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1.  INTRODUCTION

If you encounter a wolf when walking home through 
a  dark wood, your mind readily accomplishes some 
remarkable feats: it anticipates the animal’s likely behavior, 

perhaps slinking closer toward you; it assigns the thing a 
name, which you might shout to alert others (“wolf!”); and 
it directs you to change your own plans, maybe running 
back down the path. These feats arise from the human 
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ability to discern conceptual structure—to realize that the 
wolf, despite its resemblance to friendly dogs in town, is 
nevertheless a quite different sort of animal.

This ability to represent and exploit conceptual struc-
ture is central to human semantic cognition. Such struc-
ture is graded in that similarities vary along a continuum: 
wolves are highly similar to coyotes, partially similar to elk, 
and quite distinct from birch trees or canoes. It is also 
multidimensional in that concepts vary along a myriad of 
independent components: wolves and dogs are similar in 
their shapes, parts, movements, and phylogeny, but dif-
ferent in their behaviors, habitats, and diets. To capture 
these properties of knowledge, computational approaches 
to semantics often represent concepts with vector spaces: 
the meaning of a word or image is expressed as a point in 
an n-dimensional space (or equivalently as an n-dimen-
sional vector) such that the proximity between points 
expresses the similarity in meaning between the denoted 
concepts. The dimensions of the vector need not corre-
spond to nameable conceptual components like habitat 
or diet; instead, they may define a space, with different 
concepts corresponding to different points in the space, 
and with the distances between points capturing the 
degree of semantic/conceptual relatedness between con-
cepts (Frisby et al., 2023). Cognitive science and machine 
learning offer many techniques for estimating semantic 
vector spaces from natural language (Pereira et al., 2016), 
feature norms (McRae et al., 2005), or similarity-judgments 
(Hebart et al., 2020), and these methods have provided a 
critical empirical foundation for studying human concep-
tual knowledge.

The well-known “hub and spokes” theory of semantic 
representation suggests that the anterior temporal lobes 
(ATLs) encode a graded, multidimensional semantic vec-
tor space that expresses conceptual similarity structure 
for all concepts, extracted across all input and output 
modalities, and from our experiences of each concept 
across time (Jackson et al., 2021; Lambon Ralph et al., 
2017; Patterson et  al., 2007). This proposal has been 
useful for understanding patterns of semantic deficits 
arising from temporal lobe pathology in fronto-temporal 
dementia (Acosta-Cabronero et  al., 2011; Hodges & 
Patterson, 2007; Lambon Ralph, 2014; Lambon Ralph 
et al., 2010; Rogers et al., 2004; Snowden et al., 1989), 
anterior temporal resection (Drane et al., 2008; Lambon 
Ralph et al., 2010, 2012; Rice et al., 2018; Schapiro et al., 
2013), and herpes viral encephalitis (Gainotti, 2018; 
Lambon Ralph et al., 2007; Noppeney et al., 2007); stim-
ulation and evoked response direct neurophysiological 
explorations (Abel et al., 2015; Chen, Shimotake, et al., 
2016; Shimotake et al., 2015); the effects of transcranial 
magnetic stimulation in ATL and other parts of the corti-
cal semantic system (Binney et  al., 2010; Binney & 

Lambon Ralph, 2015; Jefferies, 2013; Lambon Ralph 
et al., 2009; Pobric et al., 2007, 2010); and a variety of 
behavioral phenomena in developing and mature cogni-
tion (Chen et al., 2017; Jackson et al., 2021; Rogers & 
McClelland, 2004, 2014).

Yet direct empirical tests of this proposal—
representational similarity analysis (RSA) of functional 
imaging data collected while people perform semantic 
tasks on words or pictures—have not generally tended to 
support it. A recent review identifies 24 studies applying 
RSA to uncover semantic representations in the brain 
(Frisby et al., 2023); of these, 18 (75%) failed to identify 
semantic structure in the anterior temporal cortex (for the 
exceptions, see Bruffaerts et  al., 2013; Devereux et  al., 
2018; Fairhall & Caramazza, 2013; Martin et  al., 2018; 
Peelen & Caramazza, 2012). Many of these studies 
instead find that semantic structure is encoded in brain 
areas not otherwise thought to be critical to semantic rep-
resentation, including posterior cortical regions (Connolly 
et al., 2012), inferior and superior frontal and motor cortex 
(Carota et al., 2017; Wang et al., 2017), the left pars trian-
gularis (Liuzzi et al., 2017), the right superior parietal cor-
tex (Wang et al., 2017), the insula and occipeto-parietal 
cortex (Kivisaari et al., 2019), and the posterior cingulate 
cortex (Fairhall & Caramazza, 2013). Thus, RSA studies 
often yield results that seem puzzling given the broader 
literature, finding that semantic structure is encoded in 
many areas throughout cortex but not in the ATL.

The frequent failure of RSA to find semantic structure 
in ATL may reflect limitations of fMRI, which, without spe-
cialized acquisition protocols, can yield poor signal in 
ventral aspects of this brain area (Halai et al., 2014, 2015). 
An important study by Chen, Shimotake, et  al. (2016) 
suggests, however, that this is not the full story. The 
authors collected intracranial grid electrode voltages 
(ECoG) from the surface of ventral anterior temporal 
lobes (vATL) while participants named line drawings of 
familiar items, then conducted a searchlight-based 
semantic RSA from these data. Consistent with the 
semantic-hub model, they found an anterior fusiform 
area where similarities in the evoked neural response cor-
related significantly with the target semantic similarities. 
Critically, however, they further showed that the evoked 
neural similarities correlated equally well with a binary tar-
get matrix that only encoded whether a stimulus was ani-
mate or inanimate. This result is consistent with an 
alternative view that, while ECoG in vATL may express a 
coarse binary animacy distinction, it does not otherwise 
encode graded or multidimensional semantic structure 
within or between these domains. ECoG is not affected 
by the magnetic field inhomogeneities that affect fMRI in 
vATL, so the finding is not easily attributable to poor sig-
nal or other data artifacts.
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Motivated by these observations, this paper considers 
an alternative hypothesis about the discrepant findings 
for RSA versus the broader literature: that it arises 
because RSA, as typically practiced, is not well suited to 
finding graded multidimensional vector spaces of the 
kind the ATL is hypothesized to encode. This may seem 
surprising, since RSA was developed specifically as a 
tool for finding cognitive similarity structure in neuroim-
aging data (Kriegeskorte, Mur, & Bandettini, 2008)—yet, 
as we will demonstrate, the reliance of the approach on 
correlation significantly limits the kinds of signal it can 
detect.

Study 1 considers how RSA constrains what can be 
discovered about neuro-semantic representations, by 
applying the approach to simulated data where the target 
signals are designed to encode elements of structure in a 
true semantic similarity matrix derived from feature-listing 
data. The results illustrate how and why RSA can both 
miss real signal and produce positive results with the 
potential to mislead. Study 2 then introduces a different 
approach to neural decoding, representational similarity 
learning (RSL; Oswal et al., 2016), that can remediate these 
issues by making explicit which aspects of the target 
structure can be successfully decoded, and by operation-
alizing hypotheses about the neurosemantic code directly 
within the decoding model. Study 3 extends the RSL 
approach to the analysis of very large neural datasets and 
applies it to investigate graded multidimensional semantic 
structure in ECoG data recorded from the surface of 
human vATL—the same data for which RSA data failed to 
detect graded, multidimensional, and cross-domain 
semantic structure in a prior study (Chen, Shimotake, 
et  al., 2016). We empirically compare results yielded by 
RSL versus RSA on these data, with results that resolve 
the contradiction in the literature and suggest a new path 
for multivariate neural decoding more generally.

2.  SIMULATION STUDY 1: EVALUATING RSA

Simulation 1 evaluated whether the results yielded by 
RSA reliably indicate whether a set of neural measure-
ments encode graded, multidimensional semantic simi-
larity structure of the kind typically sought in functional 
imaging studies. By graded, we mean that the measure-
ments encode varying and continuous degrees of similar-
ity between items, rather than discrete or categorical 
distinctions between items. By multidimensional, we 
mean that the measurements encode variation along 
more than one orthogonal component of a representa-
tional space. Though the general approach is well known, 
its limitations may be less familiar, so we begin with a 
brief overview of the method and some of the challenges 
it faces when seeking graded, multivariate structure.

