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Accurate numerical and physical models play an important role in modeling the spread of infectious
disease as well as informing policy decisions. Vaccination programs rely on the estimation of dis-
ease parameters from limited, error-prone reported data. Using physics-informed neural networks
(PINNs) as universal function approximators of the SIR compartmentalized differential equation
model, we create a data-driven framework that uses reported data to estimate disease spread and ap-
proximate corresponding disease parameters. We apply this to data from a London boarding school,
demonstrating the framework’s ability to produce accurate disease and parameter estimations despite
noisy data. However, real-world populations contain sub-populations, each exhibiting different lev-
els of risk and activity. Thus, we expand our framework to model meta-populations of preferentially-
mixed subgroups with various contact rates, introducing a new substitution to decrease the number
of parameters. Optimal parameters are estimated through PINNs which are then used in a negative
gradient approach to calculate an optimal vaccine distribution plan for informed policy decisions.
We also manipulate a new hyperparameter in the loss function of the PINNs network to expedite
training. Together, our work creates a data-driven tool for future infectious disease vaccination ef-
forts in heterogeneously mixed populations.
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1. INTRODUCTION

In light of the millions of confirmed COVID-19 cases across the globe, understanding the trans-

mission dynamics of infectious diseases through modeling, analysis, and simulation is essential

for not only predicting disease spread but also informing effective policy interventions to com-

bat it. After the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was

first identified, governments were forced to interpret the evolving pandemic landscape to create

effective policies, relying on data visualization tools and statistical models to understand disease
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spread both locally and globally.

To address this demand for accurate intervention simulation, Kerr et al. (2021b) at the In-

stitute for Disease Modeling published Covasim, an open-source, accessible agent-based model

(ABM) that simulates the effect of policy interventions on disease spread. Using complex contact

networks to model the varied interactions individuals have throughout the day, ABMs evolve the

disease state of agents over discrete time steps. By implementing rule-based interventions such

as vaccination, social distancing, and contact tracing (Kucharski et al. (2020)), some ABMs,

including Covasim, have been deployed by public health officials to inform policy decisions in

over a dozen countries (Kerr et al. (2021a); Panovska-Griffiths et al. (2020); Quach et al. (2021)).

However, the computational cost of ABMs, at best, scales linearly with population size.

While new techniques such as dynamic rescaling are able to maintain a constant level of pre-

cision and computation time throughout the simulation, ABMs are challenged by a constant

tradeoff between computational cost and the inaccurate discretization of the population.

Compartmental models replace this discretization with mathematical theory, describing the

progression of a population through disease states using differential equations. The Susceptible-

Infected-Recovered (SIR) model by Kermack and McKendrick (1927) is one of the earliest such

mathematical formulations, illustrated in Figure 1.

FIG. 1: SIR Compartmental Model Diagram

The simple SIR model assumes that the system is closed, ignoring vital dynamics such as

birth and death rates. The target population, N , is then subdivided into three compartments

by disease state; S(t), I(t), and R(t) correspond to the number of susceptible, infected, and

recovered individuals respectively at a given time. The flux of individuals between compartments

can be described using the Law of Mass Action and two disease parameters: the transmission

rate, β, and the recovery rate, α. Together with initial conditions S(0), I(0), and R(0), the

model’s dynamics are fixed, as N = S(0) + I(0) + R(0). The SIR model not only provides

theoretical epidemiological insights but also provides a way for generating realistic outbreaks

using a numerical integration technique such as Runge-Kutta 4/5 (Butcher (2016)).
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Compared to ABMs, the versatility of compartmental models is limited, as developing a

mathematical system that encapsulates the complexity of human social networks is challenging.

However, recent advancements have allowed compartmental models to simulate many behaviors.

