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ABSTRACT

Neurocognitive models of semantic memory have proposed that the ventral anterior temporal lobes (VATLs) encode a
graded and multidimensional semantic space—yet neuroimaging studies seeking brain regions that encode semantic
structure rarely identify these areas. In simulations, we show that this discrepancy may arise from a crucial mismatch
between theory and analysis approach. Utilizing an analysis recently formulated to investigate graded multidimen-
sional representations, representational similarity learning (RSL), we decoded semantic structure from ECoG data
collected from the VATL cortical surface while participants named line drawings of common items. The results reveal
a graded, multidimensional semantic space encoded in neural activity across the vATL, which evolves over time and
simultaneously expresses both broad and finer-grained semantic structure among animate and inanimate concepts.
The work resolves the apparent discrepancy within the semantic cognition literature and, more importantly, suggests
a new approach to discovering representational structure in neural data more generally.

Keywords: Semantic memory, ECoG, temporal lobe, decoding, representational similarity analysis, RSA, representa-
tional similarity learning, RSL

1. INTRODUCTION perhaps slinking closer toward you; it assigns the thing a

If you encounter a wolf when walking home through name, which you might shout to alert others (“wolf!”); and
a dark wood, your mind readily accomplishes some it directs you to change your own plans, maybe running
remarkable feats: it anticipates the animal’s likely behavior, back down the path. These feats arise from the human

Received: 28 July 2023 Revision: 18 December 2023 Accepted: 18 January 2024 Available Online: 5 February 2024

© 2024 Massachusetts Institute of Technology.

”" | Published under a Creative Commons Attribution 4.0 Imaging Neuroscience, Volume 2, 2024
The MIT Press  International (CC BY 4.0) license. https://doi.org/10.1162/imag_a_00093



https://doi.org/10.1162/imag_a_00093
https://crossmark.crossref.org/dialog/?doi=10.1162/imag_a_00093&domain=pdf&date_stamp=2024-02-22
mailto:chriscox@lsu.edu
mailto:ttrogers@wisc.edu
mailto:smtk@kuhp.kyoto-u.ac.jp
mailto:matsumot@med.kobe-u.ac.jp
mailto:matt.lambon-ralph@mrc-cbu.cam.ac.uk

C.R. Cox, T.T. Rogers, A. Shimotake et al.

Imaging Neuroscience, Volume 2, 2024

ability to discern conceptual structure —to realize that the
wolf, despite its resemblance to friendly dogs in town, is
nevertheless a quite different sort of animal.

This ability to represent and exploit conceptual struc-
ture is central to human semantic cognition. Such struc-
ture is graded in that similarities vary along a continuum:
wolves are highly similar to coyotes, partially similar to elk,
and quite distinct from birch trees or canoes. It is also
multidimensional in that concepts vary along a myriad of
independent components: wolves and dogs are similar in
their shapes, parts, movements, and phylogeny, but dif-
ferent in their behaviors, habitats, and diets. To capture
these properties of knowledge, computational approaches
to semantics often represent concepts with vector spaces:
the meaning of a word or image is expressed as a point in
an n-dimensional space (or equivalently as an n-dimen-
sional vector) such that the proximity between points
expresses the similarity in meaning between the denoted
concepts. The dimensions of the vector need not corre-
spond to nameable conceptual components like habitat
or diet; instead, they may define a space, with different
concepts corresponding to different points in the space,
and with the distances between points capturing the
degree of semantic/conceptual relatedness between con-
cepts (Frisby et al., 2023). Cognitive science and machine
learning offer many techniques for estimating semantic
vector spaces from natural language (Pereira et al., 2016),
feature norms (McRae et al., 2005), or similarity-judgments
(Hebart et al., 2020), and these methods have provided a
critical empirical foundation for studying human concep-
tual knowledge.

The well-known “hub and spokes” theory of semantic
representation suggests that the anterior temporal lobes
(ATLs) encode a graded, multidimensional semantic vec-
tor space that expresses conceptual similarity structure
for all concepts, extracted across all input and output
modalities, and from our experiences of each concept
across time (Jackson et al., 2021; Lambon Ralph et al.,
2017; Patterson et al., 2007). This proposal has been
useful for understanding patterns of semantic deficits
arising from temporal lobe pathology in fronto-temporal
dementia (Acosta-Cabronero et al., 2011; Hodges &
Patterson, 2007; Lambon Ralph, 2014; Lambon Ralph
et al., 2010; Rogers et al., 2004; Snowden et al., 1989),
anterior temporal resection (Drane et al., 2008; Lambon
Ralph et al., 2010, 2012; Rice et al., 2018; Schapiro et al.,
2013), and herpes viral encephalitis (Gainotti, 2018;
Lambon Ralph et al., 2007; Noppeney et al., 2007); stim-
ulation and evoked response direct neurophysiological
explorations (Abel et al., 2015; Chen, Shimotake, et al.,
2016; Shimotake et al., 2015); the effects of transcranial
magnetic stimulation in ATL and other parts of the corti-
cal semantic system (Binney et al., 2010; Binney &

Lambon Ralph, 2015; Jefferies, 2013; Lambon Ralph
et al., 2009; Pobric et al., 2007, 2010); and a variety of
behavioral phenomena in developing and mature cogni-
tion (Chen et al., 2017; Jackson et al., 2021; Rogers &
McClelland, 2004, 2014).

Yet direct empirical tests of this proposal—
representational similarity analysis (RSA) of functional
imaging data collected while people perform semantic
tasks on words or pictures—have not generally tended to
support it. A recent review identifies 24 studies applying
RSA to uncover semantic representations in the brain
(Frisby et al., 2023); of these, 18 (75%) failed to identify
semantic structure in the anterior temporal cortex (for the
exceptions, see Bruffaerts et al., 2013; Devereux et al.,
2018; Fairhall & Caramazza, 2013; Martin et al., 2018;
Peelen & Caramazza, 2012). Many of these studies
instead find that semantic structure is encoded in brain
areas not otherwise thought to be critical to semantic rep-
resentation, including posterior cortical regions (Connolly
et al., 2012), inferior and superior frontal and motor cortex
(Carota et al., 2017; Wang et al., 2017), the left pars trian-
gularis (Liuzzi et al., 2017), the right superior parietal cor-
tex (Wang et al., 2017), the insula and occipeto-parietal
cortex (Kivisaari et al., 2019), and the posterior cingulate
cortex (Fairhall & Caramazza, 2013). Thus, RSA studies
often vyield results that seem puzzling given the broader
literature, finding that semantic structure is encoded in
many areas throughout cortex but not in the ATL.

The frequent failure of RSA to find semantic structure
in ATL may reflect limitations of fMRI, which, without spe-
cialized acquisition protocols, can yield poor signal in
ventral aspects of this brain area (Halai et al., 2014, 2015).
An important study by Chen, Shimotake, et al. (2016)
suggests, however, that this is not the full story. The
authors collected intracranial grid electrode voltages
(ECoG) from the surface of ventral anterior temporal
lobes (VATL) while participants named line drawings of
familiar items, then conducted a searchlight-based
semantic RSA from these data. Consistent with the
semantic-hub model, they found an anterior fusiform
area where similarities in the evoked neural response cor-
related significantly with the target semantic similarities.
Critically, however, they further showed that the evoked
neural similarities correlated equally well with a binary tar-
get matrix that only encoded whether a stimulus was ani-
mate or inanimate. This result is consistent with an
alternative view that, while ECoG in VATL may express a
coarse binary animacy distinction, it does not otherwise
encode graded or multidimensional semantic structure
within or between these domains. ECoG is not affected
by the magnetic field inhomogeneities that affect fMRI in
VATL, so the finding is not easily attributable to poor sig-
nal or other data artifacts.
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Motivated by these observations, this paper considers
an alternative hypothesis about the discrepant findings
for RSA versus the broader literature: that it arises
because RSA, as typically practiced, is not well suited to
finding graded multidimensional vector spaces of the
kind the ATL is hypothesized to encode. This may seem
surprising, since RSA was developed specifically as a
tool for finding cognitive similarity structure in neuroim-
aging data (Kriegeskorte, Mur, & Bandettini, 2008) —yet,
as we will demonstrate, the reliance of the approach on
correlation significantly limits the kinds of signal it can
detect.

