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Abstract

In this paper, we develop the theory of functional generation of portfolios in an equity
market of a changing dimension. By introducing dimensional jumps in the market, as well as
jumps in stock capitalization between the dimensional jumps, we construct different types of
self-financing stock portfolios (additive, multiplicative, and rank-based) in the most general
setting. Our study explains how a dimensional change caused by a listing or delisting event
of a stock and unexpected shocks in the market affect portfolio return. We also provide
empirical analyses of some classical portfolios, quantifying the impact of dimensional change
in relative portfolio performance with respect to the market.
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1 Introduction

In this paper, we study an equity market model of stochastic dimension. This is a continuation
of our previous work [2], where a complete version of the fundamental theorem of asset pricing
is developed in a stock market composed of a changing number of companies, with access to a
money market. On the other hand, this paper focuses solely on the stock market of fluctuating
dimension, without access to the money market, and develops the theory of functional generation
of portfolios, which only invest in stocks.

The theory of functional generation of portfolios, introduced by Fernholz [7] over 20 years
ago, is the central part of the stochastic portfolio theory [6] (see also [9] for a brief overview). It
explains how to construct a class of self-financing portfolios from a function depending on the
companies’ relative capitalization. It also derives an explicit decomposition of their log relative
return with respect to the entire stock market, as the sum of the log of generating function and
a drift process. Such decomposition enables us to find a condition on the portfolio-generating
function such that the drift process is increasing in time and the generated portfolio outperforms
the market over the long run. More recently, Karatzas and Ruf [16] introduced a new construc-
tion of portfolios which they call ‘additive’ generation, whereas Fernholz’s original construction
is called ‘multiplicative’. This new method provides a simpler formulation of conditions for
portfolios to outperform the market over appropriate time horizons.

All of these previous works assume a fixed number of stocks in the market. Our primary
purpose is to remove this assumption on the market dimension when constructing self-financing
portfolios. Concretely, we shall use a piecewise semimartingale of stochastic dimension, in-
troduced by Strong [27], to model the capitalization dynamics of the stocks; the moments of
dimensional changes are given as a sequence (73)7° of stopping times, and the stock capital-
ization process is assumed to be a semimartingale of some fixed dimension, during each ‘epoch’
of the market between those dimensional jumps. Using this concept, our equity market model
incorporates all types of listing/delisting events such as IPO, splits, mergers, bankruptcies, etc.

The main difficulty is then to make the (functionally-generated) portfolios self-financing
whenever the market undergoes a dimensional change at each moment 7;. In order to handle
this, we shall normalize our portfolio-generating function at the beginning moment 73 of each
epoch with a %, -measurable random variable, and construct portfolios in a recursive manner
for each epoch of the market. Now that we have two different methods of generating portfolios,
both additive and multiplicative normalizations will be applied accordingly. The introduction of
such normalizations yields an extra correction term in the decomposition of the relative return of
the generated portfolios with respect to the market, and this correction term precisely quantifies
the impact of dimensional change in the performance of the portfolios relative to the market.

The correction term arises at each dimensional change of the market, when a new stock
enters or an old stock exits the market, due to two factors; a jump in total market capitalization
and a jump in portfolio-generating function. The former is an uncontrollable factor, whereas the
latter can be controlled by choosing an appropriate generating function. For multiplicatively
generated portfolios, these two factors are nicely separated so that we can quantify the two factors
individually in portfolio returns with respect to the market. However, in the case of additively
generated portfolios, there is no such simple uncoupling between two correction factors.

Moreover, aforementioned portfolio returns measure the wealth of generated portfolios with
respect to the total market capitalization (total market index fund); at the time of dimensional
change, the latter quantity jumps, whereas the wealth of the portfolio remains the same, as it
is designed to be self-financing. Thus, we introduce a new notion of a ‘self-financing’ market



portfolio, which follows the total market index fund as a buy-and-hold strategy between dimen-
sional jumps, but remains self-financing at dimensional changes, as an alternative baseline to
compare the wealth of the functionally-generated portfolios. Especially, for multiplicatively gen-
erated portfolios, the relative wealth with respect to the new baseline only contains the second
factor of the correction term. Since this second factor will be shown to exactly offset the jump
in portfolio-generating function at the moments of dimensional change, we recover Fernholz’s
original decomposition of log relative wealth, as the sum of the log of generating function and
a drift term accumulated between two consecutive dimensional changes, with respect to the
self-financing market portfolio.

The second contribution of this paper is that our model relaxes the continuity assumption on
the capitalization process between dimensional jumps, as it is modeled as an RCLL semimartin-
gale of some fixed dimension between dimensional jumps. Allowing such left-discontinuities
can help explain not only how certain unexpected shocks from the market between dimensional
jumps affect the portfolios, but also how a delisting event of a stock influences the portfolio
returns (see Remark 2.2 for more details).

Therefore, this equity market model using piecewise RCLL semimartingales (see Defini-
tion 2.2 below) is the most general model considered so far in the realm of stochastic portfolio
theory. The method of constructing functionally generated portfolios developed in this paper
generalizes the previous theories in both continuous-time and discrete-time market models, and
it is also easily applicable to rank-based portfolio generation in the stock market of stochastic
dimension.

Lastly, we provide empirical analyses for classical examples of (multiplicatively generated)
portfolios in the stochastic portfolio theory. Using a stock dataset over 40 years on two U.S.
stock exchanges (NYSE and AMEX), we present the explicit decompositions (see Section 4.4) of
the relative wealth processes of functionally-generated portfolios. When we use the original total
market index as the baseline, the first uncontrollable correction factor significantly influences
the relative performance of the functionally-generated portfolios; when the self-financing market
portfolio is used as the baseline, we can observe that the drift process (so-called excess growth)
mainly contributes to the outperformance of generated portfolios over long-run, which retrieves
Fernholz’s original theory.

Preview: This paper is organized as follows. Section 2 reviews the concept of piecewise
semimartingale and describes our equity market model of stochastic dimension. Section 3 ex-
plores how to construct functionally generated portfolios under the market model. In Section 4,
we provide a discrete-time version of the results developed in previous sections and present em-
pirical analyses of classical portfolios using real stock data. Section 5 contains some concluding
remarks, and Appendix A illustrates how to construct rank-based portfolios.

2 Equity market of stochastic dimension

We provide in this section some preliminary concepts and definitions and describe an equity
market model of stochastic dimension, which we shall use throughout the paper.

2.1 Piecewise semimartingales

We first recall the notion of piecewise semimartingales of stochastic dimension, which was origi-
nally introduced by Strong [27]. The same definitions and notations were provided in Section 2
of our earlier paper [2], but we include them in this subsection for the completeness of the paper.



Let us denote a state space U := U;2 | R", equipped with the topology generated by the union
of the standard topologies of R”. Besides the additive identity element 0", the n-dimensional
vector of zeros, in R™ for each n € N, we define an additive identity element ©, a topologically
isolated point in U:=UuU {®} satisfying ©+z =2+ ©® =z and ©x = 2O = © for each x € .
We define the modified indicator

4t w) ::{1611% for (t,w) € A C[0,00) x Q, (2.1)

© otherwise,

which will be used for dissecting U-valued stochastic processes. We shall sometimes add the zero
vector 0™ with an appropriate dimension n € N to some expressions involving the modified
indicator 1, to make sure that the resulting expression has the correct dimension in U. We
denote 14 the usual indicator function for a set A.

We use the notations R, := [0, 00), [n] := {1,--- ,n} for every n € N, and B' the transpose
of a matrix B.

All relationships among random variables are understood to hold almost surely. On a fil-
tered probability space (2,.%, (%#)i>0,P) satisfying the usual conditions, let X be a U-valued
progressive process having paths with left and right limits at all times, and denote N := dim(X)
the dimension process of X. The following definition characterizes time instants of dimensional
jumps for a given U-valued process X, as a sequence of stopping times.

Definition 2.1 (Reset sequence). A sequence of stopping times (73)32, is called a reset sequence
for a progressive U-valued process X, if the following hold for P-a.e. w:

(1) 7o(w) =0, Th—1(w) < T(w) for all k € N, and limy_, o0 7 (w) = 00;
(2) N(t,w) = N(1g—1+,w) for every t € (1j—1(w), x(w)] and k € N;
(3) t — X (t,w) is right-continuous on (7;x_1(w), 7x(w)) for every k € N.

When X has a reset sequence (7)., we shall always consider the minimal one (73)32, in
the sense of the fewest resets by a given time:

70 := 0, 7, = 1nf{t > 71 | X (t+) # X(t)}, k€N,

and assume that the initial dimension is deterministic, i.e., dim(X(0)) = Ny € N.
In what follows, we fix such U-valued process X with the reset sequence (73)72,, and define
the dissections of 2 and X

Qb= {11 < o0, N(rp_1+) =n} C Q, V(k,n) € N?, (2.2)
XPm = (X — X (mho1)) Ly, cofn®e xarny + 07, V(k,n) € N2, (2.3)

Definition 2.2 (Piecewise semimartingale). A piecewise semimartingale X is a U-valued pro-
gressive process having paths with left and right limits at all times, and possessing a reset
sequence (7x)7%, such that X*™ is an R"-valued semimartingale for every (k,n) € N2,

A piecewise semimartingale X is called piecewise continuous (RCLL) semimartingale, if each
dissection X*" is an n-dimensional continuous (RCLL, i.e., right continuous with left limits,
respectively) semimartingale for every (k,n) € N2,

We note that the (k,n)-dissection X*" of X, defined in (2.3), will be used when X plays
the role of an integrator. For integrands, a different version of dissection is necessary.



Definition 2.3 (Stochastic integral). For a piecewise semimartingale X and its reset sequence
(T)7, let H be a U-valued predictable process satisfying dim(H) = dim(X). We dissect H in
the following manner

HEN = Hﬂ]]'rk—lﬁk]h(]&L x ko) T O(n)7 V(k,n) € N27 (2.4)
and define

Z(X) := {H predictable | dim(H) = dim(X) and H*™ is X*"integrable, V(k,n) € N%},
(2.5)

(X)) :={H € Z(X)|Hy = 0™},

For H € £(X), the stochastic integral H - X is defined as

H-X:=Hj Xo+ i i(HUw) CXPY = H X + i i / Zn: qHEMaxkn, (2.6)
=1

k=1n=1 k=1n=1

Note that each dissection H®*"™ of (2.4) is predictable, since the process H and the (k,n)-
dissection set J7x_1,7%] N (R4 x QF") are predictable.

The stochastic integral H - X in (2.6) is an R-valued semimartingale, and it generalizes the
usual R™-valued semimartingale stochastic integration since any sequence 7 1 oo of stopping
times is a reset sequence. We also note that £ (X) is a vector space, i.e., H- X+G-X = (H+G)-X
holds for H,G € Z(X).

2.2 Capitalization and market weight processes

With the concept of piecewise semimartingale, we now describe a model of an equity market
having a finite, but unbounded, stochastic number of investable assets.

We first define a U-valued capitalization process S allowing left-discontinuities between two
consecutive dimensional jumps. In order to handle discontinuities, we shall denote AX(t) :=
X(t) — X(t—) and X_(t) := X(¢t—) the jump and the left-continuous process of a RCLL semi-
martingale X at time t, respectively, for any ¢ > 0.

Definition 2.4 (Capitalization process). A U-valued piecewise RCLL semimartingale S with
reset sequence (7)72  is called a capitalization process, if every n component of S is nonnegative,
but at least one component is strictly positive on each dissection set J7x_1, 7] N (R4 x QF7) for
every (k,n) € N2.

The dimension process N = dim(S) of S represents the number of companies present in the
market, and the n components of S on the (k,n)-dissection set, i.e., [7x_1, 7] N (Ry x Q&™)
represent the capitalizations of the n extant companies, for every (k,n) € N2. For simplicity
of the model, we assume without loss of generality that every stock has a single outstanding
share, thus the capitalization of a stock is equal to its price. By definition, this model allows
individual stock prices to hit zero, but the market’s total capitalization should always remain
strictly positive.

Ezample 2.1. This model, which adopts a piecewise RCLL semimartingale of variable dimension
as a capitalization process, describes a more realistic equity market in the most flexible way. It
includes several other models depicting a market with a changing number of assets. We present
here a few such examples.



