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Abstract

We study a stochastic control/stopping problem with a series of inequality-type and equality-type expectation

constraints in a general non-Markovian framework. We demonstrate that the stochastic control/stopping problem

with expectation constraints (CSEC) is independent of a specific probability setting and is equivalent to the

constrained stochastic control/stopping problem in weak formulation (an optimization over joint laws of Brownian

motion, state dynamics, diffusion controls and stopping rules on an enlarged canonical space). Using a martingale-

problem formulation of controlled SDEs in spirit of [45], we characterize the probability classes in weak formulation

by countably many actions of canonical processes, and thus obtain the upper semi-analyticity of the CSEC value

function. Then we employ a measurable selection argument to establish a dynamic programming principle (DPP)

in weak formulation for the CSEC value function, in which the conditional expected costs act as additional states

for constraint levels at the intermediate horizon.

This article extends [20] to the expectation-constraint case. We extend our previous work [4] to the more

complicated setting where the diffusion is controlled. Compared to that paper the topological properties of

diffusion-control spaces and the corresponding measurability are more technically involved which complicate the

arguments especially for the measurable selection for the super-solution side of DPP in the weak formulation.
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1 Introduction

In this paper, we analyze a continuous-time stochastic control/stopping problem with a series of inequality-type and

equality-type expectation constraints in a general non-Markovian framework.

Let a decision maker start from time t ∈ [0,∞) with a historical path of state x|[0,t]. She can choose an open-

loop control µ = {µs}s∈[t,∞) to make the state process evolve according to some controlled SDE on a probability

space (Q,F , p) whose drift and diffusion coefficients depend on the past trajectories of the solution. Let X t,x,µ ={
X t,x,µ

s

}
s∈[t,∞)

denote this controlled state process. A typical example of this non-Markovian setting is the stochastic

control with delay: since it takes the system some time to collect/analyze the information, the drift/diffusion term of

the dynamic may have a delay in the state variable or control variable. Under continuous drift/diffusion coefficients,

the optimal control problem with delay admits a dynamic programming principle (DPP) and its value function

satisfies the associated Hamilton-Jacobi-Bellman (HJB) equation, see [22, 21, 23, 40, 39, 17] among others.

In our problem, the decision maker can also select an exercise time τ to maximize the expectation of her ac-

cumulative reward
∫ τ

t
f
(
r,X t,x,µ

r∧· , µr

)
dr plus her terminal reward π

(
τ,X t,x,µ

τ∧·
)
while she is subject to a series of

constraints: for i∈N, the expectation of some accumulative cost
∫ τ

t
gi
(
r,X t,x,µ

r∧· , µr

)
dr should not exceed certain level

yi and the expectation of some other accumulative cost
∫ τ

t
hi
(
r,X t,x,µ

r∧· , µr

)
dr should exactly reach certain level zi.
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Such a stochastic control/stopping problem with expectation constraints (SCEC for short) has many applications in

economy, engineering, finance, management, etc.

Let V (t,x, y, z) be the SCEC value with (y, z) :=
(
{yi}, {zi}

)
. We aim to establish a DPP of this value function

without imposing any regularity condition on reward/cost functions in time, state and control variables. With

such a DPP, our further research will try to characterize the SCEC value function V as a viscosity solution of

the corresponding path-dependent HJB equations. Then we will derive an effective numerical scheme for the value

function V and implement it for practical examples including certain SCEC problems with state/control delay in

dynamics aforementioned.

A dynamic programming principle of a general stochastic control problem allows one to optimize the problem

stage by stage in a backward recursive way. It plays an important role in the study of stochastic control theory as it

is crucial for obtaining a viscosity-solution characterization of the value function of the control problem and thus a

numerical calculation of the value function (see e.g. [7], [20] and [37] for a synopsis of DPP development). Although

it is intuitive, a general DPP is technically subtle to verify. In particular, the wellposedness of the DPP first requires

the value function to be measurable so that people can conduct optimization at an intermediate horizon.

To obtain the measurability of the SCEC value function, we first study the topological and measurable properties

of the path space J of diffusion control µ: More precisely, we show that J is a Borel space under a weak topology and

attain a representation of its Borel sigma-field B(J) (Lemma 1.2 and Lemma 1.3). Inspired by [18, 20], we then embed

diffusion control µ and stopping rule τ together with the Brownian and state information into an enlarged canonical

space Ω and regard their joint distribution as a new type of controls. The optimization of the total expected reward

over constrained diffusion controls/stopping times transforms into a maximal expectation of reward functional over a

class Pt,x(y, z) of probability measures on Ω under which four canonical coordinates (W,U,X, T ) serve as Brownian

motion, diffusion control, state process and stopping rules respectively. We demonstrate that such a transformation

is equivalent (Theorem 3.1), namely, the value V (t,x, y, z) of SCEC in strong formulation (i.e., on Q) is equal to the

value V (t,x, y, z) of SCEC in weak formulation (i.e., over Ω). Hence, the SCEC value is a robust value, independent

of a specific probability model.

For the measurability of SCEC value functions, we next take advantage of the martingale-problem formulation

from [45] to describe the probability class Pt,x(y, z) as a series of probabilistic tests on stochastic behaviors of the

canonical coordinates of Ω. With such a countable characterization, we employ a Polish space of diffusion control

processes (Lemma 4.1) and a Polish space of stopping times constructed in [4] to deduce that the set-valued mapping

(t,x, y, z) 7→Pt,x(y, z) has Borel-measurable graph and the SCEC value function V =V is thus upper semi-analytic

in (t,x, y, z), (Theorem 4.1).

Our main achievement is to derive a DPP for V in weak formulation, which takes conditional expectations of

the remaining costs as additional states for constraint levels at the intermediate horizon (Theorem 5.1). For the

subsolution side of this DPP, we use the regular conditional probability distribution to show that the probability

classes Pt,x(y, z), ∀ (t,x, y, z) are stable under conditioning.

For the supersolution side of the DPP, we exploit a measurable selection theorem in the analytic-set theory

to paste a class of locally ε−optimal probability measures. We make a delicate analysis to demonstrate that the

second canonical coordinate U serves as a constrained diffusion control under the pasted probability measure, and we

apply the martingale-problem formulation again to indicate that the canonical coordinates (W,X) are still Brownian

motion and the state process under the pasted probability measure. Similar to the arguments in [4], the fourth

canonical coordinate T is a constrained stopping time under the pasted probability measure. To wit, the probability

classes Pt,x(y, z)’s are also stable under concatenation.

Relevant Literature.

Kennedy [26] employed a Lagrange multiplier method to reformulate a discrete-time optimal stopping problem

with first-moment constraint as a minimax problem and showed that the optimal value of the dual problem is equal

to that of the primal problem. The Lagrangian technique was later adopted in many economic/financial applications

of optimal stopping problems with expectation constraints, see e.g. [35, 27, 24, 2, 48, 28, 33, 32, 47]. Pfeiffer et al.

[34] recently took a Lagrange relaxation approach to obtain a duality result for general stochastic control problems

with expectation constraints.

In their study of a continuous-time stochastic optimization problem of controlled Markov processes, El Karoui,

Huu Nguyen and Jeanblanc-Picqué [18] viewed joint laws of state and control processes as control rules on the product

space of canonical state space and control space. They utilized a measurable selection theorem in the analytic-set
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theory to establish a DPP without assuming any regularity on the reward functional. Nutz et al. [31, 30] came up

with a similar idea to analyze a superhedging problem under volatility uncertainty. They modeled the “uncertainty”

by path-dependent classes of controlled-diffusion laws and explored the analytic measurability of these classes. Using

the measurable selection techniques, the authors obtained DPP result in a form of time-consistency of a sub-linear

expectation and they thus established a duality formula for the robust superhedging of measurable claims. The

approach of [31, 30] was later developed by e.g. [36, 37] to derive DPPs of various non-Markovian control problems.

Yu et al. [16] took a similar measurable selection argument to analyze the DPP of a stochastic control problem with

certain expectation constraint in which they dynamically relaxed the expectation constraint by a family of auxiliary

supermartingales.

El Karoui and Tan [19, 20] used the measurable selection argument to attain the DPP for a general stochastic

control/stopping problem by embedding diffusion controls and stopping times into an enlarged canonical space in

the spirit of [18]. However, the probability class they considered in weak formulation is not suitable for stochastic

control/stopping with expectation constraints, see our discussion in Subsection 3.3. Instead, we additionally require

in (D4) of Definition 3.1 that under each P of Pt,x(y, z) the time canonical coordinate T acts as some stopping time

(it turns out that such a restriction does not affect the unconstrained stochastic control/stopping problem in weak

formulation). By constructing a Polish space of diffusion control processes and utilizing a Polish space of stopping

times from [4], we manage to derive the Borel measurability of graph
[[
P
]]

and thus obtain the measurability of

the SCEC value functions. Because of condition (D4) and expectation constraints, it is more technically involved to

verify the stability of our probability classes Pt,x(y, z) under conditioning and concatenation and thus establish a

DPP for the SCEC value function V .

As to the optimal stopping problems with expectation constraints, Ankirchner et al. [1] and Miller [29] took

different approaches by transforming the constrained optimal stopping problems for diffusion processes to stochastic

optimization problems with martingale controls. The former characterizes the value function in terms of a Hamilton-

Jacobi-Bellman equation and obtains a verification theorem, while the latter embeds the optimal stopping problem

with first-moment constraint into a time-inconsistent (unconstrained) stopping problem. However, the authors only

postulate dynamic programming principles for their corresponding problems. In contrast, our previous work [4]

exploited a measurable selection method to rigorously establish a dynamic programming principle for the optimal

stopping problem with expectation constraints.

An interesting related topic to our research is optimal stopping with constraint on the distribution of stopping

times. Bayraktar and Miller [3] studied the problem of optimally stopping a Brownian motion with the restriction that

the distribution of the stopping time must equal a given measure with finitely many atoms, and obtained a dynamic

programming result which relates each of the sequential optimal control problems. Källblad [25] used measure-valued

martingales to transform the distribution-constrained optimal stopping problem to a stochastic control problem and

derived a DPP by measurable selection arguments. From the perspective of optimal transport, Beiglböck et al. [6]

gave a geometric interpretation of optimal stopping times of a Brownian motion with distribution constraint.

Moreover, for stochastic control problems with state constraints, stochastic target problems with controlled losses

and related geometric DPP, see [11, 12, 14, 41, 42, 43, 15, 9, 13, 10].

The rest of the paper is organized as follows: Section 2 introduces the stochastic control/stopping problem

with expectation constraints in a generic probabilistic setting. Section 3 shows that the stochastic control/stopping

problem with expectation constraints can be equivalently embedded into an enlarged canonical space: i.e., the SCEC

in strong formulation has the same value as the SCEC in weak formulation. In Section 4, we use the martingale-

problem formulation to make a countable characterization of the probability class in weak formulation. With such

a characterization, we employ a Polish space of diffusion control processes and a Polish space of stopping times

to demonstrate that the SCEC value function is upper semi-analytic. Then in Section 5, we utilize a measurable

selection argument to establish a dynamic programming principle in weak formulation for the SCEC value function.

We defer the proofs of our main results and the lengthy proofs of auxiliary results to Section 6 and put some technical

lemmata in the appendix.

We close this section by a description of our notation and a review of the martingale-problem formulation of

controlled SDEs.
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1.1 Notation and Preliminaries

Throughout this paper, let us denote a+ :=a∨0 and a− :=(−a)∨0 for any a∈R. We set Q+ :=Q ∩ [0,∞), Q2,<
+ :={

(s, r)∈Q+×Q+ : s<r
}
and set ℜ :=(−∞,∞]N as the product of countably many copies of (−∞,∞]. On T :=[0,∞]

we define a metric ρ+(t1, t2) :=
∣∣ arctan(t1)−arctan(t2)

∣∣, ∀ t1, t2∈T and consider the induced topology by ρ+.

For a generic topological space
(
X,T(X)

)
, denote its Borel sigma-field by B(X). We let P(X) be the set of

all probability measures on
(
X,B(X)

)
and equip P(X) with the topology of weak convergence T♯

(
P(X)

)
. By e.g.

Corollary 7.25.1 of [7],
(
P(X),T♯(P(X))

)
is a Borel space (i.e., homeomorphic to a Borel subset of a complete

separable metric space).

Let n∈N. For any x∈Rn and δ∈(0,∞), let Oδ(x) denote the open ball centered at x with radius δ and let Oδ(x)

be its closure. For any x, x̃∈Rn we denote the usual inner product by x·x̃ :=
∑n

i=1 xix̃i, and for any n×n−real matrices

A, Ã we denote the Frobenius inner product by A : Ã := trace
(
AÃT

)
, where ÃT is the transpose of Ã. Let

{
En
i

}
i∈N

be a countable subbase of the Euclidean topology T(Rn) on Rn. Then O(Rn) :=
{

n
∩
i=1

En
ki
: {ki}ni=1 ⊂N

}
∪{∅,Rn}

forms a countable base of T(Rn) and thus B(Rn) = σ
(
O(Rn)

)
. We also set Ô(Rn) := ∪

k∈N

(
Q+×O(Rn)

)k
. For any

φ ∈ C2(Rn), let Dφ be its gradient, D2φ be its Hessian matrix and denote D0φ := φ. For i = 1, · · · , n, define

φi(x) := xi, ∀x = (x1, · · ·, xn) ∈ Rn. We let C(Rn) collect these coordinate functions and their products, i.e.,

C(Rn) :={φi}ni=1∪{φiφj}ni,j=1.

Let (Ω,F , P ) be a generic probability space. For subsets A1, A2 of Ω, we denote A1∆A2 :=(A1∩Ac
2)∪(A2∩Ac

1).

For a random variable ξ on Ω with values in a measurable space (Q,G), we say ξ is F/G−measurable if its induced

sigma-field ξ−1(G) := {ξ−1(A) : ∀A ∈ G} is included in F . For a sub-sigma-field F of F , define NP (F) :=
{
N ⊂

Ω : N ⊂ A for some A ∈ F with P (A) = 0
}
, which collects all P−null sets with respect to F. For two sub-sigma-

fields F1,F2 of F , we denote F1∨F2 := σ(F1∪F2). Let t∈ [0,∞). For a filtration F= {Fs}s∈[t,∞) of F , we decree

Ft− := Ft and define Fs− := σ
(

∪
r∈[t,s)

Fr

)
, ∀ s ∈ (t,∞); we also set F∞ := σ

(
∪

s∈[t,∞)
Fs

)
and refer to filtration

FP=
{
FP

s :=σ
(
Fs∪NP (F∞)

)}
s∈[t,∞)

as the P−augmentation of F. For a process X={Xs}s∈[t,∞) on Ω with values

in a topological space, its raw filtration is FX =
{
FX

s :=σ(Xr; r∈ [t, s])
}
s∈[t,∞)

. We denote the P−augmentation of

FX by FX,P=
{
FX,P

s :=σ
(
FX

s ∪NP (FX
∞)

)}
s∈[t,∞)

and let PX be the FX−predictable sigma−field of [t,∞)×Ω. We

call X a continuous process if its paths are all continuous. When the time variable s of X has complicated form, we

may write X(s, ω) as Xs(ω) for readability. By default, a Brownian motion {Bs}s∈[t,∞) on (Ω,F , P ) is with respect

to its raw filtration FB unless stated otherwise.

Fix d, l ∈ N. Let Ω0 =
{
ω ∈ C([0,∞);Rd) : ω(0) = 0

}
be the space of all Rd−valued continuous paths starting

from 0, which is a Polish space under the topology of locally uniform convergence. Let P0 be the Wiener measure

on
(
Ω0,B(Ω0)

)
, under which the canonical process W = {Ws}s∈[0,∞) of Ω0 is a d−dimensional standard Brown-

ian motion. For any t ∈ [0,∞), W t
s := Ws−Wt, s ∈ [t,∞) is also a Brownian motion on

(
Ω0,B(Ω0), P0

)
. Let

Ω
X
= C([0,∞);Rl) be the space of all Rl−valued continuous paths endowed with the topology of locally uniform

convergence. The function l1(t, ω0) :=ω0(t∧·) is continuous in (t, ω0)∈ [0,∞)×Ω0 while the function l2(t, ωX
) :=ω

X
(t∧·)

is continuous in (t, ω
X
)∈ [0,∞)×Ω

X
.

Let U be a Polish space with a compatible metric ρU and let u0∈U. As a Polish space, U is homeomorphic to a

Borel subset E of [0, 1], we denote this homeomorphism by I : U 7→E. Let Cb

(
[0,∞)×U

) (
resp. Ĉb

(
[0,∞)×U

))
collect

all real-valued bounded continuous (resp. bounded uniformly continuous) functions on [0,∞)×U. For any (δ,m, ϕ)∈
(0,∞)×P

(
[0,∞)×U

)
×Cb

(
[0,∞)×U

)
, set Oδ(m, ϕ) :=

{
m′∈P

(
[0,∞)×U

)
:
∣∣ ∫∞

0

∫
U ϕ(t, u)

(
m′(dt, du)−m(dt, du)

)∣∣<δ}.
Lemma 1.1. There exist {mk}k∈N⊂P

(
[0,∞)×U

)
and {ϕj}j∈N⊂ Ĉb

(
[0,∞)×U

)
such that

{
O 1

n
(mk, ϕj) : n, k, j∈N

}
forms a countable subbase of T♯

(
P
(
[0,∞)×U

))
.

Proof: Proposition 7.19 of [7] shows that the topology of weak convergence T♯

(
P
(
[0,∞)×U

))
on P

(
[0,∞)×U

)
can

be generated by a subbase Λ:=
{
Oδ(m, ϕj) : δ∈(0,∞),m∈P

(
[0,∞)×U

)
, j∈N

}
, where {ϕj}j∈N is a countable dense

subset of Ĉb

(
[0,∞)×U

)
. As the Borel space

(
P([0,∞)×U),T♯

(
P([0,∞)×U)

))
is separable, it has a countable dense

subset {mk}k∈N.

To show that Λ̃ :=
{
O 1

n
(mk, ϕj) : n, k, j∈N

}
is another subbase of T♯

(
P
(
[0,∞)×U

))
, it suffices to verify that any

member of Λ is a union of some members in Λ̃: Let (δ,m, j)∈(0,∞)×P
(
[0,∞)×U

)
×N and let m′∈Oδ(m, ϕj). There

exists n∈N such that 2
n<δ−

∣∣ ∫∞
0

∫
U ϕj(t, u)

(
m′(dt, du)−m(dt, du)

)∣∣, and one can find mk∈O 1
n
(m′;ϕj) for some k∈N.
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For any m′′∈O 1
n
(mk, ϕj), we can deduce that

∣∣ ∫∞
0

∫
U ϕj(t, u)

(
m′′(dt, du)−m(dt, du)

)∣∣≤ ∣∣ ∫∞
0

∫
U ϕj(t, u)

(
m′′(dt, du)−

mk(dt, du)
)∣∣+∣∣ ∫∞

0

∫
U ϕj(t, u)

(
mk(dt, du)−m′(dt, du)

)∣∣+∣∣ ∫∞
0

∫
U ϕj(t, u)

(
m′(dt, du)−m(dt, du)

)∣∣≤ 2
n+

∣∣ ∫∞
0

∫
U ϕj(t, u)

(
m′(dt,

du)−m(dt, du)
)∣∣<δ, which implies that m′∈O 1

n
(mk, ϕj)⊂Oδ(m, ϕj). □

Let J := L0
(
[0,∞);U

)
denote the equivalence classes of U-valued Borel measurable functions on [0,∞) in the

sense that u1, u2 ∈ J are equivalent if u1(t) = u2(t) for a.e. t ∈ (0,∞). It will serve as the path space of U−valued

diffusion controls. We can embed J into P
(
[0,∞)×U

)
via a mapping iJ : J ∋ u 7→ e−tδu(t)(du)dt ∈P

(
[0,∞)×U

)
.

Let T♯(J) be the topology induced by T♯

(
P
(
[0,∞)×U

))
via iJ. According to Lemma 1.1, T♯(J) is generated by a

countable subbase

i−1
J

(
O 1

n
(mk, ϕj)

)
=
{
u∈J :

∣∣∣ ∫ ∞

0

e−tϕj(t, u(t))dt−
∫ ∞

0

∫
U
ϕj(t, u)mk(dt, du)

∣∣∣< 1

n

}
, ∀n, k, j∈N. (1.1)

The proofs of next two Lemmata are relatively lengthy, see Section 6 for them.

Lemma 1.2.
(
J,T♯(J)

)
is a Borel space.

Let L0
(
(0,∞)×U;R

)
collect all real−valued Borel-measurable functions on (0,∞)×U. For any φ∈L0

(
(0,∞)×U;R

)
,

define Iφ(u) :=
∫∞
0
φ(s, u(s))ds=

∫∞
0
φ+(s, u(s))ds−

∫∞
0
φ−(s, u(s))ds, ∀ u∈ J. The Borel sigma-field B(J) of T♯(J)

can be generated by these random variables Iφ on J.

Lemma 1.3. 1 ) We have B(J)=σ
(
Iφ;φ∈L0

(
(0,∞)×U;R

))
.

2 ) Let ψ : (0,∞)×Ω
X
×Rd+l×U 7→ [−∞,∞] be a Borel-measurable function. Then the mapping Ψ(t, s, ω0, ωX

, u) :=∫ t+s

t
ψ
(
r, l2(r, ωX

), ω0(r), ωX
(r), u(r)

)
dr=

∫ t+s

t
ψ+

(
r, l2(r, ωX

), ω0(r), ωX
(r), u(r)

)
dr−

∫ t+s

t
ψ−(r, l2(r, ωX

), ω0(r), ωX
(r),

u(r)
)
dr, (t, s, ω0, ωX

, u)∈ [0,∞)×[0,∞)×Ω0×Ω
X
×J is B[0,∞)⊗B[0,∞)⊗B(Ω0)⊗B(Ω

X
)⊗B(J)−measurable.

Let b : (0,∞)×Ω
X
×U 7→Rl and σ : (0,∞)×Ω

X
×U 7→Rl×d be two Borel-measurable functions such that for any

t∈(0,∞)∣∣b(t, ω
X
, u)−b(t, ω′

X
, u)

∣∣+∣∣σ(t, ω
X
, u)−σ(t, ω′

X
, u)

∣∣≤κ(t)∥∥ω
X
−ω′

X

∥∥
t
, ∀ω

X
, ω′

X
∈Ω

X
, ∀u∈U, (1.2)

and

∫ t

0

sup
u∈U

(
|b(r,0, u)|2+|σ(r,0, u)|2

)
dr<∞, (1.3)

where κ : (0,∞) 7→(0,∞) is some non-decreasing function and
∥∥ω

X
−ω′

X

∥∥
t
:= sup

s∈[0,t]

∣∣ω
X
(s)−ω′

X
(s)

∣∣. Under conditions

(1.2) and (1.3), controlled SDEs with coefficients (b, σ) are well-posed (see e.g. Theorem V.7 of [38]):

Proposition 1.1. Let (Ω,F , P ) be a probability space. Given t∈ [0,∞), let {Bt
s}s∈[t,∞) be a d−dimensional Brownian

motion on (Ω,F , P ) and let µ={µs}s∈[t,∞) be a U−valued, FBt,P−progressively measurable process. For any x∈Ω
X
,

the SDE with the open-loop control µ

Xs=x(t) +

∫ s

t

b(r,Xr∧·, µr)dr+

∫ s

t

σ(r,Xr∧·, µr)dB
t
r, ∀ s ∈ [t,∞) with initial condition X

∣∣
[0,t]

=x|[0,t] (1.4)

admits a unique strong solution Xt,x,µ = {Xt,x,µ
s }s∈[0,∞)

(
i.e., Xt,x,µ is an {FBt,P

s∨t }s∈[0,∞)−adapted continuous

process satisfying (1.4) and P
{
Xt,x,µ

s =X̃t,x,µ
s , ∀ s∈ [0,∞)

}
=1 if

{
X̃t,x,µ

s

}
s∈[0,∞)

is another {FBt,P
s∨t }s∈[0,∞)−adapted

continuous process satisfying (1.4)
)
.

Let Ho collect all (−∞,∞]−valued Borel-measurable functions ψ on (0,∞)×Ω
X
×U such that for any (t,x)∈

[0,∞)×Ω
X

and any U−valued FW t−predictable process µo={µo
s}s∈[t,∞), one has EP0

[ ∫∞
t
ψ−(r, Xt,x,µo

r∧· , µo
r)dr

]
<∞,

where {Xt,x,µo

s }s∈[0,∞) is the unique strong solution of (1.4) on (Ω,F , P )=
(
Ω0,B(Ω0), P0

)
with (Bt, µ)=

(
W t, µo

)
.

Moreover, we take the conventions inf ∅ :=∞, sup ∅ :=−∞ and (+∞)+(−∞)=−∞ (i.e. for any a1, a2∈ [−∞,∞]

we set a1−a2 := −∞ if a1 = a2 = ∞). In particular, on a measure space (Ω,F ,m), one can define the integral∫
Ω
ξ dm :=

∫
Ω
ξ+ dm−

∫
Ω
ξ− dm for any [−∞,∞]−valued F−measurable random variable ξ on Ω.
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1.2 Review of Martingale-Problem Formulation of Controlled SDEs

In this subsection, we consider a general measurable space (Ω,F). Let {Bs}s∈[0,∞) be an Rd−valued continuous

process on Ω with B0=0 and let X = {Xs}s∈[0,∞) be an Rl−valued continuous process on Ω such that (Bs, Xs) is

F−measurable for each s∈ [0,∞).

Given (t,x)∈ [0,∞)×Ω
X
, let P be a probability measure on (Ω,F) such that P

{
Xs=x(s), ∀ s∈ [0, t]

}
=1. We

set Bt
s :=Bs−Bt, ∀ s∈ [t,∞) and let µ={µs}s∈[t,∞) be a U−valued, FBt,P−progressively measurable process. Define

filtration Ft={F t
s}s∈[t,∞) by F t

s :=FBt

s ∨FX
s =σ(Bt

r; r∈ [t, s])∨σ(Xr; r∈ [0, s]) and filtration Ft,P ={F t,P
s }s∈[t,∞) by

F t,P
s :=FBt,P

s ∨FX
s =σ

(
FBt

s ∪NP

(
FBt

∞
))
∨FX

s . For any φ∈C2(Rd+l), we define

M t,µ
s (φ) :=φ

(
Bt

s, Xs

)
−
∫ s

t

b(r,Xr∧·, µr)·Dφ
(
Bt

r, Xr

)
dr− 1

2

∫ s

t

σ σT (r,Xr∧·, µr) :D
2φ(Bt

r, Xr)dr, ∀ s∈ [t,∞),

where b(r, ω
X
, u) :=

(
0

b(r, ω
X
, u)

)
∈ Rd+l, σ(r, ω

X
, u) :=

(
Id×d

σ(r, ω
X
, u)

)
∈ R(d+l)×d, ∀ (r, ω

X
, u) ∈ (0,∞)×Ω

X
×U.

Clearly,
{
M t,µ

s (φ)
}
s∈[t,∞)

is an Ft,P−adapted continuous process and it is even Ft−adapted if the control process µ

is only FBt−progressively measurable. For any n∈N and a∈Rd+l, set τ tn(a) :=inf
{
s∈ [t,∞) : |(Bt

s, Xs)−a|≥n
}
∧(t+n),

which is an Ft−stopping time. In particular, we denote τ tn(0) by τ
t
n.

In virtue of [45], we have the following martingale-problem formulation of controlled SDEs with coefficients (b, σ)

on Ω.

Proposition 1.2. Under the probabilistic setup of this subsection, the process
{
M t,µ

s∧τt
n(a)

(φ)
}
s∈[t,∞)

is bounded for

any (φ, n, a)∈C2(Rd+l)×N×Rd+l and the following statements are equivalent on (Ω,F , P ):
(i) The process Bt is a Brownian motion and P{Xs=X

t,x,µ
s , ∀ s∈ [0,∞)} = 1, where

{
Xt,x,µ

s

}
s∈[0,∞)

is the unique{
FBt,P

s∨t

}
s∈[0,∞)

−adapted continuous process solving SDE (1.4).

(ii)
{
M t,µ

s∧τt
n(a)

(φ)
}
s∈[t,∞)

is a bounded Ft,P−martingale for any (φ, n, a)∈C2(Rd+l)×N×Rd+l.

(iii)
{
M t,µ

s∧τt
n
(φ)

}
s∈[t,∞)

is a bounded Ft,P−martingale for any (φ, n)∈C(Rd+l)×N.
Moreover, if the control process µ is FBt−progressively measurable, the Ft,P−martingales mentioned in (ii) and

(iii) are Ft−martingales.

The proof of this result is an easy extension of [4, Proposition 1.2] to the control case, please see our ArXiv

version [5] for details. We also have the following consequence of Proposition 1.2.

Proposition 1.3. Let (Ω,F , P ) be a probability space. Given t∈ [0,∞), let {Bs}s∈[0,∞) be an Rd−valued continuous

process on Ω with B0=0 such that the process Bt is a Brownian motion on (Ω,F , P ), and let µ= {µs}s∈[t,∞) be a

U−valued, FBt,P−progressively measurable process.

Let (t,w)∈ [0,∞)×Ω0 and define Bt,w
s (ω) :=w(s∧t)+Bt

s∨t(ω), ∀ (s, ω)∈ [0,∞)×Ω. There exists a U−valued,

FW t−predictable process µo={µo
s}s∈[t,∞) on Ω0 and an Nµ∈NP (FBt

∞ ) such that for any ω∈N c
µ, µs(ω)=µ

o
s

(
Bt,w(ω)

)
for a.e. s ∈ (t,∞). It also holds for any x ∈Ω

X
and ψ ∈Ho that P

{
Xt,x,µ

s =Xt,x,µo

s (Bt,w), ∀ s ∈ [0,∞)
}
= 1 and

EP

[ ∫∞
t
ψ−(r,Xt,x,µ

r∧· , µr)dr
]
=EP0

[ ∫∞
t
ψ−(r,Xt,x,µo

r∧· , µo
r)dr

]
<∞.

2 Stochastic Control/Stopping Problem with Expectation Constraints

Let (Q,F , p) be a probability space equipped with a d−dimensional standard Brownian motion {Bs}s∈[0,∞).

Let t∈ [0,∞). We set Bt
s=Bs−Bt, ∀ s∈ [t,∞), which is also a Brownian motion on (Q,F , p). Let Ut collect all

U−valued, FBt,p−progressively measurable processes µ= {µs}s∈[t,∞) and let St denote the set of all [t,∞]−valued

FBt,p−stopping times. For any (x, µ) ∈ Ω
X
×Ut, Proposition 1.1 shows that the SDE with the open-loop control µ

Xs=x(t) +

∫ s

t

b
(
r,Xr∧·, µr

)
dr+

∫ s

t

σ
(
r,Xr∧·, µr

)
dBr, ∀ s ∈ [t,∞) with initial condition X

∣∣
[0,t]

=x|[0,t] (2.1)

admits a unique strong solution X t,x,µ=
{
X t,x,µ

s

}
s∈[0,∞)

on
(
Q,F ,FBt,p, p

) (
i.e., X t,x,µ is the unique

{
FBt,p

s∨t

}
s∈[0,∞)

−
adapted continuous process solving SDE (2.1)

)
.
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Let f ∈Ho, {gi, hi}i∈N ⊂Ho and let π : [0,∞)×Ω
X
7→ (−∞,∞] be a Borel-measurable function bounded from

below by some cπ∈(−∞, 0).

Given a historical path x|[0,t], the dynamic of the state then evolves along process
{
X t,x,µ

}
s∈[t,∞)

if the decision

maker chooses a control process µ∈Ut. The decision maker also determines an exercise time τ ∈St to cease the game,

at which she will receive an accumulative reward
∫ τ

t
f
(
r,X t,x,µ

r∧· , µr

)
dr plus a terminal reward π

(
τ,X t,x,µ

τ∧·
)
(both

random rewards can take negative values). The investor intends to maximize the expectation of her total wealth,

but her choice of (µ, τ) is subject to a series of expectation constraints

Ep

[ ∫ τ

t

gi(r,X t,x,µ
r∧· , µr)dr

]
≤yi, Ep

[ ∫ τ

t

hi(r,X t,x,µ
r∧· , µr)dr

]
=zi, ∀ i∈N (2.2)

for some (y, z) =
(
{yi}i∈N, {zi}i∈N

)
∈ ℜ×ℜ. One can regard each

∫ τ

t
gi(r,X t,x,µ

r∧· , µr)dr or
∫ τ

t
hi(r,X t,x,µ

r∧· , µr)dr as

certain accumulative cost. So the value of this stochastic control/stopping problem with expectation constraints

(SCEC for short) is

V (t,x, y, z) := sup
(µ,τ)∈Ct,x(y,z)

Ep

[ ∫ τ

t

f
(
r,X t,x,µ

r∧· , µr

)
dr+1{τ<∞}π

(
τ,X t,x,µ

τ∧·
)]
, (2.3)

where Ct,x(y, z) :=
{
(µ, τ)∈Ut×St : Ep

[ ∫ τ

t
gi(r,X t,x,µ

r∧· , µr)dr
]
≤yi, Ep

[ ∫ τ

t
hi(r,X t,x,µ

r∧· , µr)dr
]
=zi, ∀ i∈N

}
.

Remark 2.1. Let (t,x)∈ [0,∞)×Ω
X
.

1 ) (finitely many constraints) For i∈N, the constraint Ep

[ ∫ τ

t
gi(r,X t,x,µ

r∧· , µr)dr
]
≤yi holds for any (µ, τ)∈Ut×St if

yi=∞, and the constraint Ep

[ ∫ τ

t
hi(r,X t,x,µ

r∧· , µr)dr
]
=zi holds for any (µ, τ)∈Ut×St if

(
hi(·, ·, ·), zi

)
=(0, 0).

1a) If we take
(
yi, hi(·, ·, ·), zi

)
=(∞, 0, 0), ∀ i∈N, there is no expectation constraint at all.

1b) If one takes yi=∞, ∀ i≥2 and
(
hi(·, ·, ·), zi

)
=(0, 0), ∀ i∈N, (2.2) reduces to a single constraint Ep

[ ∫ τ

t
g1(r,X t,x,µ

r∧· ,

µr)dr
]
≤y1. In addition, if y1≥0, then (µ, t)∈Ct,x(y,0) for any µ∈Ut.

1c) If one takes yi=∞, ∀ i∈N and
(
hi(·, ·, ·), zi

)
=(0, 0), ∀ i≥2, (2.2) degenerates to Ep

[ ∫ τ

t
h1(r,X t,x,µ

r∧· , µr)dr
]
=z1.

1d) If we take
(
yi, hi(·, ·, ·), zi

)
=(∞, 0, 0), ∀ i≥2, (2.2) becomes a couple of constraints Ep

[ ∫ τ

t
g1(r,X t,x,µ

r∧· , µr)dr
]
≤y1

and Ep

[ ∫ τ

t
h1(r,X t,x,µ

r∧· , µr)dr
]
=z1.

1e) If we take g2=−g1, y2≥−y1; yi=∞, ∀ i≥3 and
(
hi(·, ·, ·), zi

)
=(0, 0), ∀ i∈N, (2.2) becomes a range constraint

−y2≤Ep

[ ∫ τ

t
g1(r,X t,x,µ

r∧· , µr)dr
]
≤y1.

2 ) (moment constraints) Let i∈N, a∈(0,∞) and q∈ [1,∞). If gi(s,x, u)=aqs
q−1, ∀ (s,x, u)∈(0,∞)×Ω

X
×U

(
resp.

hi(s,x, u)=aqs
q−1, ∀ (s,x, u)∈(0,∞)×Ω

X
×U

)
, then the expectation constraint Ep

[ ∫ τ

t
gi(r,X t,x,µ

r∧· , µr)dr
]
≤yi

(
resp.

Ep

[ ∫ τ

t
hi(r,X t,x,µ

r∧· , µr)dr
]
=zi

)
specifies as a moment constraint Ep

[
a(τ q−tq)

]
≤yi

(
resp. Ep

[
a(τ q−tq)

]
=zi

)
.

To study the measurability of value function V and derive a dynamic programming principle for V without

imposing any continuity condition on functions f , π, gi’s and hi’s in time and state variables, we follow [18]’s

approach to embed the controls, the stopping rules as well as the Brownian/state information into an enlarged

canonical space via a mapping ω 7→
(
B·(ω), µ·(ω),X t,x,µ

· (ω), τ(ω)
)
and consider their joint law as a new type of

controls.

3 Weak Formulation

In this section, we study the stochastic control/stopping problem with expectation constraints in a weak formulation

or over an enlarged canonical space

Ω:=Ω0×J×Ω
X
×T.

As
(
J,T♯(J)

)
is a Borel space by Lemma 1.2, Ω is also a Borel space under the product topology. Let P(Ω) be the

space of all probability measures on
(
Ω,B(Ω)

)
equipped with the topology of weak convergence, which is also a

Borel space (see e.g. Corollary 7.25.1 of [7]). For any P ∈P(Ω), set BP (Ω):=σ
(
B(Ω)∪NP (B(Ω))

)
.
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3.1 Setup

We define the canonical coordinates on Ω by(
Ws(ω), Us(ω), Xs(ω)

)
:=

(
ω0(s), u(s), ωX

(s)
)
, s∈ [0,∞) and T (ω) := t, ∀ω=

(
ω0, u, ωX

, t
)
∈Ω.

Given t∈ [0,∞), we define

W
t

s(ω) :=Ws(ω)−Wt(ω) and Υ
t

s(ω) :=

∫ s

t

e−rI
(
Ur(ω)

)
dr∈ [0, 1), ∀ (s, ω)∈ [t,∞)×Ω.

For the weak formulation of the SCEC, we need to consider those probabilities of P
(
Ω
)
under which the canonical

coordinates (W,U,X, T ) serve as Brownian motion, diffusion control, state process and stopping rules respectively.

