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The geometrical arrangement of metamaterials controls their mechanical properties, such
as Young’s modulus and shear modulus. However, optimizing the geometrical arrangement
for user-defined performance criteria leads to an inverse problem that is intractable when
considering numerous combinations of properties and underlying geometries. Machine learning
techniques have been proven to be effective and practical to accomplish such non-intuitive
design tasks. This paper proposes an inverse design framework using conditional generative
adversarial networks (CGANSs) to explore and optimize 2D metamaterial designs consisting of
spinodal topologies, called spinodoids. CGANSs are capable of solving the ''many-to-many"
inverse problem, which requires generating a group of geometric patterns of representative
volume elements with target combinations of mechanical properties. The performance of the
networks was validated by numerical simulations with the finite element method. The proposed
inverse design framework vastly improves the efficiency of design exploration and optimization

of spinodoid metamaterials.

Nomenclature
G i = Second-order homogenized elastic modulus tensor
d = Direction in the Cartesian coordinates
D = Discriminator of the CGAN
E;; = Young’s modulus in transverse direction
E>, = Young’s modulus in longitudinal direction
G = Generator of the CGAN
Gi1» = Shear modulus
Lp = Loss of the discriminator
Ls = Loss of the generator
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n = Non-uniform orientation

N = Number of the training data

S = Solver of the CGAN

§? = Two-dimensional sphere

X = Real microstructures from the database

X = Presence of materials

Vi = Actual properties

$i = Predicted properties

Z = Random noise vector from the latent space
W = Phase field

= Angle in Cartesian coordinate system

®o = Porosity

w®® = Parameters of the solver

w'® = Parameters of the discriminator
w'© = Parameters of the generator
o;; = Average stress

g;j = Average strain

I. Introduction

Cellular materials are attracting interest in various industries, including automotive [1], aerospace [2], and marine
equipment [3]. This is owing to their lightweight feature with high stiffness and strength. In recent years, advances in
additive manufacturing have allowed engineers to tailor the internal geometrical arrangement of cellular materials at the
microstructural level and produce various kinds of cellular metamaterials, e.g., kirigami mechanical metamaterials
inspired by the art of cutting and folding paper [4], flexible chiral metamaterials consisting of interlocked Archimedean
spirals [5], and porous metamaterials with repeating star-shaped voids or pores [6]. However, the metamaterials involving
microstructures defined as trusses, jointed connections, and sharp edges are subject to high-stress concentrations,
leading to poor recoverability and unexpected mechanical behavior [7]. To overcome potential issues due to high-stress
concentrations while maintaining outstanding mechanical performance, Kumar et al. [7] reported a new class of
metamaterials formed by spinodal topologies called spinodoid metamaterials. These materials are naturally generated
by a phase separation process known as spinodal decomposition [7]. Spinodoid topologies involve materials with
continuous and smooth surfaces having approximately zero-mean curvature in their microstructures [7]. This makes

spinodoid metamaterials less vulnerable and more resistant to structural failure. Different from the metamaterials



previously mentioned, spinodoid metamaterials are non-periodic, which enlarges their design space and contributes to
the comprehensive and seamless range of anisotropic mechanical properties [7]. What’s more, spinodoid metamaterials
can exhibit a negative Poisson’s ratio, which is advantageous for aerospace systems, such as deployable and morphing
structures. In addition to the industrial applications, tailorable anisotropic elastic modulus allows spinodoid metamaterials
to be applied in the medical field, e.g., patient-specific bone replacements by reproducing trabecular bone properties [7].

