ M , t ∈ [0, ∞), and f ∈ C0(R). Then βx0 is a graded ∗-homomorphism
from C0(R) to the ∗-subalgebra Πb(M).

Proof. This follows from the fact that Cx0(x, t) is an odd bounded self-adjoint op-
erator for any x ∈ M and t ∈ [0, ∞). ��
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Definition 5.6. For any point x0 ∈ M , the graded ∗-homomorphism

βx0 : C0(R) → Πb(M)

is called the Bott homomorphism centered at x0. We also write βM
x0

when we need
to emphasize the Hilbert-Hadamard space M .

We discuss some important features of βx0 . Let us denote the even part of C0(R)
by C0(R)ev, which consists of all even functions.

Proposition 5.7. For any x0 ∈ M , the map βx0 takes C0(R)ev into the subalgebra
�∞(M × [0, ∞)) of the center of Πb(M).

Proof. For any (x, t) ∈ M × [0, ∞) and f ∈ C0(R)ev, we can write f(s) = g(s2) for
some g ∈ C0([0, ∞)) and thus

βx0(f)(x, t) = g
(
C2

x0
(x, t)

)
= g
(
d(x0, x)2 + t2

)
, (5.1)

which is a scalar. ��

Now we discuss the dependence of the Bott homomorphisms on the base points.

Lemma 5.8. For any x0, x1 ∈ M , we have Cx0 − Cx1 ∈ Πb(M) and in fact

‖Cx0 − Cx1‖ ≤ d(x0, x1) .

Proof. By Construction 3.3, the logarithm map logx is non-expansive for any x. It
follows that

‖Cx0(x, t) − Cx1(x, t)‖ = ‖ − logx(x0) + logx(x1)‖Hx
≤ d(x0, x1)

for any (x, t) ∈ M × [0, ∞), whence the claims follow. ��

Definition 5.9. For any f ∈ C0(R) and r ≥ 0, let us define its r-oscillation by

Ωrf = sup
{|f(t) − f(t′)| : t, t′ ∈ R, |t − t′| ≤ r

}
. (5.2)

For r > 0, we also define

Θrf = r · sup
{ |f(t) − f(−t)|

2t
: t ≥ r

}
. (5.3)

It is clear that Ωrf ≤ 2‖f‖ and Θrf ≤ ‖f‖.

Lemma 5.10. For any f ∈ C0(R), we have

lim
r→0

Ωrf = 0 = lim
r→0

Θrf .
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Proof. The first equation follows from the fact that every function in C0(R), being a
uniform limit of compactly supported functions, is uniformly continuous. The second
equation follows from the observation that for any continuous function g from (0, ∞)
to [0, ∞) with lim

r→0
tg(t) = 0, we have

lim
r→0

r sup {g(t) : t ≥ r} = 0 .

We apply this to the function g(t) =
|f(t) − f(−t)|

2t
. ��

Using these notations, we have the following estimate.

Proposition 5.11. For any x0, x1 ∈ M and any f ∈ C0(R), writing r for the
distance d(x0, x1), we have

‖βx0(f) − βx1(f)‖ ≤ 2 Ωrf + max {Ω2rf, Θrf} .

Proof. Observe that for any (x, t) ∈ M × [0, ∞), since we have ‖Cxi
(x, t)‖ =√

d(xi, x)2 + t2 for i = 0, 1, it follows from the triangle inequality that

|‖Cx0(x, t)‖ − ‖Cx1(x, t)‖| ≤ |d(x0, x) − d(x1, x)| ≤ r . (5.4)

Now let f0 and f1 be the even and odd parts of f , that is,

f0(t) =
f(t) + f(−t)

2
and f1(t) =

f(t) − f(−t)
2

for any t ∈ R. Then for i = 0, 1 and any s > 0, we have fi ∈ C0(R), ‖fi‖ ≤ ‖f‖,
Ωs(fi) ≤ Ωs(f), and

Θsf = Θsf1 = s · sup
{ |f1(t)|

t
: t ≥ s

}
. (5.5)

By Remark 5.4, we have βxi
(f0)(x, t) = f0 (‖Cxi

(x, t)‖) for i = 0, 1, and thus by
Equation (5.4), we have∥∥(βx0(f0) − βx1(f0)

)
(x, t)

∥∥ =
∣∣f0 (‖Cx0(x, t)‖) − f0 (‖Cx1(x, t)‖)

∣∣
≤ Ωrf0 ≤ Ωrf .

On the other hand, to estimate
∥∥(βx0(f1) − βx1(f1)

)
(x, t)

∥∥, we discuss two com-
plementary cases:

(1) When one of ‖Cx0(x, t)‖ and ‖Cx1(x, t)‖ is less than r, then by Equation (5.4),
the other one is less than 2r, whence, observing that f1(0) = 0, we have∥∥(βx0(f1) − βx1(f1)

)
(x, t)

∥∥
= ‖f1 (Cx0(x, t)) − f1 (Cx1(x, t))‖
≤ ‖f1 (Cx0(x, t))‖ + ‖f1 (Cx1(x, t))‖
≤ Ωrf1 + Ω2rf1

≤ Ωrf + Ω2rf .
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(2) When min {‖Cx0(x, t)‖, ‖Cx1(x, t)‖} ≥ r, then we denote the angle between
the vectors Cx0(x, t) and Cx1(x, t) in Hx ⊕ tR by θ. By Euclidean geometry,
we have

cos θ =
‖Cx0(x, t)‖2 + ‖Cx1(x, t)‖2 − ‖Cx0(x, t) − Cx1(x, t)‖2

2 ‖Cx0(x, t)‖ ‖Cx1(x, t)‖
and thus by Lemma 5.8, we have

1 − cos θ =
‖Cx0(x, t) − Cx1(x, t)‖2 − (‖Cx0(x, t)‖ − ‖Cx1(x, t)‖)2

2 ‖Cx0(x, t)‖ ‖Cx1(x, t)‖
≤ d(x0, x1)2

2 ‖Cx0(x, t)‖ ‖Cx1(x, t)‖ .

Hence, writing si = ‖Cxi
(x, t)‖ for i = 0, 1 and using Remark 5.4 and Equa-

tions (5.4) and (5.5) , we compute
∥∥(βx0(f1) − βx1(f1)

)
(x, t)

∥∥2

= ‖f1 (Cx0(x, t)) − f1 (Cx1(x, t))‖2

= f1 (s0)
2 + f1 (s1)

2 − 2 f1 (s0) f1 (s1) cos θ

=
(
f1 (s0) − f1 (s1)

)2 + 2 f1 (s0) f1 (s1) (1 − cos θ)

≤ (Ωrf1)
2 +

f1 (s0)
s0

f1 (s1)
s1

· d(x0, x1)2

≤ (Ωrf)2 + (Θrf)2

≤ (Ωrf + Θrf)2 .

Since f = f0 + f1, combining the two estimates gives us the final result. ��

Corollary 5.12. If a sequence {xn ∈ M}n∈N converges to x0 ∈ M , then for any
f ∈ C0(R), we have

lim
n→∞ βxn

(f) = βx0(f)

in Πb(M).

Proof. This follows from Proposition 5.11 and Lemma 5.10. ��

The following remark is not essential in the proofs of our main theorems. We will
only use it in Remark 7.7.

Remark 5.13. We sketch an alternative, geometric description of the Bott homo-
morphisms that does not require functional calculus. Let {∗} denote a one-point
space. Then we have an embedding
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C0(R) ↪→ Πb({∗}) =
∏

t∈[0,∞)

ClC(tR)

∼=
⎧⎨
⎩σ ∈

∏
t∈[0,∞)

(C ⊕ C) : σ(0) ∈ C · 1C⊕C

⎫⎬
⎭

f �→
(
f(t), f(−t)

)
t∈[0,∞)

where the identification ClC(R) ∼= C ⊕ C is so that the vector 1 ∈ R corresponds to
(1, −1). Note that it follows from Remark 5.4 that

(
f(t), f(−t)

)
t∈[0,∞)

=
(
f(C∗(t))

)
t∈[0,∞)

.

On the other hand, fixing a base point x0 ∈ M as before, we define a continuous
map

dx0 : M × [0, ∞) → [0, ∞) , (x, t) �→
√

d(x, x0)2 + t2 .

Observe that dx0(x, t) = ‖Cx0(x, t)‖. For each (x, t) ∈ M × [0, ∞), we thus let

τx0(x, t) : dx0(x, t) · R → HxM ⊕ tR

be the linear isometric embedding that maps dx0(x, t) to Cx0(x, t). Notice that
τx0(x, t) is the embedding of the trivial vector space when dx0(x, t) = 0. Together
they make up a ∗-homomorphism

Bx0 : Π({∗}) → Π(M) , σ �→
( (

ClC
(
τx0(x, t)

) ◦ σ ◦ dx0

)
(x, t)

)
(x,t)∈M×[0,∞)

where

ClC
(
τx0(x, t)

)
: ClC(dx0(x, t) · R) → ClC (HxM ⊕ tR)

is the induced ∗-homomorphism between the Clifford algebras. Notice that when
dx0(x, t) = 0, then t = 0 and the map ClC

(
τx0(x, t)

)
can be identified with the embed-

ding of C into ClC (HxM ⊕ tR) = ClC (HxM) as the scalars. This ∗-homomorphism
obviously maps Πb({∗}) to Πb(M) and is characterized by the equation

Bx0(C∗) = Cx0 .