Definition 3.1. For any (t,x)∈ [0,∞)×Ω
X
, let Pt,x be the collection of all probability measures P ∈P

(
Ω
)
satisfying:

(D1 ) There exists a U−valued, FW t−predictable process µ̂ = {µ̂s}s∈[t,∞) on Ω0 such that P
{
Us = µs for a.e. s ∈

(t,∞)
}
=1, where µs := µ̂s(W ), ∀ s∈ [t,∞).

(D2 ) The process W
t
is a d−dimensional Brownian motion on

(
Ω,B(Ω), P

)
.

(D3 ) P
{
Xs =X

t,x,µ

s , ∀ s∈ [0,∞)
}
=1, where

{
X

t,x,µ

s

}
s∈[0,∞)

is an
{
FW

t
,P

s∨t

}
s∈[0,∞)

−adapted continuous process

that uniquely solves the following SDE with the open-loop control µ on
(
Ω,B

(
Ω
)
, P

)
:

X s = x(t) +

∫ s

t

b
(
r,X r∧·, µr

)
dr+

∫ s

t

σ
(
r,X r∧·, µr

)
dW r, ∀ s∈ [t,∞) with initial condition X

∣∣
[0,t]

=x
∣∣
[0,t]

. (3.1)

(D4 ) There exists a [t,∞]−valued FW t,P0−stopping time τ̂ on Ω0 such that P
{
T = τ̂(W )

}
=1.

Let t∈ [0,∞). For any s ∈ [t,∞), define F t

s :=FW
t

s ∨FX
s =σ

(
W

t

r ; r∈ [t, s]
)
∨σ

(
Xr; r∈ [0, s]

)
, which is countably

generated by
{
X

−1

r (O) : r ∈Q∩ [0, t],O ∈ O(Rl)
}
∪
{
(W

t

r, Xr)
−1

(O′) : r ∈Q∩(t, s],O′ ∈ O(Rd+l)
}
. We denote the

filtration
{
F t

s

}
s∈[t,∞)

by F
t
. Let µ̂= {µ̂s}s∈[t,∞) be a U−valued, FW t−predictable process on Ω0. Then µs(ω) :=

µ̂s

(
W (ω)

)
, ∀ (s, ω)∈ [t,∞)×Ω is a U−valued, FW

t

−predictable process on Ω. For any (φ, n, a)∈C2(Rd+l)×N×Rd+l,

M
t,µ

s (φ) :=φ
(
W

t

s , Xs

)
−
∫ s

t

b
(
r,Xr∧·, µr

)
·Dφ

(
W

t

r , Xr

)
dr− 1

2

∫ s

t

σ σT
(
r,Xr∧·, µr

)
:D2φ(W

t

r , Xr)dr, ∀ s∈ [t,∞)

is an F
t−adapted continuous process and τ tn(a) :=inf

{
s∈ [t,∞) :

∣∣(W t

s , Xs)−a
∣∣≥n}∧(t+n) is an F

t−stopping time.

We will simply denote τ tn(0) by τ
t
n.

Let us also define a shifted canonical process on Ω by W
t

s(ω) :=W t+s(ω)−W t(ω)=W
t

t+s(ω), ∀ (s, ω)∈ [0,∞)×Ω.(
Note: the subscript s∈ [0,∞) of W

t
is the relative time after t while the subscript s∈ [t,∞) of W

t
is the real time.

)
Given s∈ [0,∞], one has FW

t

s =σ
(
W

t

r; r∈ [0, s]∩R
)
=σ

(
W

t

t+r; r∈ [0, s]∩R
)
=σ

(
W

t

r; r∈ [t, t+s]∩R
)
=FW

t

t+s. In particular,

FW
t

∞ =FW
t

∞ . It then holds for any P ∈P
(
Ω
)
that FW

t
,P

s =σ
(
FW

t

s ∪NP (FW
t

∞ )
)
=σ

(
FW

t

t+s∪NP (FW
t

∞ )
)
=FW

t
,P

t+s .

According to the martingale-problem formulation of controlled SDEs (Proposition 1.2), we have an alternative

description of the probability class Pt,x:

Remark 3.1. Let (t,x)∈ [0,∞)×Ω
X
. In definition 3.1 of Pt,x,

(i) (D1 ) is equivalent to

(D1 ′) There exists a U−valued, FW−predictable process µ̈={µ̈s}s∈[0,∞) on Ω0 such that P
{
U

t

s= µ̈s(W
t
) for a.e. s∈

(0,∞)
}
=1, where U

t

s :=U t+s, ∀ s∈ [0,∞).

(ii) Under (D1 )=(D1 ′), (D2 )+(D3 ) is equivalent to

(D2 ′) P{Xs=x(s), ∀ s∈ [0, t]}=1 and
{
M

t,µ

s∧τt
n
(φ)

}
s∈[t,∞)

is a bounded
(
F

t
, P

)
−martingale, ∀ (φ, n)∈C(Rd+l)×N.

(iii) (D4 ) is equivalent to

(D4 ′) There exists a [0,∞]−valued FW,P0−stopping time τ̈ on Ω0 such that P
{
T = t+τ̈

(
W

t)}
=1.

Remark 3.2. Let (t,x)∈ [0,∞)×Ω
X

and let P ∈P(Ω) satisfy (D1 )+(D2 )+(D3 ) of Pt,x.

(1 ) For any ψ∈Ho, Proposition 1.3 shows that EP

[ ∫∞
t
ψ−(r,Xr∧·, Ur)dr

]
=EP

[ ∫∞
t
ψ−(r,X t,x,µ

r∧· , µr

)
dr
]
<∞.
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(2 ) Let (φ, n, a) ∈ C2(Rd+l)×N×Rd+l. As
{
M

t,µ

s∧τt
n(a)

(φ)
}
s∈[t,∞)

is a bounded
(
F

t
, P

)
−martingale, the optional

sampling theorem implies that for any two [t,∞]−valued F
t−stopping times ζ1, ζ2 with ζ1≤ζ2, P−a.s.,

EP

[(
M

t,µ

ζ2∧τt
n(a)

(φ)−M t,µ

ζ1∧τt
n(a)

(φ)
)
1A

]
=EP

[
EP

[
M

t,µ

ζ2∧τt
n(a)

(φ)−M t,µ

ζ1∧τt
n(a)

(φ)
∣∣∣F t

ζ1

]
1A

]
=0, ∀A∈F t

ζ1
. (3.2)

Let (t,x)∈ [0,∞)×Ω
X
, (y, z)=

(
{yi}i∈N, {zi}i∈N

)
∈ℜ×ℜ and set R(t) :=

∫ T

T∧t
f(r,Xr∧·, Ur)dr+1{T<∞}π

(
T ,XT∧·

)
.

Given a historical state path x|[0,t], the value of the stochastic control/stopping problem with expectation constraints

EP

[ ∫ T

t

gi(r,Xr∧·, Ur)dr
]
≤yi, EP

[ ∫ T

t

hi(r,Xr∧·, Ur)dr
]
=zi, ∀ i∈N (3.3)

in weak formulation is

V (t,x, y, z) := sup
P∈Pt,x(y,z)

EP

[
R(t)

]
= sup

P∈Pt,x(y,z)

EP

[ ∫ T

t

f(r,Xr∧·, Ur)dr+1{T<∞}π
(
T ,XT∧·

)]
,

where Pt,x(y, z) :=
{
P ∈ Pt,x : EP

[ ∫ T

t
gi(r,Xr∧·, Ur)dr

]
≤ yi, EP

[ ∫ T

t
hi(r,Xr∧·, Ur)dr

]
= zi, ∀ i ∈ N

}
. We will

simply call V (t,x, y, z) the weak value of the stochastic control/stopping problem with expectation constraints. In

case Pt,x(y, z)=∅, V (t,x, y, z)=−∞ by the convention sup ∅ :=−∞.

We can consider another weak value function of the SCEC: Let (w,u) ∈ Ω0×J and define Pt,w,u,x :=
{
P ∈

Pt,x : P
{
W s = w(s), ∀ s ∈ [0, t]; Us = u(s) for a.e. s ∈ (0, t)

}
= 1

}
as the subclass of Pt,x given the historical

Brownian path w
∣∣
[0,t]

and the historical control trajectory u
∣∣
[0,t]

. The weak value of the stochastic control/stopping

problem with expectation constraints (3.3) given (w,u,x)
∣∣
[0,t]

is V (t,w,u,x, y, z) := sup
P∈Pt,w,u,x(y,z)

EP

[
R(t)

]
, where

Pt,w,u,x(y, z) :=
{
P ∈Pt,x(y, z) : P

{
W s=w(s), ∀ s∈ [0, t]; Us=u(s) for a.e. s∈(0, t)

}
=1

}
.

3.2 The Equivalence between Strong and Weak Formulation

One of our main results in the next theorem demonstrates that the value V (t,x, y, z) in (2.3) coincides with the weak

value V (t,x, y, z), and is even equal to V (t,w,u,x, y, z).

Theorem 3.1. Let (t,w,u,x, y, z)∈ [0,∞)×Ω0×J×Ω
X
×ℜ×ℜ. Then V (t,x, y, z)=V (t,x, y, z) = V (t,w,u,x, y, z),

and Ct,x(y, z) ̸=∅ ⇔ Pt,x(y, z) ̸=∅ ⇔ Pt,w,u,x(y, z) ̸=∅.

Theorem 3.1 indicates that the value of the SCEC is independent of a specific probabilistic setup and is also

indifferent to the Brownian/control history. This result even allows us to deal with the robust case:

Remark 3.3. Let
{
(Qα,Fα, pα)

}
α∈A

be a family of probability spaces, where A is a countable or uncountable index

set
(
e.g. one can consider a non-dominated class {pα}α∈A of probability measures on a measurable space (Q,F)

)
.

Let α ∈ A and let Bα =
{
Bα
s

}
s∈[0,∞)

be a d−dimensional standard Brownian motion on (Qα,Fα, pα). Given

t ∈ [0,∞), set Bα,t
s := Bα

s −Bα
t , s ∈ [t,∞), let Uα

t collect all U−valued, FBα,t,pα−progressively measurable processes

µα={µα
s }s∈[t,∞) and let Sα

t denote the set of all [t,∞]−valued FBα,t,pα−stopping times. For any (x, µα)∈Ω
X
×Uα

t ,

let X t,x,µα

=
{
X t,x,µα

s

}
s∈[0,∞)

be the unique
{
FBα,t,pα

s∨t

}
s∈[0,∞)

−adapted continuous process solving the SDE with the

open-loop control µα

Xs=x(t) +

∫ s

t

b(r,Xr∧·, µ
α
r )dr+

∫ s

t

σ(r,Xr∧·, µ
α
r )dBα

r , ∀ s ∈ [t,∞) with initial condition X
∣∣
[0,t]

=x
∣∣
[0,t]

on
(
Qα,Fα,F

Bα,t,pα , pα
)
.

Then we know from Theorem 3.1 that for any (t,x)∈ [0,∞)×Ω
X

and (y, z)=
(
{yi}i∈N, {zi}i∈N

)
∈ℜ×ℜ

V (t,x, y, z)= sup
α∈A

sup
(µα,τα)∈Cα

t,x(y,z)

Epα

[ ∫ τα

t

f
(
r,X t,x,µα

r∧· , µα
r

)
dr+1{τα<∞}π

(
τα,X t,x,µα

τα∧·
)]
,

where Cα
t,x(y, z) :=

{
(µα, τα)∈Uα

t ×Sα
t : Epα

[ ∫ τα
t
gi(r,X t,x,µα

r∧· , µα
r )dr

]
≤yi, Epα

[ ∫ τα
t
hi(r,X t,x,µα

r∧· , µα
r )dr

]
=zi, ∀ i∈N

}
.

To wit, the weak value V (t,x, y, z) is also equal to the robust value of the SCEC under model uncertainty.
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3.3 A Comparison with Unconstrained Case

The purpose of this subsection is to demonstrate that Theorem 3.1 is not a simple extension of the equivalence result

between strong and weak formulation of an (unconstrained) stochastic control/stopping problem obtained in [20].

When
(
yi, hi(·, ·), zi

)
= (∞, 0, 0), ∀ i ∈ N, the unconstrained version of Theorem 3.1 states that for any (t,x) ∈

[0,∞)×Ω
X
, V (t,x) := sup

(µ,τ)∈Ut×St

Ep

[ ∫ τ

t
f
(
r,X t,x,µ

r∧· , µr

)
dr+1{τ<∞}π

(
τ,X t,x,µ

τ∧·
)]

is equal to V (t,x) := sup
P∈Pt,x

EP

[
R(t)

]
.

On the other hand, [20] showed that for any (t,x) ∈ [0,∞)×Ω
X
, V (t,x) equals V (t,x) := sup

P∈Pt,x

EP

[
R(t)

]
, where

Pt,x collects all P ∈P(Ω) satisfying (D1), (D2), (D3) and “P
{
T ≥ t

}
=1” (We summarize [20]’s result in our terms

for an easy comparison with our work). As Pt,x ⊂Pt,x, the equality V (t,x) = sup
P∈Pt,x

EP

[
R(t)

]
= sup

P∈Pt,x

EP

[
R(t)

]
indicates that the probability classes Pt,x’s are more accurate than Pt,x’s to describe the (unconstrained) stochastic

control/stopping problem in weak formulation.

The condition (D4) on Pt,x is necessary for the expectation-constraint case. Without it, the weak value V (t,x, y, z)

:= sup
P∈Pt,x(y,z)

EP

[
R(t)

] (
with Pt,x(y, z) :=

{
P ∈ Pt,x : EP

[ ∫ T

t
gi(r,Xr∧·, Ur)dr

]
≤ yi, EP

[ ∫ T

t
hi(r,Xr∧·, Ur)dr

]
=

zi, ∀ i∈N
})

may not be equal to V (t,x, y, z) for the following reason:

In Proposition 4.3 of [20], the key to show V (t,x)≤ V (t,x) or EP

[
R(t)

]
≤ V (t,x) for a given P ∈ Pt,x, relies

on transforming the hitting times of process
{
EP

[
1{T∈[t,s]}

∣∣FW
t
,P

∞
]}

s∈[t,∞)
to a member of St. More precisely,

the so-called Property (K ) assures an FW t,P0−adapted càdlàg process ϑ̂· such that ϑ̂s(W )=EP

[
1{T∈[t,s]}

∣∣FW
t

s

]
=

EP

[
1{T∈[t,s]}

∣∣FW
t
,P

∞
]
, P−a.s. for any s∈ [t,∞). It follows that EP

[
1{T∈[t,s]}1{X

t,x,µ∈A}

∣∣FW
t
,P

∞
]
=1{X

t,x,µ
· ∈A}ϑ̂s(W )

=
∫ s

t
1{X

t,x,µ∈A}ϑ̂(dr,W ), P−a.s. for any (s,A)∈ [t,∞)×B(Ω
X
), where µ=

{
µs= µ̂s(W )

}
s∈[t,∞)

is the U−valued,

FW
t

−predictable process in (D1) and X
t,x,µ

=
{
X

t,x,µ

s

}
s∈[0,∞)

is the unique solution of SDE (3.1). Let Φ be a non-

negative Borel-measurable function on [0,∞)×J×Ω
X
. Then a standard approximation argument and the “change-of-

variable” formula yield that EP

[
Φ(T , U,X)

∣∣FW
t
,P

∞
]
=
∫∞
t

Φ(r, U,X)ϑ̂(dr,W ) =
∫ 1

0
Φ(ϱ(W,λ), µ̂(W ), X)dλ, P−a.s.,

where ϱ(ω0, λ) := inf
{
s ∈ [t,∞) : ϑ̂s(ω0) > λ

}
, ∀ (ω0, λ) ∈ Ω0× (0, 1). Set µs := µ̂s(B), ∀ s ∈ [t,∞). Since the

joint P−distribution of
(
W, µ̂·(W )

)
is equal to the joint p−distribution of

(
B, µ̂·(B)

)
, we can deduce that the joint

P−distribution of
(
W,µ·,X

t,x,µ)
is equal to the joint p−distribution of (B, µ·,X t,x,µ) and thus

EP

[
Φ(T , U,X)

]
=

∫ 1

0

EP

[
Φ
(
ϱ(W,λ), µ̂(W ),X

t,x,µ)]
dλ=

∫ 1

0

Ep

[
Φ(ϱ(B, λ), µ̂(B),X t,x,µ)

]
dλ. (3.4)

As τλ :=ϱ(B, λ)∈St for each λ∈(0, 1), taking Φ to be the total reward function implies that

EP

[
R(t)

]
=

∫ 1

0

Ep

[ ∫ τλ

t

f
(
r,X t,x,µ

r∧· , µr

)
dr+1{τλ<∞}π

(
τλ,X t,x,µ

τλ∧·
)]
dλ≤

∫ 1

0

V (t,x)dλ=V (t,x). (3.5)

However, this argument is not applicable to the expectation-constraint case: Given a P ∈Pt,x(y, z), since (µ, τλ)

may not belong to Ct,x(y, z) for a.e. λ∈(0, 1), one can not get EP

[
R(t)

]
≤V (t,x, y, z) like (3.5). Actually, for each λ∈

(0, 1), (µ, τλ) is only of Ct,x(yλ, zλ) with (yλ, zλ)=
(
{yiλ}i∈N, {ziλ}i∈N

)
and (yiλ, z

i
λ) :=

(
Ep

[ ∫ τλ
t
gi(r,X t,x,µ

r∧· , µr)dr
]
, Ep

[
∫ τλ
t
hi(r,X t,x,µ

r∧· , µr)dr
])

. For i∈N, choosing accumulative cost functions for Φ in (3.4) renders that∫ 1

0

Ep

[ ∫ τλ

t

gi(r,X t,x,µ
r∧· , µr)dr

]
dλ=EP

[ ∫ T

t

gi(r,Xr∧·, Ur)dr

]
≤yi

and similarly
∫ 1

0
Ep

[ ∫ τλ
t
hi(r,X t,x,µ

r∧· , µr)dr
]
dλ= zi, so V

(
t,x, {

∫ 1

0
yλdλ}i∈N, {

∫ 1

0
zλdλ}i∈N

)
≤ V (t,x, y, z). Then the

attempt to show EP

[
R(t)

]
≤V (t,x, y, z) reduces to deriving a Jensen-type inequality:∫ 1

0

V (t,x, yλ, zλ)dλ≤V
(
t,x,

{∫ 1

0

yλdλ
}
,
{∫ 1

0

zλdλ
})
.

But this does not hold since the value function V is not concave in level z of equality-type expectation constraints.
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4 The Measurability of SCEC Values

In this section, using the martingale-problem formulation of controlled SDEs, we characterize the probability class

Pt,x by countably many stochastic behaviors of the canonical coordinators (W,U,X, T ) of Ω. This will enable us to

analyze the measurability of value functions of the stochastic control/stopping problem with expectation constraints.

Let U be the equivalence classes of all U−valued, FW,P0−predictable processes on Ω0 in the sense that µ1, µ2∈U

are equivalent if
{
(s, ω0)∈ [0,∞)×Ω0 : µ

1
s(ω0) ̸=µ2

s(ω0)
}
is a ds×dP0−null set. Given µ∈U, Fubini Theorem shows

that N :=
{
ω0∈Ω0 : µ·(ω0) /∈J

}
is an FW,P0

∞ −measurable set with zero P0−measure or N ∈NP0

(
FW

∞
)
. By modifying

µ on N , we obtain an FW,P0−predictable process with all paths in J: {µs1N c+u01N }s∈[0,∞), which is in the same

equivalence class as µ. To wit, one can assume without loss of generality that for all µ ∈ U, µ·(ω0)∈J for any ω0∈Ω0.

We equip U with the topology of local convergence in measure, i.e., the metric

ρ
U
(µ1, µ2) :=EP0

[ ∫ ∞

0

e−s
(
1∧ρU(µ

1
s, µ

2
s)
)
ds
]
, ∀µ1, µ2∈U .

Also, let S be the equivalence classes of all [0,∞]−valued, FW,P0−stopping times on Ω0 in the sense that τ1, τ2∈S

are equivalent if P0{τ1=τ2}=1. We endow S with the metric

ρ
S
(τ1, τ2) :=EP0

[
ρ+(τ1, τ2)

]
, ∀ τ1, τ2∈S.

Lemma 4.1.
(
U, ρ

U

)
and

(
S, ρ

S

)
are two complete separable metric spaces, i.e., Polish spaces.

Proof: We know from Lemma 4.1 of [4] that
(
S, ρ

S

)
is a complete separable metric space. The verification of

the complete separable metric space
(
U, ρ

U

)
is similar to our demonstration of the complete separable metric space(

J, ρJ
)
in the proof of Lemma 1.2, we refer interested readers to the ArXiv version [5] of the current paper for details.

□

For any (µ, τ)∈U×S, define their joint distribution with W under P0 by Γ(µ, τ) :=P0◦(W,µ, τ)−1∈P
(
Ω0×J×T

)
.

Lemma 4.2. The mapping Γ: U×S 7→P
(
Ω0×J×T

)
is a continuous injection from U×S into P

(
Ω0×J×T

)
.

The proof of Lemma 4.2 is relatively lengthy, see Section 6 for it.

For any (t, P ) ∈ [0,∞)×P
(
Ω
)
, define a probability measure on

(
Ω0 × J×T,B(Ω0 × J×T)

)
by Qt,P (D) :=

P
{
(W

t
,U

t
, T−t)∈D

}
, ∀D∈B(Ω0×J×T).

Lemma 4.3. The mapping [0,∞)×P
(
Ω
)
∋ (t, P ) 7→Qt,P ∈P

(
Ω0×J×T

)
is continuous.

Proof: Lemma A.4 implies that Φ(s, ω) :=
(
W

s
(ω),U

s
(ω), T (ω)−s

)
=
(
W s(W (ω)),U s(U(ω)), T (ω)−s

)
, ∀ (s, ω)∈

[0,∞)×Ω is a continuous mapping from [0,∞)×Ω to Ω0×J×T. Then the proof of the lemma is similar to that of [4,

Lemma 4.3]. The key is to utilize the continuity of mapping Φ as well as Prohorov’s Theorem. We refer interested

readers to the ArXiv version [5] of the current paper for details. □

For t∈ [0,∞) and φ∈C2(Rd+l), define process

M
t

s(φ) :=φ
(
W

t

s, Xs

)
−
∫ s

t

b
(
r,Xr∧·, Ur

)
·Dφ

(
W

t

r, Xr

)
dr− 1

2

∫ s

t

σ σT
(
r,Xr∧·, Ur

)
:D2φ

(
W

t

r, Xr

)
dr, ∀ s∈ [t,∞).

We can use Remark 3.1 and Lemma 4.2 to decompose the probability class Pt,x as the intersection of countably

many action sets of processes (W,U,X, T ):

Proposition 4.1. For any (t,x) ∈ [0,∞)×Ω
X
, the probability class Pt,x is the intersection of the following three

subsets of P
(
Ω
)
:

i) P1

t,x :=
{
P ∈P

(
Ω
)
: P{Xs=x(s), ∀ s∈ [0, t]}=1

}
.

ii) P2

t :=
{
P ∈P

(
Ω
)
: Qt,P ∈Γ(U×S)

}
.

iii) P3

t :=
{
P ∈P

(
Ω
)
: EP

[(
M

t

τt
n∧(t+r)(φ)−M

t

τt
n∧(t+s)(φ)

) k∏
i=1

1{(W t
t+si

,Xt+si
)∈Oi}

]
=0, ∀ (φ, n)∈C(Rd+l)×N, ∀ (s, r)

∈Q2,<
+ , ∀ {(si,Oi)}ki=1⊂

(
Q∩[0, s]

)
×O(Rd+l)

}
.
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Based on the countable decomposition of the probability class Pt,x by Proposition 4.1, the next proposition shows

that the graph of probability classes {Pt,x}(t,x)∈[0,∞)×Ω
X
is a Borel subset of [0,∞)×Ω

X
×P

(
Ω
)
, which is crucial for

the measurability of the value functions V =V .

Proposition 4.2. The graph
〈〈
P
〉〉
:=

{(
t,x, P

)
∈ [0,∞)×Ω

X
×P

(
Ω
)
: P ∈Pt,x

}
is a Borel subset of [0,∞)×Ω

X
×P

(
Ω
)
.

Set DP :=
{
(t,x, y, z)∈ [0,∞)×Ω

X
×ℜ×ℜ : Pt,x(y, z) ̸=∅

}
and DP :=

{
(t,w,u,x, y, z)∈ [0,∞)×Ω0×J×Ω

X
×ℜ×ℜ :

Pt,w,u,x(y, z) ̸=∅
}
.

Corollary 4.1. The graph
[[
P
]]
:=

{(
t,x, y, z, P

)
∈DP×P

(
Ω
)
: P ∈Pt,x(y, z)

}
is a Borel subset of DP×P

(
Ω
)
and

the graph
{{
P
}}

:=
{(
t,w,u,x, y, z, P

)
∈DP×P

(
Ω
)
: P ∈Pt,w,u,x(y, z)

}
is a Borel subset of DP×P

(
Ω
)
.

Proof: 1) Let f : (0,∞)×Ω
X
×U 7→ [0,∞] be a Borel-measurable function. Taking ψ(r, x, , u) := f(r, x, u), ∀ (r, x, , u)∈

(0,∞)×Ω
X
×Rd+l×U in Lemma 1.3 (2) shows that the mapping Ψf(t, s, ωX

, u) :=Ψ(t, s,0, ω
X
, u)

=
∫ t+s

t
ψ
(
r, l2(r, ωX

), 0, ω
X
(r), u(r)

)
dr=

∫ t+s

t
f
(
r, l2(r, ωX

), u(r)
)
dr, (t, s, ω

X
, u)∈ [0,∞)×[0,∞)×Ω

X
×J is B[0,∞)⊗

B[0,∞)⊗B(Ω
X
)⊗B(J)−measurable.

Since the random variables (X,U) on Ω are B(Ω
X
)⊗B(J)−measurable, it follows that the mapping

Ψf(t, ω) :=

∫ T (ω)∨t

t

f
(
r,Xr∧·(ω), Ur(ω)

)
dr= lim

n→∞

∫ (T (ω)∧n)∨t

t

f
(
r,Xr∧·(ω), Ur(ω)

)
dr

= lim
n→∞

∫ t+(T (ω)∧n−t)+

t

f
(
r,Xr∧·(ω), Ur(ω)

)
dr= lim

n→∞
Ψf

(
t, (T (ω)∧n−t)+, X(ω), U(ω)

)
, (4.1)

∀ (t, ω)∈ [0,∞)×Ω is B[0,∞)⊗B(Ω)−measurable, and Lemma A.3 of [4] implies that the mapping

Ψ̂f(t, P ) :=

∫
ω∈Ω

Ψf(t, ω)P (dω)=EP

[ ∫ T

T∧t

f
(
r,Xr∧·, Ur

)
dr
]
, ∀ (t, P )∈ [0,∞)×P(Ω) (4.2)

is B[0,∞)⊗B
(
P(Ω)

)
−measurable.

Let i ∈ N. Taking f = g±i and f = h±i in (4.2) yields that both Ψ̂gi(t, P ) := EP

[ ∫ T

T∧t
gi
(
r,Xr∧·, Ur

)
dr
]
and

Ψ̂hi
(t, P ) :=EP

[ ∫ T

T∧t
hi
(
r,Xr∧·, Ur

)
dr
]
, ∀ (t, P )∈ [0,∞)×P(Ω) are B[0,∞)⊗B

(
P(Ω)

)
−measurable. Then the set

D :=
{
(t,x, y, z, P )∈ [0,∞)×Ω

X
×ℜ×ℜ×P(Ω): Ψ̂gi(t, P )≤yi, Ψ̂hi

(t, P )=zi, ∀ i∈N
}

is B[0,∞)⊗B(Ω
X
)⊗B(ℜ)⊗B(ℜ)⊗B

(
P(Ω)

)
−measurable. Since

〈〈
P
〉〉
∈B[0,∞)⊗B

(
Ω

X

)
⊗B

(
P(Ω)

)
by Proposition

4.1, using the projection Π1(t,x, y, z, P ) :=
(
t,x, P

)
yields that

[[
P
]]
=
{
(t,x, y, z, P )∈ [0,∞)×Ω

X
×ℜ×ℜ×P

(
Ω
)
: P ∈

Pt,x; EP

[ ∫ T

T∧t
gi
(
r,Xr∧·, Ur

)
dr
]
≤ yi, EP

[ ∫ T

T∧t
hi
(
r,Xr∧·, Ur

)
dr
]
= zi, ∀ i∈N

}
=Π

−1

1

(〈〈
P
〉〉)

∩D is a Borel subset

of DP×P
(
Ω
)
.

2) Since l1(t, ω0) :=ω0(t∧·) is continuous in (t, ω0)∈ [0,∞)×Ω0, the mapping Φ
W
(t,w, ω) :=1{l1(t,W (ω))−l1(t,w)=0},

(t,w, ω)∈ [0,∞)×Ω0×Ω is B[0,∞)⊗B(Ω0)⊗B(Ω)−measurable.

Taking ψ(r, x, , u) := e−rI (u), ∀ (r, x, , u) ∈ (0,∞)×Ω
X
×Rd+l×U in Lemma 1.3 (2) shows that the map-

ping Ψ
I
(t, s, u) :=Ψ(t, s,0,0, u) =

∫ t+s

t
ψ
(
r, l2(r,0), 0, 0, u(r)

)
dr=

∫ t+s

t
e−rI

(
u(r)

)
dr, (t, s, u)∈ [0,∞)× [0,∞)×J is

B[0,∞)⊗B[0,∞)⊗B(J)−measurable. As the random variable U on Ω is B(Ω)/B(J)−measurable, we can deduce

that the mapping Ψ
I

(
t, u, ω

)
:=

∏
q∈Q+

1{Ψ
I
(0,t∧q,U(ω))−Ψ

I
(0,t∧q,u)=0}, (t, u, ω) ∈ [0,∞)×J×Ω is B[0,∞)×B(J)×

B(Ω)−measurable. Then an application of Lemma A.3 of [4] again renders that the mapping

Y(t,w,u, P ) :=

∫
ω∈Ω

Φ
W
(t,w, ω)Ψ

I

(
t,u, ω

)
P (dω)=P

{
W s=w(s), ∀ s∈ [0, t]; Us=u(s) for a.e. s∈(0, t)

}
,

∀ (t,w,u, P )∈ [0,∞)×Ω0×J×P(Ω) is B[0,∞)⊗B(Ω0)⊗B(J)⊗B(P(Ω))−measurable. Here we used the fact that

Ψ
I
(0, t∧q, U(ω)) = Ψ

I
(0, t∧q,u), ∀ q ∈ Q+ iff

∫ s

0
e−rI

(
Ur(ω)

)
dr =

∫ s

0
e−rI

(
u(r)

)
dr, ∀ s ∈ [0, t] iff Us(ω) = u(s)

for a.e. s ∈ (0, t). By the projections Π2(t,w,u,x, y, z, P ) :=
(
t,x, P

)
, Π3(t,w,u,x, y, z, P ) :=

(
t,x, y, z, P

)
and

Π4(t,w,u,x, y, z, P ) :=(t,w,u, P ), we can derive that
{{

P
}}

=Π
−1

2

(〈〈
P
〉〉)

∩Π−1

3 (D)∩Π−1

4

(
Y

−1
(1)

)
is a Borel subset

of DP×P
(
Ω
)
. □

By Corollary 4.1, the value function V is upper semi-analytic and is thus universally measurable.



5. Dynamic Programming Principle for V 13

Theorem 4.1. The value function V (t,x, y, z) is upper semi-analytic on DP and the value function V (t,w,u,x, y, z)

is upper semi-analytic on DP .

Proof: Since the measurability of functions π and l2 shows that ϖ(s, ω
X
) := 1{s<∞}π

(
s, l2(s, ωX

)
)
, (s, ω

X
) ∈

[0,∞]×Ω
X

is B[0,∞]⊗B(Ω
X
)−measurable, taking f=f± in (4.1) renders that the mapping

Ψf,π(t, ω) :=

∫ T (ω)∨t

t

f
(
r,Xr∧·(ω), Ur(ω)

)
dr+ϖ

(
T (ω), X(ω)

)
, ∀ (t, ω)∈ [0,∞)×Ω

is B[0,∞)⊗B(Ω)−measurable. Lemma A.3 of [4] implies that V (t, P ) :=
∫
ω∈Ω

Ψf,π(t, ω)P (dω), (t, P )∈ [0,∞)×P
(
Ω
)

is B[0,∞)⊗B
(
P
(
Ω
))
−measurable. Then Corollary 4.1 and Proposition 7.47 of [7] yield that V (t,x, y, z) =

sup
P∈Pt,x(y,z)

V (t, P )= sup
(t,x,y,z,P )∈[[P]]

V (t, P ) is upper semi-analytic onDP and V (t,w,u,x, y, z)= sup
(t,w,u,x,y,z,P )∈{{P}}

V (t, P )

is upper semi-analytic on DP . □

5 Dynamic Programming Principle for V

In this section, we explore a dynamic programming principles (DPP) for the value function V in weak formulation,

which takes the conditional expected integrals of constraint functions as additional states.

Given t∈ [0,∞), let γ be a [t,∞)−valued FW
t

−stopping time and let P ∈P
(
Ω
)
. According to Lemma 1.3.3 and

Theorem 1.1.8 of [45], FW
t

γ is countably generated and there thus exists a family
{
P

t

γ,ω

}
ω∈Ω

of probability measures

in P
(
Ω
)
, called the regular conditional probability distribution (r.c.p.d.) of P with respect to FW

t

γ , such that

(R1) for any A∈B(Ω), the mapping ω 7→P
t

γ,ω

(
A
)
is FW

t

γ −measurable;

(R2) for any (−∞,∞]−valued, BP (Ω)−measurable random variable ξ that is bounded from below under P , it holds

for any ω∈Ω except on a N ξ∈NP

(
FW

t

γ

)
that ξ is B

P
t
γ,ω

(Ω)−measurable and E
P

t
γ,ω

[
ξ
]
=EP

[
ξ
∣∣FW

t

γ

]
(ω);

(R3) for some N 0∈NP

(
FW

t

γ

)
, P

t

γ,ω

(
A
)
=1{ω∈A}, ∀

(
ω,A

)
∈N c

0×FW
t

γ .

Let ω∈Ω and set W
t

γ,ω :=
{
ω′∈Ω:W

t

r(ω
′)=W

t

r(ω), ∀ r∈ [t, γ(ω)]
}
. We know from Galmarino’s test that

γ(ω′)=γ(ω), ∀ω′∈W
t

γ,ω, (5.1)

and W
t

γ,ω is thus FW
t

γ −measurable. Since ω∈W
t

γ,ω for any ω∈Ω, (R3) shows that

P
t

γ,ω

(
W

t

γ,ω

)
=1{

ω∈W
t
γ,ω

}=1, ∀ω∈N c

0. (5.2)

For any i∈N, define Y i

P (γ) :=EP

[ ∫ T

T∧γ
gi(r,Xr∧·, Ur)dr

∣∣∣FW
t

γ

]
and Z

i

P (γ) :=EP

[ ∫ T

T∧γ
hi(r,Xr∧·, Ur)dr

∣∣∣FW
t

γ

]
.

So
(
YP (γ), ZP (γ)

)
:=

({
Y

i

P (γ)
}
i∈N,

{
Z

i

P (γ)
}
i∈N

)
is an ℜ×ℜ−valued FW

t

γ −measurable random variable.

In terms of the r.c.p.d.
{
P

t

γ,ω

}
ω∈Ω

, the probability class
{
Pt,x(y, z) : (t,x, y, z)∈DP

}
is stable under conditioning

as follows. It will play an important role in deriving the sub-solution side of the DPP for V .

Proposition 5.1. Given (t,x)∈ [0,∞)×Ω
X
, let γ be a [t,∞)−valued FW

t

−stopping time and let P ∈Pt,x. There

exists a P−null set N such that

P
t

γ,ω∈Pγ(ω),Xγ∧·(ω)

((
YP (γ)

)
(ω),

(
ZP (γ)

)
(ω)

)
, ∀ω∈

{
T ≥γ

}
∩N c

. (5.3)

Now, we are ready to present a dynamic programming principle in weak formulation for the value function V , in

which
(
YP (γ), ZP (γ)

)
act as additional states for constraint levels at the intermediate horizon γ.

Theorem 5.1. Given (t,x, y, z)∈DP , let
{
γ
P

}
P∈Pt,x(y,z)

be a family of [t,∞)−valued FW
t

−stopping times. Then

V (t,x, y, z)= sup
P∈Pt,x(y,z)

EP

[
1{T<γ

P
}

(∫ T

t

f(r,Xr∧·, Ur)dr+π
(
T ,XT∧·

))
+1{T≥γ

P
}

(∫ γ
P

t

f(r,Xr∧·, Ur)dr+V
(
γ
P
, Xγ

P
∧·, YP

(
γ
P

)
, ZP

(
γ
P

)))]
.
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Based on Theorem 3.1 and Theorem 5.1, we plan to show in our sequel projects that the SCEC value function

V (t,x, y, z)=V (t,x, y, z) solves the corresponding path-dependent Hamilton-Jacobi-Bellman equations in a viscosity

sense. Then we will derive an effective numerical scheme for the SCEC value function V (t,x, y, z) and implement it

for practical examples including some SCEC problems with state/control delay in dynamics.

6 Proofs

Proof of Lemma 1.2: 1) We first show that J is a complete separable space under the metric

ρJ(u, u
′) :=

∫ ∞

0

e−s
(
1∧ρU(u(s), u

′(s))
)
ds, ∀ u, u′∈J.

1a) Let {un}n∈N be a Cauchy sequence in
(
J, ρJ

)
. We shall construct in (6.1) a limit u∗∈J of the sequence {un}n∈N.

