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Abstract

We study a stochastic control/stopping problem with a series of inequality-type and equality-type expectation
constraints in a general non-Markovian framework. We demonstrate that the stochastic control/stopping problem
with expectation constraints (CSEC) is independent of a specific probability setting and is equivalent to the
constrained stochastic control/stopping problem in weak formulation (an optimization over joint laws of Brownian
motion, state dynamics, diffusion controls and stopping rules on an enlarged canonical space). Using a martingale-
problem formulation of controlled SDEs in spirit of [45], we characterize the probability classes in weak formulation
by countably many actions of canonical processes, and thus obtain the upper semi-analyticity of the CSEC value
function. Then we employ a measurable selection argument to establish a dynamic programming principle (DPP)
in weak formulation for the CSEC value function, in which the conditional expected costs act as additional states
for constraint levels at the intermediate horizon.

This article extends [20] to the expectation-constraint case. We extend our previous work [4] to the more
complicated setting where the diffusion is controlled. Compared to that paper the topological properties of
diffusion-control spaces and the corresponding measurability are more technically involved which complicate the
arguments especially for the measurable selection for the super-solution side of DPP in the weak formulation.
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1 Introduction

In this paper, we analyze a continuous-time stochastic control/stopping problem with a series of inequality-type and
equality-type expectation constraints in a general non-Markovian framework.

Let a decision maker start from time ¢ € [0,00) with a historical path of state x|jg ;. She can choose an open-
loop control g = {fis}se[t,0) t0 make the state process evolve according to some controlled SDE on a probability
space (Q,F,p) whose drift and diffusion coefficients depend on the past trajectories of the solution. Let X**H =
{X St’x’”}s €lt,00) denote this controlled state process. A typical example of this non-Markovian setting is the stochastic
control with delay: since it takes the system some time to collect/analyze the information, the drift/diffusion term of
the dynamic may have a delay in the state variable or control variable. Under continuous drift/diffusion coefficients,
the optimal control problem with delay admits a dynamic programming principle (DPP) and its value function
satisfies the associated Hamilton-Jacobi-Bellman (HJB) equation, see [22, 21, 23, 40, 39, 17] among others.

In our problem, the decision maker can also select an exercise time 7 to maximize the expectation of her ac-
cumulative reward ftTf(r, Xf}\’f’“,ur) dr plus her terminal reward 7r(7', Xﬁ,ﬁ‘“) while she is subject to a series of
constraints: for i €N, the expectation of some accumulative cost |, tT Gi (r, Xf}f‘.’“ , u,«)dr should not exceed certain level
y; and the expectation of some other accumulative cost j:hi (T, xXlhxn ur)dr should exactly reach certain level z;.
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Such a stochastic control/stopping problem with expectation constraints (SCEC for short) has many applications in
economy, engineering, finance, management, etc.

Let V(t,x,y,z) be the SCEC value with (y,z):= ({y;},{z}). We aim to establish a DPP of this value function
without imposing any regularity condition on reward/cost functions in time, state and control variables. With
such a DPP, our further research will try to characterize the SCEC value function V' as a viscosity solution of
the corresponding path-dependent HJB equations. Then we will derive an effective numerical scheme for the value
function V' and implement it for practical examples including certain SCEC problems with state/control delay in
dynamics aforementioned.

A dynamic programming principle of a general stochastic control problem allows one to optimize the problem
stage by stage in a backward recursive way. It plays an important role in the study of stochastic control theory as it
is crucial for obtaining a viscosity-solution characterization of the value function of the control problem and thus a
numerical calculation of the value function (see e.g. [7], [20] and [37] for a synopsis of DPP development). Although
it is intuitive, a general DPP is technically subtle to verify. In particular, the wellposedness of the DPP first requires
the value function to be measurable so that people can conduct optimization at an intermediate horizon.

To obtain the measurability of the SCEC value function, we first study the topological and measurable properties
of the path space J of diffusion control u: More precisely, we show that J is a Borel space under a weak topology and
attain a representation of its Borel sigma-field #(J) (Lemma 1.2 and Lemma 1.3). Inspired by [18, 20], we then embed
diffusion control p and stopping rule 7 together with the Brownian and state information into an enlarged canonical
space Q and regard their joint distribution as a new type of controls. The optimization of the total expected reward
over constrained diffusion controls/stopping times transforms into a maximal expectation of reward functional over a
class Py x(y, z) of probability measures on { under which four canonical coordinates (W,U, X, T) serve as Brownian
motion, diffusion control, state process and stopping rules respectively. We demonstrate that such a transformation
is equivalent (Theorem 3.1), namely, the value V (¢, x,y, z) of SCEC in strong formulation (i.e., on Q) is equal to the
value V (t,%,y, 2) of SCEC in weak formulation (i.e., over Q). Hence, the SCEC value is a robust value, independent
of a specific probability model.

For the measurability of SCEC value functions, we next take advantage of the martingale-problem formulation
from [45] to describe the probability class Py x(y,z) as a series of probabilistic tests on stochastic behaviors of the
canonical coordinates of Q. With such a countable characterization, we employ a Polish space of diffusion control
processes (Lemma 4.1) and a Polish space of stopping times constructed in [4] to deduce that the set-valued mapping
(t,x,y,2) > Py x(y, z) has Borel-measurable graph and the SCEC value function V =V is thus upper semi-analytic
in (t,%x,y,2), (Theorem 4.1).

Our main achievement is to derive a DPP for V in weak formulation, which takes conditional expectations of
the remaining costs as additional states for constraint levels at the intermediate horizon (Theorem 5.1). For the
subsolution side of this DPP, we use the regular conditional probability distribution to show that the probability
classes Py x(y,2), V(t,x,y,2) are stable under conditioning.

For the supersolution side of the DPP, we exploit a measurable selection theorem in the analytic-set theory
to paste a class of locally e—optimal probability measures. We make a delicate analysis to demonstrate that the
second canonical coordinate U serves as a constrained diffusion control under the pasted probability measure, and we
apply the martingale-problem formulation again to indicate that the canonical coordinates (W, X) are still Brownian
motion and the state process under the pasted probability measure. Similar to the arguments in [4], the fourth
canonical coordinate T is a constrained stopping time under the pasted probability measure. To wit, the probability
classes Py x(y,2)’s are also stable under concatenation.

Relevant Literature.

Kennedy [26] employed a Lagrange multiplier method to reformulate a discrete-time optimal stopping problem
with first-moment constraint as a minimax problem and showed that the optimal value of the dual problem is equal
to that of the primal problem. The Lagrangian technique was later adopted in many economic/financial applications
of optimal stopping problems with expectation constraints, see e.g. [35, 27, 24, 2, 48, 28, 33, 32, 47]. Pfeiffer et al.
[34] recently took a Lagrange relaxation approach to obtain a duality result for general stochastic control problems
with expectation constraints.

In their study of a continuous-time stochastic optimization problem of controlled Markov processes, El Karoui,
Huu Nguyen and Jeanblanc-Picqué [18] viewed joint laws of state and control processes as control rules on the product
space of canonical state space and control space. They utilized a measurable selection theorem in the analytic-set



1. Introduction 3

theory to establish a DPP without assuming any regularity on the reward functional. Nutz et al. [31, 30] came up
with a similar idea to analyze a superhedging problem under volatility uncertainty. They modeled the “uncertainty”
by path-dependent classes of controlled-diffusion laws and explored the analytic measurability of these classes. Using
the measurable selection techniques, the authors obtained DPP result in a form of time-consistency of a sub-linear
expectation and they thus established a duality formula for the robust superhedging of measurable claims. The
approach of [31, 30] was later developed by e.g. [36, 37] to derive DPPs of various non-Markovian control problems.
Yu et al. [16] took a similar measurable selection argument to analyze the DPP of a stochastic control problem with
certain expectation constraint in which they dynamically relaxed the expectation constraint by a family of auxiliary
supermartingales.

El Karoui and Tan [19, 20] used the measurable selection argument to attain the DPP for a general stochastic
control/stopping problem by embedding diffusion controls and stopping times into an enlarged canonical space in
the spirit of [18]. However, the probability class they considered in weak formulation is not suitable for stochastic
control/stopping with expectation constraints, see our discussion in Subsection 3.3. Instead, we additionally require
in (D4) of Definition 3.1 that under each P of P; x(y, z) the time canonical coordinate T' acts as some stopping time
(it turns out that such a restriction does not affect the unconstrained stochastic control/stopping problem in weak
formulation). By constructing a Polish space of diffusion control processes and utilizing a Polish space of stopping
times from [4], we manage to derive the Borel measurability of graph [[f]] and thus obtain the measurability of
the SCEC value functions. Because of condition (D4) and expectation constraints, it is more technically involved to
verify the stability of our probability classes ft7x(y, z) under conditioning and concatenation and thus establish a
DPP for the SCEC value function V.

As to the optimal stopping problems with expectation constraints, Ankirchner et al. [1] and Miller [29] took
different approaches by transforming the constrained optimal stopping problems for diffusion processes to stochastic
optimization problems with martingale controls. The former characterizes the value function in terms of a Hamilton-
Jacobi-Bellman equation and obtains a verification theorem, while the latter embeds the optimal stopping problem
with first-moment constraint into a time-inconsistent (unconstrained) stopping problem. However, the authors only
postulate dynamic programming principles for their corresponding problems. In contrast, our previous work [4]
exploited a measurable selection method to rigorously establish a dynamic programming principle for the optimal
stopping problem with expectation constraints.

An interesting related topic to our research is optimal stopping with constraint on the distribution of stopping
times. Bayraktar and Miller [3] studied the problem of optimally stopping a Brownian motion with the restriction that
the distribution of the stopping time must equal a given measure with finitely many atoms, and obtained a dynamic
programming result which relates each of the sequential optimal control problems. Kéllblad [25] used measure-valued
martingales to transform the distribution-constrained optimal stopping problem to a stochastic control problem and
derived a DPP by measurable selection arguments. From the perspective of optimal transport, Beiglbock et al. [6]
gave a geometric interpretation of optimal stopping times of a Brownian motion with distribution constraint.

Moreover, for stochastic control problems with state constraints, stochastic target problems with controlled losses
and related geometric DPP, see [11, 12, 14, 41, 42, 43, 15, 9, 13, 10].

The rest of the paper is organized as follows: Section 2 introduces the stochastic control/stopping problem
with expectation constraints in a generic probabilistic setting. Section 3 shows that the stochastic control/stopping
problem with expectation constraints can be equivalently embedded into an enlarged canonical space: i.e., the SCEC
in strong formulation has the same value as the SCEC in weak formulation. In Section 4, we use the martingale-
problem formulation to make a countable characterization of the probability class in weak formulation. With such
a characterization, we employ a Polish space of diffusion control processes and a Polish space of stopping times
to demonstrate that the SCEC value function is upper semi-analytic. Then in Section 5, we utilize a measurable
selection argument to establish a dynamic programming principle in weak formulation for the SCEC value function.
We defer the proofs of our main results and the lengthy proofs of auxiliary results to Section 6 and put some technical
lemmata in the appendix.

We close this section by a description of our notation and a review of the martingale-problem formulation of
controlled SDEs.
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1.1 Notation and Preliminaries

Throughout this paper, let us denote a™:=aV0 and a™ :=(—a)V0 for any a€R. We set Q; :=Q N [0, ), 2+<.

{(s7 r)€QLxQy: s<r} and set R :=(—o0, 0o]" as the product of countably many copies of (—oo, oc]. On T:=[0, oc]
we define a metric p__ (t1,t2):= | arctan(t1)—arctan(t2)|, Vt1,t2 €T and consider the induced topology by p, .

For a generic topological space (X, T(X)), denote its Borel sigma-field by #(X). We let B(X) be the set of
all probability measures on (X, %’(X)) and equip B(X) with the topology of weak convergence Ty (‘B(X)) By e.g.
Corollary 7.25.1 of [7], (P(X),T4(P(X))) is a Borel space (i.e., homeomorphic to a Borel subset of a complete
separable metric space).

Let n€N. For any z€R" and § € (0, 00), let Os(x) denote the open ball centered at = with radius § and let Og(x)
be its closure. For any x, 7 € R"™ we denote the usual inner product by z-2:= Zl 1 TiT;, and for any nxn—real matrices
A, A we denote the Frobenius inner product by A: A = trace (AAT) where A7 is the transpose of A. Let {5"}

be a countable subbase of the Euclidean topology T(R™) on R™. Then &(R"):= { 0 Ep i {kitio, C N}U{@ R”}

forms a countable base of T(R") and thus B(R") =0 (0 (R")). We also set 5(R”) = kUN (Q4 x ﬁ(R"))k. For any
€

© € C?(R"), let Dy be its gradient, D?p be its Hessian matrix and denote D% := ¢. For i = 1,--- ,n, define
wi(x) ==, Yo = (21,---,2,) € R". We let €(R") collect these coordinate functions and their products, i.e.,
CR"):={pi }i U{pip; 1 j1-

Let (Q, F, P) be a generic probability space. For subsets A1, As of Q, we denote A1 AAy:=(A1NAS)U(A2NAT).
For a random variable £ on 2 with values in a measurable space (Q, G), we say £ is F/G—measurable if its induced
sigma-field {71(G) := {¢71(A): VA€ G} is included in F. For a sub-sigma-field § of F, define Ap(F) :={N C
Q: N C A for some A € § with P(A) =0}, which collects all P—null sets with respect to §. For two sub-sigma-
fields §1, 82 of F, we denote §1VFo:=0(F1UF2). Let t€[0,00). For a filtration F = {F,},cp,o0) of F, we decree

Fi_ := F; and define F,_ := (T( U ]-"r>, Vs € (t,00); we also set Fo := O’( U fs) and refer to filtration

relt,s) s€[t,00)
FP— {ff:za(fsuﬂp(foo)) }Se[tm) as the P—augmentation of F. For a process X ={X,}c[t,00) on © with values
in a topological space, its raw filtration is FX = {}"SX =o(X;relt, s])}se[t’oo). We denote the P—augmentation of
FX by FYP={FX =0 (FXUMp(F)) }Se[t’oo) and let 2% be the FX —predictable sigma—field of [t, 00) xQ. We
call X a continuous process if its paths are all continuous. When the time variable s of X has complicated form, we
may write X (s,w) as X,(w) for readability. By default, a Brownian motion {Bs}c[t,00) on (€2, F, P) is with respect
to its raw filtration FZ unless stated otherwise.
Fix d,l € N. Let Qo= {w € C([0,00);R?) : w(0) =0} be the space of all R?—valued continuous paths starting
from 0, which is a Polish space under the topology of locally uniform convergence. Let P, be the Wiener measure
n (QO,%’(QO)), under which the canonical process W = {Ws}¢co,00) Of 0 is a d—dimensional standard Brown-
ian motion. For any t € [0,00), W! := W, —W,, s € [t,00) is also a Brownian motion on (Q0, Z(), Py). Let
Q. =c([o, o0); RY) be the space of all R!—valued continuous paths endowed with the topology of locally uniform
convergence. The function [y (£, wp) :=wo(#\) is continuous in (¢, wp) € [0, 00)x€Yy while the function ly(t, w, ) :=w (¢\)
is continuous in (t,w, ) €[0,00) xQ
Let U be a Polish space with a compatible metric p;, and let ug €U. As a Polish space, U is homeomorphic to a
Borel subset € of [0, 1], we denote this homeomorphism by .#: U €. Let Cj ([0, 00)xU) (resp. @,([o, 00)xU)) collect
all real-valued bounded continuous (resp. bounded uniformly continuous) functions on [0, oo) xU. For any (d,m, ¢) €

(0,00)xPB([0, 00)xU) xCy ([0, 00) xU), set Os(m, @) :={m’ €P([0, 00)xV): | [~ [ &(t, w) (W' (dt, du)—m(dt, du))| <5}

x(

Lemma 1.1. There exist {my},en CB([0, oo)xU) and {(/)j}jeNCCb([Q 00)xU) such that {O1 (my, d;): n,k, jEN}
forms a countable subbase of Ty(B([0,00) xU)).

Proof: Proposition 7.19 of [7] shows that the topology of weak convergence Ty (B([0,00)xU)) on ([0, 00)xU) can
be generated by a subbase A:={Os(m,¢$;): 6€(0,00), meP([0,00)xU),j €N}, where {¢;};en is a countable dense
subset of 5;,([0, 00)xU). As the Borel space (B([0,00)xU), Ty (B([0,00)xU))) is separable, it has a countable dense
subset {mk}keN.

To show that A:= {O% (my, ¢;): n, k,jEN} is another subbase of Ty (‘13([0, 00) XU)), it suffices to verify that any
member of A is a union of some members in A: Let (6, m, j) € (0, 00) xR ([0, 00) xU) xN and let m’ € Os(m, ¢;). There
exists n €N such that 2 <d—| [ [, &; (¢, u) (w(dt, du)—m(dt, du))|, and one can find my € O (m’; ¢;) for some k€N.
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For any m” € O1 (my, ¢;), we can deduce that | J57 [y @5 (t,w) (m” (dt, du) —m(dt, du)) | < | [5° t,u) (m” (dt, du)—
my (dt, du)) H [57 [y 5 (8, w) (me(dt, du)-w’(dt, du) )1 [, [ &5t w) (w'(dt, du)y-m(dt, du)) | < | fU ¢ (t,u) (m'(dt,
du)—m(dt,du))| <4, which implies that m’ €01 (mg, ;) COs(m, ¢;). O

Let J:= L°([0,00); U) denote the equivalence classes of U-valued Borel measurable functions on [0,00) in the
sense that uy,us € J are equivalent if u; () =uy(¢t) for a.e. ¢t € (0,00). It will serve as the path space of U—valued
diffusion controls. We can embed J into 2}3([0, 00) X U) via a mapping i;: Jou— e Moy (du)dt € ‘ﬁ([O, 00) XU).
Let T4(J) be the topology induced by Ty (B([0,00) xU)) via i Accordlng to Lemma 1.1, T(J) is generated by a
countable subbase

ii' (0

1
n

(Mg, @) = ueJ ‘/ e it u(t))dt— / /qutumk(dt du)’ :L} Vn,k,jEN. (1.1)

The proofs of next two Lemmata are relatively lengthy, see Section 6 for them.
Lemma 1.2. (J,‘Iﬁ(J)) 18 a Borel space.

Let L° ((O 00)xU; R) collect all real— Valued Borel—measurable functions on (0, c0)xU. For any ¢ € L°((0, c0)xU; R),
define I,(u):= [~ ¢ s))ds= [ ¢t (s,u(s))ds— [~ ¢~ (s,u(s))ds, Vue]. The Borel sigma-field #(J) of Ty(J)
can be generated by these random variables I on J.

Lemma 1.3. 1) We have Z(J)=0(1,;0€L°((0,00)xU;R)).
2) Let : (0,00) <€y xR x U [—00,00] be a Borel-measurable function. Then the mapping U(t,5,wo,wy, W)=

ftt+sw(rv [2(7"("))() (T),UJ ( ) u(r))dr— i ¢+(7‘ [2(T wx)va(r)vwx(r)vu(r))dr_ tt+5 1#7 (Ta [2(T7WX)7(U0(7’),(UX(7'),
u(r))dr, (t,s,wo,wy,u)€[0,00) x [O,OO)XQOXQ xJ is A0, 00)@H[0,00)R%B(0) 2B (82 )@ B (J)—measurable.

Let b: (0,00) x 2, xU—R! and o (0,00) x 2, x U R4 be two Borel-measurable functions such that for any
€(0,00)

|b(t, w5 u) =b(t, W u) [+ |o(twy, u) =0 (bW, w) | < k() lwy —w ], Ywy,w| €Qy, Yuel, (1.2)
t
and /sup (|b(r, 0,u)|*+|o(r,0,u)[*)dr < oo, (1.3)
0 uel

where k: (0, 00) — (0, 00) is some non-decreasing function and HwX —w’

X||t:_ sup |w ( )—w;((sﬂ Under conditions

€[0,7]
(1.2) and (1.3), controlled SDEs with coefficients (b, o) are well-posed (see e.g. Theorem V.7 of [38]):

Proposition 1.1. Let (Q, F, P) be a probability space. Givente€[0,00), let {BL} i) be a d—dimensional Brownian
motion on (Q, F, P) and let p={j1s}se[t,00) be a U—valued, FBt’P—progressively measurable process. For any x €€,
the SDE with the open-loop control p

Xs=x(t) +/ b(r, XM.,MT)dT—i—/ a(r, Xon., pr)dBE, Vs € [t,00) with initial condition X’[o t]:x|[0’t] (1.4)
t t ’

admits a unique strong solution X'+ = {XI*r} oo o (e, XP%H s an {]{f/tt’P}se[o,oo)fadapted continuous
process satisfying (1.4) and P{Xt># =Xtxn Vsel0, 00)}=1 if{)?ﬁ*x’”}se[o o) 18 another {fgt’P}se[o7w)—adapted

continuous process satisfying (1.4)).

Let 7, collect all (—o0, oo]—valued Borel-measurable functions 1 on (0,00) x Q. xU such that for any (¢,x) €
[0, 00)xQ2, and any U—valued F"' —predictable process y °={p2}set,00), One has Ep, [ft (r, Xfa/f’” , p2)dr] < oo,
where {X; 1Y [0,00) 18 the unique strong solution of (1.4) on (Q, F, P)=(Qo, Z(Q), Po) with (B?, p) = (W*, p°).

Moreover, we take the conventions inf §):=o0, sup ):=—o00 and (4+00)+(—0c0)=—00 (i.e. for any aj,as € [—00, 0]
we set a; —ag := —00 if a; = as = 00). In particular, on a measure space (€2, F,m), one can define the integral
Jo&dm:= [T dm— [, £ dm for any [—o0, oo]—valued F—measurable random variable £ on €2.
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1.2 Review of Martingale-Problem Formulation of Controlled SDEs

In this subsection, we consider a general measurable space (€2, F). Let {B}scp,00) be an R?—valued continuous
process on Q with By =0 and let X ={X,},c[0,00) be an R!—valued continuous process on ) such that (B, X,) is
F—measurable for each s€ [0, 00).

Given (t,x) €[0,00)xQ,, let P be a probability measure on (2, F) such that P{X,=x(s), Vs€[0,t]} =1. We
set BL:=B,—By, Vs€(t,00) and let 1= {15} sc[t,00) be a U—valued, FBt’prrogressively measurable process. Define
filtration F' = {F!}sefr00) by FLi=FE VFX =0(BLrelt,s|)Vo(X,;7r€(0,s]) and filtration F&F = {FP} c(r 00) by
FLP =B PVFX =o(FP' UJVp(FBt))VFS)(. For any p€ C?(R*!), we define

57 1 S
Mﬁ’“(w):w(Bi,Xs)—/ b(r,XM.,ur)-D<p(Bi,Xr)dr—§/ 5o (r, Xn, ) : D20(BL, X, )dr,  Vs€[t,00),
t

t

_ I
where b(r,w,,u) = (b( u? u)> e R4 & (r, Wy, ) 1= <0( :ljd u)> e REOFDIXd vy (p Wiy ) € (0,00) x Oy x U.
X7 X0

Clearly, {M L (<p)}s €lt,00) is an F©Y —adapted continuous process and it is even Ff—adapted if the control process j
is only F&' —progressively measurable. For any n€N and a€ R, set 7/ (a) :=inf {s € [t,00): |(BL, X, )—a| >n}A(tn),
which is an F!—stopping time. In particular, we denote 7/ (0) by ..

In virtue of [45], we have the following martingale-problem formulation of controlled SDEs with coefficients (b, o)
on 2.

Proposition 1.2. Under the probabilistic setup of this subsection, the process {Mt’“ (a )(@)}Se[tm) is bounded for

SATE

any (¢,n,a) € C?(R) x Nx R and the following statements are equivalent on (Q, F, P):
(i) The process B is a Brownian motion and P{X,=X*", Vse[0,00)} =1, where {X[Xr}

{ffvt”

€[0,00 s the unique

—adapted continuous process solving SDE (1.4).
(ii) {M s/\Tt(a }ge[t ) B8 0 bounded F*F —martingale for any (¢,n,a) € C?(R4T) x Nx R+,
(i) {M"", (o )}se[t o) 150 bounded F*F —martingale for any (p,n) € C(R) xN.

SATE

sE[O oo)

Moreover, if the control process | is FB' —progressively measurable, the F4-F —martingales mentioned in (ii) and
(i1) are Ft—martingales.

The proof of this result is an easy extension of [4, Proposition 1.2] to the control case, please see our ArXiv
version [5] for details. We also have the following consequence of Proposition 1.2.

Proposition 1.3. Let (Q2, F, P) be a probability space. Given t€[0,00), let {Bs}seo,00) be an R¢—valued continuous
process on Q with By =0 such that the process B' is a Brownian motion on (0, F,P), and let 1= {15 }scjr,00) b a
U—valued, FBt’P—progressively measurable process.

Let (t,w) €[0,00) x Qg and define BLW (w) :=w(sAt)+ B, (w), V(s,w)€[0,00)xQ. There exists a U—valued,
FW' —predictable process j°= {12} set,o0) 00 Qo and an N, € Np(FB") such that for any w ENE, ps(w)=p2 (B (w))
for a.e. s€ (t 00). It also holds for any x € Q. and ¢ € H#, that P{ X = Xt*H (BYW), Vs€[0,00)} =1 and
Ep[ [0 (r, X750, wp)dr] = Ep, [ [ Xﬁ,ﬁ‘“ ,pu2)dr] < ooc.