Unpacking the definitions, we see that the Bott homomorphism βx0 is just the re-
striction of Bx0 to C0(R) ⊂ Πb({∗}).

Incidentally, the linear map τx0(x, t) may be seen as the “adjoint of the derivative”
of dx0 at (x, t), because it can be characterized by the equations

〈
τx0(x, t) (s) , log(x,t)(x

′, t′)
〉

Hx⊕R

= lim
r→0

1
r

〈
s, dx0(x

′
r, t

′
r) − dx0(x, t)

〉
R
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for all (x′, t′) ∈ M × [0, ∞), where we write

log(x,t)(x
′, t′) =

(
logx(x′), t′ − t

) ∈ HxM ⊕ R ,

x′
r = [x, x′](r) and t′r = t + r(t′ − t) ,

using the notation introduced in Construction 3.3. This equation can be proved
by checking the case when s = dx0(x, t) and observing that the angle between the
geodesic segments [x, x0] and [x, x′] is the limit of the comparison angle ∠̃(x0, x, x′

r).

We are now ready to introduce the main definition of this section.

Definition 5.14. Let M be a Hilbert-Hadamard space. The algebra A(M) is the
C∗-subalgebra of Πb(M) generated by

{βx0(f) : x0 ∈ M, f ∈ C0(R) } .

We also define Aev(M) to be the C∗-subalgebra of A(M) generated by

{βx0(f) : x0 ∈ M, f ∈ C0(R)ev } .

There are two main reasons why we construct the C∗-algebra A(M) this way:

(1) It carries a natural and well-behaved action by Isom(M).
(2) Its K-theory can be at least partially computed.

These topics will be discussed in the following sections. For the rest of this section,
we establish some basic facts about A(M).

Proposition 5.15. A(M) is separable whenever M is separable.

Proof. By the separability of M and C0(R), there are countable dense subsets X and
F of M and C0(R), respectively. It follows then from Lemma 5.12 and functional
calculus that {βx0(f) | x0 ∈ X, f ∈ F} is a countable dense subset of A(M). ��

We observe that by Proposition 5.7, Aev(M) consists of scalar functions and is
thus in the center of A(M). In fact, we have the following proposition.

Proposition 5.16. Let Âev(M) be the spectrum of the central subalgebra Aev(M).
Then A(M) is an Âev(M)-C∗-algebra.

Proof. Since we already know that Aev(M) is a sub-C∗-algebra of the center
Z(A(M)), to get a continuous map from ̂Z(A(M)) to Âev(M), it suffices to show
that Aev(M) · A(M) is dense in A(M), which follows from the definition of A(M)
and the fact that every f ∈ C0(R) can be written as a product f = f1f2 where
f1 ∈ C0(R)ev and f2 ∈ C0(R). ��

In the special case when the Hilbert-Hadamard space M is a finite-dimensional
Riemannian manifold (cf. Example 3.2), we have rather concrete identifications for
Aev(M) and A(M).
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Lemma 5.17. Let M be a complete, connected and simply connected finite-dimens-
ional Riemannian manifold with non-positive sectional curvature. Then Aev(M) co-
incides with C0(M × [0, ∞)) as C∗-subalgebras of Πb(M), where C0(M × [0, ∞))
embeds into Πb(M) as scalar functions on M × [0, ∞).

Proof. It follows from Proposition 5.7 that (Cx0)
2 is a continuous and proper function

from M × [0, ∞) to [0, ∞) ⊂ C for any x0 ∈ M ; thus βx0(f) falls in C0(M × [0, ∞))
for any even function f ∈ C0(R). Therefore we have Aev(M) ⊂ C0(M × [0, ∞)).

To prove the other direction, we first claim that the generating set

{βx0(f) : f ∈ C0(R)ev, x0 ∈ M}
of Aev(M), when viewed as a subset of C0(M × [0, ∞)), separates points. Indeed,
for any two different points (x1, t1) and (x2, t2) in M × [0, ∞) with t1 ≤ t2, we have

d(x1, x1)2 + t21 = t21 < d(x1, x2)2 + t22

and thus by Equation (5.1), we can choose f ∈ C0(R)ev so that

βx1(f)(x1, t1) �= βx1(f)(x2, t2) .

Hence the Stone-Weierstrass theorem implies Aev(M) = C0(M × [0, ∞)). ��
Proposition 5.18. Let V be a finite-dimensional Euclidean space, viewed as a Hilbert-
Hadamard space, with each tangent cone identified canonically with V itself. Then
inside Πb(V ), the C∗-subalgebra A(V ) coincides with{

f ∈ C0

(
V × [0, ∞),ClC(V ⊕ R)

)
: f(x, 0) ∈ ClC(V ) for all x ∈ V

}
, (5.6)

where the embedding ClC(V ) ↪→ ClC(V ⊕ R) is induced from embedding V into the
first factor of V ⊕ R.

Proof. Let us denote the C∗-algebra in Equation (5.6) by B. By Lemma 5.17, the
C∗-subalgebra Aev(V ) is contained in both A(V ) and B. It also makes both into
(V × [0, ∞))-C∗-algebras (cf. Proposition 5.16).

Now for (x, t) ∈ V × [0, ∞), we see that

{Cx0(x, t) : x0 ∈ V } = V × {t} ⊂ V ⊕ tR ⊂ ClC(V ⊕ tR) .

It follows that as a (V ×[0, ∞))-C∗-algebra, the fiber of A(V ) at (x, t) is ClC(V ⊕tR),
which is the same as that of B. Therefore A(V ) = B as C∗-subalgebras of Πb(V ). ��
Corollary 5.19. We write Mn for the algebra of n×n-matrices. Let k be a natural
number. Then we have the isomorphisms

A(R2k) ∼= C0(R2k × R, M2k) ,

A(R2k+1) ∼= {f ∈ C0(R2k+1 × [0, ∞), M2k+1) : f(R2k+1 × {0}) ⊂ M2k ⊕ M2k } ,

where M2k ⊕ M2k embeds into M2k+1 diagonally.
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Proof. These follow from Proposition 5.18 using the identifications ClC(R2k) ∼= M2k

and ClC(R2k+1) ∼= M2k ⊕ M2k . ��
Remark 5.20. For a finite-dimensional Euclidean space V , the C∗-algebra A(V ) is
isomorphic to SC (V ) used in [HKT98, §2, 3], which is defined as the graded tensor
product C0(R)⊗̂C0

(
V,ClCV

)
, where C0

(
V,ClC(V )

)
inherits the grading from ClCV

and C0(R) is graded by even and odd functions. This follows from the facts that
ClCR⊗̂ClCV ∼= ClC(V ⊕ R) and

C0(R) ∼= {f ∈ C0 ([0, ∞),ClCR) : f(0) ∈ C} .

Moreover, under this identification, it is clear that our Bott homomorphism coincides
with the ∗-homomorphism β : SC ({0}) → SC (V ) constructed in [HKT98, §2, 5].

Proposition 5.21. Let M be a complete, connected and simply connected finite-
dimensional Riemannian manifold with non-positive sectional curvature and let V
denote its tangent space at a point x0, viewed as an Euclidean vector space. Then
there is an isomorphism

Φ: A(V ) → A(M)

which intertwines the Bott homomorphisms in the sense that Φ ◦ βV
0 = βM

x0
.

Proof. By the Cartan-Hadamard theorem (cf. Example 3.4), the logarithm map
logx0

and the exponential map expx0
are mutually inverse diffeomorphisms between

M and V . Thus there is a vector bundle isomorphism D expx0
from the trivial

V -bundle on V to the tangent bundle TM ; namely, for any (v, w) ∈ V × V , we
have D expx0

(v, w) =
(
expx0

(v), Dv expx0
(w)
)
, where Dv expx0

: V → Texpx0
(v)M =

Hexpx0
(v)M is the derivative. Its inverse is the similarly defined D logx0

.
Now the Riemannian metric on M induces inner products on the fibers of both

bundles. Applying polar decomposition, we obtain, for each v ∈ V ,

Dv expx0
= ϕv λv ,

where λv =
((

Dv expx0

)∗ (
Dv expx0

)) 1
2 and ϕv : V → Texpx0

(v)M is an isometric
linear isomorphism. Thus we obtain a Riemannian vector bundle isomorphism ϕ =
(ϕv)v∈V from the trivial bundle V × V to TM .

Observe that expx0
maps each line through 0 to a geodesic in M passing through

x0 and is an isometry when restricted to each such line. Thus for any v ∈ V , we
have

D expx0
(v, v) =

(
expx0

(v), −Dv expx0
(−v)

)
=
(
expx0

(v), − logexpx0
(v) x0

)
,

that is, D expx0
intertwines the Euler vector field v �→ v on V and the vector field

x �→ − logx(x0) on M defining the Clifford operator in Definition 5.2. In particular,
Dv expx0

is isometric on v. Since expx0
is metric semi-increasing (cf. Construction
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3.3), so are Dv expx0
and thus λv. Hence v is in the eigenspace of 1, the smallest

eigenvalue of λv. It follows that ϕv(v) = Dv expx0
(v) = − logexpx0

(v) x0, that is, ϕ

also intertwines the two aforementioned vector fields.
The Riemannian vector bundle isomorphism ϕ induces a ∗-isomorphism

Φ̃x0 : Π(V ) → Π(M)

σ �→
(
ClC

(
ϕlogx0

(x) × IdtR

) (
σ
(
logx0

(x), t
)))

(x,t)∈M×[0,∞)

that restricts to a ∗-isomorphism between Πb(V ) and Πb(M) and intertwines the
Clifford operators:

Φ̃x0

(
CV

0

)
= CM

x0
.