There exists a subsequence {nk}k∈N of N such that ρJ
(
unk

, unk+1

)
< 2−k, ∀ k ∈N. Fix k ∈N. Since 1∧(a+b)≤

1∧a+1∧b, ∀ a, b ∈ [0,∞), it holds for any ℓ ∈ N that 1∧ρU(unk
(s), unk+ℓ

(s)) ≤
∑ℓ

i=1 1∧ρU(unk+i−1
(s), unk+i

(s)),

s∈(0,∞), taking sup
ℓ∈N

yields that

1∧
(
sup
ℓ∈N

ρU
(
unk

(s), unk+ℓ
(s)

))
=sup

ℓ∈N

(
1∧ρU

(
unk

(s), unk+ℓ
(s)

))
≤
∑
i∈N

1∧ρU
(
unk+i−1

(s), unk+i
(s)

)
, s∈(0,∞).

The monotone convergence theorem then implies that
∫∞
0
e−s

(
1∧

(
sup
ℓ∈N

ρU(unk
(s), unk+ℓ

(s))
))
ds≤

∑
i∈N ρJ

(
unk+i−1

,

unk+i

)
≤
∑

i∈N 2−k−i+1=2−k+1. So
{
nk

}
k∈N has a subsequence

{
nkm

}
m∈N such that lim

m→∞
e−s

(
1∧

(
sup
ℓ∈N

ρU(unkm
(s),

unkm+ℓ
(s))

))
= 0 or lim

m→∞

(
sup
ℓ∈N

ρU
(
unkm

(s), unkm+ℓ
(s)

))
= 0 for all s ∈ (0,∞) except on a ds−null set N of (0,∞).

Given s∈(0,∞)\N , one has lim
m→∞

(
sup
j∈N

ρU
(
unkm

(s), unkj+m
(s)

))
=0, i.e.,

{
unkm

(s)
}
m∈N is a Cauchy sequence in U.

Let uo(s) be the limit of
{
unkm

(s)
}
m∈N in

(
U, ρU

)
.

Define µ(s) := lim
m→∞

I
(
unkm

(s)
)
∈ [0, 1], s∈ [0,∞), which is a Borel measurable function on [0,∞). Then

u∗(s) :=I −1
(
µ(s)

)
1{µ(s)∈E}+u01{µ(s)/∈E}, s∈ [0,∞) (6.1)

is a U−valued Borel measurable function on [0,∞), i.e., u∗∈J. For s∈(0,∞)\N , the continuity of mapping I shows

µ(s)= lim
m→∞

I
(
unkm

(s)
)
=I

(
uo(s)

)
∈E, so u∗(s)=I −1

(
µ(s)

)
=uo(s). The dominated convergence theorem implies

lim
m→∞

ρJ
(
unkm

, u∗
)
= lim

m→∞

∫∞
0

1{s∈N c}e
−s

(
1∧ρU(unkm

(s), uo(s))
)
ds=0.

Let ε ∈ (0, 1). There exists an N ∈ N such that ρJ
(
un, un′

)
< ε/2 for any n, n′ ≥N . We can also find a m ∈ N

such that nkm
≥ N and that ρJ

(
unkm

, u∗
)
< ε/2. It then holds for any n ∈ N with n ≥ N that ρJ

(
un, u∗

)
≤

ρJ
(
un, unkm

)
+ρJ

(
unkm

, u∗
)
<ε. Hence, u∗ is the limit of {un}n∈N in

(
J, ρJ

)
.

1b) In this step, we demonstrate that J is separable under ρJ.

(i) We first construct a dense subset Ĉ of J under ρJ: Let {ui}i∈N be a countable dense subset of
(
U, ρU

)
and let

{Oi}i∈N be a countable base of the Euclidean topology on [0,∞).

Given n ∈ N, let us enumerate the 2n elements of
{

∪
i∈I

Oi : I⊂{1, · · · , n}
}
by

{
Ŏn

1 , · · · , Ŏn
2n
}
and consider the

following countable collections of B[0,∞)/B[−1, 1]−measurable functions on [0,∞):

Cn :=
{

I (uj)1Ŏn
i
−1(Ŏn

i )c : i ∈ {1, · · · , 2n}, j∈N
}
, C̃n :=

{
max

i=1,··· ,k
xi : k∈N, {x1, · · · , xk}⊂Cn

}
.

Clearly, each x∈ C̃n takes values in a finite subset of
{
I (ui)

}
i∈N∪{−1}. By additionally assigning I −1(−1) :=u0,

one has C̃ :=
{
I −1(x) : x∈ C̃n for some n∈N

}
⊂
{
{ui}∞i=0−valued B[0,∞)−measurable functions

}
=:Ĉ.

We claim that Ĉ is a dense subset of J under ρJ: To see this, for any i, n∈N we set oni :=
{
u∈U : ρU(u, ui)<2−n

}
as the open ball centered at ui with radius 2−n. We also set õn1 :=o

n
1 and õni :=o

n
i

∖(
∪
j<i

onj

)
for i≥2. Given u∈J and



6. Proofs 15

n∈N, define a member of Ĉ by un(s) :=
∑

i∈N 1{s∈En
i }ui, s∈ [0,∞), where En

i :=
{
s∈ [0,∞) : u(s)∈ õni

}
∈B[0,∞). As

ρU
(
un(s), u(s)

)
=
∑

i∈N 1{s∈En
i }ρU

(
ui, u(s)

)
<2−n for any s∈ [0,∞), one has ρJ

(
un, u

)
=
∫∞
0
e−s

(
1∧ρU(un(s), u(s))

)
ds≤

2−n. So Ĉ is a dense subset of J under ρJ.

(ii) We then show that the countable collection C̃ is dense in Ĉ and is thus dense in J under ρJ.

Let û ∈ Ĉ and ε ∈ (0, 1). We set Êi =
{
s ∈ [0,∞) : û(s) = ui

}
∈ B[0,∞), ∀ i ∈ N. Since λ(E) :=

∫
s∈Ee

−sds is a

probability measure on
(
[0,∞),B[0,∞)

)
, there exists N ∈N such that λ

(
∪

i>N
Êi
)
< ε/3.

Given i=1, · · ·, N , Proposition 7.17 of [7] shows that λ(Oi\Êi)< ε
3N for some open subset Oi of [0,∞) containing

Êi. Since Oi = ∪
n∈N

Oℓ i
n
for some subsequence

{
ℓ in
}
n∈N of N, one can find ni ∈N such that λ

(
Oi\Ŏi

)
< ε

3N , where

Ŏi :=
ni∪
n=1

Oℓ i
n
∈B[0,∞). As Ŏi∈

{
Ŏn

j

}2n

j=1
for n := max

i=1,··· ,N
ℓ ini

, we see that xi :=I (ui)1Ŏi
−1Ŏc

i
belongs to Cn. Define

u :=I −1
(

max
i=1,··· ,N

xi

)
∈C̃.

For i = 1, · · ·, N , if Ai :=
(
Êi∩Ŏi

)∖(
∪

j≤N ;j ̸=i
Ŏj

)
∈ B[0,∞) is not empty, it holds for any s ∈ Ai that xj(s) =

1{j=i}I (ui)−1{j ̸=i} for j∈{1, · · ·, N} and thus u(s)=I −1
(
xi(s)

)
=ui= û(s). Also, if A0 :=

(
∪
i∈N

Êi
)c ⋂(

N
∪

j=1
Ŏj

)c

is not empty, it holds for any s∈A0 that u(s)=I −1(−1)=u0= û(s). Then ρJ
(
u, û

)
=
∫
s∈A e

−s
(
1∧ρU

(
u(s), û(s)

))
ds

for A :=
(

N
∪
i=0

Ai

)c

=
(

N
∪
i=1

(Êi\Ai)
)⋃(

∪
i>N

Êi
)⋃((

∪
i∈N

Êi
)c ⋂(

N
∪

j=1
Ŏj

))
⊂ [0,∞). Since

Êi\Ai=
(
Êi∩Ŏc

i

)⋃(
∪

j≤N ;j ̸=i

(
Êi∩Ŏi∩Ŏj

))
⊂
(
Oi\Ŏi

)⋃(
∪

j≤N ;j ̸=i
Ŏj\Êj

)
, i=1, · · · , N

and since
(

∪
i∈N

Êi
)c ⋂(

N
∪

j=1
Ŏj

)
=

N
∪

j=1

(
Ŏj ∩

(
∪
i∈N

Êi
)c)

⊂
N
∪

j=1

(
Ŏj ∩ Êc

j

)
⊂

N
∪

j=1

(
Oj\Êj

)
, we can deduce that A ⊂(

N
∪
i=1

Oi\Ŏi

)⋃(
N
∪
i=1

Oi\Êi
)⋃(

∪
i>N

Êi
)
. It follows that ρJ

(
u, û

)
≤λ(A)<ε. Namely, the countable collection C̃ is

dense in Ĉ under ρJ.

Therefore,
(
J, ρJ

)
is a complete separable metric space.

2) Next, we demonstrate that the mapping iJ :
(
J, ρJ

)
7→

(
P
(
[0,∞)×U

)
,T♯

(
P
(
[0,∞)×U

)))
is a continuous injection.

Let u, u′∈J such that iJ(u)= iJ(u
′). Since

∫ t

0
e−sI

(
u(s)

)
ds=

∫∞
0

∫
U 1{s≤t}I (u)iJ(u)(ds, du)=

∫∞
0

∫
U 1{s≤t}I (u)iJ(u

′)

(ds, du)=
∫ t

0
e−sI

(
u′(s)

)
ds for any t∈ (0,∞), we see that e−sI

(
u(s)

)
= e−sI

(
u′(s)

)
and thus u(s)= u′(s) for a.e.

s∈(0,∞), namely, u=u′ in J. So iJ is an injection.

Let {un}n∈N be a sequence of J converging to a u ∈ J under ρJ. We show that iJ(un) converges to iJ(u) under

T♯

(
P
(
[0,∞)×U

))
: By e.g. Lemma 7.6 of [7], this is equivalent to verify that

lim
n→∞

∫ ∞

0

∫
U
ϕ(s, u)iJ(un)(ds, du)=

∫ ∞

0

∫
U
ϕ(s, u)iJ(u)(ds, du) (6.2)

for any bounded continuous function ϕ : [0,∞)×U 7→R.
Let ϕ be such a continuous function on [0,∞)×U. For the limit (6.2), it suffices to show that any subsequence{

unk

}
k∈N of {un}n∈N has in turn a subsequence

{
un′

k

}
k∈N satisfying (6.2): As lim

k→∞

∫∞
0
e−s

(
1∧ρU(unk

(s), u(s))
)
ds=

lim
k→∞

ρJ(unk
, u)=0, there exists a subsequence

{
un′

k

}
k∈N of

{
unk

}
k∈N such that lim

k→∞
ρU

(
un′

k
(s), u(s)

)
=0 for a.e. s∈

(0,∞). Then the continuity of ϕ and the dominated convergence theorem imply that lim
k→∞

∫∞
0

∫
U ϕ(s, u)iJ

(
un′

k

)
(ds, du)=

lim
k→∞

∫∞
0
e−sϕ

(
s, un′

k
(s)

)
ds=

∫∞
0
e−sϕ

(
s, u(s)

)
ds=

∫∞
0

∫
U ϕ(s, u)iJ(u)(ds, du).

So iJ is a continuous injection from the complete separable metric space
(
J, ρJ

)
to the Borel space

(
P
(
[0,∞)×

U
)
,T♯

(
P
(
[0,∞)×U

)))
. (In particular, the topology induced by ρJ is stronger than T♯(J).) Then the image iJ(J) is

a Lusin subset and thus a Borel subset of
(
P
(
[0,∞)×U

)
,T♯

(
P
(
[0,∞)×U

)))
, see e.g. Theorem A.6 of [46].

As the embedding mapping iJ is clearly a homeomorphism between
(
J,T♯(J)

)
and iJ(J) with the relative topology

to T♯

(
P
(
[0,∞)×U

))
, we obtain that

(
J,T♯(J)

)
is a Borel space. □
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Proof of Lemma 1.3: 1) For any t∈ (0,∞) and ϕ∈Cb

(
[0,∞)×U

)
, set Iϕ

t (u) :=
∫ t

0
ϕ(s, u(s))ds, ∀ u∈ J. We first

show that F :=σ
(
Iϕ
t ; t∈(0,∞), ϕ∈Cb([0,∞)×U)

)
=B(J).

1a) Let t∈(0,∞), ϕ∈Cb

(
[0,∞)×U

)
and a∈R. We claim that the set A :={u∈J : Iϕ

t (u)<a} belongs to T♯(J).
To see this, we let u ∈A and set ε := 1

2

(
a−Iϕ

t (u)
)
. There exists a positive bounded continuous function β on

[0,∞) such that β(s)=es, ∀ s∈ [0, t] and
∫∞
t
e−sβ(s)ds≤ 1

2ε
(
∥ϕ∥∞∨1

)−1
, where ∥ϕ∥∞ := sup

(s,u)∈[0,∞)×U
|ϕ(s, u)|. Set

O := i−1
J

(
Oε(iJ(u), βϕ)

)
, which clearly contains u. Let u′∈O. We can deduce that

ε>
∣∣∣ ∫ ∞

0

e−sβ(s)
(
ϕ(s, u′(s))−ϕ(s, u(s))

)
ds
∣∣∣≥ ∣∣∣ ∫ t

0

(
ϕ(s, u′(s))−ϕ(s, u(s))

)
ds
∣∣∣−∣∣∣ ∫ ∞

t

e−sβ(s)
(
ϕ(s, u′(s))−ϕ(s, u(s))

)
ds
∣∣∣.

Since
∣∣ ∫∞

t
e−sβ(s)

(
ϕ(s, u′(s))−ϕ(s, u(s))

)
ds
∣∣≤2∥ϕ∥∞

∫∞
t
e−sβ(s)ds≤ε, one has

∣∣Iϕ
t (u

′)−Iϕ
t (u)

∣∣<2ε, which implies

that Iϕ
t (u

′)<a or u′∈A. So u∈O⊂A. As the induced topology T♯(J) is generated by the subbase
{
i−1
J

(
Oδ(m, ϕ)

)
,

∀ (δ,m, ϕ)∈(0,∞)×P
(
[0,∞)×U

)
×Cb

(
[0,∞)×U

)}
, we see that A∈T♯(J)⊂B(J).

It follows that {u∈J : Iϕ
t (u)∈E}∈B(J) for any E ∈B(R) and thus F=σ

(
Iϕ
t ; t∈(0,∞), ϕ∈Cb([0,∞)×U)

)
⊂B(J).

1b) Let
{
i−1
J

(
O 1

n
(mk, ϕj)

)}
n,k,j∈N be the countable subbase of T♯(J) in (1.1). Given n, k, j ∈ N, let {Ijt }t∈(0,∞)

denote {Iϕ
t }t∈(0,∞) with ϕ(s, u)=e

−sϕj(s, u), ∀ (s, u)∈ [0,∞)×U and set κk,j :=
∫∞
0

∫
U ϕj(t, u)mk(dt, du)∈R. Since

the function Ij∗(u) := lim
t→∞

Ijt (u), u ∈ J is F−measurable and since
∫∞
0
e−sϕj(s, u(s))ds = lim

t→∞

∫ t

0
e−sϕj(s, u(s))ds =

lim
t→∞

Ijt (u)=I
j
∗(u) holds for any u∈J, (1.1) shows that i−1

J
(
O 1

n
(mk, ϕj)

)
=
{
u∈J :

∣∣Ij∗(u)−κk,j∣∣<1/n
}
∈F.

Then T♯(J)⊂F and thus B(J)=F.

2) We demonstrate the second statement of Lemma 1.3 in several steps. Then B(J)=σ
(
Iφ;φ∈L0

(
(0,∞)×U;R

))
easily follows.

Let {ωi

X
}i∈N be a countable dense subset of Ω

X
and let

{
j=(wj , xj)

}
j∈N be a countable dense subset of Rd+l.

Given n∈N, we set On
i :=

{
ω
X
∈Ω

X
: ρ

Ω
X

(ω
X
, ωi

X
)<1/n

}
∈B(Ω

X
) and Õn

i :=O
n
i

∖(
∪

i′<i
On

i′

)
∈B(Ω

X
) for any i∈N.

Let us also denote En
j :=O 1

n
( j)

∖(
∪

j′<j
O 1

n
( j′)

)
for any j∈N.

2a) We first show that the second statement holds for a continuous function ϕ : [0,∞)×Ω
X
×Rd+l×U 7→ [0, cϕ] with

cϕ∈(1,∞), i.e. the mapping Ω0×Ω
X
×J ∋ (ω0, ωX

, u) 7→
∫ T

0
ϕ
(
r, l2(r, ωX

), ω0(r), ωX
(r), u(r)

)
dr is Borel-measurable.

Let T ∈(0,∞) and m∈N. We set tmk :=k2−mT , ∀ k∈{0, 1, · · · , 2m}. Then, we let k∈{0, 1, · · · , 2m−1}.
For any i, j ∈ N, as the function ϕi,j(s, u) := ϕ(s, ωi

X
, j , u), (s, u) ∈ [0,∞)×U is of Cb

(
[0,∞)×U

)
, we know

from Part (1) that Im,k
i,j (u) := Iϕij

tmk+1
(u)−Iϕij

tmk
(u)=

∫ tmk+1

tmk
ϕ
(
r, ωi

X
, j , u(r)

)
dr, ∀ u∈ J is B(J)−measurable. Since the

function l2(t
m
k , ωX

) is continuous in ω
X
∈Ω

X
and since the function Wm

k (ω0, ωX
) :=

(
ω0(t

m
k ), ω

X
(tmk )

)
is continuous in

(ω0, ωX
)∈Ω0×Ω

X
, we can deduce from the continuity of ϕ and the bounded convergence theorem that the mapping

Φm
k (ω0, ωX

, u) :=

∫ tmk+1

tmk

ϕ
(
r, l2(t

m
k , ωX

), ω0(t
m
k ), ω

X
(tmk ), u(r)

)
dr

= lim
n→∞

∫ tmk+1

tmk

∑
i,j∈N

1{l2(tmk ,ω
X
)∈Õn

i }1{Wm
k (ω0,ωX

)∈En
j }ϕ

(
r, ωi

X
, j , u(r)

)
dr

= lim
n→∞

∑
i,j∈N

1{l2(tmk ,ω
X
)∈Õn

i }1{Wm
k (ω0,ωX

)∈En
j }I

m,k
i,j (u), ∀ (ω0, ωX

, u)∈Ω0×Ω
X
×J

is B(Ω0)⊗B(Ω
X
)⊗B(J)−measurable. Then the continuity of l2(r, ωX

) in r∈ [0,∞) and the bounded convergence

theorem imply that the mapping

Φ(ω0, ωX
, u) :=

∫ T

0

ϕ
(
r, l2(r, ωX

), ω0(r), ωX
(r), u(r)

)
dr= lim

m→∞

∫ T

0

2m−1∑
k=0

1{r∈[tmk ,tmk+1)}ϕ
(
r, l2(t

m
k , ωX

), ω0(t
m
k ), ω

X
(tmk ), u(r)

)
dr

= lim
m→∞

2m−1∑
k=0

Φm
k (ω0, ωX

, u), ∀ (ω0, ωX
, u)∈Ω0×Ω

X
×J



6. Proofs 17

is also B(Ω0)⊗B(Ω
X
)⊗B(J)−measurable.

2b) We next use the monotone class theory to demonstrate that the second statement holds for all bounded Borel-

measurable functions on [0,∞)×Ω
X
×Rd+l×U.

Set X1 := [0,∞), X2 := Ω
X
, X3 := Rd+l and X4 := U. They are all metric spaces. Let i = 1, 2, 3, 4. We

denote the corresponding metric of Xi by ρXi
and let Ci be a closed subset of Xi Given n ∈ N, we define an

open subset Oi
n of Xi by Oi

n :=
{
x ∈ Xi : distXi

(x,Ci) := inf
x′∈Ci

ρXi
(x, x′) < 1/n

}
. In light of Urysohn’s Lemma,

there exist continuous function ϕin : Xi → [0, 1] such that ϕin(x) = 1, ∀x ∈ Ci and ϕin(x) = 0, ∀x ∈ (Oi
n)

c. So

ϕ̂n(s, ωX
, , u) := ϕ1n(s)ϕ

2
n(ωX

)ϕ3n( )ϕ4n(u) ∈ [0, 1], (s, ω
X
, , u) ∈ [0,∞)×Ω

X
×Rd+l×U is a continuous function

satisfying lim
n→∞

ϕ̂n(s, ωX
, , u)=1{(s,ω

X
, ,u)∈C1×C2×C3×C4}, ∀ (s, ω

X
, , u)∈ [0,∞)×Ω

X
×Rd+l×U.

Let T ∈(0,∞). Since the mappings
∫ T

0
ϕ̂n

(
r, l2(r, ωX

), ω0(r), ωX
(r), u(r)

)
dr, (ω0, ωX

, u)∈Ω0×Ω
X
×J are B(Ω0)⊗

B(Ω
X
)⊗B(J)−measurable for all n∈N by Part (2a), the bounded convergence theorem shows that the function∫ T

0

1{(r,l2(r,ωX
),ω0(r),ωX

(r),u(r))∈C1×C2×C3×C4}dr= lim
n→∞

∫ T

0

ϕ̂n
(
r, l2(r, ωX

), ω0(r), ωX
(r), u(r)

)
dr,

(ω0, ωX
, u)∈Ω0×Ω

X
×J is also B(Ω0)⊗B(Ω

X
)⊗B(J)−measurable.

Let H collect all real-valued Borel-measurable functions ψ on [0,∞)×Ω
X
×Rd+l×U such that the mapping

Ω0×Ω
X
×J ∋ (ω0, ωX

, u) 7→
∫ T

0

ψ
(
r, l2(r, ωX

), ω0(r), ωX
(r), u(r)

)
dr

is B(Ω0)⊗B(Ω
X
)⊗B(J)−measurable. Clearly, H is closed under linear combination. If {ψn}n∈N⊂H is a sequence

of non-negative functions that increases to a bounded function ψ on [0,∞)×Ω
X
×Rd+l×U, the bounded convergence

theorem implies that ψ is also of H.

Since {C1×C2×C3×C4 : C1⊂ [0,∞), C2⊂Ω
X
, C3⊂Rd+l and C4⊂U are closed} is a Pi-system that generates

B[0,∞)⊗B(Ω
X
)⊗B(Rd+l)⊗B(U), we know from the monotone class theorem that H includes all bounded Borel-

measurable functions on [0,∞)×Ω
X
×Rd+l×U.

2c) Now, we consider an unbounded Borel-measurable function ψ : (0,∞)×Ω
X
×Rd+l×U 7→ [−∞,∞].

Set smk :=k2−m for any m∈N and k∈N∪{0}. Given n∈N, the bounded convergence theorem renders that the

mapping

[0,∞)×[0,∞)×Ω0×Ω
X
×J ∋ (t, s, ω0, ωX

, u) 7→
∫ t+s

t

n∧ψ±(r, l2(r, ωX
), ω0(r), ωX

(r), u(r)
)
dr

= lim
m→∞

∞∑
k,ℓ=0

1{t∈[smk ,smk+1)}1{s∈[smℓ ,smℓ+1)}

∫ smk+ℓ

smk

n∧ψ±(r, l2(r, ωX
), ω0(r), ωX

(r), u(r)
)
dr,

is B[0,∞)⊗B[0,∞)⊗B(Ω0)⊗B(Ω
X
)⊗B(J)−measurable. Then it follows from the monotone convergence theorem

that the mapping

Ψ±(t, s, ω0, ωX
, u) :=

∫ t+s

t

ψ±(r, l2(r, ωX
), ω0(r), ωX

(r), u(r)
)
dr= lim

n→∞

∫ t+s

t

n∧ψ±(r, l2(r, ωX
), ω0(r), ωX

(r), u(r)
)
dr

is Borel-measurable in (t, s, ω0, ωX
, u)∈ [0,∞)×[0,∞)×Ω0×Ω

X
×J, proving the second statement.

Clearly, F ⊂ σ
(
Iφ;φ ∈ L0

(
[0,∞)×U;R

))
= σ

(
Iφ;φ ∈ L0

(
(0,∞)×U;R

))
, where L0

(
[0,∞)×U;R

)
collect all

real−valued Borel-measurable functions on [0,∞)×U. Let φ be a non-negative function in L0
(
(0,∞)×U;R

)
. Taking

ψ(r, x, , u) :=φ(r, u), ∀ (r, x, , u)∈(0,∞)×Ω
X
×Rd+l×U shows that the mapping

Iφ(u)= lim
T→∞

∫ T

0

φ
(
r, u(r)

)
dr= lim

T→∞

∫ T

0

ψ
(
r,0, 0, u(r)

)
dr= lim

T→∞
Ψ(0, T,0,0, u), ∀ u∈J

is B(J)−measurable. Hence, we have B(J)=F=σ
(
Iφ;φ∈L0

(
(0,∞)×U;R

))
. □

Proof of Proposition 1.3: 1a) Given a sigma-field G of Ω0, we claim that

St,w(G) :=
{
A⊂Ω: ∃A∈G and N ∈NP (FBt

∞ ) s.t. 1{Bt,w(ω)∈A}=1{ω∈A}, ∀ω∈N c
}
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is a sigma-field of Ω.

As 1{Bt,w(ω)∈Ω} = 1 = 1{ω∈Ω} for any ω ∈ Ω, it is clear that Ω ∈ St,w

(
G
)
. When A ∈ St,w

(
G
)
, there exist

A∈ G and N ∈ NP (FBt

∞ ) such that 1{Bt,w(ω)∈A} = 1{ω∈A}, ∀ω ∈N c. Then Ac ∈ G satisfies that 1{Bt,w(ω)∈Ac} =

1−1{Bt,w(ω)∈A}=1−1{ω∈A}=1{ω∈Ac}, ∀ω∈N c, so Ac also belongs to St,w

(
G
)
. If {Ak}k∈N⊂St,w

(
G
)
, for any k∈N

there exist Ak ∈G and Nk ∈NP (FBt

∞ ) such that 1{Bt,w(ω)∈Ak} =1{ω∈Ak}, ∀ω∈N c
k . Then ∩

k∈N
Ak ∈G satisfies that

1{
Bt,w(ω)∈ ∩

k∈N
Ak

}=
∏
k∈N

1{Bt,w(ω)∈Ak} =
∏
k∈N

1{ω∈Ak} =1{
ω∈ ∩

k∈N
Ak

}, ∀ω ∈ ∩
k∈N

N c
k , which shows that ∩

k∈N
Ak ∈St,w

(
G
)

with (A,N )=
(

∩
k∈N

Ak, ∪
k∈N

Nk

)
. Hence St,w

(
G
)
is a sigma−field of Ω.

Let s∈ [t,∞). For any r∈ [t, s] and E ∈B(Rd), since ω∈(Bt
r)

−1(E) iffW t
r (B

t,w(ω))=Wr(B
t,w(ω))−Wt(B

t,w(ω))=

Bt
r(ω)∈E iff Bt,w(ω)∈ (W t

r )
−1(E), one has 1{Bt,w(ω)∈(W t

r )
−1(E)}=1{ω∈(Bt

r)
−1(E)}, ∀ω∈Ω, which means (Bt

r)
−1(E)∈

St,w(FW t

s ) with A = (W t
r )

−1(E) ∈ FW t

s and N = ∅. So FBt

s ⊂ St,w(FW t

s ) . When s > t, as FBt

r ⊂ St,w(FW t

r ) ⊂
St,w(FW t

s− ) for any r∈ [t, s), one further has FBt

s− =σ
(

∪
r∈[t,s)

FBt

r

)
⊂St,w(FW t

s− ).

1b) Similar to St,w

(
G
)
in Part (1a), Ŝt,w :=

{
D⊂ [t,∞)×Ω: ∃D∈PW t

and N ∈NP (FBt

∞ ) s.t. 1{(s,Bt,w(ω))∈D}=

1{(s,ω)∈D}, ∀ (s, ω)∈ [t,∞)×N c
}
is a sigma−field of [t,∞)×Ω:

Set Λt :=
{
{t}×Ao : Ao ∈ FBt

t

}
∪
{
(s,∞)×A : s ∈ [t,∞)∩Q, A ∈ FBt

s−
}
, which generates the FBt−predictable

sigma−field PBt

. For any Ao∈FBt

t ⊂St,w(FW t

t ), there exist Ao∈FW t

t and N ∈NP (FBt

∞ ) such that 1{Bt,w(ω)∈Ao}=

1{ω∈Ao}, ∀ω ∈ N c. We can deduce that 1{(s,Bt,w(ω))∈{t}×Ao} = 1{(s,ω)∈{t}×Ao}, ∀ (s, ω) ∈ [t,∞)×N c. So {t}×Ao

is of Ŝt,w with D = {t}×Ao. For any s ∈ [t,∞) ∩ Q and A ∈ FBt

s− ⊂ St,w(FW t

s− ), one can find some A ∈ FW t

s−
and N ∈ NP (FBt

∞ ) such that 1{Bt,w(ω)∈A } = 1{ω∈A}, ∀ω ∈ N c. It then holds for any (r, ω) ∈ [t,∞)×N c that

1{(r,Bt,w(ω))∈(s,∞)×A }=1{(r,ω)∈(s,∞)×A}, which implies (s,∞)×A∈Ŝt,w with D=(s,∞)×A . Hence, Ŝt,w contains

Λt and thus includes PBt

.

1c) Now, let {µs}s∈[t,∞) be a general U−valued, FBt,P−progressively measurable process on Ω.

Similar to Lemma 2.4 of [44], one can construct a [0, 1]−valued FBt−predictable process
{
νs
}
s∈[t,∞)

on Ω such

that νs(ω) = I
(
µs(ω)

)
for ds×dP−a.s. (s, ω) ∈ [t,∞)×Ω. Fubini Theorem yields that for all ω ∈ Ω except on a

N 1
ν ∈NP

(
FBt

∞
)
, νs(ω)=I

(
µs(ω)

)
for a.e. s∈ [t,∞). By Part (1b) and a standard approximation scheme, we can

find a [0, 1]−valued FW t−predictable process
{
νos

}
s∈[t,∞)

on Ω0 and an N 2
ν ∈NP (FBt

∞ ) such that νs(ω)=ν
o
s (B

t,w(ω))

for any (s, ω)∈ [t,∞)×(N 2
ν )

c.

Set Nµ=N 1
ν ∪N 2

ν ∈NP (FBt

∞ ) and define µo
s(ω0) :=I −1

(
νos (ω0)

)
1{νo

s (ω0)∈E}+u01{νo
s (ω0)/∈E}, (s, ω0)∈ [t,∞)×Ω0,

which is a U−valued FW t−predictable process. Given ω∈N c
µ, it holds for a.e. s∈(t,∞) that νos (B

t,w(ω))=νs(ω)=

I
(
µs(ω)

)
and thus µo

s(B
t,w(ω))=µs(ω).

2) Let x∈Ω
X
and let (φ, n)∈C(Rd+l)×N. On Ω0,M

t,µo

s (φ) :=φ
(
W t

s , X
t,x,µo

s

)
−
∫ s

t
b
(
r, Xt,x,µo

r∧· , µo
r

)
·Dφ

(
W t

r , X
t,x,µo

r

)
dr

− 1
2

∫ s

t
σ σT

(
r, Xt,x,µo

r∧· , µo
r

)
:D2φ(W t

r , X
t,x,µo

r )dr, ∀ s∈ [t,∞) is an FW t,P0−adapted continuous process and τ t,µ
o

n :=

inf
{
s∈ [t,∞) :

∣∣(W t
s , X

t,x,µo

s )
∣∣≥n}∧(t+n) is an FW t,P0−stopping time. As Xt,x,µo

is the unique strong solution of

SDE (1.4) on
(
Ω0,B(Ω0), P0

)
with (Bt, µ)=

(
W t, µo

)
, taking (Ω,F , P,B,X, µ)=

(
Ω0,B(Ω0), P0,W,X

t,x,µo

, µo
)
in

Part (iii) of Proposition 1.2 shows that
{
M t,µo

s∧τt,µo
n

(φ)
}
s∈[t,∞)

is a bounded FW t,P0−martingale.

We next show that the process
(
M t,µo

s (φ)
)
(Bt,w), ∀ s∈ [t,∞) stopped by τ t,µ

o

n (Bt,w) is a bounded FBt,P−martingale.

Then the second statement of Proposition 1.3 easily follows from Proposition 1.2.

Since W t
s(B

t,w(ω))=Bt
s(ω), ∀ (s, ω)∈ [t,∞)×Ω, applying Lemma A.1 with t0= t, (Ω1,F1, P1, B

1)=
(
Ω,F , P,B

)
,

(Ω2,F2, P2, B
2) =

(
Ω0,B(Ω0), P0,W

)
and Φ=Bt,w implies that X̆s :=Xt,x,µo

s (Bt,w), M̆s(φ) :=
(
M t,µo

s (φ)
)
(Bt,w),

s∈ [t,∞) are FBt,P−adapted continuous processes and τ̆n :=τ
t,µo

n (Bt,w) is an FBt,P−stopping time.

Let t≤s<r<∞ and
{
(si, Ei)

}k

i=1
⊂ [t, s]×B(Rd). We can also deduce from Lemma A.1 that

0 = EP0

[(
M t,µo

r∧τt,µo
n

(φ)−M t,µo

s∧τt,µo
n

(φ)
)
1 k

∩
i=1

(W t
si

)−1(Ei)

]
=

∫
ω0∈Ω0

((
M t,µo

(φ)
)(
r∧τ t,µ

o

n (ω0), ω0

)
−
(
M t,µo

(φ)
)(
s∧τ t,µ

o

n (ω0), ω0

))
1 k

∩
i=1

{W t
si

(ω0)∈Ei}
(P ◦(Bt,w)−1)(dω0)

=

∫
ω∈Ω

((
M t,µo

(φ)
)(
r∧τ t,µ

o

n (Bt,w(ω)), Bt,w(ω)
)
−
(
M t,µo

(φ)
)(
s∧τ t,µ

o

n (Bt,w(ω)), Bt,w(ω)
))

1 k
∩

i=1
{W t

si
(Bt,w(ω))∈Ei}

P (dω)
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=

∫
ω∈Ω

((
M t,µo

(φ)
)(
r∧τ̆n(ω), Bt,w(ω)

)
−
(
M t,µo

(φ)
)(
s∧τ̆n(ω), Bt,w(ω)

))
1 k

∩
i=1

{Bt
si

(ω)∈Ei}
P (dω)

= EP

[(
M̆r∧τ̆n(φ)−M̆s∧τ̆n(φ)

)
1 k

∩
i=1

(Bt
si

)−1(Ei)

]
.

So the Lambda-system Λ̆s,r :=
{
A ∈ FBt,P

∞ : EP

[(
M̆r∧τ̆n(φ)− M̆s∧τ̆n(φ)

)
1A

]
= 0

}
includes the Pi-system

{
k
∩
i=1

(Bt
si)

−1(Ei) :
{
(si, Ei)

}k

i=1
⊂ [t, s]×B(Rd)

}
∪NP (FBt

∞ ). An application of Dynkin’s Pi-Lambda Theorem (see e.g

Theorem 3.2 of [8]) shows that FBt,P
s ⊂ Λ̆s,r, i.e., EP

[(
M̆r∧τ̆n(φ)−M̆s∧τ̆n(φ)

)
1A

]
= 0 for any A ∈ FBt,P

s . To wit,

the FBt,P−adapted continuous process M̆s(φ)=φ
(
Bt

s, X̆s

)
−
∫ s

t
b
(
r, X̆r∧·, µr

)
·Dφ

(
Bt

r, X̆r

)
dr− 1

2

∫ s

t
σ σT

(
r, X̆r∧·, µr

)
:

D2φ(Bt
r, X̆r)dr, ∀ s∈ [t,∞) stopped by the FBt,P−stopping time τ̆n = inf

{
s∈ [t,∞) :

∣∣(Bt
s, X̆s)

∣∣≥ n
}
∧(t+n) is a

bounded FBt,P−martingale. Using Part (i) of Proposition 1.2 yields that P{X̆s=X
t,x,µ
s , ∀ s∈ [0,∞)} = 1.

Moreover, for any ψ ∈ Ho, one has EP

[ ∫∞
t
ψ−(r,Xt,x,µ

r∧· , µr)dr
]
= EP

[ ∫∞
t
ψ−(r,Xt,x,µo

r∧· (Bt,w), µo
r(B

t,w)
)
dr
]
=

EP0

[ ∫∞
t
ψ−(r,Xt,x,µo

r∧· , µo
r)dr

]
<∞. □

Proof of Theorem 3.1: Fix (t,w,u,x)∈ [0,∞)×Ω0×J×Ω
X

and (y, z)=
(
{yi}i∈N, {zi}i∈N

)
∈ℜ×ℜ.

1) We first show that V (t,x, y, z)≤V (t,w,u,x, y, z): If Ct,x(y, z)=∅, then V (t,x, y, z)=−∞≤V (t,w,u,x, y, z).

So we assume Ct,x(y, z) ̸= ∅ and let (µ, τ) ∈ Ct,x(y, z). Define a process Bt,w
s (ω) :=w(s∧t)+Bt

s∨t(ω), ∀ (s, ω) ∈
[0,∞)×Q. According to Proposition 1.3, there exists a U−valued, FW t−predictable process µ̂= {µ̂s}s∈[t,∞) on Ω0

and an Nµ ∈ Np(FBt

∞ ) such that for any ω ∈ N c
µ, µs(ω) = µ̂s

(
Bt,w(ω)

)
for a.e. s ∈ (t,∞). By Fubini Theorem,

N :=
{
ω ∈ Q : µs(ω) is not Borel-measurable in s ∈ [t,∞)

}
is an FBt,p

∞ −measurable set with zero p−measure or

N ∈ Np

(
FBt

∞
)
. Then process µ̃s(ω) :=

(
1{s∈[0,t)}u(s)+1{s∈[t,∞)}µs(ω)

)
1{ω∈N c}+u01{ω∈N}, ∀ (s, ω) ∈ [0,∞)×Q

satisfies that µ̃·(ω)∈J for any ω∈Q.