The critical issue in designing spinodoid metamaterials is retrieving their internal geometrical arrangements for
user-defined mechanical performance. For the past decades, heuristics-based optimization approaches have been
ubiquitous in the development of metamaterials, e.g., particle swarm optimization [8], genetic algorithm [9], and
gradient-based approaches [10]. These approaches rely on iterative samplings and repeated computations of effective
properties to search for optimal solutions with target properties. However, non-intuitive searching in a significantly
vast design space [7] promised by spinodal topologies is computationally expensive. It prevents the realization of
spinodoid metamaterials in engineering applications in an effective way. The recent developments in machine learning
techniques have demonstrated a significant advantage in solving challenges faced in the inverse design of spinodoid
metamaterials. In the work of Kumar et al. [7], a multiple-layer perceptron trained on spinodoid metamaterials bypasses
expensive simulations and experiments and efficiently predicts an optimal topology for a prescribed set of mechanical
properties while avoiding ill-posed inverse problems. In the work of Roding et al. [11], an appropriate Bayesian
computation framework, facilitated by convolutional neural network and Gaussian random field, accelerates exploration
of design space and predicts diffusivity of spinodoid metamaterials in all three directions. Although these recent studies
have proposed several novel training approaches for spinodoid metamaterials for different engineering purposes, the
"many-to-many" inverse problem is not addressed. In material design, the problem is to find a group of candidate
geometric patterns of microstructures given a prescribed combination of on-demand effective properties. Referring
to Kumar’s work [7], multiple topologies of spinodoid metamaterials can contribute to identical or similar effective
properties. This promotes freedom in actual fabrication by providing alternative solutions that fit manufacturing
requirements.

Here, we propose an inverse design framework of 2D spinodoid metamaterials by employing a conditional generative
adversarial network (CGAN) that enables the generation of a group of candidate geometric patterns with sets of target
effective properties consisting of Young’s modulus and shear modulus. Generative adversarial network (GAN) is
one of the most popular deep learning methods because of its ability to generate fake images with many realistic
characteristics [12]. The GAN frames the design problem as an unsupervised learning problem with two sub-networks, a
generator and a discriminator. During the training process, the two sub-networks compete against each other to generate
artificial images as authentic as images from the training dataset. Over the years, the GAN has been widely applied in
metamaterial research to reveal the hidden property-structure relationship behind an extensive database [13—15]. The

CGAN is the conditional or supervised version of the GAN. In the CGAN, image generation is controllable and produces



images of a given label [16]. The discriminator assesses the credibility of a fake image created by the generator based
on its label of properties. The assessment process pushes the generator to produce a realistic geometric arrangement
of spinodoid metamaterials. Moreover, an independent solver is applied to promote the generator to generate the
arrangement with target properties. With the same input label, a well-trained generator could rapidly provide groups
of candidate solutions with exact or similar target properties by modifying an input of random noise vectors from the
latent space. In addition to an intuitive appearance, e.g., loss function value and training history, the performance of the
CGAN is verified by checking the effective properties of the newly generated metamaterials with finite element (FE)

simulations. The flowchart of the framework is illustrated in Fig. 1.
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Fig. 1 Flowchart of the proposed framework: the solid and dotted orange rectangles indicate the main
methodology of this framework and the sub-networks of CGAN, respectively; the solid blue rectangles indicate
the inputs or outputs of the main methodology

I1. Methodology

A. Definition of microstructures

The spinodoid topologies are obtained by simulating spinodal decomposition during the early phase separation stage,
where homogeneous material decomposes into two phases separating materials [17]. The Cahn-Hilliard model describes
the phase separation, representing the concentration fluctuation of one local phase field (x). Mathematically, the phase

field can be described by a Gaussian random field (GRF), as a superposition of standing waves illustrated as [7]:

N>>1

v =y x D cos(Bn; - x+7i). ey
i=1

Here, N is the number of the cosine waves, 3 is a constant wave number that is larger than zero, n; is the uniformly
distributed direction, and v; is the phase angle of the i’ wave vector. By aligning the GRF with Cartesian basis

{é1, é>}, aresulting anisotropic topology of 2D spinodoid metamaterials is approximately represented in a non-uniform



orientation distribution function described by [7]:

ni ~U({k € Q:(lk-é1]>cosh)) @ (k- é]> coshr)}), 2)

where 0 and 6, are angles in the Cartesian coordinate system in Fig. 2(a). The angles mainly control the resulting
spinodal topologies, and they are within 6 U {6, 5 }. Q denotes a circle of unit radius in Fig. 2(a). Soyarslan et al.
[18] introduced a level-set Y to generate bi-continuous solid—void microstructures by using a binary indicator function

defined as:

1 (solid section), if ¥(x) < g
X(x) = 3

0 (void section), if ¥(x) > g
where X (x) denotes the presence of the materials in the spinodal topologies. The binary indicator function defines the
two separated phases as void and solid sections based on the threshold ¢¢. The threshold value is related to porosity ¢q of
the microstructures [7]. This study considers a 2D representative volume element (RVE) for spinodoid microstructures
generated by the binary indicator function. Figure 2 shows the geometric patterns of the 2D RVEs at ¢o = 0.35. A
complete set of design variables {01, 6>, ¢o} characterize 2D RVEs of the spinodoid metamaterials. This study chooses

Omin = 15° [7] and ¢ = 0.35 to guarantee that solid domains of the RVE have good structural connectivity.