Study 1 considers how RSA constrains what can be
discovered about neuro-semantic representations, by
applying the approach to simulated data where the target
signals are designed to encode elements of structure in a
true semantic similarity matrix derived from feature-listing
data. The results illustrate how and why RSA can both
miss real signal and produce positive results with the
potential to mislead. Study 2 then introduces a different
approach to neural decoding, representational similarity
learning (RSL; Oswal et al., 2016), that can remediate these
issues by making explicit which aspects of the target
structure can be successfully decoded, and by operation-
alizing hypotheses about the neurosemantic code directly
within the decoding model. Study 3 extends the RSL
approach to the analysis of very large neural datasets and
applies it to investigate graded multidimensional semantic
structure in ECoG data recorded from the surface of
human vATL—the same data for which RSA data failed to
detect graded, multidimensional, and cross-domain
semantic structure in a prior study (Chen, Shimotake,
et al., 2016). We empirically compare results yielded by
RSL versus RSA on these data, with results that resolve
the contradiction in the literature and suggest a new path
for multivariate neural decoding more generally.

2. SIMULATION STUDY 1: EVALUATING RSA

Simulation 1 evaluated whether the results yielded by
RSA reliably indicate whether a set of neural measure-
ments encode graded, multidimensional semantic simi-
larity structure of the kind typically sought in functional
imaging studies. By graded, we mean that the measure-
ments encode varying and continuous degrees of similar-
ity between items, rather than discrete or categorical
distinctions between items. By multidimensional, we
mean that the measurements encode variation along
more than one orthogonal component of a representa-
tional space. Though the general approach is well known,
its limitations may be less familiar, so we begin with a
brief overview of the method and some of the challenges
it faces when seeking graded, multivariate structure.

RSA aims to find sets of neural features—voxels, elec-
trodes, or other measurements of neuro-physiological
activity —whose responses to various cognitive events
(e.g., the perception of a stimulus) jointly encode an
independently-measured target structure. Typically, the
target structure is a representational similarity matrix
(RSM; sometimes called a representational dissimilarity
matrix or RDM) in which the rows and columns corre-
spond to the different stimuli in an experiment and the
entries indicate the cognitive/representational similarities
between stimuli. For semantic representation, entries in
the target RSM indicate similarity of meaning among
pairs of concepts as estimated from behavioral or corpus
data. To determine if responses in a set of neural features
(e.g., voxels, electrodes, EEG sources, etc.) encode the
target similarities, the experimenter estimates the pattern
of neural activity evoked over features by each stimulus
and computes the pairwise similarities between these to
create a neural similarity matrix (NSM). Correlations
between the RSM and NSM are computed separately
for each participant, and brain regions where these are
reliably greater than zero are interpreted as encoding
the target structure.

This approach faces at least five challenges when
used to find graded, multidimensional structure in neural
codes:

1. Discrete versus graded structure: reliable correla-
tions with a continuous-valued target RSM can
arise even if the neural response is discrete or cat-
egorical. Thus, a positive result does not indicate
that the neural response encodes graded structure
even if such structure is present in the target RSM.

2. Unidimensionality: the correlation between RSM
and NSM is inherently unidimensional. Thus, a
positive result on its own does not provide evi-
dence of multidimensional structure in the neural
response.

3. A priori feature selection: the experimenter must
decide ahead of time which neural measurements
to use when computing the NSM (e.g., an ROI or
a searchlight). If the informative features fall
across different ROIs or searchlights or are inter-
mixed with many non-informative features within
an ROl/searchlight, the approach can fail to dis-
cover them.

4. Equal importance: all selected neural features are
equally weighted when computing the NSM. If the
informative neural features are sparse or vary in
signal strength, equal weighting of all features may
lead to a null result. Thus, a null result does not
indicate that the selected neural features carry no
target information.
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5. Masked dimensionality: reliable correlations between
RSM and NSM can be driven by a subset of the
RSM structure or items, or even by one or two
extreme values. Thus, a positive result does not
imply that all components of the target RSM are
encoded.

Simulation 1 assessed how these characteristics of RSA
will influence discovery of neuro-semantic representations
by applying the approach to synthetic data designed to
encode different aspects of a real semantic similarity matrix.

2.1. Methods

The target RSM was computed from semantic feature
norms for 100 items, half animate and half inanimate, col-
lected in prior work (Dilkina & Lambon Ralph, 2013). The
feature vectors for each item were aggregated in a matrix
with rows indicating words, columns indicating features,
and binary entries indicating whether the referent of the
word possesses that feature. Matrix columns were mean-
centered, and the RSM was computed as the cosine sim-
ilarity for all pairs of row vectors.

To understand the latent structure of the RSM, we
used singular value decomposition (SVD) to extract three
components accounting for 90% of the variance in the
full matrix (81.1%, 4.4%, 4.0%, respectively). SVD is a
common matrix decomposition algorithm that reduces a
matrix to a small number of orthogonal components
ordered by the proportion of variance they explain. After
applying it to the RSM, each of the 100 items in the set

receives a coordinate position along the three orthogonal
components.

Figure 1 shows the coordinates for all 100 items on
each latent dimension, color coded by semantic category
(see Supplement A for full list of items and how they were
categorized). The decomposition reveals graded seman-
tic structure along each dimension. The first not only sep-
arates animate from inanimate items but also individuates
subcategories in each domain. The second not only
strongly differentiates subcategories of animals but also
weakly distinguishes inanimate subcategories. The third
differentiates the inanimate items, though the resulting
spread is less “clumpy” than within animate items as
commonly found with such data (Lambon Ralph et al.,
2007). From the SVD, it is clear that the semantic vector
space is both multidimensional and graded by the defini-
tions offered earlier.

The simulation assessed what results RSA would yield
when applied to a set of signals designed to encode ele-
ments of this underlying semantic structure, when those
signals are perturbed by noise and embedded in a popu-
lation together with other signals that do not code seman-
tic information (as in brain imaging data). Specifically, we
created five simulated datasets, each capturing a differ-
ent aspect of semantic structure in the target RSM. Each
dataset contained simulated responses of 24 features to
the 100 items, as a simple model analog of the responses
of, for instance, voxels within an ROI. To capture the fact
that a given ROl may contain both signal-carrying and
uninformative voxels, half of the features encoded true
semantic information about the target items while half
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adopted random values sampled from a uniform distribu-
tion in the same range.

The five datasets varied in which aspects of the target
matrix they encoded, as illustrated in the schematic plots
in Figure 2A. In the binary condition, all signal-carrying
features adopted one state (-1 or 1) for animate items and
the opposite state for inanimate items—thus, the code
was both unidimensional and discrete (i.e., non-graded).
In three one-D conditions, all signal-carrying features
only encoded a single latent component of the target
RSM —either the first, second, or third singular vector as
shown in Figure 1. Thus, each encoded graded similarity

structure (the distances between items were continuous,
not binary/discrete) but only one dimension of variation.
In the full structure condition, the signal-carrying features
jointly encoded all three latent components of variation in
the target RDM, with four features dedicated to each of
the three components. Thus, the code was both graded
and multidimensional.

For each signal condition, we distorted the response
of each feature to each stimulus with measurement noise
sampled independently from a uniform distribution cen-
tered on 0, generated a simulated NSM, then computed
the correlation between the simulated NSM and target
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Fig. 2. Simulation results. (A) Each plot illustrates different ways that a neural response might encode some aspects of
a target RSM, schematized in the rightmost plot (“All”). Vertical bars show the hypothesized responses of neural features
to various animate and inanimate stimuli (red more active; blue less active; gray random) while the squares show the
neural similarity matrices that would then result (red high similarity, blue low). All conditions encode some components

of the full RSM and so should be detected by a multivariate method seeking semantic structure. (B) Curves showing

the expected results of standard RSA when used to decode real semantic structure from the target RSM under different
hypotheses about the neural code and increasing amounts of measurement noise. Dots show the mean correlation, while
ribbons show the 95% confidence interval. The approach can yield robust results when the neural signal is discrete and/or
unidimensional, even under substantial noise, and can yield weak or null results when the neural signal faithfully encodes
weaker components of the RSM, even under low-noise conditions. (C) Results of RSL applied to the same simulated
data, showing the correlation between true and predicted coordinates for held-out items on each latent component of
the target matrix (columns) at the same 11 levels of noise as in the RSA, for the five different simulation conditions (rows),
and computed across all items (black lines), animate items (red), or inanimate items (green). RSL shows a positive result
in each case, identifies which components of the matrix are present in the neural code, and reveals reliable within-domain
decoding only when the neural code expresses continuous similarity structure.
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semantic RSM. The varying levels of noise allowed us to
investigate RSA behavior across a wide range of signal-
to-noise ratios. This procedure was conducted 20 times
at each of 11 increasing noise levels. We then computed,
across runs at each noise level, the mean and 95% con-
fidence intervals of the Pearson correlation between sim-
ulated NSM and RSM.