1a) We define a mapping Ψ(ω) :=
(
Bt,w(ω), µ̃·(ω),X t,x,µ(ω), τ(ω)

)
∈Ω, ∀ω∈Q and discuss its measurability.

Let us simply set θ= (t,x, µ). Since W
t

s(Ψ(ω)) =W s(Ψ(ω))−W t(Ψ(ω)) =Bt,w
s (ω)−Bt,w

t (ω) =Bt
s(ω), ∀ (s, ω)∈

[t,∞)×Q and since
{
X θ

s

}
s∈[0,∞)

is an
{
FBt,p

s∨t

}
s∈[0,∞)

−adapted continuous process, we can deduce that the mapping

Ψ is FBt,p
s

/
F t

s−measurable for any s∈ [t,∞).

Let φ ∈ L0
(
(0,∞)×U;R

)
. The FBt,p−progressive measurability of process

{
µ̃s

}
s∈[t,∞)

implies that process{
φ(s, µ̃s)

}
s∈[t,∞)

is also FBt,p−progressively measurable and the random variable Iφ(µ̃·(ω)) =
∫ t

0
φ(s,u(s))ds+∫∞

t
φ(s, µ̃s(ω))ds, ω ∈ Q is thus FBt,p

∞ −measurable. Lemma 1.3 (1) then renders that the mapping µ̃· : Q 7→ J is

FBt,p
∞

/
B(J)−measurable, which together with the FBt,p

∞ −measurability of Bt,w, X θ, τ shows that the mapping Ψ is

also FBt,p
∞

/
B(Ω)−measurable.

1b) Using the martingale-problem formulation (Proposition 1.2 and Remark 3.1), we demonstrate that the probability

measure PΨ induced by Ψ
(
i.e., PΨ

(
A
)
:=p

(
Ψ−1

(
A
))
, ∀A∈B(Ω)

)
belongs to Pt,x.

Set µs := µ̂s(W ), ∀ s∈ [t,∞), which is a U−valued, FW
t

−predictable process on Ω. Since N c∩N c
µ ⊂N c∩

{
ω ∈

Q : µs(ω) = µ̂s(Bt,w(ω)) for a.e. s ∈ (t,∞)
}
= N c ∩

{
ω ∈ Q : µ̃s(ω) = µ̂s(Bt,w(ω)) for a.e. s ∈ (t,∞)

}
, we can

deduce that PΨ

{
Us = µs for a.e. s ∈ (t,∞)

}
= p

{
Us(Ψ) = µ̂s(W (Ψ)) for a.e. s ∈ (t,∞)

}
= p

{
ω ∈ Q : µ̃s(ω) =

µ̂s(Bt,w(ω)) for a.e. s∈(t,∞)
}
=1. Namely, PΨ satisfies (D1) in the definition of Pt,x.

Fix (φ, n)∈C(Rd+l)×N. We define an FBt,p−adapted continuous process Mθ
s(φ) :=φ

(
Bt
s,X θ

s

)
−
∫ s

t
b
(
r,X θ

r∧·, µr

)
·

Dφ
(
Bt
r,X θ

r

)
dr− 1

2

∫ s

t
σ σT

(
r,X θ

r∧·, µr

)
:D2φ(Bt

r,X θ
r )dr, ∀ s∈ [t,∞) and define an FBt,p−stopping time θ

n := inf
{
s∈

[t,∞) :
∣∣(Bt

s,X θ
s )
∣∣ ≥ n

}
∧ (t+n). Applying Proposition 1.2 with (Ω,F , P,B,X, µ) = (Q,F , p,B,X θ, µ) yields that{

Mθ
s∧ θ

n
(φ)

}
s∈[t,∞)

is a bounded
(
FBt,p, p

)
−martingale.

Since PΨ

{
Xs=x(s), ∀ s∈ [0, t]

}
= p

{
Xs(Ψ)=x(s), ∀ s∈ [0, t]

}
= p

{
X θ

s =x(s), ∀ s∈ [0, t]
}
=1, using Proposition

1.2 with (Ω,F , P,B,X, µ)=
(
Ω,B(Ω), PΨ,W ,X, µ

)
shows that

{
M

t,µ

s∧τt
n
(φ)

}
s∈[t,∞)

is a bounded F
t−adapted con-

tinuous process under PΨ. Given ω∈N c
µ, since µs

(
Ψ(ω)

)
= µ̂s

(
W (Ψ(ω))

)
= µ̂s

(
Bt,w(ω)

)
=µs(ω) for a.e. s∈ (t,∞),

we see that
(
M

t,µ

s (φ)
)(
Ψ(ω)

)
=
(
Mθ

s(φ)
)
(ω), ∀ s∈ [t,∞) and τ tn

(
Ψ(ω)

)
= θ

n(ω). Then(
M

t,µ

s∧τt
n
(φ)

)(
Ψ(ω)

)
=

(
M

t,µ
(φ)

)(
s∧τ tn(Ψ(ω)),Ψ(ω)

)
=
(
M

t,µ
(φ)

)(
s∧ θ

n(ω),Ψ(ω)
)

=
(
Mθ(φ)

)(
s∧ θ

n(ω), ω
)
=
(
Mθ

s∧ θ
n
(φ)

)
(ω), ∀ (s, ω)∈ [t,∞)×N c

µ. (6.3)



Stochastic Control/Stopping with Expectation Constraints 20

Let t1, t2∈ [t,∞) with t1<t2 and let A∈F t

t1 . As Ψ−1(A)∈FBt,p
t1 , the

(
FBt,p, p

)
−martingality of

{
Mθ

s∧ θ
n
(φ)

}
s∈[t,∞)

and (6.3) imply that EPΨ

[(
M

t,µ

t2∧τt
n
(φ)−M

t,µ

t1∧τt
n
(φ)

)
1A

]
= Ep

[((
M

t,µ

t2∧τt
n
(φ)

)
(Ψ)−

(
M

t,µ

t1∧τt
n
(φ)

)
(Ψ)

)
1Ψ−1(A)

]
=

Ep

[(
Mθ

t2∧ θ
n
(φ)−Mθ

t1∧ θ
n
(φ)

)
1Ψ−1(A)

]
=0. So

{
M

t,µ

s∧τt
n
(φ)

}
s∈[t,∞)

is a bounded
(
F

t
, PΨ

)
−martingale. By Remark

3.1 (ii), PΨ satisfies (D2)+(D3) in the definition of Pt,x.

Since W t
s(Bt,w(ω))=Bt,w

s (ω)−Bt,w
t (ω)=Bt

s(ω) for any (s, ω)∈ [t,∞)×Ω, taking (Ω,F , P,B,Φ)=(Q,F , p,B,Bt,w)

in Lemma A.2 (2) shows that p
{
τ = τ̂(Bt,w)

}
=1 for some [t,∞]−valued FW t,P0−stopping time τ̂ on Ω0, it follows

that PΨ

{
T = τ̂(W )

}
=p

{
T (Ψ)= τ̂(W (Ψ))

}
=p

{
τ= τ̂(Bt,w)

}
=1.

1c) We further show that PΨ is of the probability class Pt,w,u,x(y, z).

Since Ws

(
Ψ(ω)

)
= Bt,w

s (ω) =w(s), ∀ (s, ω)∈ [0, t]×Q and since Us

(
Ψ(ω)

)
= µ̃s(ω) = u(s), ∀ (s, ω)∈ [0, t)×N c,

it is clear that PΨ

{
W s = w(s), ∀ s ∈ [0, t];Us = u(s) for a.e. s ∈ (0, t)

}
= p

{
W s(Ψ) = w(s), ∀ s ∈ [0, t];Us(Ψ) =

u(s) for a.e. s∈(0, t)
}
=1. Thus PΨ∈Pt,w,u,x. For any i∈N,

EPΨ

[ ∫ T

t

gi
(
r,Xr∧·, Ur

)
dr

]
= Ep

[ ∫ T (Ψ)

t

gi
(
r,Xr∧·(Ψ), Ur(Ψ)

)
dr

]
=Ep

[ ∫ τ

t

gi(r,X θ
r∧·, µ̃r)dr

]
= Ep

[ ∫ τ

t

gi(r,X θ
r∧·, µr)dr

]
≤yi (6.4)

and similarly EPΨ

[ ∫ T

t
hi
(
r,Xr∧·, Ur

)
dr
]
= Ep

[ ∫ τ

t
hi(r,X θ

r∧·, µr)dr
]
= zi, which means that PΨ ∈ Pt,w,u,x(y, z).

Then an analogy to (6.4) renders that Ep

[ ∫ τ

t
f(r,X θ

r∧·, µr)dr+1{τ<∞}π
(
τ,X θ

τ∧·
)]

= EPΨ

[ ∫ T

t
f
(
r,Xr∧·, Ur

)
dr+

1{T<∞}π
(
T ,XT∧·

)]
≤V (t,w,u,x, y, z). Taking supremum over (µ, τ)∈Ct,x(y, z) yields V (t,x, y, z)≤V (t,w,u,x, y, z).

2) As Pt,w,u,x(y, z)⊂Pt,x(y, z), we automatically have V (t,w,u,x, y, z)≤ V (t,x, y, z). It remains to demonstrate

that V (t,x, y, z)≤V (t,x, y, z). If Pt,x(y, z)=∅, then V (t,x, y, z)=−∞≤V (t,x, y, z).

Assume Pt,x(y, z) ̸=∅ and let P ∈Pt,x(y, z). We use Definition 3.1 to find a U−valued process ν̂· and a stopping

time γ̂ on Ω0 such that P
{
(X,U, T )= (X t,x,ν , ν̂, γ̂)(W )

}
=1. It then follows that (ν, γ) := (ν̂, γ̂)(B)∈Ct,x(y, z) and

V (t,x, y, z)≤V (t,x, y, z).

By (D1) of Definition 3.1, there exists a U−valued, FW t−predictable process ν̂ = {ν̂s}s∈[t,∞) on Ω0 such that

P
{
Us = νs for a.e. s∈ (t,∞)

}
=1, where νs(ω) := ν̂s

(
W (ω)

)
, ∀ (s, ω)∈ [t,∞)×Ω is a U−valued, FW

t

−predictable

process on Ω.

Set ϑ = (t,x, ν). Given (φ, n) ∈ C(Rd+l)×N, Mϑ

s (φ) := φ(W
t

s ,X
ϑ

s )−
∫ s

t
b
(
r,X

ϑ

r∧·, νr
)
·Dφ(W t

r ,X
ϑ

r )dr−
1
2

∫ s

t
σ σT

(
r,X

ϑ

r∧·, νr
)
: D2φ(W

t

r ,X
ϑ

r )dr, s ∈ [t,∞) is an FW
t
,P−adapted continuous process and τϑn := inf

{
s ∈

[t,∞) :
∣∣(W t

s,X
ϑ

s )
∣∣≥n

}
∧(t+n) is an FW

t
,P−stopping time. Since W

t
is a Brownian motion under P by (D2) of

Definition 3.1, applying Proposition 1.2 with (Ω,F , P,B,X, µ)=
(
Ω,B(Ω), P ,W,X

ϑ
, ν

)
shows that{

Mϑ

s∧τϑ
n
(φ)

}
is a bounded FW

t
,P−martingale. (6.5)

Let (uo, xo, to) be an arbitrary triplet in J×Ω
X
× [t,∞] and define a mapping Ψo : Q 7→ Ω by Ψo(ω) :=(

B(ω), uo, xo, to
)
∈Ω, ∀ω ∈Q. (Actually, we are indifferent to the second, third and fourth components of Ψo(ω).)

Since W
t

s(Ψo(ω)) =W s(Ψo(ω))−W t(Ψo(ω)) = Bt
s(ω) for any (s, ω) ∈ [t,∞)×Q, applying Lemma A.1 with t0 = t,

(Ω1,F1, P1, B
1)=

(
Q,F , p,B

)
, (Ω2,F2, P2, B

2)=
(
Ω,B(Ω), P ,W

)
and Φ=Ψo yields that

Ψ−1
o

(
FW

t

s

)
=FBt

s , Ψ−1
o

(
FW

t
,P

s

)
⊂FBt,p

s , ∀ s∈ [t,∞] and
(
p◦Ψ−1

o

)
(A)=P (A), ∀A∈FW

t
,P

∞ . (6.6)

Then X ϑ
s (ω) :=X

ϑ

s (Ψo(ω)), s∈ [0,∞) defines an
{
FBt,p

s∨t

}
s∈[0,∞)

−adapted continuous process.

Set νs(ω) := ν̂s
(
B(ω)

)
, ∀ (s, ω) ∈ [t,∞)×Q, which is a U−valued, FBt−predictable process on Q. Let (φ, n) ∈

C(Rd+l)×N. We define an FBt,p−adapted continuous process M ϑ
s (φ) :=φ(Bt

s,X
ϑ

s )−
∫ s

t
b
(
r,X ϑ

r∧·, νr
)
·Dφ(Bt

r,X
ϑ

r )dr−
1
2

∫ s

t
σ σT

(
r,X ϑ

r∧·, νr
)
: D2φ(Bt

r,X
ϑ

r )dr, ∀ s ∈ [t,∞) and define an FBt,p−stopping time ζϑn := inf
{
s ∈ [t,∞) :∣∣(Bt

s,X
ϑ
s )

∣∣ ≥ n
}
∧ (t+n). Since νs(Ψo) = ν̂s

(
W (Ψo)

)
= ν̂s(B) = νs, ∀ s ∈ [t,∞), applying Proposition 1.2 with

(Ω,F , P,B,X, µ) =
(
Q,F , p,B,X ϑ, ν

)
and using an analogy to (6.3) yield that

{
M ϑ

s∧ζϑ
n
(φ)

}
s∈[t,∞)

is a bounded

FBt,p−adapted continuous process under p satisfying(
Mϑ

s∧τϑ
n
(φ)

)(
Ψo(ω)

)
=
(
M ϑ

s∧ζϑ
n
(φ)

)
(ω), ∀ (s, ω)∈ [t,∞)×Q. (6.7)
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Let t1, t2∈ [t,∞) with t1<t2 and let A∈FBt

t1 . Since Ψ−1
o

(
A
)
=A for some A∈FW

t

t1 by (6.6), we can derive from

(6.5), (6.6) and (6.7) that 0=EP

[(
Mϑ

t2∧τϑ
n
(φ)−Mϑ

t1∧τϑ
n
(φ)

)
1A

]
=Ep

[((
Mϑ

t2∧τϑ
n
(φ)

)
(Ψo)−

(
Mϑ

t1∧τϑ
n
(φ)

)
(Ψo)

)
1Ψ−1

o (A)

]
=Ep

[(
M ϑ

t2∧ζϑ
n
(φ)−M ϑ

t1∧ζϑ
n
(φ)

)
1A

]
, which implies that

{
M ϑ

s∧ζϑ
n
(φ)

}
s∈[t,∞)

is a bounded FBt,p−martingale. Then

an application of Proposition 1.2 with (Ω,F , P,B,X, µ)=
(
Q,F , p,B,X ϑ, ν

)
shows that

p{X ϑ
s =X t,x,ν

s , ∀ s∈ [0,∞)}=1. (6.8)

By (D4) of Definition 3.1, there exists a [t,∞]−valued FW t,P0−stopping time γ̂ on Ω0 such that P
{
T = γ̂(W )

}
=1.

Lemma A.2 (1) renders that γ := γ̂(B) is an FBt,p−stopping time on Q while γ̂(W ) is an FW
t
,P−stopping time on

Ω. For any i∈N, we can deduce from (D3), (6.6) and (6.8) that

yi ≥ EP

[ ∫ T

t

gi
(
r,Xr∧·, Ur

)
dr

]
=EP

[ ∫ γ̂(W )

t

gi
(
r,X

ϑ

r∧·, ν̂r(W )
)
dr

]
=Ep

[ ∫ γ̂(W (Ψo))

t

gi
(
r,X

ϑ

r∧·(Ψo), ν̂r(W (Ψo))
)
dr

]
= Ep

[ ∫ γ̂(B)

t

gi(r,X
ϑ
r∧·, ν̂r(B))dr

]
=Ep

[ ∫ γ

t

gi(r,X t,x,ν
r∧· , νr)dr

]
, (6.9)

and similarly Ep

[ ∫ γ

t
hi(r,X t,x,ν

r∧· , νr)dr
]
=EP

[ ∫ T

t
hi(r,Xr∧·, Ur)dr

]
=zi. So (ν, γ)∈Ct,x(y, z). Analogous to (6.9),

EP

[ ∫ T

t

f
(
r,Xr∧·, Ur

)
dr+1{T<∞}π

(
T ,XT∧·

)]
=Ep

[ ∫ γ

t

f
(
r,X t,x,ν

r∧· , νr
)
dr+1{γ<∞}π

(
γ,X t,x,ν

γ∧·
)]

≤V (t,x, y, z).

Taking supremum over P ∈Pt,x(y, z) yields that V (t,x, y, z)≤V (t,x, y, z). □

Proof of Lemma 4.2: 1) We first show that Γ is injective:

Set Qπ :=
(
Q∩ [0, π/2)

)
∪{π/2} and let (µ1, τ1), (µ

2, τ2) ∈ U × S such that Γ(µ1, τ1) = Γ(µ2, τ2). We make a

countable decomposition of the set
{
ω0∈Ω0 : µ

1
· (ω0) ̸=µ2

· (ω0) or τ1(ω0) ̸=τ2(ω0)
}
:

Let q ∈ Qπ and n ∈ N. We set Eq
n := (q−1/n, q+1/n)∩ [0, π/2]. Also let k, j ∈ N and i = 1, 2. We know

from (1.1) and Lemma A.3 that Ai
n,k,j,q := (µi)−1

(
i−1
J

(
O 1

n
(mk, ϕj)

))
∩
{
arctan(τi) ∈ Eq

n

}
belongs to FW,P0

∞ . Then

An,k,j,q :=A
1
n,k,j,q∩(A2

n,k,j,q)
c satisfies that

P0(An,k,j,q) = P0

{
ω0∈(A2

n,k,j,q)
c : µ1

· (ω0)∈ i−1
J

(
O 1

n
(mk, ϕj)

)
, τ1(ω0)∈tan(Eq

n)
}

= P0

{
ω0∈Ω0 :W·(ω0)∈(A2

n,k,j,q)
c, µ1

· (ω0)∈ i−1
J

(
O 1

n
(mk, ϕj)

)
, τ1(ω0)∈tan(Eq

n)
}

=
(
Γ(µ1, τ1)

)(
(A2

n,k,j,q)
c×i−1

J
(
O 1

n
(mk, ϕj)

)
×tan(Eq

n)
)
=
(
Γ(µ2, τ2)

)(
(A2

n,k,j,q)
c×i−1

J
(
O 1

n
(mk, ϕj)

)
×tan(Eq

n)
)

= P0

{
ω0∈(A2

n,k,j,q)
c : µ2

· (ω0)∈ i−1
J

(
O 1

n
(mk, ϕj)

)
, τ2(ω0)∈tan(Eq

n)
}
=P0

(
(A2

n,k,j,q)
c∩A2

n,k,j,q

)
=0. (6.10)

We claim that

A :=
{
ω0∈Ω0 : µ

1
· (ω0) ̸=µ2

· (ω0)
}
∪
{
ω0∈Ω0 : τ1(ω0) ̸=τ2(ω0)

}
is equal to ∪

n,k,j∈N
∪

q∈Qπ

An,k,j,q. (6.11)

Clearly, ∪
n,k,j∈N

∪
q∈Qπ

An,k,j,q⊂A. Assume that A∩
(

∪
n,k,j∈N

∪
q∈Qπ

An,k,j,q

)c

is not empty and has an element ω0.

Given n, j∈N, since the proof of Lemma 1.1 selected {mk}k∈N as a countable dense subset of the topological space(
P([0,∞)×U),T♯

(
P([0,∞)×U)

))
, there exist k= k(n, j) ∈N and q= q(n) ∈Qπ such that iJ

(
µ1
· (ω0)

)
∈O 1

n
(mk, ϕj)

and arctan
(
τ1(ω0)

)
∈ Eq

n. This shows ω0 ∈ (µ1)−1
(
i−1
J

(
O 1

n
(mk, ϕj)

))
∩
{
arctan(τ1) ∈ Eq

n

}
= A1

n,k,j,q. Since ω0 ∈
Ac

n,k,j,q, we see that ω0∈A2
n,k,j,q, i.e.,

(
µ2
· (ω0), arctan(τ2(ω0))

)
also belongs to i−1

J
(
O 1

n
(mk, ϕj)

)
×Eq

n. It follows that∣∣ ∫∞
0
e−s

[
ϕj

(
s, µ1

s(ω0)
)
−ϕj

(
s, µ2

s(ω0)
)]
ds
∣∣ < 2/n and ρ+

(
τ1(ω0), τ2(ω0)

)
=

∣∣ arctan(τ1(ω0))−arctan(τ2(ω0))
∣∣ < 2/n.

Letting n→∞ yields that
∫∞
0
e−sϕj

(
s, µ1

s(ω0)
)
ds=

∫∞
0
e−sϕj

(
s, µ2

s(ω0)
)
ds and τ1(ω0)=τ2(ω0).

As {ϕj}j∈N is dense in Ĉb

(
[0,∞)×U

)
by Proposition 7.20 of [7], the dominated convergence theorem implies

that
∫∞
0
e−s ϕ

(
s, µ1

s(ω0)
)
ds=

∫∞
0
e−s ϕ

(
s, µ2

s(ω0)
)
ds holds for any ϕ∈ Ĉb

(
[0,∞)×U

)
. By a standard approximation,

this equality also holds for any bounded Borel-measurable functions ϕ on [0,∞)×U. For any s ∈ [0,∞), taking

ϕ(r, u)=1{r∈[0,s]}I (u) gives that
∫ s

0
e−rI

(
µ1
r(ω0)

)
dr=

∫ s

0
e−rI

(
µ2
r(ω0)

)
dr. Then we obtain that µ1

s(ω0)=µ
2
s(ω0)

for a.e. s∈(0,∞) or µ1
· (ω0)=µ

2
· (ω0) in J. A contradiction appears. So the claim (6.11) holds.
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By (6.10), one has P0

{
ω0 ∈Ω0 : µ

1
· (ω0) ̸=µ2

· (ω0)
}
=P0

{
ω0 ∈Ω0 : τ1(ω0) ̸= τ2(ω0)

}
=0. The former together with

Fubini Theorem renders that (ds×dP0)
{
(s, ω0)∈ [0,∞)×Ω0 : µ

1
s(ω0) ̸=µ2

s(ω0)
}
=0 or µ1=µ2 in U, while the latter

directly means τ1=τ2 in S. Hence, the mapping Γ: U×S 7→P
(
Ω0×J×T

)
is injective.

2) We next discuss the continuity of Γ:

Let {µn}n∈N be a sequence of U converging to a µ∈U under ρ
U
and let {τn}n∈N be a sequence of S converging to

a τ ∈S under ρ
S

(
i.e., lim

n→∞
ρ
U
(µn, µ)= lim

n→∞
ρ
S
(τn, τ)=0

)
. We need to demonstrate that Pn :=Γ(µn, τn) converges

to P :=Γ(µ, τ) under the weak topology of P
(
Ω0×J×T

)
, i.e.,

lim
n→∞

∫
(ω0,u,t)∈Ω0×J×T

ψ(ω0, u, t)P
n
(
d(ω0, u, t)

)
=

∫
(ω0,u,t)∈Ω0×J×T

ψ(ω0, u, t)P
(
d(ω0, u, t)

)
(6.12)

for any bounded continuous function ψ : Ω0×J×T 7→R.
Let ψ be a real-valued bounded continuous function on Ω0×J×T. For (6.12), it suffices to show that for any

subsequence
{(
µnk , τnk

)}
k∈N of

{
(µn, τn)

}
n∈N, we can find a subsequence

{(
µn′

k , τn′
k

)}
k∈N of

{(
µnk , τnk

)}
k∈N that

satisfies (6.12).

Let
{(
µnk , τnk

)}
k∈N be an arbitrary subsequence of

{
(µn, τn)

}
n∈N. Since 0= lim

k→∞
ρ
U
(µnk , µ)= lim

k→∞
EP0

[ ∫∞
0
e−s

(
1∧

ρU(µ
nk
s , µs)

)
ds
]
, there exists a subsequence

{
µñk

}
k∈N

of
{
µnk

}
k∈N such that for all ω0 ∈Ω0 except on a P0−null

set N1, lim
k→∞

ρU

(
µñk
s (ω0), µs(ω0)

)
= 0 for a.e. s ∈ (0,∞). For any ϕ ∈ Cb

(
[0,∞)×U

)
, the dominated convergence

theorem implies that lim
k→∞

∫∞
0
ϕ(s, u)iJ

(
µñk
· (ω0)

)
(ds, du) = lim

k→∞

∫∞
0
e−sϕ

(
s, µñk

s (ω0)
)
ds =

∫∞
0
e−sϕ

(
s, µs(ω0)

)
ds =∫∞

0
ϕ(s, u)iJ

(
µ·(ω0)

)
(ds, du). Namely,

{
iJ
(
µñk
· (ω0)

)}
k∈N

converges to iJ
(
µ·(ω0)

)
under the weak topology T♯

(
P
(
[0,∞)

×U
))

of P
(
[0,∞)×U

)
, or equivalently,

{
µñk
· (ω0)

}
k∈N converges to µ·(ω0) under the induced topology T♯(J) of J.

As 0= lim
k→∞

ρ
S

(
τ
ñk
, τ
)
= lim

k→∞
EP0

[
ρ+(τñk

, τ)
]
, one can extract a subsequence

{
n′k

}
k∈N from

{
ñk

}
k∈N such that

lim
k→∞

ρ+
(
τn′

k
(ω0), τ(ω0)

)
=0 for all ω0 ∈Ω0 except on a P0−null set N2. Given ω0 ∈ (N1∪N2)

c, since
{
µ
n′
k

· (ω0)
}
k∈N

also converges to µ·(ω0) under T♯(J), the continuity of ψ and the bounded convergence theorem yield that

lim
k→∞

∫
(ω0,u,t)∈Ω0×J×T

ψ(ω0, u, t)P
n′
k
(
d(ω0, u, t)

)
= lim

k→∞

∫
Ω0

ψ
(
ω0, µ

n′
k

· (ω0), τn′
k
(ω0)

)
P0(dω0)

=

∫
Ω0

ψ
(
ω0, µ·(ω0), τ(ω0)

)
P0(dω0)=

∫
(ω0,u,t)∈Ω0×J×T

ψ(ω0, u, t)P
(
d(ω0, u, t)

)
. □

Proof of Proposition 4.1: Fix (t,x)∈ [0,∞)×Ω
X
.

1) Let P ∈Pt,x, which is clearly of P1

t,x. We show that P also belongs to P2

t and P3

t .

By (D1′) and (D4′) of Remark 3.1, there exist a U−valued, FW−predictable process µ̈ = {µ̈s}s∈[0,∞) and a

[0,∞]−valued FW,P0−stopping time τ̈ on Ω0 such that P
{
U

t

s= µ̈s(W
t
) for a.e. s∈ (0,∞)

}
=P

{
T = t+τ̈

(
W

t)}
=1.

Fubini Theorem shows that N̈ :=
{
ω0 ∈ Ω0 : µ̈·(ω0) /∈ J

}
is an FW,P0

∞ −measurable set with zero P0−measure or

N̈ ∈NP0

(
FW

∞
)
. Then µ̆s := µ̈s1N̈ c+u01N̈ , s∈ [0,∞) is an FW,P0−predictable process with all paths in J.

1a) We first show that Qt,P =Γ(µ̆, τ̈) and thus P ∈P2

t :

As W
t

s = W t+s −W t, s ∈ [0,∞) is a Brownian motion under P by (D2), using Lemma A.1 with t0 = 0,

(Ω1,F1, P1, B
1)=

(
Ω,B(Ω), P ,W

t)
, (Ω2,F2, P2, B

2)=
(
Ω0,B(Ω0), P0,W

)
and Φ=W

t
yields that(

W
t)−1

(A0)∈FW
t
,P

∞ =FW
t
,P

∞ and P ◦
(
W

t)−1
(A0)=P0(A0), ∀A0∈FW,P0

∞ . (6.13)

For any A0∈B(Ω0)=FW
∞ , A∈B(J) and E ∈B(T), since µ̆−1(A)∈FW,P0

∞ by Lemma A.3 and since τ̈−1(E)∈FW,P0
∞ ,

we can derive that

Qt,P (A0×A×E)=P
{(

W
t
,U

t
, T−t

)
∈A0×A×E

}
=P

{(
W

t
, µ̈(W

t
), τ̈(W

t
)
)
∈A0×A×E

}
=P

{(
W

t
, µ̆(W

t
), τ̈(W

t
)
)
∈A0×A×E

}
=P ◦(W t

)−1
{
(W, µ̆, τ̈)∈A0×A×E

}
=P ◦(W t

)−1
(
A0∩µ̆−1(A)∩τ̈−1(E)

)
=P0

(
A0∩µ̆−1(A)∩τ̈−1(E)

)
=P0

{
(W, µ̆, τ̈)∈A0×A×E

}
=
(
Γ(µ̆, τ̈)

)
(A0×A×E).

Then Dynkin’s Pi-Lambda Theorem implies that Qt,P=Γ(µ̆, τ̈) on B(Ω0×J×T). So P belongs to P2

t .
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1b) Let µ̂ = {µ̂s}s∈[t,∞) be the U−valued, FW t−predictable process in (D1) such that the complement of Ωµ :={
ω ∈Ω : Us(ω) = µs(ω) for a.e. s∈ (t,∞)

}
is of NP

(
B(Ω)

)
, where µs(ω) := µ̂s

(
W (ω)

)
, ∀ (s, ω)∈ [t,∞)×Ω. Given

(φ, n) ∈ C(Rd+l)×N, (D2′) of Remark 3.1 shows that
{
M

t,µ

s∧τt
n
(φ)

}
s∈[t,∞)

is a bounded (F
t
, P )−martingale. For

any (s, r) ∈ Q2,<
+ and {(si,Oi)}ki=1 ⊂

(
Q ∩ [0, s]

)
×O(Rd+l), since M

t

s(φ) =M
t,µ

s (φ), ∀ s ∈ [t,∞) on Ωµ and since{
(W

t

t+si , Xt+si)∈Oi

}
∈F t

t+s for i=1, · · ·, k, one has EP

[(
M

t

τt
n∧(t+r)(φ)−M

t

τt
n∧(t+s)(φ)

) k∏
i=1

1{(W t
t+si

,Xt+si
)∈Oi}

]
=

EP

[(
M

t,µ

τt
n∧(t+r)(φ)−M

t,µ

τt
n∧(t+s)(φ)

) k∏
i=1

1{(W t
t+si

,Xt+si
)∈Oi}

]
=0. So P is also of P3

t , which shows Pt,x⊂P1

t,x∩P
2

t∩P
3

t .

2) Next, let P ∈P1

t,x∩P
2

t ∩P
3

t . We need to demonstrate that P also belongs to Pt,x.

2a) Fix i, j∈{1, · · ·, d}. We set ϕi(w, x) :=wi and ϕij(w, x) :=wiwj for any w=(w1, · · ·, wd)∈Rd and x∈Rl. Clearly,

ϕi, ϕij ∈C(Rd+l).

We verify that M
t

s(ϕi) =W
t,i

s , M
t

s(ϕij) =W
t,i

s W
t,j

s −δij(s− t), ∀ s ∈ [t,∞) are FW
t

−local martingales, where

W
t

s=
(
W

t,1

s , · · ·,W t,d

s

)
. Then P satisfies (D2 ) of Pt,x by Lévy’s characterization theorem.

Let n∈N and (s, r)∈Q2,<
+ . As P ∈P3

t , it holds for any
{
(si,Oi)

}k

i=1
⊂
(
Q∩(0, s]

)
×O(Rd) that EP

[(
M

t

τt
n∧(t+r)(ϕi)−

M
t

τt
n∧(t+s)(ϕi)

) k∏
i=1

1{W t
t+si

∈Oi}

]
=0 and EP

[(
M

t

τt
n∧(t+r)(ϕij)−M

t

τt
n∧(t+s)(ϕij)

) k∏
i=1

1{W t
t+si

∈Oi}

]
=0. So the Lambda-

system Λ
t,n

s,r :=
{
A∈B

(
Ω
)
: EP

[(
M

t

τt
n∧(t+r)(ϕi)−M

t

τt
n∧(t+s)(ϕi)

)
1A

]
=0 and EP

[(
M

t

τt
n∧(t+r)(ϕij)−M

t

τt
n∧(t+s)(ϕij)

)
1A

]
= 0

}
includes the Pi-system

{(
k
∩
i=1

(W
t

t+si)
−1(Oi)

)
:
{
(si,Oi)

}k

i=1
⊂

(
Q∩(0, s]

)
×O(Rd)

}
, which generates FW

t

t+s.

Dynkin’s Pi-Lambda Theorem renders that FW
t

t+s⊂Λ
t,n

s,r , i.e.,

EP

[(
M

t

τt
n∧(t+r)(ϕi)−M

t

τt
n∧(t+s)(ϕi)

)
1A

]
=0 and EP

[(
M

t

τt
n∧(t+r)(ϕij)−M

t

τt
n∧(t+s)(ϕij)

)
1A

]
=0, ∀A∈FW

t

t+s. (6.14)

Let t ≤ s < r <∞ and A ∈ FW
t

s . Taking (s, r) =
(

⌈(s−t)2m⌉
2m , 1+⌈(r−t)2m⌉

2m

)
, m ∈ N in (6.14) and sending m→

∞, we can deduce from the continuity of bounded processes
{
M

t

s∧τt
n
(ϕi)

}
s∈[t,∞)

and
{
M

t

s∧τt
n
(ϕij)

}
s∈[t,∞)

that

EP

[(
M

t

τt
n∧r(ϕi)−M

t

τt
n∧s(ϕi)

)
1A

]
= 0 and EP

[(
M

t

τt
n∧r(ϕij)−M

t

τt
n∧s(ϕij)

)
1A

]
= 0. So

{
M

t

s∧τt
n
(ϕi)

}
s∈[t,∞)

and{
M

t

s∧τt
n
(ϕij)

}
s∈[t,∞)

are two
(
FW

t

, P
)
−martingales. As lim

n→∞
↑ τ tn =∞, we see that

{
M

t

s(ϕi) =W
t,i

s

}
s∈[t,∞)

and{
M

t

s(ϕij)=W
t,i

s W
t,j

s −δij(s−t)
}
s∈[t,∞)

are FW
t

−local martingales. Lévy’s characterization theorem implies that W
t

is a Brownian motion on
(
Ω,B(Ω), P

)
. So P satisfies (D2) of Pt,x. We still have (6.13) since W

t
is also a Brownian

motion under P .

As P ∈ P2

t , there exist a U−valued, FW,P0−predictable process ν̈ =
{
ν̈s
}
s∈[0,∞)

with all paths in J and a

[0,∞]−valued FW,P0−stopping time γ̈ on Ω0 such that Qt,P =Γ
(
ν̈, γ̈

)
=P0◦

(
W, ν̈, γ̈

)−1
. Given D ∈B(Ω0×J×T),

taking A0=
(
W, ν̈, γ̈

)−1
(D)∈FW,P0

∞ in (6.13) yields that

P
{
(W

t
,U

t
, T−t)∈D

}
=Qt,P (D)=P0◦

(
W, ν̈, γ̈

)−1
(D)=P ◦(W t

)−1
(
(W, ν̈, γ̈)−1(D)

)
=P

{(
W

t
, ν̈·(W

t
), γ̈(W

t
)
)
∈D

}
,

which shows the joint P−distribution of (W
t
,U

t
, T ) is the same as the joint P−distribution of

(
W

t
, ν̈·(W

t
), t+

γ̈(W
t
)
)
. Similar to Part (2b) in the proof of [4, Proposition 4.1], we can use the equality P ◦(W t

, T )−1=P ◦
(
W

t
, t+

γ̈(W
t
)
)−1

to derive that P{T = t+γ̈(W
t
)}=1. Namely, P satisfies (D4′) or equivalently (D4) of Pt,x.

2b) We next show P
{
U

t

s= ν̈s(W
t
) for a.e. s∈(0,∞)

}
=1 and thus P satisfies (D1 ′) or equivalently (D1 ) of Pt,x.

Fix A ∈ B(J) and define Λ :=
{
A ∈ BP (Ω) : P

(
A∩

{
U

t ∈ A
})

= P
(
A∩

{
ν̈·(W

t
) ∈ A

})}
. As P

{
U

t ∈ A
}
=

P{(W t
,U

t
) ∈Ω0×A}= P{(W t

, ν̈·(W
t
)) ∈Ω0×A}= P

{
ν̈·(W

t
) ∈A

}
, we see that Ω ∈Λ and Λ is thus a Lambda-

system.

For any (s, E)∈ [0,∞)×B(Rd), since Ws : Ω0 7→Rd is a continuous function, one has W−1
s (E)∈B(Ω0). Then it
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holds for any {(si, Ei)}Ni=1⊂ [0,∞)×B(Rd) that

P
((

N
∩
i=1

(W
t

si)
−1(Ei)

)
∩{U t∈A}

)
= P

({
W

t∈
N
∩
i=1
W−1

si (Ei)
}
∩{U t∈A}

)
=P

{(
W

t
,U

t)∈ N
∩
i=1
W−1

si (Ei)×A
}

= P
{(

W
t
, ν̈·(W

t
)
)
∈

N
∩
i=1
W−1

si (Ei)×A
}
=P

((
N
∩
i=1

(W
t

si)
−1(Ei)

)
∩{ν̈·(W

t
)∈A}

)
.