2 Stochastic Control/Stopping Problem with Expectation Constraints

Let (Q,F,p) be a probability space equipped with a d—dimensional standard Brownian motion {B;s}se(o,00)-

Let t€[0,00). We set B =B;—B;, Vse€|t,00), which is also a Brownian motion on (Q, F,p). Let U, collect all
U—valued, FB'» —progressively measurable processes f1= {#s}seft,00) and let S; denote the set of all [t, oo]—valued
FBt’Pfstopping times. For any (x, ) € Q. xU;, Proposition 1.1 shows that the SDE with the open-loop control p

S

Xs=x(t) +/ b(r, XTA.7MT)dr+/ 0(7", X,«A.7ur)d8r, Vs € [t,00) with initial condition X|[0 q =X|0,4] (2.1)
t t ’

admits a unique strong solution X**H = {X;’x’#}se[o.oo) on (Q,F,FB'P p) (ie., X' is the unique {]—"fvt;p
adapted continuous process solving SDE (2.1)).

s€l0,00)
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Let f € 7, {gi,hitien C K, and let 7: [0,00) X, + (—00,00] be a Borel-measurable function bounded from
below by some ¢, € (—00,0).

Given a historical path x|[ 4, the dynamic of the state then evolves along process {Xtvxvl‘}se[mo) if the decision
maker chooses a control process pu€U;. The decision maker also determines an exercise time 7 € S; to cease the game,
at which she will receive an accumulative reward ftT f (r, Xf’ﬁ’” , u,,) dr plus a terminal reward 7T(’7', Xf.’/f,’“ ) (both
random rewards can take negative values). The investor intends to maximize the expectation of her total wealth,

but her choice of (u,7) is subject to a series of expectation constraints
T T
E, [/ gi(r, X3 )dr | i, By [/ Ba(r, X3, ) dr| =25, WiEN (2.2)
¢ t

for some (y,z) = ({yi}ien, {zi}ien) € Rx R. One can regard each ftT gi (1, XL1, . )dr or ftT hi(r, XE25H ) dr as
certain accumulative cost. So the value of this stochastic control/stopping problem with expectation constraints
(SCEC for short) is

V(t,x,y,2):= sup Ep[/ f(T, Xrt}\x_’“,ur)dr—l—l{,Koo}w(T, X:X‘,’“)], (2.3)
(1,7 EC,x (y,2) t

where Cyx(y, 2) = { (11, 7) EU xSy : By [ [ gi(r, X55H, iy )dr] <ws, By [ [ ha(r, X558, py)dr] =z, VieN}.

Remark 2.1. Let (t,x)€[0,00)x Q..

1) (finitely many constraints) For i €N, the constraint E, [ftT gi(r, XXM ,ur)dr] <y; holds for any (u,7) €Uy xSy if
yi=00, and the constraint Ey[ [ hi(r, XM, e )dr] =2z holds for any (u, 7) €Uy xSy if (hi(--,+), 2:) =(0,0).

la) If we take (yi, hi(ey-s0), zi) =(00,0,0), VieN, there is no expectation constraint at all.

1b) If one takes y; =00, Vi>2 and (hz(7 ), zz) =(0,0), VieN, (2.2) reduces to a single constraint E, [ftT g1 (r, XL,
pe)dr] <yi. In addition, if y1 >0, then (u,t) €Cix(y,0) for any pel;.

1c) If one takes y; =00, Yi€N and (h;(-,-,-), 2) =(0,0), Vi>2, (2.2) degenerates to Ey | [, hy(r, Xrt’Ax.’“,u,.)dr} =21.
1d) If we take (y;, hi(-,+, ), z;) =(00,0,0), Vi>2, (2.2) becomes a couple of constraints E, | [, g1(r, XLXH pe)dr] <us
and By [ [ ha(r, xLxn phr)dr] =z1.

le) If we take ga=—g1, Y2 > —y1; y; =00, Vi>3 and (hz(, . -),zi) =(0,0), VieN, (2.2) becomes a range constraint
—y2 SB[ f] g1 (r, X[y )dr] <wr.

2) (moment constraints) Let i€N, a€(0,00) and g€ [1,00). If gi(s,x,u)=ags?™", V (s,x,u) € (0,00)xQ, xU (resp.
hi(s,x,u)=aqs? !, V(s,x,u)€ (0, oo)xQXxU), then the expectation constraint E, U;T gi(r, XM ur)dr] <y (resp.
By [ ] hi(r, X55", puy)dr] =z;) specifies as a moment constraint By [a(t9—17)] <y; (resp. Ep[a(r9—t9)] =z).

To study the measurability of value function V' and derive a dynamic programming principle for V' without
imposing any continuity condition on functions f, m, g¢;’s and h;’s in time and state variables, we follow [18]’s
approach to embed the controls, the stopping rules as well as the Brownian/state information into an enlarged
canonical space via a mapping w +— (B. (w),u.(w),X.t’x’“(w),T(w)) and consider their joint law as a new type of
controls.

3 Weak Formulation

In this section, we study the stochastic control/stopping problem with expectation constraints in a weak formulation
or over an enlarged canonical space

Q:=QoxJxQ, xT.

As (JL Ty (J)) is a Borel space by Lemma 1.2, Q) is also a Borel space under the product topology. Let B(2) be the
space of all probability measures on (ﬁ, 93(5)) equipped with the topology of weak convergence, which is also a
Borel space (see e.g. Corollary 7.25.1 of [7]). For any PeP(), set B5(Q):=0(B(Q)UAN:(B(Q))).



Stochastic Control/Stopping with Expectation Constraints 8

3.1 Setup

We define the canonical coordinates on Q by

(Ws(w),ﬁs(w),x(a)) = (wo(s)7u(s),wx(s)), s€[0,00) and T(W):=t, Vo= (wo,u, wX,t) €.
Given t€ [0, 00), we define

W (@):=W,(@)-W,(@) and Ti(w)::/tse_"f(Ur(w))dre[0,1)7 Y (s,@) € [t, 00) x Q0.

For the weak formulation of the SCEC, we need to consider those probabilities of ‘B(ﬁ) under which the canonical
coordinates (W, U, X, T) serve as Brownian motion, diffusion control, state process and stopping rules respectively.

Definition 3.1. For any (t,x) €[0,00)x, let Py« be the collection of all probability measures PeP(Q) satisfying:
(D1) There exists a U—valued, FW' —predictable process fi = {Tis}sept,00) 0n Qo such that P{U, =p, for a.e. s €
(t,00)} =1, where fi,:=1s(W), Vselt, 00).

(D2) The process W' is a d—dimensional Brownian motion on (Q,2(Q),P).

(D3) P{X, =2
that uniquely solves the following SDE with the open-loop control @ on (ﬁ,%(ﬁ),ﬁ):

7 wWEP
, Vse[0,00)} =1, where {%t o }Se[o,m) is an {]—"x{P}Se[o,m)—adapted continuous process

S

x(t) —|—/ b(r,yM.,ﬁ,,)dr—k/ o(r, Z vn, By )dW ., Y s€[t,00) with initial condition ?ho t]:X|[O g (3.1)
t t ’ ’

Zs

(D4) There exists a [t,00]—valued FW'-Fo—stopping time 7 on Qo such that P{T=7(W)}=1.

Let t€[0,00). For any s € [t,00), define ?: ::f?tvf?:a(W:;re [t,s]) Vo (X ;7 €0,s]), which is countably
—1

generated by {Y;I(O) :reQnio,t],0 e ﬁ(Rl)}U{(Wi,YT) (0): reQn(t,s], 0 € ORI}, We denote the
filtration {‘Tz}se[t 00)

1is(W(@)), V (s,w) € [t, 00)x € is a U—valued, FW' _predictable process on . For any (p,n, a) € C?(R4T)xNxRIH,

by F'. Let H={ls}se[t,00) be a U—valued, FWtfpredictable process on y. Then i, (@) :=

LT

M ()= (W, X,) — / E(T,YM.,ET)~D¢(W:,Y,«)dr—% / 557 (r, X Tin) : D2p(W, X, )dr,  Vselt, 00)
t t

is an thadapted continuous process and 7%, (a) :=inf {s € [t,00): |(W:, X,)—a|>n}A(t+n) is an thstopping time.
We will simply denote 7% (0) by 7+

Let us also define a shifted canonical process on Q by Wt( Vi=Wiis(@)—W (@)= W;s (), V( ,w) €0, 00)x Q.
(Note: the subscript s €0, oo) of 7' is the relative time after ¢ while the subscript s € [t, 00) of W' is the real time. )
Given s € [0, 00|, one has .7-'7’/ —J(Wt, te(0,5NR) —J(Wt+r, te[0,sNR) —O’(WT, relt, tHs)R) = ]-'tVKs In particular,
FZ' = FW' It then holds for any PeP(Q) that F ¥ =0 (F7 UNe(FL ) =0 (F UAN(FT ) =FIV T

According to the martingale-problem formulation of controlled SDEs (Proposition 1.2), we have an alternative
description of the probability class P; x:

Remark 3.1. Let (t,x)€[0,00)x Q.. In definition 3.1 of Py x,

(i) (D1) is equivalent to

(D1') There exists a U—valued, "V —predictable process ji={jis }sc[0,00) on Qo such that P{@/ jis (W t) for a.e. s€
(0, )}—1 where @/5.—Ut+5, Vse(0,00).

(i¢) Under (D1)=(D1"), (D2)+(D3) is equwalent to
(D2") P{Xs=x(s), Vs€[0,t]} =1 and {MS/\Tf (©)}
(#i) (D4) is equivalent to

(D4') There exzists a [0, oc]—valued FW-Fo —stopping time # on Qq such that P{T:tJri‘(Wt)}:l.

st 00) is a bounded (Ft, P)—martingale, V (¢,n) € €(RT)xN.

Remark 3.2. Let (t,x)€[0,00)x Q. and let PeP() satisfy (D1)+(D2)+(D3) of Py x.
(1) For any v € #,, Proposition 1.3 shows that F& [ft (r, Xvp., Uy)dr] :Eﬁ[ft ~(r %:;\(’H,ﬁr)dr]
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(2) Let (p,n,a) € C2RT) x Nx R As { M0z o) (0)}

sampling theorem implies that for any two [t, oo]—valued thstoppz'ng times q,Cy with (; <y, P—a.s.,

s€[t,00) is a bounded (Ft,ﬁ)—martingale, the optional

— . —t — —t 0 —t — =t
Eﬁ[(MZQ/\?;(a)(‘P)_M@A?;(a)(@))li} :EF[EF[MQA?;(C;)(S@)_ Zl/\ﬂ(a)(@)‘]:fl} IZ} =0, VAeFg. (3:2)

— T R J— _—
Let (t,x) €0, oo)xQX, (y,2)= ({yi}ieN, {Zi}ieN) € RxR and set R(¢) :sz/\tf(r, Xon., U,«)dr+1{7<oo}7r(T, XTA-)'
Given a historical state path x/|jg 4}, the value of the stochastic control/stopping problem with expectation constraints

T T
Eﬁ{/ gi(r,YM.7UT)dr} <, Eﬁ{/ hi(r,yr/\.,ﬁr)dr} =z;, VieN (3.3)
t t
in weak formulation is
JR— JR— T JR— JE— — —
V(t,x,y,2):= sup Eﬁ[R(t)] = sup Eﬁ{/ f(r, Xr/\-,Ur)d7“+1{T<oo}7T(T, T/\-)}v
PEP x(y,2) PEP: x(y,2) t

where Pox(y,2) i= {P € Pox: Bp[ [ 9:(r, Xon Un)dr] < iy Bpl [ hi(r, Xon, Ur)dr] = zi, Vi € Nf. We wil
simply call V(¢,x,v,2) the weak value of the stochastic control /stopping problem with expectation constraints. In
case Py x(y,2)=0, V(t,x,y,2)=—0c0 by the convention sup (}:=—cc.

We can consider another weak value function of the SCEC: Let (w,u) € Qy xJ and define fuw,u’x = {P S
Pix: P{Ws=w(s), Vs € [0,1]; Us = u(s) for a.e. s € (0,¢)} =1} as the subclass of P;x given the historical
Brownian path w|[

and the historical control trajectory u|[ The weak value of the stochastic control/stopping

0,4
problem with expectation constraints (3.3) given (w,u,x

0,4
is V(t,w,u,x,y,2):= sup E5[ R(t)], where
— . o o Feft,w,u,x(y,z)

Pt,w,u,x(ya Z) = {Pept,x(yv Z) : P{Ws :W(S), Vse [0, t], Us :11(5) for a.e. s€ (0, t)} = 1}

)’[O,t]

3.2 The Equivalence between Strong and Weak Formulation

One of our main results in the next theorem demonstrates that the value V (¢, x,y, 2) in (2.3) coincides with the weak
value V (t,x,y,2), and is even equal to V (t,w,u,X,y, 2).

Theorem 3.1. Let (t,w,u,x,y,2)€[0,00) xQoxJxQ xRxR. Then Vt,x,y,2)=V(t,x,y,2) = V(t,w,u,x,y,2),
and Ctﬁ((ya Z) 7é® Aad Pt,x(:% Z) 7&0 <~ Pt,w,u,x(:% Z) #Q)

Theorem 3.1 indicates that the value of the SCEC is independent of a specific probabilistic setup and is also
indifferent to the Brownian/control history. This result even allows us to deal with the robust case:

Remark 3.3. Let {(Qa,}"a,pa)}ae% be a family of probability spaces, where A is a countable or uncountable index
set (e.g, one can consider a non-dominated class {pa}acu of probability measures on a measurable space (Q,]-")).
Let o € A and let B* = {B?}se[o 00) be a d—dimensional standard Brownian motion on (Qa,Fa,Pa). Given

t€[0,00), set B¥ :=BY—B, s€[t,00), let UY collect all U—valued, FB""pa —progressively measurable processes

e ={ps }seft,o0) and let S denote the set of all [t, 00]—valued FBa’t*pafstopping times. For any (x, u®) € Qy xU*,
« « a,t

let Xtxon® = {xtxn ]  be the unique {FE P}

open-loop control pu®

—adapted continuous process solving the SDE with the

s€[0,00 s€[0,00)

Xs=x(t) +/t b(r, XTA.,uf)dr+/t o(r, Xep., u)dBy, Vs € [t,00) with initial condition X|[07t] :x|[07ﬂ

on (Qou fou FBaYt’pa ) pa) ‘
Then we know from Theorem 3.1 that for any (t,x) €0, 00) xQ and (y,2)= ({yi}ieN, {zi}ieN) eRxN

T
V(t.xy2)=swp s B, | / F(r, X2 i) dr 1, ooy (s X257
a€A (pu*,70)ECY, (y,2) t

where Cy (v, 2) == { (1, 7o) EUMXSE: By [ [ 9i(r, Xff‘.’”iu?)dr] <y, By [ J]" ha(r, X:’A’f’“a,uﬁ‘)dr] =2z;, VieN}.
To wit, the weak value V (t,x,y, z) is also equal to the robust value of the SCEC under model uncertainty.
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3.3 A Comparison with Unconstrained Case

The purpose of this subsection is to demonstrate that Theorem 3.1 is not a simple extension of the equivalence result
between strong and weak formulation of an (unconstrained) stochastic control/stopping problem obtained in [20].
When (i, hi(+,+), 2) = (00,0,0), Vi €N, the unconstrained version of Theorem 3.1 states that for any (t,x) €

[0,00)xQ, V(t,x):= sup  E,[ [ f(r, Xfo ) dr L 7 ooy (T, X% ")] is equal to V(t,x):= sup Ep[R(t)].
(p,7)EUL X St PEP: x
On the other hand, [20] showed that for any (f,x) € [0,00) xQ, V(t,x) equals V(t,x):= sup Ep|R(t)], where
PePix

ﬁt,x collects all PeP(Q) satisfying (D1), (D2), (D3) and “P{T >t} =1" (We summarize [20]’s result in our terms

for an easy comparison with our work). As P,y C Py, the equality V(t,x)= sup Ep[R(t)] = sup Ep[R(t)]
PePiy PPy

indicates that the probability classes 5@,{5 are more accurate than %tyx’s to describe the (unconstrained) stochastic
control/stopping problem in weak formulation.
The condition (D4) on P, x is necessary for the expectation-constraint case. Without it, the weak value V(¢,x, y, 2)

= sup Eg|R(t)] (With %ux(y,z) = {F € %t,x : Ef[f?gi(r’ Xop,Up)dr] <y, E [ft (r, Xop, Up)dr] =
PEP x(y,2)

Zi, ViEN}) may not be equal to V (¢,x,y, z) for the following reason:

In Proposition 4.3 of [20], the key to show ?(t,x) < V(t,x) or Ep[R(t)] < V(t,x) for a given P € %t’x, relies
on transforming the hitting times of process {Eﬁ[l{fe[t7s]}|fo"gt>ﬁ] }se[t,oo) to a member of S;. More precisely,
the so-called Property (K) assures an FW'-Po—adapted cadlag process 9. such that 0,(W) = B (1 7epq }|]-' ]
Eﬁ[l{TE[t,s]} |,7—'0Vgtf] , P—a.s. for any s€[t, o0). It follows that Eﬁ[l{fe[ts]}l{yt,x,ﬁ@‘} ’_FW P] 1 ”eA}ﬂ (W)
7]: e xﬁeA}A(dr W), P—a.s. for any (s, A) €[t,00) x B(Q), where = {7, :ﬁS(W)}SE[tm) is the U—valued,
FW —predlctable process in (D1) and Z = {?t or } 5€[0,00) is the unique solution of SDE (3.1). Let ® be a non-
negative Borel-measurable function on [0,00)xJxQ .. Then a standard approximation argument and the “change-of-
variable” formula yield that Ep|® (T U, X) |]-"W P] [0, U, X)0 J(dr, W) fo A), i(W), X)d\, P—as.,
where o(wg, \) := 1nf{s € [t,00) : ﬁs(wo ) > )\}, YV (wo, A) € Qo x(0,1). Set pg := MS(B), Vs € [t,00). Since the
joint P—distribution of (W ,u (W)) is equal to the joint p—distribution of (B, ﬁ(B)), we can deduce that the joint

P—distribution of (W, 7., " ") is equal to the joint p—distribution of (B, ., X**#) and thus

Ep[®(T,TU,X)] / E=[®(o(W, \), i(W), t”‘”‘)}dA:/Ol B, [®(o(B, \), i(B), X*#)] dA. (3.4)
As mh:i=0(B, \) €S; for each A€ (0, 1), taking ® to be the total reward function implies that

BplB0) = [ B[S )t O 05 [ Vemi=VEex. @9

However, this argument is not applicable to the expectation-constraint case: Given a ?E%nx(y, z), since (u, 7))
may not belong to C; x(y, z) for a.e. A€ (0,1), one can not get Ep[ R(t)] <V (t,x,y, z) like (3.5). Actually, for each A€

(Oa 1)7 (/1'7 T)\) is Only of Ct,x(y)n Z)\) with (y)w Z)\) = ({yi}ieNy {ZK}ZEN) and (yé\v Z;) = (EP [ tTAgi (7", X;}\x-’u7 Mr)dr] 5 Ep [
[ R (r, XL, ur)dr]). For i €N, choosing accumulative cost functions for @ in (3.4) renders that

t
1 T T — —
[ ][ sexzrmalo-te| [ a6X 0| <n
0 t t

and similarly fo Ep[ * hy(r, Xﬁf”,ur)dr] dX =z, so V(t,x, {fo yAdA}leN,{fo zad\}ien) <V (¢,%,y,2). Then the
attempt to show E+ [ } V(t,x,y, z) reduces to deriving a Jensen-type inequality:

/01 V(t,x, yA,zA)d/\SV(t,x, { /01 yAdA}, { /01 z,\d/\}).

But this does not hold since the value function V is not concave in level z of equality-type expectation constraints.
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4 The Measurability of SCEC Values

In this section, using the martingale-problem formulation of controlled SDEs, we characterize the probability class
P..x by countably many stochastic behaviors of the canonical coordinators (W,U, X, T) of Q. This will enable us to
analyze the measurability of value functions of the stochastic control/stopping problem with expectation constraints.

FW:Po _predictable processes on € in the sense that ', u? €4l

Let U be the equivalence classes of all U—valued,
are equivalent if {(s,wo) €[0,00) x Qg pl(wo) # p2(wo)} is a dsx dPy—null set. Given p €4, Fubini Theorem shows
that NV :={wy € p.(wo) €I} is an F VP —measurable set with zero Py—measure or N € Ap, (FY). By modifying
won N, we obtain an FW-P0 —predictable process with all paths in J: {ps1pre +u01./\f}s€[0,oo)a which is in the same
equivalence class as p. To wit, one can assume without loss of generality that for all u € 4, u.(wp) €J for any wg € Q.

We equip U with the topology of local convergence in measure, i.e., the metric

pu(ul,uz)::Epo[/o S (1Apy (g, g))dS} Vo', e

Also, let & be the equivalence classes of all [0, co]—valued, FW:1o

are equivalent if Py{r; =7} =1. We endow & with the metric

—stopping times on ) in the sense that 71,72 €&

p6(7.177-2)::EP0 [er(Tl,TQ)L VTla TQGG-
Lemma 4.1. (Ll, pu) and (6, pe) are two complete separable metric spaces, i.e., Polish spaces.

Proof: We know from Lemma 4.1 of [4] that (6, pg) is a complete separable metric space. The verification of
the complete separable metric space (11, pﬂ) is similar to our demonstration of the complete separable metric space
(J , pﬂ) in the proof of Lemma 1.2, we refer interested readers to the ArXiv version [5] of the current paper for details.
O

For any (u,7)€4UxS, define their joint distribution with W under Py by I'(u, 7) :=Poo(W, p1, 7) "1 € B(QoxIxT).
Lemma 4.2. The mapping I': xS b—>‘}3(Qo x J % T) s a continuous injection from XS into ‘B(Qo xJx T).

The proof of Lemma 4.2 is relatively lengthy, see Section 6 for it.

For any (t,P) € [0,00) x B(Q), define a probability measure on (Qo xJ x T, Z(Q xJ x T)) by @f,,ﬁ(D) =
P{W' %' T—t)eD}, VDeB(QpxIxT).
Lemma 4.3. The mapping [0,00) xP(Q) > (L?)H@t,ﬁE%(QO xIxT) is continuous.

Proof: Lemma A.4 implies that &(s,©):= (7 @), Z (@), T(@)—s) = (#*(W(@)), %*(U@)), T(@)—s), ¥ (s,@) €
[0, 00) x € is a continuous mapping from [0, 00) x to Qo xJxT. Then the proof of the lemma is similar to that of [4,
Lemma 4.3]. The key is to utilize the continuity of mapping ® as well as Prohorov’s Theorem. We refer interested
readers to the ArXiv version [5] of the current paper for details. g

For t€[0,00) and p € C?(R¥*!), define process
Ms(cp)::cp(Wi,YS)—/ B(r, X0 T,) - Do (W' X )d’rf%/ 55 (r, Xop TU,) : D20 (W X, )dr,  Vselt, o).
t t

We can use Remark 3.1 and Lemma 4.2 to decompose the probability class Py x as the intersection of countably
many action sets of processes (W,U, X, T):

Proposition 4.1. For any (t,x) € [0, 00) x €, the probability class Py is the intersection of the following three
subsets 0f‘43(7) :

Ptx {Pep(Q): P{X,=x(s), Vs€0,t]}=1}.
P, = {PeP(@): Q,peT(Ux6)}.
- k
iii) Pt —{PG’JB {( At ( _M;;,A(Hs)(%@)) 41;[11{(W§+51,Yt+si)eoi}}:Ov ¥ (p,n) ECRT)N, V(s,7)

e@%f, V{(si,0s) l—:1C(Qﬂ[O,s])xﬁ(Rd+l)},
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Based on the countable decomposition of the probability class ft7x by Proposition 4.1, the next proposition shows
that the graph of probability classes {ft,x}(t,x)e[o,oo)xﬂx is a Borel subset of [0, 00)x€2 x‘ﬁ(ﬁ% which is crucial for
the measurability of the value functions V=V.

Proposition 4.2. The graph ((P)):={(t,x, P) €[0, 00)x€2  XP (Q): PePyx} is a Borel subset of [0, oo)xQXx‘B(ﬁ).

Set D _{(t X, Yy, z) €[0,00) X Qe xRXR: Py x(y, 2) #0} and Dp:={(t,w,u,X,y, 2) €[0,00) x Qo xIx Q2 xRxR:
thux ya #@}

Corollary 4.1. The graph [[f]] ::{(t,x,y,aﬁ) € D= ><£]3( ) PePtx (y, 2 } is a Borel subset of Dz X‘B( ) and
the graph {{f}}::{(t,w,u,x,y,z,ﬁ) eDfx‘B( ) Pethux Y, 2 } is a Borel subset of D5 ><‘J3( )

Proof: 1) Let f: (0, 00)x§2, xU+ [0, o] be a Borel-measurable function. Taking ¢(r, t,H, ) :=f(r,r,u), ¥ (r,r,H,u) €
(0,00)x Q2 xR % U in Lemma 1.3 (2) shows that the mapping W;(t,s,w,u):=¥(t,5,0,w,,u)
— t+51/1(r, l2(r,wy ), 0,wy (1), u(r ))dr* bs f(r, lg(r,wx),u(r))dr (t,5,w,,u)€[0,00) x [O,OO)XQXXJ is [0, 00)®

t

A10,00)0%(Q )@ %(J)—measurable.
Since the random variables (X,U) on Q are #(Q,)®%(J)—measurable, it follows that the mapping

B T@)vt o T@rnyve _
Ui (t,w) :=/t f(r, Xon. @), Up(@))dr = lim t F(r, Xrp (@), Ur(@))dr
t+(T(@)An—t)
= lim f(r, Xop. @), Uy (@))dr= lim ;(t, (T(@)An—t)*, X(@),U(w)), (4.1)
n—00 t n—oo

Y (t,w)€[0,00) xQ is [0, 00)@% () —measurable, and Lemma A.3 of [4] implies that the mapping

\Tff(t,ﬁ);:/ ﬁf(t@)ﬁ(dw):Eﬁ[ﬁ §(r. X0 T2)dr], (2, P) 0, 00) xB(@) (4.2)

wen TAt
is A0, 00)® % (B(2)) —measurable.
Let i € N. Taking = g and j = b in (4.2) yields that both T, (t,P) := Ep[ o, g (r, X,n.. Uy)dr] and
Wy, (t, P): [fT/\t i(r, X, Uy)dr], V(t,P)G[O,oo)x‘ﬁ(ﬁ) are A0, 00)®%(B()) —measurable. Then the set

@:Z{(t,x,y,z,?)E[O,OO)XQXX%X%X‘B(Q) ( )<y1a \Ij’“( ,F):Zi’ VZGN}

is B0, 00)RB (0 \OB(R)RB(R)2% (B(2) ) —measurable. Since ((P)) € B0, 00)02B (2, )22 (B(2)) by Proposition
4.1, using the projection II; (¢,%,y, 2, P) := (t,x,P) yields that [[ ]] { t,x,y,z, P)€|0, oo)xQXx%x%x‘B(ﬁ) :Pe
Piox; Eﬁ[fTTM 9i (1, X, Uy )dr] <y, Ep[fTTM hi(r, Xra.,Ur)dr] =z, VieN} :ﬁfl(«ﬁ»)ﬁ@ is a Borel subset
of Dy xB(Q).