Fig. 2 Spinodid topologies: (a) Schematic of the geometrical parameters: 6, 6,; (b) Sample microstructures of
2D spinodoid metamaterials at ¢y = 0.35 in 128 x 128 pixel resolution

B. Calculation of effective properties

The target effective properties (Young’s modulus and shear modulus) of spinodoid metamaterials are computed by
using computational homogenization [19] via finite element method (FEM). This study chooses the base material as
ULTEM® 1000, an amber transparent high-performance polyetherimide (PEI) [20]. Compared to PES (Polyethersulfone)
[21], PEEK (Polyether ether ketone) [21], and Kapton (Polyimide film) [22], ULTEM 1000 is a cost-effective option
with high mechanical stiffness and strength, dimensional stability, and resistance in stress cracking [23, 24]. With these

outstanding features, this material can be an excellent candidate for aerospace and aircraft applications, such as interior



components [23-25]. It has isotropic elastic properties with Young’s modulus of 3580 MPa and Poisson’s ratio of 0.36
at room temperature [20]. Three numerical experiments are performed on the micro-scale RVE to achieve the two linear
elastic moduli: one unit axial stretch imposed along each of two principal axes (Fig. 3a and 3b) and one unit shear strain
imposed along both axes (Fig. 3c) [26]. Since the spinodoid topologies lack periodicity, the stress is implemented with

the affine boundary condition [7]. Therefore, the resulting elastic moduli are determined by Eqgs. 4 and 5, illustrated as:

Normal stress

“

- Applied axial strain

Shear stress
G2

&)

~ Product of applied shear strain

Here, the product of the applied shear strain is the summation of transverse and longitude strains [26]. All the
experiments are implemented with the finite element software, ABAQUS, and are performed under the plane stress

assumption using triangular elements. Figure 4 demonstrates a sample mesh assignment of the solid section.
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Fig. 4 Mesh assignment of 2D spinodoid metamaterials with triangular elements

C. Generation of dataset
To train the deep learning model, a dataset representing property-geometry relationships is required. The design

variables are generated for spinodoid topologies using a random sampling algorithm. Once the geometric patterns of the



RVEs are obtained, their effective properties are determined by the homogenization method. In the dataset, each data
point consists of a geometric pattern of the RVE and its corresponding property label (Young’s modulus and shear
modulus). This study converts the geometric pattern into a binary image, represented by a 128 x 128 element matrix. In
the binary image, pixels are Boolean variables taking a value of zero for the void section or one for the solid section.
Currently, the dataset contains 51,821 pairs of unique topologies and their corresponding property labels. The data
domain is represented by scattering the data points in a 3D property space, with each property label on a particular
axis. In Fig. 5(a), the ranges for the data domain are 1.01 MPa < E|| < 1588.64 MPa, 1.12 MPa < E5, < 2264.93 MPa,
and 1.03 MPa < G, < 318.75 MPa. The distributions of three properties are illustrated in Fig. 5(b). It is noticed
that the ranges for Young’s modulus values demonstrate a difference. This is because our microstructure generation
algorithm has a bias on the spinodal topologies. The bias is mainly induced by the lower bound of design variables,
Omin- With the lower bound of the design variables, the generation algorithm is unable to create a geometric pattern that
contains all horizontal stripes in the void section while maintaining good structural connectivity of the microstructures.
Consequently, the range of E1; (Young’s modulus in the longitudinal direction) is smaller than that of E»; (Young’s
modulus in the transverse direction). However, by rotating orientations of the microstructures, their property domain
can be further expanded, which is demonstrated in the discussion. Besides, since zero values in pixels of binary images
might lead to lower activation of the first layer of the network, they are replaced with "-1" in the training process [27].
For consistency with the binary images, both Young’s modulus and shear modulus are normalized such that they range

from -1 to 1 based on their extreme values.
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Fig. 5 Dataset for neural network training: (a) 3D property space of 51,821 randomly created data points and
(b) Distributions of the property labels of CGAN for Young’s modulus and shear modulus