(i) The entrance of a new company and the exit of an existing company are modeled by a
birth-death process; for each n € N, whenever the dimension of the market is n, a new
company enters the market according to the exponential arrival rate of A,,, and one of the
companies exits the market with the exponential departure rate of u,. The dimension
process N = dim(S) is then the birth-death process with birth and death rates (A,)nen
and (ftn)nen, respectively. The reset sequence (73);2, describes the time of either birth or
death of a company, and the size of each dimension change is always one, i.e., |N(74_1+) —
N(1i—1)| =1 for each k € N.

(ii) The diverse market model introduced in [17] studies a fluctuating number of companies
by describing a certain form of splits and mergers. When the market weight (relative
capitalization with respect to total market capitalization) of the largest company exceeds
a fixed threshold value between 0 and 1, the company is split into two companies of
random size, modeling a regulatory breakup. On the other hand, any two of the existent
companies excluding the largest one, can merge at random times, whenever the exponential
clock rings. The reset sequence (73)32, then depicts the time of either split of the largest
company or merger between two small companies, and the size of each dimension change
is again equal to one at each stopping time 7.

(iii) We can even consider a combination of (i) and (ii) above, i.e., a stock market allowing all
kinds of events including the entrance, exit, splits, and mergers of companies, whenever
each stopping time 75, describes such dimensional change.

For a given capitalization process S in Definition 2.4, we define another U-valued process
whose components represent the relative capitalizations of individual stocks.

Definition 2.5 (Market weight). We call a U-valued process p the market weight process, if it
is defined via dissection

M() = M(O)()ﬂ{O}XQ + Z Z M(km)(')ﬂ]]Tk_l,Tk]]ﬁ(R+ x kY,

k=1n=1

where the components of (%) and p(*™ for (k,n) € N? are given by

Si(0 . ,
MEO)(t) = X:JVO(S,)(())]I{O}XQ(t)+07 tZOa Z:17"' 7N07
j=1%J
k,n Sz t 5 .
/,LE )(t) = E,,?I(S?j(t)]l]]Tk_thﬂm(R+XQk,n)(t) + O, t Z 0, 1= 1, e, N (27)
‘7:

Note that the (k,n)-dissection p®™ of the market weight process ju, in the sense of (2.3), is

different from p(*™) of (2.7) for each (k,n) € N2. Due to its construction, the quantity ugk’n) (t)
is equal to zero when t > 73, and has an important property

S ) =1 28)
=1

on the dissection set |71, 7] N (R4 x QF™); whereas the dissection ,uf’n(t) of u is not necessarily
equal to zero when t > 73, and does not have such property. However, since each p*" is a
RCLL semimartingale, u is a U-valued piecewise RCLL semimartingale (Definition 2.2), thus



the dissection p®™ shall play the role of integrators. When u does not appear as integrators, we
shall use p*™) instead of 1*", in order to exploit the property (2.8). We finally note that on
each (k,n)-dissection set, their increments coincide, i.e.,

A" (1) = dp* (@), =1, (2.9)

i

and thus also from (2.8)

n
> dp(t) = 0. (2.10)
i=1

Remark 2.1. Though we shall use two different dissections u*™ (for integrands) and p®™ (for
integrators) of the market weight process u, every integral in this paper having du®" as an
integrator (see, e.g. (2.11) and (3.4)) will only be considered on the (k, n)-dissection set, therefore
the integrator du®" can be replaced by du®™, thanks to (2.9). However, we shall keep using
dp®™ as the integrator in the following to maintain the same notation as in our earlier paper [2].

Ezample 2.2. Figure 1 shows an example of a trajectory of U-valued (daily) capitalization process
S and corresponding market weight process p during 10 years (2515 trading days). For this
trajectory, the reset sequence is (71, 72,73) = (501, 753,1508) and ‘active’ dissections of 2 are
Q2,024 %3 and Q%% Figure 1(c) shows a trajectory of the dissection p(*3) defined in (2.7),
whereas Figure 1(d) illustrates a trajectory of the other dissection 33,

im: 1 w N\\“V
e " s

Prearint
0

1000 1500 2000 2500 0 500 1000 1500 2000 2500
Days Days

0 501

(a) Market capitalization S (in 1 Million $) (b) Market weight p

-
02-
06" 0.1~

a
W&

o 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Days Days

(e) ¥ ()
Figure 1: A trajectory of S, u, and dissections of u
Though the trajectories shown in Figure 1 are continuous between the dimensional changes,

we emphasize here that the capitalization process S and the market weight process u, defined
in Definitions 2.4 and 2.5, have RCLL paths between two consecutive dimensional jumps. Any



left-discontinuity between the dimensional jumps models an unexpected change in the price
of an individual stock (e.g. a company announces/distributes dividends, etc), and such left-
discontinuity of .S does affect the stochastic integration H - S, which represents the capital gains
of holding H shares in the stocks.

On the other hand, the dimensional jumps at the stopping times 79, 71, - - - of .S are mandated
to occur only as right-discontinuities such that the dimensional jumps do not affect the integral
H - S for any integrand H € Z(5). The stochastic integration H - S just stops at each jump and
resumes a new piece just afterward. Since each piece S¥" has RCLL paths, the integral H - S
remains right-continuous at all times.

This shows how different types of jumps (between and at the stopping times (73)32 ) of the
capitalization process S are interpreted in the setting of piecewise RCLL semimartingale. We
refer to Section 1.1.2 and Remark 3.1 of [27] for more details on the aforementioned discontinuity
properties of the piecewise RCLL process S and the integration H -.S with their financial inter-
pretation. The market weight process p and the stochastic integration ¥ - u for some ¥ € Z(u)
also have the same discontinuity properties as S and H - S.

We conclude this subsection with a remark providing a more detailed description of a delisting
event of stock from the market (e.g. due to bankruptcy).

Remark 2.2 (Delisting event). If the i-th stock leaves the (k, n)-dissected market at the stopping
time 73, there are two possible scenarios: (i) the component S; is left-continuous at the moment
i, of delisting, i.e., Si(1x—) = Si(7x); (ii) S; has a left-discontinuity at 7, i.e., S;(Tx—) # Si(7%).
In case (i), since the dissection Sf ™ remains continuous (both left- and right-continuous) at 7,
the exit of the i-th company does not affect H - S at 7%, which means the investor doesn’t lose
any money from the exit of the i-th company. In other words, we have a chance to liquidate
the shares holding in the i-th stock at the final moment of its death. However, in case (ii),
the left jump S;(7%) — Si(7,—) at 7 does affect the integral H - S such that we may lose some
of (all) the money holding in the i-th stock from its delisting, if the final capitalization S;(7y) is
close (equal, respectively) to zero.

2.3 Trading strategies and portfolios

Recalling the market weight process p of Definition 2.5 and the class Z(u) of the integrands
for p in (2.5), we present the following notion of trading strategy. Here and in what follows,
we shall use the notation for stochastic integral which starts from 7,_;+ of any p*"-integrable
n-dimensional process 9%

n

t
L (9 (2) = / +Z19£k’n)(s) b (s) (2.11)
Te—1T ;=1

for every t > 7,1 and (k,n) € N2.

Definition 2.6 (Trading strategy). A U-valued process ¥ is called trading strategy, if 9 € £ (),
and ¥ satisfies the following two self-financing conditions on each dissection set [75—1, 7] N (R4 x
QFm) for every (k,n) € N2:

Zw> Zﬂ N ) + L 0@, (212)



and

n Nr_y

n h=1,Nr,
S 0¢ D ) Sima) = 3 0 ) Sin), (2.13)
i=1 =1

where 9(0:-No) = 9(0),

Here, the quantity ﬁgk’n) (t) represents the number of shares held in the i-th stock at time ¢ in
the (k, n)-dissected market. The self-financing property means that there should be neither with-
drawals nor injections of capital at all times; gains are reinvested, and losses are absorbed. It is
straightforward to notice such property from the second identity (2.13); the absolute wealth (not
relative wealth with respect to the market) of ¥ is maintained, at the moment of dimensional
change 7;_1, on every (k,n)-dissection set.

On the other hand, for the first self-financing condition (2.12), we shall need a more detailed
explanation. We first denote the left-hand side of (2.12)

n n (k,n) .
yoka() = 390 (1)) (1) = Zﬁi?fl 552)5 du (2.14)

where the last identity follows from the definition (2.7). Thus, V%" represents the ratio of
the wealth of the trading strategy ¢ to the total capitalization of the (k,n)-dissected market.
This shows the self-financing property of 9*™) with respect to the relative capitalization p on
the interval (7;_1,¢], but it also implies the self-financing property of 9®En) with respect to
the capitalization vector S on the same interval, since the self-financing property is numéraire
independent (see Lemma 2.9 of [11]).

Using the definition (2.7), we can combine the two self-financing conditions (2.12) and (2.13)
by

NTk 1S

n S Th—1 T ZJ (k1) n
v = (3 0l ) (B g ) e

NTk 1 T
v ) (B O ot 219

on the (k,n)-dissection set. Thanks to the usual condition on the filtration, we note that the
first term on the right-hand side is .%,, _,+ = %, _,-measurable, thus also .#;-measurable, since
t > T,—1 on the (k,n)-dissection set (see Problem 2.22 of [18]).

Collecting the relative wealth on each dissection set, we shall denote

Zﬂ )1{0} Q_’_szﬂknlﬂﬂc 1] N(R4 xQkm)

k=1n=1
_Zﬁ 'uz 1{0}X9+ZZ[Zﬁkn i }1]]7/9 LTRIN(R 4 xQF7) (2.16)
k=1n=1 1i=1

the relative wealth process of ¥ with respect to the (undissected) market.
We conclude this subsection by defining a portfolio 7 = 7 corresponding to a trading

strategy ¥ via dissection

m =7l )1{0}X9+ZZW ﬂ]]Tk LTEINR4 xQFm))
k=1n=1

9



where for each ¢ > 0

70 (t) := ﬂEO)(O)Mg())(O) t=1,---, Ny
P = o 0 0 y ) ) )
N OM()
(k,n) (kmn) ,

n k,n k.n )
S 98 @)l ()
(kn)

The component 7, " (t) is interpreted as the proportion of wealth invested in the i-th stock
among n stocks at time t—, on the (k,n)-dissection set. Every trading strategy 9 we construct

in the later sections will have left-continuous components ﬁgk’"), ie., ﬁgk’n) (t) = ﬁgk’n) (t—) for
i=1,---,n, on every (k,n)-dissection set. Thus, all components ng’n) (t) of the corresponding
portfolio ¥ are also left-continuous on every dissection set.

3 Functional generation of portfolios

Under the stock market model of stochastic dimension described in Section 2, we develop the
theory of functional generation of portfolios in this section. After defining the measurable family
of generating functions, we describe how to construct additively and multiplicatively generated
portfolios from this family. We then decompose their (log-) relative wealth process with respect
to the market into 3 terms; the generating function, the excess growth, and the correction term
arising due to dimensional jumps.

3.1 Measurable family of generating functions

Our goal is to construct trading strategies (and corresponding portfolios) from a function of
the market weight process p. Since the process p has changing dimensions on each epoch, we
shall need a family of generating functions with different dimensions of domains. When X is
a U-valued semimartingale with a reset sequence (73)32,,, we introduce the following notion of
piecewise function for X. For notational simplicity, we shall use the two notations X; = X(¢)
interchangeably.

Definition 3.1 (Piecewise function). We call f : U — R a piecewise function of X, if there
exists a family of functions {f°} U {fk’n}(k,n)eNZ such that f0: RN — R, f&" : R® = R, and
the function values are defined by

f(Xo) == f(Xo), (3.1)
f(Xy) := f5"(X;) on each dissection set J7,_1, 7] N (Ry x Q") for (k,n) € N2, ¢t > 0.
A piecewise function f of X is said to be £-times continuously differentiable, if every element
of the family is /-times continuously differentiable, i.e., f0 € C/(RM), fkm ¢ C*(R™) for every

(k,n) € N2. We denote C*(U) the collection of /-times continuously differentiable piecewise
functions.

