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Abstract

Cellular mechanical metamaterials (CMMs) are assemblies of periodic representative volume elements which can be
engineered to exhibit unique mechanical properties. Recent advances in additive manufacturing (AM) have enabled
us to fabricate sophisticated architected materials with high precision. To increase and diversify applications in both
science and engineering practice, the rapid development of fabrication technologies necessities a novel and effective
algorithm to outline a theoretical property space for material design problems, allowing designers to acknowledge
the limitations of material performance, and to make informed trade-off between target objectives and competing in-
dustrial requirements. Inspired by biological evolution, the proposed work addresses a methodology for intuitively
mapping material-property spaces of CMMs by using the genetic algorithm as a sampling algorithm, consisting se-
lection of objective properties and stochastic search of property points. It approximates the property space more
faithfully and comprehensively than traditional mapping approaches. Considering the manufacturing defects of the
AM, uncertainties in properties are quantified via the deep learning method. Variations of properties induced by the
defects are illustrated as stochastic boundaries of the property space.

Keywords: Cellular metamaterials; Material property space; Uncertainty effects; Genetic algorithm; Neural network;
Numerical homogenization

1. Introduction

Cellular materials widely exist in natural biological systems such as honeycombs, bones, and woods [1]. Owing
to their unique features, including high stiffness and low density [2], they are commonly applied in aerospace [3, 4]
and transportation [5, 6] industries as structural panels. Over the past decade, advances in additive manufacturing
have enabled engineers to precisely control the characteristic material behavior on the macro-scale by tailoring the
geometric arrangements on the micro-scale. Tailoring the geometrical arrangements of the metamaterials dramat-
ically increases the design domain in engineering applications and produces a wide variety of metamaterials. For
example, auxetic metamaterials with chiral and anti-chiral configurations exhibit a negative Poisson ratio [7]. Porous
metamaterials containing periodically circular pores demonstrate high-energy absorb behavior [8]. Lattice metamate-
rials constructed by nodes and struts show excellent scaling of stiffness and strength with respect to their weight [9].
Among these various kinds of metamaterials, engineers require an intuitive tool/reference to select appropriate types
of metamaterials to satisfy particular application demands in science or engineering practice.

Material property space serves as a valuable tool/reference for material selection. Similar to Ashby’s chart [10],
it is a complete envelope that summarizes theoretically possible combinations of properties, denoted as experimental
points in the space. Its area represents the availability of the combined performance of a particular family of metama-
terials. Referring to their corresponding areas, engineers can check the limitation of the combined performances of
materials and compare them from one family to another to intuitively select an appropriate material. Furthermore, the
overlapping area between two property spaces provides alternative solutions for the materials for similar engineering
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purposes. It increases the freedom of the fabrication process and allows engineers to make trade-offs between tar-
get objectives and competing industrial requirements. In addition to material selections, exploring a comprehensive
material-property space is essential to machine learning (ML). For an inverse problem, an ML model cannot extrapo-
late well outside the training data domain [11]. In other words, if the input properties are not within the training data
domain, an ML model cannot achieve high accuracy for the prediction of the corresponding geometrical arrangement
of the material even if the model is well-trained. Therefore, the applicability of an ML model depends not only on the
architecture of the model itself but also on the region of its training data domain [11]. For a particular material system,
its comprehensive property space could provide a guideline to construct a database and improve the applicability of
its trained model in an inverse problem.

Analytical methods generate the property space by using bounding theories such as the Hashin-Shtrikman bounds
[12], and the Voigt [13] and Reuss [14] bounds. These theories predict points that are exterior to the bounds to
expand the property space. However, the points are non-physical and might not correspond to physically realizable
microstructures. What’s more, the bound determined by these theories is for a single property instead of simultaneous
combinations of properties. Thus, it is infeasible to employ these theories to plot the property space in 2D and
higher dimensions. Some computational methods utilize uniform sampling of geometric design variables to map
the property space. It is a rapid method to generate numerous possible properties corresponding to their randomly
generated microstructures. However, due to the central limit theorem, properties of sampled geometric patterns follow
a Gaussian distribution, which causes the corresponding property points to be centrally located in a portion of the
explored space. This reduces the efficiency of space exploration and produces a poor approximation of the property
space. Pareto Front techniques can provide more accurate estimations of the property space. This technique applies
various algorithms, including Adaptive Normal Boundary Intersection (ANBI), Adaptive Weighted Sum (AWS), and
Generalized Weighted Sum (GWS) [15, 16, 17]. To explore the property space, these algorithms are facilitated
with gradient-based optimization methods, such as simple quadratic programming for GWS and sequential quadratic
programming for ANBI and AWS. The drawback of Pareto Front techniques is relying on appropriately selected
initial guesses to process gradient-based optimization methods [18]. Their optimum solution might converge to the
local solutions considering the complexity of the design space caused by complicated geometric arrangements of
metamaterials. Moreover, the GWS can only identify points on convex surfaces, but the property space boundary
might vary based on the distribution of property points from convex to concave surfaces.

To address the potential issues mentioned above, our study develops a systematical framework to explore material-
property space using a genetic algorithm (GA). Traditionally, GA serves as a global optimization method to search
extreme properties in forward problems [19, 20, 21] or to obtain optimal microstructures with target properties in
inverse problems [22, 23, 24]. In these problems, after a stochastic search process of the GA, the engineers are usually
interested in its final optimal solutions rather than its children generated in each generation. On the contrary, our
framework employs the GA as a sampling algorithm to intuitively sample all possible microstructures (children of the
GA) for a particular material system based on biological evolution. After computing the structural properties of these
microstructures, the region of material-property space can be determined by bounding all of the resulting property
points. Due to biological evolution [25], springs of the GA from new generations will eventually be evolved into
property points that locate on or nearby the objective properties of the inverse problem. Inspired by that, our frame-
work uses the objective properties to promote the GA to sample possible microstructures in locations of unexplored
property spaces. It helps the sampling process generate possible property points exterior to the current incomplete
property space. To this end, our framework relies on the sampling algorithm that iterates steps between the selection
of objective properties (Fig. 1A) and the sampling of microstructures (Fig. 1B and 1C) to expand the property space
progressively until the resulting property space is maximal. The property space is visualized in a 2D material-property
chart (Fig. 1D). It contains all the possible combinations of two structural properties that are scattered in the same
plot. Each axis of the chart represents the structural properties of a particular material system, such as Poisson’s ratio
and Young’s modulus.

In this paper, to demonstrate its reliability and feasibility, the proposed framework is applied to explore material-
property spaces of a special but widely used class of cellular mechanical metamaterials (CMMs), which is 2D porous
cellular solids with periodic representative volume elements (RVEs) [26]. To perform material selections, this paper
mainly focuses on two families of the CMMs, one with RVEs consisting of 4 periodic unit cells and another with
RVEs consisting of 4 non-periodic unit cells shown in Fig 2. Compared to conventional non-architected structures,
uncertainties in the physical responses of the CMMs are impacted more by variations in geometric patterns of their
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RVESs owing to their complicated realization processes, such as Fused Deposition Modeling (FDM) and Fused Fila-
ment Fabrication (FFF) [27]. This work further studies the effects of manufacturing defects on the physical responses
of CMMs, which lead to variations in the region of the property space. The uncertainty of the material-property space
can be numerically quantified in various space areas determined by the Monte Carlo (MC) method. It can be visual-
ized as a variation interval of the space boundary, which is the reign highlighted in yellow shown in Fig. 1I-a. During
the cooling process of FFF/FDM, surface distortion appears for thermoplastic materials caused by various cooling
rates and complex porous microstructures in RVEs [28]. Due to the unique features of the geometric parameters of the
CMMs, slight variations in their values enable us to approximate the realization of this manufacturing defect. Consid-
ering expensive computations on structural properties, this study bypasses the finite element method and accelerates
the MC sampling (Fig. 1F) by using a deep learning approach (Fig. 1G). The approach can effectively predict the
structural properties (Fig. 1H) of various geometric patterns of the RVEs (Fig. 1E) realized by slight variations in the
geometric parameters. The flowchart of the proposed framework is shown in Fig. 1.