D. Framework of inverse deep learning model
For the inverse design, this work aims to devise a CGAN to generate a group of candidate geometric patterns with

effective properties that are identical or similar to target properties. The CGAN is a type of deep learning model that



achieves data generation by incorporating labels as constraints [16]. Compared to the classic GAN, the CGAN allows
the users to generate images of a given type [28]. The architecture of CGAN is comprised of two sub-networks, a
generator (G) and a discriminator (D). In the study, the generator takes a random noise vector from the latent space
and a target property label as inputs. During the adversarial process, it learns to generate new fake geometric patterns
indistinguishable from the training data for specific target properties [29]. Meanwhile, the discriminator learns to
distinguish if its input of geometric patterns is real (from the training data) or fake (produced by the generator) [29].
The two networks are trained concurrently. As the discriminator identifies fake images more precisely, the generator
has to generate more realistic data to fool the discriminator. However, the conventional CGAN might suffer from the
overfitting problem as training the discriminator is excessively dependent on the training data [30].

To overcome this problem, an independent solver (S) promotes the generator to yield geometric patterns with
objective (target) properties. The solver is a conventional neural network (CNN) applied to bridge the geometric patterns
and properties (forward problem). It is a pre-trained network and independent of the two sub-networks. Training the
CNN requires minimizing the mean squared error (MSE) objective function between the actual values and predictions

with respect to the CNN’s parameters, w®). The objective function is defined as
1 ¥ 2
MSE@®) = < > (i = ¥i) (6)
i=1

where y; is the actual property of spinodoid metamaterials, and y; is the property predicted by the trained CNN.
Consequently, the generator’s parameters (@) are updated by the discriminator and solver concurrently. The total
generator loss is composed of the binary cross-entropy loss (BCE) and mean-squared error loss (MSE) of the generated

microstructures. The generator loss L is defined as
Gn_ Ll < L2
L@ = = > {E:llog(1 = DGy +a(yi = ¥} @)
i=1

where w(©) is the discriminator’s parameters, z is the random noise vector, and « is a weighting coefficient that
determines the extent to which the loss functions affect the generator. The discriminator loss is composed of the binary

cross-entropy loss of the real and generated microstructures. The discriminator loss Lp is defined as
D &
Lp(@®) = == > {ExllogD(x|y)] + E-[log(l = D(G(zly)]} ®)
i=1

where wP) is the discriminator’s parameters and x shows the real images from the database.
A well-trained generator can create a batch of realistic binary images of spinodal topologies with sets of on-demand
elastic moduli consisting of E1, E2», and G ;. Figure 6 demonstrates the general architecture of the proposed CGAN

framework and summarizes the functions of the solver and discriminator. In Fig. 6, the dashed and solid lines denote



the training process of the generator updated by the discriminator and solver, respectively. In this study, the training of
proposed neural networks is implemented in a Google Colab Pro system utilizing NVIDIA V100 GPUs with 32 GB
memory.
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Fig. 6 General architecture of the proposed CGAN framework. The dashed and solid lines show the training
process of the generator updated by the discriminator and solver, respectively.

II1. Results

A. Independent convolutional solver

Since the convolutional solver is independent of the generator and discriminator, this study first processes the training
on the solver with supervised learning to predict the effective properties of a given pattern in the forward direction. In
Fig. 7, the solver is formed by two parts, the feature maps and the fully connected layers. The first part contains five 2D
convolution layers. They extract features from an input binary image and contain 16, 32, 64, 128, and 256 channels.
Max-pooling follows each convolution layer to perform down-sampling operations. The output of the feature map is
flattened and directly connected with two fully connected layers containing 256 and 128 neurons. Among the 51,821
data points obtained using spinodoid topologies and FEM, 80% are randomly selected as the training dataset, and 20%
are used as the test dataset. To minimize overfitting, the solver incorporates dropout layers after each fully connected
layer. The early stopping strategy is utilized to further reduce model overfitting. The trainable network parameters
are updated by an Adam optimizer with a learning rate of 0.0001. The training process runs for 122 epochs and the
execution time is approximately 1.25 h. As shown in Fig. 8(a), the training and validation losses reach minimum values
of 9.842e-4 and 9.863e-4, respectively at epoch 122. In addition to the loss, the solver’s performance is statistically
evaluated by the coefficient of determination (R?) between the actual and predicted elastic moduli of 10,000 test binary
images. As can be observed in Fig. 8(b)-(d), the predicted property matches the actual property relatively well for
Young’s moduli compared to the shear modulus. It is because of their property distribution in the database shown in Fig.

