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Abstract— Enabling bipedal walking robots to learn how to
maneuver over highly uneven, dynamically changing terrains
is challenging due to the complexity of robot dynamics and
interacted environments. Recent advancements in learning from
demonstrations have shown promising results for robot learning
in complex environments. While imitation learning of expert
policies has been well-explored, the study of learning expert
reward functions is largely under-explored in legged locomo-
tion. This paper brings state-of-the-art Inverse Reinforcement
Learning (IRL) techniques to solving bipedal locomotion prob-
lems over complex terrains. We propose algorithms for learning
expert reward functions, and we subsequently analyze the
learned functions. Through nonlinear function approximation,
we uncover meaningful insights into the expert’s locomotion
strategies. Furthermore, we empirically demonstrate that train-
ing a bipedal locomotion policy with the inferred reward
functions enhances its walking performance on unseen terrains,
highlighting the adaptability offered by reward learning.

I. INTRODUCTION

Humans exhibit a remarkable ability to achieve and gen-

eralize locomotion strategies from expert demonstrations.

This inference ability enables the knowledge transfer from

simple tasks to novel tasks and the efficient acquisition of

new locomotion skills [1]–[4]. Despite this amazing ability

inherent in the human brain, our understanding remains

limited regarding the internal representation of a locomotion

skill and more importantly, the mechanism for applying

acquired skills to novel tasks. Inspired by human’s ability to

learn from expert demonstrations, this study takes an initial

step to mimic this learning ability in the context of bipedal

robot locomotion. Moreover, we seek the explainability of

the learned skills and demonstrate their generalizability by

subjecting the robot to maneuver over various rough terrains.

Imitation learning has been extensively explored as a

methodology for learning from demonstration [5]–[8]. Al-

though unable to infer the true intention behind the demon-

strations, imitation learning often adopts Reinforcement

Learning (RL) formulations to sidestep the problem of lack-

ing an accurate reward function. This RL-based approach

requires only designing a reward for tracking the demon-

strated actions. The development of efficient RL algorithms
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facilitated a wide range of successful applications of imita-

tion learning for agile bipedal locomotion, such as running

[9], jumping [10], climbing stairs [11], playing soccer [12],

carrying loads [13], and walking over diverse terrains [14].

However, a majority of these works still adopt handcrafted

reward functions that heavily rely on domain knowledge

and experience. Such reward functions are often tailored for

specific environments and have a combination of specific

features from the robot’s state. Consequently, agents learned

under such rewards often lack generalizability and struggle to

adapt to new environments. Inverse Reinforcement Learning

(IRL) [15], [16], on the other hand, subsumes the afore-

mentioned imitation learning problem. IRL not only recovers

the expert’s policy but also the underlying reward function,

which captures the essence of the expert’s intention and

enables adaptations of the robot’s motion to unseen tasks.

Therefore, IRL has gained considerable interest within the

robotics community [17]–[20], with some studies employing

IRL to gain a deep understanding of the reward function.

However, prior IRL works often presuppose a predeter-

mined feature space and reward structure [19], [21]. This

constrains the expressiveness of reward modeling and leads

to limited performance in estimating the true reward func-

tions. Furthermore, the existing robotics IRL works do not

analyze the learned reward functions for further usage in

practice such as adapting the learned reward for RL during

challenging unseen tasks. It remains unclear how one can

leverage and transfer the information learned from the reward

functions in new environments. Moreover, computational

complexity has been a hurdle for IRL methods to be widely

adopted in the robotics learning community. Recent advances

focus on accelerating algorithm efficiency of IRL [22]–[25].

In this paper, we develop a novel framework of reward

learning, interpretation, and adaptation (Fig. 1) to address the

aforementioned issues of the existing robotics IRL works.

During the learning phase, we employ the Inverse Policy

Mirror Descent (IPMD) method [25] to infer the reward from

demonstrations. IPMD has been shown to be computationally

efficient. It solves the IRL problem with a novel average-

reward criterion under a Maximum Entropy framework [26],

[27]. The Maximum Entropy framework can discern the

most accurate reward estimation by guiding the policy search

with the maximum entropy principle. The average-reward

criterion also helps to accurately identify reward by dropping

the discounted factor that is often used under the classic

discounted-reward setting. Since demonstrations often lack

an explicit discount factor, using a mismatching discounted

factor from the ground truth will lead to drastically er-
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Fig. 1: In this work, we investigate the reward function learned by Inverse Reinforcement Learning algorithms. We propose a two-stage training algorithm
for Cassie to learn reward functions and optimal policies from demonstrations. We then analyze the reward function learned from those demonstrations.
The learned reward is further used to train RL agents in difficult environments.

roneous reward function estimations under the discounted

setting [25]. Moreover, the average-reward criterion has been

thoroughly investigated in the literature and has also been

adopted in robotics learning tasks [28], [29], [29]–[33].