RSA aims to find sets of neural features—voxels, elec-
trodes, or other measurements of neuro-physiological 
activity—whose responses to various cognitive events 
(e.g., the perception of a stimulus) jointly encode an 
independently-measured target structure. Typically, the 
target structure is a representational similarity matrix 
(RSM; sometimes called a representational dissimilarity 
matrix or RDM) in which the rows and columns corre-
spond to the different stimuli in an experiment and the 
entries indicate the cognitive/representational similarities 
between stimuli. For semantic representation, entries in 
the target RSM indicate similarity of meaning among 
pairs of concepts as estimated from behavioral or corpus 
data. To determine if responses in a set of neural features 
(e.g., voxels, electrodes, EEG sources, etc.) encode the 
target similarities, the experimenter estimates the pattern 
of neural activity evoked over features by each stimulus 
and computes the pairwise similarities between these to 
create a neural similarity matrix (NSM). Correlations 
between the RSM and NSM are computed separately 
for each participant, and brain regions where these are 
reliably greater than zero are interpreted as encoding 
the target structure.

This approach faces at least five challenges when 
used to find graded, multidimensional structure in neural 
codes:

	 1.	� Discrete versus graded structure: reliable correla-
tions with a continuous-valued target RSM can 
arise even if the neural response is discrete or cat-
egorical. Thus, a positive result does not indicate 
that the neural response encodes graded structure 
even if such structure is present in the target RSM.

	 2.	� Unidimensionality: the correlation between RSM 
and NSM is inherently unidimensional. Thus, a 
positive result on its own does not provide evi-
dence of multidimensional structure in the neural 
response.

	 3.	� A priori feature selection: the experimenter must 
decide ahead of time which neural measurements 
to use when computing the NSM (e.g., an ROI or 
a searchlight). If the informative features fall 
across different ROIs or searchlights or are inter-
mixed with many non-informative features within 
an ROI/searchlight, the approach can fail to dis-
cover them.

	 4.	� Equal importance: all selected neural features are 
equally weighted when computing the NSM. If the 
informative neural features are sparse or vary in 
signal strength, equal weighting of all features may 
lead to a null result. Thus, a null result does not 
indicate that the selected neural features carry no 
target information.
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Fig. 1.  Coordinates of the 100 stimuli in the three-dimensional singular-value-decomposition of the semantic similarity 
matrix. Colors show category membership within each domain. Component 1 not only separates animate from inanimate 
items, but also separates animate subcategories. Component 2 largely separates animate subcategories, while 
component 3 largely separates inanimate subcategories.

	 5.	� Masked dimensionality: reliable correlations between 
RSM and NSM can be driven by a subset of the 
RSM structure or items, or even by one or two 
extreme values. Thus, a positive result does not 
imply that all components of the target RSM are 
encoded.

Simulation 1 assessed how these characteristics of RSA 
will influence discovery of neuro-semantic representations 
by applying the approach to synthetic data designed to 
encode different aspects of a real semantic similarity matrix.

2.1.  Methods

The target RSM was computed from semantic feature 
norms for 100 items, half animate and half inanimate, col-
lected in prior work (Dilkina & Lambon Ralph, 2013). The 
feature vectors for each item were aggregated in a matrix 
with rows indicating words, columns indicating features, 
and binary entries indicating whether the referent of the 
word possesses that feature. Matrix columns were mean-
centered, and the RSM was computed as the cosine sim-
ilarity for all pairs of row vectors.

To understand the latent structure of the RSM, we 
used singular value decomposition (SVD) to extract three 
components accounting for 90% of the variance in the 
full matrix (81.1%, 4.4%, 4.0%, respectively). SVD is a 
common matrix decomposition algorithm that reduces a 
matrix to a small number of orthogonal components 
ordered by the proportion of variance they explain. After 
applying it to the RSM, each of the 100 items in the set 

receives a coordinate position along the three orthogonal 
components.

Figure 1 shows the coordinates for all 100 items on 
each latent dimension, color coded by semantic category 
(see Supplement A for full list of items and how they were 
categorized). The decomposition reveals graded seman-
tic structure along each dimension. The first not only sep-
arates animate from inanimate items but also individuates 
subcategories in each domain. The second not only 
strongly differentiates subcategories of animals but also 
weakly distinguishes inanimate subcategories. The third 
differentiates the inanimate items, though the resulting 
spread is less “clumpy” than within animate items as 
commonly found with such data (Lambon Ralph et  al., 
2007). From the SVD, it is clear that the semantic vector 
space is both multidimensional and graded by the defini-
tions offered earlier.

The simulation assessed what results RSA would yield 
when applied to a set of signals designed to encode ele-
ments of this underlying semantic structure, when those 
signals are perturbed by noise and embedded in a popu-
lation together with other signals that do not code seman-
tic information (as in brain imaging data). Specifically, we 
created five simulated datasets, each capturing a differ-
ent aspect of semantic structure in the target RSM. Each 
dataset contained simulated responses of 24 features to 
the 100 items, as a simple model analog of the responses 
of, for instance, voxels within an ROI. To capture the fact 
that a given ROI may contain both signal-carrying and 
uninformative voxels, half of the features encoded true 
semantic information about the target items while half 
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adopted random values sampled from a uniform distribu-
tion in the same range.

The five datasets varied in which aspects of the target 
matrix they encoded, as illustrated in the schematic plots 
in Figure 2A. In the binary condition, all signal-carrying 
features adopted one state (-1 or 1) for animate items and 
the opposite state for inanimate items—thus, the code 
was both unidimensional and discrete (i.e., non-graded). 
In three one-D conditions, all signal-carrying features 
only encoded a single latent component of the target 
RSM—either the first, second, or third singular vector as 
shown in Figure 1. Thus, each encoded graded similarity 

structure (the distances between items were continuous, 
not binary/discrete) but only one dimension of variation. 
In the full structure condition, the signal-carrying features 
jointly encoded all three latent components of variation in 
the target RDM, with four features dedicated to each of 
the three components. Thus, the code was both graded 
and multidimensional.

For each signal condition, we distorted the response 
of each feature to each stimulus with measurement noise 
sampled independently from a uniform distribution cen-
tered on 0, generated a simulated NSM, then computed 
the correlation between the simulated NSM and target 

Fig. 2.  Simulation results. (A) Each plot illustrates different ways that a neural response might encode some aspects of 
a target RSM, schematized in the rightmost plot (“All”). Vertical bars show the hypothesized responses of neural features 
to various animate and inanimate stimuli (red more active; blue less active; gray random) while the squares show the 
neural similarity matrices that would then result (red high similarity, blue low). All conditions encode some components 
of the full RSM and so should be detected by a multivariate method seeking semantic structure. (B) Curves showing 
the expected results of standard RSA when used to decode real semantic structure from the target RSM under different 
hypotheses about the neural code and increasing amounts of measurement noise. Dots show the mean correlation, while 
ribbons show the 95% confidence interval. The approach can yield robust results when the neural signal is discrete and/or 
unidimensional, even under substantial noise, and can yield weak or null results when the neural signal faithfully encodes 
weaker components of the RSM, even under low-noise conditions. (C) Results of RSL applied to the same simulated 
data, showing the correlation between true and predicted coordinates for held-out items on each latent component of 
the target matrix (columns) at the same 11 levels of noise as in the RSA, for the five different simulation conditions (rows), 
and computed across all items (black lines), animate items (red), or inanimate items (green). RSL shows a positive result 
in each case, identifies which components of the matrix are present in the neural code, and reveals reliable within-domain 
decoding only when the neural code expresses continuous similarity structure.
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semantic RSM. The varying levels of noise allowed us to 
investigate RSA behavior across a wide range of signal-
to-noise ratios. This procedure was conducted 20 times 
at each of 11 increasing noise levels. We then computed, 
across runs at each noise level, the mean and 95% con-
fidence intervals of the Pearson correlation between sim-
ulated NSM and RSM.

2.2.  Results

The results are shown in Figure  2B. The binary code 
showed robust correlations across the full noise-spectrum, 
illustrating that RSA with a graded and multidimensional 
target RSM can yield a positive result even when the neu-
ral code is neither continuous nor multidimensional. 
Amongst the one-D codes, RSA showed a strong posi-
tive result if the simulated neural response encoded the 
first singular vector of the target matrix, but much weaker 
results that decayed to zero with increasing noise when 
the neural response encoded other components. The 
weak results for components 2 and 3 arise simply 
because the raw similarities encoded in the target RSM 
are most strongly determined by the first component. 
Simulated NSMs that encode just the second or third 
component thus express similarities that do not correlate 
strongly with the pairwise similarities encoded in the tar-
get matrix. Thus, RSA can yield weak/null results even 
when the features under consideration do reliably encode 
semantic information that is orthogonal to the primary 
component of the RSM. Throughout the noise range 
assessed, RSA yielded the most reliable results when the 
simulated features encoded a binary domain distinction 
or just the first component of variation. For these scenar-
ios, all signal-carrying features encode the same informa-
tion, so noise “cancels out” across features and the signal 
remains robust. When the same number of features 
encode three orthogonal components, fewer resources 
are dedicated to each, and corruption from noise more 
seriously degrades the signal—so that, counter-intuitively, 
the approach yielded less reliable results when the simu-
lated features encode all three dimensions of the target 
matrix.