2) Since [1(t,wo) :==wo(tA-) is continuous in (t,wo) € [0,00) x o, the mapping D, (1, W,0) =1 W (@) -1 (t,w)=0}
(t,w,w)€0,00) xQpxQ is B0, 00)RB(Qp) ®B(2)—measurable.

Taking ¢ (r,r,0,u) := e "I (u), V(r,r,H,u) € (0,00) x 0y x R x U in Lemma 1.3 (2) shows that the map-
ping U, (t,5,1) == ¥(,5,0,0,u) = [/ ¥(r, [2(r,0),0,0,u(r))dr— e g (u(r))dr, (t,5,u) € [0,00) x[0,00) xJ is
B0, 0)R.HB|0, 00) ®AB(J)—measurable. As the random variable U on Q is %(Q)/%(J)—measurable, we can deduce
that the mapping ¥ (t,u,©) := [lco, L(w, (0.4Aq.0(@) -, (0.tAq.u)=0}* (t,u,@) € [0,00) x Jx 2 is B0, 00) x B(J) x
A ())—measurable. Then an application of Lemma A.3 of [4] again renders that the mapping

S

weN

D (t,w,w) U, (t,u,0) P(dw)=P{W,=w(s), Vs€0,t]; Us=u(s) for a.e. s€(0,t)},

V(t,w,u, P)€|0, oo) x Qo xIxP(Q) is B0, 00)2LB(Q)2B(J)@ %’( ( ))—measurable. Here we used the fact that
v, (0,tAq,U(w)) =¥,(0,tAg,u), Vq € Q4 iff Jye "I (U, (w))dr e’rﬂ( (r))dr, Vsel0,t] iff Us(w)f u(s)
for a.e. s € (0,t). By the projections Ily(t,w,u,x,y, z, P) := ( X, ) TI5(¢, w u,x y,z P):= (t,x,y,z,P) and
T4 (t,w,u, x,y, z, P):=(t,w,u, P), we can derive that {{P}} =11, (<<’P>>)OH3 )N, (2) 1(1)) is a Borel subset
of D x P (). O

By Corollary 4.1, the value function V is upper semi-analytic and is thus universally measurable.
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Theorem 4.1. The value function V (t,X,vy, z) is upper semi-analytic on Dz and the value function V(t,w,u,x,y,2)
is upper semi-analytic on Dz.

Proof: Since the measurability of functions m and [ shows that @(s,w, ) = Liscoym(s, 2(s,wy)), (s,wy) €
[0, 00] x Q2 is B0, 00] @ A(S2, )—measurable, taking f= f* in (4.1) renders that the mapping

. T(w)Vt . - - . .
Uy (t,w) ::/t f(r, Xopn@),U,@))dr+w (T (@), X (@)), V(t,w)e0,00)x0

)

is 210, 00)©%(Q)—measurable. Lemma A.3 of [4] implies that ¥ (t, P):= [ _g¥ .+ (t,w)P(dw), (t, P) € [0, 00)xP(
is #[0,00) ® B (P (1)) —measurable. Then Corollary 4.1 and Proposition 7.47 of [7] yield that V(¢,x,y, z)

Q
sup Y (t,P)= sup 7 (t, P) is upper semi-analytic on Dz and V(t,w,u,x,y,2)= sup v (t,

PEP: x(y,2) (t,x,y,2,P)€[[P]] (t,w,u,x,y,2,P)E{P}}

is upper semi-analytic on Dz. O

5 Dynamic Programming Principle for V

In this section, we explore a dynamic programming principles (DPP) for the value function V' in weak formulation,
which takes the conditional expected integrals of constraint functions as additional states.

Given t€0,00), let ¥ be a [t,00)—valued FW —stopping time and let Pem(ﬁ). According to Lemma 1.3.3 and
Theorem 1.1.8 of [45], f? "is countably generated and there thus exists a family {fi w} g of probability measures
in PB(Q), called the regular conditional probability distribution (r.c.p.d.) of P with respect to F W' such that
(R1) for any A€ (), the mapping wHﬁ%@ (A) is f?t —measurable;

(R2) for any (—oo, oo]—valued, %Z5(Q2)—measurable random variable & that is bounded from below under P, it holds
for any weQ except on a Nge/l/ﬁ(}%wt) that £ is 35’?%@ (2)—measurable and EF%,; [a :Eﬁ[g ’fth] ();
(@) =1y, V(@A) eNgx FIY

(R3) for some N e</1/ﬁ(]-'7Wt)7 P
Let w<Q and set W%,w: {w' e Wo@)=W.(@), Vre[t, 7@ )]} We know from Galmarino’s test that

F@)=7®), v ewﬁwv (5.1)

and W%@ is thus ]-%W ' _measurable. Since EEW%@ for any we ), (R3) shows that

Wtﬁ,w) { GW }—1 VEENS (52)

=t
P55

For any i €N, define ?%(7) ::Ep[fg/wgi(r,yr/\ Uy )dr ]-"Wt] and ZP( )= f{ffifhv (r, Xn, Uy)dr
So (Y5(7), Z5(7)) := ({?ﬁ(i)}ieN, {7%(7)}1,@\]) is an R x R—valued fW —measurable random variable.

In terms of the r.c.p.d. {P%@}weﬁ’
as follows. It will play an important role in deriving the sub-solution side of the DPP for V.

Wt
pal } .
the probability class {PLX y,2): (t,x,y,2) € Df} is stable under conditioning

Proposition 5.1. Given (t,x) €[0,00)xQ,, let 7 be a [t,00)—valued FWtfstopping time and let P € Py . There
exists a P—null set N' such that

PraePro 5, () @), (ZpM) @), voe{T27}nN" (53)

Now, we are ready to present a dynamic programming principle in weak formulation for the value function V, in
which (Yﬁ(ﬁ),7ﬁ(ﬁ)) act as additional states for constraint levels at the intermediate horizon 7.

Theorem 5.1. Given (t,x,y,2)€ D5, let {Wﬁ}ﬁeﬁ (v.2) be a family of [t,00)—valued FWtfstoppz'ng times. Then

T
V(t,x,y,z)=  sup EP[I{T<7} (/ f(r,XM.,U,«)dT—Hr(T,XTA_))
PEP: x(y,2) P t

.
+1{TZVF} </75 fr, Xon., U, )dr-i—V(’Yf FoA- 7Yp(’YP)vZP(’Yp)))]‘

P)
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Based on Theorem 3.1 and Theorem 5.1, we plan to show in our sequel projects that the SCEC value function

V(t,x,y,2z)=V(t,x,y, z) solves the corresponding path-dependent Hamilton-Jacobi-Bellman equations in a viscosity
sense. Then we will derive an effective numerical scheme for the SCEC value function V(¢,x,y, z) and implement it
for practical examples including some SCEC problems with state/control delay in dynamics.

6 Proofs

Proof of Lemma 1.2: 1) We first show that J is a complete separable space under the metric
py(u,u) ::/ e (1npy(u(s),w'(s))ds, Vu,u'el.
0

1a) Let {u, }nen be a Cauchy sequence in (J, pJ). We shall construct in (6.1) a limit u. €J of the sequence {uy, }nen.

There exists a subsequence {ny}ren of N such that Py (unk,unHl) <27k VEkeN. Fix keN. Since 1A(a+b) <
1Aa+1Ab, Ya,be [0,00), it holds for any £ € N that 1A py(tn, (8), Uny,, (5) < S0y LAy (s (8), s (5)),
s€(0,00), taking 31615 yields that

T (50 (0, (5)s . (5)) ) =502 (1 (s () () ) sz LD (it (5), n, (), 5€(0,00).

The monotone convergence theorem then implies that [~ e~* (1/\ (sup Py, (8); tny (s))) ) ds<D ien Py (Ui s
€eN

Uy ) Sy 27K =2+ 80 {nk}keN has a subsequence {ny,, }meN such that "}gnoo e~s (1 A (31615 Py (U, (5),

Uny o (5)))) =0or lim (igg pU(unm(s),unka(s)D =0 for all s € (0,00) except on a ds—null set N of (0, 00).

m—r oo

Given s€(0,00)\\N, one has lim (sup Py (tny,, (), Ui, (s))> =0, ie., {un, (S)}mEN is a Cauchy sequence in U.

m—00 \ jeN
Let u,(s) be the limit of {up, (s)}, _in (U,py).
Define p(s):= lim & (un, (s))€[0,1], s€[0,00), which is a Borel measurable function on [0, c0). Then

m—r oo

u*(s) =71 (H(S))l{ﬁ(s)ee} JFUol{E(s)g@}a sE [0, oo) (6.1)

is a U—valued Borel measurable function on [0, 00), i.e., u, €J. For s€ (0, 00)\N, the continuity of mapping .# shows
u(s) :mligloof(unkm (5)) =7 (uo(s)) €€, s0 uy(s)=.# "1 (u(s)) =uo(s). The dominated convergence theorem implies
W}iinoopJI (Un,, o us) :7213100 Jo Lseneye ™ (1Apy (tn, (5), uo(s)))ds=0.

Let £ € (0,1). There exists an N € N such that p; (un,un) <e/2 for any n,n’ > N. We can also find a m € N
such that ng,, > N and that pJ(unkm,u*) < g/2. Tt then holds for any n € N with n > N that pJ(un,u*) <
Py (un,unkm)—&—pj (un, ,u.)<e. Hence, u, is the limit of {u, }nen in (I, pJ).
1b) In this step, we demonstrate that J is separable under py-

(i) We first construct a dense subset C of J under py: Let {u; }ien be a countable dense subset of (U, pU) and let
{O;}ien be a countable base of the Euclidean topology on [0, 00).
Given n € N, let us enumerate the 2" elements of { Y, O;: IC{1,---,n}} by {OF,---,0%.} and consider the

following countable collections of 20, c0)/%B[—1, 1]—measurable functions on [0, c0):
Go={ I W) op —Liopye i € (L2} GEN] Gue={ max g keN, {n,- 0} C% .

Clearly, each r €%, takes values in a finite subset of {f(ui)}ieNU{—l}. By additionally assigning .# ~*(—1):=uy,
one has C:= {77 r): t€%, for some ne N} C {{u;}52—valued 2|0, c0)—measurable functions} =: C.
We claim that C is a dense subset of J under py: To see this, for any i, n €N we set o} := {uGU : pU(u, ;) < 2*”}

as the open ball centered at u; with radius 27". We also set o} :=o} and o} ::0?'\( U O;L) for i>2. Given ue]J and
1<
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neN, define a member of C by u, (s) =) ien Liseeryui, s€[0,00), where &' :={s€[0,00): u(s) €0} € AB[0,00). As
Py (un(s)Lu(s)) = ien Lseery Py (u;,u(s)) <27 for any s€ [0, 00), one has Py (up, ) = [° ’S(lApU (), u(s)))ds <
27". So C is a dense subset of J under p;.
(ii) We then show that the countable collection C is dense in C and is thus dense in J under py-

Let Te C and € € (0,1). We set & = {s€0,00): U(s) =u;} € B[0,00), VieN. Since A(€):= [,
probability measure on ([0,00), 2[0,0)), there exists N €N such that )\( Z_>UN c‘?z) <e/3.

e -
ce€ ds is a

Given i=1,---, N, Proposition 7.17 of [7] shows that )\(Ol\a) < g5 for some open subset O; of [0, 00) containing
&;. Since O; = U Ogi for some subsequence {W} en of N, one can find n; € N such that )\(Ol\@z) <

v

0;:= U Ogl 693[0 00). As O, € {O"} for n:= maXNﬁfli, we see that r;:=.%(u;)15 —1y. belongs to €,. Define

5> Where

=1,
g1 ,
=9 (i:q}g_m_}c,le) eC.
For i=1,---,N, if A; := (&ﬂ(’)ﬂ\(jgj\%j# (’)j) 2|0, 00) is not empty, it holds for any s € A; that r;(s) =
~\C N o \¢
1=y F (u;) =1 2y for j€{1,---, N} and thus u(s)=.# " (r;(s)) =w; =1(s). Also, if Ag:= ( ng gi) N (jL:JI Oj)
is not empty, it holds for any s € Ag that u(s)=.#~'(=1) =ug=1(s). Then p;(u, i) = [ ., e™*(1Apy(u(s),u(s)))ds

i>N €N

for A:z(igo Ai)cz(ig (ci\AJ) U ( u a) U <( u a)cﬂ (jgl (5])> C [0,00). Since

a\Ai:(ejnég)U(, u 4(§maméj))c<oi\a)u(
)
N

(Loro)u(

dense in C under p;.

and since (

Therefore, (J , pJ) is a complete separable metric space.
2) Next, we demonstrate that the mapping i (J,pJ) — (‘B([O, oo)xU),‘Zu (‘),3([0, oo)xU))) 18 a continuous injection.

Let u, u’ € J such that iJ(u) :ij(u’). Since fot efsf(u(s))ds:fooo fU l{sgt}f(u)ij(u)(ds, du) :fooo fU l{sgt}ﬂ(u)ij(u’)
(ds, du) :fg e .7 (W (s))ds for any t € (0,00), we see that e*.7 (u(s)) =e *. ('(s)) and thus u(s) =u'(s) for a.e.
s€(0,00), namely, u=u’ in J. So i; is an injection.

Let {u,}nen be a sequence of J converging to a u € J under p;. We show that i (u,) converges to i;(u) under
T4(B([0,00)xV)): By e.g. Lemma 7.6 of [7], this is equivalent to verify that

nl;n;o/ /gf) s,u)ij(u,)(ds, du) / /QS s, )i (u)(ds, du) (6.2)

for any bounded continuous function ¢: [0,00) xU—R.
Let ¢ be such a continuous function on [0, 00) x U. For the limit (6.2), it suffices to show that any subsequence
{unk}keN of {u, }nen has in turn a subsequence {u%}keN satisfying (6.2): As klingc Jo e (1npy (un, (5),u(s)))ds =

kli_}rgopj(unk,u) =0, there exists a subsequence {unk }keN of {uy, such that len;OpM (unk (s),u(s)) =0 for a.e. s

}keN
(0,00). Then the continuity of ¢ and the dominated convergence theorem imply that kh—>Holo fooo fU S, u)i J( )(ds du)=

kli_)n;@ I° e_sqb(s,ungc(s))ds:fo e o (s,u(s))ds= [~ [, &( u)(ds, du).

So i; is a continuous injection from the complete separable metric space (J , pJ) to the Borel space (2]3([0, 00) X
U), T4 (B([0, o0) XU))). (In particular, the topology induced by p; is stronger than Ty(J).) Then the image i;(J) is
a Lusin subset and thus a Borel subset of (&B([O, 00) xU), T (B ([0, 00) XU))), see e.g. Theorem A.6 of [46].

As the embedding mapping i, is clearly a homeomorphism between (J T (T )) and iJ(J] ) with the relative topology
to T4 (B([0,00) xU)), we obtain that (J,T4(J)) is a Borel space. O
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Proof of Lemma 1.3: 1) For any ¢ € (0,00) and ¢ € Cy([0,00) xU), set 79 (u fo ))ds, Yuel. We first
show that S::U(If;te (0,00), o€ Cy([0,00) xU)) =A(J).
1a) Let t€(0,00), € Cy([0,00)xU) and a€R. We claim that the set A:={u€e]: ZP (u) <a} belongs to Ty(J).

To see this, we let u€ A and set ¢:= 1 (a I¢( )) There exists a positive bounded continuous function § on

—1
[0, 00) such that B(s)=e®, Vs€[0,t] and ft e=B(s)ds < 3 (||o]lo V1), where ||¢Hoo::( e Ulsb(s,u)l- Set
s,u)€(0,00) X

O::ijl (O5 (iJ(u), 5(1))), which clearly contains u. Let u' € O. We can deduce that

> | /000685(5)(¢(5,u’(5))¢(s,u(s)))ds >| [ (05,5 (s, ds

-] / " e B(5) (95, (5)) — (s, u(s))) s

Since | [ e *B(s)(d(s,u'(s))—d(s,u(s)))ds| <2 ¢]lo [~ e *B(s)ds <&, one has |It¢(u’)—If’(u)‘ < 2e, which implies
that Zf (W) <a or W' € A. So ue® CA. As the induced topology T(J) is generated by the subbase {ij_l (Os5(m, 9)),
VY (6,m, ¢) € (0,00) xPB([0, 00) x U) x Cy, ([0, 00) XU)}, we see that A€ %y (J) Cc B().

It follows that {ueJ: Z? (u) e £} € B(J) for any € € B(R) and thus S:U(If;te (0,00), p€ Cy([0,00)xU)) C B(T).
1b) Let {iJ*l (O%(mk,@))}n’k’jeN be the countable subbase of Ty(J) in (1.1). Given n,k,j € N, let {Ig}te(om)
denote {Z} }1c(0,00) With ¢(s,u) =e*¢;(s,u), ¥ (s,u)€[0,00) x U and set ry,;:= [ [;; ¢;(t, u)my(dt, du) €R. Since
the function I (u) := t%fg (), u € J is F—measurable and since fooo e 5¢i(s,u(s))ds = hm fo “S¢;(s,u(s))ds =

I (u) —nk’j|<1/n}68.

tlim I7 (u)=1IZ(u) holds for any ueJ, (1.1) shows that i71 (01 (my, ¢))) =
—00 n

Then T4(J) CF and thus Z(J)=37.
2) We demonstrate the second statement of Lemma 1.3 in several steps. Then Z(J) :U(I¢; pe LO((O, 00) xU; R))

easily follows.
Let {w;}ieN be a countable dense subset of 2, and let {E]j = (wj, xj)}jeN be a countable dense subset of R+

Given n€N, we set O":={w, €, : Pa, (Wyes w )<1/n}eB(Q) and OF:=0; \(i/Lii Oi/) €A(S) for any i€N.
Let us also denote £7':=01 (Eb—)\(j/%j O1 (Elj/)) for any jeN.

2a) We first show that the second statement holds for a continuous function ¢: [0,00)xQ, xR¥ XU [0, cg] with
cy€(1,00), i.e. the mapping Qox Ny xJ 3 (wo,w »—>f0 o(r, la(r,wy ), wo(r),wy (r),u(r))dr is Borel-measurable.
Let T €(0,00) and meN. We set t;”::k2*mT VkE{O, 1,---,2™}. Then, we let k€{0,1,--- ,2™—1}.
For any i,j € N, as the function ¢; ;(s,u) := ¢(s, w;,Elj, u), (s,u) € [0,00)x U is of Cy([0,00) xU), we know
from Part (1) that I;Z’k(u) ::Iféi (u)— Ififﬂ ft,ﬁi“ o(r, wX,E]J, u(r))dr, Vuel is #(J)—measurable. Since the

function [ (£}, w ) is continuous in w, € Q. and since the function Wi (wo, wy, ) := (wo ("), w (£1*)) is continuous in

EoWx
(wo,w X) €Qpx 2, we can deduce from the continuity of ¢ and the bounded convergence theorem that the mapping

74
@L"(wo,wX,u) ::/ gzﬁ(r, Ig(tzl,wx),wo(t}cn),wX(tzn),u(r))dr
t
. t;cn+l i
= ,}H{}o i Z Lt w,)eomy LoV (wow X)es"}¢( Xva"u(T))dT

i,jEN

. m,k
- nh—>ngo Z Lo t'",wx)65’;‘}1{‘/‘41"’(%%)ng’}fi,j (W), ¥ (wo,wy,u) Qo xRy xJ
i,jEN

is B(Q0) @B(Q)®A(J)—measurable. Then the continuity of l(r
theorem imply that the mapping

,Wy) in 7€(0,00) and the bounded convergence

T T2"-1
@(wo,wx,u) ::/0 d)(r, [Q(T,wx),wo(r),wX(r),u(r)) r= lim Z I tk+1)}¢(r lo(th, w X) wo(ty),w (tzn),u(r))dr

m—r o0

om _q

= n}gnoo Z: P (wo, Wy, 1t),  V(wo,wy,u) €QyxQy xJ
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is also B()@%(N2, )@ %B(J)—measurable.
2b) We neat use the monotone class theory to demonstrate that the second statement holds for all bounded Borel-
measurable functions on [0,00)xQ, xR xT.

Set X := [0,00), Xp := Q, X3 := R and X, := U. They are all metric spaces. Let i = 1,2,3,4. We
denote the corresponding metric of X; by py and let C; be a closed subset of X; Given n € N, we define an
open subset O! of X; by O} := {x € X; 1 disty (v,C;) = ing Py (w,2") < 1/n} In light of Urysohn’s Lemma,

% ZD/E i 7
there exist continuous function ¢ : X; — [0,1] such that ¢¢(z) =1, Vo € C; and ¢! (x) =0, Vz € (O})¢. So
Dn(s,wy B, u) = ¢ (s)92 (wy )93 (H)en(u) € [0,1], (s,wy,H,u) €[0,00) x Q2 xR x U is a continuous function
satisfying nlgr;oqsn(svwxvaau) = 1{(s,wX,E],u)Ecl xCaxC3xCy}r v (Sa wxaElau) € [O, OO) XQX xR xU.

Let T' € (0, 00). Since the mappings fOT O (1, L2 (r,wy ), wo (1), wy (1), u(r))dr, (wo,wy,u) €QoxQ, xJ are B(Qo)®
B(Q)2%B(J)—measurable for all n€N by Part (2a), the bounded convergence theorem shows that the function

T T
/0 L{(r o (rw )0 (r) o (7) u(r))€Ca x Ca x O x 0y AT = i ; O (7, 2 (r,wy ), wo(r), wy (r), u(r))dr,
(wo, Wy, u) €Qox Q. xJ is also B(Qo) @AB(Q,) ®%(J)—measurable.
Let H collect all real-valued Borel-measurable functions ¢ on [0,00) xQ xR x U such that the mapping

T
QoxQy xJ > (wo,wX,u)n—)/O 7,/}(7", [2(7',wX),wo(r),wX(r),u(r))dr

is B(Q0)0A(Q ) ©A(J)—measurable. Clearly, H is closed under linear combination. If {1, }nen CH is a sequence
of non-negative functions that increases to a bounded function ¢ on [0, 00)x €2, xR xU, the bounded convergence
theorem implies that v is also of H.

Since {C x Cax C3xCy: C1C[0,00), C2Cy, C3CRM and €y CU are closed} is a Pi-system that generates
B0,00)@B(Q ) BR™)®2(U), we know from the monotone class theorem that # includes all bounded Borel-
measurable functions on [0, 00) x €2, x R < U.
2c) Now, we consider an unbounded Borel-measurable function 1: (0,00) x Q. x R¥ x U [—00, 00].

Set sp':=k2~"™ for any m €N and k€ NU{0}. Given n €N, the bounded convergence theorem renders that the
mapping

t+s
[0,00) x[0,00) x Qo x Q. XJ > (t,s,wo,wx,u)H/t nAYT (7“, lo(r, wX),wo(r),wX(r),u(r))dr

. 0 Szl-*—e L
= lim k;o Livesy sy )y Liselsy s )} / AT (b wy ) wo(r), wy (r), u(r)) dr,
S L= k

is A0, 00)2%[0, 00) @A () 2HB(2 )@ %(J)—measurable. Then it follows from the monotone convergence theorem
that the mapping

t+s t+s
\I/:t(tvngmwxau)::/ Tﬁi(ﬁ [2(7‘,OJX),UJ()(T),WX(T),U(T))CZT: h_>m ”/\wi(r, [Q(T,LUX),LU()(T),WX(T),u(’l“))d?“
t n—oo Ji
is Borel-measurable in (t,5,wo,w,u) €[0,00) x [0, 00) x Qo x Q2 x J, proving the second statement.
Clearly, § C O'(LP;QO € LO([O,oo) x U; R)) = 0(I¢;<p € LO((O,oo) x U; R)), where LO([O,oo) x U; R) collect all
real—valued Borel-measurable functions on [0, 00)xU. Let ¢ be a non-negative function in L° ((07 o0) xU; R). Taking
Y(r,6,8,u) =¢(r,u), ¥(r,5H,u)€(0,00)xQy xR¥*! x U shows that the mapping

T T
Iw(u)leir{l)o ; gp(r, u(r))drlegrcl)O | ¢(r,0,O,u(r))drzTILn;oq/(O,T,O,O,u), Yue]
is %(J)—measurable. Hence, we have Z(J)=F =0 (I,;p€L°((0,00) xU;R)). O

Proof of Proposition 1.3: 1a) Given a sigma-field G of Qo, we claim that

%)w(g):: {ACQ: FA€G and NEJ‘/}D(.FOBOt) s.t. 1{Bt,w(w)€A}:1{w€A}, VUJENC}
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is a sigma-field of §2.

