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AbstractÐ This study proposes a novel planning framework
based on a model predictive control formulation that incorpo-
rates signal temporal logic (STL) specifications for task comple-
tion guarantees and robustness quantification. This marks the
first-ever study to apply STL-guided trajectory optimization for
bipedal locomotion push recovery, where the robot experiences
unexpected disturbances. Existing recovery strategies often
struggle with complex task logic reasoning and locomotion ro-
bustness evaluation, making them susceptible to failures due to
inappropriate recovery strategies or insufficient robustness. To
address this issue, the STL-guided framework generates optimal
and safe recovery trajectories that simultaneously satisfy the
task specification and maximize the locomotion robustness. Our
framework outperforms a state-of-the-art locomotion controller
in a high-fidelity dynamic simulation, especially in scenarios
involving crossed-leg maneuvers. Furthermore, it demonstrates
versatility in tasks such as locomotion on stepping stones, where
the robot must select from a set of disjointed footholds to
maneuver successfully.

I. INTRODUCTION

This study investigates signal temporal logic (STL) based

formal methods for robust bipedal locomotion, with a specific

focus on circumstances where a robot encounters environ-

mental perturbations at unforeseen times.

Robust bipedal locomotion has been a long-standing

challenge in the field of robotics. Existing studies have

demonstrated impressive performance through the reactive

regulation of angular momentum [1], [2] or the predictive

control of foot placement [3], [4]. Diverging from these ap-

proaches, our research aims to provide formal guarantees on

a robot’s ability to recover from perturbations via temporal-

logic-based formal control methods. To achieve this, our

research centers around designing formal requirements (i.e.,

task specifications) for bipedal locomotion push recovery,

and employing trajectory optimization (TO) that guarantees

system robustness.

Formal methods for bipedal systems have gained sig-

nificant attention in recent years [5], [6]. The prevailing

approach in existing works often relies on abstraction-

based methods such as linear temporal logic (LTL) [7]

with relatively simple verification processes, which abstract

complex continuous behaviors into discrete events and low-

dimensional states. However, challenges arise when ad-

dressing continuous, high-dimensional systems like bipedal
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Fig. 1: Block diagram of the proposed framework. (a) The signal temporal
logic specification φloco specifies the locomotion task. (b) A set of data-
driven kinematic constraints enforce the leg self-collision avoidance. (c)
The model predictive control-based trajectory optimization solves a stable
locomotion trajectory. (d) A whole-body controller tracks the desired
trajectory. (e) Perturbed walking experiments on our bipedal robot Cassie.

robots. As a distinguished formal logic, STL [8] offers

mathematical guarantees of specifications on dense-time,

real-valued signals, making it suitable for reasoning about

task logic correctness and quantifying robustness in complex

robotic systems.

Self-collision avoidance is another crucial component for

ensuring restabilization from disturbances, especially for

scenarios involving crossed-leg maneuvers [3], [4], [9] where

the distance between the robot’s legs diminishes, as shown in

Fig. 1(b). Several previous studies [2], [10] relied on inverted

pendulum models to plan foot placements for recovery but

often overlooked the risk of potential self-collisions during

the execution of the foot placement plan. On the other

hand, swing-leg trajectory planning that considers full-body

kinematics and collision checking is prohibitively expensive

for online computation.

In order to address these challenges, we design an

optimization-based planning framework, illustrated in Fig. 1.

As a core component of the model predictive controller

(MPC) framework, we encode a series of STL specifica-

tions (e.g., stability and foot placements) as an objective

function to enhance task satisfaction and locomotion ro-

bustness. Compared with traditional TO [11], [12] without

formal specification encoding, our proposed STL-based TO

has the capability of symbolic planning and reasoning to
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achieve more complex task requirements such as temporal

sequencing order or timing constraints for task completion.

Furthermore, this TO ensures safety against leg self-collision

via a set of data-driven kinematic constraints. Solving the

TO generates a reduced-order optimal plan that describes the

center of mass (CoM) and swing-foot trajectories, including

the walking-step durations. From this solved trajectory, a

low-level controller derives a full-body motion through in-

verse kinematics and then uses a passivity-based technique

for motion tracking. We summarize our core contributions

as follows:

• This work represents the first-ever step towards in-

corporating STL-based formal methods into TO for

dynamic legged locomotion. We design a series of STL

task specifications that guide the planning of bipedal

locomotion under perturbations.

• We propose a Riemannian robustness metric that evalu-

ates the walking trajectory robustness based on reduced-

order locomotion dynamics. The Riemannian robustness

is seamlessly encoded as an STL specification and is

therefore optimized in the TO for robust locomotion.