It has become a common practice for RL benchmarks to

use an average-reward metric for evaluation, which further

motivates the adoption of the average-reward criterion for

solving locomotion tasks.

To gain an in-depth understanding of the learned reward,

we employ a Value Decomposition Network (VDN) [34] and

utilize Integrated Gradients (IG) [35] to obtain meaningful

knowledge of locomotion features leading to high rewards.

We will then incorporate such important features into reward

design for locomotion in challenging unseen environments,

which we refer to as reward adaptation. Note that it is not

a new topic to adapt motor and locomotion skills learned

from human demonstrations to robots [36]–[38] or from

simulated environments to real-life environments [7], [21],

[39]. However, these works require a sophisticated design

and learning of policies or controllers to achieve robust

adaptation. Instead, we investigate the possibility of adapt-

ing reward functions. Related methods in adapting reward

[40]–[42] require crafting intricate, domain-specific reward

functions and learning those reward functions under diverse

environments to promote the robustness of the policy. In

this work, we use IRL to learn a free-form reward function

parametrized by a neural network with inputs directly from

the robot’s state and action space. We show that the learned

reward functions contain transferable information about robot

locomotion behaviors and verify such properties by training

agents using the learned rewards in diverse challenging

environments that are not previously seen. We observe a

significant performance boost in walking speed and robust-

ness by incorporating such information. To the best of our

knowledge, we are the first to analyze and adapt free-form

rewards in a principled way.

The salient contributions of our work are listed as follows:

• Inverse Reinforcement Learning for Bipedal Lo-

comotion: We propose a two-stage IRL paradigm to

address bipedal locomotion tasks via IPMD. In stage

one, we obtain expert policies from a fully-body inverse

kinematics function of Cassie. In the next stage, IPMD

learns reward functions from the near-optimal demon-

strations generated by the policies learned in the first

stage. Our work is the first study that applies IRL to

bipedal locomotion under the average-reward criterion.

• Importance Analysis of Expert Reward Function:

We employ a Value Decomposition Network (VDN)

to approximate the inferred locomotion reward function

and Integrated Gradients (IG) to analyze the VDN for

reward interpretation. By ensuring the monotonicity of

the feature space, VDN enables the interpretation of the

reward function with IG while preserving model expres-

siveness. We successfully perform a rigorous analysis

of the importance of individual features, exposing com-

ponents of the locomotion behavior that are crucial to

its reward functions, thereby guiding the design of new

rewards for new environments.

• Reward Adaptation in Challenging Locomotion En-

vironments: We further verify that the learned reward

from a flat terrain and the important features extracted

from our reward analysis can be seamlessly adapted

to novel, unseen terrains. Our empirical results sub-

stantiate that the inferred reward function encapsulates

knowledge highly relevant to robotic motions that are

generalizable across different terrain scenarios.

II. BACKGROUND

In this section, we introduce preliminaries for Average-

reward Markov Decision Processes (AMDPs). An AMDP

is formalized by a tuple (S,A,P, r), where S signifies the

state space, A represents the action space, P denotes the

transition probability, and r is the reward function. At each

time instance t, the agent selects an action a ∈ A from

the current state s ∈ S . The system then transitions to a

subsequent state s0 ∈ S based on the probability P(s0|s, a),
while the agent accrues an instantaneous reward r(s, a).

The primary objective of the agent is to establish a policy

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 25,2024 at 18:16:43 UTC from IEEE Xplore.  Restrictions apply. 



Environment

IRL Agent

Stage 2: Learn reward functions and policies via IRL

Policy 

RL Agent

Reference
Motion

Reward 
PD

Controller

Stage 1: Generate demonstrations via Imitation Learning

Demostrations 

State 

Action 

Update Reward

State 

Action 

Optimal Policy

PD
Controller

Environment

Demostrations 

Fig. 2: Our two-stage training pipeline. The blue box denotes the imitation learning part (first stage). The agent is then used to generate expert demonstrations,
which are used by the second stage to update the reward and policy using Inverse Policy Mirror Descent.

