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Large-scale downscaling plays an important role in assessing global impacts on hydrological sphere due to
climate changes. In such downscaling efforts, it is essential to consider the various climate regimes. Although
previous studies have indirectly suggested that the accuracy of downscaling might differ among climate regimes,
research that systematically understands or quantifies the variability of this accuracy remains scarce. This study
addresses this gap by systematically quantifying the performance of five different large-scale downscaling
methods across various climate regimes in the context of downscaling hydroclimatic indicators. Our findings
indicate that large-scale downscaling yields the highest accuracy on average when applied to temperature,
precipitation, and runoff in tropical, arid, and temperate climate regimes, respectively, while showing poor
accuracy in polar regimes for all variables. The maximum difference of normalized root mean squared errors for
hydroclimate indicators is 69 % across climate zones, and the spatial distribution of downscaling accuracy aligns
with spatial distribution of climate zones. The variation of downscaling accuracy is particularly significant in
temperature, precipitation, and seasonal runoff indicators. Furthermore, linkages between accuracy of climate
and hydrological indicators differ by climate zones. The underlying reasons for the different accuracy of
downscaling are spatially different accuracy of global climate models (GCMs) and interaction of downscaling
structure and climate regimes. This study articulated the source of spatially different accuracy/uncertainties for
large-scale downscaling that have never been addressed before. The findings of this study provide valuable
support in selecting appropriate downscaling methods, ultimately enhancing the spatial reliability and accuracy
of large-scale downscaling methods.
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1. Introduction

For decades, studies have been conducted to quantify the impacts of
climate change, as it is expected to impact various climate zones (IPCC,
2007a; IPCC, 2014; IPCC, 2022). In particular, impact assessment of
climate change on water resources has received significant attention due
to its close relationship with various fields, such as agriculture, energy,
and ecology (Kirchhoff et al., 2019; Kim et al., 2022a; Kumar et al.,
2023). For such impact assessment studies, global climate models
(GCMs) and hydrological models are often linked to quantify the change
in runoff/streamflow (Hundecha et al., 2016). However, a common
challenge encountered in linking GCMs and hydrological models is the
disparity in scale between the two. This mismatch can be addressed by
using a downscaling method (Fowler et al., 2007), which serves as a key
component linking GCMs and hydrological models (Wilby and Wigley,

1997; Maraun, 2016).

Downscaling methods can be categorized into either dynamic or
statistical approaches (Gutmann et al., 2014). Dynamic downscaling
mainly relies on utilizing large-scale circulation information from GCMs
as boundary conditions to downscale climate variables at a finer spatial
resolution by using the conservation equations (i.e., mass, momentum
and energy) within a focus area using regional climate models (RCMs).
Nevertheless, the implementation of RCMs demands substantial
computational resources (Eum et al., 2020), posing significant chal-
lenges when we consider multiple GCMs for analysis. On the other hand,
statistical downscaling methods can be implemented quickly with
limited/no computational cost and have been widely adopted in the
application of GCM outputs over various sectors (Zhang et al., 2020).

Comparative studies of statistical downscaling approaches have been
attempted (Chen et al., 2012). These studies are widely used to identify
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Fig. 1. The Koppen’s Climate classification in the Asian Monsoon region. Fig. 1(a) ~ (b) provides Koppen’s main and sub climate classification. A1 ~ D4 are spatial 3
clusters of the sub classification where significant spatial pattern of downscaling 4 accuracy arises along with climate regimes.

the appropriate downscaling methods, aiming to minimize the un-
certainties from the downscaling process. Many studies have compared
the reproducibility of climate indicators (Eum and Cannon, 2017;
Gutiérrez et al., 2018; Gutmann et al., 2014) and hydrological indicators
(Hundecha et al., 2016; Maurer et al., 2010; Teng et al., 2012) by various
downscaling methods. However, the majority of these studies have
focused only on a regional scale. Only a small number of studies have
examined variations in downscaling performances over various regions
across continents or globe (Fowler et al., 2007; Biirger et al., 2013).

When dealing with downscaling at a larger spatial scale, a diverse
array of climate regimes can be encompassed within the study area.
Several studies have indirectly implied that the accuracy of GCMs (Cai
et al., 2009) or downscaled outputs (Fowler et al., 2007; Hundecha et al.,
2016; Hou et al., 2019; Zhang et al., 2019; Kim et al., 2022b) varies
across different climate regimes. However, most of these studies have
primarily focused on comparing GCMs or downscaling methods, rather
than understanding the varying performances of downscaled outputs
across different climate regimes. Without such understanding, it would
be difficult to select the appropriate downscaling method that works
well for a particular hydroclimatic indicator in a given region. To the
best of our knowledge, very few studies have been undertaken to
quantify the variability or systematically identify the underlying cause
of the varying performances of downscaling across different climate
regimes.