5 (b). Compared with Young’s modulus, the distribution of G, has a relatively large concentration in a low-value range,
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Fig. 7 Detailed architecture of CNN for the independent solvers
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Fig. 8 Performance of the solver: (a) training history over 122 epochs, (b) (c) and (d) comparison of actual and
predicted elastic moduli

leading to a relatively small amount of data points in the right tail of the distribution shown in Fig. 5(b). It induces bias
in property prediction in G, and a reduction in its R? value, which is indicated by its wider bandwidth in Fig. 8(d)
compared with that of Young’s modulus in Fig. 8(b) and (c). Figure 9 summarizes the history of the R? of G5 over
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Fig. 9 History of R? value in G, over various data sizes for training the solver

various sizes of the training data points. The figure indicates that the low accuracy in predicting values in G, can be
solved by enlarging the training database. However, as the number of data points increases, the growth rate of R is
gradually reduced. It is caused by the random sampling method for building our database. Due to the central limit
theory, the data points tend to follow a Gaussian distribution, which causes them to be centrally located in a portion of
the property distribution illustrated in Fig. 5. Therefore, continuously enlarging the database is an inefficient approach

considering the expensive FE simulations and the gradual decrease in the growth rate of R2. Inspired by the work of
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Zheng et. al [31], the CGAN can perform importance sampling at the locations of the data distribution that contains
insufficient data points. Thus, the CGAN allows us to generate new microstructures with G5 in a large-value range,
leading to a reduction in bias in the property prediction of the networks during the training process. If the users are
not satisfied with the prediction accuracy of their target properties, they can retrain the networks with a new database
enriched by the CGAN. On the whole, however, the high values in R? (Fig. 8) indicate that our CNN solver has good

performance in property predictions for the binary images of spinodoid microstructures.

B. Conditional generative adversarial network

To solve the many-to-many problem for spinodoid metamaterials, the CGAN is implemented to learn the mapping
between the structural topologies and their corresponding properties. With the exception of the independent solver, our
inverse deep learning model is the same as the standard CGAN, which consists of the generator and discriminator. The
two neural networks are both realized as CNNs. The generator has two input channels, including 1 X 256 random noise
vectors and a 1 X 3 property label. They are reshaped and concatenated into a required image format and processed
through CNN with upsampling layers, 2D convolution layers, batch normalization, and leaky rectified linear unit (ReLLU)
activation function [32]. To be compatible with the normalized binary images (Sec. 2C), the output layer utilizes a Tanh
activation function to generate new microstructures of spinodoid metamaterials represented by "-1" and "0" values in
pixels. For the discriminator, a 1 X 3 input property label is accompanied by 128 x 128 input real images in the database

or fake images from the generator. Two inputs of the discriminator are reshaped and processed through CNN with 2D
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convolution layers, a leaky ReLU activation function, and dropout layers. In its output layer, a sigmoid activation function
is applied to output values in the range of O to 1, which indicates the probability of the sample being from realistic

images. The detailed architectures of the generator and the discriminator are shown in Fig. 10 and 11, respectively.
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Fig. 12 Performance of the CGAN: (a) training history of the solver over 2000 epochs, (b) training history of the
discriminator and generator over 2000 epochs, (c) (d) and (e) comparison of actual and predicted elastic moduli