As 1{prwieny = 1 = ly,eqp for any w € Q, it is clear that Q € % w(G). When A € .7« (G), there exist
A€G and N € Ap(FB") such that 1iprwwea} = L{wea}, Yw eNC Then A° € satisfies that 1{grw)cac} =
1-1(prwyear =1=1{uea} =L{weac}, YweENT, so A® also belongs to 7w (G). If {Ak}tken CStw(G), for any k€N
there exist A, € G and Ny, € Ap(FE") such that 1{prwwyed,} = Liwea,}, YweNE. Then kQNAk € G satisfies that

1 =J] 1ipgtw =T 1, =1 , Ywe N NE, which sh that N A, €. w
(e = Hlrwean = leeay =1 o o0 Vo€ QNG which shows that 3 4k €74 (G)

with (A,N)= ( kQN Ap, kLEJNNk). Hence %1 w(G) is a sigma—field of .

Let s € [t, 00). For any r€[t, s] and £ € B(R?), since we (BL) (&) iff W(B*W (w))=W,.(B*Y (w))-W(B*Y (w))
Bl(w) €& iff BbY(w)e (W})~H(E), one has 1{peww)cw)-1(e)} = Lwe(Bt)-1(6)}> VwEQ, which means (Bf)™'(€)
Frw(FVY) with A= (WH=1E) e FV and N =0. So FB' €. % w(FV'). When s >t, as FB' C.%w(FV")
Zyw(FV) for any r€|t, s), one further has FB' :U( U _7_—:3‘) C I (FV).

relt,s)
1b) Similar to .7, w(G) in Part (1a), 5/”;“,:: {Dclt,0)xQ:3De PV and N'e Np(FB') s.t. 1¢(s,Btw(w))eD} =
1{(s.wenys ¥V (s,w) €[t 00) x N} is a sigma—field of [t, 00) x Q:

Set A; := {{t} xAy,: A, € fft}u{(s, o)X A: s€ft,oo)NQ, A€ ff_t}, which generates the FB' —predictable
sigma—field 28", For any A, € FE' C.%, w(FV'), there exist o7, € FYV' and N € Ap(FB') such that 1ptww)ew,} =
1{wer}, Vw e N¢. We can deduce that 1{(S,Bt=w(w))e{t}xmo} = 1{(3 w)E{t}XA % V( ,w) S [t,OO) xN€. So {t} x A,
is of eﬁ/’zw with D = {t} x o7, For any s € [t,00) N Q and A € FB' C .7 «(FV"), one can find some o € FV'
and N € Ap(FB") such that 1prwwicw) = Lweay, Yw € N° It then holds for any (r,w) € [t,00) x N that
1{(T’Bt,w(w))€(5’oo)><g{} = 1{(r,w)€(s,oo)><A}7 which implies (S, OO) XAE«?;W with D= (S, OO) X . Hence, %w contains
A; and thus includes PpB"
1c) Now, let {js}scit,00) be a general U—valued,

S
-

t .
FB P _progressively measurable process on §).

Similar to Lemma 2.4 of [44], one can construct a [0, 1]—valued FB' —predictable process {ve}, Clto0) O1 Q2 such
that vs(w) = 7 (us(w)) for dsxdP—a.s. (s,w) € [t,00) x Q. Fubini Theorem yields that for all w € Q except on a
N}ep (fgt), vs(w) =5 (ps(w)) for a.e. s€[t,00). By Part (1b) and a standard approximation scheme, we can
find a [0, 1]—valued FW' —predictable process {ve} on Qg and an N2 € Ap(FB') such that v,(w) =2 (B (w))
for any (s,w)€[t,00)x (N2)°.

Set Ny, =NIUN2 e Ap(FB') and define po(wp):=.7 " (12(w0)) Livo(wo)ee} F ol {ve(wo)ge}s (5,wo) € [t, 00) x o,
which is a U—valued F"' —predictable process. Given weNS, it holds for a.e. s€(t,00) that vg(B"™(w))=v.(w)=
S (ps(w)) and thus p2(B*(w))=ps(w).

2) Let x€ Q. and let (¢, )GQ(RdH)XN On Qq, MU ()= (W, X1 )—7b(r, Xt (12)-Dp(WE, X" ) dr
-1 tSEET( T, X,t.’/i‘,’”o,,uﬁ) . D2p(WE, Xt Ydr, Vs € [t,00) is an FW'-Po—adapted continuous process and 75+ :=
inf {s€t,c0): |(W!, Xt*H") ) is an FW"-P _stopping time. As X®*#° is the unique strong solution of
SDE (1.4) on (QO,,@(QO),PO) with (B!, u)= (Wt, uo), taking (0, F, P, B, X, u)= (QO,Q(QO),PO, V[/,Xt’x’#o,uo) in

Part (iii) of Proposition 1.2 shows that {Mt’” b0 (<p)} o) is a bounded FW" - —martingale.
se|t,00

We neat show that the process (M5 (9))(BYW), ¥V s€[t, 00) stopped by 74+ (BYW) is a bounded FB'-F —martingale.
Then the second statement of Proposition 1.3 easily follows from Proposition 1.2.

Since W{(B""(w))=B(w), V (s,w) € [t,00) X, applying Lemma A.1 with to=t, (Q1,F1, P, B')=(Q, F, P, )
(Q2, F2, Py, B?) = (R0, B(Q), Po, W) and & = B*™ implies that X := X1 (BYW), M,(p) ::( LE7 () (BBY
se[t,00) are FB"F —adapted continuous processes and %, := 754" (BtW) is an FB'-X —stopping time.

Let t<s<r<oo and {(s;, Ei)}le C[t, s] x B(R%). We can also deduce from Lemma A.1 that

SE[t,00)

0= EPo [(Mt“ t,u° ( ) M:/\#TJL”O(SD))lﬁ (Wst)*l(&):|
= [ (0 @) (rnnt o) = (M @) oA o)1 (P )
= /WGQ ((Mt,uo (@)) (7,/\7_7751,#0 (Bt’w(w)), Bt,w(w)) _ (Mt>#° (4,0)) (8/\7'72”“0 (Bt’w (w))’ BtW (w))) 1151{W;i(vaW(w))esi}P(dw)
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- /MEQ ((Mt,uo(@))(T/\i‘n(w),Bt’W(w))f(Mt,#o((p))<5/\7o_n(w),Bt,W( )))1 " o P
- EP[(MT/\%n ((P)—Ms/\;.n(gp))]_ B )]

o . v y k
So the Lambda-system A, , := {A € FB.P . Ep[(MM;n (¢) —MsA;n(cp))lA] = O} includes the Pi-system { n

i=1
(BL)7H&) - {(si,é'i)}le C [t, 8] x L@(Rd)}uﬂp(}'ﬁt). An application of Dynkin’s Pi-Lambda Theorem (see e.g
Theorem 3.2 of [8]) shows that ]-'SBt’P C AS)T, ie., Ep[(MTMn ((p)—]\;[s/\%n (<p))1A] =0 for any A€ .7:Bt P To wit,
the FB"P —adapted continuous process Ms(go):gp(Bé,)u(s) —ftsg(r, )u(r/\.,,ur) -Dy(Bt X X, )dr— 1ft ol (r, X,n NTSE
D2p(Bt, X,.)dr, Vs € [t,00) stopped by the FB'-F —stopping time %, = inf {se t,oo). |(B§,)Z'S ‘ >n}A(t+n) is a
bounded FB"F —martingale. Using Part (i) of Proposition 1.2 yields that P{X,=X!%* Vse0,00)} = 1.
Moreover, for any v € , one has Ep|[ [~ (r, Xﬁf“,ur)dr] Ep[ [y (r, Xﬁ}ff”o(Bt’W),,uﬁf(Bt’W))dr] =
Epy [ [50 (r, X2, p2)dr] < oo, O

Proof of Theorem 3.1: Fix (t,w,u,x)€[0,00) x Qo xJxQ and (y,z) = ({y: }ien, {zi }ien) €RXR.
1) We first show that V(¢t,x,y,z) <V (t,w,u,x,y,2): If C; x(y,z) =0, then V(¢,x,y,2)=—0c0<V(t,w,u,x,y, 2).

So we assume C; x(y,z) #0 and let (u,7) € Cix(y,2). Define a process BLW (w) :=w(sAt)+ B, (w), V(s,w) €
[0,00) x Q. According to Proposition 1.3, there exists a U—valued, FWt—predictable process [i= {Hs}se [t,00) ON §2g
and an N, € A4(FE') such that for any w € NE, ps(w) = fig(B"Y (w)) for a.e. s € (t,00). By Fubini Theorem,
N = {w € Q: us(w) is not Borel-measurable in s € t,oo)} is an ffot’p—measurable set with zero p—measure or
N e Ji{,(ffct). Then process fis(w) := (1{Se[o’t)}u(s)+1{S€[t’oo)}us(w))1{w€/\;c} Fuoliweny, Y(s,w) € [0,00)x Q
satisfies that fi.(w)€J for any we Q.
la) We define a mapping ¥(w):= (B (w), fi.(w), X'*H(w), 7(w)) €Q, Ywe Q and discuss its measurability.

Let us simply set 8 = (¢,x, u). Since Wt( U(w)) :Ws(\ll(w))th(\I!(w)) =Bt (W) —ByY (w) =Bt (w), ¥ (s,w) €
[t,00)x Q and since {Xe}ge 0,00) is an { g }ee —adapted continuous process, we can deduce that the mapping
U is FB' p/]-'sfmeasurable for any s€(t, 00).

Let ¢ € LO((O,oo) x U; R). The FBt’prrogressive measurability of process {ﬁg} implies that process

sE[t,00)
{(p(s,ﬁs)}se[t)oo) is also FB'»_progressively measurable and the random variable I, (i (w)) = fot o(s,u(s))ds+
[ o(s, fis(w))ds, w € Q is thus FB'» _measurable. Lemma 1.3 (1) then renders that the mapping ji. : Q — J is
th’p/%(qﬂ)—measurable, which together with the f£t>p—measurability of B®W, X%, 1 shows that the mapping V is
also FB'p /(1) —measurable.

1b) Using the martingale-problem formulation (Proposition 1.2 and Remark 3.1), we demonstrate that the probability
measure Py induced by U (z e. Pq/( ) —p( ( )), VZE%’(Q)) belongs to P x.

Set T, :=1is(W), Vs€[t,00), which is a U—valued, v —predictable process on Q. Since N°NNSC NN {we
Q: ps(w) = fis(B"Y (w)) for ae. s € (t,00)} = N°N{w € Q: fis(w) = fs(B"™(w)) for a.e. s € (t,00)}, we can
deduce that Py{U, = [, for a.e. s € (t,00)} = p{U,(¥) = f,(W(¥)) for a.e. s € (t,00)} = p{w € Q: fi,(w) =
[is(BY¥ (w)) for a.e. s€(t,00)}=1. Namely, Py satisfies (D1) in the definition of P .

Fix (¢,n) € €(R¥!) xN. We define an F5'*—adapted continuous process M? () =(BL X~ [b(r, X2, i) -

Do (B, X0)dr—1 [Foa” (r, X0, ) : D*(BL, X)dr, Vs€[t,00) and define an FB'? _stopping time TY:=inf {s€
[t,00) : |(BL, X9)| > n}/\ (t+n). Applying Proposition 1.2 with (Q,F,P, B, X,u) = (Q,F,p, B, X% 1) yields that
{Ms/\T9 )}Se[t,oo) is a bounded (FBt’p,p) fmartingale.

Since Py{X,=x(s), Vs€0,t]} =p{X (V) =x(s), Vs€[0,t]} = p{Xa =x(s), Vs€0,¢]} =1, using Proposition
1.2 with (Q, F, P, B, X, )= (2, (), Py, W, X ,7i) shows that {MW o)}se[m)
tinuous process under Py. Given we N, since i, (¥ (w)) = fis (W (¥ (w))) = fis (B (w)) = ps(w) for ae. s e (t,00),
we see that (Mt “(cp)) (¥ (w))=(M(p))(w), Vset,o0) and 7, (¥(w)) =T (w). Then

is a bounded F' —adapted con-

(Mo (9) (P(w)) = (7)) (sAT4 (¥ (), (w )) (M7 () (sATE (W), T (w))
Z(Me(go))(s/\T( ) ( S/\Tg np))(w), V(s,w)e[t,oo)x/\/ﬁ. (6.3)



Stochastic Control/Stopping with Expectation Constraints 20

Let t1, t2 € [t, 00) with 1 <t2 and let Zeft AsU~1(A) Gth’p the (FB°?, p) —martingality of {/\/ls/\.rg (o )}se[t 00)

. —t, ( —t ,u —t, 0
and (63) imply that By, [(F7hs (9) = 7y (9))1] = By [((MFeme (2))(®) = (3175 (0)) () Ly | =

[(./\/l‘9 Ao (0)— M? o (@ )Lz )} 0. So {MsAT (@)}Se[tm) is a bounded (Ft,P\y)—martingale. By Remark
3.1 (ii), Py satisfies (D2)+(D3) in the definition of P x.

Since Wt (BEY (w))=B:% (w) —Bp™ (w)=Bt(w) for any (s,w)€[t, 00) xQ, taking (Q, F, P, B, ®)=(Q, F,p, B, Bv™)
in Lemma A.2 (2) shows that p{r=7(B"")} =1 for some [t, c0]—valued FW'-Po _stopping time 7 on €, it follows
that Py {T=7(W)}=p{T(V)=7(W(¥))}=p{r=7(B"")} =1
1c) We further show that Py is of the probability class Piw ux(Y, 2)-

Since W, (¥ (w)) = BLY(w) =w(s), V(s,w) €[0,]x Q and since U, (¥(w)) = fis(w) =u(s)
it is clear that Py {W, =w(s), Vs € [0,t];U, = u(s) for a.e. s € (0,t)} =
u(s) for a.e. s€ (O,t)}zl. Thus Py € Pt wux. For any i €N,

Ep, [/tT gi(T,Xr/\~,Ur)d’f‘:| = Epl/tml) gi(nXm(‘I’)’Ur(‘I’))d’"l :Epl/tT . x0 7ﬂr)dr]
= Ep l[ (1, X7 ,ur)drl <y (6.4)

and similarly F [ft i(r, Xop, Uy )dr] = Eplft (r, X0, pr)dr] = z;, which means that Py € Pt wux(y,2).
Then an analogy to (6.4) renders that E,[ [ f(r, X%\, pr)dr +1;coym(m, X2,)] = Ep, [ft f(r, Xon, Uy )dr +

1{T<oo}7T(T7 YT/\-):| <V(t,w,u,x,y, z). Taking supremum over (u, T) € Ct x(y, z) yields V (¢, x,y, 2) <V (t,w,u,x,y, 2).

2) As Piwux(y,2) C Prx(y,2), we automatically have V (t,w,u,x,y,z) <V (¢,x,9,z). It remains to demonstrate
that V(¢,x,y,2) <V (t,x,y,2). If Prx(y,2)=0, then V(t,x,y,2)=—00<V(t,x,9, 2).

Assume Py (y, 2) 0 and let PPy x(y,2). We use Definition 3.1 to find a U—valued process U. and a stopping
time 5 on Qo such that P{(X,U,T)= (X", 0,5)(W)}=1. It then follows that (v,7):=(V,7)(B) € C;x(y, 2) and
V(t,x,y,2)<V(t,x,y,2).

By (D1) of Definition 3.1, there exists a U—valued, F"W' —predictable process 7 = {Us}seft,00) 0N Qo such that
P{U, =7, for a.e. s€(t,00)} =1, where (@) :=v,(W(@)), V(s,w) € [t,00) xQ is a U—valued, FWt—predictable
process on 2.

Set 9 = (t,x,7). Given (p,n) € CRH) x N, Mo(p) 1= o(We, Zo) = [ B(r, Zon.,7) - Dp(We, Z. )b —
%ftSEET (r, ?:.9,\‘,?,.) : DQ@(W:,yf)dr, s € [t,00) is an Fwtj—adapted continuous process and 7U := inf {8 €
[t,00): ](W’;,?fﬂ >n}A(t+n) is an Fwtf—stopping time. Since W' is a Brownian motion under P by (D2) of
Definition 3.1, applying Proposition 1.2 with (Q, F, P, B, X, u)= (ﬁ, B(Q),P,W, yﬂ,ﬁ) shows that

{M?A?a (¢)} is a bounded FWt7F—martingale. (6.5)

Let (uo,%0,t,) be an arbitrary triplet in Jx €, x [t,00] and define a mapping ¥, : Q — Q by ¥,(w) :=
(B(w), uo,zco, 0) €Q, Ywe Q. (Actually, we are 1ndlﬁerent to the second, third and fourth components of ¥,(w).)
Since . (VW) = Ws(¥y(w)) =W (¥, (w)) = Bl (w) for any (s,w) € [t,0) x Q, applying Lemma A.1 with ¢y =t,
(Q, F1, Py, BY) :(Q F.p, B), (0o, Fp, Py, B?) = (ﬁ,%(ﬁ%?,W) and =1V, yields that

VSN (VY =FB w N (FV P c FBP Yseltioo] and  (poW; ) (A)=P(A), YAcFY P, (6.6)

Then 27 (w) ::?j(\l/o(w)), s€10,00) defines an {‘Ff\;ilp}se[o Oo)fadapted continuous process.

Set vg(w) =0, (B(w)), V(s,w) € [t,00) x Q, which is a U—valued, F5' —predictable process on Q. Let (p,n) €
C(RH)xN. We define an FB *»—adapted continuous process .7 (¢):=(Bt, 2;7)—[ b(r, 3., vr)-Dp(BL, 2,7 )dr—
3 [7oa (r, 28 ,vn) + D*(BL, 2;)dr, Vs € [t,c0) and define an FB P —stopping time ¢ := inf {s € [t,00) :
l(Bg, Z) l >n}A( t+n). Since U4(V,) = U, (W(¥,)) = 05(B) = vs, Vs € [t,00), applying Proposition 1.2 with
(Q,F,P,B,X,n) = (Q,F,p,B, 27,v) and using an analogy to (6.3) yield that {.#7

FBt’p—adapted continuous process under p satisfying

(Manrs (9)) (Wo(w)) = (A2 00 (0)) @),V (5,0) €[t 00) x Q. (6.7)

Mﬁ )}Se[t 00) is a bounded
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Let t1,t2 € [t,00) with ¢; <ty and let AE}"Et. Since ¥, !(A)=A for some ZE]:MWt by (6.6), we can derive from
— — — —
(6.5), (6.6) and (6.7) that 0= | (M, sz (£)-M;, ury (9 >>1f] =By [ (M, r () (W) (M, (2)) (%) ) 11 )|
=FE, {(l//ftz/\c,9 (p) —,///tf/\q (p))1 }, which implies that {.#, Mﬁ (@)}Se[t’oo) is a bounded FB'* —martingale. Then
an application of Proposition 1.2 with (Q,F, P, B, X, u)= (Q, F,p,B,27, V) shows that

{20 =x%" Vse[0,00)}=1. (6.8)

By (D4) of Definition 3.1, there exists a [t, co]—valued FW*.Fo —stopping time 4 on Qg such that ?{T—ﬁ W)} =1.
Lemma A.2 (1) renders that v:=7(B) is an FBt”pfstopping time on Q while 3(W) is an FW'.P P_gstopping time on
Q. For any i €N, we can deduce from (D3), (6.6) and (6.8) that

T W, (W(wo)) — .
Yi > EPU gz—(r,XM.,Ur)dr] :EPU gi(r, %M.,ﬁT(W))dr} —E, U 9i (1, Zon (0,), 0, (W (W,))) dr
t t t
7(B) ¥
5| [ st 2 n 0| =8| [ ot mar], (6.9)
t t

and similarly Ey [ [ h(r, X257, v, )dr] :Eﬁ[ffhi(r, Xop,Up)dr] =z;. So (v,7) €Cx(y, ). Analogous to (6.9),

T L o Y
EP[/ f(r,XM.,Ur)dr+1{T<Oo}7T(T,XTA,)] :EP[/ f(r, XY )dT+1{,Y<OO}7T(’}/7X,$/<( l’)] <V(t,x,y,z).
t t

Taking supremum over P €7P; «(y, 2) yields that V(¢,x,y, 2) <V (t,x,y, 2). O

Proof of Lemma 4.2: 1) We first show that T is injective:

Set Qr := (QN[0,7/2))U{m/2} and let (u',71), (u?, 72) € 4 x & such that I(pt,71) =T(p?, 72). We make a
countable decomposition of the set {wo € Qq: p! (wo) #p?(wo) or T1(wo) #72(wo) }:

Let ¢ € Qr and n € N. We set &1 := (¢—1/n,q+1/n)N[0,7/2]. Also let k,j € N and ¢ = 1,2. We know
from (1.1) and Lemma A.3 that A}, . := (/ﬂ)_l(ijl(O% (Mg, ¢;))) N{arctan(r;) € €4} belongs to FY*0. Then

Ak =A%k o WA7 4 ,)¢ satisfies that

Po(Ankjq) = Po{woe (42 Jegg) (wo)61JI (O%(mk,%)) 71(wo) €tan(EY) }
= Po{wo€Q0 : Wiwo) € (A 45.0) 1 (wo) €7 (O: 1 (my, d5)), 71 (wo) € tan(E) }
= (', 1)) (A7 k0" xiil(O%(mk,¢j))xtan(Eq)):(I‘(uz 72)) (A7 .j.0) Xi7 (O (my, 65)) x tan(E]))
= Po{woe(Ai7k7j,q)c 5 (wo)eij_l(O%(mk,gbj)) Ta(wo) € tan(EY) } PO( AZ ) nAa? k,mq) 0. (6.10)

We claim that

A= {wOEQO: p.l(wo)#,u_z(wo)}u{wo €Qo: Tl(wo);érg(wo)} is equal to . kL;eN qeLT(J)Q An kg (6.11)

C
Clearl U U A, k,jqCA Assume that .Aﬂ( U U Apkj ) is not empty and has an element wy.
Y nkjeN qeQ, I mkjeN qen,” ki pty 0

Given n, j €N, since the proof of Lemma 1.1 selected {my } xen as a countable dense subset of the topological space
(B([0,00) x U), T4 (P([0,00) x U))), there exist & =E(n,j) €N and q=q(n) € Q such that i (u(wo)) € O1(me, ¢;5)
and arctan (11(wp)) € £3. This shows wy € (,ul)*l(ijl(O%(mg,gﬁJ ))N{arctan(r;) € £3} = AL g Since wo €

AL e, 3 we see that wy € An v 1€ (1% (wo), arctan(7a(wp))) also belongs to iy (O; (me, ¢;)) xEJ. It follows that
| fo [gbj (s,us(wo)) —@; (s,us(wo))]ds| < 2/n and Py (Tl(wO),TQ(UJO)) = ’ arctan(7(wp)) —arctan(Tg(wO))| < 2/n.
Letting n— oo yields that [~ e™*¢; (s, ul(wo))ds= [ e=*¢; (s, % (wo))ds and 71(wo) =T2(wo).

As {¢;} en is dense in éb([O,oo) XU) by Proposition 7.20 of [7], the dominated convergence theorem implies
that [ e ¢ (s, pi(wo))ds=[;° e™* ¢(s, u2(wo))ds holds for any ¢€Cy([0,00)xU). By a standard approximation,
this equality also holds for any bounded Borel-measurable functions ¢ on [0,00) x U. For any s € [0,00), taking
o(r,u) =10} 7 (1) gives that [ e "7 () (wo))dr= [; e (u2(wo))dr. Then we obtain that u}(wo)= 2 (wo)
for a.e. s€(0,00) or pl(wg)=pu?(wo) in J. A contradiction appears. So the claim (6.11) holds.
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By (6.10), one has Py{wo € Qo : p!(wo) # p?(wo) } = Po{wo € Qo : 71(wo) #72(wo) } =0. The former together with
Fubini Theorem renders that (dsx dPy){(s,wo) € [0,00)x Qo pl(wo) # p?(wo) } =0 or pu' =p? in Y, while the latter
directly means 71 =75 in &. Hence, the mapping I": ${x 6»—>&B(QO XJXT) is injective.

2) We next discuss the continuity of T

Let {1" }nen be a sequence of i converging to a p €4l under p, and let {7, }nen be a sequence of & converging to

a 7€G under pg (ie., nlingopu(u”, 1) :nILn;OpG (Tn,7)=0). We need to demonstrate that P":=T'(u",7,) converges

to P:=I'(u,7) under the weak topology of B(QoxIxT), i.e
lim w(WOaua t)Pn(d(w()vuv t)) :/ ¢(w07u7 t)P(d(w07u7 t)) (612)
0 J(wo,u,t) €QoxIXT (wo,u,t) EQo xIXT

for any bounded continuous function 1: Qg xJxT+—R.
Let ¢ be a real-valued bounded continuous function on Q¢ xJxT. For (6.12), it suffices to show that for any

subsequence {(,u"k, Tnk)}keN of {(u”,Tn)}neN, we can find a subsequence {(,u”;c,Tn;C)}keN of {(u"’“77'nk)}k€N that
satisfies (6.12).