It follows that Φ̃x0 ◦ βV
0 = βM

x0
. Hence it only remains to show that

Φ̃x0 (A(V )) = A(M), or equivalently, A(V ) =
(
Φ̃x0

)−1
(A(M)) ,

as then we may just define Φx0 to be the restriction of Φ̃x0 on A(V ).
To this end, we observe that for any x1 ∈ M and any f ∈ C0(R), we have

Φ̃−1
x0

(βx1(f))

=
(
f
(
Φ̃−1

x0

(
CM

x1

)
(v, t)

))
(v,t)∈V ×[0,∞)

=
(
f
(
−ϕ−1

v ◦ logexpx0
(v) (x1) ⊕ t

))
(v,t)∈V ×[0,∞)

,

which falls in A(V ) because of Proposition 5.18 and the fact that the function

V × [0, ∞) � (v, t) �→
(
−ϕ−1

v ◦ logexpx0
(v) (x1) ⊕ t

)
∈ V ⊕ R

is continuous and proper. This implies A(V ) ⊃
(
Φ̃x0

)−1
(A(M)).

To prove the other direction, we observe from Lemma 5.17 that Φ̃x0 restricts to
a ∗-isomorphism between Aev(V ) = C0(V × [0, ∞)) and Aev(M) = C0(M × [0, ∞))
such that the corresponding maps between V × [0, ∞) and M × [0, ∞) are induced
by expx0

and logx0
. Since A(M) is an (M × [0, ∞))-C∗-algebra, Φ̃−1

x0
(A(M)) is a

(V × [0, ∞))-C∗-algebra, just as A(V ). For any (v, t) ∈ V × [0, ∞), since{
Cx1(expx0

(v), t) : x1 ∈ M
}

= (−Texpx0
(v)M) × {t} ,

which is a generating subset of ClC(Hexpx0
(v)M⊕tR), it follows that the fiber of A(M)

at (expx0
(v), t) is ClC(Hexpx0

(v)M ⊕ tR), and thus the fiber of Φ̃−1
x0

(A(M)) at (v, t) is

given by (ClC (ϕv ⊕ IdtR))−1
(
ClC(Hexpx0

(v)M ⊕ tR)
)
, which is the same as the cor-

responding fiber of A(V ), namely ClC(V ⊕ tR). Therefore A(V ) =
(
Φ̃x0

)−1
(A(M))

as C∗-subalgebras of Πb(V ), as desired. ��
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6 Isometries of M and automorphisms of A(M)

In this section, we discuss how isometries of a Hilbert-Hadamard space M act on
A(M) by automorphisms and study continuity and properness of this action.

Construction 6.1. Given an isometry ϕ of M , we may construct a graded ∗-
automorphism ϕ∗ of Π(M) by

ϕ∗(σ)(x, t) = ClC
(HDϕ−1(x)ϕ ⊕ IdtR

) (
σ
(
ϕ−1(x), t

))
(6.1)

for any x ∈ M , t ∈ [0, ∞) and σ ∈ Π(M), where

• Dϕ−1(x)ϕ : Tϕ−1(x)M → TxM is the derivative of ϕ at x, which is an isometric
bijection fixing the base point,

• HDϕ−1(x)ϕ : Hϕ−1(x)M → HxM is the induced isometric isomorphism, and
• ClC

(HDϕ−1(x)ϕ ⊕ IdtR

)
is the induced graded ∗-isomorphism between the cor-

responding Clifford algebras.

It is clear that the ∗-subalgebra Πb(M) is invariant under this action.
The assignment ϕ �→ ϕ∗ give rise to group homomorphisms from the isometry

group Isom(M) to the group Aut(Π(M)) of ∗-automorphisms of Π(M), as well as
Aut(Πb(M)).

Next we study the relation between Bott homomorphisms and isometries on M .

Lemma 6.2. For any ϕ ∈ Isom(M) and any x0 ∈ M , we have

ϕ∗ ◦ βx0 = βϕ(x0) ,

where ϕ∗ is the induced ∗-automorphism of Πb(M) defined in (6.1).

Proof. For any f ∈ C0(R), x ∈ M and t ∈ R, we have

ϕ∗ (βx0(f)) (x, t) = ClC
(HDϕ−1(x)ϕ ⊕ IdtR

) (
βx0(f)

(
ϕ−1(x), t

))
= ClC

(HDϕ−1(x)ϕ ⊕ IdtR

) (
f
(
Cx0

(
ϕ−1(x), t

)))
= f
(
ClC
(HDϕ−1(x)ϕ ⊕ IdtR

) (
Cx0

(
ϕ−1(x), t

)) )

= f
((

Dϕ−1(x)ϕ
) (− logϕ−1(x)(x0)

)
, t
)

= f (− logx(ϕ(x0)), t)
= f

(
Cϕ(x0)(x, t)

)
= βϕ(x0)(f)(x, t).

Here we used the fact that functional calculus commutes with automorphisms of C∗-
algebras, and that the isometry ϕ : M → M maps the geodesic segment [ϕ−1(x), x0]
to [x, ϕ(x0)]. ��
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Remark 6.3. Somewhat underlying Lemma 6.2 is the fact that

ϕ∗ (Cx0) = Cϕ(x0)

for any x0 ∈ M and γ ∈ Γ.

Proposition 6.4. For any isometry ϕ of M , the induced ∗-automorphism ϕ∗ of
Πb(M) given in Equation (6.1) preserves A(M) and Aev(M).

Proof. This follows directly from Lemma 6.2. ��

Recall that Âev(M) is the spectrum of the central C∗-subalgebra Aev(M). The
action of Isom(M) on A(M) induces actions on Aev(M) by ∗-automorphisms and
on Âev(M) by homeomorphisms.

Corollary 6.5. The C∗-algebra A(M) is an Isom(M)-Âev(M)-C∗-algebra.

Proof. This combines Proposition 5.16 and Proposition 6.4. ��
One of the key properties of A(M) is that any isometric, metrically proper action

on M by a discrete group Γ induces by means of Proposition 6.4 a proper action on
A(M). Here Aev(M) will play an important role, as we will show the action of Γ on
the spectrum of Aev(M) is proper.

Lemma 6.6. Let X be a locally compact Hausdorff space and let Γ be a discrete
group. Let α : Γ � X be an action by homeomorphisms and let α∗ be the induced
action on C0(X). Then this action is (topologically) proper if and only if for any
f ∈ C0(X),

lim
γ→∞ ‖((α∗)γ(f)

) · f‖ → 0 ,

i.e., for any ε > 0, there is a finite subset F ⊂ Γ such that for any γ ∈ Γ\F ,

‖((α∗)γ(f)
) · f‖ < ε.

Proof. If the action Γ � X is proper, then for any f ∈ Cc(X), there is a finite subset
F ⊂ Γ such that for any γ ∈ Γ\F , ‖(α∗)γ(f) · f‖ = 0. The statement for a general
f ∈ C0(X) follows by approximation.

On the other hand, if every element of C0(X) satisfies the condition in the state-
ment, then for any compact subset K ⊂ X, picking a positive function f ∈ C0(X)
such that f(x) ≥ 1 for x ∈ K, we can find, according to the condition, a finite F ⊂ Γ
such that for any γ �∈ F , ‖(α∗)γ(f) · f‖ < 1

2 , which implies that αγ(K) ∩ K = ∅. ��
Proposition 6.7. Let Γ be a discrete group and α : Γ → Isom(M) an isometric,
metrically proper action on M . Then the induced action on A(M) (also denoted by
α) given in Proposition 6.4 makes A(M) into a proper Γ-Âev(M)-C∗-algebra.
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Proof. Observe that for any even and compactly supported function f ∈ C0(R), the
element βx0(f) ∈ Aev(M) ⊂ Πb(M) is, as a function over M × [0, ∞), supported in
a bounded ball around (x0, 0). Thus because of the metric properness of the action
Γ � M , all but finitely many elements γ of Γ satisfy (αγ(βx0(f))) · βx0(f) = 0.
Since any even function f ∈ C0(R) is approximated by the compactly supported
even ones, every element σ of Aev(M) satisfies

lim
γ→∞ ‖(αγ(σ)) · σ‖ = 0 .

This ensures the action of Γ on the spectrum of Aev(M) is (topologically) proper
by Lemma 6.6, i.e., Aev(M) is a commutative proper Γ-C∗-algebra. It follows that
A(M) is a proper Γ-Âev(M)-C∗-algebra. ��

Finally, we discuss the topological aspect of the action of Isom(M) on A(M) by
automorphisms. This will be crucial for our deformation technique in Section 8.

Construction 6.8. Recall from Definition 3.14 that Isom(M) is equipped with the
topology of pointwise convergence. Similarly, let us endow Aut(A(M)), the group of
∗-automorphisms of A(M), with the topology of pointwise (norm) convergence, so
that a net {ϕi}i∈I converges to the identity if and only if limi∈I ϕi(a) = a in norm
for any a ∈ A(M). Note that it suffices to check the latter condition for any a in a
generating set of A(M), e.g., for all a of the form βx0(f) for x0 ∈ M and f ∈ C0(R).