The rest of the paper is organized as follows. In Section 2, we define the microstructures of our CMMs and their
effective properties calculation by the homogenization method, develop a sampling method by genetic algorithm for
space exploration, and propose the Monte Carlo (MC) method facilitated by a deep learning model for uncertainty
quantification. In Section 3, we demonstrate our detailed procedures of mapping the material property space of the
CMMs step-by-step, check whether our explored property space is a full closure that contains all possible combina-
tions of structural properties, and quantify uncertainty in property space associated with the surface distortion. Results
of our explored material property space with deterministic and stochastic properties are provided in Section 3 as well.
Section 4 discusses possible applications and future works of our mapping framework. Section 5 is the conclusion.
To summarize, the contributions of this work are listed below:

o Select the CMMs among their families by comparing their mechanical properties in a compact way.

o Increase the applicability of the ML models for inverse design problems of the CMMs by referring to a maximal
material-property space.

o Visualize the effects of manufacturing defects on the mechanical performance of the CMMs intuitively through
various regions in the material-property space.

Part 1: Mapping a material-property space
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Fig. 1: Schematics of the presented procedures to map a material-property space under uncertainty (GA algorithm figure courtesy
of [29]).



2. Methodology

2.1. Definition of Geometric Patterns

To demonstrate our framework, this study focuses on mapping the material-property space of a special but widely
used class of CMMs, 2D porous cellular solids with periodic RVEs. The mechanical properties of these CMMs depend
on the geometry of the underlying unit cells, such as the shape of the pore as shown in Fig. 2. In unit cells of these
CMMs, the contours of the pores are four-fold symmetrical and defined as [26]:

r(0) = r,(1 + 1cos(40) + {rcos(80)) (D)

=Ly @)
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where 6 is the polar angle with 0 < 6 < 2n, r is the polar radius, L is the size of the unit cell, and ¢ is the porosity. The
geometric parameters { = ({1,{>) determine the family of different porous shapes. Fig. 2 demonstrates several sample
geometric patterns of unit cells with various pore shapes controlled by the parameters . In this work, L and ¢ are
fixed and equal to 10 mm and 0.45, respectively.
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Fig. 2: Sample porous shapes generated by the formulations given in Egs. 1 and 2.

The baseline geometry of this work is a representative volume element (RVE) with infills of unit cells described
by the parameterization in Eq. 1 and 2, as illustrated in Fig. 3. A geometric pattern of the simplest RVE consisting of
periodic unit cells (PUCs) is determined by two geometric parameters £; (i = 1,2). As the number of identical cells in
RVE becomes as large as n X n, the number of geometric parameters {; dramatically increases to 2 X n X n, potentially
leading to an increased level of randomness in geometric dimensions and corresponding properties of CMMs. Each
pair of geometric parameters ({) controls the associated contour of the particular unit cell in the RVE. All geometric
parameters are assigned in order as a geometric matrix shown in Fig. 3. In this work, two particular families of the
CMMs are investigated to perform the material selection through the comparison of their material-property spaces
shown in the discussion. Besides, this work chose 2 X 2 unit cells for mapping a material-property space of CMMs
under uncertainty to balance the number of geometric parameters and the availability of computational power.
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Fig. 3: Representative volume elements (RVEs) of the CMMs with (a) PUCs and (b) non-PUCs.



2.2. Computation of Elastic Properties

In the scope of linear elastic materials, the RVE homogenization method is applied to evaluate the equivalent con-
stitutive mechanical behavior of periodically patterned microstructures (geometric patterns of RVEs), called effective
structural properties. This work focuses on two of the most attractive structural properties of the CMMs in the recent
study, Young’s modulus and Poisson’s ratio [30, 31, 32, 33]. Combinations of these two properties are illustrated as
property points distributed in a 2D material-property chart (Fig. 1D). Each single UC and RVES with PUCs may
demonstrate isotropic properties due to the four-fold symmetry of UCs. However, the homogenized properties of
2D RVEs of non-PUCs are anisotropic due to the non-periodical assignments of UCs within the given RVE, which
expands the property space of RVEs significantly. For the consistency of our numerical cases, this work mainly ex-
plores the property space containing combinations of effective Young’s modulus (E;;) and Poisson’s ratio (v,) of the
CMMs, which are determined by applying strain tests in a longitudinal direction on a fine-mesh finite element model
shown in Fig. 4. This study employs an open-source Abaqus plugin called EasyPBC [34] to estimate the homogenized
effective elastic properties of periodic RVEs of the CMMs. The EasyPBC automatically defines the periodic boundary
conditions, loads, and interactions in a meshed finite element (FE) model of RVEs. In Abaqus, the FE simulation is
performed based on the homogenization method which requires numerically imposing uniform strains (Fig. 4) on
several independent sets of RVE’s surface to calculate specific elastic material properties [34]. The calculation of the
two effective properties (E; and vy,) is performed in an Abaqus—Python environment by using the equations defined
in Eqgs. 3 and 4 [34]:

Axial Tensile  XFyodat/A front
Axial strain AW/W

Ey = 3)

- Transverse strain  AH/H
Axial strain AW/W

where F044 18 the nodal force applied on sets of points on the boundary of the RVE, Ay, is the front surface area
which is equal to the height (H) of the RVE x unit thickness in 2D case, and W is the width of the RVE.
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Fig. 4: Deformation of the RVE under uniform strain test in a Fig. 5: Geometric Constraint.

longitudinal direction.

2.3. Sampling Method by Genetic Algorithm

In material design problems, the genetic algorithm (GA) is commonly employed as an optimization method
to retrieve optimal geometric patterns with the same or similar structural properties as given objective properties
[22, 23, 24]. Instead, this work employs the genetic algorithm (GA) as a sample algorithm to exercise geometry-
property models over a microstructure hull consisting of all possible geometric patterns of the RVEs. During the
stochastic searching process, our mapping framework is interested in collecting all individuals of the GA rather than
its optimal solutions. Each collected individual has a unique combination of structural properties associated with their
corresponding microstructures tailored by the GA. Their property information is represented as property points in a 2D
material property chart. The uniqueness of property points avoids redundant information for space determination. The
information contains their distributed density and locations in the chart. In our GA solution, the individuals are pro-
duced by uniform crossover with a prescribed crossover rate. With the uniform crossover, each geometric parameter
of reproduced individuals is randomly selected from one of the corresponding parameters of the parent chromosomes
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[35]. Meanwhile, the uniform mutation increases the diversity of the individuals and enables the GA to perform more
extensive exploration on microstructure hull (parameter space) of the CMMs. With the uniform mutation in the GA,
each geometric parameter is randomly selected for mutation with a associated probability rate [36]. This probability
rate is called the mutation rate and determines the probability of the selected parameters being mutated. After running
the GA with the given objective properties, the framework collects the individuals with unique structural properties
and scatters them into a material-property chart as property points. The bounded region of these property points (chil-
dren of the GA) illustrates the explored material-property space during the stochastic searching process of the GA.
Unlike the convex hull, this framework defines the region by using a built-in function in MATLAB called boundary,
which can precisely envelop the points by shrinking towards the interior of the convex hull [37]. What’s more, our
GA solution is assigned with a high mutation rate (defined in Sec. 3) to increase the diversity of the individuals and
provide better coverage of the microstructure hull [38, 39]. Consequently, it increases the diversity of property points,
resulting in a high possibility of discovering a comprehensive property space based on their point distributions.

