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ARTICLE INFO ABSTRACT

Keywords: An effective field theory framework is used to investigate some Lorentz-violating effects on
Gravitational wave the generation of electromagnetic and gravitational waves, complementing previous work on
Radiation field propagation. Specifically we find solutions to a modified, anisotropic wave equation, sourced by

Lorentz violation

N charge or fluid matter. We derive the radiation fields for scalars, classical electromagnetic ra-
Effective-field theory

diation, and partial results for gravitational radiation. For gravitational waves, the results show
longitudinal and breathing polarizations proportional to coefficients for spacetime-symmetry
breaking.

1. Introduction

Presently, interest in tests of foundations of General Relativity (GR) is high, including both theory and experiment. Motivation
for these studies include the possibility that some aspects of foundations of GR may be modified in a unified theory of physics that
incorporates quantum gravity. In particular, suggestions that spacetime-symmetry foundations of GR, like local Lorentz symmetry,
could be broken in small but potentially detectable ways [1,2] has motivated a plethora of theoretical studies and analyses [3-10].

Much theoretical work has been accomplished within effective-field theory (EFT) descriptions of spacetime-symmetry breaking,
as well as with specific models. This includes extensive literature on the effects for electromagnetic waves and gravitational waves
propagating in the vacuum [11-13]. Also, studies using non-EFT approaches abound in the literature [14,15]. Accomplishments
in Quantum Field Theory studies of spacetime-symmetry breaking are now prolific [16-27]. Much of the latter work relies on
solutions to the field equations in momentum space, which is what is needed for QFT applications [28,29]. Relatively few works have
developed classical position-space solutions for the Green functions [30,31], in particular, classical radiation multipole expansions
seem to be scant [32,33], in the EFT description of spacetime symmetry breaking.

The purpose of this article is to obtain general position-space solutions and study wave generation in the context of spacetime-
symmetry breaking described by an EFT [2,34,35]. Rather than a comprehensive study, we focus on minimal terms in the EFT and
use a coordinate transformation trick to find the exact Green function for a modified wave equation. Our results are then applied
to scalar fields, the electromagnetic sector, and the gravitational sector with some intriguing partial results on gravitational wave
polarizations. We also compare briefly to perturbative approaches.

Except when we discuss some results for gravitational waves, most of this work is in flat spacetime with the metric signature
— + ++, we use Greek letters for spacetime indices, and latin letters for spatial indices. For the notation we follow conventions of
other references on spacetime-symmetry breaking [35-37].
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2. Green function with modified wave operator

In effective-field theory descriptions of spacetime-symmetry breaking, one encounters Lagrange densities of the schematic form
LD n"o,wo,y + tﬂvﬁ---aﬂy/ava .., for some field y, where t#V*- is a generic set of coefficients describing the degree of symmetry
breaking for the field [35,38]. Upon obtaining the field equations, one typically encounters wave-type equations modified from the
usual D’Alembertian operator [] = %9, = V> — 0,2; to solve them, one can seek a Green function solution.

For actions with just two derivatives, the typical problem involves finding a Green function G(x, x’) satisfying the equation

(8)"9,0,G(x,x") = =W (x = x'), @

where g#" are constants. These constants g#¥ can be chosen so that there is a well-posed hyperbolic partial differential equation for
the smooth source case, (i.e., for the underlying equation we are trying to solve (§)**0,,0,y = p) [39]. Specifically, we will assume
the following generic form:

FY =k, @

where k#V are a set of constant coefficients assumed to have values in the chosen coordinates sufficiently less than unity, so that g+¥
is guaranteed an inverse. Using Fourier transform methods, the momentum space solution of (1) is relatively trivial, while to date,
no exact position space solution has been explicitly written and studied, although results can be found in certain limits [29,31].
The solution to (1) can be obtained by changing coordinates [31,40] so that the equation appears with the conventional wave
operator. Specifically, we change coordinates x# = x#(x"), in a particular way such that under this coordinate change,
=HY _ ox" E,ﬂﬁ _
0x% oxP

v (3)

so that 7" takes on the numerical values of the Minkowski metric. Such a transformation can generally be shown to exist with mild
assumptions on k*”, for example, one can write such a transformation using a series X = x# — 1k““x‘” + ---. Care is required here
because the spacetime metric in the X* system is not Minkowski.! In the new coordinate system, the Eq. (1) is

n9,0,G(x.%') = - %5“‘)(} -x), 4
—&
which resembles the standard wave operator Green function equation. The determinant of g#' is denoted g. Note that, despite
appearances, one cannot generally remove k,, from the framework altogether if there is a matter sector [31,41-43]. Only in the
vacuum solution can one eliminate the coefficients k,, entirely.
The solution to (4) is a standard one up to a scaling [44], G = 81, (x —XHHE=X)) /Ax \/—_g One then transforms this function
back to the original coordinate system:

1 1 ’ ’
Glx,x") = ——=6 (—(&),,(x = xY(x = x")"),
2”\/_—g ( Hv )
11 5
= ———=6(' - Tp).
4r/—g R R
In this expression we use a modified retarded time 7, and modified distance R:
. R+ @ R
tp=1t— .
(8™ oo (6)

R= /=@ Doo@ Dy, RRI +(@ o R,

where R' = (x — x'). The first line of (5) forces an evaluation along a skewed light cone —(g“‘l)ﬂv(x — x")#(x — x")¥ = 0. The second
line breaks up the delta function, and the choice of retarded boundary conditions is made. This result will be used for the scalar,
vector and tensor examples to follow.

3. Scalar example
3.1. Exact solution

We apply the results of the Green function (5) to the case of a real scalar field with generic source function. Thus we solve the
equation

(" + k*)a,0,y = —p, 7)

1 This type of procedure was carried out at leading order in the appendix of Ref. [31] to demonstrate the physical equivalence of having certain forms of
Lorentz violation in the photon sector or the matter sector. Also see Ref. [40].
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—— Deformed Case
X emee- Standard Light Cone

(a) A t — x spacetime diagram illustrating the mod- (b) A t —x — y spacetime diagram illustrating a mod-

ified wave propagation when the coefficients k,, are ified light cone (dark gray) and the standard light

nonzero. The solid curve is the solution of t* — 22 + cone (light gray), which are the curves satisfying
f f t? — 2?2 —y?+2koitr+kiozy =0, and > —z2—y2 =0

2koi1tz = 0, and the dashed curve is the usual light T~y o1tr+k122Y , t"—z" —y s

trajectory t = . The size of the coefficient is exag- respectively

gerated at kg1 = —0.3.

Fig. 1. Spacetime diagrams illustrating the modified propagation. This shows the directional dependence of the modified symmetry-breaking case. See also figure
1 in Ref [46].

where p stands for a generic source density for the scalar. Using the general Green function results above, we obtain,

&r /P(tRsr)

y = (€))

475\/_ /

For calculations of “wave zone” results, we will use an expansion similar to that in Ref. [45], wherein the authors construct a
systematic wave zone and near zone expansion. We start by assuming that the field point 7 is located far outside of the source region
where p # 0; thus the source p has “compact support”. If this is the case, then we may use a series expansion assuming r > r’. To
expand the time argument of p, we must also assume the characteristic wavelength of y is larger than the scale of the source 1 > r'.
It will be useful to use the following quantities, obtained by evaluating the expressions (6) above when 7 = 0:

. - - — — F+ @ Dor!
F= /=@ Do0@ Dy + (@ Do T =1 e ©
Following parallel steps to Ref. [45] (Section 6.3), we arrive at the series:
o
—1 -
_ 1 Z( ) 9, <%/d3r’p(tr,r’)r”“>. (10)
4r\/-E = I F
In this expression we use the index abbreviation L = i,iyis...;;. For what follows we define a tangent vector N; = —d;7,, which

reduces to the unit vector n/ = r/ /r when k,, — 0, and represents the direction of wave propagation.
It is useful to note some results that are leading order in the coefficients k#¥. Using the definition (2), we have for the inverse
metric, modified retarded time 7,, and the tangent vector N, respectively

@ =0 = Ky
fo=t—r(l- —koo 2 kign'nl) + ko', a1
N; =n;(1 - —k00+2k k) — — k.

to first order in k. Using these approximations we obtain the first 3 terms of the series (10) in the wave zone (keeping only terms
with 1/r falloff):

1 S . )

Ve (1011 = Lo + ST+ PIn,(1 = kegg + Ky ) = Ky = k]
(12)
+ %fij[n,nj(l = koo + 2kt ™) = 2mknk = 2y ] + ) lizi -

Here Q is the total “charge”, P is the dipole moment and I/ is the inertia tensor associated with the source density p. It is critical
to note that the terms on the right-hand side of (12) are evaluated at the modified retarded time in (9) and (11). This implies a
deformed dependence on the space and time coordinates of the field point.