2.2. Results

The results are shown in Figure 2B. The binary code
showed robust correlations across the full noise-spectrum,
illustrating that RSA with a graded and multidimensional
target RSM can yield a positive result even when the neu-
ral code is neither continuous nor multidimensional.
Amongst the one-D codes, RSA showed a strong posi-
tive result if the simulated neural response encoded the
first singular vector of the target matrix, but much weaker
results that decayed to zero with increasing noise when
the neural response encoded other components. The
weak results for components 2 and 3 arise simply
because the raw similarities encoded in the target RSM
are most strongly determined by the first component.
Simulated NSMs that encode just the second or third
component thus express similarities that do not correlate
strongly with the pairwise similarities encoded in the tar-
get matrix. Thus, RSA can yield weak/null results even
when the features under consideration do reliably encode
semantic information that is orthogonal to the primary
component of the RSM. Throughout the noise range
assessed, RSA yielded the most reliable results when the
simulated features encoded a binary domain distinction
or just the first component of variation. For these scenar-
ios, all signal-carrying features encode the same informa-
tion, so noise “cancels out” across features and the signal
remains robust. When the same number of features
encode three orthogonal components, fewer resources
are dedicated to each, and corruption from noise more
seriously degrades the signal—so that, counter-intuitively,
the approach yielded less reliable results when the simu-
lated features encode all three dimensions of the target
matrix.

2.3. Discussion

The simulation shows that, when decoding semantic
similarity structure of the kind captured by semantic
feature norms, RSA can yield a positive result when the
neural response is discrete and/or unidimensional, even
though the target matrix is continuous and multidimen-
sional. Additionally, it can yield weak or null results when
the neural response does encode underlying dimen-
sions of the target matrix beyond the strongest. Thus,

the simulation serves as a demonstration that RSA, as
typically deployed, may not reliably indicate whether a
set of neural signals encode the graded, multidimen-
sional semantic structure existing in a target RSM. Of
course, the specific pattern of results obtained will
depend upon the ratio of informative to uninformative
features within the selected set and the amount of noise
perturbing the signal, in addition to the structure
encoded by the informative features.

One response to these challenges may be to consider
the degree of correlation between a given NSM and mul-
tiple different RSMs, each encoding a different kind of
structure. Yet, simulation 1 suggests that this approach
remains limited. Recall that Chen, Shimotake, et al. (2016)
found that an ECoG-based NSM correlated equally well
with an animacy-based binary similarity matrix as with a
full continuous and multidimensional matrix. The ratio-
nale for the comparison was the expectation that, if the
NSM encodes the full similarity structure, it should show
a higher correlation with the target semantic matrix than
with the binary matrix. Figure 2B shows that this is not
necessarily so—in fact, the binary code showed as good
or better correlation with the target semantic matrix than
did the full (continuous, multidimensional) code. Thus,
the comparison of fits with the two different target matri-
ces did not help to resolve the nature of the underlying
neural code.

Or, consider the interesting findings of Clarke and Tyler
(2014), who used RSA to seek areas encoding semantic
structure both across and within superordinate domains
(such as “animals” and “vehicles”). When the target
matrix included all items from all domains, the analysis
identified the vATL as encoding semantic structure. When
limited only to items within one semantic domain, how-
ever, the vATL did not appear to encode such structure.
The finding could mean that vATL only encodes discrete
distinctions between superordinate semantic domains,
analogous to the binary condition in the simulation—but
the same result could also be obtained even if the vATL
does encode within-domain structure, since such struc-
ture is mainly encoded, within the semantic target matrix,
by components orthogonal to the primary dimension.

More sophisticated use of RSA may overcome some
of these difficulties in interpretation; for instance, the
researcher might carefully select stimulus items to ensure
that multiple orthogonal components of a representa-
tional space are equally strongly expressed in the RSM,
or to ensure that different target representational spaces
are maximally differentiated by the selected stimulus
items. Indeed, one of the few RSA studies to report
semantic representational structure in ATL adopted this
approach, ensuring that semantic and visual similarity
structure were completely deconfounded in their stimuli
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and then comparing results for these two differently-
structure target matrices (Martin et al., 2018). While such
studies are elegant and informative, they are also chal-
lenging to design and may prevent researchers from
exploring fuller or more naturalistic distributions of stim-
uli. For these reasons, we were motivated to consider an
alternative approach to discovery of graded multidimen-
sional representations in neural data.

3. SIMULATION STUDY 2: DECODING WITH RSL

The approach we developed is called representational
similarity learning (RSL; Oswal et al., 2016). Rather than
using pairwise similarities in the RSM as the target values
for correlation, RSL first decomposes the matrix into
orthogonal latent components, effectively re-representing
each stimulus item as a point in a low-dimensional
semantic space as shown in Figure 1. It then uses linear
regression to fit decoding models that predict the coordi-
nates of each item along each dimension from their
evoked neural responses. Simulation 2 assessed whether
this approach can reveal the graded and/or multidimen-
sional structure obscured by RSA.

3.1. Methods

Using the same simulated neural signals from Simulation 1
as predictors, we fit ordinary least-squares (OLS) regres-
sion models to predict coordinates of each stimulus
along each of the three latent semantic dimensions
shown in Figure 1. For each simulated feature set and
each of 11 increasing levels of uniformly distributed noise
(i.e., the same noise manipulation as for Simulation 1),
each example was assigned to 1 of 10 mutually exclusive
test sets such that each test set had 5 animate and 5
inanimate items. Holding out each test set in turn, regres-
sion models were fit to the remaining 90% of the exam-
ples (the training set). The model that was fit to the
training set predicts coordinates for the 10% of examples
withheld as the test set. After iterating over the 10 test
sets, a holdout prediction exists for every item. These
were concatenated and correlated with the target embed-
ding one dimension at a time. This process was repeated
20 times with different samples of noise. Holdout accu-
racy for each condition and noise level was estimated as
the mean over simulation repetitions.

Multidimensional structure in the neural code should
be revealed by reliable prediction of coordinates along
more the one latent dimension. To assess whether the
neural code captures graded similarity, we evaluated how
well the fitted model predicted coordinates among just
the animate items or just the inanimate items. If the neu-
ral signal only categorically differentiates animate from

inanimate stimuli, then predicted and true values should
correlate significantly when models are evaluated on all
items but should not correlate among just the animate or
just the inanimate items considered separately. Reliable
intra- and inter-domain correlations between true and
predicted values thus indicate that the neural code cap-
tures a graded degree of similarity structure.

3.2. Results

Figure 2C shows the mean correlation between true and
predicted coordinates for held-out items on each of the
three target components (columns), for the five different
neural coding scenarios (rows), and computed across all
items (black lines), animate items (red), or inanimate
items (green). The pattern of results reveals the informa-
tion encoded in each simulated neural response. With the
binary neural signal (top row), predicted and true coordi-
nates correlated strongly for models fit to all items but not
separately for animates versus inanimates. With continu-
ous one-D signals, strong correlations were observed for
models fit to all items and within each domain separately,
but only for the dimension encoded by the neural
response. When the neural signal encoded graded multi-
dimensional structure, reliable correlations were observed
on all three latent components, for models fit to all items,
and for models fit separately to each domain. Thus, in
simulation, the pattern of results uniquely revealed whether
the neural signal encodes graded or discrete structure,
and which semantic dimensions it captures.

3.3. Discussion

In contrast to the RSA simulation, RSL yielded a different,
diagnostic pattern of results for each condition, indicat-
ing which aspects of the semantic target matrix were
encoded within the simulated neural responses. The dis-
creteness of the binary code was revealed by reliable
prediction across domains and no reliable prediction
within domain. In the 1D neural-structure conditions, RSL
showed reliable prediction only on the latent dimensions
encoded by the simulated neural signal, and not on the
other dimensions. Reliable decoding both within and
between domains in such conditions indicated, in con-
trast to the binary condition, that the signal is graded
rather than discrete. When the simulated neural signal
encoded all three semantic dimensions, RSL showed
reliable decoding of each. Thus, by considering decoding
accuracy on orthogonal components of the target matrix,
RSL can test whether the neural code expresses multidi-
mensional structure; and by considering decoding accu-
racy separately for different semantic domains, it can test
whether the code is graded.
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4. STUDY 3: DECODING SEMANTIC STRUCTURE
FROM ECOG USING RSL

Study 3 evaluated whether neural signals in VATL encode
a graded, multidimensional and domain-general seman-
tic space by using RSL to decode semantic structure in
ECoG data collected in a prior study of object naming
(which employed the same 100 items used in the simula-
tions; Chen, Shimotake, et al., 2016). This dataset is
especially useful in the current context for two reasons.