A. Determination of initial property space B. Expansion of initial property space to maximal property space

1. Calculate two extreme properties 1. Generate new objective properties on 4. Determine
(Young’s Modulus and Poisson’s ratio) the boundary of the current property ¥’ expanded property
with the same interval drarget (i = 1,2...,n) space Wi, based on
v 7 these property points
2. Estimate of a possible property exterior to
space based on the extreme properties [ 2. Sample property points by running the ] the current property
GA with the new objective properties space

3. Uniformly sample objective
properties in the unknown space

v

4 )
4. Sample property points by running the
GA with previously sampled objective
properties

v

( . . )
5. Piece up bounded regions of the Maximal material property space ¥,
identical property points collected from

the processed GA

exist newly sampled
property points exterior to
the current property

Initial material property space ¥q

Fig. 6: Flowchart of sampling method including the selection of objective properties and the stochastic search algorithm of property
points.

The sampling method of our mapping framework is summarized in a flowchart shown in Fig. 6. The first part of
the method uses these property points as prior information to estimate an initial material-property space by piecing
up the bounded regions corresponding to various objective properties (Fig. 6A). To choose the objective properties,
the method first determines the extreme values of structural properties under consideration, Young’s modulus and
Poisson’s ratio (Fig. 6A-1), and then roughly estimates a possible material property space (Fig. 6A-2) with a rectangle
shape whose side length determined by the extreme values. After that, the objective properties are determined by
uniform sampling (Fig. 6A-3) in this rectangular material property space. To precisely estimate the initial material
property space of the CMMs, the GA processes the stochastic search algorithm (Fig. 6A-4) to check whether the
sampled objective properties are within the actual property space of the CMMs. Consequently, an initial material
property space can be determined by the overall space region covered by the convex hulls in a 2D material-property
chart (Fig. 6A-5). To maximize the region of the initial property space, the second part of the method selects new
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objective properties on the explored space boundary to push the newly generated geometric patterns from the GA
past the current boundary (Fig. 6B). It applies a similar sampling algorithm as the first part but with a different
selection method of objective properties (Fig. 6B-1). The objective properties are selected on the space boundary,
which induces the stochastic search algorithm to generate property points that bypass the current boundary (Fig.
6B-2). The algorithm progressively expands the property space (Fig. 6B-4) to be maximal until none of the newly
generated property points are located outside the current explored space (Fig. 6B-3). To validate the maximal region
of the explored property space, new objective properties are generated nearby and beyond the space. These objective
properties attempt to force the GA to search unexplored property spaces that might contain a new combination of
properties, which can be physically achieved by undiscovered geometric patterns of the RVEs in the microstructure
hull. After a new round of the stochastic searching process, the users can approximate its region to be maximal if
none of the children or property points locates exterior to the current maximal space.

The basic idea of sampling the property points is to solve the inverse design problem of CMMs by the GA.
This work formulates the inverse problem into a combined objective optimization problem that aims to minimize
the difference between the objective properties and predicted structural properties of the RVEs. By minimizing the
difference, the objective properties guide the GA to sample property points nearby desired locations, which could help
to define an initial property space or to bypass the explored property space. In this work, the objective properties are
the two structural properties of CMMs, Young’s modulus and Poisson’s ratio. The mathematical formulation of the
inverse problem reads as follows [24]:

Minimize : f({1, &, ..o &) = [W1(vi2 = vo)I* + [wa(E11 — Ep)I?

Find : { = (1,42, -+, &n) s

Subject to : ¢ < & < (UG = 1,2,...,n) )
rsin(0) + Ly, < %, rcos(0) + Ly < %

where (= (£,43.....{,) denotes the vector of design variables and geometric parameters of the CMMs. ¢~ and ¢V are
the lower and upper bounds of the design variables, respectively, and w is a weighted coefficient to rescale the two
effective properties in the same numerical level. v, and E, are the objective Poisson’s ratio and Young’s modulus of
the GA, respectively. In this work, the poor simulation results from ABAQUS are mainly contributed by failures to
generate feasible geometric patterns of the RVEs. For example, internal pore shapes beyond the RVEs lead to bad
connectivity of the structures. Moreover, thin connections between the four symmetrical parts cause a large chance
of structural failures under a small strain value. To avoid the above issues, the geometric constraint is assigned as
shown in Fig. 5. In the constraint, the smallest distance between the boundary of the pore and the edge of its unit
cell should be larger than a length tolerance, L;,;,, = Imm. If the geometric patterns violate the constraint, the value of
the objective function is appended with a penalty value, which is determined based on the level of magnitude of the
objective value.

2.4. Deep Learning Model

To determine the uncertainty of structural properties due to the stochastic design parameters, a straightforward
approach is to use the Monte Carlo (MC) method. As the number of samples increases, the number of forecasts
also grows to allow the occurrence probability of each outcome to be estimated with better accuracy. Substantive
and iterative simulations in the MC method result in a very high computational cost due to the expensive finite
element analysis in the RVE homogenization. As mentioned in the introduction, the slight variations in the geometric
parameters enable us to approximate surface distortion during the cooling process of the FFF/FDM demonstrated
in Sec. 3.3. With this feature, the surface distortion in our study is approximately parameterized by the geometric
parameters of the CMMs (See Sec. 2.1). Therefore, to accelerate the MC sampling, we can build a surrogate model
with inputs of the geometric parameters to bypass the expensive finite element (FE) simulations and accelerate the MC
sampling. In a forward fashion, the deep learning approach provides accurate predictions for structural properties of
RVEs at a relatively low computational cost compared to the FE simulations. In this study, a surrogate model is built
as a connected multi-layer neural network called a Multilayer Perceptron. Its hidden layers are made up of a set of
neurons with parameter sets (w) containing the weights and biases. In the neural network, the geometric parameters
(¢) are mapped onto their two structural properties, E and v, in a forward fashion. The objective of training the
surrogate model of neural network (NN) is to minimize the loss between actual values and predictions concerning the
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NN parameters, w. The performance of NN is evaluated in terms of the mean squared error and is defined in Eq. 6
[40]:

l n
min MSE = ~ > (i = 3 (©)
¢ n i=1

where y; is the actual property of CMMs, and y; is the property predicted by the trained surrogate model. For uncer-
tainty quantification of the space, the deep learning approach assists Monte Carlo simulation by effectively generating
a set of varying properties corresponding to an estimated range of values, as opposed to using deterministic design
variables.