This study aims to systematically compare the performance of large-
scale downscaling methods under the different climates in Asia. The
research questions addressed in this study are as follows: 1) Does the
accuracy of the downscaled output vary by climate regimes? If so, which
large-scale downscaling method is optimal for each climate regime? 2)
Does the selection of a downscaling method for climate variables impact
the accuracy of hydrological indicators to be estimated under each
climate regime? 3) Which indicators/metrics of precipitation, temper-
ature, and runoff have significant variations in accuracy under different
climate regimes? 4) What are the underlying causes for differences in
performance of downscaling methods under various climate regimes?
The rest of the manuscript is organized as follows: The next section
provides the study area and data employed in this study. Section 3 de-
scribes the methodology, including downscaling methods, hydrological
modeling, hydroclimate indicators, evaluation measure, and analysis of
variance method. The comparative results of different downscaling

methods are presented in Section 4. Finally, the discussion and conclu-
sion are provided in Section 5.

2. Study area and data collection
2.1. The Asian Monsoon region

The Asian Monsoon region, covering latitudes 9.75°S-54.75°N and
longitudes 30.75°E-149.75°E, was selected as the study area. Given that
the Asian Monsoon region is recognized as one of the climate change
hotspots (Hirabayashi et al., 2021; Li and Li, 2022), it was selected as the
focus of this study.

In this study, we utilize Koppen’s climate classification for regional
climate regime categorization. The Koppen climate classification is one
of the most frequently used climate classification (Beck et al., 2018).
Originally designed to empirically map vegetation (Koppen, 1936), but
it has since been employed in studies focused on differences in climate
regimes and assessing the impacts of climate changes (Beck et al., 2018;
Kim and Bae, 2021; Son and Bae, 2015). The classification comprises
five main classes (Fig. 1(a)) and 30 sub classes (Fig. 1(b)), based on
thresholds and seasonality of precipitation and temperature. Asian
Monsoon region includes tropical (16 %), dry (36 %), temperate (14 %),
continental (26 %), and polar (8 %) climates. For clarity, we will refer to
each of these climate zones as A~E, respectively, in accordance with
Koppen’s main classification.

2.2. Data collection

All GCMs include biases in representing predictors, and these biases
are propagated to downscaling results. This propagation can signifi-
cantly affect the evaluation of downscaling accuracy. Consequently,
evaluating downscaling methods based on multiple GCMs with varying
levels of bias complicates the derivation of generalizable information
valid across all GCMs, as it is difficult to distinguish between biases
originating from GCMs and those from downscaling skill (Abatzoglou
and Brown, 2011). The standard practice to isolate and examine
downscaling skill, regardless of bias in the predictors, is to use reanalysis
data, as they are less influenced by these biases compared to other GCM
outputs (Maraun et al., 2014). Therefore, evaluation of downscaling skill
based on reanalysis data are likely to be more valid and applicable to
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Fig. 2. Methodological framework for comparing large-scale downscaling methods 9 across different climate regimes.

other GCMs. For this reason, this study has chosen reanalysis data to
represent the predictors.

The European Centre for Medium-Range Weather Forecasts rean-
alysis version 5 (ERA5) data is considered to represent the predictors in
this study because it closely matches observed precipitation and tem-
perature compared to GCMs, minimizing the influence of propagated
biases in the large-scale predictors. ERAS data is aggregated from the
original 0.25° to 1° resolution through a simple average to align with the
spatial resolution of the Coupled Model Intercomparison Project Phase 6
(CMIP6) GCMs. However, it is important to note that reanalysis data
may still have biases in representing precipitation or temperatures
because it involves models simulating circulations rather than directly
focusing on precipitation or temperature. We consider regridded
observed data of precipitation, maximum temperature and minimum
temperature at 0.5 degree from Asian Precipitation-Highly Resolved
Observational Data Integration Toward Evaluation (APHRODITE) and
the Unified Gauged-Based Analysis of the Climate Prediction Center as
the predictand for downscaling, so that the performance of different
downscaling methods can be evaluated. We consider reanalysis and
observational datasets on a daily timescale from 1979 to 2015, as Kim
et al. (2022b) have shown that the five different large-scale downscaling
methods considered in this study can be successfully applied to this
period over the Asian Monsoon region.