Our proposed CGAN is trained for 2000 epochs using an Adam optimizer with a learning rate of 0.0004 and a batch
size of 32. To reduce property errors between the input labels and generated images, the CGAN in the training process
is mainly evaluated in terms of the MSE determined by the solver rather than the classification accuracy retrieved
from the discriminator. Figures 12(a) and (b) illustrate that the losses of the generator, discriminator, and solver are
minimized and stabilized after 1500 epochs of training. This indicates these networks are fully trained. There are two
convergence stages in the MSE history shown in Fig. 12(a). Before epoch 70, the discriminator promotes the generator
to generate realistic images, resulting in a rapid decrease in the MSE. After epoch 70, the generator is slowly updated by
the solver, which progressively reduces the property errors and reaches a minimum MSE of approximately 0.012 after
1500 epochs. The large number of training epochs in the second stage indicates the relatively high difficulty in achieving
the low property error compared to generating realistic images. It explains why this study employs the MSE as the
major performance indicator of the CGAN. The low value in MSE indicates our trained CGAN has the capability to
generate a group of realistic microstructures of spinodoid metamaterials with similar or the same user-defined Young’s
modulus and shear modulus. In addition, the performance of the trained CGAN is also evaluated by comparing each
input/actual property and its output/predicted properties of images generated by using the CGAN. To plot actual vs
predicted values of the elastic moduli, 2,000 property labels were randomly selected in the testing dataset. Our CGAN
generated 10 alternative microstructures for each selected label. The plots for the resulting actual vs predicted values are

shown in Fig. 12(c)-(e). In Fig. 12(c)-(e), the bandwidth of the scatter distribution for each property is wider than the
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training results of the independent solver (Fig. 8(b)-(d)). It is induced by outliers of the alternative microstructures with
large property errors. But in general, the scattered points distribute closely along the bisection line. It represents our
CGAN is capable of generating alternative microstructures with similar or the same properties as the input properties.
Among the elastic moduli, the coefficient of determination of G, becomes much smaller compared to the training
results of the independent solver. It is due to the error propagation from the solver and the lack of data points in the
training dataset of G|>. An extensive database allows the CGAN to explore the implicit property-geometry relations
more accurately. However, the higher performance of the CGAN requires additional runs of the FE simulation and
training process, which are both time-consuming. Thus, by considering the trade-off between efficiency and accuracy in

our CGAN, the values of the R” in Fig. 12 are acceptable.

IV. Discussion

A. Inverse design of spinodoid metamaterials

After assessing the performance of the CGAN, this section utilizes our trained CGAN to perform the inverse
design of spinodoid metamaterials. User-defined property labels are the inputs of the CGAN to generate a batch of
microstructures with the corresponding elastic moduli. To demonstrate the capacity of our CGAN to enrich data points
on the right tail of the histogram in Fig. 5(b), property labels are selected and include at least one elastic modulus with
a large value. Fig. 13 shows sample alternative microstructures for each selected property label of [E;, Ex, G12],
including [1251.4, 302.4, 45.6] MPa, [97.1, 965.7, 25.6] MPa, and [342.6, 513.2, 175.6] MPa. To select an appropriate
microstructure among these alternative solutions, the users are required to make a trade-off between accuracy in their
corresponding properties and uncertainty in the structural dimension during the additive manufacturing process. Similar
to the importance sampling, Fig. 14 demonstrates that our CGAN is able to enrich the database in the right tail of its
histogram with new 20,000 data points in an efficient way. Compared to the randomly generated method, our proposed
inverse design framework does not require spinodoid topologies with geometrical design parameters and property

calculations by finite element method (FEM). Note that the distribution of shear modulus for CGAN-outputted patterns

of the shear modulus in the training database.

with an input G, = 150.6 MPa is left-skewed in Fig. 14(c) due to the highly concentrated data points on the low values
z g g (b) rggiz % (c) % % %

[Es, E2z, Gaz] = [1251.4, 302.4, 45.6] MPa [E1s, Ezz, G12] = [97.1, 965.7, 25.6] MPa [Ex, Ez, Gn] [513.2, 342.6, 175.6] MPa
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Fig. 13 Sample alternative microstructures with three different input property labels of the CGAN
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Fig. 14 Distributions of elastic moduli from the original database and from the newly generated samples with
an input condition of (a) £;; = 965.7 MPa, (b) E;; = 1251.4 MPa, and (c¢) G|, = 175.6 MPa

To validate the microstructures generated by the CGAN, this study performs FE simulations of the generated
microstructures in accordance with the FEM model in Sec. 2B. Table 1 summarizes the validation results of sample
microstructures covering wide ranges of corresponding properties. The results include input property labels of the
generator, predicted properties of generated microstructures (pre-trained solver), and actual properties of generated
microstructures (FE simulation). Since the CGAN employs the MSE of the solvers as part of its loss function, the
difference between the input labels and predicted properties is relatively small compared to the actual properties. Owing
to the distribution of the training dataset, the difference increases as the values of the elastic moduli increase. In general,
the small difference among the validated results for each input label indicates that both the CNN solver and the CGAN
have a good performance in mapping property-geometry relations in a forward and inverse fashion, respectively.