2.3.  Discussion

The simulation shows that, when decoding semantic 
similarity structure of the kind captured by semantic 
feature norms, RSA can yield a positive result when the 
neural response is discrete and/or unidimensional, even 
though the target matrix is continuous and multidimen-
sional. Additionally, it can yield weak or null results when 
the neural response does encode underlying dimen-
sions of the target matrix beyond the strongest. Thus, 

the simulation serves as a demonstration that RSA, as 
typically deployed, may not reliably indicate whether a 
set of neural signals encode the graded, multidimen-
sional semantic structure existing in a target RSM. Of 
course, the specific pattern of results obtained will 
depend upon the ratio of informative to uninformative 
features within the selected set and the amount of noise 
perturbing the signal, in addition to the structure 
encoded by the informative features.

One response to these challenges may be to consider 
the degree of correlation between a given NSM and mul-
tiple different RSMs, each encoding a different kind of 
structure. Yet, simulation 1 suggests that this approach 
remains limited. Recall that Chen, Shimotake, et al. (2016) 
found that an ECoG-based NSM correlated equally well 
with an animacy-based binary similarity matrix as with a 
full continuous and multidimensional matrix. The ratio-
nale for the comparison was the expectation that, if the 
NSM encodes the full similarity structure, it should show 
a higher correlation with the target semantic matrix than 
with the binary matrix. Figure 2B shows that this is not 
necessarily so—in fact, the binary code showed as good 
or better correlation with the target semantic matrix than 
did the full (continuous, multidimensional) code. Thus, 
the comparison of fits with the two different target matri-
ces did not help to resolve the nature of the underlying 
neural code.

Or, consider the interesting findings of Clarke and Tyler 
(2014), who used RSA to seek areas encoding semantic 
structure both across and within superordinate domains 
(such as “animals” and “vehicles”). When the target 
matrix included all items from all domains, the analysis 
identified the vATL as encoding semantic structure. When 
limited only to items within one semantic domain, how-
ever, the vATL did not appear to encode such structure. 
The finding could mean that vATL only encodes discrete 
distinctions between superordinate semantic domains, 
analogous to the binary condition in the simulation—but 
the same result could also be obtained even if the vATL 
does encode within-domain structure, since such struc-
ture is mainly encoded, within the semantic target matrix, 
by components orthogonal to the primary dimension.

More sophisticated use of RSA may overcome some 
of these difficulties in interpretation; for instance, the 
researcher might carefully select stimulus items to ensure 
that multiple orthogonal components of a representa-
tional space are equally strongly expressed in the RSM, 
or to ensure that different target representational spaces 
are maximally differentiated by the selected stimulus 
items. Indeed, one of the few RSA studies to report 
semantic representational structure in ATL adopted this 
approach, ensuring that semantic and visual similarity 
structure were completely deconfounded in their stimuli 
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and then comparing results for these two differently-
structure target matrices (Martin et al., 2018). While such 
studies are elegant and informative, they are also chal-
lenging to design and may prevent researchers from 
exploring fuller or more naturalistic distributions of stim-
uli. For these reasons, we were motivated to consider an 
alternative approach to discovery of graded multidimen-
sional representations in neural data.

3.  SIMULATION STUDY 2: DECODING WITH RSL

The approach we developed is called representational 
similarity learning (RSL; Oswal et al., 2016). Rather than 
using pairwise similarities in the RSM as the target values 
for correlation, RSL first decomposes the matrix into 
orthogonal latent components, effectively re-representing 
each stimulus item as a point in a low-dimensional 
semantic space as shown in Figure 1. It then uses linear 
regression to fit decoding models that predict the coordi-
nates of each item along each dimension from their 
evoked neural responses. Simulation 2 assessed whether 
this approach can reveal the graded and/or multidimen-
sional structure obscured by RSA.

3.1.  Methods

Using the same simulated neural signals from Simulation 1 
as predictors, we fit ordinary least-squares (OLS) regres-
sion models to predict coordinates of each stimulus 
along each of the three latent semantic dimensions 
shown in Figure  1. For each simulated feature set and 
each of 11 increasing levels of uniformly distributed noise 
(i.e., the same noise manipulation as for Simulation 1), 
each example was assigned to 1 of 10 mutually exclusive 
test sets such that each test set had 5 animate and 5 
inanimate items. Holding out each test set in turn, regres-
sion models were fit to the remaining 90% of the exam-
ples (the training set). The model that was fit to the 
training set predicts coordinates for the 10% of examples 
withheld as the test set. After iterating over the 10 test 
sets, a holdout prediction exists for every item. These 
were concatenated and correlated with the target embed-
ding one dimension at a time. This process was repeated 
20 times with different samples of noise. Holdout accu-
racy for each condition and noise level was estimated as 
the mean over simulation repetitions.

Multidimensional structure in the neural code should 
be revealed by reliable prediction of coordinates along 
more the one latent dimension. To assess whether the 
neural code captures graded similarity, we evaluated how 
well the fitted model predicted coordinates among just 
the animate items or just the inanimate items. If the neu-
ral signal only categorically differentiates animate from 

inanimate stimuli, then predicted and true values should 
correlate significantly when models are evaluated on all 
items but should not correlate among just the animate or 
just the inanimate items considered separately. Reliable 
intra- and inter-domain correlations between true and 
predicted values thus indicate that the neural code cap-
tures a graded degree of similarity structure.

3.2.  Results

Figure 2C shows the mean correlation between true and 
predicted coordinates for held-out items on each of the 
three target components (columns), for the five different 
neural coding scenarios (rows), and computed across all 
items (black lines), animate items (red), or inanimate 
items (green). The pattern of results reveals the informa-
tion encoded in each simulated neural response. With the 
binary neural signal (top row), predicted and true coordi-
nates correlated strongly for models fit to all items but not 
separately for animates versus inanimates. With continu-
ous one-D signals, strong correlations were observed for 
models fit to all items and within each domain separately, 
but only for the dimension encoded by the neural 
response. When the neural signal encoded graded multi-
dimensional structure, reliable correlations were observed 
on all three latent components, for models fit to all items, 
and for models fit separately to each domain. Thus, in 
simulation, the pattern of results uniquely revealed whether 
the neural signal encodes graded or discrete structure, 
and which semantic dimensions it captures.

3.3.  Discussion

In contrast to the RSA simulation, RSL yielded a different, 
diagnostic pattern of results for each condition, indicat-
ing which aspects of the semantic target matrix were 
encoded within the simulated neural responses. The dis-
creteness of the binary code was revealed by reliable 
prediction across domains and no reliable prediction 
within domain. In the 1D neural-structure conditions, RSL 
showed reliable prediction only on the latent dimensions 
encoded by the simulated neural signal, and not on the 
other dimensions. Reliable decoding both within and 
between domains in such conditions indicated, in con-
trast to the binary condition, that the signal is graded 
rather than discrete. When the simulated neural signal 
encoded all three semantic dimensions, RSL showed 
reliable decoding of each. Thus, by considering decoding 
accuracy on orthogonal components of the target matrix, 
RSL can test whether the neural code expresses multidi-
mensional structure; and by considering decoding accu-
racy separately for different semantic domains, it can test 
whether the code is graded.
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4.  STUDY 3: DECODING SEMANTIC STRUCTURE 
FROM ECOG USING RSL

Study 3 evaluated whether neural signals in vATL encode 
a graded, multidimensional and domain-general seman-
tic space by using RSL to decode semantic structure in 
ECoG data collected in a prior study of object naming 
(which employed the same 100 items used in the simula-
tions; Chen, Shimotake, et  al., 2016). This dataset is 
especially useful in the current context for two reasons.

First, ECoG avoids some of the limitations of non-
invasive imaging methods that can make structure in 
vATL difficult to decode. One recent study suggested 
that the neuro-semantic code for animacy in vATL 
changes rapidly and nonlinearly over the course of stim-
ulus processing so that techniques sacrificing either 
spatial or temporal resolution, including EEG, MEG, and 
fMRI, may obscure important signals (Rogers et  al., 
2021). Additionally, magnetic field inhomogeneities make 
it difficult to resolve clear BOLD signal in vATL without 
special acquisition sequences (Halai et al., 2014, 2015). 
ECoG provides much better spatial and temporal resolu-
tion of neurophysiological signals at the surface of the 
cortex and does not suffer from the signal-detection 
issues that challenge fMRI, so any failure to discover 
fine-grained / multivariate semantic structure in the data 
cannot reflect these limitations.