• We conduct extensive push recovery experiments with

perturbations of varying magnitudes, directions, and

timings. We compare the robustness of our framework

with that of a foot placement controller baseline [2].

This work is distinct from our previous study [13] in

the following aspects. (i) Instead of a hierarchical task

and motion planning (TAMP) framework using abstraction-

based LTL [13], this study employs an optimization-based

MPC that integrates STL specifications to allow real-valued

signals. This property eliminates the mismatch between high-

level discrete action sequences and low-level continuous

motion plans. (ii) The degree to which STL specifications

are satisfied is quantifiable, enabling the MPC to provide a

least-violating solution when the STL specification cannot be

strictly satisfied. The LTL-based planner in [13], on the other

hand, makes decisions only inside the robustness region,

which is more vulnerable in real-system implementation.

II. NON-PERIODIC LOCOMOTION MODELING

A. Hybrid Reduced-Order Model for Bipedal Walking

We propose a new reduced-order model (ROM) that

extends the traditional linear inverted pendulum model

(LIPM) [14], [15]. The traditional LIPM features a point

mass denoted as the center-of-mass (CoM), and a mass-

less telescopic leg that maintains the CoM at a constant

height. The LIPM has a system state x := [pCoM;vCoM],
where pCoM = [pCoM,x; pCoM,y; pCoM,z] and vCoM =
[vCoM,x; vCoM,y; vCoM,z] are the position and velocity of

the CoM in the local stance-foot frame, as shown in Fig. 2(a).

The LIPM dynamics are expressed as follows:
[
p̈CoM,x

p̈CoM,y

]
= ω2

[
pCoM,x

pCoM,y

]
(1)

where ω =
√

g/pCoM,z and g is the acceleration due to

gravity. The subscripts x and y indicate the sagittal and

lateral components of a vector, respectively.

We design a variant of the traditional LIPM that ad-

ditionally models the swing-foot position and velocity

(Fig. 2(a)). In effect, the state vector is augmented as x̄ :=
[pCoM;vCoM;pswing],pswing ∈ R3, and the control input ū

sets the swing foot velocity ṗswing. Moreover, we define

y = [x̄; ū] ∈ R12 as the system output, which will be

used in Sec. III for signal temporal logic (STL) definitions.

Our addition of the swing-foot position pswing, together

with pCoM, uniquely determines the leg configuration of

the Cassie robot (e.g., via inverse kinematics), allowing us

to plan a collision-free trajectory using only the ROM in

Sec. IV-B. The augmented state is estimated from the joint

encoder and IMU sensor in simulation.

At contact time, a reset map x̄+ = ∆̄j→j+1(x̄
−) uses the

swing foot location to transition to the next walking step:


p+
CoM

v+
CoM

p+
swing


 =



p−

CoM − p−

swing

v−

CoM

−p−

swing


 (2)

This occurs when the system state reaches the switching

condition S := {x̄|pswing,z = hterrain}, where hterrain is

the terrain height. Note that the aforementioned position

and velocity parameters are expressed in a local coordinate

frame attached to the stance foot. The swing foot becomes

the stance foot immediately after it touches the ground.

B. Keyframe-Based Non-Periodic Locomotion and Rieman-

nian Robustness

To enable robust locomotion that adapts to unexpected

perturbations or rough terrain, we employ the concept of

locomotion keyframe [16]. A keyframe is a CoM apex state of

a walking step. To quantify the robustness of a non-periodic

walking step, we design a robust region centered around a

nominal keyframe state in a Riemannian space. The Rie-

mannian space [16] is a reparameterization of the Euclidean

CoM phase space using tangent and cotangent locomotion

manifolds, represented by a pair (σ, ζ). σ represents the

tangent manifold along which the CoM dynamics evolve,

while ζ represents the cotangent manifold orthogonal to σ.

These manifolds can be derived analytically from the LIPM

dynamics in (1); the detailed derivation is in [16]. Within

the Riemannian space, we define a robust keyframe region

that enables stable walking. This region is referred to as the

Riemannian region.

Definition II.1 (Riemannian region). The Riemannian re-

gion R is the area centered around a nominal keyframe

state (σnom, ζnom): Rd := {(pCoM,d, vCoM,d) |
σ(pCoM,d, vCoM,d) ∈ Σd, ζ(pCoM,d, vCoM,d) ∈ Zd}, where

d ∈ {x, y} indicates sagittal and lateral directions, re-

spectively. Σd = [σnom,d − δσd, σnom,d + δσd] and Zd =
[ζnom,d − δζd, ζnom,d + δζd] are the ranges of the manifold

values for σ and ζ, where δσd, δζd are robustness margins.