Let { (u™,7n,.) }keN be an arbitrary subsequence of { (1", 7,) }neN. Since 0= klirrolopu(u’Lk )= kh—>noloEP0 [fo e (1A
pU(u?k,us))ds], there exists a subsequence {/ﬁk}k N of {M”"‘}keN such that for all wy € 2y except on a Py—null
€
set N7, klim Py (ugk( )7Ms<w0>) =0 for a.e. s€ (0,00). For any ¢ € Cy,([0,00) x U), the dominated convergence
— 00
theorem implies that kli%rgo 57 o(s,w)iy (1™ (wo)) (ds, du) = klir& Jo e‘sgs(S,u?k (w0)>ds = [T e *b(s, ps(wo))ds =

IS (s, u)i; (1-(wo)) (ds, du). Namely, {ij (1™ (wo)) }kEN converges to i, (11.(wo)) under the weak topology Ty (B ([0, 00)
U)) of P([0,00) xU), or equivalently, {;ﬁ’“ (wo)
As ():ICILII;C);)6 (T7~I , ) = hm EPO [P+(

}keN converges to p1.(wo) under the induced topology %y (J) of J.

e )], one can extract a subsequence {nﬁc}keN from {ﬁk}keN such that
kli_{r;(}pJr (7n (wo), 7(wo)) =0 for all wy € Qg except on a Pp—null set Ny. Given wp € (N UN2), since {,um‘ (wo)}keN
also converges to p.(wo) under Ty(J), the continuity of ¥ and the bounded convergence theorem yield that

lim (wo, u, t) P (d(wo,u,t)) = lim ¢<Wo7 - (Wo), T (%))Po(dwo)
k=00 J(wo,u,t)€Q0 xIXT k—oo Jo,
:/ z/J(wo,,u.(wo),T(wo))Po(dwO):/ w0, P (d(wo, 1, ). 0
Qo (wo,u,t)€QoxIXT

Proof of Proposition 4.1: Fix (t,x)€[0,00) xQ
1) Let P€P, x, which is clearly of f;x. We show that P also belongs to ff and ﬁf,

By (D1’) and (D4’) of Remark 3.1, there exist a U—valued, F" —predictable process ji = {jis}sc[0,00) and a
[0, co]—valued FW-T* —stopping time 7 on g such that ﬁ{@t i (Wt) for a.e. s€(0,00)} =P{T= t—|—7"(Wt)}—1
Fubini Theorem shows that A := {wo € Qo ji(wo) ¢ T } is an .7-"WP o —measurable set with zero Py—measure or
N € Npy (FY). Then fis:=jisl . +uolyy, S€ [O o0) is an FW:P —predictable process with all paths in J.

1la) We first show that @t,F:F([L,%) and thus ?eff:
As W; =Wis— Wy, 5 € [O o0) is a Brownian motion under P by (D2), using Lemma A.1 with ¢ty = 0,
(Qu, F1, P, BY)=(Q,%(Q), P7W) (Qq, Fo, P2, B?) = (0, B(Q), Py, W) and =7 yields that

T N (A)eFL P=F7'P and Po(7') '(Ao)=Po(An), VYAgeFLFo. (6.13)

For any Ag€ B(Q)=FY, Ac B(J) and € € B(T), since ji~*(A) € F¥'T* by Lemma A.3 and since #=1(&) € FXVFo,
we can derive that

Q,p(Agx AXE)=P{(W' W' T—t) € Agx AxE} = p{( i), FF)) € Agx AxE)
:P{(W, 7, ( ))erxAxe} Po(W 1{Wu, )erxAxg} Po(W')~ AN~ (A)NFTE))
=Py (AN (A)NFTHE)) =Po{(W, 1, 7) € Ao x Ax E} = (D(fi, 7)) (Ag x AXE).

Then Dynkin’s Pi-Lambda Theorem implies that @tﬂﬁ:F(ﬁ, 7) on B(QoxJxT). So P belongs to ff.
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1b) Let ji = {lis}sejt,00) be the U—valued, F"W' —predictable process in (D1) such that the complement of €2, :=
{weQ: U,(w)=p,) for a.e. s€(t,00)} is of N5(Z (7)), where 71, (@) :=[is(W(@)), V(s,w) € [t,00) xQ. Given
(p,n) € Q(Rd‘H )x N, (D2) of Remark 3.1 shows that {MS/\Tt w)}se[t 00)
any (s,t) € Q7" and {(s;, 0;)}_, € (QN[0,8]) x O(RI!), since Me(p) =DM (p), Vs € Jt,00) on Q,, and since
¢
t

is a bounded (Ft,?)—martingale. For

S

k
—t —t
(Wi, Xisa) €O} €T, fori=1,-- k, one has E;[(Mﬁ 7140O) = Moy e @) e, 3,00 c00] =
i= i ¢

—— =t =. =3 . = =1 =2 =3
Eﬁ[(M?g/\(tﬂ)((p)—M?:A(Hs)((p)) H 1{(Wt+é XHSZ-)EQ-}} =0. So P is also of P, which shows P; x CP, ,NP,NP,.

2) Next, let Peftl)xﬂff ﬁff. We need to demonstrate that P also belongs to Pt .
2a) Fixi,j€{1, -, d}. We set ¢;(w,z):=w; and ¢;j(w,z):=w;w; for any w= (w1, - -, wg) ER? and z€R!. Clearly,
i, pij € C(RIH).

We wverify that MZ (¢i) = Wi’i, M (i) = W?WZ] —0ij(s—t), Vset,oo) are F"' —local martingales, where
W= (Wi’l, = -,Wi’d). Then P satisfies (D2) of Pix by Lévy’s chamcterizatz'on theorem.

Let n€Nand (s,t) €Q7 <. As Pefi’, it holds for any {(s;, 0;)},_ 1C (Qn(o, 5])><ﬁ(]Rd) that E+ [(Mtﬁ/\(tﬂ)(‘ﬁi)f

S

—t —t
Moy pr40) (1) H o7, co, }] 0 and E—[(M?t ntae) (8i5) Mzt p ey (1) 1_111 {Wi+5ieoi}} =0. So the Lambda-

system As, {Ae%( ) [(M*f A(t+rt) (sz)_M*t A t+5)(¢z)) } 0 and Ep {(M%A(Ht)(‘ﬁij)_ﬁtﬁ/\(ws)(@j))lx}

= 0} includes the Pi-system {( r]% (Wt-m)_ ((9,-)) : {(si,Oi)}i_IC (QN(0,5]) x ﬁ(Rd)}, which generates fz;
PRy -

Dynkin’s Pi-Lambda Theorem renders that }_t+s CA5 o i€,

t

by [(M?;A(Ht) (¢:)— M,

——t ——t —- Wt
M?;A(t-i-s)(ﬁbi)) } 0 and Ep [(M A(t+r)(¢m) Mﬁ/\(t+s)(¢ij))1Z] =0, VAG}—K;. (6.14)

Let t<s<r<ooand A€ .FWt. Taking (s,t) = (HS 2'227”] lﬂ(gf,f)zﬂ), m € N in (6.14) and sending m —

0o, we can deduce from the continuity of bounded processes {Ms/\‘r (¢i)}s€[t 00) and {MMT qsz)}se[t 00) that

EF{(M?;M(@)_MFﬁlAs(Qsi)) X} =0 and EF[(M* /\r(¢11) j’ /\s(d)l])) *} =0. So {MS/\T ¢7)l}se[t,oo) and

{Mi/\?t (¢ij)}ae[t sy AT tWO (FWt,ﬁ) —martingales. As nlgrgoT 7L = 0o, we see that {MS () = WZ’Z}Se[tm) and
{M (¢i5)= W zWi’] _5ij(8_t)}s€[t,oo) are FW' —local martingales. Lévy’s characterization theorem implies that W

is a Brownian motion on (2, 8(Q), P). So P satisfies (D2) of P x. We still have (6.13) since 7' is also a Brownian
motion under P.

As P € ff, there exist a U—valued, FW:Po—predictable process i/ = {US} with all paths in J and a

s€[0,00)
[0, co]—valued FW:Po —stopping time 4 on )y such that @t,? =T'(,%) = Pyo (W, i/',*’y)_l. Given D € B(QoxJIxT),
taking Ao= (W, ,%) " (D)€ F¥-P in (6.13) yields that

-1 = ot

— ot —t = — . _ o St e gt ot
P{W % . T-t)eD}=Q, p(D)=Poo(W,0,5) (D)=Po(#" )" (W,u,5) (D)) =P{(# .2.(#"),5(#")) € D},
which shows the joint P—distribution of (7/ s ,T) is the same as the joint P—distribution of (W v.(W ) t+
fy(W )) Similar to Part (2b) in the proof of [4, Proposition 4.1], we can use the equality Po(?ﬂ ,T)"1=Po (7/ S+
W(Wt))_l to derive that P{T:t—&—ﬁ(Wt)}:l. Namely, P satisfies (D4’) or equivalently (D4) of Py x.

2b) We next show P{@iziﬁs(Wt) for a.e. s€(0, oo)} =1 and thus P satisfies (D1') or equivalently (D1) offt,x.
Fix A € #(J) and define A := {4 € Z5(Q): P(AN{Z' € A}) = P(An{i.(#') € A})}. As P{Z' e A} =
ﬁ{(%t,@t) €0y x A} :?{(Wt7 I/(Wt)) €Qox A} zﬁ{ﬁ.(Wt) € A}, we see that Q€ A and A is thus a Lambda-
system.
For any (s, &) € [0, 00) x Z(R?), since W, : Qg +—R? is a continuous function, one has W, 1(€) € Z(y). Then it
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holds for any {(s;, &)Y, C[0,00) x B(R?) that

v @)emw (,-)XA}
N
n

(7.) 7€) {5 (7 ) e A}

P((5, 0707 €)' ear) = P({7'e i@ pn i e 4y) =P{(

=1
fﬁ{(Wt,i).(Wt))e_%W&( DxAb=P(( 0

=1

t

So A contains the Pi-system { gl (W 5,) " HE): (s:,E) €10, 00) x BRY),i=1, - -- ,N}, which generates ]-"Zt :}'Et.

Dynkin’s Pi-Lambda Theorem implies that th’ﬁCA, ie.
P(AN{Z' e A})=P@An{p.(F")cA)), vAcFY P vAcB(). (6.15)
Let n,k,j € N. By Lemma A.3, Oy ; := {wo € Qo : ©.(wp) € i_l(Oi(mk,@ )} € FWAo. Since (6.13) shows

that (Wt)‘l(on k) € th’F, applying (6.15) with A = (”//t) (0¢, ) and A = i (O (mk,(bj) yields that

nk] l
?((W) NOg N7 i 1(0%(mk,¢j)})=?(<7)‘1( e )H2(77) €171 (01 (my, ;) ) 705 )
N7 )y (O ) =0.

Similar to (6.11), we can deduce that {@e 2 @t(w)7&5.(7(@))}:n,ijeN((W)—l( ¢ )7 e l(oi(mk,@)}).
It follows that P{weQ: e (W) #£v. (Wt(w))} =0 and thus
PlweQ: 7 (@) =i(7 @) for ac. s€(0,00)} =P{weQ: Z (@)=i.(7 @)} =1. (6.16)

Like Lemma 2.4 of [44], we can construct a [0, 1]—valued F —predictable process {175}56[0,00) on {2y such that
Us(wp) = f(ﬁs (wo)) for ds x dPy—a.s. (s,wp) € [0,00) x Qy. By Fubini Theorem, it holds for all wg € 2y except on a
N, € Np, (FY) that 15(wo) =7 (i/s(wo)) for a.e. s€[0,00). Define v¢(wp):=. " (Ds(wo))1{,75(WO)€¢}+u01{,; (wo) £ €}
(s,wp) €10, oo)xQo, which is a U—valued F"" —predictable process. Given @ e ( t) (N9), it holds for a.e. s€ (0, 00)
that U (“// @)) =7 (i (Wt(w))) and thus v¢ (Wt(w)) =g (W @)). As (”// )7 Ny) € N5 (fW ), (6.16) leads to
that P{we: @i (@) :u;’(Wt(w)) for a.e. s€(0,00)}=1. To wit, P satisfies (D1’) or equivalently (D1) of P, «.
2c) Let U= {ﬁs}se [t,00) e the U—valued, F"' —predictable process in (D1) such that the complement of Q,, := {we
Q: Uy (w)=v,(w) for a.e. s€(t,00)} is of N5 (%’( ), where 7, (@) :=05 (W (@)), V(s,w) €[t, 00) x Q.

Let (p,n) € C(R!)xN. We show that MS/\Tt (p), s€ft,00) is an (Ft,ﬁ)—martingale and thus P satisfies (D3)
of P x accordzng to the martingale-problem formulation.

As P{XS =x(s), Vs€|0, t]}:l, applying Proposition 1.2 with (Q, F,P B, X, u) = (ﬁ, AQ),P,W,X, P) implies
that {MS/\Tt )}Se[tm) is a bounded Ft—adapted continuous process under P.

Let (5,t)€@i<, (ti,(’)i)} C (QN[0,#])xO(R") and {(s;, 0}) } (QD(O s])x O (R, If x(t;) ¢ O; for some

v tv

i€{1,-- k}, then P{X; €Oi}=0and thus Eﬁ[(M%wm)(‘P>—M¥wt+s)(¢)) ,Hll{zleoi} .Hll{(WI;g Xii ow;}} =
1= Jj= g J
0. On the other hand, if x(¢;) € O; for each i€ {1, -, k}, since Hi(gp) :Miy((p), Vs€(t,00) on Q,, then
k
S—y

Eﬁ[(M?ﬁL/\(t-i-t)( )Mz 2 ns) Hl{Xt co; }Hl{(wm Kite, )eo'}}

i=1 Jj=1

m
—t —t
=Ep {(M?IL/\(t—&-t) (¥) _M?fLA(t+5) (80)) Hl{(W§+Sj Xits, )eo;}} =0.
j=1

Since .Ft+5 is generated by the Pi-system {( 5 Y;l(Oi)>ﬁ(j61 (W§+Sj,yt+sj)_l((9;)) {(t:, 0 )} c(Qnlo,#])x

ORY), {(sy, (9’)} c(QN(0,s]) x ORI } Dynkin’s Pi-Lambda Theorem renders that (c.f. (6.14))

i=1

By | (M pe40/(0)~ Mt pran)(9)) 15| =0, VAEF,,,. (6.17)
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Let t<s<r<oo and Ze?t Taking (s,t) = (Hs_t)w , 1H(g;t)2k]), k€N in (6.17) and letting k— oo, we can

deduce from the continuity of bounded process {M AT (Lﬂ)}s €lt,00) that
—t,p —t,p —t,v . =t = .
Eﬁ{(M?;Ar(W)_M?;As(@))lz]zov {Ms/\‘r )}se[t,oo) is an (F 7P) —martingale. (6.18)
By Remark 3.1 (ii), P satisfies (D3) of P; . O

Proof of Proposition 4.2: According to Proposition 4.1, <<f>> is the intersection of <<f>>1 = { (t, x,?) €10, 00) x
Q. xB(Q): Feﬁix} and <<5>>l :={(t,x,P) €[0,00) x 2, xP(Q) : ?efﬁ} for i=2,3. Similar to the proof of [4,
Proposition 4.2], one can easily show that ((P)), is a Borel subset of [0,00) x €, xPB(Q).

1) Since €2 is a Polish space and since J is a Borel space, we know from Proposition 7.13 and Corollary 7.25.1 of
[7] that Qo xJx T with the product topology is a Borel space and &]3(90 x Jx T) is also a Borel space. As Lemma
4.1 and Lemma 4.2 show that I': x& 3 (u,7) — Pyo (W, u,7)"' € B(Q xIx T) is a continuous injection from
the Polish space Ux & to PB(Q x Ix T), the image I'(4x &) is a Lusin subset of PB( xJx T). Theorem A.6
of [46] implies that I'(l x &) is even a Borel subset of the Borel space ‘B(QO xJxT). Then Lemma 4.3 yields
(P, ={(t;x,P)€[0,00)x Q2 xP(Q): Q, pT(Ux &)} € B[0,00) 2 B(Q, ) 2B (B ().

2) We nest show that ((P)) )

also Borel-measurable:

Since W (s,wp) :=wo(s) is continuous in (s,wp) € [0,00) x 2y and WX (s, w
[0,00) x Q2 , the function Z(t, s, wo,w ) :
[0,00) x [0,00) x Q9 X Q. For any n € N, the mapping 7, (t,wo,w)
(t,wo,wy ) €[0,00) xQx Q. is Borel-measurable since for any a € [0, 00),

5 is a countable union of Borel-measurable subsets of [0,00) x Q2 X‘D(ﬁ), 80 <ﬁ>>3 18

5,wy ) =wy(s) is continuous in (s,w, ) €
= (W(t+s,wo) —W(t,wo), W*(t+s,w,)) is continuous in (t,5,wo,w) €
:= inf {5 € [0,00) : |E(t,5,w0,wx)\ > n},

{(t,wo,wy ) €[0,00) X Qo x Qy, : %(t,wo,wx)>a}:{(t,w0,wx)6 [0,00) x Qo xQ : Sl[lp | 12(t,8",wo,wy )| <n}
s'€(0,s

= D= <n-— .
(L ey {003 €10,00) x 20 X 22 [E(t, 0, w0, w3 )| Sn—1/k} ) € B[0, 00) @ () D B(12)

Let o€ (R, Since the function Hy(r, 1,8, u):=b(r,x,u) - Dp@)H+ic5" (r,x,u): D*0@), V¥ (r,1,8, u) € (0, 00)
X x R4 x U is Borel-measurable, Lemma 1.3 (2) shows that the mapping

S

t+
T,(t, s, w0, Wy, 1) ::/ H, (7’, l2(r, wy ), Z(t, (r—t)+,w0,wx),u(r))dr, V (L, 8, wo,wy, 1) €[0,00) x[0,00) x Qg x Q. XJ
t

is A[0,00)®@ %[0, 00) @%B() @A (2 ) ®A(J)—measurable.
Given n €N and s€ [0, 00), since the random variables (W, X,U) on Q are B(Q)®%(2,,)® %A(J)—measurable,
we can derive from the Borel measurability of 7, and .7, that the mapping

M, (t,@) = (poE)(t, 7 (t, W (@), X (@)) AnAs, W (@), X (@) — L, (t, Zn (t, W (@), X (@)) AnAs, W (@), X (@), U(@))
= (M (¢)) (7 @)A(t+5),@), ¥ (t,@)€[0,00)xQ (6.19)
is 20, 00) ® % (1) —measurable, where we used the fact 7, (W) =t+.7, (t, W (@), X (w)) An.
Let 6:= (¢, 1, (5,1), {(5i, O))}5_,) € QR x Nx Q3= x O(RH). Since fo(t,w) = (M, (t,@)— M, ,(t,m)) x ﬁ
Liz(t.5: 007 (@) X (@)c0s}» (D) EO, 0)x§ is B0, 00)R%A(Q)—measurable by (6.19), an application of Lemma A.l?i)f
[4] yields that the mapping (t, P)i— [ 5 fo (@) P(d®) is 2[0,00)© 2 (P(Q2)) ~measurable and the set { (t,x, P) €

k
[0,00) X Q2 xP(Q) : E [(M E (e () — M 7 (e (© ))il;‘[ll{(W:+siA57Yt+sws)€oi}} :0} is thus Borel-measurable.

Letting 6 run through the countable collection €(R*)xNxQ% <x&(R4H!) shows (P)),€ Bl0,00)0B(Q ) B(B(Q)).
Totally, << >> <<77>> <<f>>2ﬂ<<ﬁ>>3 is a Borel subset of [0,00) xQ, x ‘.B(ﬁ) a

Proof of Proposition 5.1: We set t5:=7%(w) >t for any we Q.
1) We first use (R2) of r.c.p.d. Definition to show that ?;,E satisfies (D1) offtmym_@) for P—a.s. wel:
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By (D1) of P; x, there is a U—valued, F"' —predictable process ji={fis}se[t,00) ON 2o such that the P—measure
of Q,,:={U, =11, (W) for a.e. re€(t,00)} is equal to 1. And (R2) assures a N, € 4% (.FW ) such that

?t?w ()= EF;U

(6.20)

[15,]=Ep[1g, |V @)=1, VYweN..

e can ﬁnd a U—- Valued ol —predlctable process /L

According to Lemma A.5, for any (s, w) e Wi
= ), ¥ [s, oo)xW where WS ={weQ: W )

{ﬁi‘“}re [s.00) O Qo such that 5% (W (@)
W, @), Vrelts]}.

Let we (N UNM) We set 7% (wo) == (wy), ¥ (r,wo) € [tz, 00) x Qp, which is a U—valued, F"'® —predictable
process satisfying

,00) X Q
tir (W (@’

sw’

W= (W@) =i (W@)), ¥ (ro)elts o00)x W . (6.21)
It follows that W,, N{w eQ: U, @) =02 (W(@)) for a.e. re( }Dwg’wﬁﬁu, Then (5.2) and (6.20) render
that p,,{ 'e: U, (@) =% (W(@)) for a.e. re€(tz,00)}=1. So PW,U satisfies (D1) of ﬁtg,fm.(w) with fi=p% for

any we (NOU/\/'M) )
2) Via a delicate analysis ofﬁ null sets, we exploit the martingale-problem formulation of controlled SDEs (3.1)
=z satisfies (D2) and (D3) Offtg,YmA(w) for P—a.s. weQ.

2a) Set 71, :=1, (W), r€[t,00). From (D3) of P, x we have Nx:={weQ: X (w )#%t x7“( ) for some s€[0,00)} €
Ns(Fo). As {27} FV'P

to construct an R!—valued FWt—predictable process {Fi}

with control i to show that P

—adapted continuous process, an analogy to Lemma 2.4 of [44] allows us
s€[t,00) such that N :={weQ: I (W) # %t&“( ) for
some s€[t,00)} eﬂf(fzt). By (R2), it holds for all we ) except on a ./\A/X7K EJVF(]-%Wt) that

is an
s€(t,00)

' s(NxUNK) = Bp 1, x| 7Y | @) =0. (6.22)
Since K%w = reQer OO){*' € K@\r( w) = f%/\r(w)} is an }%W —measurable set including @, (R3) shows that
7%,(4} (K%w) =1, YweN,. For any we (NxUNk)®, we can deduce from (5.1) that
W N (NxUNK) MK 5 =We 0 (NxUNg ) D{@'e Q: X (@) =x(s), Vs € [0, 1]; Kooy pp (@) = Koy (@), Y €QN (¢, 00) }
:W;@ﬁ(ﬁxuﬁfg)cﬁ{w'eﬁz X, (@) =X, (@), Vs€0,1); Xs@nr (@) =X5@)ar @), VreQN(t, 00)}
=W- N (Nx UNg) N {@'eQ: X, (@) =Xqnr @), Vre[0,7@)]}. (6.23)

Set N1 :=Nx UNKUNX K €N (]—' ). Given we (Nouﬁl)c, taking P(-) in (6.23) and using (5.2) yield that
Pﬁ{w €Q: X, (@) =Xxn (@), Vre0,t]} =1.
2b) For any ¢ € €(R¥*H!) and ¢ € Q?, define a function ¢, (w, ) :=p(w—q,z), (w,r) ER. We set € :={p, : p €
¢(RI*1) g € Q'}, which is a countable sub-collection of C?(R4*!). For any n € N, define an thstopping time by
(,(@):=inf {r € [¥(w), 00): |Wi(w)—W%(w)|2+|Yr(w)|2an}/\(ﬁ(w)—i—n) weq.

Let 0 := (¢,n,j,(s,v),{(s:,0;)}F,) € € xNxNxQ¥< x O(R¥).  Since {MS/\T qb)}se[tm) is a bounded
(Ft P)—martingale by applying Propos1t10n 1.2 with (Q, F, P B X, p)=(Q,28(Q),P,W,X, 1), the optional sam-

— t T
pling theorem implies that Fp [ (v+t)/\C Azt ’ ’Y+5} = (~/+s)/\4 prt (¢), P—a.s. Set & := (v+t)/\ZnA?§ (¢) —

—t, 0 —t, t, —_
M(7+5)AZ /\?t.(@ = 1{??>7} (M(W-H)/\Zn/\?;((?)_M(V-s-s)/\an?;; (¢)) and set 7]y := _Hll{(Wgﬂ_M—W;Xﬂs ne)€0;} €
?;4—5- As fW C ]-" cF ~+s, the tower property renders that Ep [feﬁev%wt] = EF[%E [59’ 7+5] ] =0,

P—a.s. By (R2) again, there exists an Ny EJ%(}%W ) such that

Define Ny := U{ng :0e %XNXNXQ?f X ﬁ(RdH)} € ./Vﬁ(f;). We fix w € (NOUWIUNQUWM)C and set
(@) :=12(@), (r, @) € [tw, 00) x Q. Let (i, (5,1), {(si, O3)}o,) €C(RH) x Nx Q% x G(R%) and let j €N,
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There exists a sequence {¢m = ¢m () }men of Q? that converges to Wg(w) Let meN. We set 6, := (goqm, n, 7, (s,
. . —t .
v), {(s;,0;)}%_) and define 82 .= sup (Z?:o |Dig,,, (w, z) = Dip(w—Wx(w), z) ’) = sup (Z?:o | Dip(w—

|(w,2)|<j |(w,2)|<j
. —t
G @)~ Dip(w—W=(@ )m);).