First, ECoG avoids some of the limitations of non-
invasive imaging methods that can make structure in
VATL difficult to decode. One recent study suggested
that the neuro-semantic code for animacy in VvATL
changes rapidly and nonlinearly over the course of stim-
ulus processing so that techniques sacrificing either
spatial or temporal resolution, including EEG, MEG, and
fMRI, may obscure important signals (Rogers et al.,
2021). Additionally, magnetic field inhomogeneities make
it difficult to resolve clear BOLD signal in vATL without
special acquisition sequences (Halai et al., 2014, 2015).
ECoG provides much better spatial and temporal resolu-
tion of neurophysiological signals at the surface of the
cortex and does not suffer from the signal-detection
issues that challenge fMRI, so any failure to discover
fine-grained / multivariate semantic structure in the data
cannot reflect these limitations.

Second, the results of the original RSA study (Chen,
Shimotake, et al., 2016) suggest that the measured
signals, though reliably differentiating animate from inan-
imate items, do not encode finer grained or multidimen-
sional semantic structure. Specifically, the authors
compared the correlation of the stimulus evoked NSM to
two different target matrices: one encoding the full graded
and multidimensional semantic similarities among stim-
uli, and a second encoding just the binary distinction
between animate and inanimate items. If the vATLs
encode graded multidimensional semantic structure, one
might expect the NSM to correlate more strongly with the
full target matrix than with the binary animacy matrix.
Instead, the authors found statistically significant and
equally strong correlations with both target matrices. One
interpretation of this finding is that the measured neural
signals do not in fact encode graded or multidimensional
semantic structure, but only serve to discretely differenti-
ate animate and inanimate items—a conclusion also con-
sistent with Clarke & Tyler’s (2014) RSA results described
earlier. The data thus allow us to test an alternative
hypothesis: that the measured signals do encode a graded,
multidimensional, and domain-general semantic space,
in a manner that is invisible to RSA. If so, RSL should
reliably decode variation along multiple orthogonal com-
ponents of the target semantic matrix, considering all

items together as well as within animate and inanimate
domains considered separately.

Applying RSL to ECoG or any other brain imaging
data, however, faces an immediate challenge: such tech-
nologies produce many more spatiotemporal neural
measurements than there are stimuli, so regression mod-
els predicting stimulus characteristics from neural data
are ill-defined (i.e., there exist infinite solutions that can
perfectly predict outcomes on training data even from
random input data). To find a unique fit without a priori
feature selection, the regression must be regularized to
satisfy some additional constraint that will guarantee a
single unique solution for model fitting. For instance, the
weight optimization might jointly minimize prediction
error and the size of the model coefficients, measured as
the sum of their absolute values (the L1 norm). Since this
sum can be minimized by placing zero coefficients on
many predictors, this form of regularization promotes a
sparse solution in which only a few predictors have non-
zero coefficients in the final model (e.g., Rogers et al.,
2021). Other regularizers (such as the L2 norm or the
elastic net) enforce different constraints on model fitting,
and thus lead to other solutions when applied to the
same dataset (Cox & Rogers, 2021).

In this sense, the selection of a regularization function
amounts to a prior hypothesis stipulating how the neural
signal is likely to be structured. As recently argued in
Frisby et al. (2023), the choice of regularizer should be
informed by explicit hypotheses about the nature of the
signal to be decoded—in this case, a hypothesis about
how neurophysiological signals measured by surface
electrodes in the brain might encode a graded, multivari-
ate semantic space.

To that end, we adopted a regularization function
called the group-ordered-weighted LASSO (grOWL)
loss (Oswal et al., 2016) that was designed in prior work
to capture three theoretically motivated assumptions
about the structure of neural representations. First, it
assumes the signal is sparse: of all measurements
taken, only a relatively small proportion encodes target
information of interest, so the regularizer should place
zero coefficients on many predictors (as with L1 regular-
ization). Second, it assumes redundancy in the true sig-
nal: neural populations that do encode target information
will be correlated in their activity patterns over items, so
the regularizer should spread similar coefficients across
correlated signal-carrying populations (similar to L2 reg-
ularization). Third, it assumes that signal-carrying popu-
lations are unlikely to be “axis-aligned” with the target
semantic space (i.e., responding only to variation along
a single semantic dimension) but more likely encode
multiple, varying “directions” within the space. That is,
each neural population likely carries information about
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an item’s coordinates along multiple dimensions of the
target space. We will refer to this as the spanning
assumption, since the selected neural features span the
target representational space but are unlikely to only
encode distinct, individual dimensions. To enforce this
assumption, the regularizer should prefer solutions
where coefficients on a given neural feature are either all
zero (the feature does not carry any information) or all
non-zero (it predicts some variation along all target
dimensions).

Oswal et al. (2016) showed that all three assumptions
can be captured in a single convex loss function, and

also provided analytic guarantees and an example appli-
cation on an fMRI dataset. We describe the logic briefly
here; Supplement B provides a formal description of the
decoding model and grOWL regularizer, including a defi-
nition of the loss and explanation of how it encourages
these properties in the decoding matrix.

Rather than fitting a separate regression model for
each latent component of the target RSM (as in the sim-
ulation), we instead predict all latent components (Fig. 3A)
simultaneously by estimating the parameters of a decod-
ing matrix B (Fig. 3C) with regularized multitask regres-
sion. Suppose the coordinates of n stimuli on r latent
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Fig. 3. Representational similarity learning. (A) To generate the target structure for decoding, semantic feature vectors
for each of n items are mean-centered and converted to a cosine similarity matrix S, of approximate rank r. This is
decomposed into matrix U, containing r orthogonal singular vectors and diagonal matrix D,,, containing singular values

for each vector. The product U+/D is an nxr matrix whose columns contain r root-weighted singular vectors that are the target
of the decoding model. Note that the product of this matrix with its transpose provides an estimate of the original matrix S,
(B) Neural responses in a picture-naming task are recorded for each stimulus as intra-cranial voltage potentials collected

at 1000 Hz over electrodes implanted in VATL. Data are concatenated across electrodes to create a single m-dimensional
“neural feature vector” for each stimulus, where m is the total number of electrodes times the size of the decoding window in
milliseconds. All such vectors are compiled into a neural feature matrix X,,.,, which contains the predictors for the decoding
model. (C) The target structure U+/D is then modeled as the product of the neural feature matrix X and a decoding matrix of
regression coefficients f whose values are chosen via gradient descent to minimize prediction error plus the regularization
penalty H(B) scaled by the weighting parameter a.. (D) Definition of the group-ordered-weighted LASSO (grOWL)
regularization function and illustration of the structure it promotes in the decoding matrix.
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semantic dimensions are stored in matrix U,,,, while the
responses of m neural features to the stimuli are stored in
matrix X, RSL models the entries in U as the matrix
product of the neural activations in X and the decoding
matrix B,,«,: U= XPB. Each row of B corresponds to one
neural feature (voxel, electrode, etc.), and each column
encodes weights for each neural feature when predicting
stimulus coordinates on the corresponding dimension of
the target matrix U. Thus, the assumptions about neural
signal just listed can be formalized as constraints on the
structure of the decoding matrix B (Fig. 3D). To capture
the sparsity and spanning assumptions, B is constrained
to be row-sparse: most rows have all zero values (spar-
sity), and the rest have all non-zero values (spanning). To
capture the redundancy assumption, highly correlated
and signal-carrying neural features receive similar row-
vectors in B (Fig. 3D). The precise degree of sparsity and
redundancy in the decoding matrix is controlled by hyper-
parameters that are tuned via cross-validation. Figure 3
shows the full workflow decoding semantic structure
from ECoG data.

