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A B S T R A C T

An effective field theory framework is used to investigate some Lorentz-violating effects on
the generation of electromagnetic and gravitational waves, complementing previous work on
propagation. Specifically we find solutions to a modified, anisotropic wave equation, sourced by
charge or fluid matter. We derive the radiation fields for scalars, classical electromagnetic ra-
diation, and partial results for gravitational radiation. For gravitational waves, the results show
longitudinal and breathing polarizations proportional to coefficients for spacetime-symmetry
breaking.

1. Introduction

Presently, interest in tests of foundations of General Relativity (GR) is high, including both theory and experiment. Motivation
or these studies include the possibility that some aspects of foundations of GR may be modified in a unified theory of physics that
ncorporates quantum gravity. In particular, suggestions that spacetime-symmetry foundations of GR, like local Lorentz symmetry,
ould be broken in small but potentially detectable ways [1,2] has motivated a plethora of theoretical studies and analyses [3–10].
Much theoretical work has been accomplished within effective-field theory (EFT) descriptions of spacetime-symmetry breaking,

as well as with specific models. This includes extensive literature on the effects for electromagnetic waves and gravitational waves
propagating in the vacuum [11–13]. Also, studies using non-EFT approaches abound in the literature [14,15]. Accomplishments
n Quantum Field Theory studies of spacetime-symmetry breaking are now prolific [16–27]. Much of the latter work relies on
olutions to the field equations in momentum space, which is what is needed for QFT applications [28,29]. Relatively few works have
eveloped classical position-space solutions for the Green functions [30,31], in particular, classical radiation multipole expansions
eem to be scant [32,33], in the EFT description of spacetime symmetry breaking.
The purpose of this article is to obtain general position-space solutions and study wave generation in the context of spacetime-

ymmetry breaking described by an EFT [2,34,35]. Rather than a comprehensive study, we focus on minimal terms in the EFT and
use a coordinate transformation trick to find the exact Green function for a modified wave equation. Our results are then applied
to scalar fields, the electromagnetic sector, and the gravitational sector with some intriguing partial results on gravitational wave
polarizations. We also compare briefly to perturbative approaches.

Except when we discuss some results for gravitational waves, most of this work is in flat spacetime with the metric signature
− + ++, we use Greek letters for spacetime indices, and latin letters for spatial indices. For the notation we follow conventions of
other references on spacetime-symmetry breaking [35–37].
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2. Green function with modified wave operator

In effective-field theory descriptions of spacetime-symmetry breaking, one encounters Lagrange densities of the schematic form
⊃ 𝜂𝜇𝜈𝜕𝜇𝜓𝜕𝜈𝜓 + 𝑡𝜇𝜈𝜆...𝜕𝜇𝜓𝜕𝜈𝜕𝜆...𝜓 , for some field 𝜓 , where 𝑡𝜇𝜈𝜆... is a generic set of coefficients describing the degree of symmetry
reaking for the field [35,38]. Upon obtaining the field equations, one typically encounters wave-type equations modified from the
sual D’Alembertian operator □ = 𝜕𝛼𝜕𝛼 = ∇2 − 𝜕2𝑡 ; to solve them, one can seek a Green function solution.
For actions with just two derivatives, the typical problem involves finding a Green function 𝐺(𝑥, 𝑥′) satisfying the equation

(𝑔̃)𝜇𝜈𝜕𝜇𝜕𝜈𝐺(𝑥, 𝑥′) = −𝛿(4)(𝑥 − 𝑥′), (1)

here 𝑔̃𝜇𝜈 are constants. These constants 𝑔̃𝜇𝜈 can be chosen so that there is a well-posed hyperbolic partial differential equation for
he smooth source case, (i.e., for the underlying equation we are trying to solve (𝑔̃)𝜇𝜈𝜕𝜇𝜕𝜈𝜓 = 𝜌) [39]. Specifically, we will assume
he following generic form:

𝑔̃𝜇𝜈 = 𝜂𝜇𝜈 + 𝑘𝜇𝜈 , (2)

here 𝑘𝜇𝜈 are a set of constant coefficients assumed to have values in the chosen coordinates sufficiently less than unity, so that 𝑔̃𝜇𝜈
s guaranteed an inverse. Using Fourier transform methods, the momentum space solution of (1) is relatively trivial, while to date,
o exact position space solution has been explicitly written and studied, although results can be found in certain limits [29,31].
The solution to (1) can be obtained by changing coordinates [31,40] so that the equation appears with the conventional wave

perator. Specifically, we change coordinates 𝑥𝜇 = 𝑥𝜇(𝑥𝜈 ), in a particular way such that under this coordinate change,

𝑔̃
𝜇𝜈

= 𝜕𝑥𝜇

𝜕𝑥𝛼
𝜕𝑥𝜈

𝜕𝑥𝛽
𝑔̃𝛼𝛽 = 𝜂𝜇𝜈 , (3)

so that 𝑔̃𝜇𝜈 takes on the numerical values of the Minkowski metric. Such a transformation can generally be shown to exist with mild
assumptions on 𝑘𝜇𝜈 , for example, one can write such a transformation using a series 𝑥𝜇 = 𝑥𝜇 − 1

2𝑘
𝜇
𝛼𝑥𝛼 +⋯. Care is required here

because the spacetime metric in the 𝑥𝜇 system is not Minkowski.1 In the new coordinate system, the Eq. (1) is

𝜂𝜇𝜈𝜕𝜇𝜕𝜈𝐺(𝑥, 𝑥
′) = − 1

√

−𝑔̃
𝛿(4)(𝑥 − 𝑥′), (4)

which resembles the standard wave operator Green function equation. The determinant of 𝑔̃𝜇𝜈 is denoted 𝑔̃. Note that, despite
ppearances, one cannot generally remove 𝑘𝜇𝜈 from the framework altogether if there is a matter sector [31,41–43]. Only in the
acuum solution can one eliminate the coefficients 𝑘𝜇𝜈 entirely.
The solution to (4) is a standard one up to a scaling [44], 𝐺 = 𝛿(𝜂𝜇𝜈 (𝑥− 𝑥

′)𝜇(𝑥− 𝑥′)𝜈 )∕4𝜋
√

−𝑔̃. One then transforms this function
back to the original coordinate system:

𝐺(𝑥, 𝑥′) = 1
2𝜋

√

−𝑔̃
𝛿
(

−(𝑔̃−1)𝜇𝜈 (𝑥 − 𝑥′)𝜇(𝑥 − 𝑥′)𝜈
)

,

= 1
4𝜋

√

−𝑔̃
1
𝑅̃
𝛿(𝑡′ − 𝑡𝑅).

(5)

In this expression we use a modified retarded time 𝑡𝑅 and modified distance 𝑅̃:

𝑡𝑅 = 𝑡 −
𝑅̃ + (𝑔̃−1)0𝑖𝑅𝑖

(𝑔̃−1)00
,

𝑅̃ =
√

−(𝑔̃−1)00(𝑔̃−1)𝑖𝑗𝑅𝑖𝑅𝑗 + ((𝑔̃−1)0𝑖𝑅𝑖)2,
(6)

here 𝑅𝑖 = (𝑥 − 𝑥′)𝑖. The first line of (5) forces an evaluation along a skewed light cone −(𝑔̃−1)𝜇𝜈 (𝑥 − 𝑥′)𝜇(𝑥 − 𝑥′)𝜈 = 0. The second
ine breaks up the delta function, and the choice of retarded boundary conditions is made. This result will be used for the scalar,
ector and tensor examples to follow.