Given a family of functions 0 : RM — R and {f*" : R® — R} (n)en2, we can construct a
piecewise function f of X:

F(Xe) = (X))o + Z Z oM X)) mdn® s x9km) t>0. (3.2)
k=1n=1

10



Moreover, for any f € C*(U), we consider the vectors of partial derivatives of the family having
different dimensions

V= (0ifieny, V" = (0if)ien, Y (k,n) € N2, (3.3)

and call the U-valued process V f(X), defined by

V(X)) = VOX0) opxa + > D V(X)L oo, xomm
k=1n=1

the gradient of f(X). It is straightforward to check from (2.4) that dissection of the process
Vf(X) is given by the standard n-dimensional gradient of f*" in (3.3), i.e., (Vf(X))(k’n) =
V k(X)) for all (k,n) € N2, and Vf(X) € Z(X).

From each piece G*™ : [0,1]" — R of a piecewise function G of i, we shall generate the
corresponding piece, or the dissection 9*™) of trading strategy 9 in a self-financing way. Then,
the initial value ﬁ(k ") (14_1+) on the interval |7,_1, 7] should depend on the right-hand side of
(2.13), which is .%;, _,-measurable. This implies that the generating function G*™ should also
depend on an .%;,  -measurable random variable, in other words, G*™ should be determined at
the moment 77 of each dimensional change to satisfy the second self-financing identity (2.13).
To this end, we introduce the following definition.

Definition 3.2 (Measurable modifications). For every (k,n) € N? and any function f : R" — R,
we call f Q' x R™ = R an additive %,,_, -measurable modification of f, if f can be represented
as f vk 4 f for some .%,, _,-measurable random variable 4*. Similarly, we call f: OxR" =R
a multiplicative F,,__, -measurable modification of f, if fcan be represented as f: oF f for some
Fr,._,-measurable random variable 5k,

Moreover, given a family & := {G°}U{G""};, ,,)enz of functions corresponding to a piecewise
function G of p, piecewise random function G (G) of p is called a additive (multiplicative)
measurable modification of G, if the corresponding collection & := {G°} U {GFn }knyenz of
G (9 = {G°} U {GF"} (k;nyenz Of G) satisfies that GO = GO (G° = G°) and each G*" (GFn)
is an additive (multiplicative, respectively) .Z.

. ,-measurable modification of G¥" for every
(k,n) € N2.

With this notion, we shall handle the second self-financing condition (2.13) by constructing
trading strategies in a recursive manner. Given a family & := {G°} U {G""}  ,yene of gener-
ating functions and a dissection YHF=LNT 1) of trading strategy ¢} on the previous ‘epoch’ of
the market, a %, -measurable modification (either additive or multiplicative) G¥™ of GF"
satisfying (2.13), is determined at the moment 75_1, and G ghall be used to generate the next

piece 9" of ¥ on each (k,n)-dissection set, for k = 1,2, - - -

3.2 Functionally generated portfolios

In this subsection, we shall construct two types of functionally generated portfolios from a
piecewise generating function G' € C?(U) with its family {G°} U{Gk’”}(kyn)eNz, using the market
weight process u of Definition 2.5 as its input. Here and in what follows, we assume without loss
of generality that GY( uol = 1 holds, after some normalization (we can consider .%j-measurable
modification satisfying G°(u) = 1 and rename GO to GY).

11



3.2.1 Additive generation

Since we have VG(u—) € Z(u), standard n-dimensional 1t6’s formula with jumps yields

G ) = G 12) + Ty (V1)) 0 (3.4)
/ S 02,GR (g ) dlaE Y5 4 S dpn (e s ),
Te—1t j= 1] 1 Tp—1<s<t
kmn,c .

on the (k,n)-dissection set, where p;”" is the continuous part of ,u,f’”, and dp (z,y) denotes
the Bregman divergence associated with G for points z,y € A, = {(z1, - ,z,) € [0,1]"

dim i =1} .
dpc(z,y) = G(x) - Gly) = >_ %iGy)(wi — vi). (3.5)
i=1

Let us define
PORn(f) = 0 + [G’“"(um_ﬁ) GEM ) + Ly (vak’"m_))(tﬂ B e e (3.6)

the Gamma process of G on each (k,n)-dissection set. From (3.4), each (k,n)-Gamma process
admits a different formulation

roRn () = —— / a%ij’"( [ i sy = Y dp e (pe ps)  (3.7)
Tk— 1+’L] 1

Te_1<s<t

on the (k, n)-dissection set, and it is of finite variation. In particular, if G¥"™ is a concave function,
then the Bregman divergence is nonpositive, i.e., dp ¢(z,y) < 0 for every x,y € A, (by Jensen’s
inequality), thus the (k,n)-Gamma process T'¢*"(.) is nondecreasing on the (k,n)-dissection
set.

We could now take the integrand 9™ := VG*"(u_) of the stochastic integral in (3.4) as
a candidate for a trading strategy, but we need to make it self-financing. In this effort, we start

from defining a dissection go(o) - (gogo), ... ,90583) of a trading strategy ¢ at time t =79 =0
79(0)(-) = 0No) 4 VGO(,U.)j{()}XQ, (3.8)
o) =04 (070) = 09 iggyeq. i=1,- N, (3.9)

where CGV0 .= vazol ﬁgo)(O)ui(O) — G%pp) is called a defect of balance at time 0 (see Defini-
tion 3.3 below). In order to construct the next dissections go(k’") satisfying the first self-financing
condition (2.12) on the interval |7;_1, 7], recursively in k = 1,2,---, we shall subtract the so-
called defect of self-financibility QU**™(t) from the ‘basis’ 9™ (¢) (see the definition (3.15)
below), following the work of [16]. Here, the basis is defined as

ﬁ(k7n) (t) = O(n) + VGkJL(/‘Lt*)]Al]]Tk,l,Tkﬂm(R+XQk’n)7 (310)
and the defect of self-financibility is given by
Q1) =0 + [Z I OuE () = Y0 (o) @)
i=1

- I;,Lk’” (19(k7n))(t_):| ﬂ]]Tk_l,Tk]]ﬂ(RJrXQk’”)'
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Note that we have Q#*"(r,_;+) = 0 by definition. We also consider an additive measurable
modification of G:

GV =G0 GRn=AGekn L Ghn o Y (kn) e N2, (3.12)

where yG9F" is a Z,

,_,-measurable random variable

NTIc— 1

. S'(Tk_l)
Gk . yyek=LNn o Y. 23*1 J — GF (1, . 3.13
v ( k 1) Z?:l Sj(T/c—1+) (:U’ k—1+) ( )

We next define a .%,, . -measurable random variable C%*5" and an n-dimensional vector

Tk—1

process go(k’") by

CODEn = N9 ()i (1) = GEM (a1, (3.14)
i=1

k,n k.n n el n\ 42 .
(1) = 0+ (00 (1) = QPEn () — COMEMN Ty g iy =1, yme (3.15)

We emphasize again that o*™) is defined in a recursive manner for k = 1,2, - - - ; from the initial

configuration (3.8) and (3.9), y¥¥*" of (3.13) depends on the last value cp(k_LN*k—l)(Tk._l) of the
previous epoch, thus, ¢(*™ defined in (3.15), also depends on the quantity cp(k_l’NTk—l)(Tk,l).

Finally, we construct a U-valued process ¢ collecting the dissections

o() = OOV igoyea + DD eF™ ()i, | n@. xamn). (3.16)
k=1n=1

We show that this process ¢ is indeed a trading strategy, and it is called an additively generated
trading strategy from the piecewise generating function G € C?(U).

Proposition 3.1 (Additive generation). The process ¢ in (3.16) is a trading strategy and its
relative wealth process V¥ is given by

V‘p(t) = é(,ut) + Z Z FG’k’n(t) ﬂﬂTk_l,rk]]ﬂ(R+kav")> t>0. (3.17)
k=1n=1

Proof. Since VG*™(y_) is u*"-integrable and the (k,n)-dissection set J7_1, 7] N (R4 x Q") is
predictable, 95" is also predictable for every (k,n) € N2. Moreover, QVHkm is also predictable
and pF"-integrable (Lemma 4.13 of [26]) for every (k,n) € N2. We also have the predictability

of #;, _,-measurable random variable CEPkm on the dissection set. This shows that ¢ € £ (p).
Next, we check that ¢ satisfies the combined self-financing identity (2.15) for an arbitrary
pair (k,n) € N2. We recall the properties (2.8) - (2.10), along with the identity

izn;ﬂgk’n)(') (Aﬂgk,n)(‘)) — (Alﬂk,n (ﬁ(kv”))) ), (3.18)
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from Theorem II.13 of [22], to derive the series of identities on the (k,n)-dissection set:

n n

ek =3 el 0wt 0 = 300 @t (1) - Ui () — ootk

=1 =1
=30 (Ap ) + GE iy 1) + L ) (1)
=1

= ék’n(:uﬂc—ﬁ-) + Iuk’" (ﬁ(km))(t) = ékm(uﬂc—ﬁ-) + I,uk’" (@(k’n))(t) (3'19)
Nrj_y

- > =1 Si(Th-1)
= Yok bNn s (g =t + L (0P ().
(Te—1) Zj:1 S (T t) ik (p"™)(t)

Thus, the self-financing condition (2.15) for ¢ holds, and ¢ is indeed a trading strategy.
For the relative wealth process of ¢, the identities (3.19) and (3.6) yield

VORR(E) = GO )+ L (950 (1) = 79PN 4 RO ) 4 T (VG () (1)
— ,YG,Lp,k,n + Gk’n(ﬂt) + PG,k,n(t) (320)

on each (k,n)-dissection set. Plugging the last equality into (2.16), together with (3.2), yields the
result (3.17) for ¢ > 0; when t = 0, it is easy to check the identity V¥ (0) = G%(ug) = G°(po). O

Proposition 3.1 generalizes the earlier construction introduced in [16] for each piece of the
dissected market of a fixed dimension and patches these pieces seamlessly in the sense that the
second self-financing identity (2.13) is satisfied by introducing a modified version of generating
function at the beginning of each piece.

When computing the relative wealth V¥(t) of ¢ in Proposition 3.1, we need to use the
identity (3.17) in a recursive manner, since G*"(u;) depends on the quantity & ##m which in
turn depends on the last relative wealth yek=Lin (1x—1) of the previous epoch. This is due
to the recursive construction of the trading strategy ¢, however, the following result provides
an alternative representation of the relative wealth process V¥(t) for any given ¢ > 0.

In order to simplify some of the notations in the following, we denote

Nrp_
ko >t Si(Te-1) (3.21)
C 2 ST t) '

the ratio of total capitalization at 7,1 to total capitalization right afterward for the (k,n)-
dissection set, and write their products from the i-th epoch to the k-th epoch for any 1 <i < k
by

k N'rifl kai1
i— S Ti— . S (11._
Ufﬁf. — l [Ue,Nle _ 2%1 (Tie1) o Z]r;l (T 1). (3.22)
IR S Si(ricat) > i1 Sj(Th-1+)

Theorem 3.1 (Additive generation). For an arbitrary pair (t,w) with t > 0, belonging to a
(k,n)-dissection set for (k,n) € N2, the relative wealth V?(t) of the additively generated trading
strategy @ in Proposition 3.1 can be decomposed as the sum of the generating function, the excess
growth (EG), and the correction term (C) which arises from dimensional jumps up to time t:

Ve(t) = GM" () + EG(t) + C (), where (3.23)
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k—1

BG(t) = Y TN (r)opy y + T4 (), (3.24)
(=1
k
_1,N, . k,n
C(t) :== Z [UE,NTZGZ LNz, (ttry_,) — GEN7 (piry,4) o”l Nepyy? (3.25)
(=1

. > k,TL J—
with the notation UkH,NTkH =1.

