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Abstract

Early in life and without special training, human beings discern resemblance between abstract visual stimuli, such as draw-
ings, and the real-world objects they represent. We used this capacity for visual abstraction as a tool for evaluating deep
neural networks (DNN5s) as models of human visual perception. Contrasting five contemporary DNNs, we evaluated how
well each explains human similarity judgments among line drawings of recognizable and novel objects. For object sketches,
human judgments were dominated by semantic category information; DNN representations contributed little additional
information. In contrast, such features explained significant unique variance perceived similarity of abstract drawings. In
both cases, a vision transformer trained to blend representations of images and their natural language descriptions showed
the greatest ability to explain human perceptual similarity—an observation consistent with contemporary views of semantic
representation and processing in the human mind and brain. Together, the results suggest that the building blocks of visual
similarity may arise within systems that learn to use visual information, not for specific classification, but in service of

generating semantic representations of objects.
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Introduction

A central question for theories of visual perception and cog-
nition concerns the nature of the features the visual system
deploys to represent its inputs and of the processes it uses
to assemble these into a perceived shape or a recognized
object. Much work in this area has understandably focused
on explaining visual perception/recognition of naturalistic
inputs, such as color photographs of objects or scenes. Yet
human vision is also remarkable in its capacity to perceive,
recognize, and make inferences about even highly abstract
stimuli that depart radically from the veridical visual struc-
ture of the real world, from cave drawings (Hoffmann et al.,
2018) to illustrations in children’s books (Ganea et al., 2008)
to forms in abstract paintings (Schmidt et al., 1989; Vinker
et al., 2022) to figures in scientific papers (Franconeri et al.,
2021).
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The ability to discern resemblance between drawings and
the shapes or objects they depict develops early and without
special training in infancy: Children as young as 5 months
discern the similarity between a photograph and line drawing
depicting the same face (DeLoache et al., 1979; Kobayashi
et al., 2020), and drawing recognition is generally robust in
childhood (Cox, 2013; Hochberg & Brooks, 1962). It also
appears special to human cognition: Adult chimpanzees can
generalize learned responses across photographic depictions
of object classes, but do not extend this generalization to
line drawings or other abstract depictions of the same objects
(Tanaka, 2007); pigeons, despite their famed capacity for vis-
ual recognition, show the same pattern (Cabe, 1976). Draw-
ings thus offer a useful opportunity for testing different pro-
posals about the building-blocks of human visual cognition:
whatever features and processes the visual system develops
to support perception and recognition of objects in the real
world must also extend to explain perception and recognition
of abstract object depictions in drawings and other visual
media, as well as the ability to perceive similarity of form
even for novel or unrecognizable figures.

The current paper uses people’s ability to perceive simi-
larities between simple line drawings of objects and abstract
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shapes as a tool for evaluating a class of vision models that
has garnered sustained interest across the related disciplines
of machine vision, visual neuroscience, and visual cogni-
tion—namely, deep neural networks (DNNs). Such models
have been applied to several problems including image cap-
tioning (Lin et al., 2014), answering questions about a given
image using natural language (Goyal et al., 2017; Jang et al.,
2017), generating sketches (Vinker et al., 2022), and even
solving entire families of visual tasks (Zamir et al., 2018).
Cognitive science and visual neuroscience, however, have
focused primarily on deep image classifiers: models trained
via gradient descent to assign objects shown in millions of
photographs into one of 1,000 possible mutually exclusive
categories (Kriegeskorte, 2015; Nayebi et al., 2018; Yamins
et al., 2014; although refer to Konkle & Alvarez, 2020;
Orhan et al., 2020; Zhuang et al., 2021) for some notable
exceptions). From the perspective of human visual cogni-
tion, such models are interesting because they generalize
well to images depicting new examples of the trained classes
(Deng et al., 2009) and thus offer a potential mechanism for
understanding key phenomena such as recognition invari-
ance across category exemplar, viewpoint, spatial location/
orientation, lighting conditions, etc., and how these abilities
may be acquired via learning from the visual structure of
the environment. From the perspective of neuroscience, the
models are interesting partly because the internal represen-
tations they acquire resemble, in certain ways, the patterns
of neural activity evoked by visual stimuli in the ventral
processing streams of both humans and nonhuman primates
(Cadieu et al., 2014; Kriegeskorte, 2015; Sexton & Love,
2022; Storrs et al., 2020; Yamins et al., 2014).

Perhaps surprisingly, some deep image classifiers, despite
being trained exclusively on photographs, nevertheless
acquire internal representations that capture a degree of
similarity between sketches and photographs depicting the
same class of objects (Fan et al., 2018; Yang & Fan, 2021).
In learning to categorize photorealistic images, such models
thus appear to acquire feature representations and mecha-
nisms for combining them that extend, at least to some
extent, to abstract depictions of objects like those appearing
in line drawings. Taken together, these observations sug-
gest that deep image classifiers may provide a useful tool
for connecting computational, cognitive, and neuroscientific
accounts of visual object processing.

Yet there are also many reasons for questioning the util-
ity of DNN image classifiers as scientific models of human
visual cognition:

The features DNNs acquire are opaque It is notoriously dif-
ficult to understand precisely what information in the input
neural networks models exploit across different layers in
exhibiting the behaviors that they do. While some research-
ers have proposed heuristics for tackling this question
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(Selvaraju et al., 2017; Shrikumar et al., 2017) and others
have investigated inductive biases in such models (Geirhos
et al., 2018; Hermann et al., 2020), it remains unclear exactly
what kinds of visual features DNNs acquire. Besides DNNgs,
machine vision also offers many more transparent tech-
niques for characterizing the “low-level” visual informa-
tion expressed in an image or drawing, and little work has
assessed whether DNN-derived features capture important
aspects of human perception beyond those already expressed
by these other easier-to-comprehend methods (Sangkloy
et al., 2016).

There are many different DNN architectures and train-
ing methods Contemporary interest in DNNs as models
of human perception began with convolutional networks
(Krizhevsky et al., 2017), which represented a step change
in classification accuracy while also possessing some resem-
blances to the object-processing visual stream in the human
brain—for instance, an organization in which both feature
complexity and receptive field size increase from earlier to
later processing stages. Today, however, newer architectures
that bear little clear relation to ventral visual stream often
perform better on benchmark tasks (e.g., transformer mod-
els; Dosovitskiy et al., 2020); recently-introduced heuristics
for training models (e.g. contrastive methods such as CLIP;
Radford et al., 2021) appear to have a larger effect on their
behavior than does the architecture per se; and models with
qualitatively distinct architectures appear to capture macro-
scale neural patterns in ventral visual stream about equally
well (Conwell et al., 2021), despite behaving according to
quite different principles. It is unclear whether these vari-
ants differ in their utility for understanding human visual
perception.

Human vision supports more than just object classifica-
tion Whereas DNNs classifiers can categorize natural
images accurately, human vision yields up much richer
information about its inputs (Bowers et al., 2022), includ-
ing its decomposition into component parts; its orientation
in space; its size; its distance from the observer; and, for rec-
ognizable objects, additional semantic information beyond
the subordinate or basic category label. Such information
may importantly constrain the visual similarities that peo-
ple discern amongst stimuli, in ways that various current
DNN image classifiers may or may not capture (Baker et al.,
2018).

It is not known whether DNN representations capture the
visual structure that humans perceive While considerable
research has evaluated the ability of DNNs to generalize
their classification behavior, and have assessed similarity
between model and neural structure, comparatively less
work has assessed whether/how representations that arise
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in such models explain the similarities that people perceive
in images (Bowers et al., 2022). Where such studies have
been conducted, they have often focused on representation
of photographic stimuli like those that constitute the mod-
el’s training environment (Kriegeskorte 2015; Lake et al.,
2015; Peterson et al., 2018) and it is not clear whether simi-
lar results would obtain for perception of more abstract and
out-of-distribution stimuli such as sketches of objects and
unrecognizable shapes.

These considerations raise three key questions about the
degree to which DNNs provide useful scientific models of
human visual object perception, which are the focus of this

paper:

1. Are the internal representations/features acquired by
DNNs sufficient, either alone or in combination with
other common expressions of visual structure, to explain
the similarities that people detect amongst line drawings
of recognizable objects and abstract shapes?

2. Do the internal representations/features acquired by
DNNs merely recapitulate other better-understood
kinds of visual features, or do they capture aspects of
perceived similarity beyond such features?

3. Do different model architectures and/or training proce-
dures offer different answers to these questions?

To answer these questions, we adopt an approach simi-
lar to that taken by Jozwik and colleagues (Jozwik et al.,
2017), who sought to explain the contributions of categorical
and visual features, in addition to DNN features, towards
explaining human-perceived similarities amongst photo-
graphs of objects. Their work evaluated two convolutional
DNN architectures, AlexNet and VGG-16, across different
layers. To assess human-perceived structure they had partici-
pants list visual features such as parts, colors, or shapes, and
also provide category labels, such as “elephant”, “animal”,
or “natural”, for their photographs. They then tested whether
these human-generated features reliably predicted judgments
of similarity amongst their photographs. They found that
deeper layers of the DNNs outperformed visual features, but
that categorical features outperformed both.