The sagittal and lateral Riemannian regions in the phase

space are illustrated in Fig. 2(b) as shaded areas. The bounds

of these Riemannian regions are curved in the phase space
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Fig. 2: Illustration of the locomotion specifications. (a) The highlighted
state in the middle is the keyframe of a walking step. (b) The grey areas
are the Riemannian regions in the sagittal and lateral phase spaces. The
signed distances to the bounds of the Riemannian regions are indicated by
the arrows. (c) Cassie’s foot is specified to step inside the lateral bounds.

because they obey the LIPM locomotion dynamics. Notably,

while two Riemannian regions exist in the lateral phase

space, only one is active at any given time, corresponding

with the stance leg labeled in Fig. 2(b).

Definition II.2 (Riemannian robustness). The Riemannian

robustness ρriem is the minimum signed distance of an actual

keyframe CoM state x to all the bounds of the Riemannian

regions. Namely, ρriem := min8l=1(rl(x)), where rl(x) is the

signed distance to the lth bound of the Riemannian regions,

as illustrated in Fig. 2(b). We have a total of 8 bounds as the

sagittal and lateral Riemannian regions each have 4 bounds.

Riemannian robustness represents the locomotion robust-

ness in the form of Riemannian regions. Any keyframe inside

the Riemannian region has a positive robustness value, which

indicates a stable walking step. In the next section, our goal

is to leverage Riemannian robustness as an objective function

and use STL-based optimization to plan robust trajectories

for locomotion recovery.

III. SIGNAL TEMPORAL LOGIC AND TASK

SPECIFICATION FOR LOCOMOTION

Signal temporal logic (STL) [17] uses logical symbols of

negation (¬), conjunction (∧), and disjunction (∨), as well

as temporal operators such as eventually (♢), always (□),

and until (U ) to construct specifications. A specification is

defined with the following syntax:

φ := π | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 |

♢[t1,t2] φ | □[t1,t2] φ | φ1 U[t1,t2] φ2

(3)

where φ, φ1, and φ2 are STL specifications. π := (µπ(y)−
c ≥ 0) is a boolean predicate, where µπ : Rp → R is a

vector-valued function, c ∈ R, and the signal y(t) : R+ →
Rp is a p-dimensional vector at time t. For a dynamical

system, the signal y(t) is the system output (in our study,

y = [x̄; ū] ∈ R12). The time bounds of an STL formula

are denoted with t1 and t2, where 0 ≤ t1 ≤ t2 ≤ tend and

tend is the end of a planning horizon. The validity of an STL

specification is inductively defined using the rules in Table I.

TABLE I
VALIDITY SEMANTICS OF SIGNAL TEMPORAL LOGIC

(y, t) |= π ⇔ µπ(y(t))− c ≥ 0
(y, t) |= ¬φ ⇔ (y, t) ̸|= φ

(y, t) |= φ1 ∧ φ2 ⇔ (y, t) |= φ1 ∧ (y, t) |= φ2

(y, t) |= φ1 ∨ φ2 ⇔ (y, t) |= φ1 ∨ (y, t) |= φ2

(y, t) |= ♢[t1,t2]φ ⇔ ∃t
′

∈ [t+ t1, t+ t2], (y, t
′

) |= φ

(y, t) |= □[t1,t2]φ ⇔ ∀t
′

∈ [t+ t1, t+ t2], (y, t
′

) |= φ

(y, t) |= φ1U[t1,t2]φ2 ⇔
∃t

′

∈ [t+ t1, t+ t2], (y, t
′

) |= φ2∧

∀t
′′

∈ [t+ t1, t
′

](y, t
′′

) |= φ1

STL provides the capability of quantifying robustness

degree [18] [19]. A positive robustness degree indicates

specification satisfaction, and its magnitude represents the

resilience to disturbances without violating this specification.

When incorporated into trajectory optimization as a cost,

the robustness degree allows for a minimally specification-

violating trajectory if the task specification cannot be sat-

isfied strictly [20]. Table II shows the semantics of the

robustness degree.