So Λ contains the Pi-system
{

N
∩
i=1

(W
t

si)
−1(Ei) : (si, Ei)∈ [0,∞)×B(Rd), i=1, · · · , N

}
, which generates FW

t

∞ =FW
t

∞ .

Dynkin’s Pi-Lambda Theorem implies that FW
t
,P

∞ ⊂Λ, i.e.

P
(
A∩

{
U

t∈A
})

=P
(
A∩

{
ν̈·(W

t
)∈A

})
, ∀A∈FW

t
,P

∞ , ∀A∈B(J). (6.15)

Let n, k, j ∈ N. By Lemma A.3, On,k,j :=
{
ω0 ∈ Ω0 : ν̈·(ω0) ∈ i−1

J

(
O 1

n
(mk, ϕj)

}
∈ FW,P0

∞ . Since (6.13) shows

that
(
W

t)−1
(On,k,j) ∈ FW

t
,P

∞ , applying (6.15) with A =
(
W

t)−1
(Oc

n,k,j) and A = i−1

J

(
O 1

n
(mk, ϕj) yields that

P
(
(W

t
)−1(Oc

n,k,j)∩
{
U

t∈ i−1

J

(
O 1

n
(mk, ϕj)

})
=P

(
(W

t
)−1(Oc

n,k,j)∩
{
ν̈·(W

t
)∈ i−1

J

(
O 1

n
(mk, ϕj)

})
=P

(
(W

t
)−1(Oc

n,k,j)

∩(W t
)−1(On,k,j)

)
=0.

Similar to (6.11), we can deduce that
{
ω∈Ω: U

t
(ω) ̸= ν̈·(W

t
(ω))

}
= ∪

n,k,j∈N

(
(W

t
)−1(Oc

n,k,j)∩
{
U

t∈ i−1

J

(
O 1

n
(mk, ϕj)

})
.

It follows that P
{
ω∈Ω: U

t
(ω) ̸= ν̈·(W

t
(ω))

}
=0 and thus

P
{
ω∈Ω: U

t

s(ω)= ν̈s(W
t
(ω)) for a.e. s∈(0,∞)

}
=P

{
ω∈Ω: U

t
(ω)= ν̈·(W

t
(ω))

}
=1. (6.16)

Like Lemma 2.4 of [44], we can construct a [0, 1]−valued FW−predictable process
{
ν̆s
}
s∈[0,∞)

on Ω0 such that

ν̆s(ω0)=I
(
ν̈s(ω0)

)
for ds×dP0−a.s. (s, ω0)∈ [0,∞)×Ω0. By Fubini Theorem, it holds for all ω0 ∈Ω0 except on a

Nν ∈NP0

(
FW

∞
)
that ν̆s(ω0)=I

(
ν̈s(ω0)

)
for a.e. s∈ [0,∞). Define νos (ω0) :=I −1

(
ν̆s(ω0)

)
1{ν̆s(ω0)∈E}+u01{ν̆s(ω0)/∈E},

(s, ω0)∈ [0,∞)×Ω0, which is a U−valued FW t−predictable process. Given ω∈
(
W

t)−1
(N c

ν ), it holds for a.e. s∈(0,∞)

that ν̆s
(
W

t
(ω)

)
=I

(
ν̈s
(
W

t
(ω)

))
and thus νos

(
W

t
(ω)

)
= ν̈s

(
W

t
(ω)

)
. As

(
W

t)−1
(Nν)∈NP

(
FW

t

∞
)
, (6.16) leads to

that P
{
ω∈Ω: U

t

s(ω)=ν
o
s (W

t
(ω)) for a.e. s∈(0,∞)

}
=1. To wit, P satisfies (D1′) or equivalently (D1) of Pt,x.

2c) Let ν̂={ν̂s}s∈[t,∞) be the U−valued, FW t−predictable process in (D1) such that the complement of Ων :=
{
ω∈

Ω: Us(ω)=νs(ω) for a.e. s∈(t,∞)
}
is of NP

(
B(Ω)

)
, where νs(ω) := ν̂s

(
W (ω)

)
, ∀ (s, ω)∈ [t,∞)×Ω.

Let (φ, n)∈C(Rd+l)×N. We show that M
t,ν

s∧τt
n
(φ), s∈ [t,∞) is an

(
F

t
, P

)
−martingale and thus P satisfies (D3 )

of Pt,x according to the martingale-problem formulation.

As P
{
Xs=x(s), ∀ s∈ [0, t]

}
=1, applying Proposition 1.2 with

(
Ω,F , P,B,X, µ

)
=
(
Ω,B(Ω), P ,W,X, ν

)
implies

that
{
M

t,ν

s∧τt
n
(φ)

}
s∈[t,∞)

is a bounded F
t−adapted continuous process under P .

Let (s, r)∈Q2,<
+ ,

{
(ti,Oi)

}k

i=1
⊂
(
Q∩ [0, t]

)
×O(Rl) and

{
(sj ,O′

j)
}m

j=1
⊂
(
Q∩(0, s]

)
×O(Rd+l). If x(ti) /∈ Oi for some

i∈{1, · · ·, k}, then P{Xti ∈Oi}=0 and thus EP

[(
M

t,ν

τt
n∧(t+r)(φ)−M

t,ν

τt
n∧(t+s)(φ)

) k∏
i=1

1{Xti
∈Oi}

m∏
j=1

1{(W t
t+sj

,Xt+sj
)∈O′

j}

]
=

0. On the other hand, if x(ti)∈Oi for each i∈{1, · · ·, k}, since M t

s(φ)=M
t,ν

s (φ), ∀ s∈ [t,∞) on Ων , then

EP

[(
M

t,ν

τt
n∧(t+r)(φ)−M

t,ν

τt
n∧(t+s)(φ)

) k∏
i=1

1{Xti
∈Oi}

m∏
j=1

1{(W t
t+sj

,Xt+sj
)∈O′

j}

]
=EP

[(
M

t

τt
n∧(t+r)(φ)−M

t

τt
n∧(t+s)(φ)

) m∏
j=1

1{(W t
t+sj

,Xt+sj
)∈O′

j}

]
=0.

Since F t

t+s is generated by the Pi-system
{(

k
∩
i=1

X
−1

ti (Oi)
)
∩
(

m
∩

j=1
(W

t

t+sj , Xt+sj )
−1(O′

j)
)
:
{
(ti,Oi)

}k

i=1
⊂
(
Q∩ [0, t]

)
×

O(Rl),
{
(sj ,O′

j)
}m

j=1
⊂
(
Q ∩ (0, s]

)
×O(Rd+l)

}
, Dynkin’s Pi-Lambda Theorem renders that

(
c.f. (6.14)

)
EP

[(
M

t,ν

τt
n∧(t+r)(φ)−M

t,ν

τt
n∧(t+s)(φ)

)
1A

]
=0, ∀A∈F t

t+s. (6.17)
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Let t≤ s<r<∞ and A∈F t

s. Taking (s, r)=
(

⌈(s−t)2k⌉
2k

, 1+⌈(r−t)2k⌉
2k

)
, k∈N in (6.17) and letting k→∞, we can

deduce from the continuity of bounded process
{
M

t,ν

s∧τt
n
(φ)

}
s∈[t,∞)

that

EP

[(
M

t,ν

τt
n∧r(φ)−M

t,ν

τt
n∧s(φ)

)
1A

]
=0, i.e.,

{
M

t,ν

s∧τt
n
(φ)

}
s∈[t,∞)

is an
(
F

t
, P

)
−martingale. (6.18)

By Remark 3.1 (ii), P satisfies (D3) of Pt,x. □

Proof of Proposition 4.2: According to Proposition 4.1,
〈〈
P
〉〉

is the intersection of
〈〈
P
〉〉

1
:=

{(
t,x, P

)
∈ [0,∞)×

Ω
X
×P

(
Ω
)
: P ∈P1

t,x

}
and

〈〈
P
〉〉

i
:=

{(
t,x, P

)
∈ [0,∞)×Ω

X
×P

(
Ω
)
: P ∈Pi

t

}
for i=2, 3. Similar to the proof of [4,

Proposition 4.2], one can easily show that
〈〈
P
〉〉

1
is a Borel subset of [0,∞)×Ω

X
×P

(
Ω
)
.

1) Since Ω0 is a Polish space and since J is a Borel space, we know from Proposition 7.13 and Corollary 7.25.1 of

[7] that Ω0×J×T with the product topology is a Borel space and P
(
Ω0×J×T

)
is also a Borel space. As Lemma

4.1 and Lemma 4.2 show that Γ : U×S ∋ (µ, τ) 7→ P0 ◦(W,µ, τ)−1 ∈P
(
Ω0×J×T

)
is a continuous injection from

the Polish space U×S to P
(
Ω0×J×T

)
, the image Γ(U×S) is a Lusin subset of P

(
Ω0×J×T

)
. Theorem A.6

of [46] implies that Γ(U×S) is even a Borel subset of the Borel space P
(
Ω0×J×T

)
. Then Lemma 4.3 yields〈〈

P
〉〉

2
=
{(
t,x, P

)
∈ [0,∞)×Ω

X
×P

(
Ω
)
: Qt,P ∈Γ(U×S)

}
∈B[0,∞)⊗B(Ω

X
)⊗B

(
P
(
Ω
))
.

2) We next show that
〈〈
P
〉〉

3
is a countable union of Borel-measurable subsets of [0,∞)×Ω

X
×P

(
Ω
)
, so

〈〈
P
〉〉

3
is

also Borel-measurable:

Since W (s, ω0) :=ω0(s) is continuous in (s, ω0)∈ [0,∞)×Ω0 and WX(s, ω
X
) :=ω

X
(s) is continuous in (s, ω

X
)∈

[0,∞)×Ω
X
, the function Ξ(t, s, ω0, ωX

) :=
(
W (t+s, ω0)−W (t, ω0),W

X(t+s, ω
X
)
)
is continuous in (t, s, ω0, ωX

) ∈
[0,∞)× [0,∞)×Ω0×Ω

X
. For any n ∈ N, the mapping Tn(t, ω0, ωX

) := inf
{
s ∈ [0,∞) : |Ξ(t, s, ω0, ωX

)| ≥ n
}
,

(t, ω0, ωX
)∈ [0,∞)×Ω0×Ω

X
is Borel-measurable since for any a∈ [0,∞),{

(t, ω0, ωX
)∈ [0,∞)×Ω0×Ω

X
: Tn(t, ω0, ωX

)>a
}
=
{
(t, ω0, ωX

)∈ [0,∞)×Ω0×Ω
X
: sup
s′∈[0,s]

|Ξ(t, s′, ω0, ωX
)|<n

}
=
(

∪
k∈N

∩
q∈Q∩[0,s]

{
(t, ω0, ωX

)∈ [0,∞)×Ω0×Ω
X
: |Ξ(t, q, ω0, ωX

)|≤n−1/k
})

∈B[0,∞)⊗B(Ω0)⊗B(Ω
X
).

Let φ∈P(Rd+l). Since the function Hφ(r, x, , u) :=b(r, x, u)·Dφ( )+1
2σ σ

T (r, x, u) :D2φ( ), ∀ (r, x, , u)∈(0,∞)

×Ω
X
×Rd+l×U is Borel-measurable, Lemma 1.3 (2) shows that the mapping

Iφ(t, s, ω0, ωX
, u) :=

∫ t+s

t

Hφ

(
r, l2(r, ωX

),Ξ(t, (r−t)+, ω0, ωX
), u(r)

)
dr, ∀ (t, s, ω0, ωX

, u)∈ [0,∞)×[0,∞)×Ω0×Ω
X
×J

is B[0,∞)⊗B[0,∞)⊗B(Ω0)⊗B(Ω
X
)⊗B(J)−measurable.

Given n∈N and s∈ [0,∞), since the random variables (W,X,U) on Ω are B(Ω0)⊗B(Ω
X
)⊗B(J)−measurable,

we can derive from the Borel measurability of Iφ and Tn that the mapping

M
φ

n,s(t, ω) := (φ◦Ξ)
(
t,Tn

(
t,W (ω), X(ω)

)
∧n∧s,W (ω), X(ω)

)
−Iφ

(
t,Tn

(
t,W (ω), X(ω)

)
∧n∧s,W (ω), X(ω), U(ω)

)
=

(
M

t
(φ)

)(
τ tn(ω)∧(t+s), ω

)
, ∀ (t, ω)∈ [0,∞)×Ω (6.19)

is B[0,∞)⊗B(Ω)−measurable, where we used the fact τ tn(ω)= t+Tn

(
t,W (ω), X(ω)

)
∧n.

Let θ :=
(
φ, n, (s, r), {(si,Oi)}ki=1

)
∈C(Rd+l)×N×Q2,<

+ ×Ô(Rd+l). Since fθ(t, ω) :=
(
M

φ

n,r(t, ω)−M
φ

n,s(t, ω)
)
×

k∏
i=1

1{Ξ(t,si∧s,W (ω),X(ω))∈Oi}, (t, ω)∈ [0,∞)×Ω is B[0,∞)⊗B(Ω)−measurable by (6.19), an application of Lemma A.3 of

[4] yields that the mapping (t, P ) 7→
∫
ω∈Ω

fθ(t, ω)P (dω) is B[0,∞)⊗B
(
P
(
Ω
))
−measurable and the set

{
(t,x, P )∈

[0,∞)×Ω
X
×P

(
Ω
)
: EP

[(
M

t

τt
n∧(t+r)(φ)−M

t

τt
n∧(t+s)(φ)

) k∏
i=1

1{(W t
t+si∧s,Xt+si∧s)∈Oi}

]
= 0

}
is thus Borel-measurable.

Letting θ run through the countable collection C(Rd+l)×N×Q2,<
+ ×Ô(Rd+l) shows

〈〈
P
〉〉

3
∈B[0,∞)⊗B(Ω

X
)⊗B

(
P
(
Ω
))
.

Totally,
〈〈
P
〉〉
=
〈〈
P
〉〉

1
∩
〈〈
P
〉〉

2
∩
〈〈
P
〉〉

3
is a Borel subset of [0,∞)×Ω

X
×P

(
Ω
)
. □

Proof of Proposition 5.1: We set tω :=γ(ω)≥ t for any ω∈Ω.

1) We first use (R2 ) of r.c.p.d. Definition to show that P
t

γ,ω satisfies (D1 ) of Ptω,Xγ∧·(ω) for P−a.s. ω∈Ω:
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By (D1) of Pt,x, there is a U−valued, FW t−predictable process µ̂={µ̂s}s∈[t,∞) on Ω0 such that the P−measure

of Ωµ :=
{
Ur= µ̂r(W ) for a.e. r∈(t,∞)

}
is equal to 1. And (R2) assures a Nµ∈NP

(
FW

t

γ

)
such that

P
t

γ,ω

(
Ωµ

)
=E

P
t
γ,ω

[
1Ωµ

]
=EP

[
1Ωµ

∣∣FW
t

γ

]
(ω)=1, ∀ω∈N c

µ. (6.20)

According to Lemma A.5, for any (s, ω) ∈ [t,∞)×Ω we can find a U−valued, FW s−predictable process µ̂s,ω ={
µ̂s,ω
r

}
r∈[s,∞)

on Ω0 such that µ̂s,ω
r

(
W (ω′)

)
= µ̂r

(
W (ω′)

)
, ∀ (r, ω′)∈ [s,∞)×W

t

s,ω, where W
t

s,ω :=
{
ω′∈Ω:W

t

r(ω
′)=

W
t

r(ω), ∀ r∈ [t, s]
}
.

Let ω∈
(
N 0∪Nµ

)c
. We set µ̂ω

r (ω0) := µ̂
tω,ω
r (ω0), ∀ (r, ω0)∈ [tω,∞)×Ω0, which is a U−valued, FW tω−predictable

process satisfying

µ̂ω
r

(
W (ω′)

)
= µ̂r

(
W (ω′)

)
, ∀ (r, ω′)∈ [tω,∞)×W

t

γ,ω. (6.21)

It follows that W
t

γ,ω∩
{
ω′∈Ω: Ur(ω

′)= µ̂ω
r

(
W (ω′)

)
for a.e. r∈ (tω,∞)

}
⊃W

t

γ,ω∩Ωµ, Then (5.2) and (6.20) render

that P
t

γ,ω

{
ω′∈Ω: Ur(ω

′)= µ̂ω
r

(
W (ω′)

)
for a.e. r∈(tω,∞)

}
=1. So P

t

γ,ω satisfies (D1) of Ptω,Xγ∧·(ω) with µ̂= µ̂
ω for

any ω∈
(
N 0∪Nµ

)c
.

2) Via a delicate analysis of P−null sets, we exploit the martingale-problem formulation of controlled SDEs (3.1)

with control µ̂ω to show that P
t

γ,ω satisfies (D2 ) and (D3 ) of Ptω,Xγ∧·(ω) for P−a.s. ω∈Ω.

2a) Set µr := µ̂r(W ), r∈ [t,∞). From (D3) of Pt,x we have NX :=
{
ω∈Ω: Xs(ω) ̸=X

t,x,µ

s (ω) for some s∈ [0,∞)
}
∈

NP

(
F t

∞
)
. As

{
X

t,x,µ

s

}
s∈[t,∞)

is an FW
t
,P−adapted continuous process, an analogy to Lemma 2.4 of [44] allows us

to construct an Rl−valued FW
t

−predictable process
{
K

t

s

}
s∈[t,∞)

such that NK :=
{
ω ∈Ω : K

t

s(ω) ̸=X
t,x,µ

s (ω) for

some s∈ [t,∞)
}
∈NP

(
FW

t

∞
)
. By (R2), it holds for all ω∈Ω except on a N̂X,K ∈NP

(
FW

t

γ

)
that

P
t

γ,ω

(
NX∪NK

)
=EP

[
1NX∪NK

∣∣FW
t

γ

]
(ω)=0. (6.22)

Since K
t

γ,ω := ∩
r∈Q∩(t,∞)

{
ω′ ∈ Ω : K

t

γ∧r(ω
′) = K

t

γ∧r(ω)
}

is an FW
t

γ −measurable set including ω, (R3) shows that

P
t

γ,ω

(
K

t

γ,ω

)
=1, ∀ω∈N c

0. For any ω∈
(
NX∪NK

)c
, we can deduce from (5.1) that

W
t

γ,ω∩
(
NX∪NK

)c∩Kt

γ,ω=W
t

γ,ω∩
(
NX∪NK

)c∩{ω′∈Ω: Xs(ω
′)=x(s), ∀ s∈ [0, t]; K

t

γ(ω)∧r(ω
′)=K

t

γ(ω)∧r(ω), ∀ r∈Q∩(t,∞)
}

=W
t

γ,ω∩
(
NX∪NK

)c∩{ω′∈Ω: Xs(ω
′)=Xs(ω), ∀ s∈ [0, t]; Xγ(ω)∧r(ω

′)=Xγ(ω)∧r(ω), ∀ r∈Q∩(t,∞)
}

=W
t

γ,ω∩
(
NX∪NK

)c∩{ω′∈Ω: Xr(ω
′)=Xγ∧r(ω), ∀ r∈ [0, γ(ω)]

}
. (6.23)

Set N 1 :=NX∪NK∪N̂X,K ∈NP

(
F t

∞
)
. Given ω ∈

(
N 0∪N 1

)c
, taking P (·) in (6.23) and using (5.2) yield that

P
t

γ,ω

{
ω′∈Ω: Xr(ω

′)=Xγ∧r(ω), ∀ r∈ [0, tω]
}
=1.

2b) For any φ∈C(Rd+l) and q ∈Qd, define a function φq(w, x) :=φ(w−q, x), (w, x)∈Rd+l. We set C := {φq : φ∈
C(Rd+l), q ∈Ql}, which is a countable sub-collection of C2(Rd+l). For any n ∈ N, define an F

t−stopping time by

ζn(ω) :=inf
{
r∈ [γ(ω),∞) : |W t

r(ω)−W
t

γ(ω)|2+|Xr(ω)|2≥n2
}
∧
(
γ(ω)+n

)
, ω∈Ω.

Let θ :=
(
ϕ, n, j, (s, r), {(si,Oi)}ki=1

)
∈ C ×N×N×Q2,<

+ × Ô(Rd+l). Since
{
M

t,µ

s∧τt
j
(ϕ)

}
s∈[t,∞)

is a bounded

(F
t
, P )−martingale by applying Proposition 1.2 with

(
Ω,F , P,B,X, µ

)
=
(
Ω,B(Ω), P ,W,X, µ

)
, the optional sam-

pling theorem implies that EP

[
M

t,µ

(γ+r)∧ζn∧τt
j
(ϕ)

∣∣∣F t

γ+s

]
= M

t,µ

(γ+s)∧ζn∧τt
j
(ϕ), P−a.s. Set ξθ := M

t,µ

(γ+r)∧ζn∧τt
j
(ϕ)−

M
t,µ

(γ+s)∧ζn∧τt
j
(ϕ) = 1{τt

j>γ}

(
M

t,µ

(γ+r)∧ζn∧τt
j
(ϕ)−M t,µ

(γ+s)∧ζn∧τt
j
(ϕ)

)
and set ηθ :=

k∏
i=1

1{(W t
γ+si∧s−W

t
γ ,Xγ+si∧s)∈Oi} ∈

F t

γ+s. As FW
t

γ ⊂ F t

γ ⊂ F t

γ+s, the tower property renders that EP

[
ξθηθ

∣∣FW
t

γ

]
= EP

[
ηθEP

[
ξθ
∣∣F t

γ+s

]∣∣∣FW
t

γ

]
= 0,

P−a.s. By (R2) again, there exists an N θ∈NP

(
FW

t

γ

)
such that

E
P

t
γ,ω

[
ξθηθ

]
=EP

[
ξθηθ

∣∣FW
t

γ

]
(ω)=0, ∀ω∈N c

θ. (6.24)

Define N 2 :=
⋃{

N θ : θ ∈ C ×N×N×Q2,<
+ × Ô(Rd+l)

}
∈ NP

(
F t

∞
)
. We fix ω ∈

(
N 0∪N 1∪N 2∪Nµ

)c
and set

µω
r (ω

′) := µ̂ω
r (ω

′), (r, ω′)∈ [tω,∞)×Ω. Let
(
φ, n, (s, r), {(si,Oi)}ki=1

)
∈C(Rd+l)×N×Q2,<

+ ×Ô(Rd+l) and let j∈N.
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There exists a sequence {qm=qm(ω)}m∈N of Qd that converges to W
t

γ(ω). Let m∈N. We set θm :=
(
φqm , n, j, (s,

r), {(si,Oi)}ki=1

)
and define δj,mω := sup

|(w,x)|≤j

(∑2
i=0

∣∣Diφqm(w, x)−Diφ
(
w−W t

γ(ω), x
)∣∣)= sup

|(w,x)|≤j

(∑2
i=0

∣∣Diφ(w−

qm, x)−Diφ
(
w−W t

γ(ω), x
)∣∣).

Given ω′ ∈W
t

γ,ω∩N
c

X∩
{
τ tj >γ

}
, (5.1) implies that τ tj(ω

′)>γ(ω′)= tω and ζn(ω
′)= inf

{
r∈ [tω,∞) : |W r(ω

′)−
W tω (ω

′)|2+|Xr(ω
′)|2≥n2

}
∧
(
tω+n

)
= τ tωn (ω′). Since W

tω
r (ω′)=W

t

r (ω
′)−W t

tω (ω
′)=W

t

r (ω
′)−W t

γ(ω), ∀ r∈ [tω,∞),

(6.21) shows that for any tω≤s1≤s2<∞

(
M

tω,µω

s2 (φ)−M tω,µω

s1 (φ)
)
(ω′)=φ

(
W

tω
s2 (ω

′), Xs2(ω
′)
)
−φ

(
W

tω
s1 (ω

′), Xs1(ω
′)
)
−
∫ s2

s1

b
(
r,Xr∧·(ω

′), µ̂ω
r (W (ω′))

)
·Dφ

(
W

tω
r (ω′), Xr(ω

′)
)
dr

−1

2

∫ s2

s1

σ σT
(
r,Xr∧·(ω

′), µ̂ω
r (W (ω′))

)
:D2φ(W

tω
r (ω′), Xr(ω

′))dr

=φ
(
W

t

s2(ω
′)−W t

γ(ω), Xs2(ω
′)
)
−φ

(
W

t

s1(ω
′)−W t

γ(ω), Xs1(ω
′)
)
−
∫ s2

s1

b
(
r,Xr∧·(ω

′), µ̂r(W (ω′))
)
·Dφ

(
W

t

r (ω
′)−W t

γ(ω), Xr(ω
′)
)
dr

−1

2

∫ s2

s1

σ σT
(
r,Xr∧·(ω

′), µ̂r(W (ω′))
)
:D2φ(W

t

r (ω
′)−W t

γ(ω), Xr(ω
′))dr.

As
∣∣(W t

r(ω
′), Xr(ω

′)
)∣∣≤ j for any r ∈ [tω, τ

t
j(ω

′)], we can deduce from (1.2), (1.3) and Cauchy-Schwarz inequality

that for any tω≤s1≤s2≤τ tj(ω′)∣∣∣(M tω,µω

s2 (φ)−M tω,µω

s1 (φ)−M t,µ

s2 (φqm)+M
t,µ

s1 (φqm)
)
(ω′)

∣∣∣
≤2δj,mω +δj,mω

∫ τt
j(ω

′)

t

(∣∣b(r,Xr∧·(ω
′), µ̂r(W (ω′))

)∣∣+1

2

∣∣σ(r,Xr∧·(ω
′), µ̂r(W (ω′))

)∣∣2)dr
≤2δj,mω +δj,mω

∫ τt
j(ω

′)

t

(
κ(r)

∥∥Xr∧·(ω
′)
∥∥
r
+
∣∣b(r,0, µ̂r(W (ω′))

)∣∣+ d

2
+κ2(r)

∥∥Xr∧·(ω
′)
∥∥2
r
+
∣∣σ(r,0, µ̂r(W (ω′))

)∣∣2)dr≤δj,mω (2+cjt,x),

where cjt,x :=
[
d/2+κ(t+ j)(∥x∥t+ j)+κ2(t+ j)(∥x∥t+ j)2

]
j+

∫ t+j

t
sup
u∈U

(
|b(r,0, u)|+ |σ(r,0, u)|2

)
dr < ∞. Taking

s1=
(
(γ+s)∧ζn∧τ tj

)
(ω′)=(tω+s)∧τ tωn (ω′)∧τ tj(ω′) and s2=(tω+r)∧τ tωn (ω′)∧τ tj(ω′) yields that

∣∣∣(M tω,µω

(tω+r)∧τ
tω
n ∧τt

j
(φ)−

M
tω,µω

(tω+s)∧τ
tω
n ∧τt

j
(φ)

)
(ω′)−ξθm(ω′)

∣∣∣≤δj,mω (2 + cjt,x). As ηθm(ω′)=
k∏

i=1

1{(W tω
tω+si∧s(ω

′),Xtω+si∧s(ω′))∈Oi} by (5.1), we see

from (5.2) and (6.22) that

E
P

t
γ,ω

[
1{τt

j>γ}

∣∣∣(M tω,µω

(tω+r)∧τ
tω
n ∧τt

j
(φ)−M tω,µω

(tω+s)∧τ
tω
n ∧τt

j
(φ)

) k∏
i=1

1{(W tω
tω+si∧s,Xtω+si∧s)∈Oi}−ξθmηθm

∣∣∣]≤δj,mω (2+cjt,x).

The uniform continuity of Diφ’s over compact sets implies lim
m→∞

↓ δj,mω =0, and one can then obtain from (6.24)

that

E
P

t
γ,ω

[
1{τt

j>γ}

(
M

tω,µω

(tω+r)∧τ
tω
n ∧τt

j
(φ)−M tω,µω

(tω+s)∧τ
tω
n ∧τt

j
(φ)

) k∏
i=1

1{(W tω
tω+si∧s,Xtω+si∧s)∈Oi}

]
= lim

m→∞
E

P
t
γ,ω

[
ξθmηθm

]
=0. (6.25)

Since P
t

γ,ω

{
ω′∈Ω: Xr(ω

′)=Xγ∧r(ω), ∀ r∈ [0, tω]
}
=1 by Part (2a), applying Proposition 1.2 with

(
Ω,F , P,B,X

)
=(

Ω,B(Ω), P
t

γ,ω,W ,X
)
and (t,x, µ)=

(
tω, Xγ∧·(ω), µ

ω
)
renders that

{
M

tω,µω

s∧τ
tω
n
(φ)

}
s∈[tω,∞)

is a bounded process under

P
t

γ,ω. As lim
j→∞

↑ τ tj(ω′) =∞ for any ω′ ∈ Ω, letting j →∞ in (6.25) and using the bounded convergence theorem

reach that E
P

t
γ,ω

[(
M

tω,µω

(tω+r)∧τ
tω
n
(φ)−M tω,µω

(tω+s)∧τ
tω
n
(φ)

) k∏
i=1

1{(W tω
tω+si∧s,Xtω+si∧s)∈Oi}

]
=0. Following similar arguments

to those that lead to (6.18), we can derive that
{
M

tω,µω

s∧τ
tω
n
(φ)

}
s∈[tω,∞)

is a
(
F

tω
, P

t

γ,ω

)
−martingale. Then Remark

3.1 (ii) shows that P
t

γ,ω satisfies (D2)+(D3) of Ptω,Xγ∧·(ω) for any ω∈
(
N 0∪N 1∪N 2∪Nµ

)c
.
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3) It remains to show that P
t

γ,ω satisfies (D4 ) of Ptω,Xγ∧·(ω) and thus P
t

γ,ω∈Pγ(ω),Xγ∧·(ω)

((
YP (γ)

)
(ω),

(
ZP (γ)

)
(ω)

)
for P−a.s. ω∈Ω.

By (D4) of Pt,x, there is a [t,∞]−valued FW t,P0−stopping time τ̂ such that P
{
T = τ̂(W )

}
= 1. Analogous to

Part (2) in the proof of [4, Proposition 5.1], we can find A∗∈FW
t

γ satisfying{
τ̂(W )≥γ

}
∆A∗∈NP

(
FW

t

∞
)
, (6.26)

and there exists N 3∈NP

(
FW

t

γ

)
such that for any ω∈N c

0∩N
c

3∩A∗, P
t

γ,ω

{
T = τ̂ω(W )

}
=1 for some [tω,∞]−valued

FW tω ,P0−stopping time τ̂ω, namely, P
t

γ,ω satisfies (D4) of Ptω,Xγ∧·(ω).

Let i∈N. According to (R2), it holds for all ω∈Ω except on aN i

g,h∈NP

(
FW

t

γ

)
that E

P
t
γ,ω

[ ∫ T

T∧γ
gi(r,Xr∧·, Ur)dr

]
=
(
Y

i

P (γ)
)
(ω) and E

P
t
γ,ω

[ ∫ T

T∧γ
hi(r,Xr∧·, Ur)dr

]
=
(
Z

i

P (γ)
)
(ω). Given ω∈

(
N 0 ∪N 3 ∪N i

g,h

)c

∩A∗, (5.1), (5.2) and

P
t

γ,ω

{
T = τ̂ω(W )≥ tω

}
=1 imply

(
Y

i

P (γ)
)
(ω)=E

P
t
γ,ω

[ ∫ T

T∧γ
gi(r,Xr∧·, Ur)dr

]
=E

P
t
γ,ω

[
1
W

t
γ,ω

∫ T

T∧tω
gi(r,Xr∧·, Ur)dr

]
=E

P
t
γ,ω

[ ∫ T

tω
gi(r,Xr∧·, Ur)dr

]
and similarly E

P
t
γ,ω

[ ∫ T

tω
hi(r,Xr∧·, Ur)dr

]
=
(
Z

i

P (γ)
)
(ω). Therefore,

P
t

γ,ω∈Pγ(ω),Xγ∧·(ω)

((
YP (γ)

)
(ω),

(
ZP (γ)

)
(ω)

)
, ∀ω∈A∗∩N

c

∗, (6.27)

where N ∗ :=N 0 ∪ N 1 ∪ N 2 ∪ N 3 ∪ Nµ ∪
(

∪
i∈N

N i

g,h

)
∈ NP

(
F t

∞
)
. In particular, (5.3) holds for P−null set N :=

N ∗∪
{
T ̸= τ̂(W )

}
∪
(
{τ̂(W )≥γ}∆A∗

)
∈NP

(
B(Ω)

)
. □

Proof of Theorem 5.1: For any [t,∞)−valued FW
t

−stopping time ζ, we denote R(ζ) :=
∫ T

T∧ζ
f(r,Xr∧·, Ur)dr+

1{T<∞}π
(
T ,XT∧·

)
.

(I) (sub-solution side) Fix P ∈Pt,x(y, z) and simply denote γ
P

by γ.

Let τ̂ be the [t,∞]−valued FW t,P0−stopping time with P
{
T = τ̂(W )

}
=1 and let A∗ ∈FW

t

γ , N ∗ ∈NP

(
F t

∞
)
be

as in (6.26) and (6.27). By (R2), there is a N f,π ∈NP

(
FW

t

γ

)
such that E

P
t
γ,ω

[
R(γ)

]
=EP

[
R(γ)

∣∣FW
t

γ

]
(ω) for any

ω∈N c

f,π. For any ω∈A∗∩
(
N ∗∪N f,π

)c
, as N 0⊂N ∗, (5.1), (5.2) and (6.27) imply that

EP

[
R(γ)

∣∣FW
t

γ

]
(ω)=E

P
t
γ,ω

[
R(γ)

]
=E

P
t
γ,ω

[
1
W

t
τ,ω
R(γ(ω))

]
=E

P
t
γ,ω

[
R(γ(ω))

]
≤V

(
γ(ω), Xγ∧·(ω),

(
YP (γ)

)
(ω),

(
ZP (γ)

)
(ω)

)
.

Since 1{T≥γ}=1{τ̂(W )≥γ}=1A∗
, P−a.s. by (6.26) and since A∗∈FW

t

γ , the tower property renders that

EP

[
1{T≥γ}V

(
γ,Xγ∧·, YP (γ), ZP (γ)

)]
=EP

[
1A∗

V
(
γ,Xγ∧·, YP (γ), ZP (γ)

)]
≥EP

[
1A∗

EP

[
R(γ)

∣∣FW
t

γ

]]
=EP

[
EP

[
1A∗

R(γ)
∣∣FW

t

γ

]]
=EP

[
1A∗

R(γ)
]
=EP

[
1{T≥γ}R(γ)

]
.

It follows that EP

[
R(t)

]
≤EP

[
1{T<γ}R(t)+1{T≥γ}

(∫ γ

t
f(r,Xr∧·, Ur)dr+V

(
γ,Xγ∧·, YP (γ), ZP (γ)

))]
. Letting P

vary over Pt,x(y, z) yields that V (t,x, y, z) = sup
P∈Pt,x(y,z)

EP

[
R(t)

]
≤ sup

P∈Pt,x(y,z)

EP

[
1{T<γ

P
}

(∫ T

t
f(r,Xr∧·, Ur)dr+

π
(
T ,XT∧·

))
+1{T≥γ

P
}

(∫ γ
P

t f(r,Xr∧·, Ur)dr+V
(
γ
P
, Xγ

P
∧·, YP (γP

), ZP (γP
)
))]

.

(II) (super-solution side) Let P ∈Pt,x(y, z) and simply denote γP by γ. We shall show that

EP

[
1{T<γ}R(t)+1{T≥γ}

(∫ γ

t

f(r,Xr∧·, Ur)dr+V
(
γ,Xγ∧·, YP (γ), ZP (γ)

))]
≤V (t,x, y, z). (6.28)

As FW
t

t ={∅,Ω}, the [t,∞)−valued FW
t

−stopping time γ satisfies either {γ= t}=Ω or {γ>t}=Ω.

Suppose first that {γ= t}=Ω: for any i∈N, Y i

P (t)=EP

[ ∫ T

T∧t
gi(r,Xr∧·, Ur)dr

∣∣FW
t

t

]
=EP

[ ∫ T

t
gi(r,Xr∧·, Ur)dr

]
≤

yi and Z
i

P (t)=EP

[ ∫ T

t
hi(r,Xr∧·, Ur)dr

]
=zi. Then

EP

[
1{T<γ}R(t)+1{T≥γ}

(∫ γ

t

f(r,Xr∧·, Ur)dr+V
(
γ,Xγ∧·, YP (γ), ZP (γ)

))]
=EP

[
V
(
t,Xt∧·, YP (t), ZP (t)

)]
≤V

(
t,x, y, z

)
.
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In the rest of this proof, we assume
{
γ > t

}
=Ω and show that the inequality (6.28) also holds in this situation.

As the argument is quite lengthy, we split it into several parts and make brief description at the beginning of each

step.

By (D1) of Pt,x, there exists a U−valued, FW t−predictable process µ̂ = {µ̂s}s∈[t,∞) on Ω0 such that the

P−measure of Ωµ :=
{
Ur = µ̂r(W ) for a.e. r ∈ (t,∞)

}
is equal to 1. Since µs := µ̂s(W ), ∀ s∈ [t,∞) is a U−valued

FW
t

−predictable process on Ω, the [0, 1)−valued FW
t

−adapted continuous process J
t

s :=
∫ s

t
e−rI (µr)dr, ∀ s∈ [t,∞)

satisfies that for any ω∈Ωµ

Υ
t

s(ω)=

∫ s

t

e−rI
(
Ur(ω)

)
dr=

∫ s

t

e−rI
(
µr(ω)

)
dr=J

t

s(ω), ∀ s∈ [t,∞). (6.29)

Set NX :=
{
ω ∈ Ω : Xs(ω) ̸= X

t,x,µ

s (ω) for some s ∈ [0,∞)
}
∈ NP

(
F t

∞
)
. We also let τ̂ be the [t,∞]−valued

FW t,P0−stopping time with P
{
T = τ̂(W )

}
=1 and let A∗∈FW

t

γ , N ∗∈NP

(
F t

∞
)
be as in (6.26) and (6.27).