Proof. For the given pair (¢,w) (omitting w in the following notations), we repeatedly apply
(3.20) and (3.13) to derive

V‘P(t) — V%k,n(t) _ ,YG#PJC,n + Gk,n(ut) + FG,k,n(t)
= V§07k—1,Nrk_1 (Tk71)0'k’n _ ka(ﬂm_ﬁ-) + Gk,n(ut) + FG,k,n(t)
= [VG’“"”“‘LNM + GFE e (g ) 4 TR (r;H)} ghm

- Gk’n(uﬁcf1+> + kan(ﬂt) + FG,k,n(t)

k—1
k7 T, T ’ ’
VSD’O’NO(O)ULJ@TI + [GENE( ) — GhoN ¢ (Hry_ 1+)}0'z+1 Nrpy _Gkn(/lrk,1+) +Gkn(ut)

(=1

k—1

G,,N, Gk,

+ F Ne TE O—Z—‘—l N7—€+1 F kn(t)

(=1

The last two terms are EG(t) of (3.24); using the identity V%90 (0) = G°(u0) and rearranging
the terms inside the biggest square brackets yield the result (3.23). O

3.2.2 Multiplicative generation

In what follows, we also fix a piecewise generating function G' in C?(U), but with an extra
condition that the reciprocal 1/G*™(u;) is locally bounded on every (k,n)-dissection set. Re-
calling the notations in Section 3.2.1, we shall recursively define two U-valued process n and 1
as follows. At time 79 = 0, let us set

n© = (© = 0 (3.26)

as in (3.9). For each k = 1,2, --- , consider a .%,, _,-measurable random variable §&¥-F"

Ny,
§G ik VORI () o Si(meen)

= - =n , (3.27)
Gk,n(#7k71+) Zj:l Sj(Tk-1+)
and a multiplicative measurable modification Gof G
G'=G°,  Ghn=sGvkngkr (K n) e N2 (3.28)

Let us recall from (3.6) the Gamma process T'®*"™ on the (k,n)-dissection set and define

n ! 1 n “
EGkn () .= 0+ 3( / Ly dr &k (5)> Iy, nn@®xen)y, >0, (3.29)
Tk—1 S
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where & (L(t)) denotes the stochastic exponential of a finite variation process L with L(7x_1+) =
0 defined on the (k,n)-dissection set:

E(L(t) =exp (L) ] (1+AL(3)) exp(—AL(s)) (3.30)

Tr—1<s<t

such that d&(L)(t) = &(L)(t—)dL(t) holds. Thanks to the assumption on G that the reciprocal
1/G*" (1) is locally bounded, the process E%*7(t) is of finite variation on the (k,n)-dissection
set. We continue to define for K =1,2,---, and any n € N

n®m (t) = 0 4 v kn EOEN ()T GEM (1)1}, | e, xarm)
=0 4 ECR () VG (), | dn(®e xamny- (331)

Furthermore, a .%;,  -measurable random variable Cé’”’kﬂ and the defect of self-financibility

QmHE™ for i are defined as before in (3.11), (3.14), and an n-dimensional vector process k)
is given by

k,n k,n n el n\ 4 .
wf )() =0+ (nz( )() - 62777%’67 () - CGm’k, )1]]7;@_1,77@]]0(]R+><Qk’")7 i=1---,n (332)

Finally, we construct a U-valued process ¥ collecting the dissections

¥ =D gy0 + Z Z PEML @, x0km)- (3.33)

k=1n=1
The next result shows that 1) is indeed a trading strategy and we call it multiplicatively generated
from the generating function G.

Proposition 3.2 (Multiplicative generation). For a piecewise function G € C?(U) of p such
that the reciprocal 1/G*™ is locally bounded for every (k,n) € N2, the process v in (3.33) is a
trading strategy and its relative wealth process V¥ is given by

VY(t) = GOno)ljopwa + Y D G () EFFM(0)1),, | on, xomn- (3.34)
k=1n=1

Proof. As in the proof of Proposition 3.1, it is straightforward to check the predictability and
pFm-integrability of n(k’") and 1/1(’“’"), thanks to the local boundedness assumption on 1/ G*™ for
each (k,n) € N2. This shows ¢ € .Z(u). Moreover, we can prove in the same manner that v
satisfies the self-financing condition (2.15) and conclude that v is a trading strategy.

We fix an arbitrary pair (k,n) € N? and note that the process E©¥7(.) is of finite variation
and the identity EGF" () = EGF"(.) holds. By applying the product rule (Theorem I1.4.49 of
[13]) and recalling the definition (3.6), we derive on each (k,n)-dissection set, i.e., V(t,w) €
]]Tk—lﬂ'k]] N (R4 x Qk’n):

CH" () B (1) — BP(pry ) EOF" (1)
t

t
:/ EG,k,n(S_)de,n(MS)_‘_/ Gk’n(ﬂs) dEG,k,n(S)
Tk—1+ Th—1+
t ~
- / +EG’k’”(s—)<de’”(,us) +drdEn(s))
Tk—1
t n
= [ R Y G ) dul(6) = L)) (339
Tk—1 i=1

= Ln(@EM)(t) = VRN () — VIR (7 1),
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Here, the second-last equality is from the property (2.10), and the last identity follows from the
self-financing condition (2.12) for ¥*™), Furthermore, we derive from Q"**"(7,_;4) = 0 and
EGFn(rp_14) =1 that

v kn (Tp_1+ Zm n) (Tho1+H) ( ; )(Tk—1+) _ Gk _ @k,n(MTk71+)EG,k,n(Tkil_i_)_

(3.36)
From these derivations, we conclude that

veRn() =GR (u)EGR () (3.37)

on the (k,n)-dissection set. When ¢ = 0, it is trivial to check V¥(0) = G°(up), and the result
(3.34) follows. O

As in Theorem 3.1, we now derive the decomposition of the log-relative wealth V¥ (t) for any
given t > 0.

Theorem 3.2 (Multiplicative generation). For an arbitrary pair (t,w) with t > 0, belonging
to a (k,n)-dissection set for (k,n) € N2, the log relative wealth log V¥ (t) of the multiplicatively
generated trading strategy i in Proposition 3.2 can be decomposed as the sum of the generating
function, the excess growth (EG), and the correction term (C) which arises from dimensional
Jumps up to time t:

log V¥(t) = log GF™ (1) + EG(t) + C(t),  where (3.38)
-1 T c
cv:=>| [ LSO < <1+MZ’VE7NV(S)> (3.39)
¢=1 LVt Goe (as) Tp—1<s<Ty G (es)
t dFG k.n, c AFG’k’n(S)
R S e el
Tr—1+ GR () z<:s<t G (ps)
k E’NTZ G€_17N74—1
=Y log <U e (“”—1)>, (3.40)
=1 Goe (MT571+)

with convention N;, = n. Here, [&Fkne denotes the continuous part of the Gamma process
LGk the first term on the right-hand side of (3.7).

Proof. We first introduce the notation

Nrp_
gGkm . 2 =1 Si(mh-1) (3.41)
Gk’n(ﬂm—l-‘r) Z?:l Sj (kal_'_)
such that
5G,w,k,n — Vd’;k‘*l,N‘rkil (Tk—l)gGvkvn (342)

holds from (3.27) for each (k,n) € N2.
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Since dissection sets are disjoint, we have the identity log V¥ (t) = log V¥*7(t) from (2.16)
for the given pair (t,w) (omitting w). We repeatedly apply (3.37) and (3.42) to derive

log Viﬁ,k,n(t) = log §G -k + log Gk’,n(ut) + log EG,k,n(t)
= log YR LNy (Tg—1) + log §G’k’" + log Gk’”(,ut) + log EG’kV”(t)

E

1
— log V¢:0,No (O) + |:10g &-G/,N-re + lOg GZ’NTZ (/LTe) + lOg EG,&NW (TE):|
1

~
Il

+ [log E9RM 4 log GF™ (1) + log EG’k’”(t)] )

We rearrange some of the terms on the right-hand side by using the identity V%% (0) = G°(uq)
and the definitions (3.41), (3.21) to obtain the correction term C'(t):

k—1
log V¥ 0:No () + Z [log EGENT 4 1og GEN7 (Hw)} + log €&k
/=1

N,

ZJZi_l Sj (7'571) G&NW' (MTefﬁ-) i U&NTZ GZ?LN‘%*l (NTefl)

log { =W, —log | 7w, = log N, :
ijﬁ Sj (Tffl‘i‘) G -t (/“57571) =1 GHe (MT571+)

For the remaining terms, we use (3.29), (3.30), and Theorem II1.13 of [22], to derive

t er,k,n,c(S) AFG,k,n(S)
log EG*m (¢ :/ _— 1 1+ ———71- 3.43
S A TR DI S e A

-3

k
{=1

and similar expressions for log ES“Nwe(ry) for £ =1,--- ,k — 1. Thus, the result (3.38) follows.
O

3.2.3 Balance condition

We first note that the component gpl(k’n) (t) of additively generated trading strategy ¢ in (3.15)

has an alternative representation on the (k, n)-dissection set J7x_1,7%] N (Ry x QF™):

7

e () = 0 (1) = S @ @) + VEE (), (3.44)
j=1

from the identities (3.18) and (3.20). Moreover, the last term V¥*"(¢) can be replaced with the
right-hand side of (3.23), so the strategy @™ (t) is expressed in terms of the original generating
family GG and its gradient, the excess growth and the correction term, up to time ¢.

Similarly, the component wi(k’n) (t) of multiplicatively generated strategy v in (3.32) also
admits an alternative representation from the identities (3.35) and (3.36):

G =0 ) = 3w @)+ VRN (D), (3.45)
j=1

and we can apply the decomposition (3.38) to the last term of (3.45). Furthermore, for v, there
is a condition to impose on each generating function G*™ to further simplify the representation
of the corresponding portfolio 7¥.
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Definition 3.3 (Balance condition). For each n € N, an n-dimensional differentiable function
f is called balanced, if f satisfies

n

f(x) = Zl‘z (0if(z)) Ve R™

i=1

This balance condition is known not only to simplify the representations of functionally gen-
erated trading strategies and corresponding portfolios [16], [14], but also to handle discontinuities
of an additional process other than market weights when generating trading strategies [19]. The
balance condition shall also be used in Section A.2, since it enables rank-based portfolios to
invest only in the fixed number of large capitalization stocks in open markets, adopting the idea
of [15].

When G*™ satisfies the balance condition, it is straightforward to check the identity

n

Sl Out =) = G () EGEN (1-)

=1

for every t €] 11, 7]. The last equality, together with (3.45) and (3.34), yields

k,n k.n ~k.n n
WM () = g () = 0G5 (e ) ESR (1), (3.46)
Recalling the definition (2.17) of portfolio weights and the fact that ©¥(*™) (and its portfolio
weight (#™)) is left-continuous, we have the following result.

Corollary 3.1. If every generating function G*™ satisfies the balance condition, then the port-

,n

folio weight wgk ) of multiplicatively generated trading strategy %(k,n) 18 expressed as

;G (g ) (1)

S 8GR (e )l (1)

Note that the right-hand side depends only on the market weight process and on the original
generating function G' (not its measurable modification @), even though the components of the
trading strategy in (3.46) depend on G, or a normalizing random variable §&¥Fm

We shall see in Section 4.2 that the generating functions of so-called diversity-weighted and
equally-weighted portfolios (Examples 4.1, 4.2) satisfy the balance condition.

i=1,---,n, on each (k,n)-dissection set. (3.47)

3.2.4 Self-financing market portfolio

The relative wealth V?(t) of the functionally generated trading strategy o, which appears in
Theorems 3.1 and 3.2, measures the wealth of ¥ relative to the total market capitalization at
time ¢, as defined in (2.14). By its construction, the trading strategy ¢ is designed to be self-
financing at all times, whereas the total market capitalization (the denominator in (2.14)) can
undergo a jump at each moment of dimensional change.

Moreover, the correction term C(t) in (3.40) of a multiplicatively generated strategy can be
further decomposed as

k k GELN7 (s, )
C(t)= ZlOg b= 4 Zlog < o -1 > =: Crar(t) + Cg(t). (3.48)
/=1 =1 (:U'Te—1+)
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Note that the first term Crp/(t) on the right-hand side is independent of the generating function
G. Tt accumulates the (log values of) jumps in the total market capitalization, whereas the
second term Cg(t) captures the (log values of) jumps in the generating function, at all previous
dimensional changes up to time t.