. Scalar example

.1. Exact solution

We apply the results of the Green function (5) to the case of a real scalar field with generic source function. Thus we solve the
quation

(𝜂𝜇𝜈 + 𝑘𝜇𝜈 )𝜕𝜇𝜕𝜈𝜓 = −𝜌, (7)

1 This type of procedure was carried out at leading order in the appendix of Ref. [31] to demonstrate the physical equivalence of having certain forms of
2

orentz violation in the photon sector or the matter sector. Also see Ref. [40].
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Fig. 1. Spacetime diagrams illustrating the modified propagation. This shows the directional dependence of the modified symmetry-breaking case. See also figure
1 in Ref [46].

here 𝜌 stands for a generic source density for the scalar. Using the general Green function results above, we obtain,

𝜓 = 1
4𝜋

√

−𝑔̃ ∫ 𝑑3𝑟′
𝜌(𝑡𝑅, 𝑟′)
𝑅̃

. (8)

For calculations of ‘‘wave zone’’ results, we will use an expansion similar to that in Ref. [45], wherein the authors construct a
systematic wave zone and near zone expansion. We start by assuming that the field point 𝑟 is located far outside of the source region
where 𝜌 ≠ 0; thus the source 𝜌 has ‘‘compact support’’. If this is the case, then we may use a series expansion assuming 𝑟 ≫ 𝑟′. To
expand the time argument of 𝜌, we must also assume the characteristic wavelength of 𝜓 is larger than the scale of the source 𝜆 > 𝑟′.
t will be useful to use the following quantities, obtained by evaluating the expressions (6) above when 𝑟′ = 0:

𝑟 =
√

−(𝑔̃−1)00(𝑔̃−1)𝑖𝑗𝑟𝑖𝑟𝑗 + ((𝑔̃−1)0𝑖𝑟𝑖)2, 𝑡𝑟 = 𝑡 −
𝑟 + (𝑔̃−1)0𝑖𝑟𝑖

−(𝑔̃−1)00
. (9)

Following parallel steps to Ref. [45] (Section 6.3), we arrive at the series:

𝜓 = 1
4𝜋

√

−𝑔̃

∞
∑

𝑙=0

(−1)𝑙

𝑙!
𝜕𝐿

(

1
𝑟 ∫

𝑑3𝑟′𝜌(𝑡𝑟, 𝑟′)𝑟′𝐿
)

. (10)

n this expression we use the index abbreviation 𝐿 = 𝑖1𝑖2𝑖3...𝑖𝑙. For what follows we define a tangent vector 𝑁𝑗 = −𝜕𝑗 𝑡𝑟, which
educes to the unit vector 𝑛𝑗 = 𝑟𝑗∕𝑟 when 𝑘𝜇𝜈 → 0, and represents the direction of wave propagation.
It is useful to note some results that are leading order in the coefficients 𝑘𝜇𝜈 . Using the definition (2), we have for the inverse
etric, modified retarded time 𝑡𝑟, and the tangent vector 𝑁𝑗 , respectively

(𝑔̃−1)𝜇𝜈 = 𝜂𝜇𝜈 − 𝑘𝜇𝜈 ,

𝑡𝑟 = 𝑡 − 𝑟(1 − 1
2
𝑘00 −

1
2
𝑘𝑖𝑗𝑛

𝑖𝑛𝑗 ) + 𝑘0𝑖𝑟𝑖,

𝑁𝑖 = 𝑛𝑖(1 −
1
2
𝑘00 +

1
2
𝑘𝑗𝑘𝑛

𝑗𝑛𝑘) − 𝑘𝑖𝑗𝑛𝑗 − 𝑘0𝑖.

(11)

to first order in 𝑘𝜇𝜈 . Using these approximations we obtain the first 3 terms of the series (10) in the wave zone (keeping only terms
with 1∕𝑟 falloff):

𝜓 = 1
4𝜋𝑟

(

𝑄[1 − 1
2𝑘00 +

1
2𝑘𝑖𝑗𝑛

𝑖𝑛𝑗 ] + 𝑃̇ 𝑖[𝑛𝑖(1 − 𝑘00 + 𝑘𝑗𝑘𝑛𝑗𝑛𝑘) − 𝑘𝑖𝑗𝑛𝑗 − 𝑘0𝑖]

+ 1
2
𝐼 𝑖𝑗 [𝑛𝑖𝑛𝑗 (1 −

3
2𝑘00 +

3
2𝑘𝑙𝑚𝑛

𝑙𝑛𝑚) − 2𝑛𝑖𝑘𝑗𝑘𝑛𝑘 − 2𝑘0𝑖𝑛𝑗 ] +⋯
)

|𝑡=𝑡𝑟 .
(12)

Here 𝑄 is the total ‘‘charge’’, 𝑃 is the dipole moment and 𝐼 𝑖𝑗 is the inertia tensor associated with the source density 𝜌. It is critical
to note that the terms on the right-hand side of (12) are evaluated at the modified retarded time in (9) and (11). This implies a
eformed dependence on the space and time coordinates of the field point.
We include here plots of how to visualize the propagation of the wave from the source point (taken as the origin) to the field

oint 𝑡, 𝑥; these can be seen in Figs. 1. Note the waves propagate in the direction 𝑁𝑖 = −𝜕𝑖𝑡𝑟, with expanded form in (11). The
coefficients used in the figure are the 𝑘0𝑖 coefficients, which are odd under Parity transformations. This behavior is reflected in the
first figure where the modified case breaks 𝑥 → −𝑥 symmetry of the usual lightcone.
3
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3.2. Blending with perturbative solutions

It is useful to compare the methods above with other methods that involve approximate solutions. This has been carried out
uccessfully in slow motion, weak field scenarios where wave behavior is not dealt with directly [3,37]. When the full effects of
ime derivatives is included, and we are looking for complete ‘‘inhomogeneous’’ solutions (not just vacuum propagation), subtleties
rise as we point out here.
To illustrate, we focus on the scalar wave equation case in (7). The philosophy behind perturbative approaches is to seek solutions

in powers of the small coefficients 𝑘𝜇𝜈 . For instance we assume the solution can be written 𝜓 = 𝜓 (0) + 𝜓 (1) +⋯, with (𝑛) indicating
rder in powers of 𝑘𝜇𝜈 . To zeroth and first order in 𝑘𝜇𝜈 , we have the two equations to solve,

□𝜓 (0) = −𝜌, □𝜓 (1) = −𝑘𝜇𝜈𝜕𝜇𝜕𝜈𝜓 (0). (13)

The formal (particular) solutions, with the retarded time Green function, are

𝜓 (0) = ∫ 𝑑3𝑟′
𝜌(𝑡 − 𝑅, 𝑟′)

𝑅
, 𝜓 (1) = ∫ 𝑑3𝑟′

𝑘𝜇𝜈𝜕′𝜇𝜕
′
𝜈𝜓

(0)

𝑅
(14)

The first solution is the conventional scalar one, and the second of these equations involves a field on the right-hand side that can
be nonzero over all regions of space, and so does not have compact support. Even in GR, integration of the formal wave solution
also involves source terms composed of nonzero fields far from the source [45,47]. Such terms can be evaluated in GR and form
part of the complete causal and properly behaved solution [45,48,49]. It is not immediately clear for Eq. (13) if this program works.