π : S → A that optimizes the long-term average reward,

mathematically given by

ρπ(s) := lim
T!1

1

T
E

"

T�1
X

t=0

r(st, at)|s0 = s

#

. (1)

Given an expert demonstration set {(si, ai)}i�1, IRL aims

to extract a reward function that most accurately captures

the behavior of the expert. Particularly, in this work, we

adopt the Maximum Entropy Inverse Reinforcement Learn-

ing (MaxEnt-IRL) framework [26].

We denote rθ as the estimation of the reward function,

where θ is the parameter of the model of choice to represent

the reward function r(st, at) in Eq. (1). For example, θ

can be the weights and biases in a neural network that

parameterize the reward.

In this work, we adopt the environment designed in [43]

with the robot’s joint-space state as the state space: for any

state s = (x, x̂) ∈ S , let x = (q, q̇) ∈ R
2N represent the

robot joint position and velocity, N = 14 be the number

of joints of Cassie and x̂ ∈ R
2N represent the reference

motions. Given a reference action â at a reference state x̂,

the policy outputs an augmentation term δa that corrects the

reference action, where â, δa ∈ R
M ,M = 10. The result

is a Proportional Derivative (PD) target, a = δa + â, for a

low-level PD controller, which generates a torque τ ∈ R
M

to track joint angles.

III. METHODS

In this section, we first introduce the pipeline that applies

Inverse Policy Mirror Descent (IPMD) for bipedal locomo-

tion to learn reward functions. We then outline our approach

to analyze the learned reward function and methodology of

conducting reward adaptation experiments.

A. Two-Stage Learning Pipeline

Recent RL techniques for bipedal locomotion rely on care-

fully constructing the state and action space and designing

sophisticated reward functions [43]–[45]. IRL models endow

capabilities to learn from demonstrations. However, a practi-

cal challenge often arises: what type of trajectory data should

IRL leverage for effective learning? Directly recording tra-

jectories from robots such as motion capture approaches

can be laborious and time-consuming, while data derived

from model-based methods such as inverse kinematics or

trajectory optimization often suffer from inaccurate models

and unrealistic assumptions. To get high-quality demonstra-

tions for effective IRL, we will use imitation learning with

the Markov Decision Process (MDP) environment similar

to [43], which can produce computationally convenient and

dynamically accurate expert demonstrations, even if we only

have trajectory data generated by model-based methods.

Accordingly, we propose a two-stage IRL learning pipeline

that utilizes both imitation learning and IPMD. Our approach

is graphically summarized in Fig. 2. In the first stage,

we apply imitation learning on data generated via inverse

kinematics to create near-optimal demonstrations (albeit dy-

namically infeasible), as subsequent IRL training and reward

analysis require dynamically accurate demonstrations. The

imitation learning style reward function rI used in this

environment is defined as a weighted sum of tracking rewards

at the joint level:

rI = c1e
�Ejoint + c2e

�kpCoM�pr

CoM
k + c3e

�kpo�pr

o
k (2)

where c1, c2, c3 are constant coefficients, Ejoint is a weighted

Euclidean norm of the difference between the current joint

position q and the reference joint position qr: E2

joint :=

wT (q − qr)2, w, q, qr ∈ R
N . pCoM denotes the Center of

Mass (CoM) position, and po denotes pelvis orientation. The

superscript r denotes the reference motion.

Using expert demonstrations generated from the first stage,

the second stage employs our IPMD method to learn both the

optimal policy and the associated reward function in the form

of a deep neural network. Concretely, in each iteration of the

IPMD algorithm, we sample state-action pairs by interacting

with the environment and also sample state-action pairs from

demonstrations. We then employ Temporal-Difference (TD)

to evaluate our current policy given the first set of sampled

pairs from the environment and apply a Mirror Descent step

to improve the current policy. At the end of the iteration, we

update the reward estimation through gradient descent given

the two sets of sampled pairs. Due to the space limit, more

details can be referred to in [25].

B. Analysis of the Learned Reward Function

We extend our study to a detailed analysis of the learned

reward function. The reward function rθ is a deep neural
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Fig. 3: Illustration of important features for Cassie locomotion.