With this overview, we can consider how RSL can be
applied to assess whether neural data encode a multidi-
mensional and graded similarity space. Parameters in 8
are estimated for a batch of training data using regres-
sion regularized with the grOWL loss. The decoding model
is then applied to predict the coordinates of held-out
items along each dimension in the target representation
space. If predicted and true coordinates for held-out
items correlate reliably on more than one dimension, the
neural signal must encode multidimensional structure.
To assess whether the neural code captures graded sim-
ilarity, we additionally evaluate the regression models
separately for animate and inanimate items, as in the
simulation. If the neural signal only categorically differen-
tiates animate from inanimate stimuli as suggested by
the prior RSA analysis in Chen, Shimotake, et al. (2016),
then predicted and true values should correlate signifi-
cantly across all items, but not for animate or inanimate
subsets considered separately. Observation of both
inter- and intra-domain correlations thus indicates that
the neural code captures a graded degree of similarity
structure. Finally, to assess how well the decoder recov-
ers the target semantic similarities, the predicted coordi-
nates for held-out items on all three latent dimensions
can be used to estimate semantic distances between
stimulus pairs. These estimates can then be correlated
with true semantic distances, similar to standard RSA.

4.1. Methods

We applied this approach to the same ECoG dataset
where prior work using RSA found no evidence for
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graded multidimensional structure (Chen, Shimotake,
et al., 2016). The study was approved by the ethics
committee of the Kyoto University Graduate School of
Medicine (No. C533), and participants provided written
informed consent. The dataset contains voltages mea-
sured from platinum subdural grid electrodes (inter-
electrode distance 1 cm and recording diameter 2.3 mm;
Ad-Tech, WI) implanted in the surface of left (8) or right
(2) vATL in 10 patients undergoing preparation for intrac-
table epilepsy (9) or brain tumor (1) while they named
line drawings depicting the 100 items described in
Study 1. Electrodes were implanted in the right hemi-
sphere for two patients where WADA testing did not
clearly indicate left-lateralization of language.

Each patient had between 6 and 32 electrodes (mean
of 20) covering VATL. All patients with epilepsy had sei-
zure onset zones outside the anterior fusiform region,
except one patient for whom it was not possible to local-
ize the core seizure onset region. Data were sampled at
1000 Hz (eight patients) or 2000 Hz (two patients) with a
band-pass filter of 0.016-300 (eight patients) or 0.016-
600 Hz (two patients). The dataset included, for each
stimulus, voltages measured at each electrode overa 1 s
window from stimulus onset and downsampled to 100 Hz.
Thus, for a participant with 20 electrodes, each stimulus
was associated with a 2000-element vector of voltages
(20 electrodes x 100 time points). The ECoG data were
preprocessed exactly as in Chen, Shimotake, et al. (2016).

4.1.1. Stimuli and procedure

One hundred line-drawings (50 animate and 50 inanimate
items) were obtained from previous norming studies
(Morrison et al., 1997; Snodgrass & Vanderwart, 1980). See
Chen, Shimotake, et al. (2016) for a complete list. Animate
and inanimate stimuli were matched on age of acquisition,
visual complexity, familiarity, and word frequency, and
had high name agreement. Each stimulus was presented
on a computer screen for 5 s, one after another with no
interstimulus interval, once during each of four sessions
(four times in total). Each session proceeded in a different
random order. Participants were instructed to name each
item as quickly and accurately as possible. Participants
were video and audio recorded during the experiment.
Video was used to monitor eye fixations and general atten-
tion to the task. The mean response latency was 1190 ms.

4.1.2. Semantic similarity structure
and dimensionality reduction

The same target RSM and three-dimensional embed-
ding used in the simulated analysis are reused for the
ECoG analysis.
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ECoG data preprocessing. Preprocessing was per-
formed in MATLAB. Data were downsampled to 100 Hz
by averaging measurements within 10 ms boxcars. A
prior study applying pattern classification to these data
found near identical results when analyzing raw voltages
versus voltages referenced to the electrode beneath the
galea aponeurotica or to the scalp electrode on the mas-
toid process contralateral to the side of electrode implan-
tation (Rogers et al., 2021). For this reason, and because
the location of the reference electrode varied across
patients, we analyzed all voltages without referencing.
For each stimulus, we retained data for 1000 ms from
stimulus onset. While the trial epoch may include the
onset of articulation toward the end, the critical results
cannot reflect such motor activity since all key phenom-
ena are observed early in the epoch. Baseline correction
was not performed. The mean voltage at each electrode
for each stimulus was computed across the four repeti-
tions. Voltages from different electrodes were concate-
nated into a row vector and arranged in a neural data
matrix with each row containing the vector of voltages for
one stimulus sampled from multiple electrodes over time.
We rejected columns and then rows where the marginal
mean was more than five standard deviations from the
grand mean to censor extreme outliers.

4.1.3. Model fitting and evaluation

RSL decoding models regularized with either grOWL or
the L1-norm were fit and analyzed in MATLAB v9.5
(Mathworks Inc, 2018) using the Whole-brain Imaging
with Sparse Correlations (WISC) toolbox (Cox, 2022),
which implements the approach as a multitask variant
of group ordered-weighted L1-regularized regression
(grOWL; Oswal et al., 2016; Oswal & Nowak, 2018).

Fitting a decoding model regularized with grOWL
requires two hyper-parameters that govern the pressured
strength with which the decoding matrix is to be row-
sparse (A) with similar weights across correlated neural
features (w). We chose values for A and o via 10-fold
nested cross-validation for each model fit. The 100 stim-
uli were randomly divided into 10 subsets, each contain-
ing 5 animate and 5 inanimate items. On each of the 10
folds, one of the 10 subsets was held out (outer-loop
holdout). The remaining nine sets were used to search for
good hyperparameter values, involving a second “inner”
cross-validation loop.

On each inner-loop fold, one of the nine remaining sets
was held out and a decoding model was fit to the remain-
ing eight sets using a specified pair of hyper-parameter
values. The fitted model’s prediction error, defined as the
Frobenius norm of true versus predicted semantic coor-
dinates, was evaluated on the inner-loop holdout set.
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This procedure was repeated once for each of the nine
inner-loop holdouts before averaging the prediction error
across folds to estimate the decoder’s performance with
that hyperparameter configuration. Many different hyper-
parameter configurations were evaluated in the inner
loop using the Hyperband procedure (Li et al., 2018). The
best-performing configuration was then used to fit a
model to all examples not in the outer-loop holdout set.
This tuned model was used to predict semantic coordi-
nates for the outer-loop holdout set, thus completing one
iteration of outer-loop cross-validation. The whole proce-
dure was then repeated for the remaining nine outer-loop
holdout sets. Across folds, the procedure generated out-
of-sample predicted coordinates for all 100 items. These
final predicted coordinates, computed separately for
each time-window in each participant, were the primary
data evaluated in the results.

4.1.4. Statistical thresholding
with permutation testing

Our analyses closely followed the simulations: correla-
tions between predicted and true coordinates on each
dimension were computed for all 100 stimuli, just the 50
animate items, or just the 50 inanimate items. Assessing
model accuracy via correlation standardizes means and
variances of the target and predicted vectors to focus on
just their covariance. This is especially critical when eval-
uating animate and inanimate items separately. However,
cross-validated correlation has a negative bias when
evaluating held-out items (see Zhou et al., 2017 and Sup-
plement C); a null hypothesis of zero with a t-distributed
sampling distribution cannot be assumed. Thus, we
determined statistical reliability at the group level by con-
structing an empirical null distribution via a permutation
procedure described by Stelzer et al. (2013). The analysis
described above was repeated 100 times per participant,
each time with a different random permutation applied to
the rows of the target matrix. This yielded 100 correlation
values for each patient, representing expected values from
our workflow when no reliable relationship exists between
neural data and target matrix (due to the permutation
procedure). Then, a group-level empirical null distribution
was estimated by randomly sampling one of the 100 per-
formance metrics from each participant-level distribution
and computing a permuted-group-average 10,000 times.
This provided sufficient resolution at the group level at a
fraction of the computational cost of fitting models to
10,000 permutations of the target matrix per participant
for each test (i.e., each window, for each subset of items,
in all analyses).

If m is the number of values in the permutation distri-
bution and b is the number of values in the distribution
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larger than the true correlation value, then the one-tailed
p-value can be computed (Edgington & Onghena, 2007;
Phipson & Smyth, 2010) as:

_ b+1
m+1

Statistical significance was defined with respect to
after adjusting the p-values to control the false discovery
rate (FDR).

Finally, to understand the effects of regularization
with structured sparsity (grOWL) versus more standard

Component 1

Component 2

techniques, we compared models fit with grOWL regu-
larization to those fit with L1 (LASSO) regularization.