3. Methodology

Fig. 2 illustrates the research framework designed to address the
proposed research questions. Initially, daily precipitation, maximum
temperature, and minimum temperature data from ERA5 were trans-
formed from their original scale (0.25°) to a coarser scale (1.0°). This
coarser-scale reanalysis data from ERA5 is considered to represent
predictors. Subsequently, this coarse-scale reanalysis data was down-
scaled to a finer scale (0.5°) using five different large-scale downscaling

methods, including bilinear interpolation (BILR), bias correction spatial
disaggregation (BCSD), bias corrected constructed analogue (BCCA),
localized constructed analogue (LOCA) and bias corrected climate
informed analogue (BCIA). Utilizing climate variables downscaled by
each of these five downscaling methods, as well as observed climate data
at a 0.5° resolution, runoff simulations were conducted using the Vari-
able Infiltration Capacity (VIC) model. The simulated runoff based on
the observed climate data is hereafter referred to as the reference. Based
on the five downscaled and one observed climatic timeseries, as well as
the five downscaled and one reference runoff timeseries, various climate
and hydrological indicators were calculated.

To assess the performance variability of five distinct downscaling
methods across diverse climate regimes, we examined and compared the
hydroclimate indicators derived through the application of these
downscaling methods. We also evaluated how the use of different
downscaling methods affects the accuracy of hydrological indicators.
Moreover, we investigated the variability in downscaling performance
with respect to both climate regimes and downscaling methods for each
hydroclimate indicator. Finally, we identified the causes for difference
in performance of downscaling methods under various climate regimes.

3.1. Large-scale downscaling methods

Statistical downscaling methods are typically grouped into two pri-
mary categories: model output statistics (MOS) and perfect prognosis
(PP) (Maraun et al., 2010). MOS methods involve using identical vari-
ables for both predictors and predictands, allowing direct adjustments of
coarse-scale GCM outputs to match fine-scale observations more closely.
On the other hand, PP methods establish a dependable relationship
between large-scale synoptical predictors and fine-scale predictands.
While MOS exhibits significant downscaling capabilities when used with
various GCMs, it may not fully account for the physical relationships
between the predictors and predictands. On the other hand, PP can
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Table 1
List of hydroclimate variables used for downscaling experiments.

Variable Level Predictor/Predictand(Sources)

Maximum Surface Predictor (reanalysis) &
temperature predictand (observation)

Minimum Surface Predictor (reanalysis) &
temperature predictand (observation)

Average Surface Predictor (reanalysis)
temperature

Precipitation Surface Predictor (reanalysis) &

predictand (observation)

Mean sea level Sea level Predictor (reanalysis)
pressure
Geopotential 250, 500, 700, 850, and Predictor (reanalysis)
height 1000 mb pressure
Temperature 250, 500, 700, 850, and Predictor (reanalysis)
1000 mb pressure

Wind speed-u 250, 500, 700, 850, and Predictor (reanalysis)

direction 1000 mb pressure

Wind speed-v 250, 500, 700, 850, and Predictor (reanalysis)
direction 1000 mb pressure

Specific humidity 250, 500, 700, 850, and Predictor (reanalysis)

1000 mb pressure

consider these physical relationships, but its performance can be
significantly influenced by the choice of GCMs. In this study, we
employed the widely used MOS method, known for its simplicity, and
the more sophisticated MOS-PP method, which combines the MOS and
PP concepts (Kim et al., 2022b).

While BILR and BCSD are MOS type methods, BCCA, LOCA, and
BCIA are considered MOS-PP type methods. BILR only considers spatial
distance during the downscaling process, while BCSD incorporates both
distance and bias correction through quantile mapping (QM). On the
other hand, BCCA, LOCA, and BCIA use the Analogue method in com-
bination with QM. Distance-based method and QM are included in the
MOS concept, but Analogue is included in the PP concept. QM is a
correction method grounded in cumulative probability distribution
functions (CDFs) of simulation and observation. For this study, CDFs for
precipitation and temperature were modeled using Gamma distribution
and Gaussian distribution, respectively with maximum likelihood esti-
mation. The Analogue method leverages historical observations to
downscale climate outputs from GCMs. This involves identifying syn-
optical similarities between the target date and historical periods
(analogue library), selecting similar dates (analogue dates) from the li-
brary, and using climate data from those analogue dates for downscaling
at the target date. Degrees of synoptical similarity are estimated based
on all predictors suggested in Table 1.