TABLE II
ROBUSTNESS DEGREE SEMANTICS

ρπ(y, t) = µπ(y(t))− c

ρ¬ϕ(y, t) = −ρϕ(y, t)
ρϕ1∧ϕ2 (y, t) = min(ρϕ1 (y, t), ρϕ2 (y, t))
ρϕ1∨ϕ2 (y, t) = max(ρϕ1 (y, t), ρϕ2 (y, t))

ρ
♢[t1,t2]ϕ(y, t) = max

t
′
∈[t+t1,t+t2]

(ρϕ(y, t
′

))

ρ
□[t1,t2]ϕ(y, t) = min

t
′
∈[t+t1,t+t2]

(ρϕ(y, t
′

))

ρ
ϕ1U[t1,t2]ϕ2 (y, t) =

max
t
′
∈[t+t1,t+t2]

(min(ρϕ2 (y, t
′

),

min
t
′′
∈[t+t1,t

′
]
(ρϕ1 (y, t

′′

))))

The rest of this section introduces the locomotion specifi-

cation φloco, designed to guarantee stable walking trajecto-

ries. We interpret locomotion stability as a liveness property

in the sense that a keyframe with a positive Riemannian

robustness will eventually occur in the planning horizon.

Keyframe specification φkeyframe: To enforce properties

on a keyframe, we first describe it using an STL formula

φkeyframe, checking whether or not a signal y is a keyframe.

The keyframe occurs when the CoM is over the foot contact

in the sagittal direction. Illustrated in Fig. 2(a), this defi-

nition is formally specified as φkeyframe := (µπ
CoM,x(y) =

0), where the predicate denotes the sagittal CoM position

µπ
CoM,x(y) = pCoM,x.

Riemannian robustness φriem: A stable walking step has

a keyframe with positive Riemannian robustness; i.e., the

keyframe resides in the Riemannian region, as defined in

Def. II.2. As shown in Fig. 2(b), we encode the Riemannian

robustness specification φriem such that it is True when a

CoM state x of a signal is inside the Riemannian region:

φriem :=
∧8

l=1(rl(x) ≥ 0), where rl(x) is the signed
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time axis of a trajectory in the planning horizon

current state
keyframe
contact state
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Fig. 3: The planning horizon starts from the current measured state (pink).
An example of N = 2 walking steps and 8 knot points per walking step is
illustrated for simplicity (our actual implementation has 10 knot points).

distance from x to the lth bound of the Riemannian region

in the Riemannian space.

Locomotion stability φstable: To encode this property

using STL, we specify that the keyframe of the last

walking step falls inside the corresponding Riemannian

region. This stability property is encoded as φstable :=
♢[TN

contact,T
N+1
contact]

(φkeyframe ∧ φriem), where TN
contact and

TN+1
contact are the N th and N+1th contact times and represent

the time bounds of the last walking step in the planning

horizon.

Swing foot bound φfoot: For locomotion in a narrow space

(e.g., a treadmill, as shown in Fig. 2(c)), we use a safety

specification □φfoot to ensure the foothold lands inside of

the treadmill’s edges. The operator □ without a time bound

means the specification should hold for the entire planning

horizon. We define φfoot := (µπ
left(y) ≥ 0)∧(µπ

right(y) ≥ 0),
where µπ

left = −pswing,y+eleft and µπ
right = pswing,y−eright

are the predicates for limiting the lateral foot location against

the left edge eleft and the right edge eright of the treadmill.

Overall locomotion specification φloco: The compounded

locomotion specification is φloco = φstable ∧ (□φfoot).
Satisfying the specification φloco is equivalent to having a

positive robustness degree: (y, t) |= φloco ⇔ ρϕloco(y, t) ≥
0. In order to maximize the locomotion robustness, we use

the robustness degree ρϕloco as an objective function in the

trajectory optimization in the following section.

IV. MODEL PREDICTIVE CONTROL FOR PUSH RECOVERY

A. Optimization Formulation

We design a model predictive controller (MPC) to solve

a sequence of optimal states and controls (i.e., signals) that

simultaneously satisfy specification φloco, system dynamics,

and kinematic constraints within an N -step horizon.