Proposition 6.9. When both Isom(M) and Aut(A(M)) carry the topology of point-
wise convergence, the canonical homomorphism Isom(M) → Aut(A(M)) defined in
Proposition 6.4 is continuous.

Proof. It suffices to show that for any net {ϕi}i∈I in Isom(M) that converges to the
identity, the induced net {(ϕi)∗}i∈I in Aut(A(M)) also converges to the identity.
Since A(M) is generated by βx0(f) for x0 ∈ M and f ∈ C0(R), it suffices to check

lim
i∈I

(ϕi)∗(βx0(f)) = βx0(f)

for any x0 ∈ M and f ∈ C0(R). By Lemma 6.2, the left-hand side is equal to
limi∈I βϕi(x0)(f), which by Lemma 5.12 is equal to the right-hand side, as, by as-
sumption, limi∈I ϕi(x0) = x0. ��

7 The K-theory of A(M)

In this section, we discuss the computation of the K-theory of A(M). We shall see
that when M is finite-dimensional, the Bott homomorphism βx0 : C0(R) → A(M)
induces an isomorphism on K-theory, which can be seen as a version of Bott period-
icity. This statement remains true when M is a separable Hilbert space (cf. [HK01]).
For general Hilbert-Hadamard spaces, however, the problem of computing the K-
theory of A(M) remains open. We provide a partial solution to this problem by
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using an approximation technique to show that the Bott homomorphism induces an
injection on K-theory when the Hilbert-Hadamard space M is admissible. This is
the only place we need the admissibility condition. It is an open question whether
the injectivity of the Bott homomorphism on K-theory remains true without this
condition.

Definition 7.1. Let N ⊂ M be a subset. We define A(M, N) to be the C∗-subalge-
bra of A(M) generated by

{βx0(f) : x0 ∈ N ⊂ M, f ∈ C0(R)}.

Likewise, we define Aev(M, N) to be the C∗-subalgebra of A(M, N) generated by

{βx0(f) : x0 ∈ N ⊂ M, f ∈ C0(R)ev}.

We list some immediate consequences of the definition.

Lemma 7.2. Let N1, N2, . . . be subsets of M .

(1) A(M, M) = A(M).
(2) If N1 ⊂ N2 then A(M, N1) ⊂ A(M, N2).
(3) If N is the closure of N , then A(M, N) = A(M, N).
(4) If N1 ⊂ N2 ⊂ . . ., then A(M,

⋃∞
k=1 Nk) is the direct limit of the sequence

A(M, N1) ⊂ A(M, N2) ⊂ . . . of C∗-subalgebras.

Proof. The first and second claims are immediate from the definition. The third
claim is a consequence of Corollary 5.12. The last claim follows from the second and
the third. ��

The construction of A(M, N) is particularly interesting when N is a closed convex
subset of M . In this case, N is again a Hilbert-Hadamard space; thus we can compare
the algebras A(M, N) and A(N). Consider the C∗-algebra

Πb(N ; M) =

⎧⎨
⎩σ ∈

∏
(x,t)∈N×[0,∞)

ClC(HxM ⊕ tR) : sup
(x,t)∈N×[0,∞)

‖σ(x, t)‖ < ∞
⎫⎬
⎭

together with the natural quotient map

πM,N : Πb(M) → Πb(N ; M)

and the natural embedding

ιM,N : Πb(N) → Πb(N ; M)

induced from the embeddings HxN ↪→ HxM for all x ∈ N .
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Lemma 7.3. Let N be a closed convex subset of M . Then for any x0 ∈ N , we have

πM,N ◦ βM
x0

= ιM,N ◦ βN
x0

,

where βM
x0

is the Bott homomorphism into A(M, N), which in turn is contained
in A(M) and Πb(M), and βN

x0
is the Bott homomorphism into A(N), viewed as a

subalgebra of Πb(N). In particular,

πM,N (A(M, N)) = ιM,N (A(N)) .

Proof. We check that for any (x, t) ∈ N × [0, ∞) and any f ∈ C0(R), we have, inside
ClC(HxM ⊕ R),

πM,N ◦ βM
x0

(f)(x, t) = πM,N

(
f(CM

x0
(x, t))

)
= f

(
CM

x0
(x, t)

)
and

ιM,N ◦ βN
x0

(f)(x, t) = ιM,N

(
f(CN

x0
(x, t))

)
= f

(
CN

x0
(x, t)

)
.

They give the same element because the geodesic segment in M connecting x0 to
x coincides with the geodesic segment in the convex subset N connecting the same
two points. ��
Lemma 7.4. If M is a complete, connected and simply connected (finite-dimensi-
onal) Riemannian manifold with non-positive sectional curvature, then for any x0 ∈
M , the Bott homomorphism βx0 : C0(R) → A(M) induces isomorphisms on K-
theory as well as on K-theory with real coefficients.

Proof. Write V for the tangent space of M at x0. By Proposition 5.21, it suffices to
show the homomorphism

βV
0 : C0(R) → A(V )

induces isomorphisms on K-theory and K-theory with real coefficients. In view
of Remark 5.20, the isomorphism on K-theory follows from the Bott Periodicity
Theorem [HKT98, §2, 6]. The case for K-theory with real coefficients then follows
since both algebras are type I —all of their irreducible representations factor through
finite-dimensional Clifford algebras—and thus in the bootstrap class, and hence the
natural map in Construction 2.8 from K-theory tensored with R to K-theory with
real coefficients is an isomorphism.

Lemma 7.5. For any two points x0, x1 ∈ M , the Bott homomorphisms

βx0 , βx1 : C0(R) → A(M)

are homotopic to each other.

Proof. Let (xs)s∈[0,1] be a path in M connecting x0 and x1 (e.g., the geodesic segment
between the two points). By Corollary 5.12, the family

(
βxs

)
s∈[0,1]

constitutes a
homotopy between βx0 and βx1 . ��
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Recall that M is said to be admissible if there is a sequence M1 ⊂ M2 ⊂ . . . of
closed convex subsets isometric to finite-dimensional Riemannian manifolds, whose
union is dense in M .

Proposition 7.6. Suppose that M is admissible. Then for any x0 ∈ M , the Bott
homomorphism

βx0 : C0(R) → A(M)

induces injections on K-theory as well as K-theory with real coefficients (Construc-
tion 2.8), that is, the induced homomorphisms

Ki(C0(R))
(βx0 )∗−→ Ki(A(M)) and KR,i(C0(R))

(βx0 )∗−→ KR,i(A(M))

are injective.

Proof. Let M1 ⊂ M2 ⊂ . . . be a sequence of closed convex subsets isometric to finite-

dimensional Riemannian manifolds such that M =
∞⋃

k=1

Mk. By Lemma 7.5, the Bott

homomorphisms associated to any two base points agree on K-theory. Hence we
may assume without loss of generality that x0 ∈ TM1. By Lemma 7.2, we see that
A(M) is the direct limit of the increasing sequence of subalgebras A(M, M1) ⊂
A(M, M2) ⊂ . . .. Since the image of βx0 is contained in A(M, Mk) for any k ∈ Z>0,
by the continuity of the K-theory functor with regard to direct limits, it suffices to
show that

βx0 : C0(R) → A(M, Mk)

induces an injection on K-theory and K-theory with real coefficients for every k ∈
Z>0. To this end, we fix an arbitrary k ∈ Z>0 and observe that Lemma 7.3 yields a
commutative diagram

C0(R)
βx0 ��

β
Mk
x0

��

A(M, Mk)

πM,Mk

��
A(Mk) ιM,Mk

�� ιM,Mk
(A(Mk)) = πM,Mk

(A(M, Mk)) ⊆ Πb(Mk; M)

of homomorphisms of C∗-algebras. Its lower horizontal arrow is an isomorphism.
By Lemma 7.4, the left vertical arrow induces isomorphisms on K-theory as well as
K-theory with real coefficients. It follows that βx0 induces injections on K-theory
as well as K-theory with real coefficients, as desired. ��

The following remark is not essential to the proofs of our main theorems, but
it helps to connect our construction of A(H) for a separable Hilbert space H with
those of SC (H) in [HKT98, §3, 3] and Ã (H) in [HK01, 4.3].
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Remark 7.7. We say that a closed convex subset N of M is complemented if there
exists a closed convex subset N ′ of M such that N ∩N ′ = {x0} for some x0 ∈ M and
there is an isometry M

�−→ N × N ′ (equipped with the �2-product metric) sending
N ⊆ M to N × {x0} ⊆ N × N ′.

We claim that when N is complemented, the quotient map πM,N maps A(M, N)
isomorphically onto ιM,N (A(N)); thus we have A(M, N) ∼= A(N). To see this, we
follow Remark 5.13 and introduce, for any (x′, t) ∈ N ′ × [0, ∞), the isometric linear
embedding

τN ′
x0

(x′, t) : dx0(x
′, t) · R → Hx′N ′ ⊕ tR

sending dx0(x′, t) to CN ′
x0

(x′, t), where dx0(x′, t) =
√

d(x′, x0)2 + t2. Together they
make up a ∗-homomorphism

BM
N : Π(N) → Π(N × N ′) ∼= Π(M)

σ �→
(
ClC

(
IdHxN ⊕ τN ′

x0
(x′, t)

) (
σ(x, dx0(x

′, t))
))

(x,x′,t)∈N×N ′×[0,∞)

,

where

ClC

(
IdHxN ⊕ τN ′

x0
(x′, t)

)
: ClC(HxN ⊕ dx0(x, t)R) → ClC

(HxN ⊕ Hx′N ′ ⊕ tR
)

is the induced ∗-homomorphism between the Clifford algebras. It follows from straight-
forward computations that

πM,N ◦ BM
N = ιM,N : Πb(N) → Πb(N ; M)

and BM
N (CN

x ) = CM
x for any x ∈ N . The latter implies BM

N ◦ βN
x = βM

x for any
x ∈ N and thus

BM
N (A(N)) = A(M, N) .