TABLE I: Considered Features for Approximating Learned Rewards

state action Euclidean norm of action

leg roll leg pitch pelvis pitch

hip yaw foot pitch foot force

CoM velocity CoM angular momentum CoM to center of foot

network that inherently lacks interpretability due to its black-

box nature. To tackle this issue, we employ a more inter-

pretable model, Value Decomposition Network (VDN) [34],

which approximates the reward function and explains the

significance of locomotion features in determining the reward

value. VDN maintains a monotonic relationship between its

input and output by constraining the weights and biases

of the network to be positive, ensuring continuous positive

gradients [46]. This property of VDN allows us to establish a

monotonic mapping from the state space to the reward output

without compromising the learned reward’s accuracy due to

its usage of neural networks [46].

Additionally, we aim to explore the features that are

highly relevant to bipedal locomotion but may not be di-

rectly present in the state space, such as the leg length or

ground reaction force, to study how these indirectly observed

features affect the reward function. To facilitate this, we

extend the input space of our approximation model to include

these features. The full list of selected features is in Table

I and a majority of them are annotated in Fig. 3. Through

this approximation, we establish a relationship between the

selected features and the reward function, while keeping

the IRL training process separate and intact, allowing it to

preserve the expressive power of deep neural nets.

Equipped with an interpretable approximation from VDN,

we proceed to further dissect the learned reward function

using a set of neural network interpretation techniques. In

particular, we find Integrated Gradients (IG), a widely rec-

ognized tool in the Deep Learning community, to be highly

suitable for our objectives [35]. IG allows us to analyze the

effect of individual features on the overall landscape of the

reward function by perturbing the input and observing the

resulting gradient changes, which in our case are manifested

as variations in the neural network weights. We also find that

directly applying IG to the original reward function itself

does not yield any meaningful outcome, due to the highly

nonlinear relationship between the input (states and actions)

and the output (rewards). This validates the necessity of using

VDN to approximate the original reward function for better

reward interpretation with IG.

C. Adaptability of the Learned Rewards on Difficult Terrains

In this context, we explore whether our learned reward

function harbors generalized knowledge that enables adapt-

ability across varying terrains. Specifically, we test its effi-

cacy in a purely RL-driven training paradigm, without the

need for additional expert demonstrations. Intriguingly, the

RL guided by the learned reward not only allows training

from scratch but also produces a better performance com-

pared to policies learned from the hand-crafted reward. Even

though the reward function was originally trained on flat

terrain, our learned reward successfully guides the agent’s

learning in more complex environments.

This observation aligns well with the intuition that a well-

designed reward function encapsulates generalizable environ-

mental knowledge. To validate this point, we present results

showcasing Cassie’s capability to navigate difficult terrains.

More interestingly, with the understanding of reward

functions, we show that factored components inside the

reward function, i.e., those found during our reward function

analysis, can improve the quality of locomotion behaviors.

This constitutes a significant contribution to the field, as

traditional algorithms often require the crafting of intricate,

domain-specific reward functions.

IV. EXPERIMENTS

A. Two-Stage Learning Setup

Our experiments of Cassie locomotion were conducted

using the MuJoCo physics simulator [47]. The training

pipeline consists of two main stages as illustrated in Fig. 2.

1) First Stage – Training the Imitation Agent: We train

the Imitation agent using Soft Actor-Critic (SAC) [48]. The

discount factor γ for this stage is set to 0.99. Both the policy

and value functions are parameterized by 256 × 256 Multi-

Layer Perceptrons (MLPs). For implementation, we adopt

the state-of-the-art codebase from stable-baselines3 [49].

2) Second Stage – Learning reward functions and policies

via IRL: We use the Inverse Policy Mirror Descent (IPMD)

method described in [25]. The reward function, policy, and

value functions are all represented by 256× 256 MLPs.

3) Training Parameters: Both agents are trained using 5×
106 samples. We employ an experience replay buffer with a

capacity of 1 × 106 and utilize a batch size of 512. The

Adam optimizer [50] is employed with a learning rate set

at 3 × 10�4. These parameter settings are consistent with

established norms for training Deep RL algorithms.