The BILR method stands out as the simplest approach, utilizing linear
interpolation based on distance. This approach involves selecting the
nearest four coarse grids to the target grid with finer resolution and
applying inverse weighted interpolation based on distance. This method
is not practical for large-scale downscaling due to the simple linear
structure but for comparison with other methods.

BCSD employs an integrated approach combining BILR and QM
(Abatzoglou and Brown, 2012). After applying BILR, QM is subsequently
utilized to correct the biases in the BILR output based on the relationship
between the BILR-derived output and observations. This method has a
powerful ability in representing normal conditions, but it has limitation
to represent predictands located close to the tails of their CDF. To
address this limitation, corrections in the tails are performed by utilizing
roughly interpolated or extrapolated CDFs due to the scarcity of samples
available for estimating cumulative probabilities in those extreme tail
sections. This approach can potentially introduce critical biases
(Holthuijzen et al., 2022).

BCCA method combines Constructed Analogue (CA) and QM
methods (Hidalgo et al., 2008). In this method, the coarse-scale pre-
dictand is corrected using QM and then downscaled using the CA
method. The CA method, as it linearly combines climate data from

Journal of Hydrology 641 (2024) 131818

multiple analogue dates, has the potential to overestimate drizzle days
and smooth out extremes (Pierce et al., 2014). It also has limitations in
identifying regionally appropriate analogue dates since it lacks locali-
zation. These limitations often lead to a relatively poor downscaling
performance (Kim et al., 2022b).

LOCA method is a localized analogue method (Pierce et al., 2014).
Study region is classified into local regions based on distance, and the
analogue domain - i.e., the spatial domain for comparing regional
synoptic similarities — is determined through spatial correlation of pre-
dictand. For each local region, analogue dates are identified on a coarse
scale using the analogue domain. From these analogue dates, the most
similar analogue date to the target date is assigned to each fine grid cell
for downscaling. The degree of similarity can be estimated by calcu-
lating the distance between the predictand values of analogue dates and
the bias-corrected values of the target dates at a fine scale through QM.
This method can overcome the issues related to representing the number
of drizzle days and extremes that arise with BCCA. However, it has
limitations in classifying local regions and analogue domains; thus, the
local regions have low consistency, and the analogue domain can be
discontinuous.

BCIA method is another localized method suggested by Kim et al.
(2022b). It has a similar structure to that of LOCA, but there is a dif-
ference in the localization and definition of the analogue domain. It
adopts a climate classification for the localization and definition of
analogue domains, overcomes the limitations of LOCA, and performs
better in terms of climate downscaling (Kim et al., 2022b).

Except for the BILR method, all downscaling methods require a
calibration period for fitting the probability distribution or library for
extracting analogue dates. The data period was separated into calibra-
tion (1979 ~ 2000) and testing (2001 ~ 2015) periods following Kim
et al. (2022b), which successfully applied these downscaling methods
over Asian Monsoon region. All the results presented in this study are
derived from the testing period.

3.2. Hydrological modeling

VIC is a global hydrological model that is widely used for hydro-
logical analyses at continental and global scales. Bae et al. (2013) has
developed a VIC model with a spatial resolution of 0.5° for the Asian
Monsoon region. They calibrated model parameters for various gauged
headwater basins and regionalized these parameters to other basins
based on the Koppen climate classification across the Asian Monsoon
region. Notably, they used the same observed meteorological forcings as
this study to develop the VIC model. More detailed results about model
performances can be found in Fig. S1, Table S2, and Table S3.

VIC model was selected to simulate runoff in this study. The forcing
input variables for the VIC model are daily precipitation, maximum and
minimum temperature, and wind speed. We conducted runoff simula-
tions using the VIC model and climate forcings from the downscaled
outputs and observations, except for the wind speed due to the lack of
observed data. The reanalysis data with fine-scale was used for wind
speed forcing.

3.3. Hydroclimate indicators

For the climate aspect, twenty-nine indicators from the Expert Teams
on Climate Change Detection and Indices (ETCCDI), which are
commonly used for detecting climate change and for evaluating down-
scaling methods (Eum et al., 2016; Werner and Cannon, 2016), were
selected. For the hydrological aspect, we extracted thirty-three in-
dicators from the Indicators of Hydrologic Alterations (IHAs), specif-
ically designed for detecting flow alterations, such as changes in the
monthly and annual extremes, high and low pulses, and water condi-
tions (Mathews and Richter, 2007; Pandey et al., 2021). These sixty-two
indicators were classified into three main group and sixteen subgroups,
as shown in Table 2. Further detailed definitions can be found in
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Table 2
List of hydroclimate indicators.