4.2. Results

4.2.1. Analysis 1: full window decoding
with grOWL and LASSO

Figure 4a shows results from decoding the full 1000-ms
time-window. For the first component, models fit with
both grOWL and LASSO reliably decoded similarity struc-
ture across all items and for animate and inanimate
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Fig. 4. ECoG decoding results. Correlation between true and predicted coordinates along each latent dimension
(columns) for models fit to all items (green), animate items only (orange), or inanimate items only (blue), and regularized
with grOWL or LASSO. Error bars reflect standard error of the mean over participants. Each value is centered on the mean
of its corresponding permutation distribution. For uncentered values, see Figure S4. Colored bars / filled circles indicate
reliable decoding with FDR-corrected p < .05 for all points in a panel. (a) grOWL (darker bars) and LASSO (lighter bars)
model performance when trained on the full 1000-ms trial epoch. (b) grOWL model performance within opening windows.
(c) LASSO model performance within opening windows. (d) Analogous to (b) except that models are fit and evaluated
within a 100 ms moving window instead of the opening window.
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subsets considered separately. Whereas this was the only
structure discovered with LASSO regularization, grOWL
regularization additionally showed reliable decoding of
the second component across all items and within ani-
mates only. Thus, RSL with grOWL regularization revealed
graded, multidimensional semantic structure in ECoG
signals recorded from ventral ATL, while the contrasting
pattern for LASSO suggests that additional constraints
from grOWL aided in the discovery of multidimensional
semantic structure.

4.2.2. Analysis 2: opening window

To see how this structure emerges in the ECoG signal
over time, we conducted an “opening window” analysis
in which the same procedure was applied to an increas-
ingly wide aperture of data, beginning with just the first
50 ms post-stimulus, extending to 100 ms, then growing
by 100 ms up to 1000 ms. The opening window analysis
evaluates when enough information has entered the spa-
tiotemporal feature space to support decoding. The goal
is not to localize a representation in time, but to identify
when reliable decoding is first possible and when perfor-
mance stops improving.

The results show reliable decoding of between-domain
and within-animate structure along the first component by
200 ms, followed by within-inanimate structure by 300 ms
(Fig. 4b). Decoding accuracy for superordinate and
animate-subordinate structure continually improved with
wider windows along component 1, but not inanimate-
subordinate structure. Along the second component,
reliable decoding was observed after 300 ms for between-
domain structure and somewhat earlier (200 ms) for
within-animate structure. Within-inanimate structure could
not be reliably decoded along the second component at
any window-size, nor could variation along the third com-
ponent of the target matrix. Models fit with LASSO (Fig. 4c)
also reliably decoded both within- and across-domain
structure along the first component, beginning at 200 ms
for cross-domain structure, 300 ms for a within-animate
structure, and 500 ms for within-inanimate structure, but
as with the full window, did not reliably decode the second
(or third) component for any window size.

4.2.3. Analysis 3: moving window

The opening window analysis indicates the latency with
which the neural signal contains sufficient information for
reliable decoding, but since each successive window
contains all prior time points, it does not indicate whether/
how the neural encoding of semantic information changes
over time. Additionally, since larger windows contain
more neural features, they afford a greater possibility of
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over-fitting training data. Consequently, the opening-
window approach may fail to detect semantic information
encoded only within a limited time-window. For these
reasons, we fit models using the grOWL regularizer on a
100 ms moving window, beginning at 0 ms from stimulus
onset and advancing in 50 ms increments. In this analy-
sis, each window is the same size and thus contains the
same amount of neural data. Otherwise, the analysis was
identical to the opening-window variant.

Results are shown in Figure 4d. For component 1, reli-
able decoding was observed across domains and within
each domain between 150-700 ms post-stimulus onset.
Reliable decoding on components 2 and 3 was observed
within a more limited time range. For component 2 (which
best-separates the animate items), cross-domain and
within-animate structure was reliably and equally-well
decoded for windows beginning at 150-400 ms. For
component 3 (which best separates inanimate items),
cross-domain and within-inanimate structure was reliably
and equally-well decoded for windows beginning at 200-
300 ms. Together, the analyses suggest that, from around
200-400 ms post-stimulus, neural states measured by
ECoG express both within- and between-domain seman-
tic structure, for both animate and inanimate items,
across all three components of the target matrix. That is,
they express a graded multidimensional and domain-
general semantic space.

4.2.4. Analysis 4: moving-window reconstruction
of full target similarity matrix

The preceding analyses consider decoding of each
matrix component separately, allowing us to draw con-
clusions about which aspects of semantic structure are
represented in the neural signal at which time points.
The independent consideration of different dimensions,
however, makes it difficult to compare results of RSL to
RSA, since RSA considers correlations between full
pairwise similarity matrices (the NSM and the RSM). To
facilitate the comparison, we used the decoding mod-
els fit in Analysis 3 to construct a predicted semantic
similarity matrix at each time-window. For each fitted
model, we predicted coordinates of the corresponding
held-out items along all three target matrix compo-
nents, agglomerating these predictions across holdout
sets to create a matrix of predicted coordinates for all
items. Recall that the target coordinates are the first
three singular vectors of the original semantic similarity
matrix, weighted by the square root of the corresponding
singular values (Fig. 3). Thus, to reconstruct predicted
pairwise distances in the original target matrix, we need
only take the product of the predicted-coordinates
matrix with its transpose.
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Each row of the resulting matrix contains predicted
semantic similarities between an item and all other items.
We then compared these predicted similarities to a target
similarity matrix constructed directly from the three com-
ponents of the original matrix that account for 90% of its
variance. That is, for each item in the dataset, we com-
puted the correlation between the predicted and true simi-
larities to (a) all other items, (b) other items in the same
domain, and (c) other items in the contrasting domain. For
each metric, we then averaged the correlations across (1)
all items, (2) just the animate items, or (3) just the inanimate
items. These conditions thus allowed us to assess how well
the decoders model semantic similarities both within and
across each domain. The full procedure was carried out
independently for each participant at each time-window.
The results are essentially identical if the predicted similari-
ties are instead correlated with the cosine similarity matrix
describing the relationships among the Dilkina & Lambon
Ralph (2013) feature vectors (Supplement E).

The results are shown in Figure 5. Filled circles indi-
cate where predicted/true correlations are reliably non-
zero relative to a permutation-based null distribution with
FDR of p < .05 (Stelzer et al., 2013). Reliable correlations
were observed from 100-150 ms post-stimulus onward,
whether computed across all items, within domain only,
or between-domain only, and considering the full com-
plement of items (left panel), animate items only (middle),
or inanimates only (right).

For comparison, we replicated the RSA analysis of
Chen, Shimotake, et al. (2016) on the same data used for
RSL and extended it to examine structure within animate
and inanimate item subsets. When conducting RSA over

all items, NSMs were correlated with both a multidimen-
sional target RSM and a unidimensional categorical (i.e.,
binary) target RSM. Figure 6 (left) plots the average
Spearman’s rho over participants within the same ROI
reported by Chen, Shimotake, et al. (2016) for each tem-
poral window and each target RSM in light and dark grey.
The correlations with each target RSM are very similar,
consistent with the original finding that RSA did not pro-
vide clear evidence about the kind of semantic informa-
tion present in the VATL. The right panel shows results of
RSA applied to animate (light grey) and inanimate (dark
grey) item subsets. These correlations were indistinguish-
able from zero in every window.

Colored lines in the two panels show the correlations
between the RSL predicted similarity matrix and the target
matrix across all items (left panel) or within animates (right
panel orange) and within inanimates (right panel blue).
While reliably positive correlations over the full set of items
were observed with both RSA and RSL from 150 ms
onward (one-sample two-tailed t-tests, uy =0, o0 =.05, all
1(9) > 2.75), the correlation coefficients obtained by RSL
were significantly larger in all windows with reliable effects
(paired two-tailed t-tests, o =.05, all t(9) > 3.5). However,
this is not a difference that requires a statistical analysis to
appreciate: over windows with reliably positive correla-
tions, the correlation coefficient obtained with RSL was
between 6 to 13 times larger. A 10-fold increase in Spear-
man’s rho is a 100-fold increase in the proportion of vari-
ance explained. RSL produces a qualitatively different
result from RSA, in terms of its sensitivity to detecting
structure and its ability to determine what structure is
present in neural signals.