These facts prove the above claim.
In the case when M is a separable Hilbert space, every closed convex subset

N is an affine subspace and is clearly complemented. Thus choosing an increasing
sequence (Mk)k∈N of finite-dimensional affine subspaces with M =

⋃
k∈N

Mk, we
have

A(M) =
⋃
k∈N

BM
Mk

(A(Mk)) .

In view of the natural identification

ClC

(
IdHxN ⊕ τN ′

x0
(x′, t)

)
= IdClC (HxN)⊗̂ClC

(
τN ′
x0

(x′, t)
)

,

it is not hard to see that the map BM
N : A(N) → A(M, N) ⊂ A(M) agrees with the

connecting map A(V ′) → A(V ) given in Definition 4.4 of [HK01]. It follows that in
this case, our construction of A(M) agrees with the algebras SC (M) in [HKT98,
§3, 3] and Ã (M) in [HK01, 4.3].
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8 The proofs of the main theorems

In this section, we prove our main results, which will make use of the various ingredi-
ents from the previous sections. More precisely, suppose that a discrete group Γ acts
on a Hilbert-Hadamard space M properly and isometrically. Then, Proposition 6.7
gives one hope to apply the standard Dirac-dual-Dirac method (cf. [Kas88, Kas95];
also see [Val02, Chapter 9]) to the C∗-algebra A(M) in order to prove the injectivity
of the assembly map μ : KKΓ

i (EΓ) → Ki(C∗
r Γ) via Theorem 2.6 and the commu-

tative diagram in (2.3). However, we are not able to directly apply this powerful
method since we have not been able to compute the K-theory of A(M) in general.
We have only obtained some partial information from Proposition 7.6.

To circumvent this problem, we amplify the Hilbert-Hadamard space M to a
bigger and necessarily infinite-dimensional Hilbert-Hadamard space M [0,1], on which
Γ still acts properly and isometrically, and then employ a deformation technique
to simplify the calculation of the equivariant KK-groups involving the C∗-algebra
A(M [0,1]). To formalize this deformation technique, we introduce the following C∗-
algebra.

Construction 8.1. Let us fix a Hilbert-Hadamard space M . Recall from Proposi-
tion 3.18 that we write M [0,1] for the continuum product L2([0, 1], m, M). We define

A[0,1](M) = C
(
[0, 1], A(M [0,1])

)
,

that is, the C∗-algebra of all continuous functions with values in A(M [0,1]), and
equip it with the action α[0,1] of Isom(M): for any ϕ ∈ Isom(M) and any f ∈
C
(
[0, 1], A(M [0,1])

)
, we define ϕ ·α[0,1] f by

(
ϕ ·α[0,1] f

)
(t) = H(ϕ, t)∗ (f(t)) for any t ∈ [0, 1] ,

where H : Isom(M)×[0, 1] → Isom
(
M [0,1]

)
is the homotopy given in Proposition 3.18

and the lower ∗ denotes the induced element in Aut(A(M [0,1])). Note that the conti-
nuity statement in Proposition 3.18, together with Proposition 6.9, guarantees this
action is well-defined and continuous.

For each t ∈ [0, 1], there is an evaluation map

evt : A[0,1](M) → A(M [0,1]) , f �→ f(t) ,

which clearly intertwines the actions α[0,1] and

αt : Isom(M) � A(M [0,1]) , ϕ ·αt
a = H(ϕ, t)∗ (a) .

Remark 8.2. It is clear that for any t ∈ [0, 1], the evaluation map evt is a homotopy
equivalence and thus induces an isomorphism on (non-equivariant) K-theory.
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Lemma 8.3. Let Γ be a subgroup of Isom(M) and let X be a free and proper Γ-space.
Then for any t ∈ [0, 1], the evaluation maps

evt : A[0,1](M) → A(M [0,1])

induce isomorphisms

(evt)∗ : KK
Γ,α[0,1]

i

(
X, A[0,1](M)

) ∼=−→ KKΓ,αt

i

(
X, A(M [0,1])

)

for i = 0, 1, where the superscripts α[0,1] and αt are inserted to specify the actions
of Γ on the C∗-algebras A[0,1](M) and A(M [0,1]).

Proof. By Definition 2.3, it suffices to prove the lemma in the case when X is Γ-
compact. Combining this additional condition with the slice lemma (Lemma 2.5),
we see that such an X can be written as the union of finitely many Γ-invariant
open subsets W1, . . . , Wk, with each Wj being a disjoint union of Γ-translates of a
single open subset Uj , that is, Wj is equivariantly homeomorphic to Γ × Uj , with
Γ acting by translation on the first factor of the Cartesian product. Thus each Wj

determines a Γ-invariant ideal C0(Wj) in C0(X) that is equivariantly isomorphic to
C0(Γ, C0(U)). Remark 2.2(2) then yields a commutative diagram

KK
Γ,α[0,1]

i

(
C0(Wj), A[0,1](M)

) (evt)∗ ��

∼=
��

KKΓ,αt

i

(
C0(Wj), A(M [0,1])

)
∼=
��

KKi

(
C0(Uj), A[0,1](M)

) (evt)∗ �� KKi

(
C0(Uj), A(M [0,1])

)

Remark 8.2 implies that the bottom map is an isomorphism, and thus so is the top
map. Now, for any j ∈ {2, . . . , k}, the two Γ-invariant ideals C0(W1 ∪ . . . ∪ Wj−1)
and C0(Wj) in the commutative proper Γ-C∗-algebra C0(W1∪ . . .∪Wj) give rise to a
commutative diagram consisting of two Mayer-Vietoris sequences with regard to the
functors KK

Γ,α[0,1]

i

(−, A[0,1](M)
)

and KKΓ,αt

i

(−, A(M [0,1])
)
, together with various

maps induced by evt. By a standard inductive argument using the five lemma (see,
for example, [GHT00]), we obtain the desired isomorphism. ��
Construction 8.4. Let

σ : R∗
+ � C0(R)

be the rescaling action given by

(s · f)(t) = f(s−1t)

for any s ∈ R∗
+, f ∈ C0(R), and t ∈ R. This action preserves the set of even

(respectively, odd) functions.
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Lemma 8.5. Following the notations of Definition 5.9, for any f ∈ C0(R) and r ∈
R∗

+, we have

Ωr(σs(f)) = Ωs−1rf and Θr(σs(f)) = Θs−1rf

for all s ∈ R∗
+ and thus

lim
s→∞ sup

r′≤r
Ωr′(σs(f)) = 0 = lim

s→∞ sup
r′≤r

Θr′(σs(f)) .

Proof. These follow immediately from Definition 5.9 and Lemma 5.10. ��
Lemma 8.6. Consider M as embedded in M [0,1] as constant functions. For any x0 ∈
M , let

β[0,1]
x0

: C0(R) → A[0,1](M) ,

be the composition of βx0 : C0(R) → A(M [0,1]) and the embedding of A(M [0,1]) into
A[0,1](M) as constant functions. Then the family

{
β[0,1]

x0
◦ σs

}
s∈[1,∞)

of ∗-homomorphisms from C0(R) to A[0,1](M) is asymptotically invariant in the
sense of Construction 2.7 with regard to the action α[0,1] : Isom(M) � A[0,1](M)
and the trivial action on C0(R).

Proof. For any t ∈ [0, 1], f ∈ C0(R), x0 ∈ M and ϕ ∈ Isom(M), it follows from
Lemma 6.2 that

α[0,1](ϕ)
(
β[0,1]

x0
(σs(f))

)
(t) = αt(ϕ) (βx0(σs(f))) = βH(ϕ,t)·x0

(σs(f)) ,

where H is the homotopy in Proposition 3.18. Since the map t → H(ϕ, t) · x0 is
continuous, we can define R > 0 to be the supremum of d(x0, H(ϕ, t) · x0) as t
ranges over [0, 1]. Then by Proposition 5.11, we have

∥∥∥β[0,1]
x0

(σs(f)) − α[0,1](ϕ)
(
β[0,1]

x0
(σs(f))

)∥∥∥
= sup

t∈[0,1]

∥∥βx0(σs(f)) − βH(ϕ,t)·x0
(σs(f))

∥∥
≤ sup

r≤R
(2 Ωr(σs(f)) + max {Ω2r(σs(f)), Θr(σs(f))}) ,

which converges to 0 by Lemma 8.5. ��
Construction 8.7. Thanks to Lemma 8.6, we may define the Bott element

[β] ∈ KKΓ
1 (C, A[0,1](M))
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as the one induced by the family
{

β
[0,1]
x0 ◦ σs

}
s∈[1,∞)

according to Construction 2.7.

Thus the forgetful map

KKΓ
1 (C, A[0,1](M)) → KK1(C, A[0,1](M)) ∼= KK0(C0(R), A[0,1](M)) ,

maps the Bott element to the class of the Bott homomorphism β
[0,1]
x0 : C0(R) →

A[0,1](M), for any x0 ∈ M .