We include here plots of how to visualize the propagation of the wave from the source point (taken as the origin) to the field
point ¢, x; these can be seen in Figs. 1. Note the waves propagate in the direction N, = —9;f,, with expanded form in (11). The
coefficients used in the figure are the k,; coefficients, which are odd under Parity transformations. This behavior is reflected in the
first figure where the modified case breaks x - —x symmetry of the usual lightcone.
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3.2. Blending with perturbative solutions

It is useful to compare the methods above with other methods that involve approximate solutions. This has been carried out
successfully in slow motion, weak field scenarios where wave behavior is not dealt with directly [3,37]. When the full effects of
time derivatives is included, and we are looking for complete “inhomogeneous” solutions (not just vacuum propagation), subtleties
arise as we point out here.

To illustrate, we focus on the scalar wave equation case in (7). The philosophy behind perturbative approaches is to seek solutions
in powers of the small coefficients k,,. For instance we assume the solution can be written y = y© + y® + ..., with (n) indicating
order in powers of k. To zeroth and first order in k,,, we have the two equations to solve,

uvo
Ov® =-p. Oy =-k"0,04?. (13)
The formal (particular) solutions, with the retarded time Green function, are
- kyva/ a/ 0)
WO = / pEN p(t —RR,r )’ w = / FEN MRV‘V (14)

The first solution is the conventional scalar one, and the second of these equations involves a field on the right-hand side that can
be nonzero over all regions of space, and so does not have compact support. Even in GR, integration of the formal wave solution
also involves source terms composed of nonzero fields far from the source [45,47]. Such terms can be evaluated in GR and form
part of the complete causal and properly behaved solution [45,48,49]. It is not immediately clear for Eq. (13) if this program works.
We have solved Eq. (14) for the scalar example case of Section 3.1 using standard methods [45]. The result truncates to leading
order in the coefficients k,, and the retarded time argument that appears is the standard one ¢ — r, rather than the modified one in

(11). The result is
1

= i

+ %I"‘f' [y (1 + 3k n™ + 3kgn') = 6, (3 koo + koyn' + Skyun'n™) = 2nikejn® = 2kon 1+ -+ ) lizs, -

v ( Ol = Tkoo + Shyyn'n/ 1+ Plny(1 = Yoo + Skyen n* + ko) = kyynd = ko)

(15)

Comparison with (12) shows a mismatch of numerical factors and the absence of terms with the trace of I'/. It turns out that the
two approaches indeed match but there is a subtlety that involves the correct conversion of the expression (12) from the modified
retarded time 7, to the usual 7, = ¢ — r. This confirmation suggests a general perturbative solution program exploring nonminimal
gravity sector terms can be countenanced [50].

Rather than solving (14) directly, there is another alternative that more rapidly provides a match between perturbative
approaches and “exact” ones. Applying the [] operator to the equation for w(! in (13), we obtain,

Py = k0,0,p. (16)

where now the right-hand side is a source with compact support but the left-hand side is a nonlocal operator. A nonlocal Green
function for the operator that solves [J>G = —§*(x—x) takes the form G,;(x, x") = —(1/167)sgn(t — ' + R), where sgn(x) = +1: positive
if x > 1 and negative if x < 1. This result can be derived from standard sources, for example, by taking the Fourier time transform
of the relevant position space Green functions in Ref. [51].2 When derivatives are applied to G(x, x’), the light cone delta function
emerges. For example, [1G,;(x,x’) = 6(t — ' + R)/(4xR).

The solution to (16) then takes the form

) =— / d*X' Gy e, XNk 0L o + ), a7

y isa homogeneous solution satisfying |:|2y/2) = 0, and the prime on p indicates dependence on the primed spacetime
point x’. Convergence of the integrals for the infinite domain in (17) depends on the source function p asymptotic properties and
the bounding surface of the four-dimensional integral. We assume p is localized in space, vanishing outside some finite radius.
The time behavior is another matter. One can always introduce a bounding surface, for example, the volume is the spacetime
between two spacelike hypersurfaces at fixed values of time 7, and ¢, (see figure 5.3a in Ref. [47]). Alternatively one can introduce
an artificial exponential time falloff for the density p — peIl to ensure the source vanishes as time approaches +co, as done in
adiabatic switching.