Given @ GWffﬂ./\/'Xﬂ{T >7}, (5.1) implies that 74(@') >7(@') =tz and (,,(@0') =inf {r € [tz 00) : [W (@) —
Wi @) 2+ X (@) 2 > 2} A (tg+n) =712(@). Since W,* (@) =W, (@) ~W,_ (@) =W, (@) - W=(@), V7 € [tz 00),
(6.21) shows that for any tz<s; <s9<oo

t

(1™ (9) -7 (2)) @) =0 (W @), Kor @) o (W @), Koy @) - [

b(r, X op. (@), B2 (W (@) - D (W= (@), X (@) dr

t

— o (W, (@)~ We(@), Xy (@) — o (W, (@) - (@), Ko, (@) - / B Ko @), 5 (W(@))) - Do (W (@) — T (@), X, (@) ) dr

As ’(Wi@/)»yr (@'))| <j for any r € [tz, 74 (@')], we can deduce from (1.2), (1.3) and Cauchy-Schwarz inequality
that for any t5<s1<s9 S?E. @)

e e =t ; _
(T () =M ()~ (4,)+ I (94,)) @)

, Cm@y .
<o e [ (50T @)1 @)+ 0 Ko, 7 @) o
¢
, T _ _ _ _ , ,
g?é%m—l—(%m/ (/{(r)HXT/\.(E/)HT—i—|b(r,O,,ur(W )|+ +r2( )HXTA.(Q’)Hi—l—‘U(r,O,QT(W(E')))‘Q)drg(%m(}l—c;x),
¢

where ¢ == [d/2+r(t+7)(||xle +5) + w2+ 5)(Ix]e +5)2]5+ [ sup (Ib(r, 0,u)| + | (r,0,u)[?)dr < co. Taking

51=((F+8) A\ ATS) (@) = (ta+8)ATLF (W' )ATS (@) and 52:(tw+t)A?t (@' )NT4(@') yields that ‘(M (:”_‘H) NFLE R () —

——te, i ,m j _
M(twig)ﬁﬁym () (@) =&, (@) <60™(2 +cly) AsTp (@)= Hl (T s 7o @) FKrtagne @)EOS) by (5.1), we see
from (5.2) and (6.22) that

_ k
ta i —Ftw, " T = J,m J
E* {1{7 >7}‘( (tz +t)/\rfFA?§.(‘p)_M(tUJrs)A?fFA?; (W))H 1{(W§f+s_As,thﬁiAs)eOi}_§9mn~9mH <0z (2+Ct,x)'
. . Py s

The uniform continuity of D’p’s over compact sets implies lim | (%m =0, and one can then obtain from (6.24)
m—0o0
that

_ _ k
“te, b =
Eﬁ;‘w[l{ﬂ >7} (M(tw-&-t)/\?fLUA?; () =M\ gy prtenm (90)) II 1{(W§g+siM,Ytﬂsm)eof,}} = lim Epe [&,7,,]=0. (6.25)
i=1 '
Since Piw{w’ €Q: X, (@) =X5,,(@), Vre[0,t5]} =1 by Part (2a), applying Proposition 1.2 with (Q,F,P,B,X)=
(Q,8(Q), Pﬁw,W X) and (t,x, j1) = (te, Xy.(@), i) renders that {M e (gp)}se[tmoo)

ﬁ%@. As jlggo T ( ") = oo for any @’ € €, letting j — co in (6.25) and using the bounded convergence theorem

is a bounded process under

il @ . o
reach that Efia{(M(t:jrt)/\?ﬁF(w) M(t i_, ATt (¢ ) H 1 T ro K hosne) €O; }} 0. Following similar arguments

to those that lead to (6.18), we can derive that {M to (gp)}se[ti ) 158 (F ,P%w)—martingale. Then Remark

s/\‘r

3.1 (ii) shows that PW,U satisfies (D2)+(D3) of Ptmfm.(w) for any we (NoUN1UN Uﬁu)c'
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3) It remains to show that ﬁ%@ satisfies (D4) Ofﬁtg,fm.(w) and thus P EPW(M Xon. (@) ((7;(7)) ), (Z5(m)) (E))

for P—a.s. We.
By (D4) of P, x, there is a [t, oo]—valued FV" Po _stopping time 7 such that P{T =7( W)} =1. Analogous to

Part (2) in the proof of [4, Proposition 5.1], we can find A, GfW satisfying
(FW) >3} AA, e N (FI), (6.26)

and there exists N5 € A5 (F. Wt) such that for any @e NyNN3NA,, ﬁ%’w{T:?w(W)} =1 for some [tz, co]—valued

FW'-Po _stopping time 7%, namely, P o satisfies (D4) of th Xy

'y/\ (w)

Let i €N. According to (R2), it holds for all @ € Q except on aN hENE (]-'W ) that Epe [ fg/\v gi(r, Xon, U
—(Vp(7) @) and Ep: [ s hi(r. X on T)dr] = (Z5(7)) (@). Given we (/\/0 UN uﬁgih) NA., (5.1), (5.2

1)
Py AT=7(W) Ztg}:l imply (?%(W))(w): [fT/w 9i(r, Xon, Up)dr] = W[ W fTM 9i(r, Xop., Uy)dr]
:E*i,[fg gi(r, X, n.,Uy)dr] and similarly E ‘. [ft (r, X, Up)dr| =(Zp i @)@ Therefore

P €P o Tor @) ((Yﬁ(v))(w), (Zﬁ(v))(w)), Voe A, NN, (6.27)
where N, :=NoUN1 UN3 UN3UN, U ( o N;h) € Wp(f;). In particular, (5.3) holds for P—null set N :=
NU{T#TW)U({7(W) 271AAL) € A5(2(9Q)). O

Proof of Theorem 5.1: For any [t,c0)—valued FV' —stopping time ¢, we denote R({ fT/\C (r, Xon., Uy )dr+

1{T<<><>}7T(T7 XTA~)' o
(I) (sub-solution side) Fix PeP, «x(y, z) and simply denote Y5 by 7.

Let 7 be the [t, c0]—valued FW"-Po —stopping time with P{T=7(W)}=1 and let A, GJ:W N.eNs ( ~) be
as in (6.26) and (6.27). By (R2), there is a Nj . € t/VF(}%Wt) such that Eﬁw,w [R(¥)] = E5|R( ‘]—%W (@) for any
weﬁj;m. For any we A,N(N UN ;)% as Ny C N, (5.1), (5.2) and (6.27) imply that

Ep[ R\ |@)=Ep_[RD)=Fp:_[igg: BO@)])=Epe _[R3(@)] <V (@), Krn. @), (Tp(7) @) (Z5(7) @)):

¥, @ 0 ¥, @
Since 1{T>7} = 1{?(W)>7} =1z, P—a.s. by (6.26) and since A, e}%Wt, the tower property renders that

B [1LramyV (7. Ko Vol0): Z57) | = B [12.V (7. K V(7). Z57) | 2 B 10, 5 B 7]
=Ep [Eﬁ[lj*ﬁﬁﬂ}—yt } =Ep[17 R(7)] :Eﬁ[l{fzﬁ}ﬁ(ﬁ)]

It follows that E| R(t)] < By [ ey RO+ 17y ( 17 £, X op, U)dr +V (7, X ,YP(W),iﬁ(W))ﬂ. Letting P

vary over Pyx(y,z) yields that V(t,x,y,2) = sup FEp[R(t)] < sup Eﬁ{l{f<77} (ftTf(r7 Xon., Up)dr +
PEPix(y.2) PEPix(y.2) :

S SR — N T o
7(T.X7) )+ Liray 5 (ST 10 Xons U4V (3, X0 V(7). Z5(7,)) |
(IT) (super-solution side) Let PP, «(y, z) and simply denote 75 by 7. We shall show that

_ Yo . _ —
Eﬁ |:1{T<W}R(t)+1{TZ—y} (/t f(n XT/\~) UT)dT—’—V(Wv XV/\w Yﬁ(ﬁ)a ZP(V))>:| < V(t7 XY, Z) (628)
As th ={0,9Q}, the [t, co)—valued Fv —stopplng time 7 satisfies elther {(7=t}=Qor {F7>t}=0.
Suppose first that {’y t}=Q: forany i €N, YP( [fTM gi(r, Xon, Uy dr|]-"t }— [ft 9i(r, Xoa, Up)dr] <
y; and ZP [ft (r, X rn., r)dr] =2z;. Then

Eﬁ |:1{T<"/}R(t)+1{TZ'y} ( ‘/tryf(r, y7"/\~a Ur)dr—’_v(ﬁa y7/\- ) YP(’Y)vZP(PY))):| :Eﬁ[V(t7 yt/\- ) ?ﬁ(t)v Zﬁ(t))] Sv(tv X, Y, Z) .
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In the rest of this proof, we assume {7>t} =Q and show that the inequality (6.28) also holds in this situation.
As the argument is quite lengthy, we split it into several parts and make brief description at the beginning of each
step.

By (D1) of P:x, there exists a U—valued, Fv —predictable process i = {fis}sejt,00) On o such that the
P- measure of O, :={U, =7i,(W) for a.e. r € (t,00 } is equal to 1. Since 71, :=Jis(W), Vs € [t,00) is a U—valued
FV —predlctable process on Q, the [0, 1)—valued v —adapted continuous process JS = fts e "I (@, )dr, Y sE[t,00)
satisfies that for any we(,

Ts(w)z/j e_"ﬂ(Ur(w))dr:/: "I (7,@)dr=T @), Vselt,o0). (6.29)

Set Nx ={weQ: X,w) # 2, (w) for some s € [0, 00 } € N5 (.Tt ). We also let 7 be the [t,00]—valued
FW' P (W)} =1 and let A*E]:W N, eNs ( ) be as in (6.26) and (6.27).

7 W) of (W, U) over the stochastic interval [t,7] by

—stopping time with P{T
I1.a) Let us define a truncation (W

We will embed (Wtﬁ,ﬁtﬁ) with (7, X X, Y5(¥), Z5(7)) into another enlarged canonical space Q:=10,00) xQyx I x
Q xRXR via a meajumbleirtnappmg U, -

II.a.1) Clearly, w7 s .7-'7W /() —measurable. To show the measurability of Ut”y, we let ¢ € L°((0,00) x
U;R). The FW' —predictability of {7, }

ff (s, 1i5)ds is thus fW —measurable. Thenf fo (s, ug ds—&—ft (s,705) ds—l—foo ©(s,up)ds is an ]-'Wt—measurable

random variable such that & ,( =5 e(s,U 77( ))ds =1 (Ut (w)) for any we,. Since Q,={weQ: T (@)=

[Jem I (U, ))dr=[] _’"/(MT( ))dr, Vs € (t,00)} = {wEQ T() [Le s (nw )dr}E.FWTP

seltoo implies that {gp(s ﬁs) }Se[t 00) is also an FWtfpredictable process and

seQe (t,00)
it holds for any £ € #(R) that (Um)fl ((Lp)_l (€)={weq: I@(U ( )elt={weV: {,@efiu{we
Q; : IW(UM( ) €&} € O‘(]:W U s (.FW X )) By Lemma 1.3 (1), the sigma-field {A cl: (Utﬁ)_l(A) €
U(]-'W Uz (fW X ))} includes all generating sets of Z(J) and thus contains %(J). Hence, U7 s a(]—%Wt U
N5 (fW T ))—measurable.

Since {3&” z X’M}S €lt,oo —adapted continuous process, we can emulate Lemma 2.4 of [44] to construct
an R'—valued FW' —predlctable process {K }Se[t such that N :={weQ: K. (@) # ﬁ?ft x’u( ) for some s €
[t, 00 } EJ/},(]:W ) Since X| 0,6) =xXl[0,+) and X\[t’oo) —Kt on (WXUNK)C, one can deduce that the random variable
Xan: Q= Qs 0‘(]:W UAs( o Foo)) ] PB(S2 ) —measurable.
II.a.2) Set gs .7}_5W \/]-_ST VFX —J(W:,r € [t,s])\/a(T:;TE (t,s]) Vo (Xr;rel0,s]), Vs € [t,00). We arbitrarily
pick (w,u) from Qg xJ.

Since (t,x,y, z) € D5, Theorem 3.1 and (6.27) show that (¢, w,u,x,y, z) € D5 and that (*(w),WW(w),Um(w),
Xon @), YE() (@), (Zp(7) @ )) € D5 for any we A, NN,. By the measurability of random variables wh 77 "
and X. in Step (ILa.1),

L
is an FW P

=2l

B(@) =1 gezr o (bW, x5, )+ ez, vy (1@, W7 @), 07 @), Xxn @), (V3(9) @), (Z5(7)) @) €D, (6.30)

VweQiso (]-'W UJV >/;%’ = )—measurable, which induces a probability measure P:=PoV~!on (Q, %’(Q))
Then W is further a(}'g/ UJVF(QOO))/O' (B(Dp)UNj(%B(Dp))) —measurable.

I1.b) Fix £€(0,1) through Part (ILf). For any @€, we may denote t5:=5(@).
According to Jankov-von Neumann Theorem (Proposition 7.50 of [7]), Corollary 4.1 and Theorem 4.1, there exists
an analytically measurable function Q. : Dfﬁm(ﬁ) such that for any (t,w,u,1,9,3) €Dz, Q.(t, v, u,1,9,3) belongs
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t0 Per,ur(n,3) and satisfies

Vit w,u,x,9,3)—e, if V(t,w,u,1,9,3) <oo;

EQE(t,m,u,x,U,z) I:R(t)] = { 1/67 if V(t, o, u, 1, 073) -0 (6 31)

I1.b.1) We can use the composite mapping Q. (\IJ(E)) to construct a pasted probability measure P. as follows:
Since Q. is universally measurable, it is also o(#(Dp) U Aj(B(Dp)))/%(B(Q)) —measurable and Q. =
1{weﬁiuﬁ*}ﬁ+1{weﬁmﬁj }Qe (\I/(E)), VweQ is thus U(}%Wt U,/Vﬁ(gio))/%(m(ﬁ))—measurable.
Given a [0, co]—valued %(Q2)—measurable random variable @, Proposition 7.25 of [7] implies that the mapping
‘B(ﬁ) B @»—)Ea[a} is & (‘B(ﬁ))fmeasurable. The measurability of {@?}weﬁ renders that

the random variable Q > E»—)EQEU [¢] is 0(.7:7Wt un%(?f,o)) —measurable. (6.32)

Hence, we can define a pasted probability measure P, G‘B(ﬁ):

P.(A):=P(A°NA) + / O°(A)P(dw). vAcBQ). (6.33)

weA,

I1.b.2) To show P.=P over G%, we need to discuss some properties of @?
Let we A,NN.. By (6.30), one has

Q= Q. (¥@) €P ) 5775y 7 @) Ko (3 (T2 @), (Z5(9) @)). (6.34)

Set Q- = {@' € Q: (W, X,)(@) = (W, X,)@), Vs € [0,7@)]; Us@) =T, (@ )forae s € (0, ’y(w))} and

O, ={weQ (Wi,?i)(w')z(wzt,?)( D), Vs € [t,7®@)]; X,(@) = X,(@), Vs € [0,5@)]}. Since Oz  {@ €

0: Ws(w):g, Vsﬂg,t],Ws(w/):W( W), Vse (t,7(@)); Xs@')=Xs(w), Vs€[0,5()]; US(E’):U (w )for a.e. s€
(t,7(@))} CO5 5 CWx 5, we see from (6.34) that

Q2(Q5)=1, andthus Q- (W=z)=0Qc(055)=1. (6.35)

By (6.34), there is a U—valued, FWtU—predictable process i¥ = {ﬁf}ee t00) O Qo such that the @f—measure

of O = {WeQ: U, @) =p2@) for ae. s € (tz,00)} is equal to 1 with 7% := i¥(W), Vs € [tz,00) and that
NU ={weQ: X, )#yf(wl) for some s € [0, 00) }Gd%w( OZ), where {3{5 :fzw,xw,(w)ﬂw} . .
e s€[0,00
fsvt } [ )—adapted continuous process that uniquely solves the following SDE with the open-loop control
s€[0,00

¥ on (Q,2(Q), Qs):

T =X (tay @) + / b, Toyn, BZ) dr+ / o (1, T B2 W, V5 € [t o0)
tw tw

with initial condition 2 s =X (@), Vs€[0,tz].
Since {us =1 (W)}Se[t o) is a U—valued, F"W “ —predictable process on €, the [0,1)—valued FW “ —adapted

continuous process J, —ft e "I (2)dr, ¥ s€ [tz, 0o) satisfies that for any w’eﬁf

T:(w’):/tse_TJ(UT(w’))dr:/tSe"“ﬂ(u,“,’(w’))d =T2@), Vs€[ty, ). (6.36)

Like Lemma 2.4 of [44], one can construct an R'—valued Fwtw—predictable process {??} such that N; =
{w'e: Ff(w’)#?f( ") for some s€[t }GJV (fztw).

I1.b.3) Let Ac B(Q). We claim that

S€[ta,00)

QY (ANA)=14,4,Q:(A), VAT, YweA.NN,. (6.37)
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To see this, we take AGQ Let @y € ANA.NN, and set s1:=75(@;). Since AN{F<s;} is an ?;—measurable set
including w1y, one can deduce that

z = (@ €0 (W, T)@) =W, T)@), Vrelt,si;
X, (@)=X,(w1), Vre0,s]} is also contained in AN{y<s;}. (6.38)

y (6.35), @fi (A) =1 and thus @?1 (ANA) = @fl (A) = 1{5161}@?1 (A). We next let wy € A" NA, NN, and
set s9 := 7(@z). As A'N{F < 55} is an ?Zz —measurable set including @a, @%wz ={w e€q: (Wﬁ,ﬁ)(w’) =
(Wi,?t)(* ), Vrelt,ss]; X (@) =X, (w2), Vr€[0, 5]} is also included in A°N{7<s3}. We correspondingly have
Q7 (A°)=1 and thus @@2 (ANA)=0= 1{w2€A}Q *(A), proving (6.37).

In particular, taking A= in (6.37) renders that

w

P.(A)=P(ANA) + / ey Pld2) =P(A), VAT (6.39)

In the next four Parts (IL.c)—(ILf), we demonstrate that P also belongs to Py x(y, 2), i.e., the probability class
Pix(y,2) is stable under the pasting (6.33).

II.c) In this part, we demonstrate that W' is a Brownian motion with respect to the filtration G' = {ai}se[t 00)
under P.. More precisely, let t <s<r<oo and €€ Z(R?), we need to verify that

HENAY =P (W, W) (€)}P.(A) =¢(r—s,E)P.(A), VAT,

PA(W,-W.)
where ¢(a,&):= (27ra)7d/2 Loce e’édz, Vae(0,00).
II.c. 1) We first show P- ((Wt —Wt)_l(é’)) =¢(r—s,&) based on the fact that W' is a Brownian motion under @f
and P,, by (6.34) and (6.27) respectwely
Let weA,NN,. Since {y>r}eF. Cg and since {7>T}Q(W W J7HE ):{VZT}H(W%MfW%AS)*I(E)6
W\T Cgv, (6.37) implies that

'y/\r

—w [ =t —t. _ —w _ —t —t. _
Li@=n@Q: (W, =) 7€) =QF (= nn(W - W) O) =1, 0ot e} (640

o If 7(w) < s, since (Wﬁ—Wﬁ)(m’) =W, (@)-W,(@) :W?(w’) fWZw(w’), V&' €0 and since W' ° is a Brownian
motion with respect to the filtration F7" under Q> by (6.34),
A9 Tt Tty — =T [ (vte wte)
QL (W, ~W)7(€) =@ (W - W) ()} =o(r—s.8). (6.41)
e We next suppose that s < (W) < r and set & := {r— W )+W @): €€} € BRY. For any 0’ € Wﬁw,
(W, ~W)(@) € & if and only if W,” (@) = Ww')— W@ > ) =W @)~ W (3@)&) = W,@) - W,@) -
Wg(w) +W§ (W) € &, which shows
T — ¢\ —1 —
(W, =W~ E)NWeo=(W")  (65) " Whg. (6.42)
So (6.35) gives that
Wt ety —w ( [tz) L
QUW,-W)7 () =Q{ (7)) (€a) f=6(r—ta ). (6.43)

By (R2), there exists N, & E,/V?(}%W ) such that Ef[l(Wf\—Wi)*l(s)"FWW ](E)ZEF%@ [1(Wi—WZ)*1(5)] for any
WEN,, ¢ Given we {s<7<r}nN;, sNANN?, since W' is a Brownian motion with respect to the filtration
F7" under p,, by (6.27), we can deduce from (5.2), (6.42) and (6.43) that

t t t t

Ep[1g i) [P @) = Pl (W) () =P (W) HENWh ) =P (W) (€)W}

= PLo{ (W) (60) =0t ) =QC (W, W) (€)). (6.4)
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Since {s <y < r} € F 'yAr C fW and since A, € }%Wt, it follows that P({s <7 < T}O(WifWZ)fl(S)ﬂj*) =
ot ot _ —

jo { tocreryn Bp Lt )1 o) | Y ]} = foco Lser@)ennimeiy @e (Wi~ W) 7H(€))P(dm). Then we see

from (6.41) and (6.40) that

ﬁe((Wf»—Wﬁ:)_l(@)=?(7iﬁ(Wf»—W§)_l(5>)+/ QW= W) H(€)P(dw)

weA,
=P(A (W, - W) (&) +6(r—s,E)P({T<sINA) +P({s <7 <r}n(W,—W )" (£)NA.)
+P({F2r}n(W,=W,) ' (€)N4,)
—P(AN{F<sIN (W, —TW5) " (E)) +d(r—s, ) P{T<s}NA)+P({F> s} N (W, —W4) L (E)).

oot . . - Lo W
Since W' is a Brownian motion under P and since A, N{7<s}eFV

P.((W, = W)~ () =0(r—5,) (P(AIN{T < 5}) + PUT< s}NA) +P{7>5}) = o(r—s5,).

IL.c.2) We next show that

t\—1

E((WPWS) (&ﬂ@zd%sﬁ)ﬁ(ﬁ), VAEG.,. (6.45)

(i) Let AEQ Since AN{¥>s} ng one can derive from (6.37), (6.40), (6.44), the tower property and (6.39) that

P17 @A) <P(ANT ) @A G>8))+ | Lsengssan e (7770 Pia2)

=P (AN (W, W) (E)NAN{T>s} )+ P(AN(W,~W,) " (ONAN{T = 1)

+/weA 1{5620{8<7<r}}Eﬁ[1(W;€7W ’}_W} (@) P(dw)

—P(ZN(W,-W,) " (EONAn{T>s}) + P(A.N (W, W)~ (€)nAn{7 = r})
+EP[EP[I{A*ﬂAﬂ{smq-}}l(WjW;)l(g)’}';” H

t t

E)nAn{y > s}) —P((W, W) (€)) xP(AN{7>s}) = d(r—s, &) P (AN{7>s}), (6.46)

=P((W,-.)

where we used the independence of (W:—Wi)_l(é' ) from ]-'SWt under P in the fifth equality above. This equality
directly verifies (6.45) for the case “s=t" as we assume {§>t} = (see the fifth line below (6.28)).
(ii) We then demonstrate (6.45) for the complicated case “s>t”:

Let 0<t; <---<t, <t, {€2}7, C B(R') and set Ay ::ﬁlylzl(é}o) E]—‘?C?tf. We also let t =81 <sg<---<

n (6.46) renders that
R((Wﬁ—Wi)_l(s)mﬂxmzmm{7>s}) = p(r—s,&)P.(Ax NAnN{7>5}). (6.47)
By (6.29), the set A:= ( A {x(t) eé’;’})m( v 7K

1= Jj= J J 3

Q,N(NxUNK)‘NA. Since W' is a Brownian motion under P and since A;N{F<s}eFW

(5j)) € ]-'SWt satisfies ﬁuﬂ(ﬁxu/v;() ‘NAxNA,,=

P(AN(W,—W.) (E)NAxNA,,N{7<s}) = P(AN(W,—W.) (E)NAN{T<s})
—P((W,—W,) (&) x P(ANAN{F< s}) = d(r—s, &) P(A.NAxNA, N {T< 5}). (6.48)

It remains to show that [ @f({ﬁ < s}N(W.—Wo)"HE)NAx NAp)P(dw) = ¢(r—s,€) % [o5. Q- ({7 <

sINAxNA,,)P(dw).
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Fix k=1,--- ,m—1. We set 4, := m (th e Xons)

Skp1NANNG. By (5.1),

(&) € ?%,\Smfl C ?% and let W € {sp <7 <

k — — _ — k — — _
n (W, T, .X.) 1(534)):\7\@50(3_91 (W, Tone, Xonsy)

j=1° %

—t -t =7
WL N ( (gj)) —W. N4, (6.49)

—t ot —w m -1 e
We set a_ := (W4 (@), T5(@),0) € R¥!* and define A, := j:rlg+1(Ws7 J ) (Eiz) € FV, where &5 =
{r—a_:re&}e BRI, For j=k+1,--- ,m and E’E@%QHQ#Q(J\/’X UNK) one can deduce from (6.36) that
(We,. Tt X, )( e & if and only if (W, 7. Ko ) @)= (We,Te , Xs,) @) = (W, (@ )—Wﬁw(w’),fij @) —
XG

9]

T, (@), X, @)= (W T..X,,) @) -0, €s. So(‘ﬁi (W, To. X)) ))m@ SN (N UNGE ) =
J: p— —
Akﬂ@ SNQ ﬁ( ) which together with (6.49) shows that A,, ﬂ@ ﬁz (7X Uig)czzfgﬁj:ﬂ@%@ﬂ
(NXUNK)C.

As W' is a Brownian motion with respect to the filtration F"V' under @f by (6.34), we can deduce from (6.35)
and (6.37) that

—w [t ot - —w (— N —w et —t. _ W (0 [t tw) L
Q2 (W, =W~ €)NAxNAy ) =@ {AxNAINAN (W, =) 7€)} =1z iy Qe { AN (W =T2) (©)}
—w —w\ = [ [ty —tz) L i P - —
e @ (A0) < QI (W= W) (6)} =Q2 (AxNAINAL)o(r—5,€) =2 (Ax A 6(r—5,€),
and thusf A 1{we{sk<7<sk+l}}©w((Wt—Wt)_1(5)02)(02 )7((1@) o(r—s,E)x G, 1{we{sk<7<sk+1}}@w(ZXm
Ay)P(dw). Since {7>0} = and since {y < s} € F. ,YAS C gv, taking summation from k=1 through k=m—1 and

using (6.37) yield that

—W.) Y (E)NAxNA,,) P(dw)

3

[ . Q- ({(7<syn(W, W4~ H(E)NAxNA,, ) P(dw) = / e @e ((

weA.

:¢(T—S,S)XL . 1{56{7§5}}@§(Zxﬂzm>ﬁ(dw) T‘ S, g / {’7<S}ﬂAxﬂA ) (dw)
weEAL we

L\

Addmg it to (6.47) and (6.48) reaches ﬁg((Wi—Wi)_l(é’)ﬁZXﬂZm) =¢(r—s,E)P(AxNA,, ) So the Lambda-

6.48
system A {Ae%( ): P (W Z_Wz)fl(g)mZ) =¢(r—s,E)P. (Z)} contains the Pi-system {( (50)) (]Z

1

(W T X)) (& )) 0<ty<- <t <t=851<83<+ <Sm_1<5m=s5, {E}", CAR), &y, C%(RdJrlJrl)}’
which generates g In light of Dynkin’s Pi-Lambda Theorem, we obtain ?t CKt . proving (6.45).