Table 1 Validation results of spinodoid microstructures generated by CGAN

Case # 1 2 3 4 5 6
Spinodoid p / W ' - ;
microstructures / )
s 2 ) tin
CGAN e #
E 1 (input), MPa 1248.60 386.30 98.50 513.60 662.30 199.50
E11(CNN), MPa 1249.50 386.03 98.68 514.17 662.96 199.38
E 1 (FEM), MPa 1251.06 385.44 98.88 515.30 664.00 199.24
E(input), MPa 76.20 1911.20 960.30 1225.90 393.40 685.90
E>(CNN), MPa 76.34 1912.66 959.29 1224.99 393.64 686.56
E»(FEM), MPa 76.51 1915.28 957.64 1223.31 393.94 687.74
G12(input), MPa 20.73 50.17 72.08 132.00 160.86 201.62
G12(CNN), MPa 20.58 50.42 72.58 131.08 158.93 204.04
G 12(FEM), MPa 20.38 50.77 73.29 129.78 157.19 206.22

B. Mechanical behavior of spinodoid metamaterials
In our 2D study case, the resulting mechanical behavior of spinodoid metamaterials is represented as a second-order
homogenized elastic modulus tensor CA‘U- = [Ci1, C12, C13; Ca1, Co, Co3; C31, C32, C33]. The modulus tensor is linearly

elastic and obtained by applying average strain €;; on the RVEs, computing the volume-averaged stress o;; by FE
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simulations, and solving the stress-strain relationship defined as o;; = G j€ij. To further expand the design space, the
orientation of materials is manipulated to explore structures with outstanding properties. The anisotropic Young’s
modulus distribution along all directions d in the Cartesian coordinates is computed by the equation defined as
E(d) = (Z?,Fl é;jldi d;)~" [7]. Table 2 summarizes the resulting anisotropic Young’s modulus of five representative

microstructures. The longitudinal and transverse axes correspond to normalized E; and Ey;, respectively.

Table 2 Anisotropic homogenized Young’s modulus of the microstructures generated by CGAN

Case # 1 2 3 4 5
Spinodoid y ’ g '
microstructures
generated by
CGAN g
Anisotropic Ros o P ’
properties of E/E.,m L&) [T e
Young’s X/ ; 8 “
modulus ) '

Moreover, this study performs tensile tests and FE simulations to further explore the mechanical behavior of
spinodoid metamaterials under a small deformation with a strain & of 0.03. Table 3 summarizes the displacement
fields of the selected microstructures under the uniaxial tensile tests in two principal directions. With the displacement
fields achieved from ABAQUS, the axial and lateral changes in the displacement of microstructures are calculated
using MATLAB. The Poisson’s ratio is calculated by the engineering strains, which are derived from the averaged
displacements [33]. In Table 3, the overall deformation findings prove that our tailored metamaterials can retrieve a

negative Poisson’s ratio, which is advantageous for aerospace systems, such as deployable and morphing structures.

Table 3 Displacement fields of the microstructures generated by CGAN

Displacement field of uniaxial tensile test

Case Spinodoid
microstructures Longitudinal direction (X) Transverse direction (Y)
generated by CGAN
r
U, Magnitude U, Magnitude
+5.234e+00
137986400 1S 3ee100
+4.362e+00 +5.024e+00
+3.926e+00 +4.522e+00
+3.489e+00 +4.019e+00
] +3.053e+00 +3.517e+00

+2.617e+00 +3.014e+00
+2.181e+00 +2.512e+00
+1.745e+00 +2.010e+00
+1.309e+00 +1.507e+00
+8.724e-01 +1.005e+00
+4.362e-01 +5.024e-01
+0.000e+00 +0.000e+00
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Table 3 Displacement fields of the microstructures generated by CGAN (continued)