Assuming that such a modification is applied to (17), so that it is finite, we proceed with integration by parts with the 0;4 a)

(1
H

where y/(l)

derivatives. The surface terms can either be eliminated by a choice of the homogeneous solution y
vanish on the boundary with mild assumptions. We obtain

or they can be shown to

w® =—/d4x’k’“’6l’46"/Gnl(x,x’)p’, (18)

and now the derivatives of the Green function ~ sgn(f — ' + R) will always involve a delta function along the light cone. The result
in (18) is best matched to the “exact” solution (8) by breaking up the summation into space and time components. After evaluating

2 The static limit of this Green function, which is just proportional to the distance R, is used ubiquitously in the literature for various post-Newtonian
applications [37,52-54]. Green functions for nonlocal operators have been discussed elsewhere, for instance Refs. [3,55,56].
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derivatives using standard step and delta function properties, and adding in the zeroth order solution, we collect the terms in a
suggestive form:

y O 4y = /d3 ’ﬁ [0, + pr; (koo R + 2k, RV + kj, RIRF) + p;%kjk(éjk - RIRY)], (19)
where the subscript on p indicates evaluation at the retarded time 7z =7 — R.

The first term in (19) is the unperturbed solution for when k,, =0. The second term has an unconventional dependence on the
distance R; far from the source the potential has no 1/r suppression. However, the second term can be re-interpreted as the first order
term in the Taylor expansion of time argument (6): p(fg) = p(tg)+p(fg—1g)+, given that iz —1z = %(koo R+2ko; R +k ;3 R RF)+O(K?).
The third term has the usual 1/r suppression outside the source region. When comparing to the exact solution (8), the third term
can be understood as arising from a series expansion of the modified distance R in (6); R = R(l + %koo - %k jkﬁ/ R¥ + O(k?)). To
summarize we have shown the match of approximate and exact solutions:

w @ 4y =y 4+ 0, (20)

but it should be noted that care was required to interpret apparent nonlocal terms.
4. Photon sector application

We apply the Green function formalism of Section 2 to the photon sector of the EFT framework [12,35]. The field equations
from the photon sector action in the “non-birefringence” limit can be written in the form,

(0™ + " (cp)™ + ()" 1) 0, Fy = =", (21)

where (cp)*¥ are 9 coefficients for Lorentz violation (symmetric and assumed traceless), F, v = = d,A, —0,A, is the field strength
tensor, and jV is the current source [12,13,57]. If we define an alternate set of coefficients C#* using C* _(n* Lt 2C’(V) = (cp)",, then

we can write (21) as
g g" o, Fey=—J", (22)

where g# = y*¥ + C*, similar to the definition in (2). Note that to leading order in small dimensionless coefficients, C¥, ~ (cp)",.
To solve this equation, we change coordinates x# = x#(x"), in the same manner as (3). In the new coordinate system the field
equations take the form

W3, Fy, = -7, (23)

with 5,4 = 0/0x" and FM = 5}‘2‘/ - EVZM. The field equations resemble that of conventional electrodynamics in the X coordinates
with a modified current jV. In particular, there remains the usual gauge symmetry of electrodynamics. We adopt the gauge choice

r]‘”éﬂzv =0, leaving the field equations as

n"0,0,A, = =] f,; (24)
where we have multiplied (23) by a Minkowski inverse 7,,, on both sides to isolate A,. The standard wave operator appears in Eq.
(24) and so the usual inhomogeneous solution can be used, yielding

— 1 — —  —ha= =\
A, = Z/d4x/5(—l1aﬂ(x—x’)“(x—x’)ﬂ)j,ﬂqw, (25)

Now we use the coordinate transformation rule A, = (9x" /0x‘)zﬂ and change the coordinates within the integral in (25).
First, using Eq. (3), we can show the argument of the delta function in the original x# coordinates takes the form like (5), namely
—-EhH (X = x")*(x — x")". The remainder of the transformation follows from standard formulas. The Jacobian of the transformation
can be found from (3) and can be written |0x/dx| = 1/4/=g. The originally sought solution is then

" 2 /_ 436 (~(& g =X = V) 4G (26)
This result can be independently checked by using equation (1) and (5), and using the gauge condition transformed to the original
coordinates, namely §#'d,A, = 0, to show that (26) satisfies (22) and hence solves (21).