These observations give rise to the following notion of self-financing market portfolio. Con-
sider a family ¢ := {G°} U {Gkvn}(km)eNz of functions, given by G%(z) = Zi\f:ol r; and GF"(x) =
Yoy . It is easy to check the two trading strategies, additively and multiplicatively generated
from ¢, coincide; let us denote it by &. Its corresponding portfolio 7 = ¢ is computed as

rFm (1) = pem) () (3.49)
for every (k,n) € N? from Corollary 3.1.

Definition 3.4 (Self-financing market portfolio). The trading strategy ¢ and its portfolio & of
(3.49) are called the self-financing market trading strategy and self-financing market portfolio,
respectively. We denote them by &, and pigp.

From Theorem 3.2 and (3.48), the log relative wealth of £, only contains the correction term
Crar(t), in other words, log GF" (1) = EG(-) = Co(-) =0, and

k
log V&7 (t) = Cpa(t) = Z log oN7e | or VeI (t) = alf’;\l[ﬁ, (3.50)
=1

for any (¢,w) on the (k, n)-dissection set, recalling the notation (3.22). We emphasize again that
the above term Crps(t) appears in the decomposition (3.38) of every functionally generated
trading strategy, independent of the generating function. Moreover, from the identity (3.46), we
can easily deduce that all components of {E?n) (t) are equal to VE&rFn(t) = a]f”}f,ﬁ. Therefore,
&sf is just a buy-and-hold trading strategy investing equal shares in all the extant stocks between
dimensional jumps; at each dimensional jump, the number of shares holding for every stock is
adjusted according to the jumps in total market capitalization, redistributing its wealth to the
next constituents of the market in a self-financing way. This also explains how the portfolio
in (3.49) distributes its wealth according to relative capitalizations of extant stocks at all times.

If an investor believes that the self-financing market portfolio should be the baseline to
compare the relative performance of the functionally generated trading strategy }, one can
easily compute the ratio of V¥ to V7. We note here that V¢/(t) takes positive values for every
t, due to the positivity assumption on the capitalization process in Definition 2.4. Let us denote

o V()

U“(t) := V(1) t>0, (3.51)
the relative wealth of trading strategy ¢ with respect to the self-financing market portfolio.
As in the manner of (2.16), the process UY can be expressed as a collection of U%F"(t) :=
VOkn(t) JVEsrkn(t) on each (k,n)-dissection set. In particular, for a multiplicatively generated
trading strategy ¢ in Theorem 3.2, we have the decomposition of the log relative wealth of 1
with respect to &y

log U¥(t) = log G*™(us) + EG(t) + Cq(t), (3.52)

with the same excess growth term FG of (3.39), but with the correction term C'(t) replaced by
Ca(t) of (3.48).
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3.2.5 Long-term growth of relative wealth processes

In this part, we shall compare the behavior of the excess growth term EG in (3.24) with that
of (3.39), and point out some disadvantages of the additively generated trading strategies over
the multiplicatively generated ones.

The excess growth terms EG(t) of (3.24) and (3.39) contribute to the long-term growth
of the relative wealth processes V¥ and V¥. We recall from the representation (3.7) that each
CGamma process I'®“™7 () is nondecreasing if each G*V7¢ is a concave function. Therefore, both
of the expressions (3.24) and (3.39) are nonnegative, if every generating function in the family
{Gk’"}(k,n)eNQ is concave. However, even with concave generating functions, the former excess
growth term (3.24) is generally not nondecreasing in time. For an additively generated strategy
¢, the expression (3.24) may decrease at the next dimensional change 7, if the next ratio ghtln
of total market capitalization (where n € N is a next market dimension) is significantly less than
1. This is because all the accumulations FG’E’NV(’Q) of Gamma processes for £ = 1,--- ,k — 1
in the ‘past’ epochs, are affected by the ratios of the total market capitalization at ‘future’
dimensional changes 7y, Th41, - - - , as the quantity o™ will be multiplied to the whole expression
of (3.24) at the moment 74 of the next dimensional jump, and so on. In this sense, we can say
that the excess growth of (3.24) is only ‘piecewise nondecreasing’ in time ¢ with a potential of
occasional plummet at the moments of dimensional changes.

In contrast, the excess growth (3.39) of the multiplicatively generated strategy ¢ is inde-
pendent of the ratios o7 . Therefore, every term of (3.39) is nonnegative and nondecreasing
in time, if all the generating functions are positive and concave. This shows that the long-term
growth of a multiplicatively generated strategy is not affected by the shocks that arise from
dimensional jumps in the market.

Moreover, the correction term C of ¢ has a nice decomposition (3.48), which separates
the universal term Crjs with the other term Cg, whereas that of ¢ in (3.25) does not admit
such decomposition. Thus, there is no simple representation of the relative wealth U? of the
additively generated strategy ¢ with respect to the self-financing market portfolio; U¥ should
depend on the ratios of (3.21). However, U¥ in (3.52) is free of such ratios, so the excess growth
EG(-) contributes to the long-term outperformance of 1) with respect to the self-financing market
portfolio if we expect long-term stability of the remaining part log G(u.) + Cg(+), which only
depends on the generating function G.

Because of the aforementioned drawbacks of the additively generated strategies, we shall
provide in the next section examples of multiplicatively generated portfolios with empirical
evolution of each term that appears in the decompositions (3.38) and (3.52).

4 Empirical analyses

Our main purpose of this section is to examine how dimensional changes in the equity market
affect portfolio performances. More specifically, using real stock market data, we would like
to identify the correction terms C, Crps, and Cg in the equations (3.38), (3.50), and (3.52)
of the log relative wealth processes V¥ and UY for some classical portfolios, all of which are
multiplicatively generated.

For the reason that we shall use daily stock price data, we first develop the previous theory
of functional generation of portfolios in a discrete-time market model as a special case of the
general theory we studied in Section 3, for a more precise comparison of the correction terms.
When computing the excess growth term of (3.39), we are subject to approximation errors
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for measuring the integral terms involving the Gamma processes from a given discrete-time
dataset. Since we shall consider a long period of time (40 years) for analyzing portfolios, the
approximation errors tend to be accumulated over a long time which hinders the exact analysis
of the correction terms.

4.1 Discrete-time model

Since we allow jumps in the capitalization (and market weight) process, all of the results in
the previous sections can be easily reformulated in a discrete-time equity market model. For
the purpose of introducing a discrete-time model, we shall fix in this subsection an index set
T := (t;)52, satisfying 0 = {p < ?1 < ---. Moreover, for a given U-valued discrete-time stochastic
process {X(t;) : t; € T} on a probability space (£2,.%,P), let us consider a sequence of stopping
times (7;)k>0 C T at which the dimension of X changes, i.e.,

70 := 0, Ty, := inf {tj > 71 : dim (X (¢5)) # dim (X (¢j-1)) }7 ke N.

Then, we can construct a U-valued piecewise-constant process X by the recipe X (0) = X (0)
and for 7 =1,2,---

if t]’ € (Tk)k:21 : X(t) = X(tjfl) for tjfl <t< t]’, (41)
ift; ¢ (mrs1:  X(t)=X(tj_1) for t;<t<t; and X(t;)= X(t;),

such that X is right-continuous between the dimensional jumps and left-continuous at the di-
mensional jumps. For the filtration, we consider a right-continuous extension % = 9}5{ L=

o(Xy,- -+, Xy;_,) for tj_1 <t <t; of the natural filtration .Z~ of X. From this construction,
it is stralghtforward to verify that X is a - -progressive process and the sequence (Tk)k>0 is the
(minimal) reset sequence of X satisfying the conditions of Definition 2.1, thus X is recognized
as a piecewise RCLL semimartingale in the sense of Definition 2.2.

Therefore, when observing capitalizations of an equity market (of stochastic dimension) only
at the discrete times T, such that the capitalization process S is given as a U-valued discrete
stochastic process, we shall consider its piecewise-constant continuous-time version S with the
corresponding market weight process j of S , having the dimension process N, to apply the
previous theory for generating trading strategies from . In other words, for any w € Q, we
shall identify the trajectory {u,;(w)}¢,er of the discrete process with its continuous-time version
{1 (w) }eo0.

Now that 1 is piecewise-constant, the continuous part of every integral with the integrator
involving (dissections of) i vanishes, and we can rewrite all the expressions in the earlier sections
in terms of the original discrete-time process p from the construction (4.1). In particular, for
(tj,w) €]e—1, T[N(R4 x QF™), the first self-financing condition (2.12) can be rewritten as

D it mity) = > i) pilty),
i=1 i=1
and each (k,n)-Gamma process of (3.7) is represented as

FG,k,n(tj) —— Z dB7Gk,n (th7 /"Ltq—l)'

Tk_1<tq§tj
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The equation (3.43) is now simplified to

A]_“G,k,n t d n 7 -
log ES%n(t;) = Y log (1+(q)> - Y g (1_ B,k (bt fit, 1)>.

Gk,n Gk,n
Tr—1<tqg<t; <7 (Mtq) T—1<tq<t; <7 (Mtq)

Therefore, Theorem 3.2 holds with the decomposition (3.38) (and (3.48)), rewritten as

log V¥ (t;) = log Gk’"(,utj) + EG(t;) + Crm(ty) + Cal(ty), where (4.2)
k—1
EGU) =Y Y gt Nyt + D [eglhinity)], (4.3)
0=1 Tp_1<tq<Typ Tk,1<tq§tj<7'k

0—1,N-
G b 41(/“‘7'21—)>

k k
Cra() = Ytogo"™,  Coatty) = tow (“ g 5
=1 =1 Hre_y

with the convention GO0 (1, ) = GYN71 (pu,,) and the notation

dig gt (Hegs Pt 1)
for a given pair (¢;,w) in each (k,n)-dissection set for (k,n) € N? with ¢; < 7;. Here and in
what follows, 7, — represents the last time index before 73, whereas 7+ is the next index after
Tk, 1.e., Tp— = t;—1 and 7+ = tj41 if 7, = t;, with the convention 79— = 79 = 0. The expression
eg(¢, N;,,t,) represents the discrete excess growth from t,_1 to ty, when the market is in the ¢-th
epoch with dimension N;,, thus EG(t;) is the cumulative discrete excess growth until time ;.

Since there is a dimensional jump between 7,— and 7, the last three terms of the equation
(4.2) remains unchanged, i.e., EG(1;) = EG(1,—), Cram(pr,) = Cranr(pir,—), and Ca(pr,) =
Ca(ftr,—), due to its construction (4.1). However, during the next time window between 7y
and 73+, the increment of the last term Cg(-) on the right-hand side of (4.2), is offset by the
previous increment of the first term log G(u.):

Ca(met) — Calmi) = —{ log G*H 1N (1, ) — log GFN (Mm—)}- (4.5)

In other words, every summand of C(-) in (4.4), which occurs due to dimensional jump between
T¢—1— and 7y_1, is canceled out by the increment of log G(1.) during the same period. Therefore,
the decomposition (4.2) - (4.4) can be rewritten as

k—1
logVV(t;)=>" > [logG&N%utq)—bng’Nf(utqJ]

=1 1y 1<tq<T¢

+ Y [bg G""(1,) — log Gk’"(utq_l)] + EG(t;) + Crm(t)),

Te—1<tqg<t;<Tg

i.e., the evolution of the log generating function and the excess growth accumulated between the
past dimensional jumps and the universal correction term Crj; accumulated at those dimen-
sional jumps affect the relative wealth V¥.
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For the log relative wealth UY in (3.52), we have the same representation in this discrete-time
setting, except for the last correction term:

k—1
log U (t;) =Y > [log G (ju,) — log G () ]

=1 T_1<tq<Ty

+ > [log GM™(py,) — log GM™ (1, _, )} + EG(t)),

T—1<tqg<t; <7k

The above derivations generalize the results of [29], where the functional generation of portfolios
is developed in a discrete-time market model of a fixed dimension. Here, we also refer to [3],
[21], and [28], for different aspects of the discrete-time setup of portfolio generation in a market
of fixed dimension.

4.2 Examples

We provide in this subsection some of the classical examples in the Stochastic portfolio theory
under the discrete-time model. Empirical analyses of these examples will be given in the following
subsections.