Second, the results of the original RSA study (Chen, 
Shimotake, et  al., 2016) suggest that the measured 
signals, though reliably differentiating animate from inan-
imate items, do not encode finer grained or multidimen-
sional semantic structure. Specifically, the authors 
compared the correlation of the stimulus evoked NSM to 
two different target matrices: one encoding the full graded 
and multidimensional semantic similarities among stim-
uli, and a second encoding just the binary distinction 
between animate and inanimate items. If the vATLs 
encode graded multidimensional semantic structure, one 
might expect the NSM to correlate more strongly with the 
full target matrix than with the binary animacy matrix. 
Instead, the authors found statistically significant and 
equally strong correlations with both target matrices. One 
interpretation of this finding is that the measured neural 
signals do not in fact encode graded or multidimensional 
semantic structure, but only serve to discretely differenti-
ate animate and inanimate items—a conclusion also con-
sistent with Clarke & Tyler’s (2014) RSA results described 
earlier. The data thus allow us to test an alternative 
hypothesis: that the measured signals do encode a graded, 
multidimensional, and domain-general semantic space, 
in a manner that is invisible to RSA. If so, RSL should 
reliably decode variation along multiple orthogonal com-
ponents of the target semantic matrix, considering all 

items together as well as within animate and inanimate 
domains considered separately.

Applying RSL to ECoG or any other brain imaging 
data, however, faces an immediate challenge: such tech-
nologies produce many more spatiotemporal neural 
measurements than there are stimuli, so regression mod-
els predicting stimulus characteristics from neural data 
are ill-defined (i.e., there exist infinite solutions that can 
perfectly predict outcomes on training data even from 
random input data). To find a unique fit without a priori 
feature selection, the regression must be regularized to 
satisfy some additional constraint that will guarantee a 
single unique solution for model fitting. For instance, the 
weight optimization might jointly minimize prediction 
error and the size of the model coefficients, measured as 
the sum of their absolute values (the L1 norm). Since this 
sum can be minimized by placing zero coefficients on 
many predictors, this form of regularization promotes a 
sparse solution in which only a few predictors have non-
zero coefficients in the final model (e.g., Rogers et  al., 
2021). Other regularizers (such as the L2 norm or the 
elastic net) enforce different constraints on model fitting, 
and thus lead to other solutions when applied to the 
same dataset (Cox & Rogers, 2021).

In this sense, the selection of a regularization function 
amounts to a prior hypothesis stipulating how the neural 
signal is likely to be structured. As recently argued in 
Frisby et al. (2023), the choice of regularizer should be 
informed by explicit hypotheses about the nature of the 
signal to be decoded—in this case, a hypothesis about 
how neurophysiological signals measured by surface 
electrodes in the brain might encode a graded, multivari-
ate semantic space.

To that end, we adopted a regularization function 
called the group-ordered-weighted LASSO (grOWL) 
loss (Oswal et al., 2016) that was designed in prior work 
to capture three theoretically motivated assumptions 
about the structure of neural representations. First, it 
assumes the signal is sparse: of all measurements 
taken, only a relatively small proportion encodes target 
information of interest, so the regularizer should place 
zero coefficients on many predictors (as with L1 regular-
ization). Second, it assumes redundancy in the true sig-
nal: neural populations that do encode target information 
will be correlated in their activity patterns over items, so 
the regularizer should spread similar coefficients across 
correlated signal-carrying populations (similar to L2 reg-
ularization). Third, it assumes that signal-carrying popu-
lations are unlikely to be “axis-aligned” with the target 
semantic space (i.e., responding only to variation along 
a single semantic dimension) but more likely encode 
multiple, varying “directions” within the space. That is, 
each neural population likely carries information about 
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an item’s coordinates along multiple dimensions of the 
target space. We will refer to this as the spanning 
assumption, since the selected neural features span the 
target representational space but are unlikely to only 
encode distinct, individual dimensions. To enforce this 
assumption, the regularizer should prefer solutions 
where coefficients on a given neural feature are either all 
zero (the feature does not carry any information) or all 
non-zero (it predicts some variation along all target 
dimensions).

Oswal et al. (2016) showed that all three assumptions 
can be captured in a single convex loss function, and 

also provided analytic guarantees and an example appli-
cation on an fMRI dataset. We describe the logic briefly 
here; Supplement B provides a formal description of the 
decoding model and grOWL regularizer, including a defi-
nition of the loss and explanation of how it encourages 
these properties in the decoding matrix.

Rather than fitting a separate regression model for 
each latent component of the target RSM (as in the sim-
ulation), we instead predict all latent components (Fig. 3A) 
simultaneously by estimating the parameters of a decod-
ing matrix β (Fig. 3C) with regularized multitask regres-
sion. Suppose the coordinates of n stimuli on r latent 

Fig. 3.  Representational similarity learning. (A) To generate the target structure for decoding, semantic feature vectors 
for each of n items are mean-centered and converted to a cosine similarity matrix Sn×n of approximate rank r. This is 
decomposed into matrix Un×r containing r orthogonal singular vectors and diagonal matrix Dr×r  containing singular values 
for each vector. The product U D  is an nxr matrix whose columns contain r root-weighted singular vectors that are the target 
of the decoding model. Note that the product of this matrix with its transpose provides an estimate of the original matrix Sn×n.  
(B) Neural responses in a picture-naming task are recorded for each stimulus as intra-cranial voltage potentials collected 
at 1000 Hz over electrodes implanted in vATL. Data are concatenated across electrodes to create a single m-dimensional 
“neural feature vector” for each stimulus, where m is the total number of electrodes times the size of the decoding window in 
milliseconds. All such vectors are compiled into a neural feature matrix Xn×m which contains the predictors for the decoding 
model. (C) The target structure U D  is then modeled as the product of the neural feature matrix X  and a decoding matrix of 
regression coefficients ββ whose values are chosen via gradient descent to minimize prediction error plus the regularization 
penalty H(ββ) scaled by the weighting parameter α. (D) Definition of the group-ordered-weighted LASSO (grOWL) 
regularization function and illustration of the structure it promotes in the decoding matrix.
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graded multidimensional structure (Chen, Shimotake, 
et  al., 2016). The study was approved by the ethics 
committee of the Kyoto University Graduate School of 
Medicine (No. C533), and participants provided written 
informed consent. The dataset contains voltages mea-
sured from platinum subdural grid electrodes (inter-
electrode distance 1 cm and recording diameter 2.3 mm; 
Ad-Tech, WI) implanted in the surface of left (8) or right 
(2) vATL in 10 patients undergoing preparation for intrac-
table epilepsy (9) or brain tumor (1) while they named 
line drawings depicting the 100 items described in 
Study 1. Electrodes were implanted in the right hemi-
sphere for two patients where WADA testing did not 
clearly indicate left-lateralization of language.

Each patient had between 6 and 32 electrodes (mean 
of 20) covering vATL. All patients with epilepsy had sei-
zure onset zones outside the anterior fusiform region, 
except one patient for whom it was not possible to local-
ize the core seizure onset region. Data were sampled at 
1000 Hz (eight patients) or 2000 Hz (two patients) with a 
band-pass filter of 0.016–300 (eight patients) or 0.016–
600  Hz (two patients). The dataset included, for each 
stimulus, voltages measured at each electrode over a 1 s 
window from stimulus onset and downsampled to 100 Hz. 
Thus, for a participant with 20 electrodes, each stimulus 
was associated with a 2000-element vector of voltages 
(20 electrodes x 100 time points). The ECoG data were 
preprocessed exactly as in Chen, Shimotake, et al. (2016).

4.1.1.  Stimuli and procedure

One hundred line-drawings (50 animate and 50 inanimate 
items) were obtained from previous norming studies  
(Morrison et al., 1997; Snodgrass & Vanderwart, 1980). See 
Chen, Shimotake, et al. (2016) for a complete list. Animate 
and inanimate stimuli were matched on age of acquisition, 
visual complexity, familiarity, and word frequency, and 
had high name agreement. Each stimulus was presented 
on a computer screen for 5 s, one after another with no 
interstimulus interval, once during each of four sessions 
(four times in total). Each session proceeded in a different 
random order. Participants were instructed to name each 
item as quickly and accurately as possible. Participants 
were video and audio recorded during the experiment. 
Video was used to monitor eye fixations and general atten-
tion to the task. The mean response latency was 1190 ms.