Our work builds on these results, and those of Fan and
colleagues (Fan et al., 2018), by considering which features
best explain and predict the similarities that humans per-
ceive amongst line drawings of recognizable objects and
unrecognizable abstract shapes. This focus extends prior
work in two nontrivial ways. The first is simply that there
exist a variety of computational techniques for measuring
similarities between sketch images that do not rely solely
on human-generated propositional descriptions of structure.
Each such technique quantifies a kind of similarity between
pairs of sketches, which might then provide a basis for
guiding human perceptual decisions. For instance, beyond

neural-network-based features, people might be sensitive
to overall similarity in shape, information encoded in dif-
ferent spatial frequencies, and the parts appearing in the
object. The use of drawings allows us to investigate these
metrics alongside features extracted from DNNs and human-
generated labels when understanding the factors governing
perceptual similarity.

Second, as noted above, drawings represent a test case
for out-of-sample generalization that is important for many
aspects of human visual cognition. It may be that, by virtue
of learning from very large sets of naturalistic images, DNNs
acquire a kind of domain-general basis set for expressing
visual information that then naturally capture, without spe-
cific training, perceived similarities amongst both sketches
of objects and other arbitrary, unfamiliar shapes. If so,
mechanisms embodied in DNNs are sufficient to explain the
human ability to cope with abstract visual depictions. Alter-
natively it may be that DNNs, because they are trained on
photographs of real objects, acquire features that can repre-
sent perceived similarities amongst sketches of real objects,
but do not extend well to unrecognizable shapes; or that
the features acquired by DNNs are insufficient to explain
the structure that people discern amongst drawings of either
objects or unrecognizable shapes without special training/
tuning; or that some architectures fare better than others; or
that other features beyond those expressed in DNNs provide
a better or more transparent account of perceived similarity
amongst drawings.

In the experiments that follow, we began by estimat-
ing the similarities that people discern amongst various
line drawings using a triadic comparison or triplets task in
which participants must decide which of two sketch images
is most similar to a third reference image. The criteria for
the similarity matching is intentionally unspecified: partici-
pants are free to use their own subjective judgments, based
on whatever information they deem useful. Collection of
many such judgments across many different participants
then encompasses the variety of criteria people are generally
inclined to use to adjudicate similarity. Triplet judgments
are then used to embed the sketches within a low-dimen-
sional space so that the Euclidean distance between pairs of
sketches relates to the probability that the two items will be
selected as “more similar” relative to some arbitrary third
image (Jamieson et al., 2015). The resulting embeddings
thus encode a low-dimensional human representational
space for the images.

To determine which features govern the organization of
this space, we then conducted two analyses. The first used
regression techniques to predict the coordinates of the vari-
ous drawings in the human-derived embedding space from
other representational spaces derived from five different
DNNs, from other kinds of visual features, or from both
together. Comparison of model fit and regression coefficients
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across these analyses then shed light on the three core ques-
tions raised above. The second analysis investigated how
well human judgments on the triplet task could be predicted
from the various different representational spaces, either
alone or in combination. This analysis allowed us to assess
which features, independently or together, are sufficient to
explain behavioral decisions about perceived similarities
amongst sketches. Within this general framework, experi-
ment 1 focused on line drawings of four common object
categories—birds, dogs, chairs, and cars—while experiment
2 focused on drawings depicting complex but unrecogniz-
able abstract shapes (specifically the stimuli from (Schmidt
& Fleming, 2016)).

Experiment 1

Experiment 1 applied the general approach to understand
factors governing similarities perceived amongst drawings of
common real-world objects produced online by non-expert
participants. While line drawings lack much of the detailed
information present in photographs of objects, they never-
theless share structural isomorphisms with their real-world
counterparts such as part-structure and global shape (Tver-
sky, 1989), and people may additionally infer from such fea-
tures semantic information such as the category to which the
depicted item belongs. Perceptual judgments of similarity
may additionally be influenced by lower-level characteristics
of the image such as the “jaggedness” of contours, the density
of lines, overall size, or the orientation of the shape on the
page—properties that can be quantitatively estimated via vari-
ous machine-vision techniques. Experiment 1 measured the
perceived similarities amongst 128 sketches depicting items
from four different categories, then assessed how well DNN-
based features and other more transparent feature sets can
explain the resulting structures, either alone or in combina-
tion. Figure 1 provides a high-level overview of the workflow.

Behavioral methods

Participants A total of 85 participants were recruited via
Amazon Mechanical Turk (mTurk) using CloudResearch (36
Female, 47 Male, two other; mean age = 38.69 years). Par-
ticipants provided consent in accordance with the University
of Wisconsin-Madison IRB and received compensation for
their participation.

Stimuli We used a subset of drawings collected by Fan
and colleagues (Fan et al., 2020) for our similarity judg-
ment study. These drawings were made in Pictionary-
style reference game, where a sketcher and a guesser were
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simultaneously shown the same set of four images. The
sketcher was tasked with drawing one of the four images
and the guesser had to guess which of the four images the
sketcher was tasked to draw. Each image belonged to one
of four categories—birds, dogs, cars, or chairs—and each
category had eight unique exemplars. Additionally, in some
trials, the target image belonged to the same basic-level cat-
egory as the three distractors leading to more detailed draw-
ings by the sketcher, while on other trials all four images
belonged to different categories leading the sketcher to make
simpler drawings. We sampled two drawings from each con-
dition (2) X category (4) X exemplar (8) cell resulting in a
final set of 128 drawings.

Additionally, in a separate experiment, each stroke in each
drawing was annotated by human-raters with a part label
thus providing fine-grained information regarding the
semantic part structure people observed within a given
drawing (Mukherjee et al., 2019). This information was
operationalized as part-based vector representations for
each drawing. The total number of unique parts was first
computed for the entire dataset of drawings and the amount
of ink and number of unique strokes for each part were then
computed. These two sources of information were concat-
enated to create a 48-dimensional representation for each
sketch, where the first 24 dimensions corresponded to the
number of strokes allocated to each of the 24 unique parts
and the next 24 dimensions corresponded to the amount of
ink used to draw those parts.

Triplet-judgment procedure To measure human-perceived
similarity between drawings, we had participants complete
a triplet similarity judgment task (Jamieson et al., 2015)
implemented using the SALMON online tool for collect-
ing triplet queries and fitting embeddings (https://github.
com/stsievert/salmon). On each trial, participants viewed
three drawings: a target positioned at the top of the screen
two options positioned below it. They were instructed to
select which of the two option drawings was most similar to
the target drawing using either their mouse or the left and
right arrow keys on their keyboard. If they perceived the
two options to be equally similar, they were asked to pick
one randomly.

We did not specify how participants should assess simi-
larity when doing this task, allowing for a variety of poten-
tial strategies. Each participant completed 200 trials, includ-
ing 180 sampled randomly with uniform probability from
the set of all possible triplets and 20 consisting of a fixed
set of “validation” triplets that every participant saw. The
validation triplet trials were randomly interleaved within the
random triplet trials (Fig. 2) and were used to estimate mean
inter-subject agreement for the task. Based on prior work
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Fig. 1 Procedure for fitting linear regression models to predict human
judgment embeddings from candidate features. A. In Experiment 1,
features were constructed using part-structure, category, low spa-
tial frequency, high spatial frequency, and shape information. Addi-
tionally, latent feature activations were extracted from five different
neural network architectures. The features enclosed in the gray box
were used for all models’ fit, with the neural network features varying
depending on which of the five models were being tested. Represen-
tational dissimilarity matrices were computed from all these features,

using this paradigm, participants with a mean response time
less than 1,500 ms were excluded from any further analyses.

Computing candidate image representations For all sketch
images, we estimated low-dimensional embeddings that cap-
ture similarity structure apparent in (1) human perceptual

]

Linear Regression

and each matrix was represented using the first few principal compo-
nents. These principal components computed from all the candidate
features were used together in independent models to predict the first
and second component of human similarity judgment embeddings. B.
In Experiment 2, the process was largely the same, except that part-
structure and category features were no longer applicable for abstract
shapes. Additionally, the degree of overlap in enclosed area between
the shapes was included as a candidate feature. (Color figure online)

judgments from the triplet task, (2) internal activation vec-
tors from the deepest fully connected layers of the five DNN
models, and (3) vectors derived from alternative methods for
expressing similarity structure in sketches. We refer to the
vector spaces from neural networks and other techniques as
candidate image representations, as each captures structure
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Random triplets Fixed triplets
(90% trials) (10% trials)

Which drawing is more ‘ H ‘
similar to the target? target target

Fig.2 Structure of the triplet similarity judgment task. Each partici-
pant (here, represented with different colors) completed 200 trials,
indicating which of two options was most similar to a target drawing
in each trail. 180 trials sampled triplets randomly from the set of all
possible triplets. The remaining 20 were “fixed” triplets judged by all
participants. Fixed and random triplets were interleaved with a differ-
ent random ordering across participants

amongst images that may aid in predicting the perceptual
similarities expressed by the triplet-based embeddings. Here,
we briefly describe the methods used for each candidate
representation.