When introducing a portfolio-generating function G : U — R as a piecewise function of
the market weight process u in the following examples, we shall only specify an n-dimensional
‘representative piece’ G : R® — R, for a fixed pair (k,n) € N2. All the other pieces can be
easily inferred from this representative form; in fact, G¥"™ = G&™ for any ¢ € N. Moreover, we
assume in the following that a general time index t; is in the k-th epoch with market dimension
equal to n, i.e., the pair (¢;,w) belongs to the (k,n)-dissection set [7x_1,7x] N (R4 x QF").

Ezample 4.1 (Diversity-weighted portfolio). For a fixed real number p € (0, 1], the function

n 1

GF(x) = (Z xf) g

i=1

is balanced (Definition 3.3) and multiplicatively generates the portfolio from (3.47)

_ o (m-0)”
Sy (pe(ty—1))"”

The parameter p determines a measure of diversity; a portfolio with a smaller value of p invests
more wealth in smaller stocks. We also note that the case p = 1 corresponds to the self-financing
market portfolio in Section 3.2.4. After some computation, we obtain from (4.2) the following
decomposition of the log-relative wealth of the corresponding trading strategy

ﬂ'i(t]‘) = 1,'-' , 1. (46)

n

log V¥ (t;) = ;log (Z (ui(tj))p) + EG(tj) + Crm(ty) + Ca(ty), where (4.7)
i=1

the excess growth FG(t;) is given as (4.3) with

O Not) — o (:V:Ztm(tq)(m(tq—ﬁ)pl) _ 11) llog (Né (M(tq))p> (Ngj (ﬂi(tq—l))p>p1] :



and the correction term
N,

k 1 (11 —))?
coey =5 2w (B0 )
i1 \(Mai(To—

Ezample 4.2 (Equal-weighted portfolio). The following balanced function

n
1
G (w) = T [ (@)
i=1
multiplicatively generates the portfolio from (3.47)
1 .
Wi(tj)zﬁ, z:l,---,n,

which invests the same proportions of current wealth in all the existing stocks. We note that this
portfolio is the limit of the diversity-weighted portfolio (4.6) when p — 0. The decomposition
(4.2) of the log-relative wealth log V¥ (¢;) is then computed as

log V¥ (t;) = Z log 1i(tj) + EG(tj) + Cram(ty) + Cal(tj), where (4.8)
=1

the excess growth FG(t;) is given as (4.3) with

N,

NTZ
} : pi(t 1 } : 1i(tq)
g NT 5 = 1 1 9
69( ’ V4 og ————~— + og <N7-é P ,Uzi(tqfl)

and the correction term equal to

k Nfz 1
D=3 | X et L I ]
=1 N,y i=1 TM 1

Ezample 4.3 (Entropy-weighted portfolio). The function

Gk " Z z; log ;

multiplicatively generates the portfolio from (3.31), (3.45), (3.34), and (2.17)

—pi(tj—1) log pi(tj-1)
= > i te(tj—1)log pe(tj—1)’
The log-relative wealth log V¥ (¢;) of (4.2) is decomposed as

Wi(tj): izl,--~,n.

log V¥(t;) = log ( - Z 1i(t;) log Mi(tj)) + EG(t;) + Cru(ty) + Calty),  with  (4.9)
=1

N,
— 3 i(tg) log m(tq_n)

eg(¢, N;,,tq) =log N
—>im1 1iltq) log pi(ty)

k Nrp_y N-,
= Z llog ( - Z pi(Te—1—) IOgNi(TE—l_)> — log < - ZMi(Tz—ﬂlogui(Te—Q)]-
=1 =1 =1
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4.3 Data description

Our data contain daily closing prices of the stocks listed on the New York Stock Exchange
(NYSE) and American Stock Exchange (AMEX) during 40 years (10086 trading days) between
1982 January 4th and 2021 December 31st. These data were obtained from the Center for
Research in Security Prices (CRSP) database, accessed via the Wharton research data services.

In the discrete-time model introduced in Section 4.1, each element ¢; of the time index
set T = (t; = j)]lg%% represents the j-th trading day. Figure 2 describes the evolutions of
dimensional changes, the universal correction term Cpp/(t) in (3.50), and the total market
capitalizations of the two stock exchanges over 40 years. In Figure 2 (a), there were 6015 and
3920 jumps in dimension during 10086 days for NYSE and AMEX respectively; in other words,
on average, dimensional changes occurred every 1.68 and 2.57 trading days, respectively.

Since the number of listed stocks on the NYSE has increased over 40 years, the correction
term Crps of (3.50) for NYSE in Figure 2 (b) exhibits overall decreasing movement. For the
AMEX graph, we can observe the opposite tendency. A small hike near the year 1987 in the
two graphs of Figure 2 (b) is on account of the stock market crash in October 1987, known as
Black Monday.

In the graphs of AMEX in Figure 2, there was a significant delisting event in 2008, which led
to noticeable decreases in market dimension and total capitalization. The main reason is that
NYSE Euronext, the multinational financial corporation which operates NYSE, acquired AMEX
in 2008, and AMEX is now known as the NYSE American. During this process of acquisition,
many stocks are liquidated or dropped from the exchange, due to various reasons, e.g. failure
to meet the new exchange’s financial guidelines for continued listing, or just company’s request.
The stock market crash in 2008 is also responsible for the huge drop in total market capitalization
of the two exchanges.

— NYSE — NYSE

30-
=0T — AMEX — AMEX
20-
2000~
10-
=
500 oo
o
1000~ B M\
% 20~
500-
30-
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(a) Dimensional change of NYSE, AMEX (b) Cram of self-financing market portfolio
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Figure 2: Dimension and total market capitalization over time
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We finally mention here that tradings of the portfolios in the next subsection are made
every trading day (daily rebalance) without any transaction costs, in order to precisely measure
how much the correction terms impact the long-run relative performance of the portfolios in
the decomposition identities. Since finding an outperforming portfolio (or a relative arbitrage
in Section 3.2.5) is not our goal, no transaction costs are considered in our empirical analysis.
In the presence of transaction costs, trading frequency should be wisely determined by actual
portfolio managers to maximize their profit, and we refer to [24] in this direction of study.

4.4 Empirical results

We now provide the empirical results of individual terms in the decompositions (4.7), (4.8), and
(4.9), of the log relative wealth processes of the classical portfolios introduced in Section 4.2,
using the dataset described in Section 4.3. The evolutions of the log G term (the first term on the
right-hand side) and the excess growth (EG) will be illustrated in green and blue, respectively.
The universal correction term Cr7ps, which is also depicted in Figure 2 (b), will be in yellow,
and the other correction term Cg will be drawn in orange.

Under the discrete-time market model, we note that the identities (4.7), (4.8), and (4.9)
are exact, except at the moment when a stock is delisted from each of the two exchanges. In
a delisting event, we use its delisting return which is available through our dataset from the
CRSP database. However, our dataset contains a lot of missing delisting return variables. For
those missing values, we shall consider two cases: (i) the most conservative case by setting all
missing delisting returns equal to —1 (which means we lose all money which was allocated to the
delisting stock), (ii) the most desirable case by setting the values equal to 0 (which means we can
liquidate the whole value of a stock before delisting from the exchange). In our dataset, there
are some positive delisting returns, due to some reasons, but these are rare cases. When the -th
stock is delisted from the exchange with delisting return DLRET; at day ¢;, we will accumulate
the quantity log(1 + m;(¢;) x DLRET;), which represents the change in the log return of 7 due
to the delisting, and we call this new term DLRET. For case (i), the DLRET graph will be
drawn as a red solid line; for case (ii), it will be represented as a red dotted line. We recall here
Remark 2.2 how our general continuous-time model in Section 3 handles such delisting event.

Finally, the two log relative wealth of the portfolios, with respect to the total market capital-
ization (log V%), and to the self-financing market portfolio (log U¥) will be illustrated in black
and purple, respectively. Therefore, from the identities (3.38) and (3.52), we have the relation-
ships in the following figures ‘black = green + blue 4 yellow + orange + red’, and ‘purple =
green + blue + orange + red’. Since there are solid and dotted red graphs, black and purple
graphs also have two corresponding line types. We normalized the trading strategies at time 0
such that every term in the decomposition takes an initial value of zero.

Figures 3 and 4 show the aforementioned decompositions of the three portfolios, invested in
the NYSE and AMEX, respectively.

We now illustrate several important observations from Figures 3 and 4.

(i) The universal correction term Crps, an inevitable term due to the jump in the total
market capitalization, is quite huge; it is in fact a major factor of the relative wealth
V¥ of the portfolios with respect to the total market capitalization, especially for the
diversity-weighted portfolio with p = 0.75 and the entropy-weighted portfolio. Moreover,
as mentioned in Section 4.3, it influences the portfolio return on the two exchanges in
the opposite way; for the portfolios on NYSE, it drags down the relative wealth log V¥,
whereas it contributes to the growth of log V¥ for those on AMEX. This gives a reason
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(i)

(iii)

for investors to use the self-financing market portfolio as the baseline when comparing the
relative outperformance of their portfolios.

For the diversity-weighted portfolios, smaller p values (or more concentration on the smaller
stocks) result in higher excess growth (EG term), which is well-known in the Stochastic
portfolio theory (see, e.g. Example 3.4.4 of [6]). Especially, in graphs (b) and (c), the excess
growth significantly contributes to the growth in the log relative wealth U¥. However, such
portfolios which overweight the smaller stocks, are subject to high turnover, thus should
be carefully implemented in the presence of transaction costs.

Furthermore, in those portfolios of (b) and (c), both the green graph (log G term) and the
orange graph (Cg term) fluctuate tremendously, but the directions of change are almost
the opposite, like reflected mirror images of each other. This is expected from the fact
that the dimensional change is quite frequent (see Figure 2 (a)), and from the relationship
(4.5) of their increments at those moments of dimensional changes. Therefore, only the
fluctuation of the generating function and the excess growth term between two consecutive
dimensional changes affect the evolution of relative wealth UY with respect to the self-
financing market portfolio.

As expected, the red graph (DLRET) negatively affects the portfolio performance, and
its impact is larger for those on AMEX than on NYSE. Since there are more stocks on
NYSE, a loss from a delisting of stock on NYSE (in the worst case of delisting return
equal to —1) should have a smaller influence, on average, on the portfolio performance
than that on AMEX. The actual evolution of the DLRET term should be somewhere in
the middle of the red graphs, so these graphs provide at least bounds of the log relative
wealth processes (black and purple graphs).

5 Conclusion

By incorporating dimensional changes of an equity market in the functional generation of port-
folios, this paper removes the assumption on the immutable size of the investable universe. We
conclude by summarizing some directions for further extending the functional generation theory
of portfolios from [14].

(i)

When constructing portfolios, some observable, but non-tradable quantities A other than
the market weights p can be also used. Here, A is a U-valued stochastic process of finite
dimension with its own dimension process dim(A) (which may coincide with dim(u) or
not). The representative generating function G*" : U x U — R then takes two U-valued
processes u and A\ as inputs.

Examples of such additional process A inch(lde)moving average, running maximum or min-
k.n

imum of the individual market weight 4, (¢) from its ‘birth’ at time 7,_;, realized
quadratic covariation [u?’"(t),u?’"(t)], and stock fundamentals such as the book value
(which we assume to have finite variation). We refer the reader to [19, 20, 23, 25| in this

direction of studies.

Throughout the paper, we assume the portfolio-generating piecewise function G to be in
C?(U) (Definition 3.1), for the purpose of applying Itd’s formula. However, we can extend
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the class of portfolio-generating functions to less smooth functions when a generalized
version of It6’s formula (or Tanaka’s formula) is used.

(iii) Even though the theory was developed in a probability space, we can remove any proba-
bilistic assumptions and construct portfolios in a pathwise, probability-free setting. The
capitalization process S and the market weight vector u can be modeled as U-valued piece-
wise functions instead of semimartingales, in which case the reset sequence (73)72, is just
a sequence taking values in [0, 00|, and we apply the pathwise Ito-Tanaka theory when
generating portfolios in a similar manner described in this paper. We refer to [1] for a
more recent study in this direction using the rough path theory.

Along with the above lists of applicable extensions of the theory from [14], we list a few more
directions for future study in the context of our paper.