For example, Yang et al. (2021) evaluated the effect of lockdown policy in Spain with a model

that introduced compartments for exposed, asymptomatic, pre-symptomatic, mild COVID, and

severe COVID. Bouchnita et al. (2021) used an SEIR model to predict that social distancing

measures would be needed to shorten COVID-19 waves in Vietnam.

Similarly, this work uses a SIR-based model to improve vaccination programs, which help

populations achieve a level of immunity that prevents infectious people from causing further out-

breaks. While ABMs are able to evaluate the effects of various vaccination strategies (Sulis and

Terna (2021)), they are unable to inform optimal policy decisions. In order to compute an opti-

mal intervention strategy, simulations must be repetitively run, compounding the computational

cost of a single simulation. Instead, our work exploits the simplicity of compartmental models

to create a framework for efficient, accurate parameter estimation to drive further optimization

using gradient descent.

A variety of approaches have been developed to estimate disease parameters from real-world

data including non-parametric estimation Smirnova et al. (2019), particle swarm optimization

Akman et al. (2018), Bayesian techniques Akman et al. (2016), and inverse methods. Statistical

approaches such as maximum-likelihood and Poisson regression methods have also been applied

Capaldi et al. (2012). Some of this work has shown that estimation precision increases with

the amount of outbreak data used, and sensitivity analysis techniques such as Latin Hypercube

Sampling have been able to rank the relative importance of model parameters.

We take the approach of simultaneously estimating disease parameters while approximat-

ing a compartmental system, and several works have also attempted to learn differential equa-

tions from data. Ling et al. (2016) modeled the Reynolds stress anisotropy tensor using deep

neural networks, and E et al. (2017) solved parabolic partial differential equations (PDEs) us-

ing reinforcement learning. However, recent advancements have pioneered the use of physics-

informed models to estimate solutions. In fact, physics-informed neural networks (PINNs) were
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first benchmarked with the SIR model in Raissi et al. (2019b).

Our framework uses PINNs in conjunction with a meta-population model to estimate disease

parameters which are used to construct an optimal vaccine distribution plan. The paper is sec-

tioned as follows. In Section 2, we provide necessary background information and present the

structure of our approach. Section 3 analyzes our approach through a series of computational

experiments, and Section 4 addresses the limitations of our framework while outlining future

research avenues.

2. BACKGROUND AND METHODS

In this section, we establish the motivation for using meta-population models and PINNs for

parameter estimation. We also present an optimization technique for optimally distributing vac-

cines from these parameters.

2.1 Neural Networks

A deep neural network consists of multiple connected neurons, each capable of producing a real-

valued activation. In a feed-forward neural network such as Figure 2, neurons are organized in

sets of L connected layers. Densely-connected layers, in particular, connect each pair of neurons

in neighboring layers, x
(l−1)
j and x

(l)
i , with a weight, w

(l)
ij . A neuron’s activation is then com-

puted as a weighted sum of the previous layer’s activations plus a bias term, b, and passed into

an activation function σ(t). In general, the network is evaluated as follows

�x(1) = �x and x
(l)
i = σ

⎛
⎝b

(l)
i +

n∑
j=1

w
(l)
ij

⎞
⎠ for all 2 ≤ l ≤ L

where �x is the provided input and �x(L) = �y is the computed output. Treating the hidden layers

as a black box, a neural network can be described as the vector-valued function fnet(�x) = �y,

and by the Universal Approximation Theorem, fnet can approximate any continuous function

f : Rn → R
m provided that σ(t) is non-polynomial and the network has arbitrary width Hornik

(1991).
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FIG. 2: A Densely-Connected, Feed-Forward Neural Network Architecture

During supervised learning, the network trains on a labeled dataset of pairs (�x, �y), using

the back-propagation algorithm to update the network’s weights and biases to minimize a loss

function which captures the error between the predicted �ypred and the true �y for each sample. In

the case of mean squared error (MSE),

L(�θ) = 1

m

∑
i

(�yi − �ypredi
)2

As L → 0 over training, fnet(�x) → f(�x), providing a method to estimate any vector-valued

system.