Correlation of predicted and true similarities
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Fig. 5. Correlation between predicted semantic similarities and the best-possible similarities reconstructed from the first
three singular vectors/values of the true matrix. Error bars reflect standard error of the mean over participants. Decoding
models fit with RSL reliably predict semantic similarities both within (orange dots) and between (blue dots) conceptual
domains, for both animate (middle panel) and inanimate (right panel) stimuli, from about 100-200 ms post-stimulus onward.
Correlation coefficients in each condition were then averaged across participants at each time-window.
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Fig. 6. Comparing RSA and RSL on the same data. All correlations (Spearman’s rho) are averages over the 10 participants
and error bars depict standard error. The left panel shows the correlation between the full predicted similarity matrix obtained
using RSL and the multidimensional target RSM (green), as well as results obtained by replicating the RSA conducted by
Chen, Shimotake, et al. (2016) on the same data used for RSL using the multidimensional (light grey) or a categorical (dark
grey) target RSM. Differences between categorical and multidimensional RSA are insignificant, while differences between
RSL and RSA are large and significant from 150 ms onward. The RSA results in the right panel are analogous to the left panel
except that subsets of items are studied separately. RSA does not detect within-category structure while RSL does.

4.3. Discussion

Replicating Chen, Shimotake, et al. (2016), if one only
relied on RSA analysis then it would be easy to conclude
that ECoG activity in VATL only encodes a discrete, binary
distinction between animate and inanimate items, with no
information about semantic structure within either domain
considered independently. In stark contrast, the RSL anal-
ysis shows that ECoG signals measured in human vATL
encode information about semantic similarity structure
that is multidimensional (reliable decoding along three
orthogonal components of the target matrix), graded (reli-
able decoding of varying degrees of similarity both within
and between domains), and domain-general (reliable
decoding of within-domain similarities for both animate
and inanimate items). These properties are consistent
with the predictions of the “hub and spokes” theory of
semantic representation in the brain, which proposes that
neural activity in VATL encodes a graded, multidimen-
sional, and domain-general semantic vector space. It is
also consistent with the converging sources of evidence
that gave rise to that view, including patient studies
(Patterson et al., 2006), neural stimulation (Pobric et al.,
2007), and computational modeling (Rogers et al., 2004).
In this sense, the RSL result resolves a seeming discrep-
ancy between RSA findings and the broader literature.

5. GENERAL DISCUSSION

We introduced this paper with a puzzle: neuropsychol-
ogy, clinical neurophysiology, TMS, and computational

15

modeling all suggest that the vATLs encode a semantic
vector space of graded, multidimensional, and domain-
general conceptual similarity structure, but direct tests of
this hypothesis using representational similarity analysis
have often yielded null results in VATL and positive results
in brain areas not otherwise thought to encode semantic
representations. In simulation, we showed that counter-
intuitive limitations of RSA can obscure inferences about
neurocognitive representation. When used to decode real
semantic structure as measured by feature norms, RSA
can produce positive results even if the underlying neural
code is discrete and unidimensional, or null results even
if the neural code does capture latent structure in the tar-
get matrix beyond the first component. Because RSA
relies on an inherently unidimensional measure of associ-
ation (i.e., correlation), it cannot reveal whether neural
signals encode multidimensional structure. Because the
technique does not fit any parameters to data, it requires
the researcher to select features a priori when construct-
ing the NSM (for instance, via ROI or searchlight analy-
ses; see Frisby et al., 2023), and cannot learn to ignore
irrelevant features among those selected. The simula-
tions suggest that these characteristics of RSA may have
contributed to the puzzling state of the literature—for
instance, by yielding results suggesting that vATL only
coarsely discriminates living from nonliving things (Clarke
& Tyler, 2014; Chen, Shimotake, et al., 2016).

RSL addresses these limitations by using regression
to predict coordinates of stimuli along the latent orthogo-
nal dimensions of the RSM. In simulation, we showed
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how this approach can uncover multidimensional repre-
sentational structure (by showing reliable conjoint decod-
ing of two or more orthogonal dimensions of a target
matrix) as well as graded structure (by showing reliable
decoding both within and between semantic domains).
The approach can also “select out” signal-carrying fea-
tures from among those included as predictors in the
model, and so can be applied to all potentially signal-
carrying neural features at once, without requiring the
theorist to pre-select an ROI or to look only within small,
independent searchlights (see Cox & Rogers, 2021;
Frisby et al., 2023).

Applying the approach to large neural datasets requires
model regularization. We illustrated how hypothesized
patterns of structured sparsity in the neural signal can
constrain model fit via grOWL regularization and applied
this approach to discover semantic structure in an ECoG
dataset where prior work using RSA found only a binary
animacy code (Chen, Shimotake, et al., 2016). We repli-
cated this analysis using the same RSA approach, and
further showed that RSA yields null results when assess-
ing whether the ECoG signals express within-domain
semantic structure. In contrast, RSL with grOWL regu-
larization uncovered a graded and multidimensional
semantic space capturing similarities within and between
both animate and inanimate domains—consistent with
conclusions drawn about the nature of semantic repre-
sentations in the ATL hub from other cognitive and clinical
neuroscience sources. These results thus suggest that
discrepancies in the literature between studies employing
RSA versus other sources of evidence may reflect limita-
tions of the RSA approach as typically practiced.

5.1. Validity of grOWL assumptions
about neural signal

The RSL models we have deployed were fit with a regu-
larization function designed to promote discovery of a
row-sparse decoding matrix (the grOWL loss). We
hypothesize that such structure reflects three character-
istics of neuro-semantic representation specifically, and
neuro-cognitive codes generally. First, the signal is likely
to be sparse: of all neural measurements taken in a given
experiment, only a relatively small proportion is likely to
encode the target information of interest. The sparsity
assumption serves a useful role in decoding because it
pressures many coefficients in the regression model to
zero, indicating that the corresponding features are not
useful in decoding the target information. In this sense,
sparsity automatically serves the function of feature-
selection that, in RSA, must be handled a priori based on
an ROI, searchlight, or other method (Cox & Rogers,
2021). We hypothesize neural codes to be relatively
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sparse in general simply because brains support many
different cognitive, perceptual, motor, language, and
affective functions—consequently, the likelihood that a
given neural population is important for the specific func-
tion targeted by the investigator is relatively small.

Second, we hypothesize that the signal is redundant: it
is unlikely that a given target structure is only encoded by
a single voxel, or a single timepoint at a single electrode,
etc. Any cognitive construct of interest—feature, cate-
gory, or dimension in a representational space—is unlikely
to be encoded by the activation of a single local neural
population, such as a single voxel. More likely, such infor-
mation involves multiple neural populations, in which case
those populations that do encode target information will
exhibit some degree of correlation with one another. This
assumption is captured by the grOWL loss because it
encourages solutions in which intercorrelated sets of neu-
ral features that help to predict target structure receive
similar, non-zero coefficients in the decoder.

Finally, we hypothesize that the neural code is unlikely
to be axis-aligned with the dimensions of the target repre-
sentation space. That is, a given neural feature is unlikely
to encode variation along just one dimension of a multi-
dimensional target space without also encoding some
information about variance along other dimensions. In
grOWL, this hypothesis is expressed as a preference for
learning a row-sparse decoding matrix—coefficients on a
given neural feature should either be all zero (the feature is
unimportant) or all non-zero (the feature explains some
variance along each dimension). The reason is simply
that, for any target vector space, there exists only a small
and finite number of axis-aligned encodings, but an
infinite number of non-axis-aligned encodings. Aligned
and unaligned encodings express the same information
about similarities among objects of representation; so,
absent some explicit pressure for brains to learn axis-
aligned representations, it is unlikely that an axis-aligned
encoding will occur by chance. Additionally, ECoG elec-
trodes are influenced by voltages generated by a mix of
individual local neurons—so even if individual neurons are
selectively tuned to axis-aligned dimensions, the net
responses recorded at the electrode are likely to reflect a
blend of these dimensions.

While the grOWL regularizer generally prefers decod-
ing models with these properties, note that the relative
strength of these constraints is determined by hyperpa-
rameters that can be tuned via cross-validation to fit the
data. If the best solution is not particularly sparse, the tun-
ing process will select a small weight for the sparsity term
in the optimization, leading to a solution in which many
features are chosen. If the signal-carrying features are not
particularly correlated, the tuning process can select
hyperparameters that relax the grouping of features into
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sets that share the same weights. Thus, grOWL regular-
ization is quite flexible with respect to how rigidly the var-
ious constraints are enforced.