3. Results

This section presents the numerical results of two families of the CMMs, the RVEs with periodical unit cells
(PUCs) and with non-periodical unit cells (non-PUCs). The framework includes four main steps: (i) discovering the
initial mechanical property chart, (ii) expanding the incomplete material-property space, (iii) validating the converged
material-property space to be maximal, and (iv) uncertainty quantification in the maximal property space. Here, a
case study of RVEs with PUCs demonstrates the detailed procedures of our proposed sampling algorithm for the
determination and validation of maximal material-property space. By considering their complex geometric patterns,
a case study of RVEs with non-PUCs illustrates the uncertainty quantification of its maximal property space. In
these study cases, the base material of the RVE is chosen as ULTEM® 1000, an amber transparent high-performance
polyetherimide (PEI) with isotropic elastic properties, i.e., Young’s Modulus of 3580 MPa and Poisson’s ratio of 0.36
at room temperature [41]. For all the study cases, the basic settings of the GA are almost the same to check the
compatibility of our sampling algorithm. The same settings of the GA include the stall generation limits, crossover
rate, and function tolerance of GA, which are set to 16, 0.8, and 1079, respectively. However, the population size and
maximum iteration number vary according to specified factors, such as the number of geometry parameters, locations
of selected objective properties, and certain procedures of the sampling algorithm (See details in Sec. 3.1). In addition,
the mutation rate is defined as 0.01 to obtain extreme properties in Fig. 6A-1 by solving the optimization problem
with a standard GA. The sampling property in Fig. 6A-4 and B-2 requires the GA with a high mutation rate of 0.8
which promotes more exploration in microstructure hulls. For each objective property, their stochastic search process
will be terminated when the relative change in the best fitness function value over the maximum stall generation is
less than the tolerance, or the maximum generation number is reached. The major numerical results are illustrated in
the following subsections, including convergence histories of material-property spaces of the two families (Figs. 11
and 15), maximal/converged material-property spaces of them (Figs. 12 and 16), satisfactory convergence behavior
of structural properties of RVEs with non-PUCs (Fig. 19), the performance of a well-trained neural network for
accelerating the MC method (Fig. 23), and variations in the properties and space boundary (Fig. 24).

3.1. Estimation of Material Property Space of RVEs with PUCs

Following the sampling algorithm in Fig. 7, our proposed framework explores the material-property space of
the simplest RVE consisting of periodic unit cells, whose geometric patterns are only controlled by two parameters
{i (i = 1,2) shown in Fig. 3a. Initially, there is no prior information about the actual property space, consisting
of possible property points that can be physically realized by tailoring geometry patterns of the RVEs. Instead of
random sampling in RVEs without clues, our framework processes the GA as a sampling algorithm with the objective
properties achieved by uniform sampling in a possible property space. The possible property space is a rectangle-
shaped region whose side lengths depend on values of extreme structural properties. The framework employs the
GA to determine the extreme properties to avoid local convergence in the optimization process due to the complex
parameter domain shown in Fig. 7a [42]. In this case, the objective function in Eq. 5 is replaced by E;; or v, for the
minimization and —E1; or —v, for the maximization with the same constraint. Given the population size defined as 32
and the maximum iteration number defined as 150, the ranges of Young’s modulus and Poisson’s ratio are estimated
by the GA, which are [704.62, 1284.58] MPa and [0.1074, 0.1939], respectively. To standardize the data and make
it easy to analyze, structural properties generated by the current and following steps of the expansion process are all
normalized using their extreme values determined in the current step.
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Fig. 7: Determination of initial material-property space: (a) contour of objective values in 2D parameter space, (b) uniform sam-
pling of objective properties in a possible property space, and (c) initial material-property space (normalized).

In Fig 7b, 64 property points are uniformly sampled in this rectangular-shaped property space and are defined
as objective properties of the GA. The stochastic search process samples property points surrounding these objective
properties and checks whether the objective properties are located in the actual property space. Thus, this framework
applies GA not only to estimate the region of the material-property space in longitudinal and transverse directions
based on the extreme properties but also to estimate the region from all other possible directions. For the sampling
purpose, the population size is reduced to 16, with the maximum iteration number defined as 100 in Step A-4 (Fig. 6).
It also helps to reduce the computational cost. The average errors obtained by the experiments between the objective
and predicted properties are 0.45% and 0.47% for Young’s modulus and Poisson’s ratio, respectively. These errors are
acceptable because the primary purpose is not achieving the global optimum. During the overall sampling process,
we only collect property points with unique combinations of two structural properties to avoid redundant information
for space determination. Consequently, 6406 property points are collected and denoted as blue dots in Fig. 7c.
Ultimately, the initial material-property space is determined by piecing up the bounded region of these property points
or the explored spaces of each run of the GA. Fig. 7c shows the initial material-property space (denoted as a light blue
region) illustrated by a normalized material-property chart, whose longitudinal and transverse axes are assigned with
Young’s modulus and Poisson’s ratio, respectively. The region of the space is defined by its boundary, denoted as a
red solid line in Fig. 7c.

However, the initial property space shown in Fig. 7c is incomplete and fails to cover all possible combinations
of structural properties. To this end, this work introduces an intuitive approach to expand the space region to the
maximum progressively. This approach begins with selecting 66 new objective properties on the boundary of the
initial property space, denoted as blue dots in Fig. 8a. Two neighboring objective properties have the same interval,
or the shortest Euclidean distance between them, dy,,¢.; = 0.06 shown in Fig. 8a. Since the expansion process intends
to discover property points (children) located exterior to the current space region, this framework selects objective
properties on the boundary instead of these selected within the space due to the distribution characteristics of the
GA’s children. After processing the 66 runs of the GA, the sampling algorithm generates 8801 new property points in
total. In Fig. 8b, all the points are scattered on the initial material-property chart. They are denoted as the blue and
orange points, representing the properties within and beyond the initial space, respectively. To expand the initial space,
the framework is only interested in the non-overlapping regions between the bounded region of the newly generated
points and the initial property space. The non-overlapping region is the newly expanded region of the property space.
By combining the region with the initial property space, a newly expanded material-property space is achieved with
enriched property points. Fig. 8c compares the regions between the newly expanded and initial property spaces,
bounded by a dashed orange line and a solid blue line, respectively.

Following the iterative loop in Fig. 6B, this framework continues to expand the material-property space by using
the sampling algorithm. In the study case, each iterative loop requires processing a large number of stochastic search
processes corresponding to numerous objective properties selected on the boundary. With computationally expensive
simulations in ABAQUS, the execution time of the single loop is enormous. To increase the computation efficiency of
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Table 1: Results of the GA with the sample violated objective properties.