Similarity judgment-based embeddings From the full set
of triplet judgments, an ordinal embedding algorithm was
applied to situate all 128 sketches within a low-dimensional
space such that Euclidean distances amongst points mini-
mize the crowd-kernel loss on the triplet data (Tamuz et al.,
2011). The optimal dimensionality was chosen by fitting
embeddings in an increasing number of dimensions, evalu-
ating each on their ability to predict human judgments in
held-out validation triplet trials, and choosing the lowest-
dimensional solution showing hold-out performance equal
to inter-participant agreement on these trials. The result was
a 2D embedding shown in Fig. 3A that predicted human
decisions for held-out items with accuracy of 72.70%, com-
parable to interparticipant agreement of 73.10% (one-sample
t test, p = .62) for the same triplets.

Neural network feature activations Neural network features
were extracted using the THINGSVision Python Toolbox
(Muttenthaler & Hebart, 2021) and focusing on five different
DNNs including (1) AlexNet, a convolutional neural network
(Krizhevsky et al., 2017) that was one of the first to achieve
near human-level performance at image categorization; (2)
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Fig. 3 Visualization of the locations of (top) line drawings and (bot-
tom) abstract shapes along the first and second principal components
computed from human similarity judgments. In the top panel, draw-
ings of living objects are separated from nonliving objects along
Dimension 1. (Color figure online)

VGG-19 (Simonyan & Zisserman, 2014), a deeper convo-
lutional neural network with 19 layers; (3) ResNet-18 (He
etal., 2016), an 18-layer convolutional image classifier that
additionally employs “residual” connections to ensure that
each layer learns new structure relative to the preceding
layer; (4) the Vision Transformer (ViT), specifically ViT
base with patch size 32 (Dosovitskiy et al., 2020), a (non-
convolutional) Transformer-based neural network (Vaswani
et al., 2017) trained for image classification; and (5) CLIP-
ViT, a multimodal variant of the same vision transformer as
(4) trained on a large dataset of image-caption pairs using a
contrastive loss that maximizes the similarity between valid
pairs and minimizes the similarity between invalid pairs.
Models (1)—(3) utilize the well-established convolution
operation, where a shared set of weights is broadcast to dif-
ferent parts of the input tensor, enforcing an inductive bias
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toward spatial invariance. In convolutional models, early
units with narrow receptive fields acquire simple visual fea-
ture “filters,” which give way with greater depth to units
that encode more complex features across broader receptive
fields. These properties mirror some aspects of the human
ventral visual stream, with some researchers suggesting they
provide useful tools for understanding the primate visual
system (Cadieu et al., 2014; Yamins et al., 2014). The three
variants we studied differ in two respects. First, (2) and (3)
possess many more convolutional layers (i.e., are deeper)
than (1), an architectural difference that can lead to better
overall performance and a greater level of abstraction. Sec-
ond, (3) possesses “residual” connections that allow infor-
mation from earlier layers to “skip ahead” to deeper layers
so that learning in the intervening layer is driven primar-
ily by error gradients unexplained by the preceding layer.
While the effects of these architectural differences on multi-
way image categorization has been well documented in the
computer sciences, prior work has not considered whether
they likewise affect a model’s ability to capture human-like
perceptual structure amongst abstract, out-of-distribution
images like sketches.

Models (4) and (5) discard convolutional structure and
instead utilize a transformer architecture (Vaswani et al.,
2017) borrowed from the world of natural language pro-
cessing. Transformers replace convolutional operations with
an attention mechanism that represents each image patch as
a weighted blend of representations of other patches, itera-
tively performs this operation until a classification of the
input image’s category has to be made (Dosovitskiy et al.,
2020). Weights governing these representations, including
weights on the relevant similarity metric, are all learned
via gradient descent on error. Unlike convolutional models,
units in transformer models do not locally encode a spatially
bounded part of the image—instead, all units can potentially
encode information from all regions of the image at once.
This difference allows transformers to develop remarkably
flexible and context-sensitive internal representations while
performing exceedingly well on a variety of benchmark
tasks in machine learning, but with little clear connection
to the organization of visual processing streams in the brain.
While some have addressed the relevance of the differences
between convolutional and transformer vision models in
modeling human vision (Tuli et al., 2021), few have tested
these models on abstract stimuli that nevertheless convey
semantic information such as line drawings. The critical
difference between (4) and (5) is not in architecture but in
training objective. While (4) is trained to minimize categori-
zation error, model (5) is trained to maximize the similarity
between a visual representation of the image and “seman-
tic” natural-language representation of a text-description of
the image while also minimizing the similarity to all other

possible text-descriptions—an approach known as “contras-
tive language-image pretraining,” or CLIP.

To extract model internal representations, each drawing
was first transformed to a standard 224 x 224 pixel size.
Since the drawings are grayscale and most models expect
a 3D tensor, the same 224 X 224 image of grayscale val-
ues was copied and stacked 3 times as is standard practice.
Each image tensor was applied to the model input layer and
we recorded the activation vectors arising in the final hid-
den layer for the classification models and from the image-
encoding layer for the CLIP-based model. We focused on
these deep layers because several prior studies have found
that such representations better capture human behavior for
both photographs and sketches of objects (Battleday et al.,
2021; Hong et al., 2016; Jozwik et al., 2017; Singer et al.,
2022). Given the broad differences in architecture and opti-
mization techniques, we expected to observe quantitative
and qualitative differences in the structure encoded by vec-
tors from different models. The key question was whether
these structures also vary in how well they capture human
perceptual representations.

Other candidate representations Finally, for each image we
also computed candidate representations using five alter-
native techniques taken from cognitive psychology and
machine vision literatures. Each expresses a different kind
of structure that might reasonably govern human perceptual
decisions for these stimuli. They include the following:

Category vectors: People rapidly and automatically discern
the basic-level semantic category to which sketches of com-
mon objects belong, a tendency that may influence the degree
to which the sketches are perceived/judged as similar. Since
each drawing in our dataset belonged to one of four basic-level
categories (dog, bird, car, or chair), we captured this informa-
tion by simply representing each drawing as a four-element
one-hot vector indicating to which category it belonged. If
observers heavily weight the recognized category of a draw-
ing in determining similarity over other visual properties of
the image such as shape or “style,” this feature should reliably
predict human similarity judgments. Note that, even though
four of the five DNNs we consider were trained on image
classification, it is not clear whether the representations they
acquire will capture such structure, for two reasons. First, the
output labels employed in this work denote classes more spe-
cific than the basic-level categories that govern nonexpert vis-
ual classification in people—for instance, the classifier must
assign different labels to different breeds of dog rather than a
single common label to all varieties of dog. Second, the clas-
sification models were trained only on photographs, and it is
not clear whether the image features they acquire will extend
to capturing basic-level category information about sketches.
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Part vectors: Beyond basic-level categories, people also
discern the part structure within objects (Navon, 1977; Tver-
sky, 1989). Indeed, classic structural descriptive theories
have posited that visual representations are built from the
constituent parts that make up an object (Biederman, 1987).
Furthermore, people are capable of ascribing meaningful
labels to the constituent parts (Jozwik et al., 2017). To cap-
ture the part-based knowledge that people possess, using the
part annotation information in each drawing, we constructed
part-based feature vectors as described in Mukherjee et al.
(2019). Each drawing was represented using a 48-dimen-
sional vector containing information about (1) the number
of strokes and (2) the amount of ink allocated to each of the
24 unique part labels represented in the dataset.

Hu invariant image moments: People may judge two
sketches to be similar if they possess an similar overall shape,
even if that shape varies in its orientation, its size and loca-
tion on the page, or the viewing angle (Booth & Rolls, 1998;
Karimi-Rouzbahani et al., 2017a, 2017b). Machine vision
offers a variety of techniques for quantifying shape similarity
among black-and-white line images in a size-, location-, and
orientation-invariant way. Since our stimuli were 2D sketches,
we adopted a technique for estimating shape-similarity in an
affine-invariant (i.e., rotation-, translation-, and scale-invari-
ant) manner. Specifically, we computed Hu image moments
for each drawing (Huang & Leng, 2010) using the openCV
library. Hu moments, specifically, are a set of seven numbers
that combine simpler image moments, which in turn represent
weighted intensities of the pixel values in an image based on
where on the canvas the pixel is located.