The current study suggests that the grOWL assump-
tions are useful for understanding information encoded in
ECoG voltages: when decoding the full time-window,
regularization with grOWL revealed multidimensional
similarity structure, whereas decoding with the sparsity
assumption only (LASSO) found only unidimensional
structure. We emphasize, however, that the RSL frame-
work can be deployed with any form of model regulariza-
tion. Alternative hypotheses about the likely structure of
neural encodings can be formulated as different regular-
ization costs, and the decoding success of models fit
with different regularizations can then be compared to
empirically evaluate the different assumptions. Prior
computational work has contrasted grOWL regularization
to other approaches (see Oswal et al., 2016 for compari-
sons to some other related methods); we hope the cur-
rent results with grOWL will inspire other scientists to
experiment with alternative losses to better understand
the nature of neuro-cognitive codes.

5.2. Implications for alternative theories
of ATL function

The current results challenge an alternative proposal
about the role of ATL in semantic cognition, namely that
they support knowledge of some conceptual categories
and not others (Mahon & Caramazza, 2011; Malone et al.,
2016; Simmons et al., 2009). Such a view is consistent
with prior imaging work (e.g., Anzellotti et al., 2011),
including the multivariate decoding studies cited earlier
(Chen, Shimotake, et al., 2016; Clarke & Tyler, 2014), sug-
gesting that ATL activations differentiate animates from
inanimates but do not otherwise encode or differentiate
finer categories. This alternative perspective has been
difficult to reconcile with neuropsychological evidence,
showing that anterior temporal atrophy and hypometab-
olism in semantic dementia degrades knowledge of ani-
mates and inanimates equally (Lambon Ralph et al.,
2007; Noppeney et al., 2007), and with TMS and direct
grid stimulation evidence showing that stimulation of
both left and right ATL reliably slows semantic processing
for both animates and artefacts (Pobric et al., 2010;
Shimotake et al., 2015). It also struggles to explain the
sensitivity of ATL-related semantic impairment to contin-
uous and graded semantic structure of test stimuli for
both animates and inanimates (Patterson et al., 2006;
Rogers et al., 2006). The current results suggest that prior
work may have failed to discover graded cross-domain
semantic structure in ATL responses, not because such
structure is absent from the measured responses, but
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because limitations in both fMRI and analytic techniques
make such structure difficult to detect.

It is worth noting that intra-domain similarities were
more robustly decoded for animate compared to inani-
mate items. Considering each dimension separately in
the opening window analysis, within-inanimate decoding
was only reliable for the first latent dimension. In the mov-
ing window analysis, where models were trained on
100 ms increments of data without the full history of acti-
vation from stimulus onset, within-inanimate decoding
was reliable for components 1 and 3, but transiently.
These are the components that best differentiate inani-
mates in the target matrix (see Fig. 1). When predicting
pairwise distances within moving windows, correlations
with true similarities were reliable but the smallest for
within-inanimate structure (i.e., the “other domain” cor-
relations in the middle panel of Figure 5, and “same
domain” correlations in the rightmost panel).

We attribute this general pattern to differences, not in
the neural code itself, but in the target similarity structure
of animate and inanimate concepts. Semantic subcatego-
ries of inanimate objects are only weakly differentiated,
not just in the current dataset, but in norming studies
more generally and in other approaches to characterizing
semantic structure (e.g., Devlin et al., 1998; Garrard et al.,
2001; McRae et al., 1997; Tyler et al., 2000). Indeed, this
difference in statistical structure is precisely what leads,
under some theories, to apparent category-specific pat-
terns of semantic impairment (Devlin et al., 2002; Lambon
Ralph et al., 2007) and functional activation (Rogers et al.,
2006). The differences can be seen in Figure 1, where
animate items fall into somewhat well-differentiated sub-
categories in components 1 and 2 while inanimates are
uniformly distributed with poorly differentiated subclusters
even along component 3. Accordingly, pairwise similarities
reconstructed from the first three singular vectors of the
full semantic matrix are more accurate for animate than
inanimate items (see Supplement D). Thus, the structure
of the semantic matrix itself requires that decoding be
worse within inanimates than within animates, precisely
because inanimates are less well structured. Yet despite
this intrinsic disadvantage, within-inanimate similarities
were still reliably decoded along multiple components of
the embedding and in the reconstructed similarity matrix,
illustrating that the neural signal in VATL does express
intra-domain semantic structure even for inanimate stimuli.

In summary, the results suggest the vATLs encode a
multidimensional representation space that captures the
conceptual similarities existing among a variety of differ-
ent concepts, including both animate and inanimate
items (Lambon Ralph et al., 2007; Patterson et al., 2007;
Rogers & McClelland, 2004). Better decoding within ani-
mates may reflect the fact that animate subcategories
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are better-differentiated, so that intra-domain similarities
are better-approximated by a low-rank decomposition.

We also note that the current results pertain only to the
nature of the semantic information encoded within the
span of VATL where electrodes were situated in our
patient sample. They do not bear on claims of possible
category-specific representation in other parts of the
cortex—for instance, that the left infero-parietal cortex
and posterior medial temporal gyrus play a special role in
knowledge about tools (Chen, Garcea, et al., 2016;
Garcea et al., 2018; Ishibashi et al., 2016; Kalénine &
Buxbaum, 2016) or that earlier visual areas are dedicated
to representing different object categories (Cichy et al.,
2014; Connolly et al.,, 2012; Downing et al., 2001;
Kanwisher et al., 1997; Kriegeskorte, Mur, Ruff, et al.,
2008; Mahon et al., 2009; Sha et al., 2015). Indeed, prior
work from (Chen et al.,, 2017) showed how domain-
general semantic representations can arise in vATL even
as graded category-specificity emerges in other parts of
the cortical semantic network, based on empirically mea-
sured patterns of white-matter connectivity across core
areas. Evaluating claims of category-specificity in future
work may benefit from adopting the RSL approach devel-
oped here.

5.3. Implications for the broader literature

The characteristics of RSA we have identified carry addi-
tional implications for interpretation of the broader litera-
ture. A recent review (Frisby et al., 2023) identified 24
studies that have applied RSA to the discovery of
semantic representations in the brain, with positive
results observed across multiple cortical regions, includ-
ing the posterior temporal cortex (Connolly et al., 2012),
angular gyrus (Fairhall & Caramazza, 2013; Fernandino
et al., 2022), left perisylvian cortex (Devereux et al.,
2013), posterior cingulate (Fairhall & Caramazza, 2013),
and prefrontal cortex (Carota et al., 2017). Simulation 1
suggests, however, that RSA will yield a positive result
for any property correlated with the animate/inanimate
distinction, including even discrete binary properties.
Many features are confounded with animacy: inanimate
items tend to be more familiar, less visually complex,
more associated with action plans, less associated with
motion, more likely to have lines and corners, less pre-
dictable from color or texture, etc. (see Chen & Rogers,
2014 for a review). Most RSA papers do not report the
magnitude of correlation between RSM and NSM where
results are significant, instead focusing on whether the
estimated correlation coefficient is reliably non-zero
across participants. As shown by the prior RSA analysis
of the same ECoG data explored here (Chen, Shimotake,
et al., 2016; gray line in Fig. 5), this can happen even
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when mean correlations are very small. Moreover, sev-
eral studies use target RSMs with only a small number of
rows/columns—sometimes as few as five (Connolly
et al., 2012; Fairhall & Caramazza, 2013), meaning that
correlations are computed across just 10 cells of the
matrix (i.e., the lower triangle of a 5 x 5 RSM). Such small
numbers increase the likelihood that a small-but-non-zero
correlation is driven by some arbitrary property of the
chosen stimuli or categories. Together these observa-
tions raise the possibility that the literature contains
misleading positive results—brain areas whose responses
encode unidimensional characteristics weakly confounded
with animacy, rather than multidimensional semantic
structure. Testing this possibility for various brain areas
hypothesized to encode semantic structure will require
analyses like those we have developed here.

6. CONCLUSION

In cognitive science, semantic representations are often
construed as vector spaces that encoded graded, mul-
tidimensional similarity structure among the concepts
experienced in our verbal and nonverbal world. Through
application of a new technique for mapping representa-
tional similarity in neural activity, we have shown that
neural signals in VATL encode such a space. In so doing,
we have identified some limitations of representational
similarity analysis, a widespread technique commonly
thought to reveal graded and multidimensional repre-
sentational structure. The work resolves an important
discrepancy between behavioral and neuroimaging
results in prior work and suggests a new approach to
discovering representational structure in neural data
more generally.
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