Journal of Hydrology 641 (2024) 131818

Main Group Subgroup

Indicators

Temperature indicators ~ Duration of cold and hot days(Cold and hot)

Duration based on quantile of temperature
(T quantile)

Intensity of temperature(T intensity)

Precipitation indicators  Intensity of heavy precipitation

(Heavy P intensity)

Intensity of annual precipitation

(Annual P)

Frequency of heavy precipitation

(Heavy P frequency)

Duration of wet and dry days (Wet and dry)

Runoff indicators Monthly runoff in MAM (MAM)

Monthly runoff in JJA

(JJA)

Monthly runoff in SON (SON)

Monthly runoff in DJF

(DJF)

Magnitude and duration of low runoff (Low runoff)

Magnitude of high runoff (High runoff)

Timing of annual extreme (Timing)
Frequency and duration of high and low pulses (Pulse)

Rate and frequency of water condition changes (Changes)

FD (frost days)

ID (days with ice)
SU (summer days)
CSDI (cold spell duration), WSDI (warm spell duration)

TN10p, TX10p, TN50p, TX50p, TN90p, TX90p (durations when the daily maximum or
minimum temperature falls below or exceeds the certain threshold based on quantiles)
TNn, TNx, Txn, TXx (monthly minimum or maximum of daily maximum or minimum

temperatures)

DTR (daily temperature range)

- TR (tropical nights)
- GSL (growing season length)

Rx1day, Rx5day (monthly maximum 1-day or 5-days precipitation)

R95Ptot, R99pTOT (total precipitation when precipitation is larger than threshold
quantile)

SDII (average precipitation of wet days)

PRCPTOT (annual total precipitation of wet days)

R10 mm, R20 mm (annual number of days when daily precipitation is larger than the
thresholds)

CDD (maximum length of dry spell)

CWD (maximum length of wet spell)

WD (wet days)

MARF, APRF, MAYF (monthly mean runoff in March. April and May)
JUNF, JULF, AUGF (monthly mean runoff in June, July and August)

SEPF, OCTF, NOVF (monthly mean runoff in September, October, and November)
DECF, JANF, FEBF (monthly mean runoff in December, January, and February)

MI1F, MI3F, MI7F, MI30F, MI9OF (annual minimum runoff of a day, 3 days, 7 days, 30
days and 90 days)

NOZR (number of zero-runoff days)

RABA (ratio of 7-days runoff to mean runoff)

MA1F, MA3F, MA7F, MA30F, MA9OF (annual maximum runoff a day, 3 days, 7 days, 30
days, and 90 days)

TMAX, TMIN (Julian date of each annual daily maximum and minimum)

NLP, DLP (number of low pulses and mean duration of low pulses within each water year),
NHP, DHP (number of high pulses and mean duration of high pulses within each water
year),

MPD, MND (rise and fall rate)

NREV (number of hydrological reversals)

Table S1 in the supplementary material.

3.4. Evaluation of downscaled outputs and analysis of variance of
downscaled accuracy across climate zones

The normalized root mean squared error (NRMSE) was used to
evaluate and compare the downscaling methods for each hydroclimate
indicator. The NRMSE was calculated for each grid as a function of the
root mean squared error and standard deviation, as shown in Eq. (1).

NR, (Z;l (Six — Oi.k)2 )E/ (221 (O — 61‘,-)2 )E

n n

(€Y

where NR; is the NRMSE of i-th grid for a certain hydroclimate indicator,
k is the index of sample, n is the number of samples, S;y is the indicator
based on downscaled outputs, O; is the indicator based on observation,
the bar over the variable and the dot(e) in subscript denotes average of
the variable for the subscript term. For instance, O;, represents the
averaged value of observed indicator for the k term.

This study also adopted the two-way analysis of variance (ANOVA)
to quantify the variance in downscaling performance attributable to
climate regimes, downscaling methods, and their interactions, as re-
flected in the NRMSE of the downscaled outputs. ANOVA is a statistical
method used to evaluate differences in the means of dependent variables
classified into multiple nominal groups based on certain factors. It al-
lows for comparing between-group variances and within-group vari-
ances to statistically test the influence of such factors (Lee et al., 2021).