We have solved Eq. (14) for the scalar example case of Section 3.1 using standard methods [45]. The result truncates to leading
rder in the coefficients 𝑘𝜇𝜈 and the retarded time argument that appears is the standard one 𝑡− 𝑟, rather than the modified one in
11). The result is

𝜓 = 1
4𝜋𝑟

(

𝑄[1 − 1
2𝑘00 +

1
2𝑘𝑖𝑗𝑛

𝑖𝑛𝑗 ] + 𝑃̇ 𝑖[𝑛𝑖(1 −
1
2𝑘00 +

3
2𝑘𝑗𝑘𝑛

𝑗𝑛𝑘 + 𝑘0𝑗𝑛𝑗 ) − 𝑘𝑖𝑗𝑛𝑗 − 𝑘0𝑖]

+ 1
2
𝐼 𝑖𝑗[𝑛𝑖𝑛𝑗 (1 + 3𝑘𝑙𝑚𝑛𝑙𝑛𝑚 + 3𝑘0𝑙𝑛𝑙) − 𝛿𝑖𝑗 (

1
2𝑘00 + 𝑘0𝑙𝑛

𝑙 + 1
2𝑘𝑙𝑚𝑛

𝑙𝑛𝑚) − 2𝑛𝑖𝑘𝑗𝑘𝑛𝑘 − 2𝑘0𝑖𝑛𝑗] +⋯
)

|𝑡=𝑡𝑟 .
(15)

omparison with (12) shows a mismatch of numerical factors and the absence of terms with the trace of 𝐼 𝑖𝑗 . It turns out that the
wo approaches indeed match but there is a subtlety that involves the correct conversion of the expression (12) from the modified
etarded time 𝑡𝑟 to the usual 𝑡𝑟 = 𝑡 − 𝑟. This confirmation suggests a general perturbative solution program exploring nonminimal
ravity sector terms can be countenanced [50].
Rather than solving (14) directly, there is another alternative that more rapidly provides a match between perturbative

pproaches and ‘‘exact’’ ones. Applying the □ operator to the equation for 𝜓 (1) in (13), we obtain,

□2𝜓 (1) = 𝑘𝜇𝜈𝜕𝜇𝜕𝜈𝜌, (16)

here now the right-hand side is a source with compact support but the left-hand side is a nonlocal operator. A nonlocal Green
unction for the operator that solves □2𝐺 = −𝛿4(𝑥−𝑥′) takes the form 𝐺𝑛𝑙(𝑥, 𝑥′) = −(1∕16𝜋)sgn(𝑡− 𝑡′±𝑅), where sgn(𝑥) = ±1: positive
f 𝑥 > 1 and negative if 𝑥 < 1. This result can be derived from standard sources, for example, by taking the Fourier time transform
f the relevant position space Green functions in Ref. [51].2 When derivatives are applied to 𝐺(𝑥, 𝑥′), the light cone delta function
merges. For example, □𝐺𝑛𝑙(𝑥, 𝑥′) = 𝛿(𝑡 − 𝑡′ ± 𝑅)∕(4𝜋𝑅).
The solution to (16) then takes the form

𝜓 (1) = −∫ 𝑑4𝑥′𝐺𝑛𝑙(𝑥, 𝑥′)𝑘𝜇𝜈𝜕′𝜇𝜕
′
𝜈𝜌

′ + 𝜓 (1)
𝐻 , (17)

here 𝜓 (1)
𝐻 is a homogeneous solution satisfying □2𝜓 (1)

𝐻 = 0, and the prime on 𝜌 indicates dependence on the primed spacetime
oint 𝑥′. Convergence of the integrals for the infinite domain in (17) depends on the source function 𝜌 asymptotic properties and
he bounding surface of the four-dimensional integral. We assume 𝜌 is localized in space, vanishing outside some finite radius.
he time behavior is another matter. One can always introduce a bounding surface, for example, the volume is the spacetime
etween two spacelike hypersurfaces at fixed values of time 𝑡2 and 𝑡1 (see figure 5.3a in Ref. [47]). Alternatively one can introduce
n artificial exponential time falloff for the density 𝜌 → 𝜌𝑒−𝜖|𝑡| to ensure the source vanishes as time approaches ±∞, as done in
diabatic switching.
Assuming that such a modification is applied to (17), so that it is finite, we proceed with integration by parts with the 𝜕′𝜇𝜕′𝜈

erivatives. The surface terms can either be eliminated by a choice of the homogeneous solution 𝜓 (1)
𝐻 or they can be shown to

anish on the boundary with mild assumptions. We obtain

𝜓 (1) = −∫ 𝑑4𝑥′𝑘𝜇𝜈𝜕′𝜇𝜕
′
𝜈𝐺𝑛𝑙(𝑥, 𝑥

′)𝜌′, (18)

nd now the derivatives of the Green function ∼ sgn(𝑡− 𝑡′ ±𝑅) will always involve a delta function along the light cone. The result
n (18) is best matched to the ‘‘exact’’ solution (8) by breaking up the summation into space and time components. After evaluating

2 The static limit of this Green function, which is just proportional to the distance 𝑅, is used ubiquitously in the literature for various post-Newtonian
4

pplications [37,52–54]. Green functions for nonlocal operators have been discussed elsewhere, for instance Refs. [3,55,56].
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derivatives using standard step and delta function properties, and adding in the zeroth order solution, we collect the terms in a
suggestive form:

𝜓 (0) + 𝜓 (1) = ∫ 𝑑3𝑟′ 1
4𝜋𝑅

[

𝜌′𝑟 + 𝜌̇
′
𝑟
1
2
(

𝑘00𝑅 + 2𝑘0𝑗𝑅𝑗 + 𝑘𝑗𝑘𝑅𝑗𝑅̂𝑘
)

+ 𝜌′𝑟
1
2
𝑘𝑗𝑘(𝛿𝑗𝑘 − 𝑅̂𝑗𝑅̂𝑘)

]

, (19)

where the subscript on 𝜌 indicates evaluation at the retarded time 𝑡𝑅 = 𝑡 − 𝑅.
The first term in (19) is the unperturbed solution for when 𝑘𝜇𝜈 = 0. The second term has an unconventional dependence on the

distance 𝑅; far from the source the potential has no 1∕𝑟 suppression. However, the second term can be re-interpreted as the first order
term in the Taylor expansion of time argument (6): 𝜌(𝑡𝑅) = 𝜌(𝑡𝑅)+𝜌̇(𝑡𝑅−𝑡𝑅)+⋯, given that 𝑡𝑅−𝑡𝑅 = 1

2 (𝑘00𝑅+2𝑘0𝑗𝑅
𝑗+𝑘𝑗𝑘𝑅𝑗𝑅̂𝑘)+𝑂(𝑘2).