II.a) Let us define a truncation
(
W

t,γ
, U

t,γ)
of (W,U) over the stochastic interval [[t, γ]] by

(
W

t,γ

r , U
t,γ

r

)
(ω) :=

(
W

t(
(r∨t)∧γ(ω), ω

)
,1{r∈[0,t)∪(γ(ω),∞)}u0+1{r∈[t,γ(ω)]}Ur(ω)

)
∈Ω0×J, ∀ (r, ω)∈ [0,∞)×Ω.

We will embed
(
W

t,γ
, U

t,γ)
with

(
γ,Xγ∧·, YP (γ), ZP (γ)

)
into another enlarged canonical space Ω̈ :=[0,∞)×Ω0×J×

Ω
X
×ℜ×ℜ via a measurable mapping Ψ̈.

II.a.1) Clearly, W
t,γ

is FW
t

γ

/
B(Ω0)−measurable. To show the measurability of U

t,γ
, we let φ ∈ L0

(
(0,∞)×

U;R
)
. The FW

t

−predictability of
{
µs

}
s∈[t,∞)

implies that
{
φ
(
s, µs

)}
s∈[t,∞)

is also an FW
t

−predictable process and∫ γ

t
φ(s, µs)ds is thus FW

t

γ −measurable. Then ξµ :=
∫ t

0
φ(s, u0)ds+

∫ γ

t
φ(s, µs)ds+

∫∞
γ
φ(s, u0)ds is an FW

t

γ −measurable

random variable such that ξµ(ω) =
∫∞
0
φ
(
s, U

t,γ

s (ω)
)
ds= Iφ

(
U

t,γ
(ω)

)
for any ω ∈Ωµ. Since Ωµ =

{
ω ∈Ω : Υ

t

s(ω) =∫ s

t
e−rI (Ur(ω))dr=

∫ s

t
e−rI

(
µr(ω)

)
dr, ∀ s∈ (t,∞)

}
= ∩

s∈Q∈(t,∞)

{
ω ∈Ω : Υ

t

s(ω) =
∫ s

t
e−rI

(
µr(ω)

)
dr
}
∈FW

t
,Υ

t
,P

∞ ,

it holds for any E ∈ B(R) that
(
U

t,γ)−1(
(Iφ)

−1(E)
)
=

{
ω ∈ Ω : Iφ

(
U

t,γ
(ω)

)
∈ E

}
=

{
ω ∈ Ωµ : ξµ(ω) ∈ E

}
∪
{
ω ∈

Ω
c

µ : Iφ
(
U

t,γ
(ω)

)
∈ E

}
∈ σ

(
FW

t

γ ∪NP

(
FW

t
,Υ

t

∞
))

. By Lemma 1.3 (1), the sigma-field
{
A ⊂ J :

(
U

t,γ)−1
(A) ∈

σ
(
FW

t

γ ∪NP

(
FW

t
,Υ

t

∞
))}

includes all generating sets of B(J) and thus contains B(J). Hence, U
t,γ

is σ
(
FW

t

γ ∪

NP

(
FW

t
,Υ

t

∞
))

−measurable.

Since
{
X

t,x,µ

s

}
s∈[t,∞)

is an FW
t
,P−adapted continuous process, we can emulate Lemma 2.4 of [44] to construct

an Rl−valued FW
t

−predictable process
{
K

t

s

}
s∈[t,∞)

such that NK :=
{
ω ∈ Ω : K

t

s(ω) ̸= X
t,x,µ

s (ω) for some s ∈

[t,∞)
}
∈NP

(
FW

t

∞
)
. Since X|[0,t)=x|[0,t) and X|[t,∞)=K

t
on

(
NX∪NK

)c
, one can deduce that the random variable

Xγ∧· : Ω 7→Ω
X

is σ
(
FW

t

γ ∪NP (F
t

∞)
)/

B(Ω
X
)−measurable.

II.a.2) Set Gt

s :=FW
t

s ∨FΥ
t

s ∨FX
s = σ

(
W

t

r ; r ∈ [t, s]
)
∨σ

(
Υ

t

r ; r ∈ [t, s]
)
∨σ

(
Xr; r ∈ [0, s]

)
, ∀ s ∈ [t,∞). We arbitrarily

pick (w,u) from Ω0×J.
Since (t,x, y, z)∈DP , Theorem 3.1 and (6.27) show that (t,w,u,x, y, z)∈DP and that

(
γ(ω),W

t,γ
(ω), U

t,γ
(ω),

Xγ∧·(ω),
(
Y P (γ)

)
(ω),

(
ZP (γ)

)
(ω)

)
∈DP for any ω∈A∗∩N

c

∗. By the measurability of random variables W
t,γ

, U
t,γ

and Xγ∧· in Step (II.a.1),

Ψ̈(ω) :=1{ω∈Ac
∗∪N∗}(t,w,u,x, y, z)+1{ω∈A∗∩N c

∗}

(
γ(ω),W

t,γ
(ω), U

t,γ
(ω), Xγ∧·(ω),

(
YP (γ)

)
(ω),

(
ZP (γ)

)
(ω)

)
∈DP , (6.30)

∀ω∈Ω is σ
(
FW

t

γ ∪NP

(
Gt

∞
))/

B(DP)−measurable, which induces a probability measure P̈ :=P ◦Ψ̈−1 on
(
Ω̈,B(Ω̈)

)
.

Then Ψ̈ is further σ
(
FW

t

γ ∪NP

(
Gt

∞
))/

σ
(
B(DP)∪NP̈ (B(DP))

)
−measurable.

II.b) Fix ε∈(0, 1) through Part (II.f). For any ω∈Ω, we may denote tω :=γ(ω).

According to Jankov-von Neumann Theorem (Proposition 7.50 of [7]), Corollary 4.1 and Theorem 4.1, there exists

an analytically measurable function Qε : DP 7→P
(
Ω
)
such that for any (t,w, u, x, y, z)∈DP , Qε(t,w, u, x, y, z) belongs
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to Pt,w,u,x(y, z) and satisfies

EQε(t,w,u,x,y,z)

[
R(t)

]
≥
{
V (t,w, u, x, y, z)−ε, if V (t,w, u, x, y, z)<∞;

1/ε, if V (t,w, u, x, y, z)=∞.
(6.31)

II.b.1) We can use the composite mapping Qε

(
Ψ̈(ω)

)
to construct a pasted probability measure P ε as follows:

Since Qε is universally measurable, it is also σ
(
B(DP) ∪ NP̈ (B(DP))

)/
B
(
P
(
Ω
))
−measurable and Q

ω

ε :=

1{ω∈Ac
∗∪N∗}P+1{ω∈A∗∩N c

∗}
Qε

(
Ψ̈(ω)

)
, ∀ω∈Ω is thus σ

(
FW

t

γ ∪NP

(
Gt

∞
))/

B
(
P
(
Ω
))
−measurable.

Given a [0,∞]−valued B(Ω)−measurable random variable ϕ, Proposition 7.25 of [7] implies that the mapping

P
(
Ω
)
∋ Q 7→EQ

[
ϕ
]
is B

(
P
(
Ω
))
−measurable. The measurability of

{
Q

ω

ε

}
ω∈Ω

renders that

the random variable Ω ∋ ω 7→E
Q

ω
ε

[
ϕ
]
is σ

(
FW

t

γ ∪NP

(
Gt

∞
))

−measurable. (6.32)

Hence, we can define a pasted probability measure P ε∈P
(
Ω
)
:

P ε(A) :=P
(
Ac

∗∩A
)
+

∫
ω∈A∗

Q
ω

ε (A)P (dω). ∀A∈B(Ω). (6.33)

II.b.2) To show P ε=P over Gt

γ , we need to discuss some properties of Q
ω

ε .

Let ω∈A∗∩N
c

∗. By (6.30), one has

Q
ω

ε =Qε

(
Ψ̈(ω)

)
∈P

γ(ω),W
t,γ

(ω),U
t,γ

(ω),Xγ∧·(ω)

((
YP (γ)

)
(ω),

(
ZP (γ)

)
(ω)

)
. (6.34)

Set Ω
t

γ,ω :=
{
ω′ ∈ Ω : (Ws, Xs)(ω

′) = (W
t,γ

s , Xs)(ω), ∀ s ∈ [0, γ(ω)]; Us(ω
′) = U

t,γ

s (ω) for a.e. s ∈ (0, γ(ω))
}
and

Θ
t

γ,ω :=
{
ω′ ∈ Ω : (W

t

s,Υ
t

s)(ω
′) = (W

t

s,Υ
t

s)(ω), ∀ s ∈
[
t, γ(ω)

]
; Xs(ω

′) =Xs(ω), ∀ s ∈ [0, γ(ω)]
}
. Since Ω

t

γ,ω ⊂
{
ω′ ∈

Ω : Ws(ω
′)=0, ∀ s∈ [0, t];Ws(ω

′)=W
t

s(ω), ∀ s∈ (t, γ(ω)];Xs(ω
′)=Xs(ω), ∀ s∈ [0, γ(ω)]; Us(ω

′)=Us(ω) for a.e. s∈
(t, γ(ω))

}
⊂Θ

t

γ,ω⊂W
t

γ,ω, we see from (6.34) that

Q
ω

ε

(
Ω

t

γ,ω

)
=1, and thus Q

ω

ε

(
W

t

γ,ω

)
=Q

ω

ε

(
Θ

t

γ,ω

)
=1. (6.35)

By (6.34), there is a U−valued, FW tω−predictable process µ̂ω=
{
µ̂ω
s

}
s∈[tω,∞)

on Ω0 such that the Q
ω

ε−measure

of Ω
ω

µ :=
{
ω′ ∈ Ω : Us(ω

′) = µω
s (ω

′) for a.e. s ∈ (tω,∞)
}

is equal to 1 with µω
s := µ̂ω

s (W ), ∀ s ∈ [tω,∞) and that

N ω

X :=
{
ω′ ∈ Ω : Xs(ω

′) ̸= X
ω

s (ω
′) for some s ∈ [0,∞)

}
∈ N

Q
ω
ε

(
F tω

∞
)
, where

{
X

ω

s = X
tω,Xγ∧·(ω),µω

s

}
s∈[0,∞)

is an{
FW

tω ,Q
ω
ε

s∨tω

}
s∈[0,∞)

−adapted continuous process that uniquely solves the following SDE with the open-loop control

µω on
(
Ω,B

(
Ω
)
, Q

ω

ε

)
:

X s=X
(
tω, ω

)
+

∫ s

tω

b
(
r,X r∧·, µ

ω
r

)
dr+

∫ s

tω

σ
(
r,X r∧·, µ

ω
r

)
dW r, ∀ s∈ [tω,∞)

with initial condition X s=Xs(ω), ∀ s∈ [0, tω].

Since
{
µω
s = µ̂ω

s (W )
}
s∈[tω,∞)

is a U−valued, FW
tω−predictable process on Ω, the [0, 1)−valued FW

tω−adapted

continuous process J
ω

s :=
∫ s

tω
e−rI (µω

r )dr, ∀ s∈ [tω,∞) satisfies that for any ω′∈Ω
ω

µ

Υ
ω

s (ω
′)=

∫ s

tω

e−rI
(
Ur(ω

′)
)
dr=

∫ s

tω

e−rI
(
µω
r (ω

′)
)
dr=J

ω

s (ω′), ∀ s∈ [tω,∞). (6.36)

Like Lemma 2.4 of [44], one can construct an Rl−valued FW
tω−predictable process

{
K

ω

s

}
s∈[tω,∞)

such that N ω

K :={
ω′∈Ω: K

ω

s (ω
′) ̸=X

ω

s (ω
′) for some s∈ [tω,∞)

}
∈N

Q
ω
ε

(
FW

tω

∞
)
.

II.b.3) Let A∈B(Ω). We claim that

Q
ω

ε (A∩A)=1{ω∈A}Q
ω

ε (A), ∀A∈Gt

γ , ∀ω∈A∗∩N
c

∗. (6.37)
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To see this, we take A∈Gt

γ . Let ω1 ∈A∩A∗∩N
c

∗ and set s1 := γ(ω1). Since A∩{γ≤ s1} is an Gt

s1−measurable set

including ω1, one can deduce that

Θ
t

γ,ω1
=

{
ω′∈Ω: (W

t

r,Υ
t

r)(ω
′)=(W

t

r,Υ
t

r)(ω1), ∀ r∈ [t, s1];

Xr(ω
′)=Xr(ω1), ∀ r∈ [0, s1]

}
is also contained in A∩{γ≤s1}. (6.38)

By (6.35), Q
ω1

ε

(
A
)
= 1 and thus Q

ω1

ε

(
A∩A

)
= Q

ω1

ε

(
A
)
= 1{ω1∈A}Q

ω1

ε (A). We next let ω2 ∈ Ac∩A∗∩N c

∗ and

set s2 := γ(ω2). As Ac ∩{γ ≤ s2} is an Gt

s2−measurable set including ω2, Θ
t

γ,ω2
=

{
ω′ ∈ Ω : (W

t

r,Υ
t

r)(ω
′) =

(W
t

r,Υ
t

r)(ω2), ∀ r∈ [t, s2]; Xr(ω
′)=Xr(ω2), ∀ r∈ [0, s2]

}
is also included in Ac∩{γ≤ s2}. We correspondingly have

Q
ω2

ε (Ac
)=1 and thus Q

ω2

ε

(
A∩A

)
=0=1{ω2∈A}Q

ω2

ε (A), proving (6.37).

In particular, taking A=Ω in (6.37) renders that

P ε(A)=P
(
Ac

∗∩A
)
+

∫
ω∈A∗

1{ω∈A}P (dω)=P (A), ∀A∈Gt

γ . (6.39)

In the next four Parts (II.c)−(II.f), we demonstrate that P ε also belongs to Pt,x(y, z), i.e., the probability class

Pt,x(y, z) is stable under the pasting (6.33).

II.c) In this part, we demonstrate that W
t
is a Brownian motion with respect to the filtration G

t
:=

{
Gt

s

}
s∈[t,∞)

under P ε. More precisely, let t≤s<r<∞ and E ∈B(Rd), we need to verify that

P ε

{(
W

t

r−W
t

s

)−1
(E)∩A

}
=P ε

{(
W

t

r−W
t

s

)−1
(E)

}
P ε

(
A
)
=ϕ(r−s, E)P ε

(
A
)
, ∀A∈Gt

s,

where ϕ(a, E) :=
(
2πa

)−d/2 ∫
z∈E e

− z2

2a dz, ∀ a∈(0,∞).

II.c.1) We first show P ε

((
W

t

r−W
t

s

)−1
(E)

)
=ϕ(r−s, E) based on the fact that W

tω
is a Brownian motion under Q

ω

ε

and P
t

γ,ω by (6.34) and (6.27) respectively.

Let ω∈A∗∩N
c

∗. Since {γ≥r}∈FW
t

γ∧r⊂Gt

γ and since {γ≥r}∩(W t

r−W
t

s)
−1(E)={γ≥r}∩(W t

γ∧r−W
t

γ∧s)
−1(E)∈

FW
t

γ∧r⊂Gt

γ , (6.37) implies that

1{γ(ω)≥r}Q
ω

ε

(
(W

t

r−W
t

s)
−1(E)

)
=Q

ω

ε

(
{γ≥r}∩(W t

r−W
t

s)
−1(E)

)
=1

{γ(ω)≥r}∩
{
ω∈(W

t
r−W

t
s)

−1(E)
}. (6.40)

• If γ(ω)≤ s, since (W
t

r−W
t

s)(ω
′) =W r(ω

′)−W s(ω
′) =W

tω
r (ω′)−W tω

s (ω′), ∀ω′ ∈Ω and since W
tω

is a Brownian

motion with respect to the filtration FW
tω

under Q
ω

ε by (6.34),

Q
ω

ε

(
(W

t

r−W
t

s)
−1(E)

)
=Q

ω

ε

{(
W

tω
r −W tω

s

)−1

(E)
}
=ϕ(r−s, E). (6.41)

• We next suppose that s < γ(ω) < r and set Eω :=
{
x−W t

γ(ω)+W
t

s(ω) : x ∈ E
}
∈ B(Rd). For any ω′ ∈ W

t

γ,ω,

(W
t

r−W
t

s)(ω
′) ∈ E if and only if W

tω
r (ω′) =W r(ω

′)−W (γ(ω), ω′) =W
t

r(ω
′)−W t(

γ(ω), ω′) =W
t

r(ω
′)−W t

s(ω
′)−

W
t

γ(ω)+W
t

s(ω)∈Eω, which shows

(W
t

r−W
t

s)
−1(E)∩Wt

γ,ω=
(
W

tω
r

)−1(
Eω

)
∩Wt

γ,ω . (6.42)

So (6.35) gives that

Q
ω

ε

(
(W

t

r−W
t

s)
−1(E)

)
=Q

ω

ε

{(
W

tω
r

)−1(
Eω

)}
=ϕ

(
r−tω, Eω

)
. (6.43)

By (R2), there exists Ns,r,E ∈NP

(
FW

t

γ

)
such that EP

[
1
(W

t
r−W

t
s)

−1(E)

∣∣∣FW
t

γ

]
(ω)=E

P
t
γ,ω

[
1
(W

t
r−W

t
s)

−1(E)

]
for any

ω ∈N c

s,r,E . Given ω ∈ {s < γ < r}∩N c

s,r,E∩A∗∩N c

∗, since W
tω

is a Brownian motion with respect to the filtration

FW
tω

under P
t

γ,ω by (6.27), we can deduce from (5.2), (6.42) and (6.43) that

EP

[
1
(W

t
r−W

t
s)

−1(E)

∣∣∣FW
t

γ

]
(ω) = P

t

γ,ω

(
(W

t

r−W
t

s)
−1(E)

)
=P

t

γ,ω

(
(W

t

r−W
t

s)
−1(E)∩Wt

γ,ω

)
=P

t

γ,ω

{(
W

tω
r

)−1(
Eω

)
∩Wt

γ,ω

}
= P

t

γ,ω

{(
W

tω
r

)−1(
Eω

)}
=ϕ

(
r−tω, Eω

)
=Q

ω

ε

(
(W

t

r−W
t

s)
−1(E)

)
. (6.44)
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Since {s < γ < r} ∈ FW
t

γ∧r ⊂ FW
t

γ and since A∗ ∈ FW
t

γ , it follows that P
(
{s < γ < r}∩ (W

t

r−W
t

s)
−1(E)∩A∗

)
=

EP

[
1{s<γ<r}∩A∗

EP

[
1
(W

t
r−W

t
s)

−1(E)

∣∣FW
t

γ

]]
=

∫
ω∈Ω

1{s<γ(ω)<r}∩{ω∈A∗}Q
ω

ε

(
(W

t

r −W
t

s)
−1(E)

)
P (dω). Then we see

from (6.41) and (6.40) that

P ε

((
W

t

r−W
t

s

)−1
(E)

)
=P

(
Ac

∗∩
(
W

t

r−W
t

s

)−1
(E)

)
+

∫
ω∈A∗

Q
ω

ε

(
(W

t

r−W
t

s)
−1(E)

)
P (dω)

=P
(
Ac

∗∩
(
W

t

r−W
t

s

)−1
(E)

)
+ϕ(r−s, E)P

(
{γ≤s}∩A∗

)
+P

(
{s<γ<r}∩(W t

r−W
t

s)
−1(E)∩A∗

)
+P

(
{γ≥r}∩(W t

r−W
t

s)
−1(E)∩A∗

)
=P

(
Ac

∗∩{γ≤s}∩
(
W

t

r−W
t

s

)−1
(E)

)
+ϕ(r−s, E)P

(
{γ≤s}∩A∗

)
+P

(
{γ>s}∩(W t

r−W
t

s)
−1(E)

)
.

Since W
t
is a Brownian motion under P and since Ac

∗∩{γ≤s}∈FW
t

s ,

P ε

((
W

t

r−W
t

s

)−1
(E)

)
=ϕ(r−s, E)

(
P
(
Ac

∗∩{γ≤s}
)
+P

(
{γ≤s}∩A∗

)
+P{γ>s}

)
= ϕ(r−s, E).

II.c.2) We next show that

P ε

((
W

t

r−W
t

s

)−1
(E)∩A

)
=ϕ(r−s, E)P ε(A), ∀A∈Gt

s . (6.45)

(i) Let A∈Gt

s. Since A∩{γ>s}∈Gt

γ , one can derive from (6.37), (6.40), (6.44), the tower property and (6.39) that

P ε

((
W

t

r−W
t

s

)−1
(E)∩A∩{γ>s}

)
=P

(
Ac

∗∩
(
W

t

r−W
t

s

)−1
(E)∩A∩{γ>s}

)
+

∫
ω∈A∗

1{ω∈A∩{γ>s}}Q
ω

ε

(
(W

t

r−W
t

s)
−1(E)

)
P (dω)

=P
(
Ac

∗∩
(
W

t

r−W
t

s

)−1
(E)∩A∩{γ>s}

)
+P

(
A∗∩

(
W

t

r−W
t

s

)−1
(E)∩A∩{γ ≥ r}

)
+

∫
ω∈A∗

1{ω∈A∩{s<γ<r}}EP

[
1
(W

t
r−W

t
s)

−1(E)

∣∣∣FW
t

γ

]
(ω)P (dω)

=P
(
Ac

∗∩
(
W

t

r−W
t

s

)−1
(E)∩A∩{γ>s}

)
+P

(
A∗∩

(
W

t

r−W
t

s

)−1
(E)∩A∩{γ ≥ r}

)
+EP

[
EP

[
1{A∗∩A∩{s<γ<r}}1(W

t
r−W

t
s)

−1(E)

∣∣∣FW
t

γ

]]
=P

((
W

t

r−W
t

s

)−1
(E)∩A∩{γ>s}

)
=P

((
W

t

r−W
t

s

)−1
(E)

)
×P

(
A∩{γ>s}

)
=ϕ(r−s, E)P ε

(
A∩{γ>s}

)
, (6.46)

where we used the independence of
(
W

t

r−W
t

s

)−1
(E) from FW

t

s under P in the fifth equality above. This equality

directly verifies (6.45) for the case “s= t” as we assume {γ>t}=Ω (see the fifth line below (6.28)).

(ii) We then demonstrate (6.45) for the complicated case “s>t”:

Let 0≤ t1 ≤ · · · ≤ tn ≤ t, {Eo
i }ni=1 ⊂B(Rl) and set AX :=

n
∩
i=1
X

−1

ti (Eo
i )∈FX

t ⊂Gt

γ . We also let t= s1<s2< · · ·<

sm−1<sm=s with k≥2, let {Ej}mj=1⊂B(Rd+1+l) and set Am :=
m
∩

j=1

(
W

t

sj ,Υ
t

sj , Xsj

)−1
(Ej)∈Gt

s. Taking A=AX∩Am

in (6.46) renders that

P ε

((
W

t

r−W
t

s

)−1
(E)∩AX∩Am∩{γ>s}

)
=ϕ(r−s, E)P ε

(
AX∩Am∩{γ>s}

)
. (6.47)

By (6.29), the set A :=
(

n
∩
i=1

{x(ti)∈Eo
i }

)
∩
(

m
∩

j=1

(
W

t

sj , J
t

sj ,K
t

sj

)−1
(Ej)

)
∈FW

t

s satisfies Ωµ∩
(
NX∪NK

)c∩AX∩Am=

Ωµ∩
(
NX∪NK

)c∩A. Since W
t
is a Brownian motion under P and since Ac

∗∩{γ≤s}∈FW
t

s ,

P
(
Ac

∗∩
(
W

t

r−W
t

s

)−1
(E)∩AX∩Am∩{γ≤s}

)
=P

(
Ac

∗∩
(
W

t

r−W
t

s

)−1
(E)∩A∩{γ≤s}

)
=P

((
W

t

r−W
t

s

)−1
(E)

)
×P

(
Ac

∗∩A∩{γ≤s}
)
=ϕ(r−s, E)P

(
Ac

∗∩AX∩Am∩{γ≤s}
)
. (6.48)

It remains to show that
∫
ω∈A∗

Q
ω

ε

(
{γ ≤ s}∩ (W

t

r−W
t

s)
−1(E)∩AX ∩Am

)
P (dω) = ϕ(r−s, E)×

∫
ω∈A∗

Q
ω

ε

(
{γ ≤

s}∩AX∩Am

)
P (dω).
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Fix k = 1, · · · ,m−1. We set A
γ

k :=
k
∩

j=1

(
W

t

γ∧sj ,Υ
t

γ∧sj , Xγ∧sj

)−1
(Ej) ∈ Gt

γ∧sm−1
⊂ Gt

γ and let ω ∈ {sk < γ ≤

sk+1}∩A∗∩N
c

∗. By (5.1),

W
t

γ,ω∩
(

k
∩

j=1

(
W

t

sj ,Υ
t

sj , Xsj

)−1
(Ej)

)
=W

t

γ,ω∩
(

k
∩

j=1

(
W

t

γ∧sj ,Υ
t

γ∧sj , Xγ∧sj

)−1
(Ej)

)
=W

t

γ,ω∩A
γ

k . (6.49)

We set a
ω
:=

(
W

t

γ(ω),Υ
t

γ(ω),0
)
∈ Rd+1+l and define Aω

k :=
m
∩

j=k+1

(
W

tω
sj , J

ω

sj ,K
ω

sj

)−1(
Ej,ω

)
∈ FW

tω

s , where Ej,ω :={
x−a

ω
: x∈Ej

}
∈B(Rd+1+l). For j=k+1, · · · ,m and ω′∈Θ

t

γ,ω∩Ω
ω

µ∩
(
N ω

X ∪N ω

K

)c
, one can deduce from (6.36) that(

W
t

sj ,Υ
t

sj , Xsj

)
(ω′) ∈ Ej if and only if

(
W

tω
sj , J

ω

sj ,K
ω

sj

)
(ω′) =

(
W

tω
sj ,Υ

ω

sj , Xsj

)
(ω′) =

(
W

t

sj (ω
′)−W t

tω (ω
′),Υ

t

sj (ω
′)−

Υ
t

tω (ω
′), Xsj (ω

′)
)
=
(
W

t

sj ,Υ
t

sj , Xsj

)
(ω′)−a

ω
∈Ej,ω. So

(
m
∩

j=k+1

(
W

t

sj ,Υ
t

sj , Xsj

)−1
(Ej)

)
∩Θt

γ,ω∩Ω
ω

µ∩
(
N ω

X ∪N ω

K

)c
=

Aω

k ∩Θ
t

γ,ω∩Ω
ω

µ∩
(
N ω

X ∪N ω

K

)c
, which together with (6.49) shows that Am∩Θt

γ,ω∩Ω
ω

µ∩
(
N ω

X ∪N ω

K

)c
=A

γ

k∩A
ω

k ∩Θ
t

γ,ω∩
Ω

ω

µ∩
(
N ω

X ∪N ω

K

)c
.

As W
tω

is a Brownian motion with respect to the filtration FW
tω

under Q
ω

ε by (6.34), we can deduce from (6.35)

and (6.37) that

Q
ω

ε

(
(W

t

r−W
t

s)
−1(E)∩AX∩Am

)
=Q

ω

ε

{
AX∩Aγ

k∩A
ω

k ∩(W
t

r−W
t

s)
−1(E)

}
=1{ω∈AX∩A

γ
k}
Q

ω

ε

{
Aω

k ∩
(
W

tω
r −W tω

s

)−1

(E)
}

=1{ω∈AX∩A
γ
k}
Q

ω

ε

(
Aω

k

)
×Qω

ε

{(
W

tω
r −W tω

s

)−1

(E)
}
=Q

ω

ε

(
AX∩Aγ

k∩A
ω

k

)
ϕ(r−s, E)=Qω

ε

(
AX∩Am

)
ϕ(r−s, E),

and thus
∫
ω∈A∗

1{ω∈{sk<γ≤sk+1}}Q
ω

ε

(
(W

t

r−W
t

s)
−1(E)∩AX∩Am

)
P (dω)=ϕ(r−s, E)×

∫
ω∈A∗

1{ω∈{sk<γ≤sk+1}}Q
ω

ε

(
AX∩

Am

)
P (dω). Since {γ > 0}=Ω and since {γ ≤ s} ∈FW

t

γ∧s ⊂Gt

γ , taking summation from k=1 through k=m−1 and

using (6.37) yield that∫
ω∈A∗

Q
ω

ε

(
{γ≤s}∩(W t

r−W
t

s)
−1(E)∩AX∩Am

)
P (dω)=

∫
ω∈A∗

1{ω∈{γ≤s}}Q
ω

ε

(
(W

t

r−W
t

s)
−1(E)∩AX∩Am

)
P (dω)

=ϕ(r−s, E)×
∫
ω∈A∗

1{ω∈{γ≤s}}Q
ω

ε

(
AX∩Am

)
P (dω)=ϕ(r−s, E)×

∫
ω∈A∗

Q
ω

ε

(
{γ≤s}∩AX∩Am

)
P (dω).

Adding it to (6.47) and (6.48) reaches P ε

((
W

t

r−W
t

s

)−1
(E)∩AX∩Am

)
=ϕ(r−s, E)P ε

(
AX∩Am

)
. So the Lambda-

system Λ
t

s,r :=
{
A∈B

(
Ω
)
: P ε

((
W

t

r−W
t

s

)−1
(E)∩A

)
=ϕ(r−s, E)P ε

(
A
)}

contains the Pi-system
{(

n
∩
i=1

X
−1

ti (Eo
i )
)
∩
(

m
∩

j=1(
W

t

sj ,Υ
t

sj , Xsj

)−1
(Ej)

)
: 0≤ t1≤· · ·≤ tn≤ t=s1<s2< · · ·<sm−1<sm=s, {Eo

i }ni=1⊂B(Rl), {Ej}mj=1⊂B(Rd+1+l)
}
,

which generates Gt

s. In light of Dynkin’s Pi-Lambda Theorem, we obtain Gt

s⊂Λ
t

s,r, proving (6.45).

Hence, W
t
is a Brownian motion with respect to the filtration G

t
under P ε. Namely, P ε satisfies (D2) of Pt,x.

II.d) In this part, we demonstrate that P ε satisfies (D1 ) of Pt,x.

For any s∈ [t,∞), there is a [0, 1]−valued FW t

s −measurable random variable Υε
s on Ω0 such that

Υε
s

(
W (ω)

)
=EP ε

[
Υ

t

s

∣∣FW
t

s

]
(ω), ∀ω∈Ω.

Since W
t
is a Brownian motion with respect to the filtration G

t
under P ε by Part (II.c), applying Lemma A.1

with t0 = t, (Ω1,F1, P1, B
1) =

(
Ω,B(Ω), P ε,W

)
, (Ω2,F2, P2, B

2) =
(
Ω0,B(Ω0), P0,W

)
and Φ = W yields that{

Υε
s(W )

}
s∈[t,∞)

is an FW
t

−adapted process and that EP0

[
Υε

s

]
= EP ε

[
Υε

s(W )
]
= EP ε

[
Υ

t

s

]
is right-continuous in

s∈ [t,∞). As FW t,P0 is a right-continuous complete filtration, the process {Υε
s}s∈[t,∞) admits a càdlàg modification{

Υ̂ε
s

}
s∈[t,∞)

, which is a [0, 1]−valued FW t,P0−adapted process.

II.d.1) Define a process Û ε
s (ω0) := e

s lim
δ→0+

1
δ

(
Υ̂ε

s(ω0)−Υ̂ε
(s−δ)∨t(ω0)

)
, ∀ (s, ω0)∈ [t,∞)×Ω0. We use it to construct

in (6.54) a U−valued FW t−predictable process µε
· satisfying P ε

{
Us=µ

ε
s(W ) for a.e. s∈(t,∞)

}
=1.
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AsW
t
is a Brownian motion both under P and under P ε, taking t0= t, (Ω1,F1, P1, B

1)=
(
Ω,B(Ω), P or P ε,W

)
,

(Ω2,F2, P2, B
2)=

(
Ω0,B(Ω0), P0,W

)
and Φ=W in Lemma A.1 renders that

the process
{
Υ̂ε

s(W )
}
s∈[t,∞)

is both FW
t
,P−adapted and FW

t
,P ε−adapted

as well as that W
−1

(N )∈NP (F
W

t

∞ )∩NP ε
(FW

t

∞ ), ∀N ∈NP0

(
FW t

∞
)
. (6.50)

Given s∈ [t,∞), since
{
Υ̂ε

s ̸=Υε
s

}
∈NP0

(
FW t

∞
)
, (6.50) shows that N̂ ε

s :=
{
Υ̂ε

s(W ) ̸=Υε
s(W )

}
=W

−1
({

Υ̂ε
s ̸=Υε

s

})
∈

NP

(
FW

t

∞
)
∩NP ε

(FW
t

∞ ). Applying Lemma A.6 with
(
P ,W,F·, ξ

)
=
(
P ε, {W

t

s}s∈[t,∞),G
t
,Υ

t

s

)
, we obtain

Υ̂ε
s(W )=Υε

s(W )=EP ε

[
Υ

t

s

∣∣∣FW
t

s

]
=EP ε

[
Υ

t

s

∣∣∣FW
t

∞

]
, P ε−a.s. (6.51)

Let ζ be a [t,∞)−valued FW
t

−stopping time, let A∈FW
t

ζ
and let n∈N. We set sni := t+i2

−n, ∀ i∈N∪{0} and

define ζn :=
∑

i∈N s
n
i 1{ζ∈[sni−1,s

n
i )}

. For any i∈N, one can deduce from (6.51) and the monotone convergence theorem

that Υ̂ε
ζn

(W )=
∑

i∈N 1{ζ∈[sni−1,s
n
i )}

Υ̂ε
sni

(
W

)
=
∑

i∈N 1{ζ∈[sni−1,s
n
i )}
EP ε

[
Υ

t

sni

∣∣FW
t

∞

]
=EP ε

[∑
i∈N 1{ζ∈[sni−1,s

n
i )}

Υ
t

sni

∣∣FW
t

∞

]
=

EP ε

[
Υ

t

ζn

∣∣FW
t

∞

]
, P ε−a.s. As ζ= lim

n→∞
↓ ζn, the right-continuity of process Υ̂ε, Υ

t
and the bounded convergence the-

orem imply that

Υ̂ε
ζ

(
W

)
= lim

n→∞
Υ̂ε

ζn
(W )= lim

n→∞
EP ε

[
Υ

t

ζn

∣∣FW
t

∞

]
=EP ε

[
Υ

t

ζ

∣∣FW
t

∞

]
, P ε−a.s. (6.52)

As the right-continuous FW t,P0−adapted process
{
Υ̂ε

s

}
s∈[t,∞)

is FW t,P0−optional, the [−∞,∞]−valued pro-

cess {Û ε
s }s∈[t,∞) is also FW t,P0−optional. Similar to Lemma 2.4 of [44], we can construct a [−∞,∞]−valued

FW t−predictable process U ε = {U ε
s }s∈[t,∞) with U ε

s (ω0) = Û ε
s (ω0) for ds×dP0−a.s. (s, ω0) ∈ [t,∞)×Ω0. Using

Fubini Theorem, one can find a N ε
U ∈NP0

(
FW t

∞
)
such that for any ω0∈

(
N ε

U

)c
,

U ε
s (ω0)=Û ε

s (ω0) for a.e. s∈ [t,∞). (6.53)

By (6.50), N ε

U :=W
−1(N ε

U

)
∈NP

(
FW

t

∞
)
∩NP ε

(
FW

t

∞
)
. We define a U−valued FW t−predictable process by

µε
s(ω0) :=I −1

(
U ε

s (ω0)
)
1{U ε

s (ω0)∈E}+u01{U ε
s (ω0)/∈E}∈U, ∀ (s, ω0)∈ [t,∞)×Ω0. (6.54)

II.d.2) We next show that P ε

{
ω∈Ω: µε

s

(
W (ω)

)
=Us(ω) for a.e. s∈(t, γ(ω))

}
=1.

Let s∈ [t,∞) and let A∈FW
t

∞ . Since Υ
t

γ∧s∈Gt

γ and J
t

γ∧s∈FW
t

γ∧s⊂Gt

γ , (6.37) and (6.29) show that EP ε

[
1AΥ

t

γ∧s

]
=

EP

[
1Ac

∗∩AΥ
t

γ∧s

]
+
∫
ω∈A∗

Υ
t

γ∧s(ω)Q
ω

ε

(
A
)
P (dω) = EP

[
1Ac

∗∩AJ
t

γ∧s

]
+
∫
ω∈A∗

J
t

γ∧s(ω)Q
ω

ε

(
A
)
P (dω) = EP ε

[
1AJ

t

γ∧s

]
.

Letting A varies over FW
t

∞ and taking ζ=γ∧s in (6.52), we obtain J
t

γ∧s=EP ε

[
Υ

t

γ∧s

∣∣FW
t

∞
]
=Υ̂ε

γ∧s(W ), P ε−a.s. By

the right-continuity of processes J
t
and Υ̂ε, it holds for all ω∈Ω except on aN ε

1 ∈NP ε

(
FW

t

∞
)
that Υ̂ε

s

(
W (ω)

)
=J

t

s(ω),

∀ s∈
[
t, γ(ω)

]
.