It is widely adopted in studies to understand the contribution of the
factors to the variability of the variables of interest (Wang et al., 2020;
Zhang et al., 2020) because it enables the analysis of interaction effects
between factors and accommodates different sample sizes of the nomi-
nal groups in the analysis (Anaraki et al., 2021).

In this study, climate zones and downscaling methods are considered
as the grouping factors, and we conducted a variance analysis of the
NRMSE corresponding to each group. Based on the variances of
between-groups and within-group of climate regimes and downscaling
methods, the variance caused by climate regime groups (hereafter
referred to as VCR) and downscaling method selection (hereafter
referred to as VDM) on downscaling performance were quantified,
respectively. Also, the variances caused by the interaction between
climate regimes and downscaling method selection (hereafter referred
to as VCD) were quantified. The VCD represents how the selection of
downscaling methods can change the variations in downscaling per-
formances across different climate regimes. For instance, if a down-
scaling method with limitations in representing heavy rainfall (referred
to as Method A) is applied to tropical regions where heavy rainfall
frequently occurs, the accuracy of Method A is expected to underper-
form compared to other downscaling methods in that region and
compared to its performance in other climate regimes. This variability in
accuracy cannot be explained solely by the climate regimes or the
downscaling methods; therefore, it can be used for the ‘interaction’ term
in ANOVA.

A detailed mathematical description of this process is provided by
the equations presented in Egs. (2) ~ (9). The total variance of
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Region A Region B

Indicators

Region C Region D Region E

BR|BD|BA|LA|CA| A

BR|BD(BA|LA|CA

A [BR(BD|BA|LA|CA| A |BR|BD|BA|LA|CA| A [BR|BD|BA|LA(CA| A

Cold and hot

T quantile

T intensity

Temperature
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Heavy P intensity

Annual P

Heavy P frequency

Wet and dry

Precipitation

AVE

MAM

JIA

SON

DJF

Low runoff

Runoff

High runoff

Timing

Pulse

Changes

AVE

BR: BILR; BD: BCSD; BA: BCCA; LA: LOCA; CA: BCIA; A: Average

~0.25

Legend 0.25~0.50 | 0.50~0.75

0.75~1.00

1.00~1.25|1.25~1.50 [ 1.50~1.75 | 1.75~2.00 | 2.00~2.25

Fig. 3. Average NRMSEs of hydroclimate indicators. The color within each cell 13 represents the average NRMSEs of the corresponding indicators for the climate
zone or 14 downscaling method. ‘AVE’ and ‘A’ denote the column-wise average value and the row-15 wise average value for each indicator, respectively.

dependent variables (SS;q) is equal to the sum of variances of between-
groups and within-groups as:

Sstotul = Sscr + Ssd.y + Sscd + Ssem;r (2)
where SS. is the variance of between-group among climate regimes
(VCR), SS4s the variance of between-group among downscaling methods
(VDM), SS.q the variance of interactions between climate regimes and
downscaling methods (VCD), and SSero- the variance of within-group.
This equation can be further specified as:

nc nd "&d 2 nc 2 nd 2
SN (et —Tuee) =D (Fewr—Tuee) + D (Frae —er)
c=1 d=1 g=1 c=1 d=1

3)
nc nd 8ed

+ Zl dz ()_'c.,dm 7.7c.o,o *}_'.,d,. +J7.,.,.)2 + 2 (J_/m,g *_}_'o,o,o)2

c= =1 8=

where y 4, is the NR; based on dth downscaling method for a certain
hydroclimate indicator. Here, the subscript i that denotes the grid in Eq.
(1) is indicated by c and g, where c represents the climate zone and g
represents the index of grids belonging to that particular climate zone. In
Eq. (3), nc is the number of climate zones (which equals to five in this
study), nd is the number of downscaling methods (which equals to five in
this study), and ng,_ 4 is the number of grids in climate zone c using the
d-th downscaling method. The differences in the means by groups and
interaction effect can be tested by using the F statistics:

F; =S8S,/(nc—1) (4)
Fy; = SS4s/(nd — 1) (5)
F.q = SS./(nc —1)(nd — 1) (6)

The contributions 7 of each factor and their interactions to the total
variance can be quantified as:

Ner = Sscr/sstoml (7)
Ngs = Ssds/ssmml 8
Nea = SScd/SSwtal 9

According to Cohen (2013), the contribution of factor can be clas-
sified as small (y > 0.01), medium ( > 0.06), and large (3 > 0.14).