The third term has the usual 1∕𝑟 suppression outside the source region. When comparing to the exact solution (8), the third term
an be understood as arising from a series expansion of the modified distance 𝑅̃ in (6); 𝑅̃ = 𝑅(1 + 1

2𝑘00 −
1
2𝑘𝑗𝑘𝑅̂

𝑗𝑅̂𝑘 + 𝑂(𝑘2)). To
summarize we have shown the match of approximate and exact solutions:

𝜓 (0) + 𝜓 (1) = 𝜓 + 𝑂(𝑘2), (20)

but it should be noted that care was required to interpret apparent nonlocal terms.

4. Photon sector application

We apply the Green function formalism of Section 2 to the photon sector of the EFT framework [12,35]. The field equations
from the photon sector action in the ‘‘non-birefringence’’ limit can be written in the form,

(

𝜂𝜇𝜅𝜂𝜆𝜈 + 𝜂𝜇𝜅 (𝑐𝐹 )𝜆𝜈 + (𝑐𝐹 )𝜇𝜅𝜂𝜆𝜈
)

𝜕𝜇𝐹𝜅𝜆 = −𝑗𝜈 , (21)

where (𝑐𝐹 )𝜇𝜈 are 9 coefficients for Lorentz violation (symmetric and assumed traceless), 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 is the field strength
ensor, and 𝑗𝜈 is the current source [12,13,57]. If we define an alternate set of coefficients 𝐶̃𝜇𝜈 using 𝐶̃𝜇𝜅 (𝜂𝜅𝜈 +

1
2 𝐶̃

𝜅
𝜈 ) = (𝑐𝐹 )

𝜇
𝜈 , then

we can write (21) as

𝑔̃𝜇𝜅 𝑔̃𝜆𝜈𝜕𝜇𝐹𝜅𝜆 = −𝑗𝜈 , (22)

where 𝑔̃𝜇𝜈 = 𝜂𝜇𝜈 + 𝐶̃𝜇𝜈 , similar to the definition in (2). Note that to leading order in small dimensionless coefficients, 𝐶̃𝜇𝜅 ≈ (𝑐𝐹 )
𝜇
𝜅 .

To solve this equation, we change coordinates 𝑥𝜇 = 𝑥𝜇(𝑥𝜈), in the same manner as (3). In the new coordinate system the field
equations take the form

𝜂𝜇𝜅𝜂𝜆𝜈𝜕𝜇𝐹 𝜅𝜆 = −𝑗
𝜈
, (23)

with 𝜕𝜇 = 𝜕∕𝜕𝑥𝜇 and 𝐹 𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 . The field equations resemble that of conventional electrodynamics in the 𝑥
𝜇 coordinates

with a modified current 𝑗𝜈 . In particular, there remains the usual gauge symmetry of electrodynamics. We adopt the gauge choice
𝜇𝜈𝜕𝜇𝐴𝜈 = 0, leaving the field equations as

𝜂𝜇𝜈𝜕𝜇𝜕𝜈𝐴𝜆 = −𝑗
𝜈
𝜂𝜈𝜆, (24)

here we have multiplied (23) by a Minkowski inverse 𝜂𝜇𝜈 on both sides to isolate 𝐴𝜆. The standard wave operator appears in Eq.
24) and so the usual inhomogeneous solution can be used, yielding

𝐴𝜆 =
1
2𝜋 ∫ 𝑑4𝑥′𝛿

(

−𝜂𝛼𝛽 (𝑥 − 𝑥
′)𝛼(𝑥 − 𝑥′)𝛽

)

𝑗
′𝜇
𝜂𝜇𝜆. (25)

Now we use the coordinate transformation rule 𝐴𝜆 = (𝜕𝑥𝜇∕𝜕𝑥𝜆)𝐴𝜇 and change the coordinates within the integral in (25).
irst, using Eq. (3), we can show the argument of the delta function in the original 𝑥𝜇 coordinates takes the form like (5), namely
(𝑔̃−1)𝜇𝜈 (𝑥− 𝑥′)𝜇(𝑥− 𝑥′)𝜈 . The remainder of the transformation follows from standard formulas. The Jacobian of the transformation
an be found from (3) and can be written |𝜕𝑥∕𝜕𝑥| = 1∕

√

−𝑔̃. The originally sought solution is then

𝐴𝜆 =
1

2𝜋
√

−𝑔̃ ∫ 𝑑4𝑥′𝛿
(

−(𝑔̃−1)𝛼𝛽 (𝑥 − 𝑥′)𝛼(𝑥 − 𝑥′)𝛽
)

𝑗′𝜇(𝑔̃−1)𝜇𝜆. (26)

This result can be independently checked by using equation (1) and (5), and using the gauge condition transformed to the original
coordinates, namely 𝑔̃𝜇𝜈𝜕𝜇𝐴𝜈 = 0, to show that (26) satisfies (22) and hence solves (21).

Following steps similar to those for the scalar field we can write the solution compactly as

𝐴𝜆 =
1

4𝜋
√

−𝑔̃ ∫ 𝑑3𝑥′
(𝑔̃−1)𝜇𝜆𝑗𝜇(𝑡𝑅, 𝑟′)

𝑅̃
, (27)

with 𝑡𝑅 and 𝑅̃ as in equations (6). We specialize (27) to a localized conserved current density 𝑗𝜇 = (𝜌, 𝐽 ) and expand the solution
assuming the field point is far from the source and in the wave zone (𝑟 ≫ 𝜆 ≫ 𝑟′). We follow steps similar to those leading up to
(10) and we arrive at

𝐴𝜆 =
(𝑔̃−1)𝜇𝜆

√

∞
∑ (−1)𝑙

𝜕𝐿

(

1
∫ 𝑑3𝑟′𝑗𝜇(𝑡𝑟, 𝑟′)𝑟′𝐿

)

, (28)
5
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where 𝑡𝑟 and 𝑟 are defined in (11). We write out the terms up to 𝐿 = 1, decomposing the current into charge density and current
density, and keeping only terms that fall off as 1∕𝑟, to obtain

𝐴𝜇 = 1
4𝜋

√

−𝑔̃𝑟 ∫
𝑑3𝑟′

[

(𝑔̃−1)𝜇0𝜌′ + (𝑔̃−1)𝜇𝑖𝐽 ′𝑖 +𝑁𝑖(𝑔̃−1)𝜇0𝜌̇′𝑟′𝑖 +⋯
]

|𝑡=𝑡𝑟 . (29)

The first term is proportional to the constant total charge 𝑄, while the second and third term can be re-expressed in terms of the
electric dipole moment 𝑝𝑗 = ∫ 𝑑3𝑟′𝜌′𝑟′𝑗 , using standard techniques [44]. The higher order terms contribute to the magnetic dipole
and quadrupole terms, which we neglect here. The dominant radiation four-potential terms are

𝐴𝜇 = 1
4𝜋

√

−𝑔̃𝑟

[

(𝑔̃−1)𝜇𝑖 + (𝑔̃−1)𝜇0𝑁𝑖

]

𝑝̇𝑖|𝑡=𝑡𝑟 . (30)

The radiation zone electric field, which is gauge independent, is found to be

𝐹𝑖0 = − 1
4𝜋

√

−𝑔̃𝑟

[

(𝑔̃−1)0𝑖𝑁𝑗 + (𝑔̃−1)0𝑗𝑁𝑖 + (𝑔̃−1)𝑖𝑗 + (𝑔̃−1)00𝑁𝑖𝑁𝑗

]