2.2 Physics-Informed Neural Networks

In 2017, Raissi et al. (2019a) introduced PINNs, a data-driven deep learning approach for ap-

proximating ordinary differential equation (ODE) and PDE systems. PINNs employ deep neural

networks as universal function approximators to approximate nonlinear systems, creating a new

family of data-efficient spatiotemporal function approximators. Since 2017, PINNs have been

used to tackle problems in quantum mechanics, wave propagation, and fluid mechanics Cai et al.

(2022), but by modeling infectious disease spread as an ODE system, such as the SIR model,

PINNs can also be applied in the context of epidemiology.

FIG. 3: A PINNs Network Architecture for the SIR Model

For ODE problems, the network, as seen in Figure 3, consists of an input layer of one neuron

corresponding to the input time t, which is normalized to the range [−1, 1] during pre-processing,

with σ = tanh(t) being the preferred activation function.

FIG. 4: Modified PINNs Training Algorithm

The network is trained to approximate the ODE system, �u(t), by minimizing a loss function

consisting of both differential equation error and data prediction error. For the former, each
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equation in the system is rearranged and associated with an error Ei, which is then summed

across the system:

dui

dt
= f(ui, t) ⇒ Ei =

dui

dt
− f(ui, t)

The data prediction error is computed in standard fashion by evaluating the Mean Square Error

(MSE) between the predicted compartment values of the output layer and the data provided.

While Raissi et al. (2019a) add the data prediction error and differential equation error directly

into the loss function, we linearly weight each term according to a new hyperparameter, λ.

L(�θ) = (1 − λ) ·

Data︷ ︸︸ ︷
1

n

∑(
ui − upredi

)2
+λ ·

Equation︷ ︸︸ ︷∑
Ei

The computed loss, L, is then minimized using stochastic gradient descent via the Adam opti-

mizer Kingma and Ba (2014). As L → 0 over the course of training (See Figure 4), both the data

prediction error and differential equation error are minimized, resulting in a trained model that

fits the training data and intended ODE structure. As λ → 0, the network prioritizes training data

over differential equation structure — and vice-versa as λ → 1. λ provides additional tunability

of the model’s convergence time and accuracy, and by manipulating λ before or during training,

we can optimize training dynamics.

In mechanics problems, inferring the behavior of each compartment from data, initial condi-

tions, and equation parameters suffices. But, for infectious disease modeling, the value of PINNs

lies in it’s ability to infer dynamics while estimating disease parameters. Using the automatic

differentiation Baydin et al. (2018) pipelines available in popular deep learning libraries (ex.

TensorFlow v2), we create trainable variables with appropriate bounds for each equation (dis-

ease) parameter and allow the optimizer to vary both network and equation parameters during

training. After sufficient training, the model will not only approximate the ODE system but the

parameters of the system will also be calibrated to the training data.
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2.3 Informed Policy: Vaccine Distribution

2.3.1 Preferential Mixing

The pure SIR model assumes that modeled populations are homogenous, but real-world popu-

lations are better described as heterogeneous meta-populations with each individual exhibiting

differing levels of activity and risk. Person-to-person contact rates vary with population density

and personal characteristics including age, gender, and location, inhibiting the generalizability

of simple compartmental models to larger populations Feng et al. (2015). We attempt to remedy

this assumption by combining PINNs with the simplest meta-population model that captures

the heterogeneity of sub-population contact rates and preferential mixing between groups in the

meta-population Jacquez et al. (1988).

We begin by dividing the meta-population, N , into n sub-populations, Ni, of individuals

exhibiting similar activity levels. We then model each sub-population using SIR, partitioning

Ni into compartments based on disease progression: Ni = Si + Ii + Ri. However, we replace

the former force of infection βI with λi, the per-capita force of infection for the ith population.