(i) In the examples of Section 4, we have used the ‘same’ generating function for every epoch
of the market even when its dimension changes. For example, in Section 4.4, the same
parameter p is used at all times for each diversity-weighted portfolio. However, we can
choose different generating functions (or different parameters within a family of generating
functions) for each epoch. Especially, if an investor can predict a certain trend in market
diversity or expect a huge economic event (such as 2008 stock market crash) for an upcom-
ing epoch of the market, she can choose the generating function accordingly for the next
epoch in order to maximize her profit. How the adoption of different generating functions
for each epoch influences the portfolio return would be a practically interesting topic.

(i) We may extend some theoretical results in SPT under the market model of changing
dimension. For example, Cuchiero et al. [5] connects SPT with Cover’s universal portfolio
theory [4]. It would be interesting to find out whether a similar result holds when the
dimension of the market fluctuates over time.

A Rank based generation of portfolios

Applying the similar method we developed in Section 3, we present in this Appendix generation
of trading strategies depending on the ranks of companies, in terms of capitalization. We also
study an open market embedded in the entire equity universe of stochastic dimension.

A.1 Rank based generation in the market of stochastic dimension

Let us define the /-th ranked components v, of an n-dimensional vector v = (vq,- -+ ,vy) for
every n € N:
V(g) = 1§i11p“z%>z§e§nmin{vil, LU, b ten]={1,---,n},
satisfying
JAX Uj =) 2 V() 20 2 ) = min v
We shall use boldface symbols v := (v(1),v(2)," "+ ,V(n)) to denote the vector arranged in a

descending order.
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Moreover, for any given U-valued process X, we denote

the n-dimensional vector arranged in descending ranks of the dissection X*™) and construct
the arranged U-valued process X via dissection

X = X000+ > XEp, ngae. o)
k=1n=1

In particular, if X is a U-valued piecewise semimartingale, then X is also a U-valued piecewise
semimartingale.
We now consider the arranged process p of the market weight process p of Definition 2.5.

Recalling Remark 2.1, we have two dissections Ne = ,u’&? and ,ué n ,ugk)n) for ¢ € [n] with

the same increments, due to (2.9). However, the former dissection N(e) does not reflect the /-th
ranked component of p on (k,n)-dissection set, as it is reset to zero at 7,1 by definition (see
Figure 1 (d)). Thus, throughout this Appendix, we shall use the latter dissection ,ugf)’n) as an
integrator, as every such integral will be considered solely on the (k,n)-dissection set.

The generating function G' € C?(U) now takes p as an input instead of . On each (k,n)-
dissection set, It6’s formula gives

G () = A s 12 + L (VGH ()0
n k.n),c n),c
/ S O )l W) - iy (st o),
Te—1F p=1 A=1 Tp—1<s<t
In the stochastic integral
Lon (VGE™ () (1) = Zaeak" (1) dprly™ (5),
Te—11 p—1
(k

we can replace the ranked integrators du( )
rem 2.3 of [10]:

n) (k,n)

with the original components dyu;

i using Theo-

n

k,n _ rkn ! . k.n ﬂ{uggn)(s_):ugk’n)(s_)} (k,n)
G*™M () =GP (Br_y4) + DO G (o) m dpg " ()

Th—1F =1 =1 Nf’ (s—)
OpG™" (ps-) (k) _ (k) 0eG*" (ps-) (khn) (ki)
+/ e (i = )—/ e (" = ")
S ;j;l Né@ (s—) ) (4) i+ i o Nf’ (s—) (J) 0

(k,n) (k, ")( -, (k, n)( —)=u

n n n n 1 (k,n)
{u (s—)=n; H (s=)} kmn),c  (kn).c
02 Gk‘ﬂ'l o (€) N -7 d ( ) )7 , ( 310 )y s
/Tk 2222 0inG " () N NPT ™ s)

1+ p=1 A=1i=1 j=1

+ Z dB,Gk,"(H& Hsf)- (A.1)

T 1<s<t

Here, Nf’”(t) is the number of components of p(¥™) that are at rank £ at time ¢:

NP ) = ™ 0 = g ()

)
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and we denote F4(Y) 1= Ly(Y) + > g o< Liv(s—)=0) AY (s), where L;(Y") is the local time accu-
mulated at the origin by a semimartingale Y up to time ¢ > 0:

t
L) i= VO O [ sign(Y (=) d¥ ()= 3 [V (5] -sign(¥ (s-)) aY (5],
0<s<t

(A.2)

with the notation sign(z) := 2 X 1 o) (7) — 1.

On the right-hand side of (A.1), the expression
n 1, (k) (k,m)
Ly (s=)=p;" (s-)}
I (5) == 3 0,6 (g ) 2 : (A.3)
> N (5-)

plays the role of integrand corresponding to the integrator ,ufn We use this integrand 9™ to
define the new (k,n)-Gamma process

LRt == 0 + [Gk’"(umﬁ) = G () + L W) () Ly ngneewarny (A4)

and apply (A.1) to derive the alternative representation

t n n 3Gk’n( 7)
G.k,n - (4 Hs k.n k,n
s (t)—(”[_/ DD aE o A - mg))
To—1F p=1 j=0+1 V¢ (s—)
t n £-1 k,n
DG" (ps—) kn  kn
+/ E E nidfs(,ui—ﬂ’)
e Nf’ (S—) () )

n L, k), (k) (k) (k)
1 /t Z 2 k {:“'(g) (5_)*1% (S_)vﬂo\) (5_)*11]' (s—)} (kn),e  (kmn),c
1 0 GH (1) Ll A= e g
2 Tp—1+ )i, j=1 N£7 (S_) N)\7 (‘9_) !
- Z dB,Gk’n (IJ’S? IJ’S—) jﬂTk_l,Tk]ﬂ(R+XQk’n)' <A5)

Te_1<s<t

In what follows, we shall recursively generate trading strategies as in Section 3, by making

the vector 9™ = (ﬁgk’n), e ,ﬁ%k’n)) self-financing. By analogy with (3.8) and (3.9), we set

two Ny-dimensional processes 9(9), p(0):

No 1, km)on (ki)
{7 0)=p;"" (0)} . )

7950)(> = 0+Za€G0(u0) © kn l{O}XQ? 1= 17 7N07 <A6)

=1 N, (0)
9050)() =0+ (1950)() - CGVﬁ,O)j{O}XKL = 17 T 7N07 (A7)
where C&90 .= vaz‘)l 1950)(0)/11-(0) — G%po). For k = 1,2,---, we define an n-dimensional

(kn) _ (,,(kmn) (ksn)y o
process ¢ =( 1, ,en ) with components
k,n k.n n G n\q

() i= 0 (957 () = QR () — COMRIN i ke, (AS)

as in (3.15) for each n € N. Here, QP+Fn (), G, and CGIkn are defined as in (3.11) - (3.14),
with G*"(pir,_,+) replaced by G*™(u,,_,+). Then, the U-valued process ¢, constructed from
these dissections as in (3.16), is a trading strategy satisfying the self-financing conditions.
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Corollary A.1 (Additive generation). The process ¢ is a trading strategy and its relative wealth
process V¥ is given by

VE(t) = Glu) + > > TR )y, | o, <ok (A.9)
k=1n=1

for t > 0, where the (k,n)-Gamma process TE*™ is given in (A.5). Moreover, when the pair
(t,w) belongs to the (k,n)-dissection set for some (k,n) € N2, the relative wealth process V¥ (t)
of (A.9) has an alternative representation as in (3.23) - (3.25), but G(u) is replaced by G(p)
and the Gamma processes take the form of (A.5).

Proof. We can prove that ¢ is a trading strategy in the same manner as in the proof of Propo-
sition 3.1. We now derive as in (3.19) that

VERR() = GE i, 4) + L (947 1)
holds for each (k,n) € N2, Plugging (A.1) into the last identity, along with (2.16), yields the

result (A.9). The last claim follows from the same argument in the proof of Theorem 3.1.  [J

(k,n)

Remark A.1. The component ¢, (t) of ¢ in Corollary A.1 admits the same representation as

in (3.44):

n

o) = 00 = 30 O ) + Ve o)

j
j=1
For the multiplicative generation, we also impose the condition on G € C?(U) that the
reciprocal 1/G*" (1) is locally bounded on every (k, n)-dissection set. Let us recall first ¢(® in
(A.7) and set
7 = 0 = ,0) (A.10)

as before. We also consider the multiplicative measurable modification G of G as in (3.28) with
v replaced by g in the expression of §&¥km,

Furthermore, we define EF*™ as in (3.29) based on the new (k,n)-Gamma process in (A.4),
where p in the definition is replaced by p. We next define two processes n(k’") and ¢*") in a
recursive manner with £k =1,2,--- |

W (t) o= 00 4 gEVRErECER g B (L), | ok, E20, (A.11)
similar to (3.31), and

kn k.n n 2l n) 3 .
D) = 04 (0 () = QR () = COMRINEL g ey =1 me (A2)

as in (3.32) for each n € N. Then, the U-valued process 1 constructed as in (3.33) is a rank
based multiplicatively generated trading strategy.

Corollary A.2 (Multiplicative generation). The process 1 is a trading strategy and its relative
wealth process V¥ is given by

V¥(t) = éo(uo)j{o}xg + Z Z @k’n(ﬂt)EG’k’n(t)ﬂ]]Tk,l,Tk]]m(R+xﬂk,n)a (A.13)
k=1n=1

fort >0 as in (3.34), but with the new Gamma processes of (A.5) in the expression of E&F™.
Furthermore, the log-relative wealth processes log V¥ (t) and logU¥(t) can be represented as in
(3.38) - (3.40), and (3.52), respectively, when (t,w) belongs to the (k,n)-dissection set, with
G(p) instead of G(u) and the Gamma processes given in (A.5).
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Proof. Showing that v is a trading strategy is again straightforward from the above construction.
For the relative wealth process V¥, we derive just like the series of the _identities of (3.35), but
replacing G(p) with G(p) and (3.6) with (A.4), to prove VY1 () = GF?(u.)ESF"(-) on the
(k,n)-dissection set. The last claim also follows from the proof of Theorem 3.2. t

Remark A.2. Similar to (3.45), the component ¢§k’n) (t) in Corollary A.2 also admits an alter-
native representation on the (k,n)-dissection set:

n
k7 k7 k? k’
G = @) = o @ ) + v ),
=1
where the new Gamma process (A.5) is used in defining E®*". In particular, if every G*m
satisfies the balance condition, then we have a simpler representation

&M () = ™ (1) (A.14)

as in Corollary 3.1, since we have

= k,n k,n n n = k,n k,n
DO ) = 80 EEn ) S0 0 1
7j=1

J=1

_ 5G,1/1,k’,nEG’,k:,n(t_) Z (%Gk:,n(“t)uglz),n) (t) _ @k’n(ut)EG’k’n(t)
/=1

from (A.3).

A.2 Open market

The concept of an open market, consisting of a fixed number m € N, but fluctuating constituents
of the largest capitalization stocks, has recently been studied in some literature [3, 8, 12, 15] to
construct portfolios in a more realistic market model. In what follows, under some additional
assumptions, we shall generate trading strategies in an open market embedded in an entire stock
market with a stochastic dimension.

For a given U-valued capitalization process S of Definition 2.4 and corresponding market
weight process p of Definition 2.5, we shall fix a positive integer m such that investors are only
allowed to invest in the m largest stocks in capitalization at all times. In other words, on each
(k,n)-dissected market, we shall construct trading strategies that depend only on H(1)s s Bm)
and compare its performance relative to the total capitalization of the top m index, that is, the
sum of the m largest companies’ capitalization.

We emphasize here that there is no restriction on the size m of the open market. On the
(k,n)-dissected market, in the case of m < n, one can only invest in the top m stocks among n
extant stocks, whereas the top m open market becomes the entire (k,n)-dissected market (thus
investors can invest in any extant companies) in the other case of m > n. Thus, the results
developed in the previous sections can be applied to the top m open market in the latter case.