High and low spatial frequencies: Observers might be
sensitive to both the overall global shape of the drawings or
the local details within each drawing when assessing their
similarity. To capture these qualities, we computed the fast
Fourier transform of each drawing and created low- and
high-pass filter variants of the drawing by either setting the
high or low frequencies of the drawing in the frequency-
domain to 0 and reversing the transformation. This resulted
in images that preferentially highlighted either global shape
(low-pass) or local details (high-pass). We then flattened
these image tensors and treated them as vectors. If people
reliably use global shape or local details to make similarity
decisions, then distances between these vector spaces should
be predictive of their decisions.

Dimension reduction Using the different representational
bases outlined above, we computed representational dissimi-
larity matrices (RDM) by computing the pairwise distances
between each of the 128 drawings. We used Euclidean dis-
tances for the similarity judgment embeddings as this is the
metric that is optimized by the ordinal embedding algo-
rithm. The remaining RDMs, save for one, encoded cosine
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dissimilarities between pairs of items in each vector space.
The exception was the RDM for Hu image moments, which
were computed using the following standard distance func-
tion D—

6

DX,Y) = Z

i=0

1 1

HX HY

3

where X and Y are the two images being compared and H,
refers to the ith log-transformed Hu moment for that image.
Finally, in addition to the RDMs themselves, we com-
puted low-dimensional embeddings of the resulting distances
using singular value decomposition. Specifically, from the
RDMs computed for each vector space, we extracted the
first three singular vectors weighted by their respective sin-
gular values as a three-dimensional image representation
approximating the distances expressed in the original high-
dimensional space. These low-dimension approximations
were then used in regression analyses to determine which
candidate vector spaces best explain human perceived simi-
larity. For DNN-based representations, the 3D embeddings
captured 75% of the variance in the original RDM on aver-
age; we used the same dimension for reductions of other
vector spaces to ensure that no single representation was
overrepresented in the downstream analyses.

Results

How well do DNN-based embeddings explain human-per-
ceived similarities amongst stimuli? To answer this question
we first used linear regression to fit models predicting the
coordinates of images along two orthogonal dimensions in
the human-perception-based embeddings from coordinates
in each DNN-based embedding. To get the target values for
regression, the 2D embedding shown in Fig. 3A was subjected
to a singular-value decomposition, extracting two singular
vectors and weighting each by the respective singular value.
This had the effect of rotating the embedding to ensure that
the first component aligned with the direction of greatest vari-
ation and that the second component was orthogonal to the
first. We then fit separate regression models to predict each
sketch’s location along each of these two orthogonal dimen-
sions from their coordinates in each 3D DNN-based embed-
ding, including all interactions amongst the three components.
The results are shown graphically in Fig. 4.

The top right panel shows the human-based embeddings
as rotated by the SVD technique, with colors indicating the
semantic category to which each item belongs using the
same scheme shown in Fig. 3. The remaining rows show
the 3D embedding generated from the corresponding DNN
(left) and the predicted coordinates of each image in the
human perceptual space after fitting the regression. The
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AlexNet
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ResNet
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Fig.4 Sketch embeddings in the regression analyses. The top right
panel shows the human-based embeddings rotated to ensure the two
components that constitute the dependent measure in the regres-
sions are orthogonal to one another. Within each remaining row, the

arrows indicate the proportion of variance in pairwise dis-
tances from the true human embeddings explained by the
predicted embeddings. All regression fits were statistically
highly reliable (p < .001 for all contrasts against null hypoth-
esis), indicating that all architectures capture structure that is
nonarbitrarily related to the similarities that people perceive.
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left plots show the 3D embeddings generated from each DNN, and
the right plot shows the predicted coordinates of the sketches within
the human-based space after fitting regression models. (Color figure
online)

To understand how much variation in the pairwise distances
from the original human-based space is explained by pre-
dicted coordinates from the regressions for each model, we
took the square of the Procrustes correlation between pre-
dicted and true spaces. These are the values shown as 72 in
Fig. 4. The different models varied somewhat in this metric,
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but the CLIP-trained transformer model captured the most
variance (7* = .84), reliably better than the next-best ResNet
model (p < .001). By observation, the reason seems clear:
Human-based judgments strongly cluster sketches by seman-
tic category, and such categories are more clearly expressed
in the CLIP-based model embeddings than any other model.
Interestingly, the transformer architecture trained to clas-
sify images—that is, without CLIP—did not cleanly separate
semantic classes, and showed the worst accuracy predicting
human-based embedding coordinates.

Predicting human similarities from other features We next
considered how well the other candidate representations
fared at predicting coordinates in the human-based space,
applying the same procedure but with the 3D embedding
coordinates (and their interactions) from each candidate
space as the predictors. Squared Procrustes correlations
between predicted and true coordinates are shown for each
regression in the left column of Table 1. All candidate
spaces, taken individually, accounted for significant variance
in the human perceptual space, but the amount of variance
differed radically. The category-based vectors on their own
accounted for 91% of the variance in the human-derived
embedding distances—more than the best-performing DNN.
Part-based vectors explained 80%, about as much as the
CLIP-based transformers. The other metrics each individu-
ally explained a relatively smaller amount of variance.
Like the DNN analysis, these results may seem to indi-
cate that human judgments are dominated by information
about semantic category. Yet the human-derived embedding
in Fig. 3 also shows substantial variation amongst different
exemplars of each category: The different sketches of items
in a given category are not embedded identically, but form

Table1 The amount of variance in human perceived similarity in
drawings explained by each non-DNN candidate feature for the full
embedding space (left column) and mean variance explained within
categories (right column)

Feature R? Mean R?
(full embedding) (within cat. only)
Category 0.91%%#* 0.00
Parts 0.80%** 0.28**
Low freq. spatial 0.22%%% 0.50%**
High freq. spatial 0.17%%* 0.34%*
Hu moments 0.16%%% 0.23%*

Note. For each feature type, two independent regression models were
fit to predict the first and second principal coordinate of the human
similarity embeddings. R? values were computed by first computing
a Procrustes correlation between the true and predicted coordinates
and computing its squared value. For the within-category column,
separate models were fit for each category, and R? values were aver-
aged across models. *** indicates significance at the .001 level, and
** indicates significance at the .01 level
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a sort of cloud. Thus, for instance, sketches appearing in
the lower left of the chair cluster lie at some remove from
those in the upper right (within-category distance), and are
somewhat closer to the dog sketches (between-category
distance). Such variation may reflect random variation aris-
ing from stochasticity in the triplet data, or it may capture
the influence of other kinds of information beyond category
membership alone.

To adjudicate these possibilities, we replicated the analy-
sis, but fitting separate regressions for each of the four cat-
egories. The right column of Table 1 shows the proportion
of within-category variance explained by each candidate
space, averaged over the four categories. Since all cat-
egory members have the same category label, the category
features transparently do not explain any within-category
variation; however, each of the other feature types do
explain significant within-category variation—indicating
that human-perceived similarities are not solely driven by
category information, but also reflect other kinds of visual
structure including, potentially, parts, spatial frequency
information, and overall shape (Hu moments).

Which methods account for unique variance in human-per-
ceived similarities? Since all candidate representations
independently explain some variance in human perceived
similarities, a further question is whether a given candidate
representation accounts for reliable variation after other rep-
resentations are taken into account. To answer this question,
we again fit regression models predicting human-based coor-
dinates, but including as predictors the 3D embedding coordi-
nates from one of the DNNs and from each of the other embed-
dings. We fit one such regression for each DNN type, each then
including 18 different predictors (the 3 DNN components and
3 each from category, part, Hu-moment, low-frequency, and
high-frequency embeddings). Due to the large number of inde-
pendent variables, we fit models using only simple effects. For
each predictor, we evaluated whether its inclusion improved
model accuracy more than expected under the null.

Figure 5 shows ¢ values on regression coefficients from
these analyses, with asterisks indicating which coefficients
reliably reduced prediction error over and above inclusion of
other predictors. For both components of the human-based
embeddings, coefficients on the category-based embedding
space are largest, but other spaces also received coefficients
that were reliably nonzero, including embeddings from all
five DNN-based representations. Thus, at least considering
simple effects, DNN representations do appear to capture
some elements of structure relevant to human similarity
judgments over and above structure captured by category
and by other, simpler metrics. How much additional struc-
ture? We compared the fits of models fit only using the
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Fig.5 Regression coefficients from Experiment 1. Rows shows
values on regression coefficients predicting Components 1 (left) or
2 (right) of the human embeddings from a combination of candi-
date features and neural network features extracted from five differ-
ent architectures. Asterisks indicate coefficients that reliably improve

non-DNN-based embeddings to those using all such fea-
tures plus the DNN-based embeddings, for each architec-
ture. Embeddings from all architectures explained significant
variance over and above the other features on at least one
dimension (p < .05 for all contrasts), but in all cases the
amount of additional variance explained was at most 1%.
Thus, while these models do appear to capture some unique
aspects of human-perceived similarities, such influences
appear to be relatively small.