Hence, W' is a Brownian motion with respect to the filtration G' under P.. Namely, P. satisfies (D2) of P; .
I1.d) In this part, we demonstrate that P. satisfies (D1) of Py x.

For any s € [t,00), there is a [0, 1]—valued F/V' —measurable random variable T on Q such that

(W @) =Ep, [Y§|f?t}(w), Voen.

Since W' is a Brownian motion with respect to the filtration G' under P. by Part (Il.c), applying Lemma A.1
with to = t, (Ql,fl,Pl,Bl) = (ﬁ,%(ﬁ),ﬁs,W), (QQ,.FQ,PQ,Bz) = (Qo,%(go),Po,W) and ¢ = W yields that
{Ti(W)}SE[t’OO) is an FWtfadapted process and that Ep [YS] = Ep. [Ye(W)] = Ep. [TU is right-continuous in
s€t,00). As FW'P ig g right-continuous complete filtration, the process {Y5}e[t,00) admits a cadlag modification
{?i}ee[t sy Which is a [0, 1]—valued FW"-P —adapted process.

I1.d.1) Define a process ?/ (wp):=¢€® lim 7(T§(w0)fffs_6)vt(wo)), Y (s,wo) € [t,00) x Q. We use it to construct
6—0+

in (6.54) a U—valued FW' _predictable process yif satisfying P. {U;=ps(W) for a.e. se(t,00)}=1.
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As W' is a Brownian motion both under P and under P, taking to=t, (1, F1, P, Bl) = (ﬁ, #(Q),P or P, W),
(Qo, Fo, Py, B?) = (907%’(90), P, W) and ®=T in Lemma A.1 renders that

the process {’/I\"i (W) is both FW' P _adapted and FW' P —adapted

}se[t,oo)

as well as that W_l(j\/) EJVﬁ(fEt)HJi/ﬁE (]—'Et), VN e Np, (fovgt). (6.50)

Given s€[t, 00), since {TEATE} € Np, (FW'), (6.50) shows that N'e = {T5(W)#7T5( )}:W*({Tg%rg}) €
Ji%(}"gt)m/i/ps (fzt). Applying Lemma A.6 with (P,W,%’.,f) = (PE, {Ws}se[t,w), G ,Ti), we obtain

=En [T

Let ¢ be a [t, 00)—valued FWt—stopping time, let ZE}'Wt and let neN. We set sl':=t+1i27", Vie NU{0} and
define (,, ;=" 5 Licesn sm)}- For any ¢ €N, one can deduce from (6.51) and the monotone convergence theorem
e (TI7) — w'| _ _
that T%H(W) _ZieN l{ze[sgil,s;”)}’rsf (W> Z’LEN 1{{6[ T 118] )}E |: B |]:0<> :| - ﬁs [EZEN 1{26[3?7175?)}’{5? ’FOO :| -
Ep, [thn a4 t}, P.—as. As (= lim | C,, the right-continuity of process T¢, T and the bounded convergence the-
orem imply that

(W) =15 (W) = Bp_|T.

} P.—as. (6.51)

TE(W) = lim T (W)= lim By [T¢, |FX | =Ep, [Tl FY |, Po-as. (6.52)

n—oo n n—oo

As the right-continuous FWt’PO—adapted process {?i} is FWt’PO—optional7 the [—oo, oc]—valued pro-

FWt,PO

SE[t,00)
cess {%s }selt,0) is also —optional. Similar to Lemma 2.4 of [44], we can construct a [—oo, oco]—valued
F"' _predictable process %° = {Us Ysert.o0) With %7 (wo) = ?//}(wo) for dsx dPy—a.s. (s,wp) € [t,00) X Q. Using
Fubini Theorem, one can find a N, € Ap, (fovgt) such that for any wp € (./\/'%)C7

%Se(wo):?//}(wo) for a.e. s€[t,00). (6.53)
By (6.50), N@i =W (NS) €</Vﬁ(]:zt)ﬁ</1/ﬁg (]:zt). We define a U—valued F' —predictable process by
,ui(wo):Zf_l(OZ/SE(WO))]_{%;(MO)EQ}-‘r’u,ol{%se(wo)g@}EU, Y (s, wp) € [t, 00) X Q. (6.54)

11.d.2) We next show that P, {wEQ uS(W( )): s(@ )forae se(t @)} =1.
Let s€[t, o0) andletAe]—"W Since T- EQ and L, € FW. Cgﬂ/, (6.37) and (6.29) show that Ep [ Tf,/\s]:

FAs VAS
t —w —w

Ep {1,4 mATw\s} +fwe,4 T7/\5( )Qa (A)?(c@) = FEp [1A mAJA//\s] +fwe,4 JﬁAs( )Qs( ) (dw) = [1 J'y/\s]
Letting A varies over ]—'W and takmg {=%As in (6.52), we obtain Jm\g =Fp. r§AS|}"W = 7/\3(7)» P.—as. By
the right-continuity of processes 7" and ¢ , it holds for all w € Q except on a N’ 15 € '/VE ( ) that TE (W( )) ( ),
Vse [t,7(@)].

Let we (N;/ UN f )c. Since the Lebesgue differentiation theorem yields that

FAs

R 7 — R _ 1 [° I e
61_1>%1+5(TS(W<W))_T(S—5)Vt(W(w))):51_1361_’_3(']s(w)_J(S—5)Vt(w))_61_13(1)1_"_5 s S (71, @))dr=e=*.7 (11, (@))

for a.e. s€ (t,7(w)), we see from (6.53) that %7 (W (w)) :@//}(W(E)) =e 511%1+ S(TE (W(w)) _T?s—é)\/t (W(w))) =
—
I (f,(w)) for a.e. s€(t,7@w)). Thus,
A\f::{weﬁ:ui(W(Q)):us( ) for a.e. se(t,5(w }D(N%UJ\G) . (6.55)
As{ fts e”ﬂ(ui)dr}se[t 00) is an FW' —adapted process, Lemma A.1 (1) shows that { ft e "I (ue(W )dr}qe (£.00)

57 7t
is an FW' —adapted continuous process, which together with the F"" —adaptedness of continuous process 7' implies

Ef:{/twserf(u (W ))dr—Jﬁ/\s, Vse[t,oo)}z N {/jmerj(# \ ))dr—JﬁAS}erWtcatV' (6.56)

s€QN[t,00)
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Then we can derive from (6.39) and (6.55) that 1= P, (N, UN{)) < E(ﬁf) :F(A\f) Similar to (6.56),

A= {weﬁ: J7% (W(w)) =U,(w) for a.e. s€ (t,ﬁ(w))} :SEQFQ[t,oo){TV /t 67T]<Ni(W))d7"} 6?7.

Applying (6.39) again renders that
P (A5) ~ P (A7) ~ P9, ) ~ (@, A7) = P(A7) - 1. (657
I1.d.3) The demonstration of P.{w € Q: pus(W(w)) =Us() for a.e. s€ (F(w),00)} =1 is technically involved, we
will carefully verify it.
(i) Set Ay:= {weQ: ps(Ww))=Us@) for a.e. s€(J(w),00)}. We first show that P(A )= 7(ZCOZ;)
Let s€t,00) and let Ze}'zt. Since 5 [lA mA(T TMS)] Es [1A HA(T T'y/\s):| =FE5 [1A ﬁA(J J,YAS)] =

Es [ A7 (J JWAS)] by (6.29), letting A varies over .FW and using (6.52) again yield that

(J JwAs) PE[ (T TwAs)VK]:lZ:EFJ(T T¥AS)|]-‘E]:1E(T§(W) TiAs

(W)), P.—as.

The right-continuity of processes 7' and T¢ assures an NV, 25 € NE. (]—‘z t) such that for any we (ﬁ* UN. 26 )C and any
s€[(@),00), one has T<(W(@)) - T (7(@), W(@)) =7, (@)~ (7(@), ).

Let w € (A, UN, UNQ) Since the Lebesgue differentiation theorem implies that hI(I)l = (TE (W(w)) —'/fe((s—

HVA(@), W (w ))) = lim g(j:(w)—jt((s—é)\/'y(w),w)) = lim Sf(s—é)\/ﬁ(w)e "I (B, (@))dr = e=*.7 (i,(w)) for

5—0+ 6—0+
ace. s€ (F(@),00), (6.53) shows that %7 (W(@)) = % (W (@)) =e* lim l(?g (W@)) 7?5((575)\/7(5) W(w))) -
f(ﬁs(w)) for a.e. s€ (7(@),00). So Ay :={weQ: (W (@)) =p,@) for a.e. s (F(@),00)} DAN (N, UN,)".
P. (Xi) (A NN, UNQ) )<P. (Xiﬂgg) <P. (Zi), we obtain that
P(A)=P.(A)) =P.(A;nA;) =P(A;NA;) =P(Q,NA.NAS) =P(Q.NANA) =P(A.NA). (6.58)

(ii) We neat show that 65(74;) =1 for P—a.s. W€ A,, then P, (X;) =1 easily folliws. B
We denote Q;:={t +¢: ¢€Q, } and set Ny:= U {Ta VATSW) e AN (FL ) NAp (F).
Fix s € Q;. Given k€N, we set s¥:=t+i2~ (s t) for i=0,1,---,2%. Since {Ti(W)}re[t_oo)

v —adapted process, the random variable Ezk = I{WZS}TZ(WH‘Z?; Tige §7<3§}T§? (W)elo,1] is ]-'SWt —measurable.

is a [0, 1]—valued

Then &, := lim Ezk is also a [0, 1]—valued f?t—measurable random variable.
k—o0

For any e (N'y)°, the right-continuity of process T¢ shows that T< (7(@)As, W (@)) = Jim (1{7@)25}?5 (W(@))+
S L <<y T (W@) ) = Jim € (@) =€.(@) and thus
T (W@)) - T (7@)As, W (@) =T5(W (@) —E, (@) (6.59)
As N, UN; €eNG ( Wt) there exists A, € fzt such that N, UNy C Ay, and P. (ZZ) =0, which implies 0 <
waA Q7 (AU) (dw) < P. (AU) 0. Since the random variable Q > ww@f(ﬁ@) is U(}%Wt U/i%(?io)) —measurable
by (6.32), there exists ‘ﬂU GJVF(?;O) such that for any we AN (N* Uﬁ;)c
Q- (A7) =0 and thus Ny UNy € Ao (FL). (6.60)

Let {6j}j€N be a countable Pi-system that generates ]-"sWt. Let j€N and ZE]—%Wt. One can deduce from (6.37),
(6.59) and (6.52) that

:ER [ A mAmO [T T’Y/\s }—ZtH :EFE [EFE [12 NANO; (Tt~ TwAs) ]:W H
T

=, |13, (Te- TW\S)}:/Eﬂl{wEA*ﬁA}EQ:[ (To—T5,)| Pldw).
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So the Lambda-system A ; i={ A€ Z5(Q): o1 @ex. o) Fge (1o, (Y (W) P(d@) = e L me. iy Bge [ 1o,
(T T,y ns) | P (d@)} contains ]-"W and A5 (2(Q)). As ]:W UJV*( (Q)) is closed under intersection, we know from
Dynkin’s Pi-Lambda Theorem that O’(.FW UA5(2(9Q))) CA

€

/wesz l{weZmZ}E@f [1@ (Ti(W)—ES)}?(@)
ZLGQ zea.nm Boe (1o, (To=T5,,) | P(d@), VZEU(}}WtUe/VF(%(ﬁ))). (6.61)

Taking =15, (e (7)—52) and ¢p=15 (T TMS) respectively in (6.32) shows that Q > wr Eqe [1@ (Ye(W)—
€)] and Q>w— Ege (15 (T Tw rs)] are two [—1,1]—valued cr(]-%W ' UJVF(E;)> —measurable random variables.
Letting A run through o(}‘%/v UJ/F(QOOD in (6.61), we can find an ﬁ;j 6‘/’%@

oo

) such that for any we (ﬁi])c

l{wei* nﬁi}Eaf [1@ (Ti (W) —EZ)} = l{weﬂmﬁi }EQU {1@ (TZ _T%/\s)} : (6.62)

Set M, := AUNﬁzj € /Vg(?too) and let w € A, N (N, Uﬁzuﬁs)c. Since it holds for any @’ € WffﬂQ that
je ’
=t =t/ _,_ _ ~t ~t — s e w 5—7‘ —
T, ()-7_ (’y(w’)/\s,w’):TS(w’)—T (’y(w)/\&w/):fw(w)/\é J( )dr—fv((w) f(ﬂ, (w ))dr—Tt vs(@)
by (5.1), we can deduce from (6.59), (6.60), (6.62), (6.35) and (6. 36) that for any jeN

Ege (1o, (T4V) = 15,.(W)) | = Bge 15, (Y (7)€ |~ Bge 10, (T~ T50.) |~ Bge [ 10, Trovs| = Bge [10, Trovs).
Then Dynkin’s Pi-Lambda Theorem implies that the Lambda-system {5 € B ( ): Enw [ (TE (W)= 'Y‘%AS(W) } =

an [1572\,5] } includes .FSWt and thus contains ]-'sW Q: :a(fswt UJVaw (fovg )) :

t Sw

e [15 (Tg(W) Te (W))} —Fge [1@;3}, veeF 9F (6.63)

YAs

If5y(w)>s, thenfthL:—}'gw:{@ Q}CFV i (@) <5, thenftW;i*J{SWtU:J((W?)A(E)'TG[W( ),s],E€
[

%(Rd)) :0'<(WT—Wt ) Y ),s]. € 693(11@)) C F7'. In both cases, we see that Ty éftwvz cFV.

Since Ti(W)—T%AS(W) is ]-"s —measurable by (6.59) and (6.60), letting £ run through Fa' W in (6.63), we
can find some ﬁ;we./%m (]—'z ) such that

T (W (@) =T (@) A8, W@)) =Ty @), V& €(Moz)’ (6.64)

Now, set ‘ﬁﬁ = U ‘ﬂ = U u ‘ﬂ’ eN5 (QOO) and fix EEX*H(N*UﬁEUU‘ﬁﬁ) We also set ‘ﬁﬁf = U ‘ﬁ €

. 5EQ¢ bEQt JjEN s€Qy
</V (}'W ) and let W' € W—— (./\/},, U‘ﬁﬁw)c. The right-continuity of process Y=, (5.1) and (6.64) render that

T: (W( ")) —Te (to, W(@)) = [, e "I (@7 (@) )dr, Vs € [tz,00). By the Lebesgue differentiation theorem, we have
513&7(&@@ ) -1 ((s fa)ww,W(*’))) = lim 3 [y, eI (7F (@))dr=e S (T (@) for ace. € (t, )
and thus % (W(@')) = 02/5( @) =€S6Iilgl+ 3 (Ti (W@ ))—Te(( —0 Vi, W(w’))) =9 (i (@) for a.e. s€(tz,00).
It follows that A27 ={weQ: ps(W@W)) =1 @) for ae. s€ (tz,00)} D W (N@i Uﬁ;w)c. Then (6.35) and
(6.60) show that 1=0Q). {W—— (N@/U‘ﬁﬂw)c} Q ( ) Since WffﬂQ OAwaffﬁQ ﬂ{ eﬁ:ug(W(w’)):
Uy (@') for a.e. s€(tz,00)} = WffﬂQ ﬁA —, we further see that

Q- (A)=Q7 (A5 5)=1, VoeA.NN.UN,UdN;)", (6.65)

d

which together with (6.57) and (6.58) yields that

BT, = (W), for ae. se(t,00)} =Po (A5 NA) =P (A5) = P(ASNAS) + / QF (Z)P(dw) = P(A°) + P(A,) =
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Hence, P. satisfies (D1) of P; . We set 115 :=pus(W), Vse(t, ).
I1.e) In this part, we use the martingale-problem formulation to demonstrate that {MS’/\“Tt (@)}Se[t 00) s a bounded
(Ft,ﬁg)—martmgale for any (p,n) € €(R¥)xN. Consequently, P. satisfies (D2') of Pix and thus satisfies (D3)
Offt,x.
IL.e.1) Fix (p,n) € ¢(R¥)xN and set Qx := {X, =x(s), Vs €[0,t]}. We know from the proof of Proposition
5.1 that ﬁ; CNx={weQ: X, ) £ Z" (@) for some s € [0, 00 )} € N1 CN.. Given w € A.NN; C Qx,
one has fo c{weQ: X,@)=X,w),Vse[0,t]} =Qx and (6.35) implies that QE (Qx)=1. As P(Qx) =1
by (D2) of Remark 3.1, one can deduce that P.(Qx) = 7(X0ﬂﬁx) + 5 AN 1-P(dw) = 7(XC) +P(A,) = 1.
Applying Proposition 1.2 with (Q,F, P, B, X, u) = (9, #(Q), P.,W, X, i) renders that {Msm )}Se[t o) 15 2
bounded thadapted process under P..

To show the P.—martingality of {MMT (cp)}se[t,oo), we let t <s<r<oo, {(s;,&) ., C[t,s] x B(RIH!) and set

A= N (W, X)) HE) E]—';. We need to verify that
7t,7€ 7t)7€
Ep_[(MZ 5, (0) = M3t () 15] =0 (6.66)

=

II.e.2) Assume t+n>s. To obtain (6.66) for the this case, we first show that

If t+n<s, one directly has Fp_ [(M%?;T(gp)fﬂigis(go))lﬂ =F5 [(M%ﬁi (go)fﬂt?’tfa (¢))15] =0 since 7., <t+n<s.

Ep, [154) (M%%(@Wi%(@)lz] =0, (6.67)

. g o —t _ —ti SEpp—— _
(i) For any we A} and any ¢ <ry <r, <F(@), we have (M, (¢))@)—(M ( ) @)= (M, (¢ ))(w)f(MhM(gp))(w).
m— —t,uc —t, -t
So 12§ (M?fAVAr(SD)_MFfL/WAs(SD)) Az (M*f /\'y/\r( )_M?ﬁiL/WAs(@P)) and (6.57) renders that Es [(M*t AFAT (p)—
—t,n° —t. 0 —t,n° —t.
M?ﬁl/\s((p))l{7>s}ﬁz:| :EPE |:(M7t /\'y/\'r‘( ) Mft /\7/\5( ))1{W>S}OZ:| :E |:(M? /\"//\’l"( ) t /\'y/\s( ))l{fy>s}r‘|Ai|
. _ — _ ko —t - , , .
Since {7>s}NA={y>s}N ( igl (Wins,s Xqnsi) ™ & ))E]:'y/\s and M?;AW/\T(@)_M?;/WAS( )E‘F’y/\r7 using (6.39)

and applying (3.2) with (a,(;,(y) = (0,7/\5,7/\r) yield that

t,7° .7k

Bp | (T2 e (9~ M ns(@)) Lz ayeia )| = B | (Fehingns (9) = M rspal@)) L] =0 (6.68)
It also holds for any @e A5 and any §(@) <ry <ry <oo that
(3,2 () @)~ (M, (9)) @)= (M,7(9)) @)~ (M, () @). (6.69)
As F(Xi n (2;)0) =0 by (6.58), taking (a,Cy,Cs) = (0,7,7Vr) in (3.2), we obtain

e —

——t, [ ——t, —t, 0
EF[%(Mmﬁvr)(90)—M?:,w(90))1{7>s}ﬂ}:Eﬁ{lzcmgg(MW(“”( )M (9D 3>y
=t —t0 —t0
:Eﬁ[lfc AE( ?'A(WVT’)("D)_MTLAW(‘p))l{Wx}mz}:Eﬁ{lii(M?;A(ﬁw)( )— M*f M( ))1{7>5}mz]:0-
It follows from (6.37) that
—t, —t, —t, —t —
Eﬁs[(M{M(w)—M?{‘mr(so))l{wm}: L — Lis@)>s} L wer) Egel Mrt aivr) (9) = M7 p5 ()| P(d). (6.70)

(ii) For GGZ*Q(N*UﬁZUﬁE)C, we define a C?(R*M) function ¢_(w,z):= (erWt @), z), (w,z) eR and define

an F'° —stopping time (o (@) :=inf {s€tz,0): ‘(W?,YS)( )—a_|>n}, & €Q with a_:= (- Wt (@), 0) e R, For
¢

i=0,1,2 and @ eW _NAS _, since D' (W @), X,@)) =Dy (Wr(w’)—Wt(ﬁ(w),w’)jLW ), w), X, @)) =

2,w>
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Digow(W?(w’),Yr(w’))7 Vr € [tz, 00), we obtain
(31 () @)~ (L)) () @)
— [ B Xon @), @) Do (W, @), Ko@) [ 70" (1% @), 15@)) : D20 (W, @), X @)

=—/T2b(r X0 (@) @) - Do (W*

T1

@), X, (@) dr—+ / U (Ko (@), (@) : D (W (), Ko (@) dr
— (757 (0)) @)~ (M7 (02)) @), Viw<ni<ra<oo. (6.71)

(iii) Fix we {7, >7} N AN (N, Uy, Uﬁj)c and set v_:=tgVr. Since tz=5(w) <7, (@) <t+n, applying (3.2) with
(t X, P ,u ¥, a, <17<2) (taHX’y/\ ( )7@(:vﬁwv @U’ %,twa tg/\(t+n)) yleldb that

[Tl _ tm __te, 1

0= E [Mq Alta+n)Arg /\(t+n)( ) MZ;/\(tU—Q—n)/\tU((pm)} :Eaf [Mfg/\rm/\(wn)(@w)*ﬂgﬁw(@a)]- (6.72)
Because we {w' € Q: 7, (@) >7(@w)} E.T%(w) C?i(w an analogy to (6. 38) shows that @%@ c{we: 7 (@) >
Y(@)}. Let @' 6@;@01126@. Since inf{s € [t,00): |(W X,)@)|=n}>7 (@) >7~(), one has ’(Wi,?s)(w’)} <n,
Vse|t, tz] and thus

inf{se[t,00): |(Wy, Xo)@)|=n} =inf {s€[tz, 00): |(Wo(@)~W (@), &), Xs@)) +(Ws(@),0)| >n} =0 (@)

It follows that 7% (@) =Ca(@')A(t+n). Taking (r1,r9)= (tw, Th (@) Ary) in (6.71), we can deduce from (5.1) that
(" () P @) AGE V). ) = (M7 () (7@).5) = (M7 () (7 @) A G@) V). &) - (7 () (71@). @)

= (7 () (@) A (tm) e, &) = (AT () (1,7,

As {7, >7} € Fre 5 C G, (6.37), (6.35), (6.65) and (6.72) then imply that

7 i ——t i e 7t i .7
E@: [ M?;A(Ww) (p)—Mz /\'y((P)] = E@j [1{?g>7} ( M?;A(Ww) () — M5 (‘P))] = 1{?;,(E)>W(U)}E§f [ Mﬂl/\(ﬁ\/r) () M5 (¢

= i Tt A

=17 @)>7@)) Fge [M Cnermne, (02) M (9)] =0, ¥@eAn(N.UTG,UN,)",

Thus fwej*1{W(U)>s}1{gez}E§W[M;g\(ww)(CP)*M%?;W(SO)}?(W):07 which together with (6.70) and (6.68) leads
to (6.67) for the case “t4+n>s".
IL.e.3) Ift+n>s=t, as {§>t}=Q, (6.67) directly becomes (6.66). We further assume t+n>s>t and continue to

verify (6.66). In this case, we can also assume without loss of generality that t=s1 <---<sp=s with k>2.
Since (6.69) renders that 1A€1{’Y<S}( tTMM(go) —MT’HAé(gp)) = 1A€1{’Y<S}( tTM/\, (p) —M;HAS(@)) and since

An{F<steFV cF., using P(.A* N (A;) ):O and taking (a,(;,Cy)=(0,s,7) in (3.2) yield that

t, t, ——t0 —t0
Ef{lziﬂ{VSS} ( MTtM/\T'( )= MTtM/\S( )) 1Z} =Fp [11;0{79} ( M?ﬁl:/\r(@) _M?g/\s(W)) 1Z} =0. (6.73)

(i) Fix ie{l -, k—1} and fix we{ﬁl>7}m{si<7§si+1}mﬁ*m(ﬁ*uﬁéuﬁ§) Since W77C{7>sl} by (5.1),
A= ﬂ (WW\S 7YVASJ.)_1(5J»)E.T$ satisfies that
—t = -1

—t 7 —t _
W N ( o) (gj)) —W. N4, (6.74)
Also, (5.1) shows that W;VEC {7<s} and thus W;,wﬂ{ﬁt <7} {7, <s}. We see from (6.35) that

tne

g (1, <z (V2 00 (9) = M2 0 (0)) L] =B [Lgt g0 oy (000 (0) = Mt 0a(9)) 12] =0. (6.75)
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to 55w \ —1

—o k — Tt
Define A, := ﬂ (W Ksj) (&m) € ]:!Vt with &z = {t+a_ : r € &} € BRY). Using (3.2) with

S5

1
(t,x, P,Ti, o, a, CuCz) (tg,YVA.(W),@‘:,ﬂw, 0, 0,8, (t—!—n)/\r) renders that

te, 1 __to,m”
0= E@f{(Mg"/\(t +n)A(t+n)/\r)( ) MC"/\(t +n)/\s( )) 12?}

e, B —_tw, 1
= Eg= KM ety ar) (Pg) = Men p (%)) 1@?} : (6.76)
(ii) Let @’ € @77014 . Like in Step (i), we still have @77C {WeQ:7,@)>7w)} and 7 (@) =Co@)N(t+
n). As 7L (W')As> y(w), taking (r1,72) = (7L,(@')As, 75 (@) Ar) in (6.71) shows that (M M (@) (FL@ ) A @) —

n
n

(Mt’ﬁg(ap)) (TL@)As, @) = (Mtw’ﬁw () (Co (@A) Ar, @) — (Htw’ﬁw (¢2) (Z;(w’)/\& @'). It follows from (6.35),
(6.65) and (6.76) that

tw, 1 __tg, 1

B [ (Mt (0)~ Mt () 155] = B | (Mgt aqeampnr (95)~ Metns () ) 12| =0. (6.77)

For any j € {i+1,---,k} and @’ € W,,m (NEUN?()C, (5.1) implies that (W;,Ysj)(w’) € &; if and only if

(W K. ) (@) = (W; (w’)—Wt (@), @), Zo @) = (Ws,, Xs,) (@) +a € Em. By (6.74), one has ANW= 51
(N;(JUNI?) =A4;NA; OW—— (W;UN;;)C Then we can deduce from (6.75), (6.35), (6.37) and (6.77) that

—t, i —t,° S —t, ——t, i t
E@“ [(M?t ar() — Mz As(%"))lZ] :E*U [1{?;>W} (M?;Ar(@) _M?ngs(‘P)) 12} :Eaf [1{?$L>7} (Mﬂit/\r( )= Mrfﬂ/\s( )) 121-02?]
t T 725775 o i _ o _
_1{w€A }1{74 (w)>’y(w)}E |:(M fﬂ/\r( )—M?g/\s(@))lz?}zo, Vwe{si<7§si+1}ﬂA*ﬂ(J\/’*U‘ﬂZU*ﬁﬁ) R
7t as (9 )) 17| P(dw)=0. Taking summation from i=1 through i=
. A , ——t, ——t,7°
k—1, we obtain from (6.73)7that Ep. [15<s) (Mff ()= MJL,\S( ))14] :Eﬁ[liin{ﬁgs} (M?SAT(@)—M?%S(@))IZ]—F
fwei* I{W(Q)SS}EQU [(M%t,\r(ap)—M?’gAs( ))17] P(dw)=0. Adding it to (6.67) yields (6.66) for the case “t+n>s>t".