In this subsection, we shall impose a special rule for breaking ties if two or more stocks have
the same capitalization (e.g. a lexicographic rule which assigns a higher rank to a stock with
a smaller index). Such a rule is necessary for an open market when choosing which stock to
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include in the top m open market if there are multiple stocks having the same capitalization
with rank m. For example, suppose that there are N(t) = 3 stocks extant in the market and we
are considering the top m = 2 open market. If the relationship S((t) > S(2)(t) = S(3)(t) holds
at the moment ¢, we need to choose one stock to include in the top 2 open market among the
two smallest stocks at time ¢.

Therefore, we define a process [n] x [0,00) 3 (i, t) — ut™"

)

(t) € [n] for any (k,n) € N? such
that each ufn() is predictable and satisfies

S;(t) = S(u’?>"(t)) (1), on the dissection set [|7,_1, 7] N (R, x QF7),

ub () = i, otherwise,

for every i € [n]. In other words, on the (k,n)-dissection set, ufn(t) represents the rank of
the i-th stock in terms of capitalization among n stocks at time ¢. Since uf’n shall act only on
the (k,n)-dissection set, the choice ufn = ¢ on the complement set, is not important. Because
of the rule for breaking ties, each u*™(-) is a permutation process on the set [n] = {1,--- ,n}.
Moreover, since both index and rank of the stocks may shift due to the dimensional change (at
each reset sequence 1), we assume that appropriate relabeling of index (and corresponding
rank) is done whenever necessary to inherit each company’s dynamics after dimensional change.

Since the discrimination rule breaks the symmetry among stocks having the same capitaliza-
tion, the dynamics of the ranked semimartingales will be different from the one in Section A.1,
and the equation (A.1) is no longer relevant under the discrimination rule. To this end, we shall
impose an additional assumption on the U-valued market weight process p to handle this rule
for breaking ties.

Definition A.1. A U-valued piecewise semimartingale X is called pathwise mutually nondegen-
erate, if its n components X = (Xi,---,X,,) on every (k,n)-dissection set satisfy the following
conditions:

(i) each component t — X;(t) is continuous;
(ii) the set {t: X;(t) = X;(¢)} has Lebesgue measure zero, P-a.e., for all i # j;
iii) Ly(X ) — X)) = 0 holds P-a.e., for all |k —£| > 2.

(k) O

Under the assumption that yx is pathwise mutually nondegenerate, every dissection g5
is continuous on the (k,n)-dissection set. Moreover, Proposition 4.1.11 of [6] proves that the
ranked components ,ul&)"() are also continuous and have the dynamics on the (k,n)-dissection
set:

TV (k,n) 1 (kn) (k,n) 1 (k,n) (k,n)
d.“(g) (t) = Z l{uf»"(t)zg}dﬂi (t) + §st(N(g) - N(g.,.l)) - §st(M(g_1) — Hp ), (A.15)
i=1

for £ = 1,--- n, with conventions Lt(MElgjn) - u(%n)) = Lt(ugf\}?) - “Ef\ﬁ)n) = 0. Here, Li(Y)

is the local time at the origin accumulated until time ¢ of the continuous semimartingale Y,
without the last jump term in (A.2).
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For any G € C?(U) and arbitrary pair (k,n) € N2, we apply Itd’s formula and the new
dynamics (A.15) to obtain

G*" () = GM™ (1) / ZZ@GM 185) Ly 5)=ey At (5) (A.16)
Te—1F j=1 ¢=1
o () _ )y o ok (k) (k)
/ ZaéG (ps) dLs ( Hp) g+1 -5 Z‘%G (ps) dLs (M(@ 1)~ F )
Thk—11 p—1 Tk—1TF p—1

SNC 2 ke (k) ()
/Tk ZZZZE),AG (o)L om gy, ubim )=y Gl 1571 (5)

1+ =1 A=1i=1 j=1

on the (k,n)-dissection set. We now denote

No
217() 1= 04+ 320G (o) Lo o=y Loy i=1-No, o (A7)
(=1
kmn . n 1 1
191( )() =0+ Z 8@Gk7 (N)]l{ufn()ZK} ]lﬂTk—l,Tkﬂm(R+><Qk’")’ i=1,---,n, (A18)
(=1

and use these dissections of 9 to define the (k,n)-Gamma process '“*" as in (A.4). Then, the
identity (A.16) yields that T@®"(.) is of finite variation with the alternative representation

LR (t) = 0+ [_ ZZZZ@ G () Lo ), b (5)=) Al 1))

Th— 1+£ 1A=1i=1 j=1

n k.n
-5 ZaeGk (1s) dLs (1 Ez) )_MEZ-H)))
Th=17F =1

n k.n k.n
/ N Z‘%Gk’ (ks) dLs (Mgzq)) - 'UEZ) )) i mdn@y xaeny. (A19)
Tk—1T g—1

Therefore, by replacing the basis 90, (k1) in (A.6), (A.3) and the corresponding Gamma
process I'@#™ in (A.4) with the new expressions defined in (A.17), (A.18), and (A.19), respec-
tively, we can construct ¢ and 1 from the new basis as in Section A.1, and obtain the same
results as in Corollaries A.1, A.2. The following corollary summarizes this construction.

Corollary A.3. Let us assume that the market weight process p is pathwise mutually nondegen-
erate and a special rule is used for breaking ties when ranking the stocks by their capitalization
such that there is a one-to-one mapping between the ranks and the indices of the stocks at all
times. Then, the process ¢ constructed from G € C%(U) such that its dissections are recursively
defined by (A.17), (A.18), (A.7), and (A.8), is a trading strateqy (additively generated) and its
relative wealth process is given by (A.9), or (3.23) - (3.25), where the (k,n)-Gamma process
[GEn s replaced by the one in (A.19).

Moreover, the process 1) constructed from G € C?*(U) such that 1/G*™ is locally bounded
for every (k,n) € N2, via the recipe (A.17), (A.18), (A.10), (A.11), and (A.12), is a trading
strategqy (multiplicatively generated) and its relative wealth process is given by (A.13), or (3.38)
- (3.40) and (3.52), where TGF™ in the expression of ESF™ is replaced by the one in (A.19).

Recalling that m is the size of the open market, we construct the top m open market portfolio
in the following example.
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Ezample A.1 (Top m open market portfolio). Let us consider a specific example of generating
function Gy, € C?(U) defined as

min(m,n)

GE(2) - Z z,  V(k,n) e N2

In each (k,n)-dissected market with n < m, this function (either additively or multiplicatively)
generates the self-financing market portfolio in Section 3.2.4. Thus, let us consider the other case
of n > m. Since each GF" satisfies the balance condition of Definition 3.3, the multiplicatively
generated trading strategy 1, of Corollary A.2 is given by
k, Gm)k, E,
Ui () = BOmEn (o),

where

ﬁ§k7n)() = ]]'{uz()gm}v 1= ]-7 s, N, and

1 [ 1
Gm,k,n ) — _ (kvn) _ (kvn)
gk oo (g [ T A e i)
from (A.14), (A.18), (A.19), and (3.29), on the (k,n)-dissection set. Its corresponding portfolio
Tm is computed from (2.17)
k.n k,n m k,n
(k) \ %(n,i ") Y L=yt () L )<mySi()
Zj:l wm,j (')Nj () Zj:l D et :[]‘{Uj('):e}/"’j () £=17(0)

Since the last denominator represents the total capitalization of the top m open market, the
portfolio weight 7r( ") for the i-th stock is equal to the relative capitalization of the i-th company
with respect to the top m open market whenever the company belongs to the top m index, and
the weight 7'['( ") is zero otherwise. In other words, this portfolio distributes the wealth according
to the relatlve capitalization of the stocks belonging to the top m open market. Thus, we call
this portfolio m,,, having m,lf’n) as its (k,n)-dissection, the top m open market portfolio. The
corresponding trading strategy ), above is called top m open market trading strategy and we
denote it by &, = ¥, following the notation of Definition 3.4. Its log relative wealth with
respect to the entire market capitalization is computed from Corollary A.2 (a version of (3.38)
- (3.40) and (3.48)):

min(m,n)
log Vém (1) log( Z u )+ EGm(t) + Cra(t) + Ca, (t),  where  (A.21)
12 [ LN, >m) (6N-)  (LN2)
EGm(t) = _22/ m (6N7) dLs () ™" = M 1))
o=1 7Tt Zi:1 F iy (s)
1 /t Lin>my (km) _ (kmn)
R Y R
k,n m m+1)/2
27k1+zll,u))() tm) mt1)
me(m e 1)% e 1)(74—1)
Ca,, (t) Zlog min(m, Nr,) (z,NT,_,) ) (4.22)

i=1 (z) (Tf—l +)
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Here, the correction term Crps is the same as in (3.48). The excess growth EGy,(+) is in fact
nonincreasing in time, capturing the ‘leakage’ of the top m open market at the boundary, that
is, a negative effect whenever a stock with the m-th rank is replaced by another stock which
had the rank m + 1 and dismissed from the top m open market.

We now define a subset of trading strategies (and corresponding portfolios) that invest only
in the stocks belonging to the top m open market at all times.

Definition A.2 (Trading strategy among the top m open market). A trading strategy 9 is
called trading strategy among the top m open market, if each dissection 9™ satisfies

k.n o .
9! )(-)1{uf,n(.)>m} =0, i=1,---,n, (A.23)

on the (k,n)-dissection set for every (k,n) € N2,

The condition (A.23) prohibits investing in the i-th stock whenever its rank is bigger than
m. In what follows, we shall construct trading strategies among the top m open market and
compare its performance with respect to the top m open market portfolio of (A.20), adopting
the argument of [15].

The additively generated trading strategy ¢ in Corollary A.3 takes the same representation
as in Remark A.1; %(k,n) depends on the Gamma process I'“*" and this Gamma process given
by (A.19) is nonzero unless the generating function G is a constant function, i.e., 9,G*" =
for every ¢ € [n]. Such dependence of wgk’n) on the quantity I'“*" is inevitable, even if the
generating function G*™ is balanced. Thus, go(k’”) may invest in the ¢-th company when the
company fails to belong to the top m open market. This is a characteristic of an additive
generation; ¢ distributes the cumulative earnings I'@*" uniformly across all the stocks in the
market. Therefore, additively generated trading strategies are not relevant for investing in open
markets.

On the other hand, the multiplicatively generated trading strategy 1 of Corollary A.3 takes

the simpler form of (A.14), if the generating function G*" is balanced:

wﬁkvn) (t) _ n@(km) (t) _ 5G,1/1,k,nEG,k,n(t)q9z(k7n) (t) _ Z 8£Gk,n(ut)]l{uf,n(t)zé}dG,iﬁ,k,nEG,k,n(t>.
/=1

Therefore, if the generating function G*™ depends only on the first m components of p such that
9G¥ (w.) = 0 holds for £ > m, then 1)(*™ satisfies the condition (A.23): wgk’n) ()1

0 for every i € [n]. We formulate this construction in the following result.

{ul ™ (H)y>m}

Corollary A.4. Suppose that a function G € C?(U) satisfies the following conditions:
(i) each 1/G*™ is locally bounded;
(ii) each G*™ is balanced in the sense of Definition 3.3;

(iii) for every pair (k,n) € N? satisfying m < n, each G*™ depends only on the first m compo-
nents of its input such that 9,G*™ = 0 holds for every ¢ > m.

Then, the multiplicatively generated trading strateqy o from G in Corollary A.3 is a trading
strategy among the top m stocks. Moreover, its log wealth process with respect to the top m open
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market trading strategy is computed as

Vkn (¢ . .
log Ugwm () :=log <V§mk"((t))> =log V¥*"(t) — log VEm (1)
min(m,n) i
—log G*(p) ~log (- (1) + |EGW) ~ EGu()| + [Calt) - Ca,, 0], (A29)
=1

for an arbitrary pair (t,w) belonging to a (k,n)-dissection set for (k,n) € N2. Here, EG,, and
Cg,, refer to the excess growth and the correction term of &, respectively, given in (A.22); EG
is from (3.39) without jump terms and the Gamma processes replaced by the ones in (A.19); Cq
is from (3.48) with G(u) replaced by G(p).

Proof. We easily obtain the result (A.24) by comparing the log relative wealth log V¥ in Corol-
lary A.3 with (A.21). O
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