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A key challenge in the design of e�ective anti-poverty programs is
determining who should be eligible for program bene�ts. In devel-
oping countries, one of the most common criteria is a Proxy Means
Test — a simple decision rule that determines eligibility based on
basic information about each household (for example, the number
of rooms in the household, the number of children, whether there
is indoor plumbing, and other observable characteristics) [1, 3, 4, 7].
At the core of each Proxy Means Test (PMT) is a machine learning
algorithm that uses the short list of household characteristics to pre-
dict whether the household should be deemed poor, and therefore
eligible, or non-poor, and therefore ineligible [5, 6].

This paper documents an important weakness in the use of
machine learning for PMTs: the accuracy of the PMT prediction
algorithm decreases steadily over time. First, using nationwide sur-
vey data from four African countries over ten years, we show that
PMT inclusion and exclusion error rates increase by an average of
1.7 percentage points each year that a PMT is not updated (relative
to a baseline average of 42.4% inclusion and exclusion errors for a
PMT with up-to-date data). In a typical real-world anti-povery pro-
gram where the PMT data is updated only every 5-8 years [2], the
expected decline in accuracy due to an out-of-date PMT is 19-32%.

Second, we show that the aggregate e�ect of PMT decline can
be decomposed into two forces: “model decay” caused by model
drift in the joint distribution of poverty and the household char-
acteristics used as covariates in the PMT, and “data decay” caused
by changing household characteristics. We �nd that data decay
contributes approximately three times as much to the overall e�ect
as model decay.

Our �nal set of results use information on survey costs from
several countries to assess the �nancial implications of di�erent
policies available to anti-poverty program administrators for updat-
ing registry data and retraining PMT models. We �nd that, under
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reasonable assumptions about the trade-o� between survey costs
and the cost of mis-targeted program bene�ts, most social protec-
tion programs should aim to update registry data and recalibrate
the PMT model every 1-3 years.
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