𝑝̈𝑗 |𝑡=𝑡𝑟 . (31)

Adopting a leading order expansion with (𝑔̃−1)𝜇𝜈 = 𝜂𝜇𝜈 − (𝑐𝐹 )𝜇𝜈 and using results above such as (11), we can also write the electric
field as

𝐹𝑖0 = − 1
4𝜋

√

−𝑔̃𝑟

[

𝑃𝑖𝑗 + 𝑃𝑖𝑘𝑃𝑗𝑙(𝑐𝐹 )𝑘𝑙
]

𝑝̈𝑗 |𝑡=𝑡𝑟 , (32)

where 𝑃𝑖𝑗 = 𝛿𝑖𝑗 − 𝑛𝑖𝑛𝑗 is a projection operator. Note that while 𝐹𝑖0𝑛𝑖 = 0, indicating two independent polarizations, 𝑛𝑖 is not the true
direction of wave propagation. There remains a projection along the true direction of propagation 𝑁𝑖 that is not zero, 𝐹0𝑖𝑁𝑖 ≠ 0,
indicating that at least one of the two independent modes is not transverse to the wave propagation direction.

This striking result does not mean the usual 𝑈 (1) gauge invariance is broken. The classical result we obtained for electric field in
(31) is gauge invariant, any piece of the vector potential 𝐴𝜇 proportional to 𝜕𝜇 vanishes in this calculation. However, with Lorentz
violation in the form of the 𝑐𝐹 coefficients, the electric field can have a longitudinal component even in the vacuum. From the
modified Maxwell equations in the photon sector, we get ∇⃗ ⋅ 𝐸⃗ = −∇⃗ ⋅ 𝜅𝐷𝐸 ⋅ 𝐸⃗ − ∇⃗ ⋅ 𝜅𝐷𝐵 ⋅ 𝐵⃗, unlike the usual Maxwell vacuum case
where ∇⃗ ⋅ 𝐸⃗ = 0 (using the matrix notation for the coefficients 𝜅𝐷𝐸 and 𝜅𝐷𝐵 of Ref. [12]).

5. Gravity sector application

5.1. General solution

For a starting point, we use the EFT gravity sector field equations for the metric fluctuations ℎ𝜇𝜈 around a flat background. They
can be obtained from a Lagrange density  = 𝐺𝑅 + 1

4𝜅 𝑠
𝛼𝛽ℎ𝜇𝜈𝛼𝜇𝛽𝜈 +𝑀 , where 𝛼𝜇𝛽𝜈 is the double dual of the Riemann tensor and

𝜅 = 8𝜋𝐺𝑁 [52,58–60]. We can write the field equations in the form

𝐾̂𝜇𝜈𝛼𝛽ℎ𝛼𝛽 = 𝜅𝜏𝜇𝜈 , (33)

where 𝜏𝜇𝜈 includes the matter stress energy tensor (𝑇𝑀 )𝜇𝜈 as well as contributions from higher order terms in ℎ𝜇𝜈 with and
without coefficients for Lorentz violation. Should the coefficients 𝑠𝜇𝜈 arise dynamically, through spontaneous symmetry breaking,
he dynamical terms contributing to 𝜏𝜇𝜈 can also be included [61]. The operator 𝐾̂𝜇𝜈𝛼𝛽 can be written as

𝐾̂𝜇𝜈𝛼𝛽 = 1
2

(

𝜂𝛼(𝜇𝜂𝜈)𝛽𝜂𝛾𝛿 − 𝜂𝜇𝜈𝜂𝛼𝛽𝜂𝛾𝛿 + 𝜂𝜇𝜈𝜂𝛼𝛾𝜂𝛽𝛿 + 𝜂𝛼𝛽𝜂𝜇𝛾𝜂𝜈𝛿 − 𝜂𝛼(𝜇𝜂𝜈)𝛾𝜂𝛽𝛿 − 𝜂𝛽(𝜇𝜂𝜈)𝛾𝜂𝛼𝛿
)

𝜕𝛾𝜕𝛿 + 𝐾̂𝜇𝜈𝛼𝛽
𝑠 , (34)

here 𝐾̂𝜇𝜈𝛼𝛽
𝑠 is the operator such that 𝐾̂𝜇𝜈𝛼𝛽

𝑠 ℎ𝛼𝛽 = 𝑠𝛼𝛽𝜇𝛼𝛽𝜈 . The first line in (34) contains the terms present in standard linearized
GR, namely the terms in 𝐺𝜇𝜈 , while 𝐾̂𝜇𝜈𝛼𝛽

𝑠 ℎ𝛼𝛽 is the leading order corrections from the 𝑠𝜇𝜈 coefficients [37,59].
For the purposes in this work, it is useful to re-express the operator (34) in a simpler form. We define 𝑔̃𝜇𝜈 = 𝜂𝜇𝜈 + 𝑠𝜇𝜈 . Then to

first order in 𝑠𝜇𝜈 it can be shown that

𝐾̂𝜇𝜈𝛼𝛽 = 1
2

(

𝑔̃𝛼(𝜇 𝑔̃𝜈)𝛽 𝑔̃𝛾𝛿 − 𝑔̃𝜇𝜈 𝑔̃𝛼𝛽 𝑔̃𝛾𝛿 + 𝑔̃𝜇𝜈 𝑔̃𝛼𝛾 𝑔̃𝛽𝛿 + 𝑔̃𝛼𝛽 𝑔̃𝜇𝛾 𝑔̃𝜈𝛿 − 𝑔̃𝛼(𝜇 𝑔̃𝜈)𝛾 𝑔̃𝛽𝛿 − 𝑔̃𝛽(𝜇 𝑔̃𝜈)𝛾 𝑔̃𝛼𝛿
)

𝜕𝛾𝜕𝛿 , (35)

which resembles the standard linearized terms in GR but with an apparent modified background metric 𝑔̃𝜇𝜈 , as pointed out in [42].
We perform a general coordinate transformation as in the scalar and vector case above. We require the coordinate transformation

to satisfy (3), with 𝑔̃𝜇𝜈 = 𝜂𝜇𝜈 + 𝑠𝜇𝜈 . Treating the quantities in (35) as tensors in a flat background, the field equations in the 𝑥𝜇

coordinates take the form
1
2

(

𝜂𝛼(𝜇𝜂𝜈)𝛽𝜂𝛾𝛿 − 𝜂𝜇𝜈𝜂𝛼𝛽𝜂𝛾𝛿 + 𝜂𝜇𝜈𝜂𝛼𝛾𝜂𝛽𝛿 + 𝜂𝛼𝛽𝜂𝜇𝛾𝜂𝜈𝛿 − 𝜂𝛼(𝜇𝜂𝜈)𝛾𝜂𝛽𝛿 − 𝜂𝛽(𝜇𝜂𝜈)𝛾𝜂𝛼𝛿
)

𝜕𝛾𝜕𝛿ℎ𝛼𝛽 = 𝜅𝜏𝜇𝜈 . (36)

Thus in this coordinate system, the field equations appear as conventional linearized GR with a modified source 𝜏𝜇𝜈 .3