Objective properties #

# Generations in total

Generation # (violated)

1 56 2,5,13,14,22
4 45 2
13 52 1,4
19 50 21,22
24 48 6, 14, 16, 18, 22
28 62 13
34 52 2,11,12,13,14, 17
37 47 2,6,10
52 46 1
58 46 12,13
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Fig. 9: Distribution of possible solutions of the sample violated objective properties with the indexes (a) #4, (b) #24, and (c) #37

from Table 1.

this iterative search process, this work studies the factors that increase the possibility of discovering property points
exterior to the space. After several experiments, their results indicate that newly generated property points exterior
to the space tend to appear in the first few generations of the GA if its objective properties selected on a newly
expanded boundary (bounded by a dashed orange line in Fig. 8c) are close to the boundary determined from the
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previous loop/step (bounded by a solid blue line in Fig. 8c). Table 1 summarizes the experimental results of sample
objective properties, which are close to the previous boundary. It summarizes the GA results, including the total
number of generations and the indexes of the generations where the property points are located outside the newly
expanded space. The experimental results can be visualized in Fig. 9, which illustrates the distribution of property
points for three sample objective properties from Table 1. To assess how far the objective properties are from the
previous boundary, this framework calculates the shortest Euclidean distance, dgresr, from the objective properties
to the previous boundary. The distance is determined in both longitudinal and transverse directions. In a normalized
space shown in Fig. 10a, the horizontal and vertical distances of dgporres are denoted as dpoundary,x and dpoundary.y»
respectively. Consequently, the distance constraint is defined as:

dboundary,x > 0.05 (7)

dbuumlary,y > 0.05 (8)

The distance constraint is violated, or the objective properties are close to the previous boundary if dpoundary,x and
dpoundary,y Of the objective properties are both less than 5% of the normalized ranges of two properties. The range is
equal to one since it is defined by extreme properties from step A-1 (Fig. 6). The distance constraint begins to apply
in the second expansion loop. In this loop, 56 new objective properties are selected on the newly expanded space
boundary (Fig. 10b). Among these, 29 objective properties violate the distance constraints. They are processed in the
GA with the reduced maximum iteration number. The violated objective properties are circled in red, shown in Fig.
10c. From Table 1, the maximum iteration number can be significantly reduced from 150 to 25. In the section on
numerical results, this framework employs the same distance constraint and reduced maximum iteration number for
the following expansion loops of both RVEs with PUCs and non-PUCs.

After three expansion loops, the material-property space converges. In the fourth expansion, none of the newly
generated property points is exterior to the previous space boundary. In Table 2, the number of violated objective
properties is the same as the number of objective properties selected on the space boundary determined in the fourth
expansion. It indicates the space barely or doesn’t expand the space in the last expansion loop, which also implies
the convergence of the space. The numerical results of the whole space exploration process are summarized in Table
2. It contains the number of total objective properties, violated objective properties, and newly generated property
points in each step. Convergence histories of the normalized space boundary and space area are shown in Fig. 11a and
Fig. 11b, respectively. In summary, 29113 property points are produced through the whole space exploration process,
denoted as blue dots in the converged property space shown in Fig. 12.

In the post-process, to validate that the converged property space is maximal, 62 new objective properties with
the same shortest Euclidean distance from its boundary, d,qjidarion = 0.03, are generated in an outward direction that is
normal to the final normalized space boundary and picked in Fig. 13a. We assumed that the GA has the capability of
creating several possible property points that approach these new objective properties and proves that these objective
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properties are achievable and within the actual property space. By considering that the number and diversity of the
children might restrict the expansion of the material-property space, the population size and the maximum iteration
number are increased to 32 and 150, respectively. However, after running the GA, all new 6669 property points cluster
nearby the boundary of the converged property space in Fig. 13b and cannot bypass the boundary. It indicates that
the assumption is invalid. Thus, the converged material-property space of RVE with PUCs is validated, which has the
maximal space region that covers all possible combinations of Young’s modulus and Poisson’s ratio as shown in Fig.
12.

Table 2: Summary of the whole space exploration process of the CMMs with PUCs.

Step # # Objective properties (total) # Objective properties (violated) # Property points
0 64 - 6404
1 66 0 8801
2 56 29 5609
3 57 45 4400
4 57 57 3899
a . Initial boundary b_
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1 2"Y Expanded boundary 0.3376
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Fig. 11: Convergence histories of (a) the normalized property space boundary and (b) space area.
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3.2. Estimation of Material Property Space of RVEs with Non-PUCs

The framework is also applied to explore the material property space of CMMs with non-PUCs, whose geometric
patterns are controlled by a geometric matrix containing eight geometric parameters [{1, {2, {3, {4, {5, {6, {7, 3] shown
in Fig. 3b. Following the same exploration procedure shown in Fig. 6, the extreme properties are first determined by
the GA. Compared with the parameter space in the previous study case, its dimension in this study case increases from
2D to 8D due to increases in the complexity of geometry patterns of the RVEs. In a high-dimensional parameter space,
premature convergence is more likely to appear during the stochastic searching process. To maintain the performance
of the GA, the population size and the maximum iteration number are increased to 64 and 250, respectively. With
these settings of the GA, the longitudinal and transverse bounds of the property space are determined as E € [731.42,
1244.40] MPa and v € [0.0904, 0.2153] MPa. Once the rectangular-shaped possible property space is defined, this
framework uniformly samples 64 objective properties in the space, illustrated in Fig. 14a. For exploring an initial
property space, these objective properties are applied to sample property points of the CMM with non-PUCs, which
contain combinations of properties that can physically be realized by their corresponding geometric patterns of the
RVEs. For the sampling algorithm, the new population size and maximum iteration number are defined as 32 and 150,
respectively. It allows the framework to discover 21481 property points. The average errors for Young’s modulus and
Poisson’s ratio are 0.41% and 0.48%, which are assumed to be in acceptable ranges for sampling purposes. In Fig.
14b, the initial property space is achieved by combining the bounded regions of these sampled points.
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Fig. 14: Determination of the material-property space: (a) uniform sampling of objective properties in a possible property space,
(b) initial material-property space (normalized), and (c) objective properties selected on the space boundary.
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Table 3: Summary of the whole space exploration process of the CMMs with non-PUCs.

Step # # Objective properties (total) # Objective properties (violated)  # Property points
0 64 - 21481
1 64 0 14703
2 57 8 12605
3 52 26 8851
4 50 29 8240
5 52 33 8005
6 50 33 7883
7 50 38 6442
8 50 47 3564
9 50 50 2432
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To check the compatibility of the framework, the settings of the following iterative expansion loops are the same
as in the previous study case. The settings include dy,¢.; = 0.06 for selecting the objective properties on the boundary
(Fig. 14c) and tolerance = 0.05 for defining the distance constraint. The property space eventually converges after
expanding the space region eight times. Convergence histories of the normalized space boundary and space area are
shown in Figs. 15a and 15b, respectively. Combined with property points in estimating initial property space, 94206

Fig. 16: Converged property space: (a) the normalized space and (b) the original space.
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unique combinations of Young’s modulus and Poisson’s ratio are densely scattered in the converged space during the
whole space exploration process of the CMMs with non-PUCs (Figs. 16a and 16b). Table 3 summarizes the numerical
results of the whole process. In Fig. 15a, it is noticed that the longitudinal and transverse bounds of the property space
significantly enlarge, as well as the bounds in the other directions. From Fig. 16b, the extreme values of Young’s
modulus and Poisson’s ratio increase to [717.37, 1272.83] MPa and [0.0867, 0.2547], respectively.
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Fig. 17: Post process of the space exploration: (a) objective properties for the validation and (b) newly generated property points
from the validation.

Besides, the converged property space is required to be validated as the maximal space. With d,ujigasion = 0.03,
52 new objectives properties are picked nearby its converged boundary for processing the validation step (Fig. 17a).
Considering the expansion limits caused by the limited diversity and quantity of the property points, the population
size and the maximum iteration number increase to 64 and 250, respectively. After all, in Fig. 17b, none of the
new 34893 property points in the validation step can bypass the converged boundary and only infinitely approach the
boundary. Thus, the converged property space (Fig. 16) is successfully validated as the maximal space.