Displacement field of uniaxial tensile test

C Spinodoid
ase . . . S
microstructures Longitudinal direction (X) Transverse direction (Y)
generated by CGAN
U, Magnitude U, Magnitude
+7.677e+00 +6.005e+00
+7.037e+00 +5.505e+00
+6.398e+00 +5.004e+00
+5.758e+00 +4.504e+00
+5.118e+00 +4.003e+00
+4.478e+00 +3.503e+00
2 +3.839e+00 +3.003e+00
+3.199e+00 +2.502e+00
+2.559e+00 +2.002e+00
+1.919e+00 +1.501e+00
+1.280e+00 +1.001e+00
+6.398e-01 +5.004e-01
+0.000e+00 +0.000e+00
U, Magnitude U, Magnitude
+6.187e+00 +1.070e+01
+5.671e+00 +9.813e+00
+5.156e+00 +8.921e+00
+4.640e+00 +8.029e+00
+4.125e+00 +7.137e+00
3 +3.609e+00 +6.244e+00
+3.093e+00 +5.352e+00
+2.578e+00 +4.460e+00
+2.062e+00 +3.568e+00
+1.547e+00 +2.676e+00
+1.031e+00 +1.784e+00
+5.156e-01 +8.921e-01
+0.000e+00 +0.000e+00
U, Magnitude U, Magnitude
+5.827e+00 +7.380e+00
+5.342e+00 +6.765e+00
+4.856e+00 +6.150e+00
+4.371e+00 +5.535e+00
+3.885e+00 +4.920e+00
4 +3.399e+00 +4.305e+00
+2.914e+00 +3.690e+00
+2.428e+00 +3.075e+00
+1.942e+00 +2.460e+00
+1.457e+00 +1.845e+00
+9.712e-01 +1.230e+00
+4.856e-01 +6.150e-01
+0.000e+00 +0.000e+00
U, Magnitude U, Magnitude
+1.008e+01 +1.180e+01
+9.237e+00 +1.082e+01
+8.398e+00 +9.835e+00
+7.558e+00 +8.851e+00
+6.718e+00 +7.868e+00
5 +5.878e+00 +6.884e+00
+5.03%9e+00 +5.901e+00
+4.199e+00 +4.917e+00
+3.359e+00 +3.934e+00
+2.519e+00 +2.950e+00
+1.680e+00 +1.967e+00
+8.398e-01 +9.835e-01
+0.000e+00 +0.000e+00

Table 4 Poisson’s ratio values of the microstructures from Table 3

Case # 1 2 4
Poisson’s ratio, vi2 -0.3010 0.0346 -0.0953
Poisson’s ratio, v»; -0.0908 0.0288 -0.0875

V. Conclusion
We propose a framework based on CGANSs to perform the inverse design of 2D spinodoid metamaterials. The
developed CGAN framework leverages a pre-trained independent solver to facilitate our deep-learning network and
achieve accurate predictions for highly nonlinear property-geometry relations. To address the inverse design problem, the

proposed framework realizes microstructures with user-defined Young’s modulus and shear modulus values. Once it is
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well-trained, the deep-learning network can bypass numerical simulations and accelerate the tailoring of microstructures
to achieve various desired properties. With our CGAN framework, users can obtain a batch of optimal designs targeting
elastic moduli in a highly efficient way. These designs are alternative solutions to the many-to-many problems and
promote high freedom in the fabrication process. The results of our framework for mechanical behavior confirm that
the presented 2D spinodoid metamaterials have superior features, including negative Poisson’s ratio and an extensive
design space with anisotropic properties. Although the results of this study are based on a specific dataset for spinodoid
metamaterials with a particular porosity, the same framework can be extended to design other metamaterials with
microstructures represented by binary images (e.g. porous metamaterials [34], truss metamaterials [35], and chiral
metamaterials [36]). Considering the wide application of spinodoid metamaterials [7, 11], our design framework is not
limited to ULTEM 1000 and its base material can be replaced with various materials for specific applications, such as
ultra-high molecular weight polyethylene (UHMWPE) for bone replacement [37] and Polylactic acid (PLA) for energy
absorption [38]. Future work will concentrate on the inverse design of 3D spinodoid metamaterials using CGANs

facilitated with 3D CNNs.
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