From a simulation experiment, the optimal expert agent

obtained an episodic reward of 447.2 while generating the

corresponding expert demonstration data for the second

stage; the IRL agent trained with IPMD reached a better

performance—an episodic reward of 482.87. All metric is

measured by the reward rv . The fact that IPMD agent

outperforms the expert agent is also observed in [25]. We

suspect this is due to the expert agent is trained with a

discount factor but IPMD is based on average-reward. The
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Fig. 4: The top four most important features: CoM lateral velocity, pelvis
pitch angle, left and right foot forces. y-axis is the importance value reported
by IG. The vertical dashed lines represent time steps when the foot touches
and leaves the ground. Green indicates when the left foot strikes and red is
for the left foot taking off from the ground. The same for orange (strike)
and purple (take off) for the right foot.

qualitative performance of the IRL agent has no distin-

guishable difference compared to the imitation agent, this

is surprising since we learn both the reward functions and

policies from scratch, while in the imitation learning case, a

complicated reward function has already been established.

B. Reward Analysis

For the Value Decomposition Network (VDN), we adhere

to the same network structure as described in [46]. We

gather training samples by recording the states of the Cassie

robot, along with additional data necessary for computing

the features of interest. We list all features we find worth

investigating in Table I. As we aim to approximate the

learned reward function, we use the rewards generated by rθ

as regression targets for the VDN. The optimization objective

is the Mean Squared Error (MSE), thereby transforming the

training of VDN into the following optimization problem:

minψ MSE(VDN(ψ), rθ), where rθ is the learned reward

function and ψ represents the parameters of the VDN, i.e.,

the weights and biases in neural networks. We record and

compute specified feature data as input, and collect rewards

computed from those data using the learned reward functions

as regression targets. We employ the Adam optimizer with a

learning rate of 3 å 10�4 to train the VDN. To interpret

the contribution of each feature to the reward function,

we employ Integrated Gradients (IG) [35], which is further

implemented by Captum [51]. Fig. 4 demonstrates that the

reward function approximated by the VDN aligns well with

our intuitive understanding of what features are important

for bipedal locomotion. We plot the importance change of

four features to the reward during one typical Cassie walking

motion executed by the IRL agent.

We find that some features of interest exhibit periodic

patterns, due to the nature of the periodic walking motion.

This aligns with our understanding of bipedal locomotion.

Some particular features exhibit a strong influence on the

reward even if they have no particular pattern. We note that

pelvis pitch, plotted in Fig. 4, has significant values compared

to its small-scale raw input data. We conjecture that the pelvis

pitch plays an important role in maintaining the stability of

(a) Random Perturbed Terrain (b) Gradually Perturbed Terrain

(c) Gravel Terrain (d) Sine Wave Terrain

Fig. 5: Random terrains generated for testing the learned reward function.

the robot during walking. Other features also have strong

correlations with their physical meaning. For example, the

left foot has ground reaction force only when it is in contact

with the ground. This is rather intuitive for robot locomotion.

C. Adaptive Reward Function

We generate a variety of uneven terrains in MuJoCo

environments as shown in Fig. 5. In particular, we create (a)

random perturbed terrain, (b) gradually perturbed terrain, (c)

gravel terrain, and (d) sine wave terrain, each with maximum

height capped at 0.2, 0.3, 0.1, 0.4 meters respectively. These

categories serve to evaluate the adaptability and generaliza-

tion capacity of our learned reward function.

We train the agent from scratch using SAC with a discount

factor of γ = 0.99, following the same setup as in our

imitation learning model. For comparative analysis, we also

train a baseline RL agent with a handcrafted reward function

defined as rh = rf + rs � rc, where rf encourages forward

movement and corresponds to the sagittal velocity; rs is

a locomotion survival reward, awarded when Cassie torso

remains upright; and rc, the control cost, is defined as

rc = kak2.

The baseline agent manages to navigate these terrains,

albeit in a less graceful manner with jerky motions (see the

submitted video). In contrast, our approach uses a modified

reward function: r = rh+rθ, where rθ is the reward function

learned from IRL. We refer to r as the Adaptive reward. We

record the average sagittal velocity of CoM when comparing

the baseline reward model and the adaptive reward model

side by side. The results can be found in Table II. We also

plot the sagittal travel distance in each environment, which is

shown in Fig. 6. We find that incorporating rθ significantly

accelerates learning and produces more natural and robust

locomotion behaviors, substantiating the transferability of the

learned reward function across domains.

D. Analysis-based Adaptive Reward Design

With the adaptive reward, the robot is able to walk on

unseen rough terrains. However, instances of undesirable
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Fig. 6: Sagittal travel distance comparison between baseline model using
rh, and adaptive reward model using r. Note that even though the Baseline
model can walk up to maximum time steps, it can not walk as far as the
one using the adaptive reward.