Recall from Construction 2.8 that KKΓ
R,i(X, A) stands for equivariant KK-

theory with real coefficients and Γ-compact supports in the space X.

Proposition 8.8. The composition of the group homomorphisms

KΓ
i+1(EΓ) ⊗Z Q

[β]−→ KKΓ
i (EΓ, A[0,1](M)) ⊗Z Q → KKΓ

R,i(EΓ, A[0,1](M))

is injective, where the first map is given by taking Kasparov product with [β] and the
second is given by the natural map mentioned in Construction 2.8.

Proof. After composing the homomorphism in question with

(ev0)∗ : KK
Γ,α[0,1]

R,∗
(
EΓ, A[0,1](M)

) −→ KKΓ,α0

R,∗
(
EΓ, A(M [0,1])

)

and identifying the left-hand side with KKΓ∗ (EΓ, C0(R)) ⊗Z Q, we obtain a map

KKΓ
∗ (EΓ, C0(R)) ⊗Z Q → KKΓ,α0

R,∗
(
EΓ, A(M [0,1])

)
,

which is seen to be induced by the Bott homomorphism βx0 : C0(R) → A(M [0,1]) at
an arbitrary base point x0. It suffices to show this composition is injective. Since the
action α0 is trivial, we obtain a commutative diagram

KKΓ
i (EΓ, C0(R)) ⊗Z Q ��

∼=
��

KKΓ,α0

R,i

(
EΓ, A(M [0,1])

)
∼=
��

KKi(BΓ, C0(R)) ⊗Z Q �� KKR,i

(
BΓ, A(M [0,1])

)

⊕
j∈Z/2Z

Ki−j(BΓ) ⊗Z Kj(C0(R)) ⊗Z Q ��

∼=

��

⊕
j∈Z/2Z

Ki−j(BΓ) ⊗Z KR,j

(
A(M [0,1])

)
∼=

��

where the upper vertical maps are the natural isomorphisms given by Remark 2.2(1),
the lower vertical maps are the natural isomorphisms given by Lemma 2.4, and the
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horizontal maps are induced from the Bott homomorphism βx0 and the change-of-
coefficient homomorphisms. It suffices to show the bottom horizontal map is injec-
tive. Since this is a homomorphism between Q-vector spaces, it suffices to show the
maps on the second tensor components, i.e., the compositions

Kj(C0(R)) ⊗Z Q → Kj

(
A(M [0,1])

)
⊗Z Q → KR,j

(
A(M [0,1])

)

for j = 0, 1, are injective. This is clear for j = 0 since K0(C0(R)) ∼= 0. As for j = 1,
we rewrite the composition as

Q ∼= K1(C0(R)) ⊗Z Q ↪→ K1(C0(R)) ⊗Z R ∼= KR,1(C0(R))
(βx0 )∗−→ KR,1

(
A(M [0,1])

)
,

which is injective by Proposition 7.6, as desired. ��

Proof of Theorem 1.1. Consider the commuting diagram

KΓ∗+1(EΓ) ⊗Z Q
π∗ ��

[β]
��

KΓ∗+1(EΓ) ⊗Z Q
μ ��

[β]
��

K∗+1(C∗
r Γ) ⊗Z Q

[β]�rΓ

��
KKΓ

R,∗(EΓ, A[0,1](M))
π∗ ��

(ev1)∗
��

KKΓ
R,∗(EΓ, A[0,1](M))

μ ��

(ev1)∗
��

KR,∗(A[0,1](M) �r Γ)

(ev1)∗�rΓ
��

KKΓ
R,∗(EΓ, A(M [0,1]))

π∗ �� KKΓ
R,∗(EΓ, A(M [0,1]))

μ �� KR,∗(A(M [0,1]) �r Γ)

where Γ acts on A[0,1](M) by α[0,1] and on A(M [0,1]) by α1. Tracing along the
leftmost column and then the bottom row, we see that the first vertical map is
injective by Proposition 8.8, the second vertical map is a bijection by Lemma 8.3,
the first horizontal map is injective by Lemma 2.9, and the second horizontal map
is bijective by Theorem 2.6 and the fact that A(M [0,1]) is a proper Γ-X-C∗-algebra,
with X being the spectrum of Aev(M [0,1]), by Propositions 3.19 and 6.7. This implies
the composition of the maps in the top row is injective, which is what we need. ��

Proof of Theorem 1.3. This follows from Theorem 1.1 and Proposition 4.12. ��
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9 Appendix: Hilbert-Hadamard spaces and continuum products

In this appendix, we prove some technical results regarding the permanence of
Hilbert-Hadamard spaces (Definition 3.1) under taking continuum products (Con-
struction 3.8). These results are summarized in Proposition 3.13.

Lemma 9.1. If X is a CAT(0) space, then the map

(x, y, z) �→ ∠([y, x], [y, z])

is upper semi-continuous, that is, roughly speaking, small perturbations of (x, y, z)
do not increase ∠([y, x], [y, z]) by much.

Proof. Given any ε > 0 and any distinct points x0, y0, z0 ∈ X, we wish to find
r ∈ (0, 1

2 min{d(x0, y0), d(y0, z0), d(z0, x0)}
)

such that for any x ∈ Br(x0), y ∈ Br(y0)
and z ∈ Br(z0), we have

∠([y, x], [y, z]) ≤ ∠([y0, x0], [y0, z0]) + ε .

To this end, we find u0 ∈ [y0, x0]\{y0} and v0 ∈ [y0, z0]\{y0} such that

∠̃(u0, y0, v0) ≤ ∠([y0, x0], [y0, z0]) +
ε

2
.

Since the function (x, y, z) �→ ∠̃(x, y, z) is continuous by its definition, we can find
r ∈ (0, 1

2 min{d(u0, y0), d(y0, v0), d(v0, u0)}
)

such that for any u ∈ Br(u0), y ∈ Br(y0)
and v ∈ Br(v0), we have

∣∣∣∠̃(u, y, v) − ∠̃(u0, y0, v0)
∣∣∣ ≤ ε

2
.

Now for any x ∈ Br(x0), y ∈ Br(y0) and z ∈ Br(z0), Remark 2.11(3) implies that
[y, x] ∩ Br(u0) �= ∅ and [y, z] ∩ Br(v0) �= ∅. Hence, fixing u ∈ [y, x] ∩ Br(u0) and
v ∈ [y, z] ∩ Br(v0), we have

∠([y, x], [y, z]) ≤ ∠̃(u, y, v) ≤ ∠̃(u0, y0, v0) +
ε

2
≤ ∠([y0, x0], [y0, z0]) + ε ,

which is what we wanted to prove. ��

Lemma 9.2. If M is a Hilbert-Hadamard space, then with the notations of Construc-
tions 3.3 and 2.14, the map

M × M × M → R

(x, y, z) �→ 〈
logy(x), logy(z)

〉

is lower semi-continuous.
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Proof. We observe that

〈
logy(x), logy(z)

〉
=

{
0 , x = y or y = z

d(y, x)d(y, z) cos ∠([y, x], [y, z]) , otherwise
.

This is continuous at any point (x, y, z) where x = y or y = z because the cosine
function is bounded. At any other point, since ∠([y, x], [y, z]) ∈ [0, π] and the cosine
function is strictly decreasing on the interval [0, π], it follows from Lemma 9.1 that
the above function is lower semi-continuous. Combining the two cases gives the
result. ��
For the sake of convenience in the proof of the next proposition, we write L2(Y, μ, M)
for the space of all L2-functions from (Y, μ) to M , without identifying functions that
are almost everywhere equal. Thus L2(Y, μ, M) is a quotient of L2(Y, μ, M).

Proposition 9.3. For any Hilbert-Hadamard space M and finite measure space
(Y, μ), the continuum product L2(Y, μ, M) is again a Hilbert-Hadamard space.

Proof. The fact that L2(Y, μ, M) is a CAT(0) metric space follows from Proposi-
tion 3.11.
Completeness of L2(Y, μ, M) is proved in a similar way as that of classical L2-
spaces. More precisely, if ([ξn])n∈N is a sequence in L2(Y, μ, M) that gives rise to a
Cauchy sequence in L2(Y, μ, M), then by passing to a subsequence, we may assume
d([ξn], [ξn+1]) ≤ 2−2n. Define

Yn =
{
y ∈ Y : dM (ξn(y), ξn+1(y)) ≥ 2−n

}
.