Are these results an artifact of dimension reduction? The
predictors in the preceding regressions were low-dimen-
sional embeddings computed from very high dimensional
representations. Is it possible that the various candidate rep-
resentations would better explain human judgments without
such reduction? To answer this question, we evaluated how

model fit with *p < .01, **p < .01, or ***p < .001. DNN = deep
neural network; parts = part-based vectors; Hu = Hu moments; HSF
= high spatial frequency; LSF = low spatial frequency. (Color figure
online)

well similarities encoded in the original RDMs, from both
DNNss and other metrics, could predict human decisions in
the triplet-judgment task using two different metrics.

First, recall that each human participant judged a fixed
set of 20 “validation” triplets. Thus we had 85 judgments
on each of the 20 triplets, and for each could compute (a)
which option was most often chosen across subjects and (b)
what proportion of participants agreed with that “majority
vote” decision. This in turn provided an estimate of inter-
subject agreement that provides a benchmark for evaluat-
ing different representational spaces: A representation that
predicts decisions at the level of the intersubject agreement
performs as well as the average individual participant. We
therefore predicted responses on the validation triplet trials
from each candidate space by simply looking to see, within
the corresponding RDM, which of the two option sketches

@ Springer
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Fig.6 Accuracy of predicted human similarity decisions for draw-
ings (A) and shapes (B) for “validation” triplet judgment trials shown
to all participants (blue bars) and for all trials across all participants
(red bars). Row 1 shows the predictive accuracy of psychologically
motivated candidate features. Row 2 shows the predictive accuracy
of neural network features. Row 3 shows the predictive accuracy of

was least dissimilar (by cosine distance) to the target sketch
in the full high-dimensional space. For each candidate repre-
sentation, the predicted responses were then compared with
human decisions and counted as “correct” when the model
choice matched the human choice and incorrect otherwise.
Judgments were predicted for a total of (20 trials x 85 par-
ticipants) 1,700 items across participants.

One drawback of this approach is that validation data
were only collected for the 20 triplet items. For this reason,
we also computed prediction accuracy for each representa-
tional space across all triplet data collected (85 participants
% 200 triplets = 17,000 observations). Results for the valida-
tion set and the full set are both shown in Fig. 6.

The dotted horizontal line indicates the mean intersubject
agreement computed based on the validation trials, which
represents an upper limit on how well any predictive model
can do.
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all trials

estimated human similarity judgment embeddings from DNN and
non-DNN candidate features and from embeddings generated directly
from the human judgments (gray background) The dashed line for
each plot corresponds to intersubject reliability computed based on
the validation triplet trials. Error bars indicate 95% confidence inter-
vals. (Color figure online)

Because the validation trials were not used to compute the
human embedding, they provide a true independent hold-
out set for evaluating the quality of this embedding, which
in turn provides a basis of comparison for evaluating the
other feature types. While all candidate neural network rep-
resentations predict human responses better than chance, no
representation on its own shows predictive accuracy equal to
the intersubject agreement on the validation items. In other
words, none of the high-dimensional representations, taken
individually, fully explains the similarities that humans per-
ceive amongst these sketches. Amongst DNNs, the CLIP-
trained transformer showed better predictions than other
models, consistent with the earlier regression results.

Red bars show predictive accuracy on the full set of tri-
plet judgments collected from human participants. Note
that, because these triplets were the basis for computing the



Memory & Cognition

human-derived embeddings, the predictive accuracy of the
human embeddings on these triplets is likely inflated due to
overfitting; with this caveat, we provide the data as a relative
point of comparison for the other feature types. The higher
predictive accuracy on all trials vs validation trials indicates
that the particular triplet items used for validation were more
difficult on average than the set of all items shown to par-
ticipants. Nevertheless, neural network predictive accuracy
remained reliably lower than the intersubject agreement on
these items.

Amongst non-DNN features, the part-based vectors
showed highest predictive accuracy, better than the category-
based vectors. Note that, while part- and category-based
vectors capture somewhat similar structure, the category-
based RDMs are derived from one-hot vectors, and so do
not express any within-category structure (as shown in the
previous analysis), nor any broader structure across catego-
ries. Prediction accuracies tabulated across all 17,000 tri-
plets accord well with those estimated from the validation
triplets alone.

Importance of category information in each analysis Recall
that, in the first analysis when looking across the full embed-
ding space, category membership on its own accounted for
a remarkable 91% of the variance in perceived similarities
amongst stimuli, raising the possibility that human decisions
are based only on semantic category membership. Yet when
the category features are used directly to predict decisions on
the validation triplets, the accuracy was much lower (Fig. 6).
To understand this seeming discrepancy, consider that, in
the regressions, the variance to be explained arises from the
squared distance of each item to the center of the embedding
space. Most of this variance arises from the distance of each
cluster to the center of the space; comparably little of the
unexplained variance arises from within-cluster distances.

Category features can therefore explain much of the over-
all variation in the embedding solely by predicting the cen-
troid of each category in the space, without accounting for
any within-category structure. The same features explain
zero variation in the embedding if one looks at each category
separately.

Because category features do not capture any within-cat-
egory structure and represent items from different categories
as equally distal to one another, they are not helpful for guid-
ing triplet decisions on a majority of trials. If all three items
are from the same category, they will all have the same cat-
egory features, and there is no basis for choosing one option
over the other—the choice will be a coin flip. Likewise, if
the target item and the two options all come from different
categories, all three will be completely nonoverlapping in
their category features, and there is no basis for choosing
one option over another. Category features are only useful if

one and only one option item is in the same category as the
target. Since there are equal numbers of items in each of the
four categories and triplet items are sampled with uniform
probability, the likelihood of a triplet meeting this condition
(and accounting for sampling without replacement) is a little
less than 0.38. Thus on more than 62% of triplets, category
features provide no information about which option is a bet-
ter match to the target, and decisions must be a coin flip.
Other kinds of features that do capture within- and between-
category similarities have a basis for generating nonrandom
predictions on all triplets. The fact that some such feature
sets show better predictive accuracy than category features,
then, suggests that human similarity decisions for these stim-
uli are not guided solely by perceived category membership.

Human judgments for triplets, in contrast, show sig-
nificantly higher consistency than the category-based fea-
tures predict—suggesting that they are informed by more
than just semantic category information. To directly test
this possibility, we assessed whether regression models fit
separately for each semantic category could reliably predict
item human-derived-embedding coordinates within each
category. Since our goal was to assess whether there exists
systematic within-category structure in the human-derived
embedding, this analysis focused on a single model archi-
tecture (VGG-19).

Specifically, for each category separately and in two inde-
pendent regressions, we fit models to predict item coordi-
nates along Dimension 1 and Dimension 2 of the human-
derived embedding. Predictors included the 3D coordinates
for embeddings derived from VGG-19 representations, part
features, Hu moments, low-spatial-frequency and high-spa-
tial-frequency features. Category membership was omitted
since this feature is identical for all category members. Since
each category has 32 sketch exemplars and there are 15 pos-
sible predictors, we used a forward stepwise approach that
entered potential predictors as simple effects into the devel-
oping model and retained those that significantly improved
model fit. Adjusted r-squared values for each model are
shown in Fig. 7. The fitted models accounted for more than
40% of the variation on each dimension within three of
the categories (cars, chairs, and dogs, p < .003 for all tests
against null), and for 30% along the second dimension for
the fourth (birds; p < .03). The stepwise procedure selected
a combination of neural-network and alternative features for
all models except the bird category, where it selected only
alternative features for Dimension 2.

These results suggest two important conclusions. First,
human similarity judgments for these stimuli are not
driven solely by semantic category membership; instead,
our participants discerned reliable similarities and differ-
ences amongst sketches within the same semantic category.

@ Springer
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Fig.7 Adjusted r-squared values for regression models predicting
item coordinates along the first and second dimension of the human-
derived embeddings, fit separately for each category. The fitted mod-
els explained significant variation along at least one dimension for all
categories and accounted for more than half the variance along both
dimensions for three of the four categories. (Color figure online)

Second, these within-category distances are best predicted
via a linear combination of features drawn from both neu-
ral-network-based and other machine-vision methods—no
single feature set was sufficient to explain this non-seman-
tic structure.

Combining regression and triplet prediction Finally, we
assessed whether the features under consideration are suf-
ficient (in linear combination) to explain human-perceived
similarities amongst the sketches as measured by the triplet
task. Using the regression models fit in the first analysis, we
generated predicted coordinates of the sketches in the human
embedding space and from these computed the correspond-
ing expected Euclidean distances between all image pairs.