Following steps similar to those for the scalar field we can write the solution compactly as

P (& )MAJM(tR r), @)

4= 47r\/_/

with 7 and R as in equations (6). We specialize (27) to a localized conserved current density j* = (p, J ) and expand the solution
assuming the field point is far from the source and in the wave zone (r > 4 > r'). We follow steps similar to those leading up to
(10) and we arrive at

1 o
(g ) Z (%/d3r,j#(fr,7l)r,L>, (28)

1=0
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where 7, and F are defined in (11). We write out the terms up to L = 1, decomposing the current into charge density and current
density, and keeping only terms that fall off as 1/F, to obtain

1 . o . ..
A, = —W/d3 /[( ])MO/’ (@ I)Ml']” +NGE 1);40/’”” + "']|f=fr' (29)
4 gF
The first term is proportional to the constant total charge Q, while the second and third term can be re-expressed in terms of the
electric dipole moment p/ = [ d*/'p'r"/, using standard techniques [44]. The higher order terms contribute to the magnetic dipole
and quadrupole terms, which we neglect here. The dominant radiation four-potential terms are

A, = ;[ @ Hu+@ )”oN]p li=7, (30)

4r+/—8F
The radiation zone electric field, which is gauge independent, is found to be

Fo=- @ Do, + @ DoV + @y + @ oo NN |1, @1

=
4 \/—_gf
Adopting a leading order expansion with (1), =#,, — (c¢f),, and using results above such as (11), we can also write the electric
field as

Fo = = | P Pt P, (32)
47:
where P;; = §;; —m;n; is a projection operator. Note that while Fjyn; = 0, indicating two independent polarizations, »; is not the true
direction of wave propagation. There remains a projection along the true direction of propagation N, that is not zero, Fy;N; # 0,
indicating that at least one of the two independent modes is not transverse to the wave propagation direction.

This striking result does not mean the usual U (1) gauge invariance is broken. The classical result we obtained for electric field in
(31) is gauge invariant, any piece of the vector potential A, proportional to 9, vanishes in this calculation. However, with Lorentz
violation in the form of the ¢, coefficients, the electric fleld can have a longltudmal component even in the vacuum. From the
modified Maxwell equations in the photon sector, we get V- E = =V - k- E — V - kp - B, unlike the usual Maxwell vacuum case
where V - E = 0 (using the matrix notation for the coefficients x5 and xp, of Ref. [12]).

5. Gravity sector application
5.1. General solution
For a starting point, we use the EFT gravity sector field equations for the metric fluctuations #,,, around a flat background. They

can be obtained from a Lagrange density £ = L5 + ﬁ?’ﬁ " Gyypy + L pg> Where G is the double dual of the Riemann tensor and
k = 8zGy [52,58-60]. We can write the field equations in the form

aupfv

R™Phyy = ko, (33)

where 7#V includes the matter stress energy tensor (T),)*" as well as contributions from higher order terms in h,, with and
without coefficients for Lorentz violation. Should the coefficients &, arise dynamically, through spontaneous symmetry breaking,

the dynamical terms contributing to z#* can also be included [61]. The operator K#*/ can be written as
g 1 ( @I 15 _ v @B 8 o iy pay yB5 oyl iy 8 _ oGy 3y p5 _ By aé)a 05 + Kb, (34)
2

where K #vab is the operator such that K”V“ﬂ hag = =3 ,,gﬂmﬂv The first line in (34) contains the terms present in standard linearized
GR, namely the terms in G**, while K vap h,p is the leading order corrections from the 5" coefficients [37,59].