4.1.2.  Semantic similarity structure  
and dimensionality reduction

The same target RSM and three-dimensional embed-
ding used in the simulated analysis are reused for the 
ECoG analysis.

semantic dimensions are stored in matrix Un×r while the 
responses of m neural features to the stimuli are stored in 
matrix Xn×m. RSL models the entries in U as the matrix 
product of the neural activations in X  and the decoding 
matrix ββm×r: U = Xββ. Each row of ββ corresponds to one 
neural feature (voxel, electrode, etc.), and each column 
encodes weights for each neural feature when predicting 
stimulus coordinates on the corresponding dimension of 
the target matrix U. Thus, the assumptions about neural 
signal just listed can be formalized as constraints on the 
structure of the decoding matrix ββ (Fig. 3D). To capture 
the sparsity and spanning assumptions, ββ is constrained 
to be row-sparse: most rows have all zero values (spar-
sity), and the rest have all non-zero values (spanning). To 
capture the redundancy assumption, highly correlated 
and signal-carrying neural features receive similar row-
vectors in ββ (Fig. 3D). The precise degree of sparsity and 
redundancy in the decoding matrix is controlled by hyper-
parameters that are tuned via cross-validation. Figure 3 
shows the full workflow decoding semantic structure 
from ECoG data.

With this overview, we can consider how RSL can be 
applied to assess whether neural data encode a multidi-
mensional and graded similarity space. Parameters in ββ 
are estimated for a batch of training data using regres-
sion regularized with the grOWL loss. The decoding model 
is then applied to predict the coordinates of held-out 
items along each dimension in the target representation 
space. If predicted and true coordinates for held-out 
items correlate reliably on more than one dimension, the 
neural signal must encode multidimensional structure. 
To assess whether the neural code captures graded sim-
ilarity, we additionally evaluate the regression models 
separately for animate and inanimate items, as in the 
simulation. If the neural signal only categorically differen-
tiates animate from inanimate stimuli as suggested by 
the prior RSA analysis in Chen, Shimotake, et al. (2016), 
then predicted and true values should correlate signifi-
cantly across all items, but not for animate or inanimate 
subsets considered separately. Observation of both 
inter- and intra-domain correlations thus indicates that 
the neural code captures a graded degree of similarity 
structure. Finally, to assess how well the decoder recov-
ers the target semantic similarities, the predicted coordi-
nates for held-out items on all three latent dimensions 
can be used to estimate semantic distances between 
stimulus pairs. These estimates can then be correlated 
with true semantic distances, similar to standard RSA.

4.1.  Methods

We applied this approach to the same ECoG dataset 
where prior work using RSA found no evidence for 



11

C.R. Cox, T.T. Rogers, A. Shimotake et al.	 Imaging Neuroscience, Volume 2, 2024

ECoG data preprocessing. Preprocessing was per-
formed in MATLAB. Data were downsampled to 100 Hz 
by averaging measurements within 10  ms boxcars. A 
prior study applying pattern classification to these data 
found near identical results when analyzing raw voltages 
versus voltages referenced to the electrode beneath the 
galea aponeurotica or to the scalp electrode on the mas-
toid process contralateral to the side of electrode implan-
tation (Rogers et al., 2021). For this reason, and because 
the location of the reference electrode varied across 
patients, we analyzed all voltages without referencing. 
For each stimulus, we retained data for 1000  ms from 
stimulus onset. While the trial epoch may include the 
onset of articulation toward the end, the critical results 
cannot reflect such motor activity since all key phenom-
ena are observed early in the epoch. Baseline correction 
was not performed. The mean voltage at each electrode 
for each stimulus was computed across the four repeti-
tions. Voltages from different electrodes were concate-
nated into a row vector and arranged in a neural data 
matrix with each row containing the vector of voltages for 
one stimulus sampled from multiple electrodes over time. 
We rejected columns and then rows where the marginal 
mean was more than five standard deviations from the 
grand mean to censor extreme outliers.

4.1.3.  Model fitting and evaluation

RSL decoding models regularized with either grOWL or 
the L1-norm were fit and analyzed in MATLAB v9.5 
(Mathworks Inc, 2018) using the Whole-brain Imaging 
with Sparse Correlations (WISC) toolbox (Cox, 2022), 
which implements the approach as a multitask variant 
of group ordered-weighted L1-regularized regression 
(grOWL; Oswal et al., 2016; Oswal & Nowak, 2018).

Fitting a decoding model regularized with grOWL 
requires two hyper-parameters that govern the pressured 
strength with which the decoding matrix is to be row-
sparse (λ) with similar weights across correlated neural 
features (ω). We chose values for λ and ω via 10-fold 
nested cross-validation for each model fit. The 100 stim-
uli were randomly divided into 10 subsets, each contain-
ing 5 animate and 5 inanimate items. On each of the 10 
folds, one of the 10 subsets was held out (outer-loop 
holdout). The remaining nine sets were used to search for 
good hyperparameter values, involving a second “inner” 
cross-validation loop.

On each inner-loop fold, one of the nine remaining sets 
was held out and a decoding model was fit to the remain-
ing eight sets using a specified pair of hyper-parameter 
values. The fitted model’s prediction error, defined as the 
Frobenius norm of true versus predicted semantic coor-
dinates, was evaluated on the inner-loop holdout set. 

This procedure was repeated once for each of the nine 
inner-loop holdouts before averaging the prediction error 
across folds to estimate the decoder’s performance with 
that hyperparameter configuration. Many different hyper-
parameter configurations were evaluated in the inner 
loop using the Hyperband procedure (Li et al., 2018). The 
best-performing configuration was then used to fit a 
model to all examples not in the outer-loop holdout set. 
This tuned model was used to predict semantic coordi-
nates for the outer-loop holdout set, thus completing one 
iteration of outer-loop cross-validation. The whole proce-
dure was then repeated for the remaining nine outer-loop 
holdout sets. Across folds, the procedure generated out-
of-sample predicted coordinates for all 100 items. These 
final predicted coordinates, computed separately for 
each time-window in each participant, were the primary 
data evaluated in the results.

4.1.4.  Statistical thresholding  
with permutation testing

Our analyses closely followed the simulations: correla-
tions between predicted and true coordinates on each 
dimension were computed for all 100 stimuli, just the 50 
animate items, or just the 50 inanimate items. Assessing 
model accuracy via correlation standardizes means and 
variances of the target and predicted vectors to focus on 
just their covariance. This is especially critical when eval-
uating animate and inanimate items separately. However, 
cross-validated correlation has a negative bias when 
evaluating held-out items (see Zhou et al., 2017 and Sup-
plement C); a null hypothesis of zero with a t-distributed 
sampling distribution cannot be assumed. Thus, we 
determined statistical reliability at the group level by con-
structing an empirical null distribution via a permutation 
procedure described by Stelzer et al. (2013). The analysis 
described above was repeated 100 times per participant, 
each time with a different random permutation applied to 
the rows of the target matrix. This yielded 100 correlation 
values for each patient, representing expected values from 
our workflow when no reliable relationship exists between 
neural data and target matrix (due to the permutation 
procedure). Then, a group-level empirical null distribution 
was estimated by randomly sampling one of the 100 per-
formance metrics from each participant-level distribution 
and computing a permuted-group-average 10,000 times. 
This provided sufficient resolution at the group level at a 
fraction of the computational cost of fitting models to 
10,000 permutations of the target matrix per participant 
for each test (i.e., each window, for each subset of items, 
in all analyses).

If m is the number of values in the permutation distri-
bution and b is the number of values in the distribution 
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Fig. 4.  ECoG decoding results. Correlation between true and predicted coordinates along each latent dimension 
(columns) for models fit to all items (green), animate items only (orange), or inanimate items only (blue), and regularized 
with grOWL or LASSO. Error bars reflect standard error of the mean over participants. Each value is centered on the mean 
of its corresponding permutation distribution. For uncentered values, see Figure S4. Colored bars / filled circles indicate 
reliable decoding with FDR-corrected p < .05 for all points in a panel. (a) grOWL (darker bars) and LASSO (lighter bars) 
model performance when trained on the full 1000-ms trial epoch. (b) grOWL model performance within opening windows. 
(c) LASSO model performance within opening windows. (d) Analogous to (b) except that models are fit and evaluated 
within a 100 ms moving window instead of the opening window.

larger than the true correlation value, then the one-tailed 
p-value can be computed (Edgington & Onghena, 2007; 
Phipson & Smyth, 2010) as:

	
p = b+1

m+1 	

Statistical significance was defined with respect to  
after adjusting the p-values to control the false discovery 
rate (FDR).