Thus μ(Yn) ≤ 2−2n by the definition of the metric on L2(Y, μ, M). Hence the set⋂∞
m=0

⋃∞
n=m

Yn has measure zero and for any y in the complement of this set,
the sequence (ξn(y))n∈N is Cauchy. It follows from the completeness of M that
([ξn])n∈N converges almost everywhere. A standard argument shows that the limit
is in L2(Y, μ, M).
It remains to show that the tangent cone at any point of L2(Y, μ, M) embeds isomet-
rically into a Hilbert space. To this end, we fix any representative ξ ∈ L2(Y, μ, M)
of the said point. For each point y ∈ Y , by the assumption that M is a Hilbert-
Hadamard space, the tangent cone Tξ(y)M embeds isometrically into a Hilbert space
Hξ,y. Form the direct product vector space

∏
y Hξ,y, whose generic element is writ-

ten as v = (vy)y∈Y , where vy ∈ Hξ,y. Consider the logarithm map logξ(y) : M →
Tξ(y)M ⊂ Hξ,y defined in Construction 3.3, which is a non-expansive map. These
logarithm maps can be assembled into a map

LOGξ : L2(Y, μ, M) →
∏
y

Hξ,y ,

ϕ �→ (logξ(y)(ϕ(y)))y∈Y .
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The image of this assembled logarithm map spans a vector subspace Vξ.
We wish to define a positive-semidefinite symmetric bilinear form on Vξ by integrat-
ing the inner products on Hξ,y over the measure μ. To show that this is well defined,
we need to show that for v, w ∈ Vξ, the map

y �→ 〈vy, wy〉
is a measurable function with a finite integral. To this end, it suffices to show the case
when v and w are in the image of LOGξ; thus we can consider ϕ, ψ ∈ L2(Y, μ, M)
such that

(vy) = (logξ(y)(ϕ(y))) and (wy) = (logξ(y)(ψ(y))) ,

so that the map y �→ 〈vy, wy〉 becomes

y �→
〈
logξ(y)(ϕ(y)), logξ(y)(ψ(y))

〉
,

which is a measurable function because ξ, ϕ and ψ are measurable and the function
(x1, x0, x2) �→ 〈

logx0
(x1), logx0

(x2)
〉

is lower semi-continuous by Lemma 9.2. On
the other hand, by the Cauchy-Schwarz inequality and the metric properties of the
logarithm map, we have∫

Y

∣∣∣〈logξ(y)(ϕ(y)), logξ(y)(ψ(y))
〉∣∣∣ dμ(y)

≤
∫

Y

∥∥∥logξ(y)(ϕ(y))
∥∥∥
∥∥∥logξ(y)(ψ(y))

∥∥∥ dμ(y)

=
∫

Y
d(ξ(y), ϕ(y)) · d(ξ(y), ψ(y)) dμ(y)

≤d(ξ, ϕ) · d(ξ, ψ) < ∞ ,

which shows integrability.
It is straightforward to check that the formula

〈v, w〉 =
∫

Y
〈vy, wy〉 dμ(y)

defines a positive-semidefinite symmetric bilinear form on Vξ. Let
V 0

ξ = {v ∈ Vξ : 〈v, w〉 = 0 for any w ∈ Vξ} and let Hξ be the completion of Vξ/V 0
ξ

by the inner product induced from 〈−, −〉.
It is easy to see that T[ξ]L

2(Y, μ, M) embeds isometrically into Hξ, by taking the
fibre-wise embedding, because the tangent cone, which is constructed from geodesic
segments, can be constructed fibrewise; after all, geodesic segments in L2(Y, μ, M)
are fibre-wise geodesic segments over each point y ∈ Y . This yields the desired
isometric embedding of the tangent cone T[ξ]L

2(Y, μ, M) into a Hilbert space. ��
Next we discuss the admissibility of L2(Y, μ, M) (cf., Definition 3.5). For this pur-
pose, we need a few results which are reminiscent of the classical theory of Lp-spaces.
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Lemma 9.4. For any separable metric space X and finite measure space (Y, μ), the
set of simple functions from Y to X (i.e., functions with finite ranges) is dense in
L2(Y, μ, X).

Proof. Given any ξ ∈ L2(Y, μ, X) and ε > 0, we are going to find a simple function
η ∈ L2(Y, μ, X) with d(ξ, η) ≤ ε

√
μ(Y ) + 1. To this end, we pick a countable dense

subset {xi : i ∈ N} of X. Then there is a countable Borel partition {Xi : i ∈ N} of
X such that each Xi is contained in the ε-ball Bε(xi) around xi. Indeed, we may
define

Xi = Bε(xi)\
⎛
⎝i−1⋃

j=0

Bε(xj)

⎞
⎠ .

Write Yi = ξ−1(Xi) (defined up to measure zero). Then {Yi : i ∈ N} is a count-
able measurable partition of Y . Hence if we write x0 also for the constant function
mapping Y to {x0} ⊂ X, then we have

d(x0, ξ)2 =
∫

Y
dX(x0, ξ(y))2 dμ(y) =

∞∑
i=0

∫
Yi

dX(x0, ξ(y))2 dμ(y) .

Since the right-hand side is a positive series that converges, there is N ∈ N such
that

∞∑
i=N

∫
Yi

dX(x0, ξ(y))2 dμ(y) < ε2 .

Now define the simple function

η(y) =

{
xi , y ∈ Yi and i < N

x0 , y ∈ Yi and i ≥ N
.

Then by our construction, we have

d(ξ, η)2 =
∞∑
i=0

∫
Yi

dX(η(y), ξ(y))2 dμ(y)

=
N−1∑
i=0

∫
Yi

dX(xi, ξ(y))2 dμ(y) +
∞∑

i=N

∫
Yi

dX(x0, ξ(y))2 dμ(y)

≤
N−1∑
i=0

∫
Yi

ε2 dμ(y) + ε2

≤ ε2μ(Y ) + ε2 .

Therefore we have d(ξ, η) ≤ ε
√

μ(Y ) + 1. ��
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For the following lemmas, we are going to view a finite measurable partition of a
measure space (Y, μ) as a measurable map from Y to a finite space I, regarded as
the index set. Given two finite measurable partitions P1, P2 : Y → I with the same
index set, we define

δ(P1, P2) =
∑
i∈I

μ
(P−1

1 ({i}) � P−1
2 ({i})

)
.

Given two finite measurable partitions Pj : Y → Ij for j = 1, 2, we say P1 refines
P2 if there is a map f : I1 → I2 such that P2 = f ◦ P1; more generally, for ε > 0, we
say P1 ε-refines P2 if there is a map f : I1 → I2 such that δ(P2, f ◦ P1) ≤ ε.
The following lemma can probably be found in the literature. We include a proof
for completeness.

Lemma 9.5. Let (Y, μ) be a separable finite measure space. Then there is a sequence
(Pn)n∈N of finite measurable partitions of (Y, μ) with Pn+1 refining Pn for all n ∈ N

and satisfying that for any ε > 0, any finite measurable partition of (Y, μ) is ε-refined
by some Pn.

Proof. Since (Y, μ) is separable, we can choose a countable family {An : n ∈ N} of
measurable subsets such that for any ε > 0 and any measurable subset A in Y , we
have μ(A � An) < ε for some n. For any n ∈ N, define Pn : Y → {0, 1}{0,...,n} by

Pn(y)(j) =

{
0, y /∈ Aj

1, y ∈ Aj

for any y ∈ Y and j ∈ {0, . . . , n}. Then clearly Pn+1 refines Pn for all n ∈ N.
To see that for any finite measurable partition Q : Y → J and any ε > 0, we have
that Q is ε-refined by some Pn, we apply induction on the cardinality of J . The case
when J is a singleton is trivial. Now fix k ∈ N and suppose for any δ > 0, any finite
measurable partition of (Y, μ) with the index set containing no more than k elements
is δ-refined by some Pn. Then given ε > 0 and a finite measurable partition Q : Y →
{0, . . . , k}, we form another finite measurable partition R : Y → {0, . . . , k − 1} by
merging Q−1(k − 1) and Q−1(k). By our choice of the family {An : n ∈ N}, we can
choose An such that μ(Q−1(k) � An) < ε/3. On the other hand, by our inductive
assumption, there is m ∈ N such that R is δ-refined by some Pm, i.e., there is a
map f : {0, 1}{0,...,m} → {0, . . . , k −1} such that δ(R, f ◦Pm) ≤ ε/3. Without loss of
generality, we may assume m ≥ n. Define g : {0, 1}{0,...,m} → {0, . . . , k} such that

g : {0, 1}{0,...,m} → {0, . . . , k} , s = (sj)j∈{0,...,m} �→
{

k , sn = 1
f(s) , sn = 0

.

Thus we have

μ
(Q−1(k) � (g ◦ Pm)−1(k)

)
= μ

(Q−1(k) � An

)
< ε/3
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and for any j ∈ {0, . . . , k − 1}, since Q−1(j) = R−1(j)\Q−1(k), we have

μ
(Q−1(j) � (g ◦ Pm)−1(j)

)
= μ

((
R−1(j)\Q−1(k)

)
�
(
(f ◦ Pm)−1(j)\An

))

≤ μ
(R−1(j) � (f ◦ Pm)−1(j)

)
+ μ
((

R−1(j)\Q−1(k)
)

∩ An

)
+ μ
(
Q−1(k) ∩

(
(f ◦ Pm)−1(j)\An

))
,

whence

δ(Q, g ◦ Pm)

=
k∑

j=0

μ
(Q−1(j) � (g ◦ Pm)−1(j)

)

≤ ε

3
+

k−1∑
j=0

μ
(R−1(j) � (f ◦ Pm)−1(j)

)

+
k−1∑
j=0

(
μ
((

R−1(j)\Q−1(k)
)

∩ An

)
+ μ
(
Q−1(k) ∩

(
(f ◦ Pm)−1(j)\An

)))

=
ε

3
+ δ(R, f ◦ Pm) + μ

((
Y \Q−1(k)

)
∩ An

)
+ μ
(
Q−1(k) ∩

(
Y \An

))

≤ ε

3
+

ε

3
+ μ
(Q−1(k) � An

)
≤ ε

3
+

ε

3
+

ε

3
= ε .