Formally, let

λi := β

n∑
j=1

aicij
Ij
Nj

= aiβ

n∑
j=1

cij
Ij
Nj

where ai is the average contact rate of the ith sub-population, β is the net probability of infection

from an infectious contact, and cij is the proportion of the ith sub-population’s contacts that

are with the jth sub-population. The term aicij
Ij
Nj

can be interpreted as the average infectious

contact rate of the ith population with the jth population, and by summing each force contribution

across the sub-populations, we arrive at the net force of infection for the population of interest.

In the manner of Jacquez et al. (1988), the mixing matrix cij is computed by reserving

a portion of each sub-population’s contacts for itself and then proportionally distributing the
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remaining contacts to the other sub-populations Jacquez et al. (1988). Formally, let

fj =
(1 − εj)ajNj

n∑
k=1

(1 − εk)akNk

cij := εiδij + (1 − εi)fj =

⎧⎪⎪⎨
⎪⎪⎩
εi + (1 − εi)fj i = j

(1 − εi)fj i �= j

where δij is the Kronecker delta function and εi is the proportion of contacts of the ith sub-

population reservered for itself. δij allows us to isolate the additional εi contribution when i = j,

and fj accounts for the proportional distribution of the remaining contacts by normalizing the

general term (1 − εj)ajNj .

We also account for the vital dynamics of the population with μ, merging both birth and

death rates, and α, the recovery rate or the reciprocal of the mean infectious period. To avoid

further complexity, we assume perfect vaccine efficacy and remove pi of each population where

pi is the proportion of vaccinated individuals in the ith population. In total, this results in the

following SIR-based system of 3n compartmental equations and 3n+ 3 parameters.

dSi

dt
= μNi(1 − pi)− (λi + μ)Si

dIi
dt

= λiSi − (α+ μ)Ii

dRi

dt
= μNipi + γIi − μRi

for 1 ≤ i ≤ n.

2.3.2 Optimization Approach

While PINNs is able to use differential equation structure to fix a large number of equation

parameters while approximating the ODE system, we attempt to limit the number of estimated

parameters to expedite convergence. We introduce the substitution Ai = aiβ and rewrite λi and
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fj as follows:

λi = Ai

n∑
j=1

cij
Ij
Nj

fj =
(1 − εj)ajNj

n∑
k=1

(1 − εk)akNk

· β
β

=
(1 − εj)AjNj

n∑
k=1

(1 − εk)AkNk

This allows us to eliminate β from the system. In the context of preferential mixing, β acts as

a scaling term for ai and can be completely absorbed into ai → Ai. In practice, β is already

known from approximating the pure SIR model, in which case, ai can be directly estimated.

Further, the vaccination rate of each sub-population is typically known beforehand, elimi-

nating n parameters of the form pi. Additional assumptions about μ can be made, depending on

the target meta-population. During training, we remove fixed parameters from the optimizer’s

trainable variables, allowing us to only train parameters of interest. These optimizations allow

us to reduce the number of parameters to 2n+ 1.

2.3.3 Constructing a Distribution Plan

Once the preferential mixing parameters are estimated, we calculate Rv , the effective reproduc-

tion number of the meta-population or the average number of secondary infections per infec-

tious person Diekmann et al. (2010). We first define the basic reproduction number for the ith

sub-population

R0i =
Ai

α+ μ

We then remove the proportion of vaccinated individuals to find Rvi , the effective reproduction

number for the sub-population.

Rvi = (1 − pi)R0i

To calculate Rv for the entire meta-population, we consider the next-generation matrix K, com-

puted by multiplying the diagonal matrix of sub-population effective reproduction numbers with
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the contact proportion matrix with elements cij .

K =

⎡
⎢⎢⎢⎢⎣
Rv0

. . .

Rvn

⎤
⎥⎥⎥⎥⎦×

⎡
⎢⎢⎢⎢⎣
c00 . . . c0n

...
. . .