3.3. Uncertainty Quantification (UQ) in Property Space

Considering structural complexity, this paper aims to quantify the uncertainty in the material-property space of the
RVEs with non-PUCs. Here, the uncertainty of properties is mainly induced by surface distortion in fused filament
fabrication (FFF) [43]. For FFF-printed polymer parts, the defect appears due to uneven thermal shrinkage from their
poor heat conduction and residual stress from their various thicknesses [44, 45]. This study simulates the manufactur-
ing defect by varying the porous shapes within RVEs. To simplify this simulation, this study characterizes the variation
by eight geometric parameters from the geometric matrix shown in Fig. 3b. As illustrated in Fig. 18, a minor change
in the parameter values allows for slight expansion and shrinkage in the porous shapes from different polar angles (6
in Eq. 1). By referring to tolerances in FFF printing [44, 46], the uncertainty levels of the geometric parameters are
specified in three tolerance cases: d{; ~ U(—10%, +10%), d{; ~ U(-20%, +20%), and d{; ~ U(-30%, +30%). With
the fixed side length of the RVEs L = 10mm, the tolerances of polar radius (r) are +£0.09mm, £0.19mm, and +0.28mm
corresponding to these three tolerance cases.

a. o o b.
|

B

Case #1 Case #2 Case #3 Case #1 Case #2 Case #3

Porous shape (original) Porous shape (with tolerance)|

Fig. 18: Variations in the porous shapes with three tolerance cases (+10%, +20%, 30%): (a) [{1,{2] = [0.01089, -0.2012] (b)
[{1, &1 = [-0.1598, —0.1797].
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Due to its simplicity and high dimensional stochastic design space with eight geometric parameters (Fig. 3b),
the Monte Carlo (MC) method is utilized to quantify various outcomes for structural properties under the effects of
uncertainty arising from manufacturing defects [47]. In Fig. 19a and 19b, after 50,000 MC iterations, satisfactory
convergence behavior is obtained for the first (mean, m,), second (standard deviation, m;), third (kurtosis, m3), and
fourth (skewness, my) statistical moments for both Young’s modulus and Poisson’s ratio. The distribution histograms
of the two properties shown in Fig. 19c suggest that the two properties can be approximately considered as normally
distributed random variables. In Fig. 19c, the geometry constraint induces the lack of samples of Young’s modulus
in the left tail of its histogram. Based on the satisfactory convergence behavior, our study processes MC sampling
with 50,000 samples for 120 representative property points selected on the maximal space boundary (Fig. 21). These
property points represent the contour of the maximal space region and contain information on the deterministic ge-
ometry matrix consisting of eight geometric parameters. In the aforementioned three tolerance cases, the geometric
matrix contains stochastic geometric parameters, which demonstrate uniform distributions and contribute to the vari-
ations in their geometric patterns. Consequently, the variations lead to uncertainties in the structural properties. The
combination of these uncertainties alters the deterministic region of the maximal material-property space.
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Fig. 19: Pre-processing of the MC method: (a) convergence histories of statistical moments for Young’s modulus, (b) convergence
histories of statistical moments for Poisson’s ratio, and (c) distribution histograms of the two properties.

Here, the deep learning method is applied to accelerate the MC sampling. For numerous samples of the geometric
parameters, it helps to predict the corresponding structural properties in a forward fashion efficiently. The database is
built by collecting all the property points throughout the space expansion and validation process in Sec. 3.2. It consists
of 129099 pairs of geometric matrices and their related properties, including Young’s modulus (E) and Poisson’s ratio
(v). In the database, the property distribution is shown in Fig. 22a. However, the convergent behavior of the GA’s
children induces a specific pattern appearing in the distribution of samples from the database, such as the clusters with
high sample density shown in Fig. 20b. It can introduce error or bias to the outcomes of an NN trained with this
database. To prevent this potential issue, sample data in these clusters are partially eliminated to achieve dispersed
distribution in the data domain (Fig. 20c). It is performed by evaluating sample density with Ripley’s K-Function, a
tool for analyzing point patterns in a 2D space [48]. After downsampling the samples in these clusters, the modified
database remains with 73204 geometry-property pairs showing an approximate uniform distribution in Fig. 22b. This
study splits the database into 80% of it for training and 20% for testing. Based on their extreme values, all data in
the database are normalized to a common scale from O to 1. Our NN is devised into Multi-layer perception (MLP)
architecture, constructed as two fully connected layers with 25 neurons (Fig. 23a). It is developed and tested using
Keras with a TensorFlow backend and optimized in terms of the mean square error (MSE) metric. A regularization
technique called early stopping is applied to prevent overfitting, which allows the training process to run for 37 epochs
in total. The training process takes approximately 5.5 minutes on a single tensor processing unit version 3.0, which has
16GB of high-bandwidth memory pre-core. After the 37 epochs, the MSE is minimized to 1.7752e-04 and 1.7815e-04
for the training and validation datasets, respectively. Their small values and stable convergences (Fig. 23b) indicate
the excellent capability of the NN to predict Young’s modulus and Poisson’s ratio as a function of user-defined design
parameters. Furthermore, with 26684 samples from the test dataset, the capability can also be proved by showing
the actual properties from the database and the predicted properties from the NN in the same plot. In Fig. 23c, a
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good fitness in the bisection line and narrow bandwidth of the scatter distribution validate the reliability of our NN.
The good fitness can be numerically represented as the coefficient of determination (R?) values of 0.9963 for E;; and

0.9973 for vy,.
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actual and predicted properties.

Once the NN is well-trained, it can accelerate the MC sampling and efficiently predict structural properties asso-
ciated with stochastic geometric parameters from three tolerance cases. To quantify the stochastic responses in the
statistical sense, the mean values of two properties over the pre-defined uncertainty range and corresponding variances

are obtained as follows:

— 1
P() = Nzﬁlpi@i)
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where N is the size of MC samples, {; is the geometric matrix of stochastic design parameters, and P denotes the
structural properties under uncertainty. The 95% confidence interval of the structural properties under uncertainty can
be determined as:

Posq, (i) = P(5) + 207p(L)) (1)

For the 120 selected property points, their mean values and corresponding variances are shown as 95% confidence
intervals with error bars in Figs. 24a and 24b. By combining the interval regions of the two properties, the uncertainty
in material-property space is determined. It can be visualized as variation intervals of the space boundary in the 2D
material-property chart shown in Fig. 24c. Also, the uncertainty in combinations of two properties can be numerically
represented as variations in the maximal space area shown in Table 4 with the three tolerance cases.
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Fig. 24: Variations in properties associated with the three tolerance cases: (a) error bars for Young’s modulus of all the property
points for the UQ, (b) error bars for Poisson’s ratio, and (c) variation intervals of the maximal space boundary

Table 4: Summary of normalized areas under the three tolerance cases.