The MPC functions as the primary motion planner of the

framework and operates in both normal and perturbed loco-

motion conditions. Our MPC is formulated as the following

nonlinear program:

min
X,U ,T

wL(U)− ρ̃ϕloco(X,U) (4)

s.t. x̄
j
i+1 = f(x̄j

i , ū
j
i , T

j), i ∈ H \ S, j ∈ J (5)

x̄+,j+1 = ∆̄j→j+1(x̄
−,j), j ∈ J (6)

gcollision(x̄i) ≥ ϵ, i ∈ H (7)

gduration(T
j) ≥ 0, j ∈ J (8)

hinitial(x̄0) = 0, htransition(x̄i) = 0, i ∈ S (9)

where H is a set of indices that includes all time steps in

the horizon. We design H to span from the acquisition of

the latest measured states till the end of the next N walking

steps, with a total of M time steps. Fig. 3 illustrates a horizon

with N = 2. S is the set of indices containing the time

steps of all contact switch events, S ⊂ H. J = {0, . . . , N}
is the set of walking step indices. The decision variables

include X = {x̄1, . . . , x̄M}, U = {ū1, . . . , ūM}, and T =
{T 0, . . . , TN}. T is a vector defining the individual step

durations for all walking steps.

L(U) =
∑M

i=1 ||ūi||
2 is a cost function penalizing the

control with a weight coefficient w. The robustness degree

ρ̃ϕloco(X,U) represents the degree of satisfaction of the

signal (X,U) with respect to the locomotion specification

φloco. ρ̃ϕloco is a smooth approximation of ρϕloco using

smooth operators [21]. The exact, non-smooth version ρϕloco

has discontinuous gradients, which can cause the optimiza-

tion problem to be ill-conditioned. Maximizing ρ̃ϕloco(X,U)
encourages the keyframe towards the center of the Rieman-

nian region, as discussed in Sec. III. The selection of w is a

tradeoff between enhancing STL robustness and minimizing

control effort. We choose a small w = 0.01 to promote

the use of aggressive control for rapid disturbance recovery.

Furthermore, we integrate ρ̃ϕloco as an objective function

instead of a constraint to allow minimally-violating solutions

and improve the TO-solving success rate in the presence of

large perturbations.

To satisfy the LIPM dynamics (1) while adapting step

durations T , we use a second-order Taylor expansion to

derive the approximated discrete dynamics (5). (6) represents

the reset map (2) from the foot-ground contact switch. (7)

represents a set of self-collision avoidance constraints, which

ensures a collision-free swing-foot trajectory. The threshold

ϵ is the minimum allowable distance for collision avoidance.

The function gcollision is a set of multilayer perceptrons

(MLPs) learned from leg configuration data, as detailed in

Sec. IV-B. (8) clamps step durations T within a feasible

range. By allowing variations in step durations, we enhance

the perturbation recovery capability of the bipedal system

[22]. (9) are the equality constraints of the MPC: hinitial

denotes the initial state constraint; htransition is the guard

function posing kinematic constraints between the swing foot

height and the terrain height, pswing,z = hterrain, for walking

step transitions at contact-switching indices in S.

Upon the successful completion of an MPC optimization,

the solution is immediately sent to the low-level passivity-

based controller [23] for tracking and execution. The MPC

then reinitializes the problem based on the latest state.

B. Data-Driven Self-Collision Avoidance Constraints

We design a set of multilayer perceptrons (MLPs) to

incorporate rapid self-collision avoidance (SCA) into the

MPC. Specifically, each MLP approximates the mapping

from the reduced-order LIPM state to the collision distance

between a particular geometry pair on Cassie that has high

collision risk.
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Fig. 4: (a) The robot kinematic anatomy for collision pair definitions. (b)
The MLP prediction of the minimum distance between Cassie’s two legs
with the left foot affixed to (0, 0) and the right foot moving in the xy plane.

According to Cassie’s kinematic configuration depicted in

Fig. 4(a), such collision-prone geometry pairs include: left

shin to right shin (LSRS), left shin to right tarsus (LSRT),

left shin to right Achilles rod (LSRA), left tarsus to right shin

(LTRS), left tarsus to right tarsus (LTRT), and left Achilles

rod to right shin (LARS). As a result, a total of 6 MLPs

are trained and then encoded as constraints in the MPC to

ensure collision-free trajectories.

A dataset with 106 entries is generated through extensive

exploration of leg configurations. The collision distances of

each configuration are automatically calculated by a built-in

MATLAB function checkCollision [24] using a capsule

collision model of Cassie. Each MLP consists of 2 hidden

layers of 24 neurons. Upon back-propagation training in

PyTorch [25], the MLPs achieve an accurate prediction with

an average absolute error of 0.002 m, and an impressive

evaluation speed of over 100 kHz, compared to 1 kHz using

full-body inverse kinematics for collision checking.

We illustrate the effectiveness of the MLPs through kine-

matic analysis of the collision-free range of motion of

Cassie’s swing leg. Specifically, we consider a representative

crossed-leg scenario where Cassie’s left foot is designated

as the stance foot and affixed directly beneath its pelvis.