...

cn0 . . . cnn

⎤
⎥⎥⎥⎥⎦

The effective reproduction number for the entire meta-population is the spectral radius, or largest

eigenvalue, of this matrix Diekmann et al. (2010).

Rv = ρ(K)

Fixing the remaining parameters, we can analyze Rv as a function of the sub-population vac-

cination rates pi in the manner of Feng et al. (2015). We initialize �p := �p0 to the estimated or

known vaccination rates of the sub-populations. Then, using gradient descent, we update �p to

minimize Rv(p1, p2, · · · , pn).
�p := �p−Δt · ∇Rv

This provides the ideal vaccination rates over time for each sub-population, pi(t), that minimizes

the spread of the infection as fast as possible.

2.4 End-To-End Framework Design

We propose PINNs as a method for directly informing infectious disease policy, particularly in

the case of vaccine distribution (See Figure 5).

FIG. 5: A Directly Informed Policy Pipeline for Vaccine Distribution

Using collected data from a target meta-population, we use PINNs to approximate a modified

SIR model, producing additional disease parameters. The parameters are then used to calculate

and minimize the effective meta-population reproduction number, Rv , creating an optimal vac-

cine distribution strategy for the meta-population.

Journal of Machine Learning for Modeling and Computing
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3. COMPUTATIONAL EXPERIMENTS

In this section, we substantiate the accuracy and versatility of PINNs parameter estimation on

SIR-based models. We also explore the influence of model hyperparameters and the efficacy of

the end-to-end framework in various mixing scenarios.

3.1 Validating PINNs Accuracy

Using Runge-Kutta 4/5, we simulate SIR dynamics for the following initial conditions and dis-

ease parameters:

β = 0.002,α = 0.5, N = 1000, I(0) = 1, R(0) = 0

We then sample each curve at 15 random time steps to produce training data. We initialize each

trainable disease parameter to 0 and then train a 1 × 20 × 20 × 20 × 3 PINNs architecture with

a learning rate of 1.0 × 10−3 and error weight of λ = 0.5 while constraining each parameter to

the range [0,∞). After ≈ 105 iterations, we arrive at the following approximation (See Figure

6).

FIG. 6: PINNs Approximation on Generated SIR Data

Using the simulated curves and predefined parameter values, we precisely compute the

PINNs estimation error by finding the MSE between each simulation compartment and the corre-

sponding PINNs approximation using a dense time mesh. For each disease parameter, we simply

compare the simulation value with the final value of the corresponding trainable parameter.

Name Mean Absolute Error Mean Absolute Percent Error

Susceptible Population 0.24 0.02%

Infected Population 0.18 0.01%

Recovered Population 0.18 0.01%

Transmission Rate: β 1.6 × 10−6 0.08%

Recovery Rate: α 9.2 × 10−5 0.018%

TABLE 1: Error Analysis of Approximated SIR Compartments and Parameters

Across all approximations, as seen in Table 1, PINNs maintains under a 0.08% mean absolute
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percent error (MAPE), indicating its effectiveness at approximating the SIR model. We also

explore the effect of λ on convergence time by recording the number of training iterations needed

to achieve L ≤ 1.0 while fixing the learning rate (See Table 2).

λ Iterations (×103) Training Time (min)

0.25 135 5.6

0.5 88.5 3.7

0.75 105 4.4

TABLE 2: Training Dynamics with Varying λ

We find that λ = 0.5 achieves optimal convergence time, suggesting that an equal weighting

of data prediction error and differential equation error yields the fastest approximations.

3.2 Real-World Data

Having established PINNs’ accuracy, we use a popular London boarding school dataset from

Anonymous (1978) to evaluate PINNs’ ability to perform parameter estimation and compartment

approximations on real-world infectious disease data. The dataset records the size of the infected

population in a school of N = 763 students over the course of 14 days. Due to the lack of data for

the Susceptible and Recovered compartments, we only use the infected population to calculate

data prediction error. Using λ = 0.5 as recommended by our previous results, we achieve the

following estimation (See Figure 7) after 10 minutes of training on an NVIDIA RTX 2060 GPU.