4. Results

4.1. Comparison of downscaling performances across different climate
regimes

One of the simplest ways to assess variations in downscaling per-
formance across different climate regimes involves comparing the
average errors. As mentioned in section 2.2, we utilize the merged ERA5
to represent predictors; henceforth all mention of ‘GCM’ indicates the
merged ERA5. The averaged NRMSEs, based on downscaling methods



S.-H. Kim et al. Journal of Hydrology 641 (2024) 131818

(a) NRMSEs of temperature indicators (b) NRMSEs of precipitation indicators

Boundary
= ofregion

Boundary
%o ofregion

o ‘t g .
T TS, NRMSE

Max Min

(c) NRMSEs of runoff indicators (d) Optimal method of temperature
indicators

1% Boundary
R »

Boundary A1 s ’31% :1'3 of region

:.: of region

4 (O ﬁlez
adbiniey 8 Ratio (%) ﬂlh w‘_j“%

BILR | BCSD
18 18 7 24 33
(e) Optimal method of precipitation (f) Optimal method of runoff

indicators

v ol T P
- Boundary N h e i Boundary
¥ . : g r )
- =, ofregion r % . ofrregion
e ﬂ Ty, J:-ﬁ f
Ratio (%) L Ratio (%) B
BILR BCSD BILR BCSD
9 55 2 13 21 29 47 1 9 14

Fig. 4. Spatial distribution of NRMSEs and optimal downscaling method. In Fig. 4(a) ~ (f) Ratio (%) represents the percentage of grids where each respective
downscaling 20 method demonstrates the best performance. Purple boundaries and labels are sub-21 classifications of Koppen, as shown in Fig. 1. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)



S.-H. Kim et al.

(a) T quantile - MAM
0.4

0.2 |£|
T

Correlation Coefficient

-0.2

A B c D E
Climate Zones

(c) Heavy P frequency — Low runoff

1
<
(7
S
E ost =
3 1
c
S ! | 1
gL L B =
2
Q
3
0.5 '
A B C D E

Climate Zones
(e) Heavy P frequency — Timing

1 .
<
7
G
£ os
3
c
o == -
E ol a= = ==
2
(=]
(3]

05—

A B c D E

Climate Zones

Journal of Hydrology 641 (2024) 131818

(b) Wet and Dry — SON
1

05——=

B

or ==

Correlation Coefficient
M
I'II_" 1
|
LY
ol
il
| ]
1

-0.5
A B Cc D E

Climate Zones
(d) Heavy P intensity — High runoff

1
5 |+ & =
1 ] i
A I = s
8 o
£
(&)
-0.5

A B c D E
Climate Zones

(f) Annual P — Change

1
§0.5 [
s |58 P & B
S 0f
i
(&
-0.5

A B c D E
Climate Zones

Fig. 5. Correlation Coefficients between NRMSEs of Climate and Hydrological 25 indicators. X-axis and Y-axis denote climate zones and correlation coefficients. The
26 range of the box plot means the correlation variability from different downscaling 27 methods.

and specific indicators, exhibit variation across climate regimes, with a
range spanning from 7 % to 69 %. When averaging NRMSEs for the main
indicator groups, identified in Table 2, and downscaling methods, the
average variations for temperature, precipitation, and runoff indicators,
based on climate zones, are 16 %, 28 %, and 21 %, respectively. The
NRMSEs of region E show the highest values for all indicators, while
regions A, B, and C, on average, demonstrate the lowest values for
temperature, precipitation, and runoff indicators, respectively (Fig. 3).

Downscaling methods that exhibit the lowest NRMSEs are mostly not
different across climate regimes. The BCIA shows the lowest averaged
NRMSE:s in all climate zones for the temperature indicators (Fig. 3). For
the T quantile indicators, however, all downscaling methods show
comparable NRMSEs. These similar levels of errors arise from the
inability of all methods to correct the quantiles of GCM during the
downscaling process. The BCSD shows the lowest averaged NRMSEs for
precipitation and runoff indicators, except in region A for the

precipitation indicators. However, the BCSD shows relatively high
NRMSEs for the High P Intensity indicator in region A and for the High P
Frequency indicator in region E.