The resulting RDM was then used to predict human deci-
sions on the validation triplet set (again by choosing which-
ever option was nearest the target in the resulting space for
each triplet). The results are shown in Fig. 6A (bottom) for
predictions from regressions using each DNN embedding
together with embeddings from other candidate representa-
tions. All models predicted human decisions at a level of
accuracy similar to the intersubject agreement. Thus low-
dimension approximations of structure encoded by each
DNN, when combined with comparable approximations
from other spaces, are sufficient to explain human-perceived
similarities amongst these stimuli.
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Discussion of Study 1

Study 1 suggests that human similarity judgments for
sketches of real objects are strongly influenced by semantic
category membership, but also reflect other kinds of visual
information captured by combinations of DNN-based and
other features. While regression models built on category-
based embeddings explained 91% of the variance in human-
derived similarity spaces, category features alone were only
somewhat better than chance at predicting triplet decisions.

Regression models reliably predicted within-category
coordinates of sketches when fit independently for each;
and predictions of regression models combining DNN and
other features predicted triplet judgments at the level of
intersubject agreement suggesting that a linear combination
of these features is sufficient to explain human judgments
in the triplet task.

The internal representations in DNNs capture the impor-
tant categorical structure to the extent they cluster images by
semantic category. As shown in Fig. 4, each model expresses
at least some such structure, but the transformer architecture
trained with CLIP shows the clearest clustering by category,
and also yielded the best predictions of human-perceived
structure amongst the different neural networks. No DNN,
however, was sufficient on its own to explain human percep-
tual decisions for these stimuli. Finding a predicted stimulus
embedding that predicted human triplet judgments at ceil-
ing required a combination of both DNN and other features.
These conclusions do not hinge on the low-dimensional
compression of the core representations, since predictions
of human decisions on the triplet task from full-dimension
DNN spaces (a) were better for CLIP than other models and
(b) did not fully explain human decisions. Instead, regres-
sion models that combined low-dimensional DNN embed-
dings with low-dimensional information from other metrics
all predicted such decisions as well as possible given the
level of intersubject agreement.

These observations accord with prior studies of perceived
similarities amongst photographs of objects, which likewise
found that such structure is strongly but not completely
influenced by semantic category membership (Jozwik
et al., 2017; Mur et al., 2013; Peterson et al., 2016). The
current work shows a similar pattern even for abstract, out-
of-distribution stimuli like sketches, and including a range of
alternative representational structures beyond propositional
features listed by people.

Perhaps more interestingly, the results show that the
ViT-CLIP model shows much clearer emergence of seman-
tic category structure, even for abstract sketch images. The
contrasting behavior of the vision transformers with/without
CLIP training is interesting because it suggests that the good
performance of the CLIP-trained model does not arise from
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the transformer architecture per se. The transformer trained
on classification—the same task used with the convolutional
models—showed worse ability to explain human-perceived
similarities. Since CLIP training encourages the model to
represent images and their natural-language descriptions as
similar, it may be that this constraint leads to improved abil-
ity to capture semantic similarity structure in sketch images.
Alternatively, it may be that the superior performance arises
from the much larger training corpus used in ViT-CLIP, or
from other differences between models.

A remaining question concerns the degree to which our
behavioral results obscure the utility of DNNs or other fea-
ture sets to model human-perceived visual similarities in
drawings, given that Experiment 1 used sketches of real
items. The strong influence of semantic category on the
human-derived sketch embeddings may arise because, once
participants recognize a sketch as a member of a familiar
class, they retrieve names and a range of other familiar
properties common to the category, and base their similar-
ity judgments on these inferred semantic characteristics
rather than on visual similarity alone. The DNNs we have
considered were trained to assign inputs to semantic cat-
egories, and in this sense the representations they acquire
may somewhat reflect semantic information—but certainly
no model encompasses the rich range of semantic knowledge
possessed by human participants. On this view, the use of
object sketches may underestimate the utility of DNN-based
features. On the other hand, because all models were trained
to classify photographs of real objects—including examples
of chairs, cars, birds, and dogs—it may be that the use of
sketches depicting these categories inflated the apparent util-
ity of DNN-based features for modeling human-perceived
visual similarities. Experiment 2 adjudicates these different
possibilities by replicating the procedures of Experiment 1,
but using drawings of unrecognizable abstract shapes.

Experiment 2

Experiment 2 followed the same design as Experiment 1, but
instead using line drawings depicting abstract shapes—spe-
cifically the set of 64 line drawings devised by Schmidt and
Fleming (2016). These show bounded but visually complex
shapes that are not recognizable as real-world objects (see
Fig. 3B). The shapes were designed to fall into both broader
and finer-grained groups on the basis of their visual similar-
ity alone, and so provide a useful contrast case for the results
in Experiment 1.

Methods for Study 2

Participants Forty participants were recruited via Amazon
Mechanical Turk (mTurk) using CloudResearch (14 Female,

26 Male; mean age = 36.25 years). Participants provided con-
sent in accordance with the University of Wisconsin-Madison
IRB and received compensation for their participation.

Stimuli

The dataset consisted of 64 unique shapes, each derived
from one of four base shapes (Schmidt & Fleming, 2016).
Within a family of base shapes, each exemplar varied in
low-level perceptual properties such as whether the contours
were smooth, angular, or corrugated. Thus, the dataset had
systematic perceptual regularities in addition to within-
family variation. To standardize the images, each shape was
extracted, made into a grayscale contour, and positioned in
the center of a 525 x 525 pixel canvas.

Procedure for triplet judgment task The task was identical
to that described in Study 1, but using the shape stimuli in
place of sketches. Participants with a mean response time of
less than 1,500 ms were again excluded from further analy-
ses. The same algorithm was used to situate the 64 items
in a 2D Euclidean space to minimize the crowd-kernel loss
on the triplet judgment dataset. The resultant embeddings,
shown in Figure 3B, predicted human judgments on a held-
out validation set with 73.76% accuracy.

Candidate representations Study 2 used the same techniques
as Study 1 to derive RDMs and corresponding 3D embed-
dings for the 64 items from each DNN and from the additional
candidate representational similarity spaces, with two excep-
tions. First, since the stimuli do not correspond to familiar
categories of items and do not possess familiar, identifiable
parts, we did not include category- or part-based vectors. Sec-
ond, since each image is a bounded figure typically perceived
as an object situated against a background, we included one
additional measure of visual similarity, namely shape overlap.
For this metric, we filled the area within the contour for each
shape with a value of 1 and the area outside the contour with
a value of 0, then computed overlap as:

Y (X&Y)

R0 =Tam

where X and Y are flattened binary bitmaps of the 2 images
being compared. Thus the candidate representations in this
dataset included RDMs and associated 3D embeddings for
the five DNNs and for Hu moments, low-frequency recon-
structions, high-frequency reconstructions, and shape over-
lap. The central questions was whether and how these dif-
ferent spaces could explain human-perceived similarities
amongst these unfamiliar, nonmeaningful shape drawings.
Before extracting neural network feature activations, the
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images were resized to be 224 x 224 pixels to conform with
each model’s expectations.

Results of Study 2

To assess how well the various DNN representations explain
human-perceived similarities, we again conducted regres-
sion analyses predicting coordinates in the human similarity

Fig.8 Shape embeddings in the regression analyses. The top right
panel shows the human-based embeddings rotated to ensure the two
components that constitute the dependent measure in the regres-
sions are orthogonal to one another. Within each remaining row, the
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space from the 3D embedding coordinates derived from each

model, including all interaction terms. The results are shown
in Fig. 8. The human-derived embeddings (top right) clearly
capture the “family” groupings intended by the designers
(dot colors), an organization reflected to varying degrees
across the embeddings from different models. Regressions
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predicting human-based embedding coordinates from model
embeddings all account for significant variance (p < .001
for all contrasts to null), with the CLIP-trained transformer

left plots show the 3D embeddings generated from each DNN, and
the right plot shows the predicted coordinates of the sketches within
the human-based space after fitting regression models. (Color figure
online)
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Table2 The amount of variance in human perceived similarity in
abstract shapes explained by each non-DNN candidate feature

Feature R? p value
Hu moments .63 <.001
High freq. spatial 34 <.001
Low freq. spatial 48 <.001
Overlap 41 <.001

Note. For each feature, two independent regression models were fit to
predict the first and second principal coordinate of the human similar-
ity embeddings. R? values once again correspond to the squared Pro-
crustes correlation

again accounting for the most (79%) and the VGG-19 model
coming a near second (76%). As with Study 1, the trans-
former architecture trained without the CLIP loss was the
worst-performing model, accounting for 64% of variation
in human-perceived similarities. Regressions predicting
human-based coordinates from the alternative spaces all
accounted for significant variance (p < .001 vs. the null)
but did not fare as well as the DNN embeddings, with Hu
moments accounting for the most variance (63%), followed
by low-spatial-frequency embeddings (48%), shape overlap
(41%), and high-spatial-frequency (34%).