3 The barred notation indicates the coordinate system and is not to be confused with the common trace-reversed bar notation.
6
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Next we exploit the gauge freedom in Eq. (36) and choose

𝜂𝛼𝛽𝜕𝛼ℎ𝛽𝛾 =
1
2
𝜕𝛾 (𝜂𝛼𝛽ℎ𝛼𝛽 ). (37)

Note that 𝜕𝜆𝜂𝜇𝜈 = 0 holds in the 𝑥𝜇 coordinates. With the gauge choice, the field equations become
1
2
𝜂𝛼𝛽𝜕𝛼𝜕𝛽𝛱

𝜇𝜈 = −𝜅𝜏𝜇𝜈 , with 𝛱𝜇𝜈 = 𝜂𝜇𝛼𝜂𝜈𝛽ℎ𝛼𝛽 −
1
2
𝜂𝜇𝜈 (𝜂𝛼𝛽ℎ𝛼𝛽 ). (38)

The standard wave operator (in 𝑥𝜇 coordinates) appears in (38), thus we can use the standard wave solution,

𝛱𝜇𝜈 = 𝜅
𝜋 ∫ 𝑑4𝑥′𝛿

(

−𝜂𝛼𝛽 (𝑥 − 𝑥
′)𝛼(𝑥 − 𝑥′)𝛽

)

𝜏𝜇𝜈 . (39)

Using the Minkowski metric 𝜂𝜇𝜈 we obtain ℎ𝜇𝜈 from (39):

ℎ𝜇𝜈 =
𝜅
𝜋 ∫ 𝑑4𝑥′𝛿

(

−𝜂𝛼𝛽 (𝑥 − 𝑥
′)𝛼(𝑥 − 𝑥′)𝛽

)

(

𝜂𝛾𝜇𝜂𝛿𝜈𝜏
𝛾𝛿 − 1

2
𝜂𝜇𝜈𝜂𝛾𝛿𝜏

𝛾𝛿
)

. (40)

Using the coordinate transformation rule ℎ𝜅𝜆 = (𝜕𝑥𝜇∕𝜕𝑥𝜅 )(𝜕𝑥𝜈∕𝜕𝑥𝜆)ℎ𝜇𝜈 , we can find the solution in the original coordinates,
similar to the approach for the vector potential in the steps leading to (26). This yields

ℎ𝜇𝜈 =
𝜅

𝜋
√

−𝑔̃ ∫ 𝑑4𝑥′𝛿
(

−(𝑔̃−1)𝛼𝛽 (𝑥 − 𝑥′)𝛼(𝑥 − 𝑥′)𝛽
)

×
(

(𝑔̃−1)𝛾𝜇(𝑔̃−1)𝛿𝜈𝜏𝛾𝛿 −
1
2
(𝑔̃−1)𝜇𝜈 (𝑔̃−1)𝛾𝛿𝜏𝛾𝛿

)

.
(41)

We have also directly verified that this solution (41) solves Eq. (33) to leading order in 𝑠𝜇𝜈 . Note that the gravitational wave from
the source propagates along the modified light cone as in Section 3, which is consistent with prior propagation studies [59,62,63].
What is new here is that we can calculate directly the effects of a given source on the metric fluctuations and the measured effects
in a GW detector.

In a leading order approximation, we have (𝑔̃−1)𝜇𝜈 = 𝜂𝜇𝜈 − 𝑠𝜇𝜈 . If we expand the delta function to integrate over 𝑡′, as done for
the scalar case and vector case above, and we restrict attention to leading order in 𝑠𝜇𝜈 , then we obtain the result

ℎ𝜇𝜈 =
𝜅

2𝜋
√

−𝑔̃ ∫ 𝑑3𝑥′ 1
𝑅̃

(

𝜏𝜇𝜈 − 2𝜏𝛼(𝜇𝑠𝜈)𝛼 −
1
2
𝜂𝜇𝜈 (𝜏𝛼𝛼 − 𝑠𝛼𝛽𝜏

𝛼𝛽 ) + 1
2
𝑠𝜇𝜈𝜏

𝛼
𝛼

)

(𝑡𝑅, 𝑟′), (42)

here 𝑡𝑅 and 𝑅̃ are defined in (6), with 𝑘𝜇𝜈 → 𝑠𝜇𝜈 . This solution is valid in the gauge

(𝜂𝜇𝜈 + 𝑠𝜇𝜈 )𝜕𝜇ℎ𝜈𝜆 =
1
2
𝜕𝜆(𝜂𝜇𝜈 + 𝑠

𝜇𝜈 )ℎ𝜇𝜈 , (43)

which is not the usual harmonic gauge unless 𝑠𝜇𝜈 = 0 [64].

5.2. Expansion of solution

At this stage we employ the far field expansion, similar to (28). First we abbreviate the terms in parenthesis inside the integral
42) as 𝛩𝜇𝜈 . We seek the solution for ℎ𝜇𝜈 in the far field or wave zone. However, we must integrate over the near zone  and wave
one  in this case because 𝜏𝜇𝜈 does not have compact support and exists in both regions:

ℎ𝜇𝜈 =
4𝐺
√

−𝑔̃

(

∫
𝑑3𝑥′

𝛩𝜇𝜈 (𝑡𝑅, 𝑟′)

𝑅̃
+ ∫

𝑑3𝑥′
𝛩𝜇𝜈 (𝑡𝑅, 𝑟′)

𝑅̃

)

. (44)

The integrals over the wave zone involve those contributions to 𝛩𝜇𝜈 that do not have compact support; they are of higher order in
a series in powers of ℎ𝜇𝜈 (or equivalently powers of 𝐺 [45]). As this paper is more of an introductory nature, we attempt only the
first integrals, so we seek (ℎ )𝜇𝜈 , and leave the calculation of (ℎ )𝜇𝜈 for future work.

The general solution for the  zone integrals can be put into an expansion form like (10):

(ℎ )𝜇𝜈 =
4𝐺
√

−𝑔̃

∞
∑

𝑙=0

(−1)𝑙

𝑙!
𝜕𝐿

(

1
𝑟 ∫

𝑑3𝑟′𝛩𝜇𝜈 (𝑡𝑟, 𝑟′)𝑟′𝐿
)

. (45)

e proceed to evaluate the first few terms in the series (45) in order to find the leading multipole terms up to the quadrupole, the
atter being the traceless version of the inertia tensor 𝐼 𝑖𝑗 :

𝐼 𝑖𝑗 = ∫ 𝑑3𝑟𝜏00𝑟𝑖𝑟𝑗 . (46)

ntegrals in (45) involve the space and time projected components of 𝜏𝜇𝜈 ; namely 𝜏00, 𝜏0𝑗 , and 𝜏𝑗𝑘. The goal for a concise solution
s to express all the terms using the inertia tensor (46). We can use the conservation law 𝜕𝜇𝜏𝜇𝜈 = 0, to express some of the integrals
n (45) in terms of ∫ 𝑑3𝑟𝜏𝑖𝑗 ; this quantity can be re-expressed in terms of the inertia tensor. The latter step is achieved with the
dentity 𝜕20𝜏

00 = 𝜕𝑖𝜕𝑗𝜏 𝑖𝑗 [45]:

𝑑3𝑟𝜏𝑖𝑗 = (1∕2)𝑑2∕𝑑𝑡2 𝑑3𝑟𝜏00𝑟𝑖𝑟𝑗 + 𝜕 terms. (47)
7
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The boundary terms are dependent on  and are expected to cancel with corresponding terms from the wave zone integrals.
For the radiation fields (ℎ )𝜇𝜈 we find, up to surface terms at radius ,

(ℎ )00 =
𝐺
𝑟
(

𝛿𝑗𝑘 +𝑁𝑗𝑁𝑘 + 𝑠00(𝛿𝑗𝑘 + 2𝑁𝑗𝑁𝑘) + 2𝑠0𝑗𝑁𝑘 − 𝑠𝑗𝑘
)

𝐼 𝑗𝑘|𝑡=𝑡𝑟 ,

(ℎ )0𝑗 =
𝐺
𝑟
(

−2𝛿𝑗𝑘𝑁𝑙(1 + 𝑠00) − 2𝑠0𝑘𝛿𝑗𝑙 + 𝑠0𝑗𝛿𝑘𝑙 + 𝑠0𝑗𝑁𝑘𝑁𝑙 + 2𝑠𝑗𝑘𝑁𝑙
)

𝐼𝑘𝑙|𝑡=𝑡𝑟 ,

(ℎ )𝑗𝑘 =
𝐺
𝑟

(

2𝛿𝑙(𝑗𝛿𝑘)𝑚 − 𝛿𝑗𝑘𝛿𝑙𝑚 + 𝛿𝑗𝑘(1 + 𝑠00)𝑁𝑙𝑁𝑚 − 4𝑠𝑙(𝑗𝛿𝑘)𝑚 − 𝑠𝑗𝑘𝑁𝑙𝑁𝑚

− 4𝑠0(𝑗𝛿𝑘)𝑚𝑁𝑙 + 2𝑠0𝑚𝛿𝑗𝑘𝑁𝑙 + 𝛿𝑗𝑘𝑠𝑙𝑚 + 𝛿𝑙𝑚𝑠𝑗𝑘
)

𝐼 𝑙𝑚|𝑡=𝑡𝑟 ,

(48)

Since the focus is on the radiation fields, we omit the near zone potentials which can be found in Ref. [37]. The measured curvature
in a gravitational wave detector can be taken as the components 𝑅0𝑗0𝑘 = (1∕2)(𝜕0𝜕𝑗ℎ0𝑘 + 𝜕0𝜕𝑘ℎ0𝑗 − 𝜕𝑗𝜕𝑘ℎ00 − 𝜕20ℎ𝑗𝑘) [47]. Normally in
GR, in the usual transverse traceless gauge, one can obtain the curvature directly from ℎ𝑗𝑘 alone. The gauge choice made here does
not generally allow that; however, the curvature is gauge independent, hence our focus on observable effects. We find the curvature
components to be

𝑅0𝑗0𝑘 =
𝐺
𝑟

[ 1
2 𝛿𝑗𝑘𝛿𝑙𝑚 − 𝛿𝑙(𝑗𝛿𝑘)𝑚 − 1

2

(

𝛿𝑗𝑘𝑁𝑙𝑁𝑚 + 𝛿𝑙𝑚𝑁𝑗𝑁𝑘 − 4𝛿𝑙(𝑗𝑁𝑘)𝑁𝑚
)

(1 + 𝑠00)

− 1
2𝑁𝑗𝑁𝑘𝑁𝑙𝑁𝑚(1 + 2𝑠00) + 2𝑠0(𝑗𝛿𝑘)𝑚𝑁𝑙 + 𝑠0𝑚𝛿𝑗𝑘𝑁𝑙 + 2𝑠0𝑚𝛿𝑙(𝑗𝑁𝑘)

− 𝑠0(𝑗𝑁𝑘)𝛿𝑙𝑚 − 𝑠0𝑚𝑁𝑗𝑁𝑘𝑁𝑙 − 𝑠0(𝑗𝑁𝑘)𝑁𝑙𝑁𝑚 − 1
2

(

𝛿𝑗𝑘𝑠𝑙𝑚 + 𝛿𝑙𝑚𝑠𝑗𝑘

− 4𝑠𝑙(𝑗𝛿𝑘)𝑚 − 𝑠𝑗𝑘𝑁𝑙𝑁𝑚 − 𝑠𝑙𝑚𝑁𝑗𝑁𝑘 + 4𝑠𝑙(𝑗𝑁𝑘)𝑁𝑚
)]

(
(4)
𝐼 )𝑙𝑚|𝑡=𝑡𝑟

(49)

enceforth all time-dependent quantities will be evaluated at 𝑡 = 𝑡𝑟 and we omit the |𝑡 = 𝑡𝑟 notation.
In general metric models of gravity beyond GR, there are up to six possible polarizations for gravitational waves [54,65]. In the

resence of Lorentz violation in (49), five of the six polarizations show up. We can also establish the question of their independence,
nd the number of degrees of freedom. We will identify the polarizations by taking the trace and projections of 𝑅0𝑖0𝑗 . Since the
ave travels in a direction along 𝑁𝑖 we will adopt a spatial basis {𝐞1, 𝐞2,𝐍∕

√

𝐍𝐢𝐍𝐢}, where the basis vectors 𝐞1 and 𝐞2 span the plane
perpendicular to 𝑁𝑖. Note that, due to the coefficients in (11), 𝐞1 and 𝐞2 are not perpendicular to 𝑛𝑖, except at zeroth order in the
oefficients.
First we calculate the trace of the curvature tensor 𝑅0𝑗0𝑘𝛿𝑗𝑘. It will be convenient to introduce a traceless (𝑠𝑡𝑟)𝑖𝑗 = 𝑠𝑖𝑗 −(1∕2)𝛿𝑖𝑗𝑠00,

where we use the assumption 𝑠𝜇𝜇 = 𝑠𝑗𝑗 − 𝑠00 = 0. The trace can be simplified to

𝑅 𝑗
0 0𝑗 =

𝐺
𝑟

[

(𝑠𝑡𝑟)⟂𝑖𝑗 +
1
2
(𝑠𝑡𝑟)𝑛𝑛(𝛿𝑖𝑗 − 𝑛𝑖𝑛𝑗 )

]

(
(4)
𝐼 )𝑖𝑗 , (50)

where projections of quantities along 𝑛̂ are denoted with the index 𝑛 and ⟂ indicates a projection of a tensor perpendicular to 𝑛̂ like
(𝑉⟂)𝑖 = 𝑉𝑖 − 𝑛𝑖𝑉𝑗𝑛𝑗 = 𝑉𝑖 − 𝑛𝑖𝑉𝑛. Note that to leading order in the coefficients 𝑠𝜇𝜈 we replace 𝑁 𝑖 with 𝑛𝑖 in (50) and elsewhere below.