Case #0 (x0%) Case #1 (x10%) Case #2 (x20%)  Case #3 (£30%)
Normalized area  0.6750 0.6484 0.6228 0.5963

4. Discussion

The numerical results from the previous section demonstrate that our proposed methodology can precisely de-
termine the maximal material-property space of the CMMs and effectively quantify uncertainty in the space area
associated with the surface distortion. However, the major drawback of our methodology is the high computational
expense of the whole exploration process due to the stochastic searching algorithm. For example, exploring and vali-
dating the property space of RVEs with PUCs requires the total number of selected objective properties to be as high
as 362. These objective properties contribute to 362 runs of GA to process the sampling algorithm and complete the
exploration process. Although time-consuming, our methodology is not content with a rough approximation of the
property space with a small region and ends with a preliminary discovered property space in Fig. 7c and 14b. Instead,
with the iterative searching algorithm, our methodology continuously expands the property space and approaches its
maximum. Moreover, the mapping procedure is only required once for a specific type of metamaterials. Besides, we
compare values of the calculated Hashin-Shtrikman (HS) bounds to the extreme values retrieved from the presented
material property space boundary. The range of the calculated HS bounds for vy, is [0.1521, 0.3172]. It cannot cover
the range of effective Poisson’s ratio obtained by the presented methodology, which is [0.0867, 0.2547]. The delicate
design of geometric patterns of RVEs induces the minimum v}, in material property space to fall beneath its lower HS
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bound. Thus, the HS bound cannot provide an accurate range of Poisson’s ratio. In addition, the work of Zimmerman
et al. [49] declares that it is erroneous to determine the HS bounds of Poisson’s ratio with the knowledge that shear
and bulk moduli computations are erroneous. For this reason, the HS bound is not an appropriate choice for checking
the limits of the selected material properties in this work. Besides, this section discusses possible applications of
the presented material-property space exploration strategy, including the selection of materials among their families,
assessment of the applicability of NN based on its data domain, and uncertainty quantification of multiple properties
as a result of manufacturing defects. Our future works are summarized in this section as well.

4.1. Material Selection

In engineering design, material selection charts are a simple and quick way of initially screening materials for a
particular application [50]. In this study, a material selection chart can be achieved by plotting all resulting material-
property spaces obtained through our methodology in the same 2D material-property chart shown in Fig. 25. Our
material selection chart has similar functions as Ashby’s charts [51]. To assess materials’ suitability for a given
application, the chart screens out materials based on the coverage corresponding to their space regions in the same
selection chart. In our study scenario, the space region of RVEs with non-PUCs (bounded with a blue line) is much
more comprehensive than that of RVEs with PUCs (bounded with a green line) as illustrated in Fig. 25. For RVEs
with non-PUC, the wide coverage of their space region is due to their complex geometric patterns containing various
combinations of unit cells. In material applications, a narrow space region (RVEs with PUCs) requires trade-offs
between two material properties to achieve users’ requirements [50]. An expansive space (RVEs with non-PUCs)
offers more options in combination with two properties. It allows its family of materials to have a broad application
in engineering design. Moreover, in Fig. 25, the overlapping area of the charts (bounded with a red dotted line)
provides alternative solutions in manufacturing processes. In this area, RVEs with PUCs share similar mechanical
performance as RVEs with non-PUCs but possess simple geometric patterns of RVEs, which are easy to fabricate
in manufacturing. Besides, in Ashby’s chart, experimental data for each material family are clustered into multiple
regions roughly shaped as bubbles [51]. With our methodology, the space region not only approximately reaches the
maximal but is also precisely enveloped with a well-defined boundary. The boundary is initially determined based on
a convex hull containing all the feasible property points from the exploration process. It can further shrink towards
the hull’s interior to represent the space region more precisely. It ensures the accuracy and reliability of material
selection. To further proceed with the material selection process, the screening of materials can be followed by
ranking the candidate materials using the analytical hierarchy process as the main Multi-Criteria Decision Making
methodology for specific manufacturing processes [52].

Space boundary (RVES with PUCs) 1 - Property points from uniform sampling
2 Space boundary (RVEs with non-PUCs) 0.26 ——— Maximal space boundary
0.26 [iZ !Overapping area :
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Fig. 25: Material selection chart of two families of the Fig. 26: Distribution of property points from the uniform sam-
CMMs including RVEs with PUCs and RVEs with pling and the maximal material-property space boundary
non-PUCs from Sec. 3.2

4.2. Applicability of Neural Networks

The deep learning method opens new doors to designing micro-structured materials effectively by replacing the
computationally expensive finite element simulations. Since the neural network (NN) only extrapolates well within
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the data domain defined by its database for the training process [11], the coverage of the data domain is important
for the applicability of the NN. In material design, the database usually contains pairs of geometry and properties. Its
data domain of properties can be represented as a material-property space with properties plotted along each axis [53].
Therefore, the applicability of the NN can be represented by a material-property space containing all property points
from the database. In a forward fashion, the maximal space boundary (denoted as a red line in Fig. 26) is treated as
a reference to assess the applicability of the NN in predicting material properties. Theoretically, the wider the data
domain covers in the maximal material-property space, the better the applicability of its NN is for a specific class
of metamaterials defined in the database. Besides, although there has been research about advances in various deep-
learning methods for material design problems, database generation has not been thoroughly investigated. A common
method of database generation is the uniform sampling of design variables. To compare with our sampling algorithm,
a new database of RVE with non-PUCs is built using uniform sampling with the same number of property points,
which retrieves a maximal property space. Due to the central limit theorem, most of them (denoted as red dots in
Fig. 26) become concentrated around a central position of their distribution and restrict the spread of the data to reach
its peripheral unexplored material-property space. In the periphery of the data domain, the lack of data might induce
bias and errors during the training process of the NN. On the contrary, during the iterative expansion process, our
sampling algorithm continuously generates property points (denoted as blue dots in Fig. 16) to fulfill the region near
the space boundary. With the K-function and down-sampling method, our database becomes more evenly distributed
and alleviates the issue mentioned above. Moreover, with the same number of samples, our sampling provides wide
coverage of the data domain, which provides better applicability for the NN compared to the domain achieved by
uniform sampling.

4.3. Uncertainty Quantification in the Property Space

With advances in additive manufacturing resulting in the proliferation of metamaterials, an evaluation of their tol-
erance to manufacturing defects is vital. Any deviation from the intended geometry is possible to alter the mechanical
properties of printed parts. This paper mainly studies the impacts on the structural properties of the CMMs induced
by surface distortion during the FFF printing process. In Fig. 24c or 27a, variation intervals of the maximal space
boundary allow for visualizing the impacts on combinations of the two properties under consideration, Young’s mod-
ulus (E1;) and Poisson’s ratio (vi;). Both Fig. 24c or 27a and Table 4 indicate an approximately linear relationship
between variations in the maximal space area and tolerances in geometric variables. In general, as the uncertainty
level of design parameters increases, the confidence interval of properties is expanded (Figs. 24a and b), leading to a
larger shrinkage of the property space (Fig. 24c or 27a). Besides, the variation interval expands as Young’s modulus
decreases in Fig. 24c or 27a. It indicates that the defect has less impact on the two properties of RVEs with high
E,. The complexity of geometric patterns shown in Fig. 27a appears to explain well the extent of the impact causing
the variations in properties. As Young’s modulus decreases, the complexities of the pore shapes in RVEs increase,
leading to higher uncertainty of mechanical performances. Here, this paper makes a further investigation of an indi-
vidual property instead of combinations of the two properties. To have a detailed look at the uncertainty, it studies
the effect of manufacturing defects on an individual property not only based on property points on the boundary (Fig.
27a) but also on that within the space (Fig. 27b). In Fig. 27b, seven representative property points are selected
in the space. Their variation intervals and corresponding geometric patterns indicate a similar trend of uncertainty
along with the axis of Young’s modulus. Besides, for the selected points in Figs. 27a and b, Table 5 summarizes the
average percentage differences (%diff) between their deterministic properties and properties under the three tolerance
cases concerning their deterministic properties. The larger percentage values in the first row of Table 5 indicate that
Young’s modulus of RVEs is more sensitive to surface distortion than Poisson’s ratio. The statement is also illustrated
by the large shrinkage of the property boundary along the axis of Young’s modulus. The above comparison results
and statements can also be proven by comparing standard deviations (o) between the two properties. For these points
selected on and within the boundary, the standard deviations of properties are normalized with their extreme values
and summarized in Table 6 for the three tolerance cases. From the statistics, the uncertainty in the geometric patterns
of the RVEs has a relatively large influence on Young’s modulus of the CMMs compared to Poisson’s ratio, leading
to relatively large percentage differences in Young’s modulus.
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Table 5: Summary of average percentage differences between deterministic and stochastic properties of the seven selected points
under the three tolerance cases