Table 2 shows the corresponding fit values for regres-
sions using each alternative embedding space as the predic-
tor. While each alternative again accounted for significant
variance in the target space (p <.001 vs. the null), no alter-
native space accounted for as much variance as the better-
performing DNNs. Hu moments on their own explained 63%
of the variance in the human-derived space, about the same
as the worst-performing DNN.

To determine whether the various representation spaces
capture unique aspects of human-perceived structure, we
again combined coordinates from each DNN embedding
with those from alternative candidate representations,
investigating only simple effects. These results are shown
in Fig. 9. While all metrics account for significant unique
variance on at least one target dimension, DNN embed-
dings attracted the largest coefficients in the regression
model, followed by the shape-similarity measure captured
by Hu moments. Table 3 shows the change in * observed
when contrasting models fit with/without the DNN-based
embeddings. All five explained significant additional vari-
ance beyond Hu moments and other spaces. The amount of
unique variance explained by each was an order of magni-
tude larger than observed in Study 1, ranging from 11% to
29% across the two dimensions. In this analysis, ResNet-18
and the CLIP-trained transformer each accounted for the
most additional variance.

To assess whether these results reflect the dimension
reduction step, and to evaluate whether the features are suffi-
cient in combination to explain human perceptual decisions,

we again used the original RDMs for each vector space to
predict human judgments on the validation items from the
triplet task (i.e., the held-out items from which we can com-
pute intersubject agreement). As with Study 1, we evaluated
the predictions from each representational space considered
independently, and also from the 2D space generated by pre-
dictions of the regressions models that combine DNN and
other feature embeddings. The results are shown in Fig. 6B.
Relative to the results with sketches, the DNN feature spaces
alone show higher accuracy predicting human judgments
for these non-semantic stimuli, though they do not reach
the ceiling level defined by inter-subject agreement. Inter-
estingly, without data reduction and parameter fitting via
regression, the CLIP-trained transformer performs worst
among the DNNs, suggesting that the very high dimension
native space may encode much information irrelevant to
human perceptual decisions.

Red bars again show predictive accuracy on the full set
of triplets. In this case, performance was systematically
worse than for the held-out validation trials, indicating that
the validation items were somewhat easier on average than
other triplets. We again note that the human-derived embed-
dings can only be reliably compared with other features on
the held-out validation trials, since the remaining full set
of triplets was used to fit the human embedding—thus, the
predictive accuracy of human-derived embeddings on these
items is likely inflated.

Predictions from Hu moments perform as well as the
worst-performing DNN embeddings, suggesting that human
judgments are, unsurprisingly, largely driven by overall
similarity in shape for these stimuli. Embeddings computed
from high-frequency spatial information also do relatively
well. Note that regressions based on embeddings of the
high-spatial-frequency vectors explained the least variance
in the human-based embeddings. The contrasting pattern
suggests that these vectors contain information relevant to
human judgments that is lost by the compression to three
dimensions. For instance, for these stimuli such judgments
may be partly informed by patterns in high spatial frequen-
cies such as the rounded, jagged, or square contours that
form each shape. Finally, stimulus embeddings generated
via regressions combining DNN and other features predicted
triplet judgments at the level of intersubject agreement for
all DNN feature sets (Fig. 6B, bottom). As with sketches of
real objects, a linear combination of DNN-based and alterna-
tive feature sets was sufficient to explain human-perceived
similarities amongst these stimuli, though neither class of
features was sufficient on its own.

Discussion of Study 2

From Study 1, it was unclear whether the use of sketches
depicting real objects obscured or inflated the utility of
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Fig.9 Regression coefficients from Experiment 2. Rows shows ¢ val-
ues on regression coefficients predicting Components 1 (left) or 2
(right) of the human embeddings from a combination of handcrafted
features and neural network features extracted from five different
architectures. Asterisks indicate coefficients that reliably improve

DNN-based visual features for explaining human-perceived
similarity structure. Study 2 suggests that, when semantic
information is not available to inform similarity judgments
about drawings, DNNs capture substantially more infor-
mation about human-perceived similarities, beyond that
expressed by the other metrics we considered. While human
perceptual judgments for these items seem strongly informed
by shape similarity, all DNN representations accounted
for significant additional variation beyond Hu moments,
the overlap metric, and spaces derived from high and low
spatial frequency information. Moreover, regression analy-
ses placed the largest coefficients on DNN-based predic-
tors, which reliably improved predictive accuracy over and
above all other feature types. Still, no DNN-based features
were sufficient on their own to explain human perceptual
similarity decisions for these items—ceiling-level prediction
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model fit with *p < .01, **p < .01, or ***p < .001. DNN = deep
neural network; Hu = Hu moments; HSF = high spatial frequency;
LSF = low spatial frequency; Overlap = degree of shape overlap.
(Color figure online)

again required a combination of DNN- and non-DNN-based
features.

The best-performing DNN-based features were again
those computed from the CLIP-trained transformer model,
while the worst-performing were again those computed
from the classification-trained transformer. This pattern
echoes the results of Study 1, with interesting implica-
tions. As noted earlier, CLIP encourages networks to assign
similar internal representations to images and their natural-
language descriptions. When the sketch images depict real,
recognizable objects, it seems reasonable to suppose that
such training promotes the discovery of semantic-category-
like internal representations for these items, since such
structure will be expressed in the natural-language descrip-
tions of images. In Study 2, the stimuli do not correspond
recognizable items; no such items have likely appeared in
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Table 3 The amount of unique variance explained by DNN features
in ensemble models with all other candidate features

Feature AR? F-statistic p value
Human Judgments Component 1

VGG-19 11 17.84 <.001
ResNet-18 .16 35.55 <.001
AlexNet A1 18.25 <.001
ViT 12 21.29 <.001
CLIP-ViT 17 45.21 <.001
Human Judgments Component 2

VGG-19 .16 10.14 <.001
ResNet-18 29 19.42 <.001
AlexNet 22 13.71 <.001
ViT .19 10.51 <.001
CLIP-ViT .28 20.77 <.001

Note. Unlike in the case of drawings, DNN features explain a larger
part of the variance

the model training environment; and no natural-language
descriptions exist to aid in organizing their structure. Nev-
ertheless the CLIP-trained transformer performed mark-
edly better than the classification-trained transformer, and
the shape-similarity-based families built by design into the
stimuli are clearly better captured by the CLIP-based inter-
nal representations.

The difference may, again, simply reflect the much larger
training corpus for ViT-CLIP. Another possibility is that
CLIP training aids in more than just capturing semantic
similarities amongst familiar visual stimuli—perhaps such
learning allows the system to find a representational basis
that more accurately captures human perceptual similarity
even for completely novel shape stimuli. That is, perhaps
the features that support perception of visual similarity for
novel objects are precisely those that best promote represen-
tation of semantic structure from vision for familiar objects.
Adjudicating these possibilities will require a more apples-
to-apples comparison of models trained on the same corpora
and with the same architecture, but differing in the use of
contrastive losses like CLIP.

General discussion

From early in life and without special training, human
beings, perhaps alone among animals, can recognize abstract
depictions of objects in the world and can discern similarity
of form from drawings even for abstract shapes. Theories of
human vision are challenged to explain such abilities: What
computational or information-processing mechanisms do
human minds possess that support such abstraction?

This paper considered whether contemporary deep neu-
ral network models, independently or together with other

representational spaces, provide an answer to this ques-
tion. Most prior work in this vein has focused on perceived
similarities amongst photographs of objects (Jozwik et al.,
2017; Peterson et al., 2016). Efforts that have looked at the
performance of deep neural networks on simple silhou-
ettes (Baker et al., 2018; Kubilius et al., 2016) or drawings
(Singer et al., 2022) have not contrasted DNNs to simpler
feature spaces, or compared models varying in architecture
and training methods. For both sketches of real objects and
line drawings depicting unrecognizable shapes, we used
human behavior in a triplet-judgment task to map a low-
dimensional space capturing perceived similarities amongst
stimuli. We then assessed whether internal representations
extracted from various DNNs or other features spaces can
explain the resulting structure.

For sketches of real items, we found that human similarity
judgments were strongly influenced by the depicted item’s
basic-level semantic categories. Vector-space representa-
tions based only on basic-level category explained 91% of
the variance in inter-item distances from the human embed-
ding space. While features extracted from each DNN archi-
tecture did account for statistically significant additional var-
iance beyond category and other candidate feature spaces,
the amount of additional variance was 1% or less. Moreover,
the DNN-based representations that independently explained
the most variance in human-perceived similarity were those
that most cleanly separated stimuli by semantic category.
Yet despite this strong impact of semantics, we also found
evidence that human similarity judgments are influenced by
other visual aspects of a given sketch: inter-item distances
within each category were reliably predicted by a linear
combination of DNN-based and other features; and only
regression models combining feature types were sufficient
to fully explain human decisions on the triplet task. The
strong impact of semantics coupled with significant contri-
butions from other feature types raised the possibility that
the use of real-object sketches might obscure or inflate the
utility of DNN-based features for understanding perceived
visual similarities.