We move Cassie’s right leg within the xy plane at the

same height as the stance foot while recording the minimum

value among all 6 MLP-approximated distances. The result

is plotted as a heat map in Fig. 4(b), where the coordinate

indicates the location of the right swing foot with respect to

the pelvis. As expected, the plot reveals a trend of decreasing

distance as the swing foot approaches the stance foot. A

contour line drawn at ϵ = 0.03 m indicates the MLP-enforced

boundary between collision-free and collision-prone regions

for foot placement. The collision-prone region to the left of

the plane exhibits a cluster of red zones, each indicating a

different active collision pair.

V. RESULTS

A. Self-Collision Avoidance during Leg Crossing

We demonstrate the ability of the signal temporal logic-

based model predictive controller (STL-MPC) to avoid leg

collisions in a critical push recovery setting, where a pertur-

bation forces the robot to execute a crossed-leg maneuver.

Fig. 5: (a) Snapshots of Cassie performing a crossed-leg maneuver for
push recovery. (b) The MLP-approximated collision distances are accurate
compared with the ground truth, and the planned leg trajectory is safe against
the threshold ϵ = 0.03 m. (c) An overhead view of the CoM trajectory and
foot placements when a lateral perturbation induces a crossed-leg maneuver.

The MPC with collision constraints generates a trajectory

shown in Fig. 5(a), where the swing leg adeptly maneuvers

around the stance leg and lands at a safe crossed-leg re-

covery point. Similarly, the robot extricates itself from the

crossed-leg state in the subsequent step, following a curved

trajectory that actively avoids self-collisions. Fig. 5(b) shows

that the multilayer perceptron (MLP)-approximated collision

distances are accurate and that the planned trajectory is safe

against the threshold ϵ. An overhead view comparing the

perturbed and unperturbed trajectories is shown in Fig. 5(c).

B. Comprehensive, Omnidirectional Perturbation Recovery

We examine the robustness of the STL-MPC framework

through an ensemble of push-recovery tests conducted in

a high-fidelity Simulink simulation with virtual joint limits

enforced and self-collision checked. For each experimental

trial, a horizontal perturbation force is applied to Cassie’s

pelvis for a fixed duration of 0.1 s. Across the trials, the

forces are systematically varied in 9 magnitudes evenly

distributed between 80 N and 400 N; 12 directions evenly

distributed between 0◦ and 330◦; and 4 locomotion phases

at a percentage s through a walking step, where s =
0%, 25%, 50%, 75%. Collectively, this experimental design

encompasses a total of 432 distinct scenarios. For a baseline

comparison, the same procedure is applied to an angular-

momentum-based reactive controller (ALIP controller) [2].

In Fig. 6, we compare the maximum allowable force

the STL-MPC can withstand to that of the baseline ALIP

controller. The STL-MPC demonstrates superior perturbation

recovery performance across the vast majority of directions

and phases, as reflected by the blue region encompassing

the red region. The improvement is particularly evident for
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Fig. 6: The maximum allowable force exerted on the pelvis from which
the robot can safely recover within two steps in all 12 directions. The
perturbations happen at different phases s during a left leg stance. Values
on the left half result in crossed-leg maneuvers, and values on the right half
correspond to wide-step recoveries.

directions around 0◦, wherein crossed-leg maneuvers are in-

duced for recovery, and active self-collision avoidance plays

a critical role. This highlights the STL-MPC’s capability

to generate safe crossed-leg behaviors, thereby significantly

enhancing its robustness against more challenging lateral

perturbations. On the other hand, for perturbations between

180◦, both frameworks exhibit comparable performance,

generating wide side-steps for recovery. Note that we use

N = 2 walking steps as the MPC horizon, as existing studies

[26]±[28] indicate that a two-step motion is sufficient for

recovery to a periodic orbit.

C. Stepping Stone Maneuvering

To demonstrate the STL-MPC’s ability to handle a broad

set of task specifications, we study locomotion in a stepping-

stone scenario as shown in Fig. 7. To restrict the foot

location to the stepping stones, we augment the locomotion

specification φloco with an additional specification φstones

that encodes stepping stone locations. For each rectangular

stone, the presence of a stance foot pstance inside its four

edges is specified as φo
stone =

∧4
i=1(µ

o
i (pstance) ≥ 0) ,

where o ∈ {1, . . . , O}, O ∈ Z is the total number of stepping

stones, and µo
i is the signed distance from the stance foot to

the ith edge of the oth stone. Then the combined foot location

specification for N walking steps is:

φstones =
N∧

j=1

(□[T j ,T j ]

O∨

o=1

φo
stone)

The augmented specification is the compound of the original

locomotion specification φloco and the newly-added stepping

stone specification: φ′

loco = φloco ∧ φstones.