This shows Q is ε-refined by Pm. The result thus follows by induction. ��

We remark that the condition in Lemma 9.5 is in fact equivalent to the separability
of (Y, μ).

Proposition 9.6. For any admissible Hilbert-Hadamard space M and any separable
finite measure space (Y, μ), the continuum product L2(Y, μ, M) is again an admissible
Hilbert-Hadamard space.

Proof. By our assumption, the Hilbert-Hadamard space M contains an increasing
sequence M0 ⊂ M1 ⊂ . . . of convex subsets isometric to finite-dimensional complete
Riemannian manifolds, such that M =

⋃
n∈N

Mn. We are going to produce such a
sequence for L2(Y, μ, M), too.
Since (Y, μ) is separable, we can find a sequence (Pn : Y → In)n∈N of finite mea-
surable partitions of (Y, μ) satisfying the conditions in Lemma 9.5. Let μn be the
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push-forward of the measure μ under Pn. Then by Remark 3.9, there is a commu-
tative diagram of isometric embeddings

L2(I0, μ0, M0) ��

ι0
��������

������
������

������
������

����
. . . �� L2(In, μn, Mn) ��

ιn

����
���

���
���

�
. . .

L2(Y, μ, M)

Under these embeddings, we view the spaces L2(In, μn, Mn) as an increasing se-
quence of subspaces of L2(Y, μ, M). Observe that as a subspace, L2(In, μn, Mn)
consists of functions on Y which are constant on each member set of the partition
In and take values in Mn. Thus it is convex in L2(Y, μ, M) due to Remark 3.12.
By Example 3.10, the space L2(In, μn, Mn) is isometric to a Cartesian product of
Mn with a weighted �2-metric, which is thus again a finite-dimensional complete
Riemannian manifold.
It remains to show that

L2(Y, μ, M) =
⋃
n∈N

L2(In, μn, Mn) .

Thanks to Lemma 9.4, it suffices to show that for any simple function ξ in L2(Y, μ, M)
and any ε > 0, we can find m ∈ N and η ∈ L2(Im, μm, Mm) such that d(ξ, η) < ε.
Since im ξ is a finite subset in M , by our choice of the sequence (Mn)n∈N, there is
m0 ∈ N such that im ξ is in the ε′-neighborhood of Mm0 for ε′ = ε/

√
2μ(Y ), that

is, there is a map g : im ξ → Mm0 such that d(x, g(x)) ≤ ε′ for any x ∈ im ξ. On the
other hand, since ξ provides a finite measurable partition of (Y, μ), by our choice
of the sequence (Pn)n∈N, there is a natural number m ≥ m0 such that the finite
measurable partition ξ is ε′′-refined by Pm for ε′′ = ε2/

(
2(diam(im ξ) + ε′)2

)
, that

is, there is a map f : Im → im ξ, such that δ(ξ, f ◦ Pm) < ε′′. Here diam(im ξ) =
supx,x′∈im ξ dM (x, x′).
We thus define η = g ◦ f ◦ Pm ∈ L2(Im, μm, Mm) and compute

d(ξ, η)2

=
∫

y∈Y
dM (ξ(y), g ◦ f ◦ Pm(y))2 dμ(y)

=
∑

x∈im ξ

∫
y∈ξ−1(x)

dM (x, g ◦ f ◦ Pm(y))2 dμ(y)

=
∑

x∈im ξ

(∫
y∈ξ−1(x)∩(f◦Pm)−1(x)

dM (x, g(x))2 dμ(y)

+
∫

y∈ξ−1(x)\(f◦Pm)−1(x)
dM (x, g ◦ f ◦ Pm(y))2 dμ(y)

)
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≤
∑

x∈im ξ

(∫
y∈ξ−1(x)∩(f◦Pm)−1(x)

(ε′)2 dμ(y)

+
∫

y∈ξ−1(x)\(f◦Pm)−1(x)
(diam(im ξ) + ε′)2 dμ(y)

)

≤
∫

y∈Y

ε2

2μ(Y )
dμ(y) +

∑
x∈im ξ

∫
y∈ξ−1(x)�(f◦Pm)−1(x)

(diam(im ξ) + ε′)2 dμ(y)

≤ μ(Y ) · ε2

2μ(Y )
+ δ(ξ, f ◦ Pm) · (diam(im ξ) + ε′)2

< ε2 ,

as desired. ��
With similar techniques as in the above proof of Proposition 9.6, one can prove the
following result. We omit the details as we will not make explicit use of this.

Proposition 9.7. For any separable Hilbert-Hadamard space M and any separable
finite measure space (Y, μ), the continuum product L2(Y, μ, M) is again a separable
Hilbert-Hadamard space. ��
Remark 9.8. The constructions in the proof of Proposition 9.6 may be used to show
that even if we start with a finite-dimensional Hadamard manifold M , as long as
the sectional curvatures of M are not all zero and the measure space (Y, μ) contains
sets with arbitrarily small nonzero measures, the continuum product L2(Y, μ, M)
is not (isometric to) a Riemannian-Hilbertian manifold, because it is impossible
to construct a Riemann curvature tensor. We explain this point in the next few
paragraphs.
To begin with, we fix:

(1) a base point x ∈ M together with orthonormal tangent vectors v, w in TxM
such that the sectional curvature K(v, w) < 0, and

(2) a sequence (Yn)n∈N
of disjoint measurable subsets of Y such that 0 < μ (Yn) ≤(

1
3

)n
μ (Y ) for any n ∈ N.

To construct (Yn)n∈N
, we use our assumption on (Y, μ) to choose a sequence of

measurable subsets (Zn)n∈N
such that 0 < μ (Zn+1) ≤ 1

3μ (Zn) for any n ∈ N. Then
for any n ∈ N, we define

Yn = Zn\
( ∞⋃

k=n+1

Zk

)

and observe that they are disjoint subsets of Y and

0 <
1
2
μ (Zn) ≤ μ (Yn) ≤ μ (Zn) ≤

(
1
3

)n

μ (Y ) .
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by properties of geometric series. Thus the sequence (Yn)n∈N
satisfies our require-

ments.
Now consider the sequence of finite measurable partitions (Pn : Y → In)n∈N

where,
for any n ∈ N, In = {Y0, . . . , Yn, Y \⋃n

k=0 Yk} and Pn is the obvious quotient map.
Clearly Pn+1 refines Pn for any n ∈ N. Hence following the proof of Proposition 9.6,
we have a sequence of closed convex subsets

N0 ⊆ N1 ⊆ . . . ⊆ L2(Y, μ, M)

such that Nn is canonically identified with L2(In, μn, M), where μn ({A}) = μ(A) for
any A ∈ In. Observe that N0 contains the function ξ ∈ L2(Y, μ, M) taking constant
value x. Thus we have a sequence of tangent cones

TξN0 ⊆ TξN1 ⊆ . . . ⊆ TξL
2(Y, μ, M) .

For any n ∈ N, we define vectors ηn, θn ∈ TξNn such that under the canonical
identification TξNn � L2(In, μn, TxM), we have

ηn (Yk) = (μ (Yk))
− 1

4 v and θn (Yk) = (μ (Yk))
− 1

4 w for k ∈ {0, . . . , n}
and ηn (Y \⋃n

k=0 Yk) = θn (Y \⋃n
k=0 Yk) = 0. For any n ∈ N, since ηn and ηn+1 only

differ on Yn+1, it follows that

dTξL2(Y,μ,M) (ηn, ηn+1) =

√∫
Yn+1

∥∥∥(μ (Yn+1))
− 1

4 v
∥∥∥2

dμ

= (μ (Yn+1))
1
4 ≤

(
1
3

)n

4

(μ (Y ))
1
4

and thus (ηn)n∈N
is a Cauchy sequence in TξL

2(Y, μ, M), whose limit we denote by
η∞. Similarly, (θn)n∈N

is a Cauchy sequence in TξL
2(Y, μ, M), whose limit we denote

by θ∞.
Let RM

x : TxM × TxM → End (TxM) be the Riemann curvature tensor of M at x.
By our choice of v and w, we have

〈
RM

x (v, w)w, v
〉

= K(v, w) < 0. For any n ∈ N, by
identifying Nn as the Cartesian product M In with a Riemannian metric weighted
by μn, we see that the Riemann curvature tensor RNn

ξ of Nn at ξ is “fiberwise”

in the sense that
(
RNn

ξ (κ, λ)ν
)

(A) = RM
x (κ(A), λ(A)) ν(A) for any A ∈ In and

κ, λ, ν ∈ L2(In, μn, TxM) � TξNn, whence
〈
RNn

ξ (ηn, θn) θn, ηn

〉

=
n∑

k=0

〈
RM

x

(
(μ (Yk))

− 1
4 v, (μ (Yk))

− 1
4 w
)(

(μ (Yk))
− 1

4 w
)

, (μ (Yk))
− 1

4 v
〉

· μ (Yk)

= (n + 1)K(v, w) ,
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which approaches −∞ as n → ∞.
Now suppose L2(Y, μ, M) were isometric to a Riemannian-Hilbertian manifold. Then
each Nn would be a geodesically closed Riemannian submanifold, and thus the Rie-
mann curvature tensor of L2(Y, μ, M) at ξ, a continuous 3-1 tensor (see [Lan99,
Chapter IX]), would coincide with RNn

ξ when restricted to TξNn. However, the
above computations show that it is impossible to satisfy continuity around the tuple
(η∞, θ∞, θ∞, η∞).
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