For the purposes in this work, it is useful to re-express the operator (34) in a simpler form. We define ¥ = y#¥ +5*. Then to
first order in 5*” it can be shown that

Ruveb — é <ga(ugv)ﬁgyz> _ gu\zgaﬂgyé + gu\/gaygﬂﬁ + gaﬁgﬂYg _ ga(Mgv)}/gﬁﬁ _ gﬁ(}lgv)ygaé )0}/05’ (35)

which resembles the standard linearized terms in GR but with an apparent modified background metric g#, as pointed out in [42].
We perform a general coordinate transformation as in the scalar and vector case above. We require the coordinate transformation
to satisfy (3), with g = y#¥ +5"". Treating the quantities in (35) as tensors in a flat background, the field equations in the X"
coordinates take the form
1 = - -
> (na(M,IV)ﬂnré — PP g P B gt S _ Gy B ,,ﬁ(M,IV)ynaé)ayaE P = K7 (36)

Thus in this coordinate system, the field equations appear as conventional linearized GR with a modified source 7*".?

3 The barred notation indicates the coordinate system and is not to be confused with the common trace-reversed bar notation.
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Next we exploit the gauge freedom in Eq. (36) and choose

_ — 1 —_ —

10 9,hg, = 50,01 hop). (37)
Note that 9,7#* = 0 holds in the X* coordinates. With the gauge choice, the field equations become

1 aps = - . - 1 —

Enaﬂaaaﬁnw =—«7", with [T" =p"yPh,, - 5nf‘V(n"ﬂha,,). (38)
The standard wave operator (in x* coordinates) appears in (38), thus we can use the standard wave solution,

mv =X / d*%§(—nap(x = X)X - %)) T, (39)

Va

Using the Minkowski metric Ny WE obtain ZM from (39):

- K — — g — = — 1 —

B =~ / 46 (~p 5 =X G =) (15,77 = S1,0,577 ) (40)

Using the coordinate transformation rule h,; = (9x"/0x*)(dx" /ax‘)ﬁw, we can find the solution in the original coordinates,

similar to the approach for the vector potential in the steps leading to (26). This yields

o= = [ 445 (<@ gt =¥ 2Y)
- (41

X (@@ D5 = 2@ D@ 7).

We have also directly verified that this solution (41) solves Eq. (33) to leading order in EW. Note that the gravitational wave from
the source propagates along the modified light cone as in Section 3, which is consistent with prior propagation studies [59,62,63].
What is new here is that we can calculate directly the effects of a given source on the metric fluctuations and the measured effects
in a GW detector.

In a leading order approximation, we have (§~!) wv = My = 5, If We expand the delta function to integrate over ', as done for
the scalar case and vector case above, and we restrict attention to leading order in 5,,, then we obtain the result

1 - 1 - 1- -
453X w 27&(”5\/)(1 - En#"(‘ra« — saﬂ‘;aﬂ) + Esuvfa{l)(tR’r,), (42)

el
w 2z
where 7 and R are defined in (6), with k#¥ — 5"". This solution is valid in the gauge

0 + 590,15 = 50,0 + 5"y, (43)

which is not the usual harmonic gauge unless EW =0 [64].
5.2. Expansion of solution

At this stage we employ the far field expansion, similar to (28). First we abbreviate the terms in parenthesis inside the integral
(42) as 0,,. We seek the solution for hyy in the far field or wave zone. However, we must integrate over the near zone N and wave
zone W in this case because 7, does not have compact support and exists in both regions:

0,,(r7) 0, 7)
hy, = 2& </ iy R +/ a3y R ) (44)
1/_g N R w R

The integrals over the wave zone involve those contributions to ©,, that do not have compact support; they are of higher order in
a series in powers of h,, (or equivalently powers of G [45]). As this paper is more of an introductory nature, we attempt only the
first integrals, so we seek (h,),,, and leave the calculation of (hy),, for future work.

The general solution for the N zone integrals can be put into an expansion form like (10):

I
() = 2E 4G 2( 1) <1/ 43 @uv(fr’7/)’/L>~ (45)

V=813
We proceed to evaluate the first few terms in the series (45) in order to find the leading multipole terms up to the quadrupole, the
latter being the traceless version of the inertia tensor I/:

IV =/d3r1'00rirj. (46)

Integrals in (45) involve the space and time projected components of z#¥; namely 7%°, 7%, and /. The goal for a concise solution
is to express all the terms using the inertia tensor (46). We can use the conservation law 9, 7#" = 0, to express some of the integrals
in (45) in terms of [ d3r7'; this quantity can be re-expressed in terms of the inertia tensor. The latter step is achieved with the
identity 92t = 9,0;7"/ [45]:

/ d3ret = (1/2)d*/dr? / a3t 4 dNterms. (47)
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The boundary terms are dependent on R and are expected to cancel with corresponding terms from the wave zone integrals.
For the radiation fields (h),, we find, up to surface terms at radius R,

G - _ o
(8jk + N;Ni +500(8j + 2N; N + 250, Ny =5, ) 17 .,

(hadoo = j

7
G _ _ _ _ _ .
(hydoj = = (=265 N; (1 +500) — 250481 + 50;00 + 50; NN, + 25, N ) T 7., (48)
G

()i == ( 2610181 )m = SjkSim + 85 (1 +300)N Ny = 45)(;6,3,, = 5 NN,

s
= 4508, N1 + 250m8 7 N1 + 85151 + 8151 ) ",

Since the focus is on the radiation fields, we omit the near zone potentials which can be found in Ref. [37]. The measured curvature
in a gravitational wave detector can be taken as the components Ry, = (1/2)(9y0;hox + g0y ho; — 90, hoo — 0§h ;x) [47]. Normally in
GR, in the usual transverse traceless gauge, one can obtain the curvature directly from 4, alone. The gauge choice made here does
not generally allow that; however, the curvature is gauge independent, hence our focus on observable effects. We find the curvature
components to be

Rojor = g [ £6k81m = 61(;8)m = 3 (816 NI Ny + 6, N; N = 48, Ny N, ) (1 + 50)

1 — _ - _
- EN/.N,{N,Nm(l + 25¢00) + 2S0(j5k)le + Som6jk Ny + ZSomﬁl(ij) (49)

- - - 1 - -
=506 N)Sim = SomN; NiN; = 5o Ny N Ny = 5 (85 + 615

4)
< < < < !
= 45,8 = Sk NI Ny = 51y N Ny +45,(, N ) N,y )] D ™| e,

Henceforth all time-dependent quantities will be evaluated at 7 = 7, and we omit the |r =7, notation.

In general metric models of gravity beyond GR, there are up to six possible polarizations for gravitational waves [54,65]. In the
presence of Lorentz violation in (49), five of the six polarizations show up. We can also establish the question of their independence,
and the number of degrees of freedom. We will identify the polarizations by taking the trace and projections of Ry,;. Since the
wave travels in a direction along N; we will adopt a spatial basis {e,,e,, N/+/NiN;}, where the basis vectors ¢, and e, span the plane
perpendicular to N,. Note that, due to the coefficients in (11), e; and e, are not perpendicular to n, except at zeroth order in the
coefficients.

First we calculate the trace of the curvature tensor R, jOszf". It will be convenient to introduce a traceless (s,.);; = 5;; = (1/2)8;;5¢0,
where we use the assumption E”ﬂ =15;; — So0 = 0. The trace can be simplified to

i _Gl- 1 W
Ry, = 7 [(str)JJj + E(Str)nn(aij —nn; ] (Y, (50

where projections of quantities along 7/ are denoted with the index » and L indicates a projection of a tensor perpendicular to 7 like
(V1) =Vi=nV;n/ =V, —nV,. Note that to leading order in the coefficients s,, we replace N’ with n’ in (50) and elsewhere below.
Next we find the double projection of the curvature along the wave propagation direction N'N/ Ry,;. We find

N'NYRyg; = 0+ 0G), (51)

thus there is no leading order polarization along this projection. We can then conclude then that the scalar projection onto the
transverse plane, (6 — N'N/)R; = Ryjo1 + Rppop, is the same as the trace in (50). However, the components Rg,q; N'(e,)’ do not
vanish (where a = 1,2). They are given by

G

7

@
[2(Gidan + 50a) 61y = min) + () (Gipde, + Sox, )] (1. (52)

Finally, we display projections along the transverse directions e, and e,, the ones that normally are called “plus* and “cross”.
They are given by

ROinNi(ea)f =

G - _ _
Rozo2 = Roro1 = 7 [ (errer; = exea)d = 5500) = 2(Gyier; = Gaieay)

— _ _ @
= 2(spre1;n; — Soaezi) + %((str)ll = ()G —miny) | (1Y, 53)

Roie = 2 [ ~(eny(en); (1 = F5) + Giiilen), + Giler),

- _ _ @
- %(Str)IZ(Sij —mn;) +5oi(ex)in; +spa(ey);n; ] (v

where the subscripts 1 and 2 imply projection with the corresponding unit vectors. It should be noted that the results in (53) could
also receive s, terms from the inertia tensor I/ itself. Such terms could arise due to orbital effects from &, on a binary source,
for example [37]. A self-gravitating system was shown to be affected in this manner [66]. For brevity, a study of these effects is
omitted here.