Let ω∈
(
N ε

U ∪N ε

1

)c
. Since the Lebesgue differentiation theorem yields that

lim
δ→0+

1

δ

(
Υ̂ε

s

(
W (ω)

)
−Υ̂ε

(s−δ)∨t

(
W (ω)

))
= lim

δ→0+

1

δ

(
J

t

s(ω)−J
t

(s−δ)∨t(ω)
)
= lim

δ→0+

1

δ

∫ s

(s−δ)∨t

e−rI
(
µr(ω)

)
dr=e−sI

(
µs(ω)

)
for a.e. s∈

(
t, γ(ω)

)
, we see from (6.53) that U ε

s

(
W (ω)

)
= Û ε

s

(
W (ω)

)
= es lim

δ→0+

1
δ

(
Υ̂ε

s

(
W (ω)

)
−Υ̂ε

(s−δ)∨t

(
W (ω)

))
=

I
(
µs(ω)

)
for a.e. s∈

(
t, γ(ω)

)
. Thus,

Â
ε
1 :=

{
ω∈Ω: µε

s

(
W (ω)

)
=µs(ω) for a.e. s∈(t, γ(ω))

}
⊃
(
N ε

U ∪N ε

1

)c
. (6.55)

As
{ ∫ s

t
e−rI

(
µε
r

)
dr
}
s∈[t,∞)

is an FW t−adapted process, Lemma A.1 (1) shows that
{ ∫ s

t
e−rI

(
µε
r(W )

)
dr
}
s∈[t,∞)

is an FW
t

−adapted continuous process, which together with the FW
t

−adaptedness of continuous process J
t
implies

Â
ε
1 =

{∫ γ∧s

t

e−rI
(
µε
r

(
W

))
dr=J

t

γ∧s, ∀ s∈ [t,∞)
}
= ∩

s∈Q∩[t,∞)

{∫ γ∧s

t

e−rI
(
µε
r

(
W

))
dr=J

t

γ∧s

}
∈FW

t

γ ⊂Gt

γ . (6.56)
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Then we can derive from (6.39) and (6.55) that 1=P ε

(
(N ε

U ∪N ε

1

)c)≤P ε

(
Â

ε
1

)
=P

(
Â

ε
1

)
. Similar to (6.56),

Aε

1 :=
{
ω∈Ω: µε

s

(
W (ω)

)
=Us(ω) for a.e. s∈(t, γ(ω))

}
= ∩

s∈Q∩[t,∞)

{
Υ

t

γ∧s=

∫ γ∧s

t

e−rI
(
µε
r(W )

)
dr
}
∈Gt

γ .

Applying (6.39) again renders that

P ε

(
Aε

1

)
=P

(
Aε

1

)
=P

(
Ωµ∩A

ε

1

)
=P

(
Ωµ∩Â

ε
1

)
=P

(
Â

ε
1

)
=1. (6.57)

II.d.3) The demonstration of P ε

{
ω ∈Ω : µε

s

(
W (ω)

)
=Us(ω) for a.e. s∈

(
γ(ω),∞

)}
=1 is technically involved, we

will carefully verify it.

(i) Set Aε

2 :=
{
ω∈Ω: µε

s

(
W (ω)

)
=Us(ω) for a.e. s∈

(
γ(ω),∞

)}
. We first show that P

(
Ac

∗
)
=P

(
Ac

∗∩A
ε

2

)
.

Let s∈ [t,∞) and let A∈FW
t

∞ . Since EP ε

[
1Ac

∗∩A

(
Υ

t

s−Υ
t

γ∧s

)]
=EP

[
1Ac

∗∩A

(
Υ

t

s−Υ
t

γ∧s

)]
=EP

[
1Ac

∗∩A

(
J

t

s−J
t

γ∧s

)]
=

EP ε

[
1Ac

∗∩A

(
J

t

s−J
t

γ∧s

)]
by (6.29), letting A varies over FW

t

∞ and using (6.52) again yield that

1Ac
∗

(
J

t

s−J
t

γ∧s

)
=EP ε

[
1Ac

∗

(
Υ

t

s−Υ
t

γ∧s

)∣∣FW
t

∞
]
=1Ac

∗
EP ε

[(
Υ

t

s−Υ
t

γ∧s

)∣∣FW
t

∞
]
=1Ac

∗

(
Υ̂ε

s(W )−Υ̂ε
γ∧s(W )

)
, P ε−a.s.

The right-continuity of processes J
t
and Υ̂ε assures an N ε

2 ∈NP ε

(
FW

t

∞
)
such that for any ω∈

(
A∗∪N

ε

2

)c
and any

s∈ [γ(ω),∞), one has Υ̂ε
s

(
W (ω)

)
−Υ̂ε

(
γ(ω),W (ω)

)
=J

t

s(ω)−J
t(
γ(ω), ω

)
.

Let ω ∈
(
A∗∪N

ε

U ∪N ε

2

)c
. Since the Lebesgue differentiation theorem implies that lim

δ→0+

1
δ

(
Υ̂ε

s

(
W (ω)

)
−Υ̂ε

(
(s−

δ)∨γ(ω),W (ω)
))

= lim
δ→0+

1
δ

(
J

t

s(ω)−J
t(
(s−δ)∨γ(ω), ω

))
= lim

δ→0+

1
δ

∫ s

(s−δ)∨γ(ω)
e−rI

(
µr(ω)

)
dr = e−sI

(
µs(ω)

)
for

a.e. s∈
(
γ(ω),∞

)
, (6.53) shows that U ε

s

(
W (ω)

)
= Û ε

s

(
W (ω)

)
= es lim

δ→0+

1
δ

(
Υ̂ε

s

(
W (ω)

)
−Υ̂ε

(
(s−δ)∨γ(ω),W (ω)

))
=

I
(
µs(ω)

)
for a.e. s∈

(
γ(ω),∞

)
. So Â

ε
2 :=

{
ω∈Ω: µε

s

(
W (ω)

)
=µs(ω) for a.e. s∈

(
γ(ω),∞

)}
⊃Ac

∗∩
(
N ε

U ∪N ε

2

)c
. As

P ε

(
Ac

∗
)
=P ε

(
Ac

∗∩(N
ε

U ∪N ε

2

)c)≤P ε

(
Ac

∗∩Â
ε
2

)
≤P ε

(
Ac

∗
)
, we obtain that

P
(
Ac

∗
)
=P ε

(
Ac

∗
)
=P ε

(
Ac

∗∩Â
ε
2

)
=P

(
Ac

∗∩Â
ε
2

)
=P

(
Ωµ∩A

c

∗∩Â
ε
2

)
=P

(
Ωµ∩A

c

∗∩A
ε

2

)
=P

(
Ac

∗∩A
ε

2

)
. (6.58)

(ii) We next show that Q
ω

ε

(
Aε

2

)
=1 for P−a.s. ω∈A∗, then P ε

(
Aε

2

)
=1 easily follows.

We denote Qt :={t+ q : q∈Q+} and set N ε

Υ := ∪
s∈Qt

{
Υ̂ε

s(W ) ̸=Υε
s(W )

}
∈NP

(
FW

t

∞
)
∩NP ε

(
FW

t

∞
)
.

Fix s∈Qt. Given k ∈N, we set ski := t+i2−k(s−t) for i=0, 1, · · · , 2k. Since
{
Υε

r(W )
}
r∈[t,∞)

is a [0, 1]−valued

FW
t

−adapted process, the random variable ξ
ε,k

s :=1{γ≥s}Υ
ε
s(W )+

∑2k

i=1 1{ski−1≤γ<ski }Υ
ε

ski
(W )∈ [0, 1] is FW

t

s −measurable.

Then ξ
ε

s := lim
k→∞

ξ
ε,k

s is also a [0, 1]−valued FW
t

s −measurable random variable.

For any ω∈
(
N ε

Υ

)c
, the right-continuity of process Υ̂ε shows that Υ̂ε

(
γ(ω)∧s,W (ω)

)
= lim

k→∞

(
1{γ(ω)≥s}Υ̂

ε
s

(
W (ω)

)
+∑2k

i=1 1{ski−1≤γ(ω)<ski }Υ̂
ε
ski

(
W (ω)

))
= lim

k→∞
ξ
ε,k

s (ω)=ξ
ε

s(ω) and thus

Υ̂ε
s

(
W (ω)

)
−Υ̂ε

(
γ(ω)∧s,W (ω)

)
=Υε

s

(
W (ω)

)
−ξεs(ω). (6.59)

As N ε

U ∪N ε

Υ ∈NP ε

(
FW

t

∞
)
, there exists A

ε

U ∈ FW
t

∞ such that N ε

U ∪N ε

Υ ⊂ A
ε

U and P ε

(
A

ε

U

)
= 0, which implies 0 ≤∫

ω∈A∗
Q

ω

ε

(
A

ε

U

)
P (dω)≤P ε

(
A

ε

U

)
=0. Since the random variable Ω ∋ ω 7→Q

ω

ε

(
A

ε

U

)
is σ

(
FW

t

γ ∪NP

(
Gt

∞
))

−measurable

by (6.32), there exists N
ε

U ∈NP

(
Gt

∞
)
such that for any ω∈A∗∩

(
N ∗∪N

ε

U

)c
Q

ω

ε

(
A

ε

U

)
=0 and thus N ε

U ∪N ε

Υ∈N
Q

ω
ε

(
FW

t

∞
)
. (6.60)

Let
{
Oj

}
j∈N be a countable Pi-system that generates FW

t

s . Let j∈N and A∈FW
t

γ . One can deduce from (6.37),

(6.59) and (6.52) that∫
ω∈Ω

1{ω∈A∗∩A}EQ
ω
ε

[
1Oj

(
Υε

s(W )−ξεs
)]
P (dω)=EP ε

[
1A∗∩A∩Oj

(
Υε

s(W )−ξεs
)]

=EP ε

[
1A∗∩A∩Oj

(
Υ̂ε

s(W )−Υ̂ε
γ∧s(W )

)]
=EP ε

[
1A∗∩A∩Oj

EP ε

[
Υ

t

s−Υ
t

γ∧s

∣∣∣FW
t

∞

]]
=EP ε

[
EP ε

[
1A∗∩A∩Oj

(
Υ

t

s−Υ
t

γ∧s

)∣∣∣FW
t

∞

]]
=EP ε

[
1A∗∩A∩Oj

(
Υ

t

s−Υ
t

γ∧s

)]
=

∫
ω∈Ω

1{ω∈A∗∩A}EQ
ω
ε

[
1Oj

(
Υ

t

s−Υ
t

γ∧s

)]
P (dω) .
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So the Lambda-system Λ
ε

s,j :=
{
A∈BP (Ω):

∫
ω∈Ω

1{ω∈A∗∩A}EQ
ω
ε

[
1Oj

(
Υε

s(W )−ξεs
)]
P (dω)=

∫
ω∈Ω

1{ω∈A∗∩A}EQ
ω
ε

[
1Oj(

Υ
t

s−Υ
t

γ∧s

)]
P (dω)

}
contains FW

t

γ and NP

(
B(Ω)

)
. As FW

t

γ ∪NP

(
B
(
Ω
))

is closed under intersection, we know from

Dynkin’s Pi-Lambda Theorem that σ
(
FW

t

γ ∪NP

(
B(Ω)

))
⊂Λ

ε

s,j or∫
ω∈Ω

1{ω∈A∗∩A}EQ
ω
ε

[
1Oj

(
Υε

s(W )−ξεs
)]
P (dω)

=

∫
ω∈Ω

1{ω∈A∗∩A}EQ
ω
ε

[
1Oj

(
Υ

t

s−Υ
t

γ∧s

)]
P (dω), ∀A∈σ

(
FW

t

γ ∪NP

(
B
(
Ω
)))

. (6.61)

Taking ϕ=1Oj

(
Υε

s(W )−ξεs
)
and ϕ=1Oj

(
Υ

t

s−Υ
t

γ∧s

)
respectively in (6.32) shows that Ω ∋ ω 7→E

Q
ω
ε

[
1Oj

(
Υε

s(W )−

ξ
ε

s

)]
and Ω ∋ ω 7→E

Q
ω
ε

[
1Oj

(
Υ

t

s−Υ
t

γ∧s

)]
are two [−1, 1]−valued σ

(
FW

t

γ ∪NP

(
Gt

∞
))

−measurable random variables.

Letting A run through σ
(
FW

t

γ ∪NP

(
Gt

∞
))

in (6.61), we can find an N
ε

s,j ∈NP

(
Gt

∞
)
such that for any ω∈

(
N

ε

s,j

)c
1{ω∈A∗∩N c

∗}
E

Q
ω
ε

[
1Oj

(
Υε

s(W )−ξεs
)]

=1{ω∈A∗∩N c
∗}
E

Q
ω
ε

[
1Oj

(
Υ

t

s−Υ
t

γ∧s

)]
. (6.62)

Set N
ε

s := ∪
j∈N

N
ε

s,j ∈ NP

(
Gt

∞
)
and let ω ∈ A∗∩

(
N ∗∪N

ε

U ∪N
ε

s

)c
. Since it holds for any ω′ ∈ W

t

γ,ω ∩Ω
ω

µ that

Υ
t

s(ω
′)−Υ

t(
γ(ω′)∧s, ω′)=Υ

t

s(ω
′)−Υ

t(
γ(ω)∧s, ω′)=∫ s

γ(ω)∧s
e−rI

(
Ur(ω

′)
)
dr=

∫ γ(ω)∨s

γ(ω)
e−rI

(
µω
r (ω

′)
)
dr=Υ

ω

tω∨s(ω
′)

by (5.1), we can deduce from (6.59), (6.60), (6.62), (6.35) and (6.36) that for any j∈N

E
Q

ω
ε

[
1Oj

(
Υ̂ε

s(W )−Υ̂ε
γ∧s(W )

)]
=E

Q
ω
ε

[
1Oj

(
Υε

s(W )−ξεs
)]

=E
Q

ω
ε

[
1Oj

(
Υ

t

s−Υ
t

γ∧s

)]
=E

Q
ω
ε

[
1Oj

Υ
ω

tω∨s

]
=E

Q
ω
ε

[
1Oj

J
ω

tω∨s

]
.

Then Dynkin’s Pi-Lambda Theorem implies that the Lambda-system
{
E ∈B

Q
ω
ε

(
Ω
)
: E

Q
ω
ε

[
1E

(
Υ̂ε

s(W )−Υ̂ε
γ∧s(W )

)]
=

E
Q

ω
ε

[
1EJ

ω

tω∨s

]}
includes FW

t

s and thus contains FW
t
,Q

ω
ε

s =σ
(
FW

t

s ∪N
Q

ω
ε

(
FW

t

∞
))

:

E
Q

ω
ε

[
1E

(
Υ̂ε

s(W )−Υ̂ε
γ∧s(W )

)]
=E

Q
ω
ε

[
1EJ

ω

tω∨s

]
, ∀ E ∈FW

t
,Q

ω
ε

s . (6.63)

If γ(ω)≥s, then FW
tω

tω∨s =FW
tω

tω ={∅,Ω}⊂FW
t

s ; if γ(ω)<s, then FW
tω

tω∨s =FW
tω

s =σ
((
W

tω
r

)−1
(E) : r∈

[
γ(ω), s

]
, E ∈

B(Rd)
)
=σ

((
W

t

r−W
t

tω

)−1
(E) : r∈

[
γ(ω), s

]
, E ∈B(Rd)

)
⊂FW

t

s . In both cases, we see that J
ω

tω∨s ∈FW
tω

tω∨s ⊂FW
t

s .

Since Υ̂ε
s(W )−Υ̂ε

γ∧s(W ) is FW
t
,Q

ω
ε

s −measurable by (6.59) and (6.60), letting E run through FW
t
,Q

ω
ε

s in (6.63), we

can find some N
ε

s,ω∈N
Q

ω
ε

(
FW

t

∞
)
such that

Υ̂ε
s

(
W (ω′)

)
−Υ̂ε

(
γ(ω′)∧s,W (ω′)

)
=J

ω

tω∨s

(
ω′), ∀ω′∈

(
N

ε

s,ω

)c
. (6.64)

Now, set N
ε

♯ := ∪
s∈Qt

N
ε

s= ∪
s∈Qt

∪
j∈N

N
ε

s,j ∈NP

(
Gt

∞
)
and fix ω∈A∗∩

(
N ∗∪N

ε

U∪N
ε

♯

)c
. We also set N

ε

♯,ω := ∪
s∈Qt

N
ε

s,ω∈

N
Q

ω
ε

(
FW

t

∞
)
and let ω′ ∈ W

t

γ,ω ∩
(
N ε

U ∪N
ε

♯,ω

)c
. The right-continuity of process Υ̂ε, (5.1) and (6.64) render that

Υ̂ε
s

(
W (ω′)

)
−Υ̂ε

(
tω,W (ω′)

)
=
∫ s

tω
e−rI

(
µω
r

(
ω′))dr, ∀ s∈ [tω,∞). By the Lebesgue differentiation theorem, we have

lim
δ→0+

1
δ

(
Υ̂ε

s

(
W (ω′)

)
−Υ̂ε

(
(s−δ)∨tω,W (ω′)

))
= lim

δ→0+

1
δ

∫ s

(s−δ)∨tω
e−rI

(
µω
r

(
ω′))dr=e−sI

(
µω
s

(
ω′)) for a.e. s∈(tω,∞)

and thus U ε
s

(
W (ω′)

)
=Û ε

s

(
W (ω′)

)
=es lim

δ→0+

1
δ

(
Υ̂ε

s

(
W (ω′)

)
−Υ̂ε

(
(s−δ)∨tω,W (ω′)

))
=I

(
µω
s

(
ω′)) for a.e. s∈(tω,∞).

It follows that Â
ε
2,ω :=

{
ω′ ∈Ω : µε

s

(
W (ω′)

)
= µω

s (ω
′) for a.e. s∈ (tω,∞)

}
⊃W

t

γ,ω∩
(
N ε

U ∪N
ε

♯,ω

)c
. Then (6.35) and

(6.60) show that 1=Q
ω

ε

{
W

t

γ,ω∩
(
N ε

U ∪Nε

♯,ω

)c}≤Qω

ε

(
Â

ε
2,ω

)
. Since W

t

γ,ω∩Ω
ω

µ∩A
ε

2=W
t

γ,ω∩Ω
ω

µ∩
{
ω′∈Ω: µε

s

(
W (ω′)

)
=

Us(ω
′) for a.e. s∈

(
tω,∞

)}
=W

t

γ,ω∩Ω
ω

µ∩Â
ε
2,ω, we further see that

Q
ω

ε

(
Aε

2

)
=Q

ω

ε

(
Â

ε
2,ω

)
=1, ∀ω∈A∗∩

(
N ∗∪N

ε

U∪Nε

♯

)c
, (6.65)

which together with (6.57) and (6.58) yields that

P ε

{
Us=µ

ε
s(W ), for a.e. s∈(t,∞)

}
=P ε

(
Aε

1∩A
ε

2

)
=P ε

(
Aε

2

)
=P

(
Ac

∗∩A
ε

2

)
+

∫
ω∈A∗

Q
ω

ε

(
Aε

2

)
P (dω)=P

(
Ac

∗
)
+P

(
A∗

)
=1.
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Hence, P ε satisfies (D1) of Pt,x. We set µε
s :=µ

ε
s(W ), ∀ s∈ [t,∞).

II.e) In this part, we use the martingale-problem formulation to demonstrate that
{
M

t,µε

s∧τt
n
(φ)

}
s∈[t,∞)

is a bounded(
F

t
, P ε

)
−martingale for any (φ, n)∈C(Rd+l)×N. Consequently, P ε satisfies (D2 ′) of Pt,x and thus satisfies (D3 )

of Pt,x.

II.e.1) Fix (φ, n) ∈ C(Rd+l)×N and set ΩX :=
{
Xs = x(s), ∀ s ∈ [0, t]

}
. We know from the proof of Proposition

5.1 that Ω
c

X ⊂ NX =
{
ω ∈ Ω : Xs(ω) ̸= X

t,x,µ

s (ω) for some s ∈ [0,∞)
}
⊂ N 1 ⊂ N ∗. Given ω ∈ A∗∩N c

∗ ⊂ ΩX ,

one has Ω
t

γ,ω ⊂
{
ω′ ∈ Ω : Xs(ω

′) =Xs(ω), ∀ s ∈ [0, t]
}
= ΩX and (6.35) implies that Q

ω

ε

(
ΩX

)
= 1. As P

(
ΩX

)
= 1

by (D2′) of Remark 3.1, one can deduce that P ε

(
ΩX

)
= P

(
Ac

∗∩ΩX

)
+
∫
ω∈A∗∩N c

∗
1 ·P (dω) = P

(
Ac

∗
)
+P (A∗) = 1.

Applying Proposition 1.2 with (Ω,F , P,B,X, µ) =
(
Ω,B(Ω), P ε,W ,X, µε

)
renders that

{
M

t,µε

s∧τt
n
(φ)

}
s∈[t,∞)

is a

bounded F
t−adapted process under P ε.

To show the P ε−martingality of
{
M

t,µε

s∧τt
n
(φ)

}
s∈[t,∞)

, we let t≤ s<r<∞, {(si, Ei)}ki=1⊂ [t, s]×B(Rd+l) and set

A :=
k
∩
i=1

(W
t

si , Xsi)
−1(Ei)∈F t

s. We need to verify that

EP ε

[(
M

t,µε

τt
n∧r(φ)−M

t,µε

τt
n∧s(φ)

)
1A

]
=0. (6.66)

If t+n≤s, one directly has EP ε

[(
M

t,µε

τt
n∧r(φ)−M

t,µε

τt
n∧s(φ)

)
1A

]
=EP ε

[(
M

t,µε

τt
n

(φ)−M t,µε

τt
n

(φ)
)
1A

]
=0 since τ tn≤ t+n≤s.

II.e.2) Assume t+n>s. To obtain (6.66) for the this case, we first show that

EP ε

[
1{γ>s}

(
M

t,µε

τt
n∧r(φ)−M

t,µε

τt
n∧s(φ)

)
1A

]
=0. (6.67)

(i) For any ω∈Âε
1 and any t≤r1≤r2≤γ(ω), we have

(
M

t,µε

r2 (φ)
)
(ω)−

(
M

t,µε

r1 (φ)
)
(ω)=

(
M

t,µ

r2 (φ)
)
(ω)−

(
M

t,µ

r1 (φ)
)
(ω).

So 1Âε
1

(
M

t,µε

τt
n∧γ∧r(φ)−M

t,µε

τt
n∧γ∧s(φ)

)
=1Âε

1

(
M

t,µ

τt
n∧γ∧r(φ)−M

t,µ

τt
n∧γ∧s(φ)

)
and (6.57) renders that EP ε

[(
M

t,µε

τt
n∧γ∧r(φ)−

M
t,µε

τt
n∧s(φ)

)
1{γ>s}∩A

]
=EP ε

[(
M

t,µε

τt
n∧γ∧r(φ)−M

t,µε

τt
n∧γ∧s(φ)

)
1{γ>s}∩A

]
=EP ε

[(
M

t,µ

τt
n∧γ∧r(φ)−M

t,µ

τt
n∧γ∧s(φ)

)
1{γ>s}∩A

]
.

Since {γ >s}∩A={γ >s}∩
(

k
∩
i=1

(W
t

γ∧si , Xγ∧si)
−1(Ei)

)
∈F t

γ∧s and M
t,µ

τt
n∧γ∧r(φ)−M

t,µ

τt
n∧γ∧s(φ)∈F t

γ∧r, using (6.39)

and applying (3.2) with (a, ζ1, ζ2)=
(
0, γ∧s, γ∧r

)
yield that

EP ε

[(
M

t,µε

τt
n∧γ∧r(φ)−M

t,µε

τt
n∧s(φ)

)
1{γ>s}∩A

]
=EP

[(
M

t,µ

τt
n∧γ∧r(φ)−M

t,µ

τt
n∧γ∧s(φ)

)
1{γ>s}∩A

]
=0. (6.68)

It also holds for any ω∈Âε
2 and any γ(ω)≤r1≤r2<∞ that

(
M

t,µε

r2 (φ)
)
(ω)−

(
M

t,µε

r1 (φ)
)
(ω)=

(
M

t,µ

r2 (φ)
)
(ω)−

(
M

t,µ

r1 (φ)
)
(ω). (6.69)

As P
(
Ac

∗ ∩
(
Â

ε
2

)c)
=0 by (6.58), taking

(
a, ζ1, ζ2

)
=
(
0, γ, γ∨r

)
in (3.2), we obtain

EP

[
1Ac

∗

(
M

t,µε

τt
n∧(γ∨r)(φ)−M

t,µε

τt
n∧γ(φ)

)
1{γ>s}∩A

]
=EP

[
1
Ac

∗∩Â
ε

2

(
M

t,µε

τt
n∧(γ∨r)(φ)−M

t,µε

τt
n∧γ(φ)

)
1{γ>s}∩A

]
=EP

[
1
Ac

∗∩Â
ε

2

(
M

t,µ

τt
n∧(γ∨r)(φ)−M

t,µ

τt
n∧γ(φ)

)
1{γ>s}∩A

]
=EP

[
1Ac

∗

(
M

t,µ

τt
n∧(γ∨r)(φ)−M

t,µ

τt
n∧γ(φ)

)
1{γ>s}∩A

]
=0.

It follows from (6.37) that

EP ε

[(
M

t,µε

τt
n∧r(φ)−M

t,µε

τt
n∧γ∧r(φ)

)
1{γ>s}∩A

]
=

∫
ω∈A∗

1{γ(ω)>s}1{ω∈A }EQ
ω
ε

[
M

t,µε

τt
n∧(γ∨r)(φ)−M

t,µε

τt
n∧γ(φ)

]
P (dω). (6.70)

(ii) For ω∈A∗∩
(
N ∗∪N

ε

U∪N
ε

♯

)c
, we define a C2(Rd+l) function φ

ω
(w, x) :=φ

(
w+W

t

γ(ω), x
)
, (w, x)∈Rd+l and define

an F
tω−stopping time ζ

n

ω(ω
′) :=inf

{
s∈ [tω,∞) :

∣∣(W tω
s , Xs)(ω

′)−a
ω

∣∣≥n}, ω′∈Ω with a
ω
:=

(
−W t

γ(ω),0
)
∈Rd+l. For

i=0, 1, 2 and ω′ ∈W
t

γ,ω∩Â
ε
2,ω, since D

iφ
(
W

t

r(ω
′), Xr(ω

′)
)
=Diφ

(
W

t

r(ω
′)−W t

(γ(ω), ω′)+W
t
(γ(ω), ω), Xr(ω

′)
)
=
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Diφ
ω

(
W

tω
r (ω′), Xr(ω

′)
)
, ∀ r∈ [tω,∞), we obtain(

M
t,µε

r2 (φ)
)
(ω′)−

(
M

t,µε

r1 (φ)
)
(ω′)

=−
∫ r2

r1

b
(
r,Xr∧·(ω

′), µε
r(ω

′)
)
·Dφ

(
W

t

r (ω
′), Xr(ω

′)
)
dr− 1

2

∫ r2

r1

σ σT
(
r,Xr∧·(ω

′), µε
r(ω

′)
)
:D2φ

(
W

t

r (ω
′), Xr(ω

′)
)
dr

=−
∫ r2

r1

b
(
r,Xr∧·(ω

′), µω
r (ω

′)
)
·Dφ

ω

(
W

tω
r (ω′), Xr(ω

′)
)
dr− 1

2

∫ r2

r1

σ σT
(
r,Xr∧·(ω

′), µω
r (ω

′)
)
:D2φ

ω

(
W

tω
r (ω′), Xr(ω

′)
)
dr

=
(
M

tω,µω

r2 (φω)
)
(ω′)−

(
M

tω,µω

r1 (φω)
)
(ω′), ∀ tω≤r1≤r2<∞. (6.71)

(iii) Fix ω∈
{
τ tn>γ

}
∩A∗∩

(
N ∗∪N

ε

U∪Nε

♯

)c
and set r

ω
:= tω∨r. Since tω=γ(ω)<τ tn(ω)≤ t+n, applying (3.2) with

(t,x, P , µ, φ, a, ζ1, ζ2)=
(
tω, Xγ∧·(ω), Q

ω

ε , µ
ω, φ

ω
, a

ω
, tω, rω∧(t+n)

)
yields that

0=E
Q

ω
ε

[
M

tω, µω

ζ
n

ω∧(tω+n)∧r
ω
∧(t+n)(φω

)−M
tω, µω

ζ
n

ω∧(tω+n)∧tω (φω
)
]
=E

Q
ω
ε

[
M

tω, µω

ζ
n

ω∧r
ω
∧(t+n)(φω

)−M tω,µω

tω (φ
ω
)
]
. (6.72)

Because ω ∈
{
ω′ ∈Ω : τ tn(ω

′)>γ(ω)
}
∈F t

γ(ω) ⊂Gt

γ(ω), an analogy to (6.38) shows that Θ
t

γ,ω ⊂
{
ω′ ∈Ω : τ tn(ω

′)>

γ(ω)
}
. Let ω′ ∈Θ

t

γ,ω∩Â
ε
2,ω. Since inf

{
s∈ [t,∞) :

∣∣(W t

s, Xs)(ω
′)
∣∣≥n

}
≥ τ tn(ω

′)>γ(ω), one has
∣∣(W t

s, Xs)(ω
′)
∣∣<n,

∀ s∈ [t, tω] and thus

inf
{
s∈ [t,∞) : |(W t

s, Xs)(ω
′)|≥n

}
=inf

{
s∈ [tω,∞) :

∣∣(W t

s(ω
′)−W t

(γ(ω), ω′), Xs(ω
′)
)
+
(
W

t

γ(ω),0
)∣∣≥n}=ζnω(ω′).

It follows that τ tn(ω
′)=ζ

n

ω(ω
′)∧(t+n). Taking (r1, r2)=

(
tω, τ

t
n(ω

′)∧r
ω

)
in (6.71), we can deduce from (5.1) that(

M
t,µε

(φ)
)(
τ tn(ω

′)∧(γ(ω′)∨r), ω′)−(
M

t,µε

(φ)
)(
γ(ω′), ω′)=(

M
t,µε

(φ)
)(
τ tn(ω

′)∧(γ(ω)∨r), ω′)−(
M

t,µε

(φ)
)(
γ(ω), ω′)

=
(
M

tω,µω

(φ
ω
)
)(
ζ
n

ω(ω
′)∧(t+n)∧r

ω
, ω′)−(

M
tω,µω

(φ
ω
)
)
(tω, ω

′).

As {τ tn>γ}∈F t

τt
n∧γ⊂Gt

γ , (6.37), (6.35), (6.65) and (6.72) then imply that

E
Q

ω
ε

[
M

t,µε

τt
n∧(γ∨r)(φ)−M

t,µε

τt
n∧γ(φ)

]
=E

Q
ω
ε

[
1{τt

n>γ}
(
M

t,µε

τt
n∧(γ∨r)(φ)−M

t,µε

γ (φ)
)]
=1{τt

n(ω)>γ(ω)}EQ
ω
ε

[
M

t,µε

τt
n∧(γ∨r)(φ)−M

t,µε

γ (φ)
]

=1{τt
n(ω)>γ(ω)}EQ

ω
ε

[
M

tω, µω

ζ
n

ω∧(t+n)∧r
ω
(φ

ω
)−M tω,µω

tω (φ
ω
)
]
=0, ∀ω∈A∗∩

(
N ∗∪N

ε

U∪Nε

♯

)c
.

Thus
∫
ω∈A∗

1{γ(ω)>s}1{ω∈A }EQ
ω
ε

[
M

t,µε

τt
n∧(γ∨r)(φ)−M

t,µε

τt
n∧γ(φ)

]
P (dω)=0, which together with (6.70) and (6.68) leads

to (6.67) for the case “ t+n>s”.

II.e.3) If t+n>s= t, as {γ>t}=Ω, (6.67) directly becomes (6.66). We further assume t+n>s>t and continue to

verify (6.66). In this case, we can also assume without loss of generality that t=s1< · · ·<sk=s with k≥2.

Since (6.69) renders that 1Âε
2
1{γ≤s}

(
M

t,µε

τt
n∧r(φ)−M

t,µε

τt
n∧s(φ)

)
= 1Âε

2
1{γ≤s}

(
M

t,µ

τt
n∧r(φ)−M

t,µ

τt
n∧s(φ)

)
and since

Ac

∗∩{γ≤s}∈FW
t

s ⊂F t

s, using P
(
Ac

∗ ∩
(
Â

ε
2

)c)
=0 and taking (a, ζ1, ζ2)=(0, s, r) in (3.2) yield that

EP

[
1Ac

∗∩{γ≤s}
(
M

t,µε

τt
n∧r(φ)−M

t,µε

τt
n∧s(φ)

)
1A

]
=EP

[
1Ac

∗∩{γ≤s}
(
M

t,µ

τt
n∧r(φ)−M

t,µ

τt
n∧s(φ)

)
1A

]
=0. (6.73)

(i) Fix i∈{1, · · ·, k−1} and fix ω∈
{
τ tn>γ

}
∩
{
si<γ≤si+1

}
∩A∗∩

(
N ∗∪N

ε

U∪Nε

♯

)c
. Since W

t

γ,ω⊂{γ>si} by (5.1),

Ai :=
i
∩

j=1

(
W

t

γ∧sj , Xγ∧sj

)−1
(Ej)∈F t

γ satisfies that

W
t

γ,ω∩
(

i
∩

j=1

(
W

t

sj , Xsj

)−1
(Ej)

)
=W

t

γ,ω∩Ai. (6.74)

Also, (5.1) shows that W
t

γ,ω⊂{γ≤s} and thus W
t

γ,ω∩{τ tn≤γ}⊂{τ tn≤s}. We see from (6.35) that

E
Q

ω
ε

[
1{τt

n≤γ}
(
M

t,µε

τt
n∧r(φ)−M

t,µε

τt
n∧s(φ)

)
1A

]
=E

Q
ω
ε

[
1
W

t
γ,ω∩{τt

n≤γ}
(
M

t,µε

τt
n∧r(φ)−M

t,µε

τt
n∧s(φ)

)
1A

]
=0. (6.75)
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Define A
ω

i :=
k
∩

j=i+1

(
W

tω
sj ,K

ω

sj

)−1
(Ej,ω) ∈ FW

tω

s with Ej,ω :=
{
x+ a

ω
: x ∈ Ej

}
∈ B(Rd+l). Using (3.2) with

(t,x, P , µ, φ, a, ζ1, ζ2)=
(
tω, Xγ∧·(ω), Q

ω

ε , µ
ω, φ

ω
, a

ω
, s, (t+n)∧r

)
renders that

0 = E
Q

ω
ε

[(
M

tω, µω

ζ
n

ω∧(tω+n)∧(t+n)∧r)(φω
)−M

tω, µω

ζ
n

ω∧(tω+n)∧s(φω
)
)
1
A

ω
i

]
= E

Q
ω
ε

[(
M

tω, µω

ζ
n

ω∧(t+n)∧r)(φω
)−M

tω, µω

ζ
n

ω∧s (φ
ω
)
)
1
A

ω
i

]
. (6.76)

(ii) Let ω′ ∈Θ
t

γ,ω∩Â
ε
2,ω. Like in Step (i), we still have Θ

t

γ,ω ⊂
{
ω′ ∈Ω : τ tn(ω

′)> γ(ω)
}
and τ tn(ω

′) = ζ
n

ω(ω
′)∧(t+

n). As τ tn(ω
′)∧s ≥ γ(ω), taking (r1, r2) =

(
τ tn(ω

′)∧s, τ tn(ω′)∧r
)
in (6.71) shows that

(
M

t,µε

(φ)
)(
τ tn(ω

′)∧r, ω′)−(
M

t,µε

(φ)
)(
τ tn(ω

′)∧s, ω′)=(
M

tω,µω

(φ
ω
)
)(
ζ
n

ω(ω
′)∧(t+n)∧r, ω′)−(

M
tω,µω

(φ
ω
)
)(
ζ
n

ω(ω
′)∧s, ω′). It follows from (6.35),

(6.65) and (6.76) that

E
Q

ω
ε

[(
M

t,µε

τt
n∧r(φ)−M

t,µε

τt
n∧s(φ)

)
1
A

ω
i

]
=E

Q
ω
ε

[(
M

tω, µω

ζ
n

ω∧(t+n)∧r(φω
)−M

tω, µω

ζ
n

ω∧s (φ
ω
)
)
1
A

ω
i

]
=0. (6.77)

For any j ∈ {i+1, · · ·, k} and ω′ ∈ W
t

γ,ω ∩
(
N ω

X ∪N ω

K

)c
, (5.1) implies that

(
W

t

sj , Xsj

)
(ω′) ∈ Ej if and only if(

W
tω
sj ,K

ω

sj

)
(ω′) =

(
W

t

sj (ω
′)−W t(

γ(ω), ω′),X ω

sj (ω
′)
)
=

(
W

t

sj , Xsj

)
(ω′)+a

ω
∈ Ej,ω. By (6.74), one has A∩W

t

γ,ω∩(
N ω

X ∪N ω

K

)c
=Ai∩A

ω

i ∩W
t

γ,ω∩
(
N ω

X ∪N ω

K

)c
. Then we can deduce from (6.75), (6.35), (6.37) and (6.77) that

E
Q

ω
ε

[(
M

t,µε

τt
n∧r(φ)−M

t,µε

τt
n∧s(φ)

)
1A

]
=E

Q
ω
ε

[
1{τt

n>γ}
(
M

t,µε

τt
n∧r(φ)−M

t,µε

τt
n∧s(φ)

)
1A

]
=E

Q
ω
ε

[
1{τt

n>γ}
(
M

t,µε

τt
n∧r(φ)−M

t,µε

τt
n∧s(φ)

)
1
Ai∩A

ω
i

]
=1{ω∈Ai}1{τt

n(ω)>γ(ω)}EQ
ω
ε

[(
M

t,µε

τt
n∧r(φ)−M

t,µε

τt
n∧s(φ)

)
1
A

ω
i

]
=0, ∀ω∈{si<γ≤si+1}∩A∗∩

(
N ∗∪N

ε

U∪Nε

♯

)c
,

and thus
∫
ω∈A∗

1{si<γ(ω)≤si+1}EQ
ω
ε

[(
M

t,µε

τt
n∧r(φ)−M

t,µε

τt
n∧s(φ)

)
1A

]
P (dω)=0. Taking summation from i=1 through i=

k−1, we obtain from (6.73) that EP ε

[
1{γ≤s}

(
M

t,µε

τt
n∧r(φ)−M

t,µε

τt
n∧s(φ)

)
1A

]
=EP

[
1Ac

∗∩{γ≤s}
(
M

t,µε

τt
n∧r(φ)−M

t,µε

τt
n∧s(φ)

)
1A

]
+∫

ω∈A∗
1{γ(ω)≤s}EQ

ω
ε

[(
M

t,µε

τt
n∧r(φ)−M

t,µε

τt
n∧s(φ)

)
1A

]
P (dω)=0. Adding it to (6.67) yields (6.66) for the case “t+n>s>t”.