FIG. 7: PINNs Approximation on Real Data

Despite being provided with only infected data, PINNs is still able to use the mathematical

structure of the data to infer the dynamics of S(t) and R(t) as well.

FIG. 8: PINNs Loss Landscape

Analyzing the loss landscape during training (See Figure 8), we see that the disease param-

eters descend to one local minimum over the course of training, with a final approximation of

β ≈ 0.0228 and α ≈ 0.454.
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3.3 Vaccine Distribution

Suppose the London Boarding School dataset had an equal number of total and infected girls

and boys∗ at t = 0. Fixing α = 0.5, μ = 0, ε1 = 0.75, ε2 = 0.5, pi = 0, a1 = 1.5, and

a2 = 2.5, we can again generate and sample training data. We constrain all parameters to the

range [0,∞), except εi which is further restricted to [0, 1]. To avoid numerical computation

errors when the parameters are exactly 0, we pad each range by a small δ = 1.0×10−9 such that

[a, b] → [a+δ, b−δ]. After ≈ 1.5×105 training iterations, we estimate the following dynamics

(See Figure 9).

FIG. 9: PINNs on a Preferentially-Mixed Meta-Population (SIM corresponds to data and NN corresponds

to the Neural Network solution)

We again compute the associated error for each approximated compartment and parameter

using the simulated dynamics (See Table 3†).

Name Value Mean Absolute Percent Error

S1 N/A 0.059%

S2 N/A 0.094%

I1 N/A 0.564%

I2 N/A 0.531%

R1 N/A 5.22%

R2 N/A 6.56%

α 0.4999 0.022%

A1 1.5006 0.040%

A2 2.4978 0.089%

ε1 0.7449 0.680%

ε2 0.5218 4.361%

TABLE 3: Error Analysis of Preferential Mixing Estimation

While the MAPEs of Ri and εi are significantly higher, PINNs is still able to accurately

estimate each compartment and parameter. As previously described, we employ gradient descent

to calculate and minimize the effective reproduction number of the meta-population (See Figure

10).

∗This distinction is arbitrary and can be replaced with any plausible division of the student population that

results in different contact patterns and activity levels.
†Note: The term “value” is only applicable for parameters, so N/A has been used for compartments.
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FIG. 10: Optimal Vaccine Distribution Plan (Preferential Heterogeneous Mixing)

The partial derivative of Rv with respect to each pi represents the need for vaccines within

the sub-population. Formally, the proportion of vaccines that should be allocated to the ith sub-

population at time t is:

Pi(t) =

∂Rv

∂pi
·Ni

n∑
j=1

(
∂Rv

∂pj
·Nj

)

FIG. 11: Area Graph of Vaccine Distribution Proportion

Using this formulation, we construct a visual aid for policymakers to calculate and implement

the best vaccine distribution proportion. At any given time, policymakers can use Figure 11 to

look up the ideal proportions Pi given the vaccination rate of one of the sub-populations, such

as N1.

Further, for specific types of mixing, PINNs estimation can be greatly simplified.

1. If εi = 1, the sub-population is isolated and can be separately approximated from the rest

of the meta-population.

2. If εi = 0 for 1 ≤ i ≤ n, all contacts are proportional and the εiδij term can be omitted

from cij calculation.

3. If εi = ε for 1 ≤ i ≤ n, the preferential mixing is homogeneous and all trainable

variables corresponding to εi can be replaced with one trainable variable ε. This also

simplifies fj =
ajNj

n∑
k=1

akNk

.

4. If εi = εj for some i �= j, the mixing is preferential and heterogeneous and no further

simplifications can be made.