Next we find the double projection of the curvature along the wave propagation direction 𝑁 𝑖𝑁 𝑗𝑅0𝑖0𝑗 . We find

𝑁 𝑖𝑁 𝑗𝑅0𝑖0𝑗 = 0 + 𝑂(𝑠2), (51)

thus there is no leading order polarization along this projection. We can then conclude then that the scalar projection onto the
transverse plane, (𝛿𝑖𝑗 −𝑁 𝑖𝑁 𝑗 )𝑅0𝑖0𝑗 = 𝑅0101 + 𝑅0202, is the same as the trace in (50). However, the components 𝑅0𝑖0𝑗𝑁 𝑖(𝑒𝑎)𝑗 do not
vanish (where 𝑎 = 1, 2). They are given by

𝑅0𝑖0𝑗𝑁
𝑖(𝑒𝑎)𝑗 =

𝐺
𝑟
[ 1
2

(

(𝑠𝑡𝑟)𝑎𝑛 + 𝑠0𝑎
)

(𝛿𝑖𝑗 − 𝑛𝑖𝑛𝑗 ) + (𝑒𝑎)𝑗
(

(𝑠𝑡𝑟)𝑛𝑘⟂ + 𝑠0𝑘⟂
)]

(
(4)
𝐼 )𝑖𝑗 . (52)

Finally, we display projections along the transverse directions 𝐞1 and 𝐞2, the ones that normally are called ‘‘plus‘‘ and ‘‘cross’’.
hey are given by

𝑅0202 − 𝑅0101 =
𝐺
𝑟

[

(𝑒1𝑖𝑒1𝑗 − 𝑒2𝑖𝑒2𝑗 )(1 −
2
3 𝑠00) − 2((𝑠𝑡𝑟)1𝑖𝑒1𝑗 − (𝑠𝑡𝑟)2𝑖𝑒2𝑗 )

− 2(𝑠01𝑒1𝑖𝑛𝑗 − 𝑠02𝑒2𝑖𝑛𝑗 ) +
1
2 ((𝑠𝑡𝑟)11 − (𝑠𝑡𝑟)22)(𝛿𝑖𝑗 − 𝑛𝑖𝑛𝑗 )

]

(
(4)
𝐼 )𝑖𝑗 ,

𝑅0102 =
𝐺
𝑟

[

−(𝑒1)𝑖(𝑒2)𝑗 (1 −
2
3 𝑠00) + (𝑠𝑡𝑟)1𝑖(𝑒2)𝑗 + (𝑠𝑡𝑟)2𝑖(𝑒1)𝑗

− 1
2 (𝑠𝑡𝑟)12(𝛿𝑖𝑗 − 𝑛𝑖𝑛𝑗 ) + 𝑠01(𝑒2)𝑖𝑛𝑗 + 𝑠02(𝑒1)𝑖𝑛𝑗

]

(
(4)
𝐼 )𝑖𝑗

(53)

here the subscripts 1 and 2 imply projection with the corresponding unit vectors. It should be noted that the results in (53) could
lso receive 𝑠𝜇𝜈 terms from the inertia tensor 𝐼 𝑖𝑗 itself. Such terms could arise due to orbital effects from 𝑠𝜇𝜈 on a binary source,
for example [37]. A self-gravitating system was shown to be affected in this manner [66]. For brevity, a study of these effects is
omitted here.

In GR, all projections but 𝑅0202 −𝑅0101 and 𝑅0102 vanish (when 𝑛̂ is the 3 direction), as can be seen by setting all 𝑠𝜇𝜈 coefficients
o zero. In the presence of the coefficients it appears 3 additional polarizations arise. The results above indicate that the coefficients
𝑠 , in addition to showing up in weak-field gravity scenarios like solar system tests [67], and affecting the speed of gravitational
8
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waves [59], can also affect the observed polarization content in a GW detector. The additional polarizations are of order 𝑠. Given
the sensitivity of the current detectors to the strength of the GW signals above noise level of a couple orders of magnitude, it seems
that these additional effects could be observed if 𝑠 ∼ 10−2.

Constraints on all nine coefficients 𝑠𝜇𝜈 already exist below parts in 10 billion (e.g., from lunar laser ranging [68]), so we do not
expect observable effects in GW measurements via searches for extra polarizations. However, we have not studied the effects of
higher-order terms in the action [59], and many of these coefficients are not well constrained, or not constrained at all, so are the
subject of future work.

While we do not discuss details, the nonzero projections found are equivalent to some of the Newman–Penrose projections of
the curvature tensor [54,69]. Specifically we have

(𝛿𝑖𝑗 −𝑁 𝑖𝑁 𝑗 )𝑅0𝑖0𝑗 = −2𝛷22, 𝑁 𝑖𝑁 𝑗𝑅0𝑖0𝑗 = −6𝛹2 = 0,

𝑅0𝑖0𝑗𝑁
𝑖(𝑒1)𝑗 = −2

√

2𝑅𝑒𝛹3, 𝑅0𝑖0𝑗𝑁
𝑖(𝑒2)𝑗 = 2

√

2𝐼𝑚𝛹3,

𝑅0202 − 𝑅0101 = 2𝑅𝑒𝛹4, 𝑅0102 = 𝐼𝑚𝛹4.

(54)

The reader can refer to depictions of the effect of these modes on a sphere of test masses in Refs. [54,70].
Finally, we comment regarding the number of independent degrees of freedom indicated by the five curvature polarizations. It

can be shown that three of them, the beyond-GR projections in (50) and (52) can be written as linear combinations of the ‘‘plus‘‘
and ‘‘cross’’ polarizations in (53). This holds to first order in the coefficients, 𝑠𝜇𝜈 . Therefore we can say that at leading order in small
Lorentz violation, only two propagating degrees of freedom remain, which is consistent with other results [71,72].

6. Summary

In this article we found the classical radiation fields for modified wave equations that occur in descriptions of spacetime-symmetry
breaking. The main results of the paper include the generic Green function solution (5), which can be applied to several cases. In
the presence of minimal forms of Lorentz violation, we found the general solution for retarded boundary conditions for a scalar field
(8), the vector potential (27), and the metric fluctuations (42). These results were studied in a radiation zone expansion, with scalar
esults in (12), the modified dipolar electric field (31), and spacetime curvature from a gravitational wave source (49). We found that
orentz violation modifies the electric field so that the two independent components of the radiation fields from an electric dipole
re not transverse to the direction of wave propagation, unlike in conventional electrodynamics. The latter effect persists despite the
heory maintaining the usual 𝑈 (1) gauge invariance. For the partial solution we obtained for gravitational wave generation, there
re 3 extra polarizations beyond GR. These polarizations are linear combinations of the plus and cross polarizations; thus overall
here are still only two propagating degrees of freedom.
Results can be further studied in various ways. For gravitational waves, one needs a complete evaluation of (42) including the

ontributions from the wave zone integrals (ℎ )𝜇𝜈 . Note that we have not considered in detail the effects of the Nambu–Goldstone
nd massive modes that may occur from a spontaneous symmetry breaking scenario [73–75]. A general description of the dynamical
erms for the 𝑠𝜇𝜈 coefficients, when they arise as a vacuum expectation value of a dynamical tensor 𝑠𝜇𝜈 has been published, but
ot yet studied in the GW context [61]. A study of the multipole radiation expansion results in section 4 could be carried out, for
xample looking for new possible observables for Lorentz violation in experiments and observation complementing prior work [12].
esults can also be extended to the nonminimal terms in the EFT framework [50]. Symmetry-breaking terms in the action more
ecently countenanced could also be of interest [76].
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