(a) (b)

Fig. 7: Illustration of maneuvering over two stepping-stone scenarios. (a)
STL-MPC solves dynamically feasible trajectories that satisfy an additional
foot-on-stones specification. (b) STL-MPC successfully plans crossed-leg
maneuvers to recover from perturbation.

We test STL-MPC using φ′

loco in two scenarios. The first

scenario has stepping stones generated at ground level with

random offsets and yaw rotations, as shown in Fig. 7(a).

The STL-MPC advances Cassie forward successfully. In the

second scenario, the STL-MPC demonstrates the ability to

cross legs in response to a lateral perturbation in Fig. 7(b).

D. Computation Speed Comparison between Smooth Encod-

ing Method and Mixed-Integer Program

To encode the robustness degree (as discussed in Sec. III)

of STL specifications into our gradient-based trajectory op-

timization (TO) formulation, we adopt a smooth-operator

method [29] that allows a smooth gradient for efficient

computation. Specifically, we replace the non-smooth min
and max operators in the robustness degree (as defined in

Table II) with their smooth counterpart m̃in and m̃ax.

Fig. 8: A comparison of the traditional MIP method and our smooth method
shows the planning time to solve trajectories for N -walking-step horizons.
The smooth method is faster and more consistent over all horizons.

We benchmark the solving speed of the smooth method

with the traditional mixed-integer programming (MIP)

method [8]. The smooth method demonstrates a faster and

more consistent solving speed, and its time consumption is

nearer to linear with respect to the walking steps N .

VI. CONCLUSION

This study presents a model predictive controller using

signal temporal logic (STL) for bipedal locomotion push

recovery. Our main contribution is the design of STL

specifications that quantify the locomotion robustness and

guarantee stable walking. Our framework increased Cassie’s

impulse tolerance by 81% in critical crossed-leg scenarios.

Further research will be focused on hardware verification and

extensions to rough, dynamic terrain.

1126

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 25,2024 at 18:01:03 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] C. Khazoom and S. Kim, ªHumanoid arm motion planning for im-
proved disturbance recovery using model hierarchy predictive control,º
in International Conference on Robotics and Automation, 2022, pp.
6607±6613.

[2] Y. Gong and J. W. Grizzle, ªOne-step ahead prediction of angular
momentum about the contact point for control of bipedal locomotion:
Validation in a lip-inspired controller,º in IEEE International Confer-

ence on Robotics and Automation, 2021, pp. 2832±2838.
[3] C. Khazoom, D. Gonzalez-Diaz, Y. Ding, and S. Kim, ªHumanoid

self-collision avoidance using whole-body control with control barrier
functions,º in IEEE-RAS 21st International Conference on Humanoid

Robots, 2022, pp. 558±565.
[4] D. Marew, M. Lvovsky, S. Yu, S. Sessions, and D. Kim, ªRiemannian

motion policy for robust balance control in dynamic legged locomo-
tion,º 2023.

[5] S. Kulgod, W. Chen, J. Huang, Y. Zhao, and N. Atanasov, ªTemporal
logic guided locomotion planning and control in cluttered environ-
ments,º in American Control Conference, 2020, pp. 5425±5432.

[6] J. Warnke, A. Shamsah, Y. Li, and Y. Zhao, ªTowards safe locomotion
navigation in partially observable environments with uneven terrain,º
in IEEE Conference on Decision and Control, 2020, pp. 958±965.

[7] H. Kress-Gazit, M. Lahijanian, and V. Raman, ªSynthesis for robots:
Guarantees and feedback for robot behavior,º Annual Review of

Control, Robotics, and Autonomous Systems, vol. 1, no. 1, pp. 211±
236, 2018.

[8] V. Raman, A. DonzÂe, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, ªModel predictive control with signal
temporal logic specifications,º in 53rd IEEE Conference on Decision

and Control, 2014, pp. 81±87.
[9] R. Griffin, J. Foster, S. Fasano, B. Shrewsbury, and S. Bertrand,

ªReachability aware capture regions with time adjustment and cross-
over for step recovery,º 2023.