To test this possibility, Experiment 2 conducted a parallel
analysis for drawings of unrecognizable shapes. In this case,
DNNS captured important information not expressed by the
other metrics we considered. Unsurprisingly, human judg-
ments are partly driven by overall similarity in shape, a prop-
erty captured by Hu moments. Yet after regressing out this
structure and other purely visual measures (including shape
overlap and similarity in low- and high-spatial-frequency
information), DNN-based representations still explained
an additional 11%-29% of variance amongst interitem dis-
tances in the human-derived similarity space. Considered
independently, the best-performing DNN accounted for 79%
of the variance in such distances, substantially more than
the best-performing non-DNN-based representations (Hu
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moments, accounting independently for 63% of variance).
That is, in contrast to results with sketches of real objects, no
alternative representation fared better at predicting human-
perceived similarity than did the best-performing DNN
(the CLIP-trained transformer). Thus, when no semantic
information about the stimulus is available to guide judg-
ments, DNN-based representations generally appear to better
capture human-perceived structure than do other measures.
Yet such representations were still insufficient on their own
to fully explain such structure—as with Experiment 1, only
models that combined DNN- and non-DNN-based features
predicted human decisions at ceiling level.

With these observations in mind, we can revisit the three
questions raised in the introduction and the answers our
results suggest.

1. Are the internal representations/features acquired by
DNNs sufficient, either alone or in combination with
other common expressions of visual structure, to explain
the similarities that people detect amongst drawings of
objects and unfamiliar shapes?

For neither dataset did DNN-based representations
alone capture all of the information needed to model
human similarity judgments. When low-dimensional
embeddings of DNN-based structure were used to pre-
dict human-based embeddings, the best-performing net-
works captured a remarkable amount of variance for both
sketches (84%) and shapes (79%). Without compression
and using regression methods, raw distances in DNN
representational spaces did not fully predict human deci-
sions on the triplet task. Only when low-dimension DNN
embeddings were combined with other non-DNN-based
features in a regression model was it possible to predict
human decisions on triplet judgments at ceiling level for
both datasets.

2. Do the internal representations/features acquired by
DNNs merely recapitulate other better-understood kinds
of visual features, or do they capture aspects of percep-
tual similarity beyond such features?

For both datasets, DNN-based representations
accounted for significant additional variance when pre-
dicting coordinates in the human-derived similarity space.
The amount of additional variance explained, however,
was quite small for sketches and substantially larger for
novel shapes. For sketches, simply knowing the category
to which an item belongs carries a great deal of informa-
tion about the similarity decisions people will make. In
contrast, for novel shapes, no alternative representational
basis explained as much variation in human decisions as
did the best-performing DNN, and all DNNs explained
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nontrivial additional variance in the human-derived dis-
tances. Thus, when semantics is removed from the table,
DNN-based features express aspects of human percep-
tual structure difficult to capture in simpler techniques.
The result is surprising insofar as DNNs are primarily
trained on photographs of real objects, and not drawings
of abstract, unrecognizable shapes.

3. Do different model architectures and/or training proce-
dures offer different answers to these questions?

Our results suggest that the training task and/or corpus
size may matter more than the model architecture. For
both sketches and shapes, the best performing model was
the CLIP-trained transformer, while the worst-performing
model was the classification-trained transformer. Convolu-
tional models, all trained only on classification, fell some-
where between these poles. The contrast is instructive as
it suggests that good performance is not attributable to the
transformer architecture alone. The good performance of
ViT-CLIP may arise from its vastly larger training cor-
pus, or from the CLIP training procedure, which promotes
affinity in representation between images and their verbal
descriptions. In so doing, this loss may promote repre-
sentations of sketches that better capture semantic cat-
egory structure (and so better explain human similarity
decisions) and representations of novel shapes that bet-
ter express human-perceived similarities amongst these.
Adjudicating these possibilities will require comparison
of better-matched models.

Broader implications The possibility that the superior per-
formance of ViT-CLIP arises from the CLIP training pro-
cedure itself is intriguing, because it resonates with a well-
known perspective on semantic representation in the mind
and brain, namely the hub-and-spokes approach (McClelland
& Rogers, 2003; Patterson et al., 2007; Rogers & McClel-
land, 2004; Rogers et al., 2004). The hub and spokes model
proposes that different receptive and expressive information
channels in the brain—vision, language, action, hearing—
communicate with one another via a shared representational
“hub,” which serves to mediate interactions amongst the
various modality-specific “spokes.” In so doing, it acquires
distributed representations that are shaped by patterns of
high-order co-variation across modalities and over time
(Jackson et al., 2021; Lambon Ralph et al., 2017), which
in turn express conceptual or semantic similarity relations.
CLIP-trained transformers capture this idea for vision and
language by enforcing a learning constraint so that images
and language with similar semantic content receive similar
internal representations.

The concordance is interesting for two reasons. First, the
hub-and-spokes model has proven useful for understanding a
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range of phenomena in the cognitive neuroscience of seman-
tic memory, including patterns of semantic dysfunction from
brain injury (Lambon Ralph et al., 2007; McClelland &
Rogers, 2003; Rogers & McClelland, 2004), the large-scale
connectivity of the cortical semantic network (Binney et al.,
2012; Chen et al., 2017; Jackson et al., 2021), functional
imaging of neuro-semantic processing (Chen et al., 2017;
Rogers et al., 2006, 2021), and results of transcranial mag-
netic stimulation (Pobric et al., 2010). Second, because ViT-
CLIP representations yielded better agreement with human-
derived similarities even for novel object shapes, it may be
that encouraging agreement between vision and language
representations of real stimuli promotes acquisition of visual
features that better capture human perception generally, even
for novel shapes. This suggests that the visual features gov-
erning human perceptual similarity may be precisely those
that best aid, not image classification, but distributed rep-
resentations of semantic/conceptual structure. The optimal
visual basis for generating distributed semantic represen-
tations may differ significantly from the basis optimal for
specific item classification—in which case, DNNs trained
only on classification may provide a poor approximation of
the computations carried out in human vision.

For these reasons, it will be important for future work to
tease out the causes of the superior ViT-CLIP behavior, by
comparing models matched for training corpus and architec-
ture but varying in use of a contrastive loss. Such a compari-
son is beyond the scope of this paper, but recent work in this
vein suggests that ViT-CLIP’s generally superior behavior is
not solely attributable to the large corpus used for training.
For instance, Mayilvahanan et al. (2023) recently showed
that CLIP models trained on smaller corpora relative to the
CLIP model we tested here and with systematic holdouts
in the validation image set show equally good out-of-dis-
tribution classification accuracy for both photographs and
sketches. This work did not consider how well the result-
ing models capture human-perceived similarity structure,
but strongly suggest that CLIP training leads to advantages
beyond just the larger and more diverse training corpus.

In this work we focused on line drawings, both because
they serve as a class of stimuli beyond the standard reper-
toire of deep image-classifier training datasets and because it
is possible to compute low-level image features and annotate
part-structure more easily in them relative to real-world pho-
tographs. While our simple approaches suffice for character-
izing visual and perceived semantic structure in sketches and
simple shapes, recent advances in the automatic computa-
tion of robust shape dimensions from generative adversarial
networks trained to generate realistic silhouettes of objects
(Morgenstern et al., 2021) provide a promising avenue to
extend our approaches to the domain of naturalistic images.
Coupled with novel methods for image-computable part-
structure (Tiedemann et al., 2022), future work can not only

apply our methods to a broader range of stimuli but also
evaluate the performance of DNNs trained to specifically
understand finer-grained semantic information, such as parts
and scene-segmentations, in both photographs (He et al.,
2017; Li et al., 2022) and drawings (Li et al., 2018).

Lastly, while neural network vision models are capable
of learning rich representations from their visual input, both
ViT and CNN models can rely on features that humans do
not use to guide their categorization judgments, such as
background texture (Geirhos et al., 2018; Hermann et al.,
2020; Tuli et al., 2021). This property might make it dif-
ficult for them to represent line drawings, where shape is
more important for classification relative to photographs.
We have considered 5 models that characterize the repre-
sentations learned on standard “visual diets” (i.e., ImageNet
and OpenAl’s proprietary multimodal dataset), future work
can seek to evaluate the degree to which training on more
diverse datasets, such as Stylized-ImageNet (Geirhos, 2023),
improves human-model alignment.
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