II.e.4) We know from (6.66) that the Lambda-system
{
A∈B(Ω) : EP ε

[(
M

t,µε

τt
n∧r(φ)−M

t,µε

τt
n∧s(φ)

)
1A

]
=0

}
contains

the Pi-system
{

k
∩
i=1

(W
t

si , Xsi)
−1(Ei) : {(si, Ei)}ki=1 ⊂ [t, s]×B(Rd+l)

}
and thus includes F t

s thanks to Dynkin’s

Pi-Lambda Theorem. Hence,
{
M

t,µε

s∧τt
n
(φ)

}
s∈[t,∞)

is a bounded
(
F

t
, P ε

)
−martingale. According to Remark 3.1 (ii),

P ε satisfies (D3) of Pt,x.

Similar to Part (II.d) in the proof of [4, Theorem 5.1], we can construct a [t,∞]−valued FW t,P0−stopping time

τ̂ε with P ε

{
T = τ̂ε(W )

}
=1, So P ε also satisfies (D4) of Pt,x.

II.f) In this part, we show that P ε belongs to the probability class Pt,x(y, z).

Fix i ∈ N. Since
{ ∫ s

t
gi
(
r,X

t,x,µ

r∧· , µr

)
dr
}
s∈[t,∞)

and
{ ∫ s

t
hi
(
r,X

t,x,µ

r∧· , µr

)
dr
}
s∈[t,∞)

are two FW
t
,P−adapted

continuous processes, Lemma 2.4 of [44] assures two FW
t

−predictable processes
{
Φ

i

s

}
s∈[t,∞)

and
{
Ψ

i

s

}
s∈[t,∞)

such

that N i,1

g,h :=
{
ω ∈ Ω : Φ

i

s(ω) ̸=
∫ s

t
gi
(
r,X

t,x,µ

r∧· (ω), µr(ω)
)
dr or Ψ

i

s(ω) ̸=
∫ s

t
hi
(
r,X

t,x,µ

r∧· (ω), µr(ω)
)
dr for some s ∈

[t,∞)
}
∈NP

(
FW

t

∞
)
. By Remark 3.2 (1), EP

[ ∫∞
t
g−i

(
r,Xr∧·, Ur

)
∨h−i

(
r,Xr∧·, Ur

)
dr
]
<∞. So it holds for any ω∈Ω

except on some N i,2

g,h∈NP

(
B(Ω)

)
that

∫∞
t
g−i

(
r,Xr∧·(ω), Ur(ω)

)
∨h−i

(
r,Xr∧·(ω), Ur(ω)

)
dr<∞.

For any ω ∈ A∗∩N c

∗∩N c

X ∩Ωµ∩
(
N i,1

g,h∪N i,2

g,h

)c
, as Ω

t

γ,ω ⊂
{
ω′ ∈ Ω : Xs(ω

′) =Xs(ω), ∀ s ∈
[
0, γ(ω)

]
;Us(ω

′) =

Us(ω) for a.e. s∈(t, γ(ω))
}
, (6.35) and (6.34) show that

E
Q

ω
ε

[ ∫ T

t

gi
(
r,Xr∧·, Ur

)
dr
]
=

∫ γ(ω)

t

gi
(
r,Xr∧·(ω), Ur(ω)

)
dr+E

Q
ω
ε

[ ∫ T

γ(ω)

gi
(
r,Xr∧·, Ur

)
dr
]

(6.78)

≤
∫ γ(ω)

t

gi
(
r,X

t,x,µ

r∧· (ω), µr(ω)
)
dr+

(
Y

i

P (γ)
)
(ω)=Φ

i

γ(ω)+EP

[ ∫ T

T∧γ

gi(r,Xr∧·, Ur)dr
∣∣∣FW

t

γ

]
(ω)
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and similarly that E
Q

ω
ε

[ ∫ T

t
hi
(
r,Xr∧·, Ur

)
dr
]
=Ψ

i

γ(ω)+EP

[ ∫ T

T∧γ
hi(r,Xr∧·, Ur)dr

∣∣∣FW
t

γ

]
(ω). Since A∗,Φ

i

γ ∈FW
t

γ

and since 1A∗
=1{τ̂(W )≥γ}=1{T≥γ}, P−a.s. by (6.26), we can deduce from the tower property that∫

ω∈A∗

E
Q

ω
ε

[ ∫ T

t

gi
(
r,Xr∧·, Ur

)
dr
]
P (dω)≤EP

[
EP

[
1A∗

(
Φ

i

γ+

∫ T

T∧γ

gi(r,Xr∧·, Ur)dr
)∣∣∣FW

t

γ

]]
=EP

[
1A∗

(∫ γ

t

gi
(
r,X

t,x,µ

r∧· , µr

)
dr+

∫ T

γ

gi(r,Xr∧·, Ur)dr
)]

=EP

[
1A∗

∫ T

t

gi
(
r,Xr∧·, Ur

)
dr
]

and thus EP ε

[ ∫ T

t
gi
(
r,Xr∧·, Ur

)
dr
]
≤EP

[ ∫ T

t
gi
(
r,Xr∧·, Ur

)
dr
]
≤yi. Analogously, we have EP ε

[ ∫ T

t
hi
(
r,Xr∧·, Ur

)
dr
]

=EP

[ ∫ T

t
hi
(
r,Xr∧·, Ur

)
dr
]
=zi. Hence, P ε is of Pt,x(y, z).

II.g) With all technical preparation above, we eventually verify the inequality (6.28) for the situation
{
γ>t

}
=Ω.

Since the mapping Ψ̈ is σ
(
FW

t

γ ∪NP

(
Gt

∞
))/

σ
(
B(DP)∪NP̈ (B(DP))

)
−measurable by Step (II.a.2), Theorem 4.1

renders thatDV
∞ :=

{
ω∈A∗∩N

c

∗ : V
(
Ψ̈(ω)

)
=∞

}
is σ

(
FW

t

γ ∪NP

(
F t

∞
))

−measurable. As EP

[ ∫∞
t
f−

(
r,Xr∧·, Ur

)
dr
]
<

∞, there is a Nf ∈NP

(
B(Ω)

)
such that

∫∞
t
f−

(
r,Xr∧·(ω), Ur(ω)

)
dr<∞ for any ω∈N c

f .

Let ε∈(0, 1). For any ω∈A∗∩N
c

∗∩N
c

f , an analogy to (6.78), (6.31) and Theorem 3.1 imply that

E
Q

ω
ε

[
R(t)

]
=

∫ γ(ω)

t

f
(
r,Xr∧·(ω), Ur(ω)

)
dr+EQε(Ψ̈(ω))

[
R(γ(ω))

]
≥

∫ γ(ω)

t

f
(
r,Xr∧·(ω), Ur(ω)

)
dr+1{ω∈(DV

∞)c}

(
V
(
γ(ω), Xγ∧·(ω),

(
YP (γ)

)
(ω),

(
ZP (γ)

)
(ω)

)
−ε

)
+
1

ε
1{ω∈DV

∞}.

Since P ε∈Pt,x(y, z) and since 1A∗
=1{T≥γ}, P−a.s.

V (t,x, y, z)≥EP ε

[
R(t)

]
≥EP

[
1Ac

∗
R(t)+1A∗

(∫ γ

t

f
(
r,Xr∧·, Ur

)
dr+1(DV

∞)c
[
V
(
γ,Xγ∧·, YP (γ), ZP (γ)

)
−ε

]
+
1

ε
1DV

∞

)]
=EP

[
1{T<γ}R(t)+1{T≥γ}

(∫ γ

t

f
(
r,Xr∧·, Ur

)
dr+1(DV

∞)c
[
V
(
γ,Xγ∧·, YP (γ), ZP (γ)

)
−ε

]
+
1

ε
1DV

∞

)]
≥EP

[
1{T<γ}R(t)+1{T≥γ}

(∫ γ

t

f
(
r,Xr∧·, Ur

)
dr+1(DV

∞)cV
(
γ,Xγ∧·, YP (γ), ZP (γ)

))]
−ε+1

ε
P
(
{T ≥γ}∩DV

∞
)
. (6.79)

To verify (6.28), we set It

P :=1{T<γ}R(t)+1{T≥γ}

(∫ γ

t
f(r,Xr∧·, Ur)dr+V

(
γ,Xγ∧·, YP (γ), ZP (γ)

))
.

• If P
(
{T ≥γ}∩DV

∞
)
=0, then V (t,x, y, z)≥EP

[
1{T<γ}R(t)+1{T≥γ}

( ∫ γ

t
f
(
r,Xr∧·, Ur

)
dr+V

(
γ,Xγ∧·, YP (γ), ZP (γ)

))]
−ε holds for any ε∈(0, 1). Letting ε→0 gives (6.28).

• If P
(
{T ≥γ}∩DV

∞
)
>0 and EP

[(
It

P

)−]
=∞, then EP

[
It

P

]
=−∞≤V (t,x, y, z), so (6.28) holds automatically.

• If P
(
{T ≥γ}∩DV

∞
)
>0 and EP

[(
It

P

)−]
<∞, since Remark 3.2 (1) shows that EP

[
−1{T<γ}R(t)−1{T≥γ}

(∫ γ

t
f
(
r,Xr∧·,

Ur

)
dr+1(DV

∞)cV
(
γ,Xγ∧·, YP (γ), ZP (γ)

))]
=EP

[
−1(DV

∞)cI
t

P−1DV
∞

∫ γ∧T

t
f
(
r,Xr∧·, Ur

)
dr−1{T<γ}∩DV

∞
π
(
T ,XT∧·

)]
≤

EP

[(
It

P

)−
+
∫∞
t
f−

(
r,Xr∧·, Ur

)
dr
]
−cπ<∞, we can deduce from (6.79) that

V (t,x, y, z)≥−EP

[(
It

P

)−
+

∫ ∞

t

f−
(
r,Xr∧·, Ur

)
dr
]
+cπ−ε+

1

ε
P
(
{T ≥γ}∩DV

∞
)
, ∀ ε∈(0, 1).

Sending ε→0 yields V (t,x, y, z)=∞, so (6.28) still holds. This completes the proof of Theorem 5.1. □

A Appendix

Lemma A.1. Let t0 ∈ [0,∞). For i = 1, 2, let (Ωi,Fi, Pi) be a probability space and let Bi = {Bi
s}s∈[0,∞) be an

Rd−valued continuous process on Ω with Bi
0 = 0 such that Bi

s := Bi
s−Bi

t0 , s ∈ [t0,∞) is a Brownian motion on

(Ωi,Fi, Pi). Let Φ : Ω1 7→ Ω2 be a mapping such that B2
s(Φ(ω)) = B1

s(ω) for any (s, ω) ∈ [t0,∞)×Ω1, then (i)

Φ−1
(
FB2

s

)
=FB1

s , ∀ s∈ [t0,∞]; (ii) Φ−1
(
NP2(FB2

∞ )
)
⊂NP1(FB1

∞ ); (iii) Φ−1
(
FB2,P2

s

)
⊂FB1,P1

s , ∀ s∈ [t0,∞] and

(iv) P1◦Φ−1(A)=P2(A) for any A∈FB2,P2
∞ .
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The proof of Lemma A.1 is basic. We refer interested readers to the ArXiv version of [4] for it. We also recall

the following result from [4].

Lemma A.2. Let (Ω,F , P ) be a probability space and let t∈ [0,∞). Let B={Bs}s∈[0,∞) be an Rd−valued continuous

process on Ω with B0=0 such that Bt
s :=Bs−Bt, s∈ [t,∞) is a Brownian motion on (Ω,F , P ).

(1 ) For any [t,∞]−valued FW t,P0−stopping time τ̂ on Ω0, τ̂(B) is an FBt,P−stopping time on Ω.

(2 ) Let Φ : Ω 7→ Ω0 be a mapping such that W t
s(Φ(ω)) = Bt

s(ω) for any (s, ω) ∈ [t,∞)×Ω. For any [t,∞]−valued

FBt,P−stopping time τ on Ω, there exists a [t,∞]−valued FW t,P0−stopping time τ̂ on Ω0 such that τ= τ̂(Φ), P−a.s.

Lemma A.3. Let µ = {µs}s∈[0,∞) be a U−valued, FW,P0−predictable process on Ω0 with all paths in J. Then

µ−1(A) :={ω0∈Ω0 : µ·(ω0)∈A}∈FW,P0
∞ for any A∈B(J).

Proof: Let φ ∈ L0
(
(0,∞)×U;R

)
. The FW,P0−predictability of µ implies that νs(ω0) := φ

(
s, µs(ω0)

)
, (s, ω0) ∈

(0,∞)× Ω0 is also an FW,P0−predictable process and
∫∞
0
νsds=

∫∞
0
φ(s, µs)ds is thus FW,P0

∞ −measurable. Then it

holds for any E ∈B(R) that µ−1
(
(Iφ)

−1(E)
)
=
{
ω0∈Ω0 : Iφ

(
µ·(ω0)

)
∈E

}
=
{
ω0∈Ω0 :

∫∞
0
φ
(
s, µs(ω0)

)
ds∈E

}
∈FW,P0

∞ ,

which together with Lemma 1.3 (1) shows that the sigma-field
{
A⊂J : µ−1(A)∈FW,P0

∞
}
includes all generating sets

of B(J) and thus contains B(J). □

Lemma A.4. For any t∈ [0,∞) and (ω0, u)∈Ω0×J, define W t
s (ω0) :=ω0(t+s)−ω0(t) and U t

s (u) :=u(t+s), ∀ s∈ [0,∞).

Then (t, ω0) 7→W t(ω0) is a continuous mapping from [0,∞)×Ω0 to Ω0 and (t, u) 7→U t(u) is a continuous mapping

from [0,∞)×J to J.

Proof: 1) Let (t, ω0)∈ [0,∞)×Ω0 and let ε∈ (0, 1). Set N := ⌈2−log2 ε⌉ and T := ⌈t+1⌉. Since ω0(s) is uniformly

continuous in s ∈ [0, N +T ] , there exists δ = δ(t, ω0, ε) ∈
(
0,

ε

2T+3

)
such that |ω0(s1)−ω0(s2)| ≤

ε

4N
for any

s1, s2∈ [0, N+T ] with |s2−s1|<δ.
For any (t′, ω′

0)∈ [0,∞)×Ω0 with |t′−t|∨ρ
Ω0

(ω0, ω
′
0)<δ, we can deduce that

ρ
Ω0

(W t(ω0),W
t′(ω′

0)
)
=

∑
n∈N

(
2−n∧ sup

s∈[0,n]

∣∣ω0(t+s)−ω0(t)−ω′
0(t

′+s)+ω′
0(t

′)
∣∣)

≤
N∑

n=1

(
2−n∧2 sup

s∈[0,n]

∣∣ω0(t+s)−ω′
0(t

′+s)
∣∣)+ ∞∑

n=N+1

2−n

≤ 2
N∑

n=1

(
2−n∧ sup

s∈[0,n]

∣∣ω0(t+s)−ω0(t
′+s)

∣∣)+2
N∑

n=1

(
2−n∧ sup

s∈[0,n]

∣∣ω0(t
′+s)−ω′

0(t
′+s)

∣∣)+2−N

≤ 2N sup
s1,s2∈[0,N+T ]

|s2−s1|<δ

∣∣ω0(s2)−ω0(s1)
∣∣+2

N∑
n=1

(
2−n∧ sup

s∈[0,n+T ]

∣∣ω0(s)−ω′
0(s)

∣∣)+ε/4
≤ 3ε/4+2

N∑
n=1

2T
(
2−n−T ∧ sup

s∈[0,n+T ]

∣∣ω0(s)−ω′
0(s)

∣∣)≤3ε/4+21+T ρ
Ω0

(
ω0, ω

′
0

)
<ε.

So (t, ω0) 7→W t(ω0) is a continuous mapping from [0,∞)×Ω0 to Ω0.

2) We next discuss the continuity of mapping (t, u) 7→U t(u) from [0,∞)×J to J.
Denote by T[0,∞) the Euclidean topology on [0,∞). As T♯(J) is generated by the subbase

{
i−1
J

(
O 1

n
(mk, ϕj)

)}
n,k,j∈N,

it suffices to show that An,k,j :=
{
(t, u) ∈ [0,∞)×J : U t(u) ∈ i−1

J
(
O 1

n
(mk, ϕj)

)}
belongs to the product topology

T[0,∞)⊗T♯(J) for any n, k, j∈N.

Fix n, k, j∈N and set ∥ϕj∥∞ := sup
(s,u)∈[0,∞)×U

∣∣ϕj(s, u)∣∣. We pick (t, u)∈An,k,j and set c :=
1

5et+1(∥ϕj∥∞+1)

(
1/n−∣∣ ∫∞

0
e−sϕj(s, u(t+s))ds−

∫∞
0

∫
U ϕj(t, u)mk(dt, du)

∣∣) > 0. By the uniform continuity of ϕj , there exists λ ∈ (0, c)

such that
∣∣ϕj(s1, u1)−ϕj(s2, u2)∣∣< c for any (s1, u1), (s2, u2) ∈ [0,∞)×U with |s1−s2|∨ρU(u1, u2)< λ. We define

another function ϕλj of Ĉb

(
[0,∞)×U

)
by ϕλj (s, u) :=

((
1+(s−t)/λ

)+∧1
)
ϕj

(
(s−t)+, u

)
, ∀ (s, u)∈ [0,∞)×U. Clearly,

Oλ(u) := i−1
J

(
Oλ(iJ(u), ϕ

λ
j )
)
is a member of T♯(J).
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Let (t′, u′) ∈
(
(t−λ)+, t+λ

)
×Oλ(u). Since λ >

∣∣ ∫∞
0
e−s

[
ϕλj (s, u(s))−ϕλj (s, u′(s))

]
ds
∣∣ = ∣∣∣ ∫ t

(t−λ)+
e−s

(
1+(s−

t)/λ
)[
ϕj(0, u(s))−ϕj(0, u′(s))

]
ds+

∫∞
t
e−s

[
ϕj(s−t, u(s))−ϕj(s−t, u′(s))

]
ds
∣∣∣, one has

I1 :=
∣∣∣ ∫ ∞

t

e−s+t
[
ϕj(s−t, u(s))−ϕj(s−t, u′(s))

]
ds
∣∣∣≤et∣∣∣ ∫ t

(t−λ)+
e−s

(
1+(s−t)/λ

)(
ϕj

(
0, u(s)

)
−ϕj

(
0, u′(s)

))
ds
∣∣∣+etλ

≤ et∥ϕj∥∞e−(t−λ)+λ+etλ≤eλ∥ϕj∥∞+etλ.

We can also estimate:

• I2 :=
∣∣ ∫∞

t
e−s+t

[
ϕj(s−t, u′(s))−ϕj((s−t′)+, u′(s))

]
ds
∣∣≤et ∫∞

t
e−s

∣∣ϕj(s−t, u′(s))−ϕj((s−t′)+, u′(s))∣∣ds≤c.

• I3 :=
∣∣ ∫∞

t
e−s(et−et′)ϕj((s−t′)+, u′(s))ds

∣∣≤∥ϕj∥∞
∣∣et′−et∣∣e−t≤∥ϕj∥∞et∨t′−t|t−t′|≤eλ∥ϕj∥∞.

• I4 :=
∣∣ ∫∞

t
e−s+t′ϕj((s−t′)+, u′(s))ds−

∫∞
t′
e−s+t′ϕj(s−t′, u′(s))ds

∣∣≤∫ t∨t′

t∧t′
e−s+t′

∣∣ϕj((s−t′)+, u′(s))∣∣ds≤∥ϕj∥∞et
′−t∧t′ |t−

t′|≤eλ∥ϕj∥∞.

Putting them together leads to that∣∣∣ ∫ ∞

0

e−sϕj(s,U
t′

s (u′))ds−
∫ ∞

0

∫
U
ϕj(t, u)mk(dt, du)

∣∣∣
≤
∣∣∣ ∫ ∞

0

e−sϕj(s, u
′(t′+s))ds−

∫ ∞

0

e−sϕj(s, u(t+s))ds
∣∣∣+∣∣∣ ∫ ∞

0

e−sϕj(s, u(t+s))ds−
∫ ∞

0

∫
U
ϕj(t, u)mk(dt, du)

∣∣∣
=
∣∣∣ ∫ ∞

t′
e−s+t′ϕj(s−t′, u′(s))ds−

∫ ∞

t

e−s+tϕj(s−t, u(s))ds
∣∣∣+(1/n−4et+1(∥ϕj∥∞+1)c)

≤
4∑

i=1

Ii+
[
1/n−5et+1(∥ϕj∥∞+1)c

]
<1/n.

This shows U t′(u′)∈ i−1
J

(
O 1

n
(mk, ϕj)

)
and thus (t, u)∈

(
(t−λ)+, t+λ

)
×Oλ(u)⊂An,k,j . Then An,k,j is an open set of

T[0,∞)⊗T♯(J), proving the lemma. □

Lemma A.5. Given t∈ [0,∞), let µ={µr}r∈[t,∞) be a U−valued, FW t−predictable process on Ω0. For any (s, ω)∈
[t,∞)×Ω, there exists a U−valued, FW s−predictable process

{
µs,ω
r

}
r∈[s,∞)

on Ω0 such that µs,ω
r

(
W (ω′)

)
=µr

(
W (ω′)

)
,

∀ (r, ω′)∈ [s,∞)×W
t

s,ω, where W
t

s,ω :=
{
ω′∈Ω:W

t

r(ω
′)=W

t

r(ω), ∀ r∈ [t, s]
}
.

Proof: 1) Define Λ:=
{
D⊂ [t,∞)×Ω0 : for any (s, ω)∈ [t,∞)×Ω there exists Ds,ω∈PW s

such that 1{(r,W (ω′))∈D}=

1{
(r,W (ω′))∈Ds,ω

}, ∀ (r, ω′)∈ [s,∞)×W
t

s,ω

}
. Clearly, ∅∈Λ with Ds,ω=∅ for any (s, ω)∈ [t,∞)×Ω. Given D∈Λ, by

taking the complement of each Ds,ω, we see that Dc ∈Λ. Let {Dn}n∈N ⊂Λ. For any n∈N and (s, ω)∈ [t,∞)×Ω,

there exists Ds,ω
n ∈PW s

satisfying 1{
(r,W (ω′))∈Dn

}=1{
(r,W (ω′))∈Ds,ω

n

} for any (r, ω′)∈ [s,∞)×W
t

s,ω. Then for any

(s, ω)∈ [t,∞)×Ω, the FW s−predictable set ∩
n∈N

Ds,ω
n satisfies that

1{
(r,W (ω′))∈ ∩

n∈N
Dn

}=∏
n∈N

1{
(r,W (ω′))∈Dn

}=∏
n∈N

1{
(r,W (ω′))∈Ds,ω

n

}=1{
(r,W (ω′))∈ ∩

n∈N
Ds,ω

n

} ,
∀ (r, ω′)∈ [s,∞)×W

t

s,ω. Namely, ∩
n∈N

Dn∈Λ. Hence, Λ is a sigma−field of [t,∞)×Ω0.

2) We next demonstrate that Λ contains all generating sets of the FW t−predictable sigma−field PW t

of [t,∞)×Ω0:

{t}×A for A∈FW t

t and (q,∞)×A for q∈ [t,∞)∩Q, A∈FW t

q− .

(2a) For any s ∈ [t,∞) and (r, ω′) ∈ [s,∞)×Ω, one has 1{
(r,W (ω′))∈{t}×Ω0

} = 1{r=t} and 1{
(r,W (ω′))∈(t,∞)×Ω0

} =

1{r=(t,∞)}. They show that {t}×Ω0 ∈ Λ with Ds,ω = 1{s=t}({s}×Ω0)+1{s>t}∅, ∀ (s, ω) ∈ [t,∞)×Ω and that

(t,∞)×Ω0∈Λ with Ds,ω=1{s=t}((s,∞)×Ω0)+1{s>t}([s,∞)×Ω0), ∀ (s, ω)∈ [t,∞)×Ω. Since FW t

t =FW t

t− ={∅,Ω0}
and since ∅∈Λ, we see that {t}×A∈Λ for any A∈FW t

t and that (t,∞)×A∈Λ for any A∈FW t

t− .

(2b) Fix q∈ (t,∞)∩Q and set Λ̂q :=
{
A⊂Ω0 : (q,∞)×A∈Λ

}
. Clearly, ∅∈ Λ̂q. Since it holds for any s∈ [t,∞) and

(r, ω′)∈ [s,∞)×Ω that 1{
(r,W (ω′))∈(q,∞)×Ω0

}=1{r∈(q,∞)}, we obtain that (q,∞)×Ω0∈Λ with Ds,ω=1{s≤q}((q,∞)×
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Ω0)+1{s>q}([s,∞)×Ω0), ∀ (s, ω) ∈ [t,∞)×Ω. So Ω0 belongs to Λ̂q. Given A ∈ Λ̂q, since (q,∞)×A ∈ Λ and

(q,∞)×Ω0∈Λ, we can deduce that (q,∞)×Ac=
(
(q,∞)×Ω0

)
∩
(
(q,∞)×A

)c∈Λ and thus Ac∈ Λ̂q. If {An}n∈N∈ Λ̂q,

then (q,∞)×
(

∪
n∈N

An

)
= ∪

n∈N

(
(q,∞)×An

)
∈Λ, i.e., ∪

n∈N
An∈ Λ̂q. Thus Λ̂q is a sigma-field of Ω0.

Let q′∈ [t, q) and E ∈B(Rd). We show by three cases that (q,∞)×(W t
q′)

−1(E)∈Λ:

(i) If (s, ω) ∈ [t, q′)×Ω, then Es,ω :=
{
x−W t

s(ω) : ∀ x ∈ E} ∈ B(Rd) satisfies that 1{
(r,W (ω′))∈(q,∞)×(W t

q′ )
−1(E)

} =

1{r∈(q,∞)}1{W t
q′ (ω

′)−W
t
s(ω

′)∈Es,ω}=1{
(r,W (ω′))∈(q,∞)×(W s

q′ )
−1(Es,ω)

}, ∀ (r, ω′)∈ [s,∞)×W
t

s,ω.

(ii) If (s, ω) ∈ [q′,∞)× (W
t

q′)
−1(E), it holds for any (r, ω′) ∈ [s,∞)×W

t

s,ω that 1{
(r,W (ω′))∈(q,∞)×(W t

q′ )
−1(E)

} =

1{r∈(q,∞)}1{W t
q′ (ω

′)∈E}=1{r∈(q,∞)}1{W t
q′ (ω)∈E}=1{r∈(q,∞)}=1{

(r,W (ω′))∈(q,∞)×Ω0

}.
(iii) If (s, ω) ∈ [q′,∞)× (W

t

q′)
−1(Ec), it holds for any (r, ω′) ∈ [s,∞)×W

t

s,ω that 1{
(r,W (ω′))∈(q,∞)×(W t

q′ )
−1(E)

} =

1{r∈(q,∞)}1{W t
q′ (ω)∈E}=0=1{

(r,W (ω′))∈∅
}.

So (q,∞)×(W t
q′)

−1(E) ∈ Λ with Ds,ω = 1{(s,ω)∈[t,q′)×Ω}
(
(q,∞)×(W s

q′)
−1(Es,ω)

)
+1{

(s,ω)∈[q′,∞)×(W
t
q′ )

−1(Ec)
}∅+

1{
(s,ω)∈[q′,q]×(W

t
q′ )

−1(E)
}((q,∞)×Ω0

)
+1{

(s,ω)∈(q,∞)×(W
t
q′ )

−1(E)
}([s,∞)×Ω0

)
for any (s, ω) ∈ [t,∞)×Ω. It follows

that FW t

q− =σ
(
W t

q′ ; q
′∈ [t, q)

)
⊂ Λ̂q. Then Λ contains all generating sets of PW t

and thus includes PW t

.

3) Let {µs}s∈[t,∞) be a general U−valued, FW t−predictable process on Ω0.

Let n∈N, we set ani := i2−n, ∀ i∈ {0, 1, · · · , 1+2n} and Dn
i :=

{
(r, ω0)∈ [t,∞)×Ω0 : I

(
µr(ω0)

)
∈ [ani , a

n
i+1)

}
∈

PW t ⊂ Λ, ∀ i ∈ {0, 1, · · · , 2n}. So for i= 0, 1, · · · , 2n and (s, ω) ∈ [t,∞)×Ω, there exists Ds,ω,n
i ∈ PW s

satisfying

1{
(r,W (ω′))∈Dn

i

}=1{
(r,W (ω′))∈Ds,ω,n

i

}, ∀ (r, ω′)∈ [s,∞)×W
t

s,ω.

Fix (s, ω)∈ [t,∞)×Ω. For any n∈N, define an FW s−predictable process νs,ω,n by νs,ω,n
r (ω0) :=

2n∑
i=1

1{
(r,ω0)∈D̃s,ω,n

i

}ani ,
∀ (r, ω0) ∈ [s,∞)×Ω0, where D̃

s,ω,n
1 = Ds,ω,n

1 and D̃s,ω,n
i := Ds,ω,n

i

∖( i−1
∪

j=1
Ds,ω,n

j

)
∈ PW s

for i = 2, · · ·, 2n. Then

νs,ωr (ω0) := lim
n→∞

νs,ω,n
r (ω0), ∀ (r, ω0)∈ [s,∞)×Ω0 is a [0, 1]−valued, FW s−predictable process and

µs,ω
r (ω0) :=I −1

(
νs,ωr (ω0)

)
1{

νs,ω
r (ω0)∈E

}+u01{
νs,ω
r (ω0)/∈E

}, ∀ (r, ω0)∈ [s,∞)×Ω0

defines a U−valued, FW s−predictable process.

Let (r, ω′) ∈ [s,∞)×W
t

s,ω and let n ∈ N. For any i = 2, · · · , 2n, since 0 ≤ 1{
(r,W (ω′))∈Ds,ω,n

i ∩(
i−1
∪

j=1
Ds,ω,n

j )
} ≤∑i−1

j=1 1
{
(r,W (ω′))∈Ds,ω,n

i ∩Ds,ω,n
j

}=∑i−1
j=1 1

{
(r,W (ω′))∈Dn

i ∩Dn
j

}=0, we obtain 1{
(r,W (ω′))∈D̃s,ω,n

i

}=1{
(r,W (ω′))∈Ds,ω,n

i

}=
1{

(r,W (ω′))∈Dn
i

}. It follows that νs,ω,n
r (W (ω′))=

∑2n

i=1 1
{
(r,W (ω′))∈D̃s,ω,n

i

}ani =∑2n

i=1 1
{
(r,W (ω′))∈Dn

i

}ani , ∀n∈N and

thus I
(
µr(W (ω′))

)
= lim

n→∞
↑
∑2n

i=1 1
{
(r,W (ω′))∈Dn

i

}ani = lim
n→∞

↑ νs,ω,n
r

(
W (ω′)

)
= νs,ωr

(
W (ω′)

)
. Then µs,ω

r

(
W (ω′)

)
=

µr

(
W (ω′)

)
, ∀ (r, ω′)∈ [s,∞)×W

t

s,ω. □

Lemma A.6. Given t ∈ [0,∞) and P ∈ P
(
Ω
)
, let W =

{
Ws

}
s∈[t,∞)

be a d−dimensional Brownian motion with

respect to some filtration F·= {Fs}s∈[t,∞) on
(
Ω,B(Ω), P

)
. For any s∈ [t,∞), if ξ is a real-valued, Fs−measurable

random variable that is P−integrable, then EP

[
ξ
∣∣FW

∞
]
=EP

[
ξ
∣∣FW

s

]
, P−a.s.

Proof: Fix s∈ [t,∞). Let t≤ t1< · · ·<tn≤s=s0<s1< · · ·<sk<∞ and let {Ei}ni=1∪{E ′
j}kj=1⊂B(Rd).

Set ψk(x) :=1, ∀x∈Rd. For j=k, · · · , 1 recursively, the Markov property of the Brownian motion W shows that

there exists another Borel-measurable function ψj−1 : Rd 7→R satisfying EP

[
1W−1

sj
(E′

j)
ψj

(
Wsj

)∣∣Fsj−1

]
=ψj−1

(
Wsj−1

)
,
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P−a.s. Then we can deduce that

EP

[ k∏
j=1

1W−1
sj

(E′
j)

∣∣∣Fs

]
=EP

[
EP

[ k∏
j=1

1W−1
sj

(E′
j)

∣∣∣Fsk−1

]∣∣∣∣Fs

]
=EP

[ k−1∏
j=1

1W−1
sj

(E′
j)
EP

[
1W−1

sk
(E′

k)

∣∣∣Fsk−1

]∣∣∣∣Fs

]

=EP

[ k−1∏
j=1

1W−1
sj

(E′
j)
ψk−1

(
Wsk−1

)∣∣∣Fs

]
=EP

[ k−2∏
j=1

1W−1
sj

(E′
j)
EP

[
1W−1

sk−1
(E′

k−1)
ψk−1

(
Wsk−1

)∣∣∣Fsk−2

]∣∣∣∣Fs

]

=EP

[ k−2∏
j=1

1W−1
sj

(E′
j)
ψk−2

(
Wsk−2

)∣∣∣Fs

]
= · · ·=EP

[
1W−1

s1
(E′

1)
ψ1

(
Ws1

)∣∣Fs

]
=ψ0

(
Ws

)
, P−a.s.

It follows that EP

[
1 n

∩
i=1

W−1
ti

(Ei)
1 k

∩
j=1

W−1
sj

(E′
j)

∣∣∣Fs

]
=

n∏
i=1

1W−1
ti

(Ei)
EP

[ k∏
j=1

1W−1
sj

(E′
j)

∣∣∣Fs

]
=

n∏
i=1

1W−1
ti

(Ei)
ψ0

(
Ws

)
, P−a.s. By

Dynkin’s Pi-Lambda Theorem, the Lambda-system
{
A ∈ FW

∞ : EP

[
1A

∣∣Fs

]
= β, P−a.s. for some real−valued

FW
s −measurable random variable β on Ω

}
contains the Pi-system

{(
n
∩
i=1

W−1

ti (Ei)
)⋂(

k
∩

j=1
W−1

sj (E ′
j)
)
: t≤ t1< · · ·<

tn≤s=s0<s1< · · ·<sk<∞, {Ei}ni=1∪{E ′
j}kj=1⊂B(Rd)

}
and thus includes FW

∞ .

Let ξ be a real-valued, Fs−measurable random variable that is P−integrable and let A ∈ FW
∞ . There exists a

real−valued FW
s −measurable random variable β such that EP

[
1A

∣∣Fs

]
=β, P−a.s. Since it holds for any As∈FW

s ⊂
Fs that EP [1As

1A]=EP

[
1As

EP

[
1A

∣∣Fs

]]
=EP

[
1As

β
]
, we see that EP

[
1A

∣∣FW
s

]
=β=EP

[
1A

∣∣Fs

]
, P−a.s. Then the

tower property implies that

EP

[
1Aξ

]
= EP

[
ξEP

[
1A

∣∣Fs

]]
=EP

[
ξEP

[
1A

∣∣FW
s

]]
=EP

[
EP

[
ξEP [1A|FW

s ]
∣∣FW

s

]]
= EP

[
EP

[
1A

∣∣FW
s

]
EP

[
ξ
∣∣FW

s

]]
=EP

[
EP

[
1AEP

[
ξ|FW

s ]
∣∣FW

s

]]
=EP

[
1AEP

[
ξ
∣∣FW

s

]]
.

As A runs through FW
∞ , we obtain that EP

[
ξ
∣∣FW

∞
]
=EP

[
ξ
∣∣FW

s

]
, P−a.s. □
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degenerate diffusions: existence of an optimal control, Stochastics, 20 (1987), pp. 169–219.

[19] N. El Karoui and X. Tan, Capacities, measurable selection and dynamic programming Part I: abstract

framework, available at https://arxiv.org/abs/1310.3363, (2013).

[20] , Capacities, measurable selection and dynamic programming Part II: applications in stochastic control

problems, available at https://arxiv.org/abs/1310.3364, (2013).

[21] S. Federico and E. Tacconi, Dynamic programming for optimal control problems with delays in the control

variable, SIAM J. Control Optim., 52 (2014), pp. 1203–1236.

[22] F. Gozzi and C. Marinelli, Stochastic optimal control of delay equations arising in advertising models,

in Stochastic partial differential equations and applications—VII, vol. 245 of Lect. Notes Pure Appl. Math.,

Chapman & Hall/CRC, Boca Raton, FL, 2006, pp. 133–148.

[23] F. Gozzi and F. Masiero, Stochastic optimal control with delay in the control I: Solving the HJB equation

through partial smoothing, SIAM J. Control Optim., 55 (2017), pp. 2981–3012.

[24] M. Horiguchi, Stopped Markov decision processes with multiple constraints, Math. Methods Oper. Res., 54

(2001), pp. 455–469.

[25] S. Källblad, A dynamic programming approach to distribution-constrained optimal stopping, Ann. Appl.

Probab., 32 (2022), pp. 1902–1928.

[26] D. P. Kennedy, On a constrained optimal stopping problem, J. Appl. Probab., 19 (1982), pp. 631–641.
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