Finally, to understand the effects of regularization 
with structured sparsity (grOWL) versus more standard 

techniques, we compared models fit with grOWL regu-
larization to those fit with L1 (LASSO) regularization.

4.2.  Results

4.2.1.  Analysis 1: full window decoding  
with grOWL and LASSO

Figure 4a shows results from decoding the full 1000-ms 
time-window. For the first component, models fit with 
both grOWL and LASSO reliably decoded similarity struc-
ture across all items and for animate and inanimate 
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subsets considered separately. Whereas this was the only 
structure discovered with LASSO regularization, grOWL 
regularization additionally showed reliable decoding of 
the second component across all items and within ani-
mates only. Thus, RSL with grOWL regularization revealed 
graded, multidimensional semantic structure in ECoG 
signals recorded from ventral ATL, while the contrasting 
pattern for LASSO suggests that additional constraints 
from grOWL aided in the discovery of multidimensional 
semantic structure.

4.2.2.  Analysis 2: opening window

To see how this structure emerges in the ECoG signal 
over time, we conducted an “opening window” analysis 
in which the same procedure was applied to an increas-
ingly wide aperture of data, beginning with just the first 
50 ms post-stimulus, extending to 100 ms, then growing 
by 100 ms up to 1000 ms. The opening window analysis 
evaluates when enough information has entered the spa-
tiotemporal feature space to support decoding. The goal 
is not to localize a representation in time, but to identify 
when reliable decoding is first possible and when perfor-
mance stops improving.

The results show reliable decoding of between-domain 
and within-animate structure along the first component by 
200 ms, followed by within-inanimate structure by 300 ms 
(Fig.  4b). Decoding accuracy for superordinate and 
animate-subordinate structure continually improved with 
wider windows along component 1, but not inanimate-
subordinate structure. Along the second component, 
reliable decoding was observed after 300 ms for between-
domain structure and somewhat earlier (200  ms) for 
within-animate structure. Within-inanimate structure could 
not be reliably decoded along the second component at 
any window-size, nor could variation along the third com-
ponent of the target matrix. Models fit with LASSO (Fig. 4c) 
also reliably decoded both within- and across-domain 
structure along the first component, beginning at 200 ms 
for cross-domain structure, 300 ms for a within-animate 
structure, and 500 ms for within-inanimate structure, but 
as with the full window, did not reliably decode the second 
(or third) component for any window size.

4.2.3.  Analysis 3: moving window

The opening window analysis indicates the latency with 
which the neural signal contains sufficient information for 
reliable decoding, but since each successive window 
contains all prior time points, it does not indicate whether/
how the neural encoding of semantic information changes 
over time. Additionally, since larger windows contain 
more neural features, they afford a greater possibility of 

over-fitting training data. Consequently, the opening-
window approach may fail to detect semantic information 
encoded only within a limited time-window. For these 
reasons, we fit models using the grOWL regularizer on a 
100 ms moving window, beginning at 0 ms from stimulus 
onset and advancing in 50 ms increments. In this analy-
sis, each window is the same size and thus contains the 
same amount of neural data. Otherwise, the analysis was 
identical to the opening-window variant.

Results are shown in Figure 4d. For component 1, reli-
able decoding was observed across domains and within 
each domain between 150–700 ms post-stimulus onset. 
Reliable decoding on components 2 and 3 was observed 
within a more limited time range. For component 2 (which 
best-separates the animate items), cross-domain and 
within-animate structure was reliably and equally-well 
decoded for windows beginning at 150–400  ms. For 
component 3 (which best separates inanimate items), 
cross-domain and within-inanimate structure was reliably 
and equally-well decoded for windows beginning at 200–
300 ms. Together, the analyses suggest that, from around 
200–400  ms post-stimulus, neural states measured by 
ECoG express both within- and between-domain seman-
tic structure, for both animate and inanimate items, 
across all three components of the target matrix. That is, 
they express a graded multidimensional and domain-
general semantic space.

4.2.4.  Analysis 4: moving-window reconstruction  
of full target similarity matrix

The preceding analyses consider decoding of each 
matrix component separately, allowing us to draw con-
clusions about which aspects of semantic structure are 
represented in the neural signal at which time points. 
The independent consideration of different dimensions, 
however, makes it difficult to compare results of RSL to 
RSA, since RSA considers correlations between full 
pairwise similarity matrices (the NSM and the RSM). To 
facilitate the comparison, we used the decoding mod-
els fit in Analysis 3 to construct a predicted semantic 
similarity matrix at each time-window. For each fitted 
model, we predicted coordinates of the corresponding 
held-out items along all three target matrix compo-
nents, agglomerating these predictions across holdout 
sets to create a matrix of predicted coordinates for all 
items. Recall that the target coordinates are the first 
three singular vectors of the original semantic similarity 
matrix, weighted by the square root of the corresponding 
singular values (Fig. 3). Thus, to reconstruct predicted 
pairwise distances in the original target matrix, we need 
only take the product of the predicted-coordinates 
matrix with its transpose.
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Fig. 5.  Correlation between predicted semantic similarities and the best-possible similarities reconstructed from the first 
three singular vectors/values of the true matrix. Error bars reflect standard error of the mean over participants. Decoding 
models fit with RSL reliably predict semantic similarities both within (orange dots) and between (blue dots) conceptual 
domains, for both animate (middle panel) and inanimate (right panel) stimuli, from about 100–200 ms post-stimulus onward. 
Correlation coefficients in each condition were then averaged across participants at each time-window.

Each row of the resulting matrix contains predicted 
semantic similarities between an item and all other items. 
We then compared these predicted similarities to a target 
similarity matrix constructed directly from the three com-
ponents of the original matrix that account for 90% of its 
variance. That is, for each item in the dataset, we com-
puted the correlation between the predicted and true simi-
larities to (a) all other items, (b) other items in the same 
domain, and (c) other items in the contrasting domain. For 
each metric, we then averaged the correlations across (1) 
all items, (2) just the animate items, or (3) just the inanimate 
items. These conditions thus allowed us to assess how well 
the decoders model semantic similarities both within and 
across each domain. The full procedure was carried out 
independently for each participant at each time-window. 
The results are essentially identical if the predicted similari-
ties are instead correlated with the cosine similarity matrix 
describing the relationships among the Dilkina & Lambon 
Ralph (2013) feature vectors (Supplement E).

The results are shown in Figure 5. Filled circles indi-
cate where predicted/true correlations are reliably non-
zero relative to a permutation-based null distribution with 
FDR of p < .05 (Stelzer et al., 2013). Reliable correlations 
were observed from 100–150 ms post-stimulus onward, 
whether computed across all items, within domain only, 
or between-domain only, and considering the full com-
plement of items (left panel), animate items only (middle), 
or inanimates only (right).

For comparison, we replicated the RSA analysis of 
Chen, Shimotake, et al. (2016) on the same data used for 
RSL and extended it to examine structure within animate 
and inanimate item subsets. When conducting RSA over 

all items, NSMs were correlated with both a multidimen-
sional target RSM and a unidimensional categorical (i.e., 
binary) target RSM. Figure  6 (left) plots the average 
Spearman’s rho over participants within the same ROI 
reported by Chen, Shimotake, et al. (2016) for each tem-
poral window and each target RSM in light and dark grey. 
The correlations with each target RSM are very similar, 
consistent with the original finding that RSA did not pro-
vide clear evidence about the kind of semantic informa-
tion present in the vATL. The right panel shows results of 
RSA applied to animate (light grey) and inanimate (dark 
grey) item subsets. These correlations were indistinguish-
able from zero in every window.