Case #1 (x10%)  Case #2 (x20%)  Case #3 (£30%)

%diff of Ey; 0.59% 1.19% 1.79%
%diff of vi, 0.56% 1.14% 1.60%

Table 6: Summary of average normalized standard deviations of the seven selected points under the three tolerance cases

Case #1 (x10%) Case #2 (£20%) Case #3 (£30%)

O normalized OF E11 - 0.0541 0.1082 0.1623
O normalized OF V12 0.0488 0.0964 0.1452

Deterministic boundary 0.26 — Deterministic boundary
: —Tplerance = £10%
0.24 olerance = +20%
Tolerance = £30%
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Tolerance = £20%
Tolerance = +30%
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Fig. 27: Variation intervals of the three tolerance cases for property points selected (a) on the maximal material-property space
boundary and (b) within the space boundary.

4.4. Future Works

There are some topics worth examination and further study in the future. First, it is not difficult to increase
objective properties selected on the space boundary to explore more undiscovered property points that are possibly
exterior to the current space. It could lead to a reduction in the number of space expansion loops. However, it
is challenging to determine the appropriate amount of possible property points to finalize a material-property space
since this requires balancing the benefits of comprehensive solution distributions in the space against the drawbacks of
high computational expenses of the GA. The effectiveness of the number and diversity of possible solutions in GA is
an essential question for future studies. Secondly, apart from uniform sampling, other random sampling methods are
available for sampling objective properties to determine an initial material-property space, such as Latin hypercube
sampling, simple sequential inhibition process [54], and nonaligned systematic sampling [55]. These methods produce
samples with low discrepancy (dispersed widely within their bounds) while maintaining samples with high diversity
(distributed randomly) [55]. It would be interesting to test with new sampling methods and compare areas of their
newly generated initial property space.

The paper aims to provide brief insights into uncertainty in combinations of two properties by the visual effect
shown as stochastic boundaries of a material-property space. To this end, the surface distortion is simplified as the
variation of the geometric parameters. However, a more accurate representation of this defect can be achieved by
parameterizing it as the differences of centroid locations, surface curvatures, and areas of the pore between the printed
and simulated model. In the future, we plan to physically print our CMMs as thin structural panels and construct
this stochastic representation based on the experimental data of our printed models. Similar to the surface distortion,
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uncertainty arising from any other manufacturing defects can be efficiently quantified by the Monte Carlo sampling
method facilitated by deep learning with fully connected layers as long as the defects can be parameterized [56].
However, in some cases, it may be difficult to parameterize the defects in manufacturing. In such cases, convolutional
neural networks (CNNs) can be used to detect manufacturing defects by extracting features from the given images
[57, 58, 59]. With the application of CNNs, the stochastic boundaries of material property spaces associated with
more complex manufacturing defects can also be determined.

Currently, our study mainly focuses on the linear elastic properties of CMMs under the assumption of small de-
formations. Accordingly, the displacement of RVEs should be small enough such that the changes in the stiffness of
the material due to the loading can be neglected [60]. To determine the nonlinear properties of the CMMs, uniaxial
strain tests with a large deformation causing the materials to display plastic or hyper-elastic behavior should be con-
sidered [26]. In that case, the effective properties of RVEs are no longer constant like the materials within the elastic
region and they vary based on the prescribed boundary condition (specifically uniaxial stains applied on the surface of
RVEs) [26]. In the future, our presented material property space framework can be integrated into nonlinear property
calculation by utilizing specific boundary conditions.

Lastly, in addition to the two properties studied in this paper, there are many other interesting combinations of
properties for various engineering applications, such as porosity and Young’s modulus, shear modulus and Young’s
modulus, etc. The work of Omairey et al. [34] illustrates their proposed ABAQUS plugin called EasyPBC has a wide
range of applications for RVEs with isotropic or anisotropic properties, RVEs in 2D or 3D, and RVEs of homogenous
or composite materials [34, 61, 62, 63, 64, 65, 66]. In future works, a 2D material property space is developed by
EasyPBC to represent mechanical properties along two different directions of their RVEs, such as E; and E»; v and
Va1, etc. It is a possible avenue for further research on many kinds of material-property spaces according to academic
and industrial requirements.

5. Conclusion

This paper describes an exploration approach facilitated by the selection algorithm of objective properties and
sampling algorithm of property points for mapping a maximal material-property space and generating diverse micro-
structural sets of cellular metamaterials. The 2D material-property space resulting from the proposed approach is a
reliable representation of true combinations of two properties under consideration in academic and industrial appli-
cations. Our mapping framework overcomes potential issues of mapping methods in recent studies discussed in the
introduction. Unlike the analytical methods (Hashin-Shtrikman, Voigt, and Reuss bounds), our sampling algorithm
allows users to explore the space in 2D by solving inverse design problems with multiple objective properties. Com-
pared to the uniform sampling method, our framework progressively expands the incomplete property space to a full
closure that provides a relatively more comprehensive estimation of the property space. In addition, the property
space boundary is defined by a built-in function in MATLAB called boundary. With the benefits of this function,
we overcome the issue of GWS and allow the users to define the space boundary that varies from convex to concave
surfaces. In comparison with ANSI and AWS which explore the space boundary with gradient-based methods, our
mapping framework utilizes a gradient-free method, GA, which is processed with a high mutation rate to prevent fast
convergence of optimal solutions while increasing the diversity of the individuals of each generation. This increases
the possibility of building an expansive property space.

Besides, the discussion section demonstrates the use of material property spaces of multiple families of the CMM
as a material selection chart to effectively screen out the inappropriate families based on their space region and in-
tuitively pick geometric patterns that are easy to manufacture from the overlapping areas. In addition, this paper
compares the performance of our proposed sampling algorithm to traditional algorithms for building a database of
the NN and finds that our algorithm obtained broader and more evenly distributed property points than traditional
algorithms for the same number of samples in the data domain, which guarantees the well-applicability of the NN in
the material design problem. As a practical use case, our study considers one of the defects in additive manufacturing,
called surface distortion in FFF printing. Uncertainty in the material-property space (combinations of two properties)
associated with this defect can be visually demonstrated as variation intervals of its space boundary and numerically
represented as variations in its space area under the different tolerance cases.

In this study, this GA-based approach presented a new avenue for exploring a material-property space. It can be
extended to map property spaces with other interesting combinations of properties and to investigate more complex
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material systems with anisotropic properties in the future.
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