For example, assuming that the preferential mixing is homogeneous as described in Case 3,

slightly transforms the contours of Rv(p1, · · · , pn) (See Figure 12).
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FIG. 12: Optimal Vaccine Distribution Plan (Preferential Homogeneous Mixing: ε1 = ε2 = 0.75)

4. DISCUSSION

4.1 Limitations

Due to the diversity of PDE and ODE models describing infectious disease spread, PINNs can

be applied to estimate a large number of simulation parameters, beyond those mentioned in this

work. PINNs is also able to avoid local minima and converge to valid parameter combinations

despite limited, noisy data. However, as the size of the differential equation system increases,

in practice, PINNs may experience convergence issues. When approximating the preferential

mixing model, PINNs sometimes fails to estimate εi despite satisfying the stop loss — the loss

value at which the model halts training.

FIG. 13: Grid Search of εi over PINNs Loss

A grid search over εi reveals a curve of εi parameter sets that result in low values of L,

suggesting that an additional constraint or substitution can be made involving εi that simplifies

the estimation problem. Alternatively, the range of εi could be further restricted from ∈ [0, 1] to

a smaller interval (See Figure 13).

Despite achieving training times under 10 minutes on average, PINNs convergence times

scale with system complexity. While additional compartments are able to account for multi-

ple vaccination doses and other complex behavior, added differential equations and parameters

also require additional training data and larger PINNs networks. PINNs are universal function

approximators in theory Raissi et al. (2019a), but in practice, parameter estimation tasks are

inherently limited to data availability.
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4.2 Conclusions

This work establishes PINNs as a valuable method for informing infectious disease policy

through parameter estimation. Combined with optimization approaches, PINNs is able to di-

rectly suggest optimal policy decisions, and while compartmental models are perhaps less ver-

satile than ABMs, our coupled approach empirically requires less computational cost than tradi-

tional techniques. For example, with the vaccine distribution plan proposed, government officials

are able to deploy the optimal vaccine distribution strategy that minimizes the spread of the in-

fectious disease as fast as possible.

Reducing the number of parameters from 3n + 3 to 2n + 1 through substitution and as-

sumption allowed PINNs to converge to a parameter solution, and hyperparameter experiments

recommend a value of λ = 0.5 during training. Overall, PINNs is a powerful parameter estima-

tion technique that can drive optimization, but PINNs frameworks should aim to first simplify

mathematical formulations before tackling complex compartmental systems.

4.3 Future Work

For vaccine distribution, we aim to re-parameterize the preferential mixing model to elucidate

additional constraints between εi, as conjectured from the previously discussed grid search.

Decreasing the number of parameters would facilitate faster parameter estimation and provide

additional insight into the mathematical theory behind meta-population models.

By expanding PINNs to other compartmentalized models, parameter estimations for the

latent period or vaccination-specific parameters could be computed. With additional compart-

ments, we could also revise our assumption of perfect vaccine efficacy to account for re-infection.

Further, research in approximating PDE systems Cai et al. (2022) could allow PINNs to capture

the physical mechanics of mucosalivary droplets spreading the infection. This would elucidate

the mechanism behind the spread of infectious diseases beyond compartmental modeling.

However, the primary avenue of future PINNs research lies in improving the speed and accu-

racy of training through advanced machine-learning techniques. Future work involving transfer

learning Desai et al. (2021) and pre-training PINNs to model ODE systems with semi-supervised
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algorithms Paticchio et al. (2020) is of particular interest. Varied PINNs architectures and train-

ing algorithms could decrease PINNs convergence times, allowing the model to use less data

to estimate larger systems. Additionally, manipulating λ over the course of training instead of

fixing the hyperparameter beforehand may improve training dynamics.

Faster PINNs parameter estimation could enable daily tracking of infectious disease parame-

ters alongside raw reported data. With greater efficiency, PINNs could become the backbone for

highly-available, cloud-based, machine-learning dashboards that help policymakers track and

minimize infectious disease spread.
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