Colored lines in the two panels show the correlations 
between the RSL predicted similarity matrix and the target 
matrix across all items (left panel) or within animates (right 
panel orange) and within inanimates (right panel blue). 
While reliably positive correlations over the full set of items 
were observed with both RSA and RSL from 150  ms 
onward (one-sample two-tailed t-tests, µ0 = 0, α = .05, all 
t(9) > 2.75), the correlation coefficients obtained by RSL 
were significantly larger in all windows with reliable effects 
(paired two-tailed t-tests, α = .05, all t(9) > 3.5). However, 
this is not a difference that requires a statistical analysis to 
appreciate: over windows with reliably positive correla-
tions, the correlation coefficient obtained with RSL was 
between 6 to 13 times larger. A 10-fold increase in Spear-
man’s rho is a 100-fold increase in the proportion of vari-
ance explained. RSL produces a qualitatively different 
result from RSA, in terms of its sensitivity to detecting 
structure and its ability to determine what structure is 
present in neural signals.
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4.3.  Discussion

Replicating Chen, Shimotake, et  al. (2016), if one only 
relied on RSA analysis then it would be easy to conclude 
that ECoG activity in vATL only encodes a discrete, binary 
distinction between animate and inanimate items, with no 
information about semantic structure within either domain 
considered independently. In stark contrast, the RSL anal-
ysis shows that ECoG signals measured in human vATL 
encode information about semantic similarity structure 
that is multidimensional (reliable decoding along three 
orthogonal components of the target matrix), graded (reli-
able decoding of varying degrees of similarity both within 
and between domains), and domain-general (reliable 
decoding of within-domain similarities for both animate 
and inanimate items). These properties are consistent 
with the predictions of the “hub and spokes” theory of 
semantic representation in the brain, which proposes that 
neural activity in vATL encodes a graded, multidimen-
sional, and domain-general semantic vector space. It is 
also consistent with the converging sources of evidence 
that gave rise to that view, including patient studies 
(Patterson et al., 2006), neural stimulation (Pobric et al., 
2007), and computational modeling (Rogers et al., 2004). 
In this sense, the RSL result resolves a seeming discrep-
ancy between RSA findings and the broader literature.

5.  GENERAL DISCUSSION

We introduced this paper with a puzzle: neuropsychol-
ogy, clinical neurophysiology, TMS, and computational 

modeling all suggest that the vATLs encode a semantic 
vector space of graded, multidimensional, and domain-
general conceptual similarity structure, but direct tests of 
this hypothesis using representational similarity analysis 
have often yielded null results in vATL and positive results 
in brain areas not otherwise thought to encode semantic 
representations. In simulation, we showed that counter-
intuitive limitations of RSA can obscure inferences about 
neurocognitive representation. When used to decode real 
semantic structure as measured by feature norms, RSA 
can produce positive results even if the underlying neural 
code is discrete and unidimensional, or null results even 
if the neural code does capture latent structure in the tar-
get matrix beyond the first component. Because RSA 
relies on an inherently unidimensional measure of associ-
ation (i.e., correlation), it cannot reveal whether neural 
signals encode multidimensional structure. Because the 
technique does not fit any parameters to data, it requires 
the researcher to select features a priori when construct-
ing the NSM (for instance, via ROI or searchlight analy-
ses; see Frisby et al., 2023), and cannot learn to ignore 
irrelevant features among those selected. The simula-
tions suggest that these characteristics of RSA may have 
contributed to the puzzling state of the literature—for 
instance, by yielding results suggesting that vATL only 
coarsely discriminates living from nonliving things (Clarke 
& Tyler, 2014; Chen, Shimotake, et al., 2016).

RSL addresses these limitations by using regression 
to predict coordinates of stimuli along the latent orthogo-
nal dimensions of the RSM. In simulation, we showed 

Fig. 6.  Comparing RSA and RSL on the same data. All correlations (Spearman’s rho) are averages over the 10 participants 
and error bars depict standard error. The left panel shows the correlation between the full predicted similarity matrix obtained 
using RSL and the multidimensional target RSM (green), as well as results obtained by replicating the RSA conducted by 
Chen, Shimotake, et al. (2016) on the same data used for RSL using the multidimensional (light grey) or a categorical (dark 
grey) target RSM. Differences between categorical and multidimensional RSA are insignificant, while differences between 
RSL and RSA are large and significant from 150 ms onward. The RSA results in the right panel are analogous to the left panel 
except that subsets of items are studied separately. RSA does not detect within-category structure while RSL does.
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how this approach can uncover multidimensional repre-
sentational structure (by showing reliable conjoint decod-
ing of two or more orthogonal dimensions of a target 
matrix) as well as graded structure (by showing reliable 
decoding both within and between semantic domains). 
The approach can also “select out” signal-carrying fea-
tures from among those included as predictors in the 
model, and so can be applied to all potentially signal-
carrying neural features at once, without requiring the 
theorist to pre-select an ROI or to look only within small, 
independent searchlights (see Cox & Rogers, 2021; 
Frisby et al., 2023).

Applying the approach to large neural datasets requires 
model regularization. We illustrated how hypothesized 
patterns of structured sparsity in the neural signal can 
constrain model fit via grOWL regularization and applied 
this approach to discover semantic structure in an ECoG 
dataset where prior work using RSA found only a binary 
animacy code (Chen, Shimotake, et al., 2016). We repli-
cated this analysis using the same RSA approach, and 
further showed that RSA yields null results when assess-
ing whether the ECoG signals express within-domain 
semantic structure. In contrast, RSL with grOWL regu-
larization uncovered a graded and multidimensional 
semantic space capturing similarities within and between 
both animate and inanimate domains—consistent with 
conclusions drawn about the nature of semantic repre-
sentations in the ATL hub from other cognitive and clinical 
neuroscience sources. These results thus suggest that 
discrepancies in the literature between studies employing 
RSA versus other sources of evidence may reflect limita-
tions of the RSA approach as typically practiced.

5.1.  Validity of grOWL assumptions  
about neural signal

The RSL models we have deployed were fit with a regu-
larization function designed to promote discovery of a 
row-sparse decoding matrix (the grOWL loss). We 
hypothesize that such structure reflects three character-
istics of neuro-semantic representation specifically, and 
neuro-cognitive codes generally. First, the signal is likely 
to be sparse: of all neural measurements taken in a given 
experiment, only a relatively small proportion is likely to 
encode the target information of interest. The sparsity 
assumption serves a useful role in decoding because it 
pressures many coefficients in the regression model to 
zero, indicating that the corresponding features are not 
useful in decoding the target information. In this sense, 
sparsity automatically serves the function of feature-
selection that, in RSA, must be handled a priori based on 
an ROI, searchlight, or other method (Cox & Rogers, 
2021). We hypothesize neural codes to be relatively 

sparse in general simply because brains support many 
different cognitive, perceptual, motor, language, and 
affective functions—consequently, the likelihood that a 
given neural population is important for the specific func-
tion targeted by the investigator is relatively small.

Second, we hypothesize that the signal is redundant: it 
is unlikely that a given target structure is only encoded by 
a single voxel, or a single timepoint at a single electrode, 
etc. Any cognitive construct of interest—feature, cate-
gory, or dimension in a representational space—is unlikely 
to be encoded by the activation of a single local neural 
population, such as a single voxel. More likely, such infor-
mation involves multiple neural populations, in which case 
those populations that do encode target information will 
exhibit some degree of correlation with one another. This 
assumption is captured by the grOWL loss because it 
encourages solutions in which intercorrelated sets of neu-
ral features that help to predict target structure receive 
similar, non-zero coefficients in the decoder.

Finally, we hypothesize that the neural code is unlikely 
to be axis-aligned with the dimensions of the target repre-
sentation space. That is, a given neural feature is unlikely 
to encode variation along just one dimension of a multi-
dimensional target space without also encoding some 
information about variance along other dimensions. In 
grOWL, this hypothesis is expressed as a preference for 
learning a row-sparse decoding matrix—coefficients on a 
given neural feature should either be all zero (the feature is 
unimportant) or all non-zero (the feature explains some 
variance along each dimension). The reason is simply 
that, for any target vector space, there exists only a small 
and finite number of axis-aligned encodings, but an 
infinite number of non-axis-aligned encodings. Aligned 
and unaligned encodings express the same information 
about similarities among objects of representation; so, 
absent some explicit pressure for brains to learn axis-
aligned representations, it is unlikely that an axis-aligned 
encoding will occur by chance. Additionally, ECoG elec-
trodes are influenced by voltages generated by a mix of 
individual local neurons—so even if individual neurons are 
selectively tuned to axis-aligned dimensions, the net 
responses recorded at the electrode are likely to reflect a 
blend of these dimensions.

While the grOWL regularizer generally prefers decod-
ing models with these properties, note that the relative 
strength of these constraints is determined by hyperpa-
rameters that can be tuned via cross-validation to fit the 
data. If the best solution is not particularly sparse, the tun-
ing process will select a small weight for the sparsity term 
in the optimization, leading to a solution in which many 
features are chosen. If the signal-carrying features are not 
particularly correlated, the tuning process can select 
hyperparameters that relax the grouping of features into 
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sets that share the same weights. Thus, grOWL regular-
ization is quite flexible with respect to how rigidly the var-
ious constraints are enforced.