[10] R. J. Griffin, G. Wiedebach, S. Bertrand, A. Leonessa, and J. Pratt,
ªWalking stabilization using step timing and location adjustment on
the humanoid robot, atlas,º in IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2017, pp. 667±673.
[11] S. Xin, R. Orsolino, and N. Tsagarakis, ªOnline relative footstep

optimization for legged robots dynamic walking using discrete-time
model predictive control,º in IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2019, pp. 513±520.
[12] F. M. Smaldone, N. Scianca, L. Lanari, and G. Oriolo, ªFeasibility-

driven step timing adaptation for robust mpc-based gait generation in
humanoids,º IEEE Robotics and Automation Letters, vol. 6, no. 2, pp.
1582±1589, 2021.

[13] Z. Gu, N. Boyd, and Y. Zhao, ªReactive locomotion decision-making
and robust motion planning for real-time perturbation recovery,º in
International Conference on Robotics and Automation, 2022, pp.
1896±1902.

[14] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, ªThe
3d linear inverted pendulum mode: a simple modeling for a biped
walking pattern generation,º in Proceedings IEEE/RSJ International

Conference on Intelligent Robots and Systems, vol. 1, 2001, pp. 239±
246 vol.1.

[15] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, ªBiped walking pattern generation by using preview
control of zero-moment point,º in IEEE International Conference on

Robotics and Automation, vol. 2, 2003, pp. 1620±1626.
[16] Y. Zhao, B. R. Fernandez, and L. Sentis, ªRobust optimal planning

and control of non-periodic bipedal locomotion with a centroidal
momentum model,º The International Journal of Robotics Research,
vol. 36, no. 11, pp. 1211±1242, 2017.

[17] O. Maler and D. Nickovic, ªMonitoring temporal properties of contin-
uous signals,º in Formal Techniques, Modelling and Analysis of Timed

and Fault-Tolerant Systems, Y. Lakhnech and S. Yovine, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 152±166.

[18] G. E. Fainekos and G. J. Pappas, ªRobustness of temporal logic spec-
ifications for continuous-time signals,º Theoretical Computer Science,
vol. 410, no. 42, pp. 4262±4291, 2009.

[19] C. Belta and S. Sadraddini, ªFormal methods for control synthesis:
An optimization perspective,º Annual Review of Control, Robotics,

and Autonomous Systems, vol. 2, no. 1, pp. 115±140, 2019.
[20] S. Sadraddini and C. Belta, ªRobust temporal logic model predictive

control,º in 53rd Annual Allerton Conference on Communication,

Control, and Computing, 2015, pp. 772±779.

[21] Y. Gilpin, V. Kurtz, and H. Lin, ªA smooth robustness measure of
signal temporal logic for symbolic control,º IEEE Control Systems

Letters, vol. 5, no. 1, pp. 241±246, 2021.
[22] M. Khadiv, A. Herzog, S. A. A. Moosavian, and L. Righetti, ªWalking

control based on step timing adaptation,º IEEE Transactions on

Robotics, vol. 36, no. 3, pp. 629±643, 2020.
[23] H. Sadeghian, C. Ott, G. Garofalo, and G. Cheng, ªPassivity-based

control of underactuated biped robots within hybrid zero dynamics
approach,º in IEEE International Conference on Robotics and Au-

tomation, 2017, pp. 4096±4101.
[24] T. M. Inc., ªRobotic systems toolbox version: R2021b,º Natick,

Massachusetts, United States, 2022.
[25] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,

Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, ªAutomatic differen-
tiation in pytorch,º in NIPS-W, 2017.

[26] P. Zaytsev, S. J. Hasaneini, and A. Ruina, ªTwo steps is enough: No
need to plan far ahead for walking balance,º in IEEE International

Conference on Robotics and Automation, 2015, pp. 6295±6300.
[27] T. Koolen, T. de Boer, J. Rebula, A. Goswami, and J. Pratt,

ªCapturability-based analysis and control of legged locomotion, part 1:
Theory and application to three simple gait models,º The International

Journal of Robotics Research, vol. 31, no. 9, pp. 1094±1113, 2012.
[28] J. Ding, C. Zhou, Z. Guo, X. Xiao, and N. Tsagarakis, ªVersatile reac-

tive bipedal locomotion planning through hierarchical optimization,º
in International Conference on Robotics and Automation, 2019, pp.
256±262.

[29] Y. V. Pant, H. Abbas, and R. Mangharam, ªSmooth operator: Control
using the smooth robustness of temporal logic,º in IEEE Conference

on Control Technology and Applications, 2017, pp. 1235±1240.

1127

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 25,2024 at 18:01:03 UTC from IEEE Xplore.  Restrictions apply. 