7t,75 ,
and thus fwez*1{5i<7(w)§si+1}E§Z[(Mf#/\’r( ) M t‘u

II.e.4) We know from (6.66) that the Lambda-system {AE%’(Q) [(MQLM( )—M;g;s(gp))lz] :0} contains
koot — _
the Pi-system { ) (Wt X))t ( ) {(55, €)Y C [t, 9] x%(Rd+l)} and thus includes ]-'Z thanks to Dynkin’s

Pi-Lambda Theorem. Hence, MU (¢ is a bounded Ft,ﬁg —martingale. According to Remark 3.1 (ii),
s/\‘r

P, satisfies (D3) of Py x.
Similar to Part (ILd) in the proof of [4, Theorem 5.1], we can construct a [t, co]—valued FW' o —stopping time
7. with P.{T=7.(W)} =1, So P, also satisfies (D4) of P x.
I1.f) In this part, we show that P. belongs to the probability class Py x(y, z).
—t, X, __

Fix i € N. Since { [ gi(r, 2,1 ,ur)dr}se[t o) and {5 halr, '%?t”:#’ﬁr)dr}se[t,oo) are two FW P —adapted
and {\I/ } such

) ) SE[t,00) s€[t,00
that N;,ll = {w c0: CD w) # [, gi(r, @), (@))dr or W, (@) # [ hi(r, 7M@), i@ ))dr for some s €
[t,oo)} GL/VF(]:K ) By Remark 3.2 (1) [ft 9; (1" X, ,UT)\/hi_ (T,YM., Ur)dr] < 00. So it holds for any weQ

except on some./\f he/V( (Q)) that ft 9; (7’ Xop @),U, (*))\/hf(r X (@), U, (@))dr <oo.

For any EEA*HN*QNXOQMD(/\/’Q’,}U/\/QW) L as QL C {WeQ: X,(@)=X,(w),Vse [0,7w)];Us@) =
U (w) for a.e. s€(t,5(w))}, (6.35) and (6.34) show that

s€E[t,00)

continuous processes, Lemma 2.4 of [44] assures two FWt—predlctable processes {52}

T L 7 (@) _ _ .
an[/t g () XM.,UT)dr} :/t g () XM.(E),UT(E))dME@Ew[/ wgi(r, X,,A.,Ur)dr} (6.78)

< /j(w) (0 F R @) @) dr + (Vo) @)= Fo@)+ B [ lr T Trir| 7 @)

TAY
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and similarly that Ege [ft i(r, YM.,UT)dr] :@g(w) —i—Eﬁ{ng7 i (r, YM.7UT)dr’f7Wt} (). Since 71*76% € fVWt
and since 15 _1{?(W)Z'y} _1{TZW}’ P—a.s. by (6.26), we can deduce from the tower property that

r T
[ el [ ot Xon TP < g (354

Y

gi(r, YM.,UT)dr) ‘]—'XVtH

T

= 551, ( /t 0o T i Yt l 0:(r, Ko U, )ir ) | = Bp 1, /tTgZ-(r,XM.,UT)dr}

and thus Ep_ U"f 9i(r, Xon. Uy )dr] < Ep| ftT 9i(r, Xy n., Uy )dr] <y;. Analogously, we have E5. [ft? hi(r, X, Ur)dr]

:Eﬁ[ftT hi(r, Xra.,Ur)dr] =2z;. Hence, P is of Py x(y, 2).
I1.g) With all technical preparation above, we eventually verify the inequality (6.28) for the situation {7>t} =Q.
Since the mapping W is a(fVWtU/Vﬁ(gt ))/O’( (D= ) 5(%(Dp))) —measurable by Step (IL.a.2), Theorem 4.1

renders that DY, := {welmﬁi:?((ﬁ(w)) oo} is O’( Ut (F, )) —measurable. As B [wa_(r,YrA.7UT)dr} <

¥
oo, there is a Ny € A5(2(Q)) such that [ f~ (r, Xpa. (@), Uy (@))dr < oo for any wENf.
Let e€(0,1). For any we A,NN ﬂﬁ; an analogy to (6.78), (6.31) and Theorem 3.1 imply that

. (W) o
Poe[RO)] = [ 10 Fon @) U @))dr+ Eg gagen [ 7))

R
(@) - _ . _
Z/t F(r, Xon (@), U (@) dr+1zepy ) }( (& (W)aXW/\‘(w)a(YF(W))(E)v(Zﬁ(i))(w))_g)‘F%l{EeD‘;c}-

_ _ _ 2l . . _ 1
V(t,X,;%Z)ZEﬁE[R(t)} ZEﬁ 1Z2R(t)+1z* (/ f(rv XT/\wUr)dT""]-(DXO)C [V(77 X’y/\wYP(’Y)?ZP(’Y))_E]—’—F:]-DXO)]
t

_ v — — 1
:Eplil{T<,Y}R(t)+1{TZ,Y}</t f( Xon U )dT‘-l-l(D(\)/o)c[V(’Y,X,YA.7YP(’}/),ZP(’7))—E]+€1D¥o):|

_ v — - _ .
ZEP{l{T<’y}R(t)+1{T>'Y}</t f(r, Xon, Ur)dr+1(py)-V (7, w\-,YP(V)aZp(V)))]_5+1P({T27}0D<‘>/o>~ (6.79)

: =t = P
To verify (6.28), we set Ip:=17_ o, R(t)+1 755, (f:f(r, Xon, Up)dr+V (7, X5

A
o If P({T >7}NDY,) =0, then V (¢,x,y, 2) > Eﬁ{l{T<7}ﬁ(t)‘*’1{T27} ( ft F(rs Xon, Up)drtV (3, Xan. 7?13(7)77?(7)))}
—e holds for any €€ (0,1). Letting e —0 gives (6.28).

o If P({T>7}NDY,) >0 and Eﬁ[(ftp)f] =00, then Ep ﬁ%] =-00<V(t,%,y,2), so (6.28) holds automatically.

o If P({T>7}NDY.) >0 and EF[(T%) "] <0, since Remark 3.2 (1) shows that Ep [—1{7<7}§(t)—1{727} (fjf (r, Xrn,
U d1(py )V (3, Xgn, V(7). Z5M) ) | = B L) To-1y, 77 £ (5, Kon Un)dr g sy 7(T, X7, ) | <
Eﬁ[(ftﬁ)f—&—ftmf’ (r, YM.,UT)dr] —cqx <00, we can deduce from (6.79) that

V(t,x,y,z)z—Eﬁ[(ftﬁ)_—i—/ I Xon U, )ar| +cﬂ—€+éﬁ({727}ﬂD}:@), vee(0,1).
t

Sending £ —0 yields V (¢, x,y, 2) =00, so (6.28) still holds. This completes the proof of Theorem 5.1. |

A Appendix

Lemma A.l. Let ty € [0,00). For i=1,2, let (Q;, Fi, P;) be a probability space and let B* = {Bi}se[o,oo) be an
R¥—valued continuous process on Q with By =0 such that B% := B.—Bj , s € [to,o0) is a Brownian motion on
(Q, Fi, P). Let @ : Q1+ Qp be a mapping such that B2(®(w)) = BL(w) for any (s,w) € [tg,0) X Q1, then (i)

“H(FB) =FB | Vs ety 00); (i1) DN ( ANy (FET)) C Mp (FBY); (iii) &~V (F25P2) C F2WP, Vs € [ty, 00] and
(v) Pro® L(A)=Py(A) for any Ac F2"-F2.
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The proof of Lemma A.1 is basic. We refer interested readers to the ArXiv version of [4] for it. We also recall
the following result from [4].

Lemma A.2. Let (Q, F, P) be a probability space and let t€[0,00). Let B={B}c[0,00) be an R—valued continuous

process on Q with By=0 such that BL:=Bs— By, s€[t,0) is a Brownian motion on (2, F, P).
(1) For any [t, o0]—valued FWt’PO—stopping time T on Qq, T(B) is an FBt’P—stopping time on .

(2) Let ®: Q— Qo be a mapping such that Wi(®(w)) = Bt(w) for any (s,w) € [t,00) x Q. For any [t,co]—valued
FBt’P—stoppz'ng time T on Q, there exists a [t, 0o]—valued FWt’PO—stoppmg time T on Qo such that T=7(®), P—a.s.

Lemma A.3. Let 1 = {its}sef0,00) be a U—valued, F"-Po

pH(A) :={wo €N p.(wo) € A} e FXVF0 for any Ae 2(J).

—predictable process on Qo with all paths in J. Then

Proof: Let ¢ € L°((0,00) x U;R). The FW-"o—predictability of p implies that vs(wo) := ¢ (s, ps(wo)), (s,wo) €
(0,00) x € is also an F":Po —predictable process and fooo I/Sds:foOo ©(8, pus)ds is thus FYV'-Fo —measurable. Then it
holds for any € € Z(R) that = ((I,) 7 (&)) ={wo €Qo: L, (1. (wo)) €€} ={wo € Qo fooo ©(s, ps(wo))ds €&} e FY10,
which together with Lemma 1.3 (1) shows that the sigma-field {ACJ: p=!(A) € FIV-"0} includes all generating sets
of #(J) and thus contains Z(J). O

Lemma A.4. For any t€[0,00) and (wo,u) € QoxJ, define #(wo) :=wo(t+5)—wo(t) and %t (u):=u(t+s), Vs€]0,00).
Then (t,wo)— # " (wo) is a continuous mapping from [0,00)xQqy to Qo and (t,u)— %*(u) is a continuous mapping
from [0,00)xJ to J.

Proof: 1) Let (¢,wp) €1]0,00) x Qg and let € (0,1). Set N:=[2—log,e] and T:=[t+1]. Since wp(s) is uniformly
continuous in s € [0, N+T] , there exists J = d(t,wo,¢€) € (0
51,82 €[0, N+T] with |sg—s1|<9.

For any (t',wp) €[0, 00) x Qo with [t'—t|Vpg, (wo,w() <J, we can deduce that

2TE+3 such that |wo(s1) —wo(s2)| < & for any

Py 7 wo), W (w)) = D (27" sup |wo(t+8) —wo(t) —wh(t'+5) +h ()] )

neN s€[0,n]
N 00
< (27"/\2 sup |w0(t+5)—w6(t'+5)|>+ Z 27"
n—1 s€[0,n] n=N 41
N N
< 22 (2 A sup ‘wo (t+s)— wo(t’+5)’)+2z (2 ™A sup |w0 (t'+5)—w (t'+5)|)—|—2_N
n=1 s€[0,n] n—1 s€[0,n]

N

<2N  sup |wo (s2) —wo(s1) ‘—}—22 (2 A sup |w0(s)—w6(s)|>+a/4
$1,82€[0,N+T] s€[0,n+T]

n=1
|82781|<5
N
§3€/4+222T(2_"_T/\ sup !wo(s)—w(’)(s)’)§3E/4+21+Tp90(w0,w6)<5.
n—1 s€[0,n+T]

So (t,wp) > #*(wp) is a continuous mapping from [0, 00) x Qg to Q.
2) We next discuss the continuity of mapping (,u)— % *(u) from [0,00) xJ to J.

Denote by T[0, co) the Euclidean topology on [0, 00). As Ty(J) is generated by the subbase {i} ' (O% (Mg, ;) }n,k,jeN’
it suffices to show that A, ;= {(t,u) € [0,00) xJ: Z'(u) € iil(Oi(mk,@))} belongs to the product topology
%[0, 00)®@%4(J) for any n, k, jeN.

1
Fix n,k, jeN and set ||¢; |00 := sup j(s,u)|. We pick (t,u) € Ay 1, and set ¢:= (1 "
fosllot= o fos(o,0) (0) € A e oyl

| 5T e 50;(s,u(t+s))ds— [ [y &5 (¢, w)yme(dt, du)’) > 0. By the uniform continuity of ¢;, there exists A € (0,¢)
such that |¢;(s1,u1)—¢;(s2,uz)| < ¢ for any (s1,u1), (s2,u2) € [0,00) x U with |s1—s2|Vpy(ur,uz) <A. We define
another function ¢} of 5;,([0, 00) xU) by ¢} (s,u):= ((1+(s—t)/)\)+/\l)gz5j((s—t)+, u), V(s,u)€0,00)xU. Clearly,
Ox(w):=i;"(Ox(is(u), ¢})) is a member of Ty(J).
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Let (t,u) € ((t=X)T,t+A) x Ox(u). Since A > | [77e™*[¢)(s,u(s)) — ¢} (s,0/(s))] ds| = ‘f(t N S(1+(s—
t)/A) [0;(0,u(s))—¢;(0,0(s))]ds+ [ e~* [qu(s—t,u(s))—qﬁj(s—t,u’(s))]ds‘, one has

Il =

/too e g (s—t,u(s))—d;(s—t,u'(s))] ds‘ <et

< epjllooe” VT AN < N[ oo+,

[ =) (00,800 =0, (0. o'

t—X)+

We can also estimate:

o I: —|f°o e [¢a(8 t(s)) = s ((s—1)",w'(s))]ds| e [ e[ (s—t,1/(s) = & ((s—t) ", (s))[ds <c.

o I:=| [ e (e —et )y ((s— )" (5))ds| < | o |e” —€t|€_t<||¢g||oo€”t/_tlt—t’|Se/\||¢j||oo~
—s oo g1t tvt’ ’_ ’
o Iy:=| [Tem g ()W ))ds—ftf ™t g (st 0 (s))ds| < [y € i (s)F, 0/ (5)[ds < |6 lloce” ~ [t

] <eMd;lloo-
Putting them together leads to that

‘/ ey (s, % (W))ds / /qzﬁ] (t, u)my(dt, du)‘

S‘/o e_5¢j(s,u’(t’—|—s))d5—/ooo 545, (5, u(t+5) dsH/ 54, (5, u(t+-5))ds— / /¢] (., w)mp (A, du)
2| [T e atomtatnas [ e o5t u(sas| 11 n—s0 (164100
y

t

4
< L+ [1/n—5e" (|| ]l00 +1)¢] <1/n.
i=1
This shows % () €i;' (01 (my, ¢;)) and thus (t,u)€ ((t—A\)F,t4+X1) xOx(u) C A, i ;. Then A, 4 ; is an open set of
%[0, 00)®T4(J), proving the lemma. O

Lemma A.5. Given t€[0,00), let p={pir }rejt,00) be a U—valued, FV' —predictable process on Qy. For any (s,w) €
[t,00)xCY, there exists a U—valued, FW" —predictable process { i “}TE (s.00) OT Qo such that & (W (@')) = p. (W (@),

V(r,w')els, oo)stw, whereWi ={w'eq: W W)= Wﬁ(w), Vrelt,s]}.

Proof: 1) Define A:= {DC [t,00)xQq: for any (s,0) € [t, 00) x {2 there exists D>¥ € 2" such that 1y, 77(z))ep) =
_ — 5T _ =

1{(T,W(w/))eps,w}’ V(r,w') s, 00)x W } Clearly, D € A with D% =0 for any (s,w) €[t,00) xQ. Given D €A, by

taking the complement of each D*%, we see that D¢ € A. Let {D, }nen CA. For any n €N and (s,w) € [t,00) X,

there exists D3% € 2" satisfying 1 ) for any (r,@’) €[s, 00) x W, ;. Then for any

_ =1 _ _
- i {eW@yen.} ~ H{oW@)epi®
(s,w) E[t,00) xQ, the FV" —predictable set ﬂNDf;‘" satisfies that
ne

1{(T7W(w))engND”} :gl{(rw(w'))e[)"} :gl{(r,W(U’))EDf{w} - 1{(7‘,W(U’))EHQND2’U} ’

Y (r,w')€[s, 00) XWZ - Namely, ﬂNDn €A. Hence, A is a sigma—field of [t, 00) x Q.
’ ne

2) We next demonstrate that A contains all generating sets of the FW' —predictable sigma—field 2% of [t, 00) xQy:
{t} x A for Ae}"twt and (g,00)x A for g€[t,c0)NQ, AequKt.

(2a) For any s € [t,00) and (r,@) € [s,00) x £, one has 1 =14—4 and 1

{W@)etyx0} {(T,W(w/))e(ioo)mo} -
1{—(t,00)}- They show that {t} x Qg € A with D*% = 1y, ({s} X Qo) + L1530, V(s,0) € [t,00) x Q and that
(t,00) x Qo €A with D*® =17,_43((s,00) X Qo)+ 1553 ([s,00) xQo), V (s,w) €[t, 00) x Q. Since FV =FV" ={0,90}
and since ) € A, we see that {t} x A€ A for any AeFV" and that (¢,00) x A€ for any AeFV".

(2b) Fix g€ (t,00)NQ and set Ag:={ACQ: (q,00)x A€ A}. Clearly, D € A,. Since it holds for any s € [t,00) and

(r,w') €[s,00)xQ that 1{(T,W(w'))e(q,oo)xﬂo} =1{,¢(g,0)}, We obtain that (g, 00)xQp €A with D*¥ =1,<41((g, 00)x
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Q) + 1 (ssqy ([5,00) X ), V(5,@) € [t,00) x Q. So Qo belongs to A,. Given A € Ay, since (¢,00) x A € A and
(g,0)xQp €A, we can deduce that (g, 00)x A°= ((q, o0) xQo)ﬁ((q, 00) xA)CEA and thus Acexq. If {An}neNEKq,
then (g, c0) X (nLEJN An> :nLeJN((q, 00) X An) €A, ie, nLEJNAn €A, Thus A, is a sigma-field of Q.

Let ¢’ €[t,q) and £ € B(R?). We show by three cases that (g, c0) x (W)~ HE)eA:

: = N e e T () - dY aatisfios _
(i) If (s,w) € [t,¢) x €, then &gz = {t—W (@) : Vi€ &} € B(RY) satisfies that 1{(T,W(U’))E(q,oo)X(W(;‘,)*l(f,')}

_ _, —t
Lre@ot 7y @)W @, = Hrw@nemexwy) e} T E)EE )XWz

.. _ —t . _ —t
(ii) If (s,w) € [¢';00) x (W)~ H(€), it holds for any (r,@') € [s,00) x W, ; that 1{(TW@,))E(Q o) (W11 (6) ) =
) k) q/

Lireoo L, @)eey = Hre oo L, @)eey = Hre(a,o0)} = {(, W (@))€ (g.00)x 20 }

(iii) If (s,w) € [¢’, 00) X (Wfl,)—l(é’C)7 it holds for any (r,w’) € [s,00) XWS@ that 1{(rW(w’))e(q X (W)} =
k) ) q/

1{r€(q700)}1{W;/(w)e£}:0:1{(T7W(wl))e®}'
So (g,00) x (Wg,)~H(€) € A with D*¥ =1, 5yepy o)xay ((¢,00) X (We) " (Es.))

1 =t ) Q 1 — Tt
{smelr.ax@i)-1©)} (@ OO)AX o) + {s@)el@o0xWi)-1(&)}
that f(}/Kt ZO'(W;/; q el q)) CA,4. Then A contains all generating sets of 2" and thus includes 2W".

}V)—F

+1 {(smeld ,00)x (Wh)~1(g°
([s,00) x ) for any (s,w) € [t,00) x Q. It follows

3) Let {/1s}se[t,o0) be a general U—valued, FWt—predictable process on Q.
Let n€N, we set al :=427", Vi€ {0,1,---,1+2"} and D} := {(r, wp) € [t,00) X Qp : J(ur(wo)) € [al, aﬁl)} €
PV C A, Vie{0,1,---,2"}. So for i=0,1,---,2" and (s,@) € [t,00) x Q, there exists D" € 2V satisfying

—, <t
1{<T,W(w/))eng} - 1{<r,w<w/>>eDf’E‘"}’ V() €ls 00)x W

2’”
Fix (s,@) € [t, 00)xQ. For any n €N, define an F"" —predictable process v5%" by 5% (wg) ::Z 1{(T wo)eﬁj’m"}an
i=1

70

V (r,wo) € [s,00) x Qo, where D" = D#¥" and Dsw"‘—Dsw"\( U Dsw") e 2V for i =2,---,2". Then

5% (wp) = lim v5% " (wp), Y (r,wp) €[s,00) x Qg is a [0, 1]—valued, FW" —predictable process and
n—oo

1% (wp) =71 (Zi’w(wo)) 1{gi’w(wo)e€} +u01{zi‘“(wo)¢6}’ Y (r,wp) €[s,00) X Qg

defines a U—valued, FW" —predictable process.

Let (r,w’)e[s,oo)xWiw and let n € N. For any ¢ =2,---,2", since 0 <1, __ i <
v {rw@)ep;=n(o Dy}

i—1 _ N\l — 1 = =

2= Y e W@yenpy@rap:@n ) == Y o w@yeppnppy =0 Weobtain e o pemnt =1 w@mepren} =
S,W0,m (T (7 _ 2" n__ n

1{(T,W(w'))eD?}' It follows that v&“ (W (@'))=>",_, 1{(TW(*'))6153’W‘}G¢ =y, 1{(T,W(w'))eD?}ai , VneN and

thus & (u,(W@'))) = nler;OT 2 1{(T,W(w'))eD;L} ! hm T ve@n(W(w')) =vs®(W(@')). Then pi®(W@')) =

e (W(@)), V(r,w’)e[s,oo)XW;w. O

[ V)
3

Lemma A.6. Given t € [0,00) and P € Y43( ) let W= {W }se[t be a d—dimensional Brownian motion with
respect to some filtration §.={Fs}se(t,00) on (U, B(Q), P). For any se [t,00), if € is a real-valued, §s—measurable

random variable that is P—integrable, then Es [5‘]—'&2’] = P[§|]:SW} , P—a.s.

Proof: Fix s€[t,00). Let t <t <---<t, <s=s9<s3 <---<sp <00 and let {&}1, U{&E}F_, C B(R?).
Set p,(z):=1, Yo €Re. For j=k,---,1 recursively, the Markov property of the Brownian motion JV shows that
there exists another Borel-measurable function ¢;_; : R%— R satisfying Es {IW; (5})1/@ (W%) |8’sj_1} =1j_4 (Wsj_l ),
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k—1
- EP{ [Tt Py g}
j=1

k—2
ﬂ :EP{lesf(f;)EP[lwl Pt ) [

Sk—1

P—a.s. Then we can deduce that
k k
EP[les_l(s ) 35} =Lp EP[les_l(s
j=1 7 j=1 7

k—1
=Ep[ [T ey e W)
]:1 J J

S

) s} 3

5|

k—2
:EP|: H]-W:l (gﬂ)wk—Q (Wsk—z) S:Sil = :EF|: 1W;1(gi)d)1 (Wsl) |8:3:| :1/)0 (Ws)’ ?_a's'
j=1 J J 1

5= Hl en® [ﬁl e

Dynkin’s Pi-Lambda Theorem, the Lambda system {A € FY . Bp[14]3:] =B, P-as

k
]-'SW measurable random variable 3 on 1} contains the Pi-system {( n W, (5 )) N ( n
j=

It follows that E+ [1 n 7?(5 ) . (5 )

8] = 115516, 0 (7). P-as. By

for some real—valued

-1
1WS], (£§)>:t§t1<~--<
tn <s=s50<51<--- <5, <00, {&} i U{E N, C%’(Rd)} and thus includes FV.

Let € be a real-valued, §s—measurable random variable that is P—integrable and let A € fg . There exists a
real—valued F, ;/V —measurable random variable § such that E*[l A |SS] =3, P—a.s. Since it holds for any As Efg/v C

Ss that (14, 14]=FE5 {IA FE= [1A|3' ” [lA [3] we see that E— [IA}FW] B:EF[1A|SS], P—a.s. Then the
tower property implies that
Ep[148] = Bp[EBp[14[5.] | = Bp[€Bp[14| 7] | = Bp | Bp €Bp11a1 72| 72Y] |
= Bp| Bp(1a| 7)) Bp (€| F2Y]| = Bp | Bp 14 Bp Q7 FYY] | = Bp[14E5 (€ 7))

As A runs through .7-'0?7 we obtain that Eﬁ[afg] :Eﬁ[afSWL P-as. 0
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