The current study suggests that the grOWL assump-
tions are useful for understanding information encoded in 
ECoG voltages: when decoding the full time-window, 
regularization with grOWL revealed multidimensional 
similarity structure, whereas decoding with the sparsity 
assumption only (LASSO) found only unidimensional 
structure. We emphasize, however, that the RSL frame-
work can be deployed with any form of model regulariza-
tion. Alternative hypotheses about the likely structure of 
neural encodings can be formulated as different regular-
ization costs, and the decoding success of models fit 
with different regularizations can then be compared to 
empirically evaluate the different assumptions. Prior 
computational work has contrasted grOWL regularization 
to other approaches (see Oswal et al., 2016 for compari-
sons to some other related methods); we hope the cur-
rent results with grOWL will inspire other scientists to 
experiment with alternative losses to better understand 
the nature of neuro-cognitive codes.

5.2.  Implications for alternative theories  
of ATL function

The current results challenge an alternative proposal 
about the role of ATL in semantic cognition, namely that 
they support knowledge of some conceptual categories 
and not others (Mahon & Caramazza, 2011; Malone et al., 
2016; Simmons et al., 2009). Such a view is consistent 
with prior imaging work (e.g., Anzellotti et  al., 2011), 
including the multivariate decoding studies cited earlier 
(Chen, Shimotake, et al., 2016; Clarke & Tyler, 2014), sug-
gesting that ATL activations differentiate animates from 
inanimates but do not otherwise encode or differentiate 
finer categories. This alternative perspective has been 
difficult to reconcile with neuropsychological evidence, 
showing that anterior temporal atrophy and hypometab-
olism in semantic dementia degrades knowledge of ani-
mates and inanimates equally (Lambon Ralph et  al., 
2007; Noppeney et al., 2007), and with TMS and direct 
grid stimulation evidence showing that stimulation of 
both left and right ATL reliably slows semantic processing 
for both animates and artefacts (Pobric et  al., 2010; 
Shimotake et al., 2015). It also struggles to explain the 
sensitivity of ATL-related semantic impairment to contin-
uous and graded semantic structure of test stimuli for 
both animates and inanimates (Patterson et  al., 2006; 
Rogers et al., 2006). The current results suggest that prior 
work may have failed to discover graded cross-domain 
semantic structure in ATL responses, not because such 
structure is absent from the measured responses, but 

because limitations in both fMRI and analytic techniques 
make such structure difficult to detect.

It is worth noting that intra-domain similarities were 
more robustly decoded for animate compared to inani-
mate items. Considering each dimension separately in 
the opening window analysis, within-inanimate decoding 
was only reliable for the first latent dimension. In the mov-
ing window analysis, where models were trained on 
100 ms increments of data without the full history of acti-
vation from stimulus onset, within-inanimate decoding 
was reliable for components 1 and 3, but transiently. 
These are the components that best differentiate inani-
mates in the target matrix (see Fig. 1). When predicting 
pairwise distances within moving windows, correlations 
with true similarities were reliable but the smallest for 
within-inanimate structure (i.e., the “other domain” cor-
relations in the middle panel of Figure  5, and “same 
domain” correlations in the rightmost panel).

We attribute this general pattern to differences, not in 
the neural code itself, but in the target similarity structure 
of animate and inanimate concepts. Semantic subcatego-
ries of inanimate objects are only weakly differentiated, 
not just in the current dataset, but in norming studies 
more generally and in other approaches to characterizing 
semantic structure (e.g., Devlin et al., 1998; Garrard et al., 
2001; McRae et al., 1997; Tyler et al., 2000). Indeed, this 
difference in statistical structure is precisely what leads, 
under some theories, to apparent category-specific pat-
terns of semantic impairment (Devlin et al., 2002; Lambon 
Ralph et al., 2007) and functional activation (Rogers et al., 
2006). The differences can be seen in Figure  1, where 
animate items fall into somewhat well-differentiated sub-
categories in components 1 and 2 while inanimates are 
uniformly distributed with poorly differentiated subclusters 
even along component 3. Accordingly, pairwise similarities 
reconstructed from the first three singular vectors of the 
full semantic matrix are more accurate for animate than 
inanimate items (see Supplement D). Thus, the structure 
of the semantic matrix itself requires that decoding be 
worse within inanimates than within animates, precisely 
because inanimates are less well structured. Yet despite 
this intrinsic disadvantage, within-inanimate similarities 
were still reliably decoded along multiple components of 
the embedding and in the reconstructed similarity matrix, 
illustrating that the neural signal in vATL does express 
intra-domain semantic structure even for inanimate stimuli.

In summary, the results suggest the vATLs encode a 
multidimensional representation space that captures the 
conceptual similarities existing among a variety of differ-
ent concepts, including both animate and inanimate 
items (Lambon Ralph et al., 2007; Patterson et al., 2007; 
Rogers & McClelland, 2004). Better decoding within ani-
mates may reflect the fact that animate subcategories 
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are better-differentiated, so that intra-domain similarities 
are better-approximated by a low-rank decomposition.

We also note that the current results pertain only to the 
nature of the semantic information encoded within the 
span of vATL where electrodes were situated in our 
patient sample. They do not bear on claims of possible 
category-specific representation in other parts of the 
cortex—for instance, that the left infero-parietal cortex 
and posterior medial temporal gyrus play a special role in 
knowledge about tools (Chen, Garcea, et  al., 2016; 
Garcea et  al., 2018; Ishibashi et  al., 2016; Kalénine & 
Buxbaum, 2016) or that earlier visual areas are dedicated 
to representing different object categories (Cichy et al., 
2014; Connolly et  al., 2012; Downing et  al., 2001; 
Kanwisher et  al., 1997; Kriegeskorte, Mur, Ruff, et  al., 
2008; Mahon et al., 2009; Sha et al., 2015). Indeed, prior 
work from (Chen et  al., 2017) showed how domain-
general semantic representations can arise in vATL even 
as graded category-specificity emerges in other parts of 
the cortical semantic network, based on empirically mea-
sured patterns of white-matter connectivity across core 
areas. Evaluating claims of category-specificity in future 
work may benefit from adopting the RSL approach devel-
oped here.

5.3.  Implications for the broader literature

The characteristics of RSA we have identified carry addi-
tional implications for interpretation of the broader litera-
ture. A recent review (Frisby et  al., 2023) identified 24 
studies that have applied RSA to the discovery of 
semantic representations in the brain, with positive 
results observed across multiple cortical regions, includ-
ing the posterior temporal cortex (Connolly et al., 2012), 
angular gyrus (Fairhall & Caramazza, 2013; Fernandino 
et  al., 2022), left perisylvian cortex (Devereux et  al., 
2013), posterior cingulate (Fairhall & Caramazza, 2013), 
and prefrontal cortex (Carota et al., 2017). Simulation 1 
suggests, however, that RSA will yield a positive result 
for any property correlated with the animate/inanimate 
distinction, including even discrete binary properties. 
Many features are confounded with animacy: inanimate 
items tend to be more familiar, less visually complex, 
more associated with action plans, less associated with 
motion, more likely to have lines and corners, less pre-
dictable from color or texture, etc. (see Chen & Rogers, 
2014 for a review). Most RSA papers do not report the 
magnitude of correlation between RSM and NSM where 
results are significant, instead focusing on whether the 
estimated correlation coefficient is reliably non-zero 
across participants. As shown by the prior RSA analysis 
of the same ECoG data explored here (Chen, Shimotake, 
et  al., 2016; gray line in Fig.  5), this can happen even 

when mean correlations are very small. Moreover, sev-
eral studies use target RSMs with only a small number of 
rows/columns—sometimes as few as five (Connolly 
et al., 2012; Fairhall & Caramazza, 2013), meaning that 
correlations are computed across just 10 cells of the 
matrix (i.e., the lower triangle of a 5 x 5 RSM). Such small 
numbers increase the likelihood that a small-but-non-zero 
correlation is driven by some arbitrary property of the 
chosen stimuli or categories. Together these observa-
tions raise the possibility that the literature contains 
misleading positive results—brain areas whose responses 
encode unidimensional characteristics weakly confounded 
with animacy, rather than multidimensional semantic 
structure. Testing this possibility for various brain areas 
hypothesized to encode semantic structure will require 
analyses like those we have developed here.

6.  CONCLUSION

In cognitive science, semantic representations are often 
construed as vector spaces that encoded graded, mul-
tidimensional similarity structure among the concepts 
experienced in our verbal and nonverbal world. Through 
application of a new technique for mapping representa-
tional similarity in neural activity, we have shown that 
neural signals in vATL encode such a space. In so doing, 
we have identified some limitations of representational 
similarity analysis, a widespread technique commonly 
thought to reveal graded and multidimensional repre-
sentational structure. The work resolves an important 
discrepancy between behavioral and neuroimaging 
results in prior work and suggests a new approach to 
discovering representational structure in neural data 
more generally.
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