TABLE II: Average Center of Mass velocity (m/s) in sagittal direction

Terrain Baseline Adaptive

Perturbed 0.2617 0.6249

Gradual 0.3970 0.8015

Gravel 0.4132 0.9106

walking gait still occasionally occur. Specifically, using the

adaptive reward alone, Cassie’s CoM exhibits a higher sagit-

tal CoM velocity. In reality, such behavior is undesirable

as this inclination creates instability during locomotion in

rough terrains. Consequently, the robot needs to maneuver

agilely to maintain balance during walking. This leads to

the robot deviating from the original lateral position, which

is reflected by large variations of CoM velocity along the

lateral direction. With the understanding of the learned

reward, a natural question arises: can we further exploit the

learned reward functions to shape the locomotion behavior?

We answer this question affirmatively. The top important

features uncovered in the Reward Analysis improved the

stability of walking behaviors when incorporated with the

learned reward. As such, we incorporate important features

discovered from the reward analysis to boost the stability of

the robot, or ”regularize” the robot’s motion. To do this, we

add three additional terms with high importance scores to

the adaptive reward: pelvis orientation, pelvis pitch angle,

and CoM velocity, which are implemented to follow their

reference motions on the flat ground. We denote such rewards

as rv = e
�kqo�qr

o
k2 + e

�kqpitch�qrpitchk2 + e
�kvCoM�vr

CoM
k2 ,

where qo denotes the pelvis orientation in a quaternion form,

qpitch is the pelvis pitch angle, and vCoM is the CoM velocity.

To verify the efficacy of the rv , we train RL agents with

SAC on four combinations of reward functions: the baseline

model rh, the regularized model rh+rv , the adaptive model

rh + rθ, and the regularized adaptive model rh + rθ + rv .

We plot the CoM trajectory, and standard deviation of the

velocity drift along the lateral direction in Fig. 7. Although

the adaptive model allows the robot to walk further, it has

a higher deviation from its original lateral position and a

higher deviation of lateral velocity. We conjecture that this is

partially due to the fact that the orientation is less emphasized

by the adaptive reward. We also observe that purely using

the adaptive reward results in a ”hopping” behavior where

each walking step has a brief flight phase. In reality, such

loss of ground contact can lead to a highly unstable walking

motion and pose a risk of failure. Surprisingly, the integration

of additional regularizing terms in the reward function rv

mitigates such undesirable hopping behaviors. We plot the

(a) CoM trajectory using different 
      reward on Gradual

(b) Standard deviation of lateral
      velocity

Fig. 7: Results for regularizing robotics behavior.

(a)

(b)

(c)

(d)

Fig. 8: Ground reaction force with four reward setups: (a) rh, (b) rh + rv ,
(c) rh + rθ , (d) rh + rθ + rv . The orange bar denotes the left foot force,
while the blue the right. The red bar denotes time steps when no ground
reaction force exists for either foot. Data records a random middle portion
of a trajectory.

ground reaction force of all four models in Fig. 8. Time

steps when undesirable behaviors (both feet are in the air)

occur are annotated with red color bars.

Fig. 8(b) and (d) show a more stable and natural walking

motion, compared with Fig. 8(c) (also shown in the video),

indicating the efficacy of the rv reward in regulating the

robot’s behavior. This result further demonstrates that the

augmentation of the reward function with relevant extracted

features leads to improved locomotion performance.

E. Zero-Shot Validation

We observe that agents trained on diverse terrains display

enhanced stability when deployed in unseen environments.

For example, Cassie is able to navigate sinusoidal terrains

with random height variations (Fig. 5d), without additional

training. This corroborates the idea that the learned reward

embodies a form of generalized knowledge beneficial for

robotic locomotion across a range of terrain scenarios.

V. CONCLUSION

In this work, we employ an IRL method to solve bipedal

locomotion problems. Our analyses reveal that the learned

reward function encapsulates meaningful insights and also

serves as a valuable guide to understanding the underlying

principles of robotic motion. The ability to learn and adapt

using the inferred reward function paves the way for new

avenues of research in robotics, particularly in the domain

of reward inference and environmental adaptability. Our

work supports the notion that leveraging learned reward

functions could substantially accelerate the design, training,

and deployment of robotic systems across a myriad of real-

world scenarios. Our future direction will focus on hardware

implementation on the Cassie robot.
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