In GR, all projections but Ry, — Ryjo; and Ry, vanish (when 7 is the 3 direction), as can be seen by setting all 5, coefficients
to zero. In the presence of the coefficients it appears 3 additional polarizations arise. The results above indicate that the coefficients
S,y in addition to showing up in weak-field gravity scenarios like solar system tests [67], and affecting the speed of gravitational



Q.G. Bailey et al. Annals of Physics 461 (2024) 169582

waves [59], can also affect the observed polarization content in a GW detector. The additional polarizations are of order 5. Given
the sensitivity of the current detectors to the strength of the GW signals above noise level of a couple orders of magnitude, it seems
that these additional effects could be observed if 5 ~ 1072,

Constraints on all nine coefficients E”V already exist below parts in 10 billion (e.g., from lunar laser ranging [68]), so we do not
expect observable effects in GW measurements via searches for extra polarizations. However, we have not studied the effects of
higher-order terms in the action [59], and many of these coefficients are not well constrained, or not constrained at all, so are the
subject of future work.

While we do not discuss details, the nonzero projections found are equivalent to some of the Newman-Penrose projections of
the curvature tensor [54,69]. Specifically we have

(Sij - N[Nj)R(),‘()j = —2@522, NiNjROin = —6T2 =0,
Roi;N'(e)Y = —2V2ReWs,  Ryg;N'(ey) =2V2Im¥y, (54)
Rooz = Roio1 = 2Re¥,, Ryip = Im¥,.

The reader can refer to depictions of the effect of these modes on a sphere of test masses in Refs. [54,70].

Finally, we comment regarding the number of independent degrees of freedom indicated by the five curvature polarizations. It
can be shown that three of them, the beyond-GR projections in (50) and (52) can be written as linear combinations of the “plus*
and “cross” polarizations in (53). This holds to first order in the coefficients, ,,. Therefore we can say that at leading order in small
Lorentz violation, only two propagating degrees of freedom remain, which is consistent with other results [71,72].

6. Summary

In this article we found the classical radiation fields for modified wave equations that occur in descriptions of spacetime-symmetry
breaking. The main results of the paper include the generic Green function solution (5), which can be applied to several cases. In
the presence of minimal forms of Lorentz violation, we found the general solution for retarded boundary conditions for a scalar field
(8), the vector potential (27), and the metric fluctuations (42). These results were studied in a radiation zone expansion, with scalar
results in (12), the modified dipolar electric field (31), and spacetime curvature from a gravitational wave source (49). We found that
Lorentz violation modifies the electric field so that the two independent components of the radiation fields from an electric dipole
are not transverse to the direction of wave propagation, unlike in conventional electrodynamics. The latter effect persists despite the
theory maintaining the usual U(1) gauge invariance. For the partial solution we obtained for gravitational wave generation, there
are 3 extra polarizations beyond GR. These polarizations are linear combinations of the plus and cross polarizations; thus overall
there are still only two propagating degrees of freedom.

Results can be further studied in various ways. For gravitational waves, one needs a complete evaluation of (42) including the
contributions from the wave zone integrals (/,y) - Note that we have not considered in detail the effects of the Nambu-Goldstone
and massive modes that may occur from a spontaneous symmetry breaking scenario [73-75]. A general description of the dynamical
terms for the s, coefficients, when they arise as a vacuum expectation value of a dynamical tensor s,, has been published, but
not yet studied in the GW context [61]. A study of the multipole radiation expansion results in section 4 could be carried out, for
example looking for new possible observables for Lorentz violation in experiments and observation complementing prior work [12].
Results can also be extended to the nonminimal terms in the EFT framework [50]. Symmetry-breaking terms in the action more
recently countenanced could also be of interest [76].
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