BILR method shows relatively large errors the most due to its lack of
consideration for bias correction within the scheme. Among the down-
scaling methods that incorporate bias correction, the BCCA shows the
largest errors. It shows limitations in representing most of the precipi-
tation indicators, as discussed in Section 3.1. The errors in precipitation
indicators directly influence the High runoff and Changes in runoff in-
dicators. The BCCA shows a relatively lower accuracy for these in-
dicators compared to other indicators and methods. The LOCA method
shows similar results with BCIA, as both methods employ the localized
analogue concept.

Averaged NRMSEs across different climate zones can represent
overall variation in NRMSE under different climate regimes. However, it
is difficult to detect whether the average is affected by the outliers. Thus,
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we visualize the spatial distribution of NRMSEs for all grids, as shown in
Fig. 4. Additionally, we visualize the optimal downscaling methods,
which have the lowest errors, to check whether there is a potential
relationship between climate regimes and downscaling selections. It is
noteworthy that spatial patterns of NRMSEs and optimal downscaling
methods closely correspond to the spatial boundaries of Koppen’s
climate zone.

Spatial variations of NRMSEs are related to climate zones. Bound-
aries that indicate regions with high NRMSE (HNR) or low NRMSE
(LNR) mostly align with climate zone boundaries. For temperature in-
dicators, almost all HNRs are in regions B, C, and E in Fig. 4(a). For
precipitation indicators, HNRs are in regions C, D1, D4, and E in Fig. 4
(b). For runoff indicators, HNRs are in regions A, B, E, and D3 within
Fig. 4(c).

A single dominant downscaling method does not prevail across the
entire study region. The optimal downscaling method shows spatial
clusters that align with climate zone boundaries. Regarding temperature
indicators, BCIA shows the lowest errors in 33 % of the total grids, while
BILR shows the lowest errors in regions C1 and B1, according to Fig. 4
(d). Furthermore, BCSD shows the lowest errors in regions Al and A2,
and BCCA shows the lowest errors in region E1. For precipitation in-
dicators, BCSD shows the lowest errors in 55 % of the total grids, while
BILR shows the lowest errors in regions B2 and C1, as shown in Fig. 4(e).
BCIA and LOCA show the lowest errors in regions A1, B1, and D3. As for
the runoff indicators, BCSD shows the lowest errors in 47 % of the total
grids, while BILR shows the lowest errors in regions B, C1, and D2 in
Fig. 4(f). BCIA shows the lowest errors in regions D3 and E1.

4.2. Evaluating the impact of downscaling method selection on the
accuracy of hydrological indicators

Here, we explore the correlations between the NRMSEs of climate
and hydrological indicators to assess how the performance of climate
downscaling affects the accuracy of the resultant hydrological variables.
Higher correlation values may suggest that the errors in the downscaled

climate variables are more likely to affect the downscaling accuracy of
hydrological variables. Within each climate zone, these correlation
values can vary depending on the downscaling methods employed. Such
variation could indicate the sensitivity of the accuracy of hydrological
variables to the performance of climate downscaling. The more signifi-
cant the variation in correlation, the greater the indication that potential
errors in hydrological indicators can be managed by selecting appro-
priate downscaling methods for each climate zone. While our analysis
examines the relationship for each pair of climate and hydrological in-
dicators (Fig. S2), we primarily focus on those that demonstrate signif-
icant patterns, as illustrated in Fig. 5.

The average correlation coefficient between the NRMSEs of
temperature-related climate indicators and hydrological indicators
across all climate zones is estimated to be 0.05. The estimated variability
in these correlation coefficients, as represented by their maximum
range, is 0.10. Meanwhile, the average correlation coefficient between
the NRMSEs of precipitation-related climate indicators and hydrological
indicators is estimated to be 0.10, with a higher estimated variability in
these coefficients, represented by a maximum range of 0.24. These
findings indicate that errors in precipitation-related climate indicators
are more likely to impact the downscaling accuracy of hydrological in-
dicators compared to errors in temperature-related climate indicators.

As shown in Fig. 5, regions A and E demonstrate notably high cor-
relations between the NRMSEs of climate indicators and those of hy-
drological indicators, on average. These regions also display greater
variability in these correlation coefficients compared to other regions.
Meanwhile, in region B, the errors in hydrological indicators show a
relatively low correlation with errors in both temperature-related and
precipitation-related climate indicators, with overall less variability in
these correlations. This suggests that the choice of downscaling methods
for climate variables is likely to significantly impact the accuracy of
hydrological variables in regions A and E — where the correlations and
variability between the errors of climate and hydrological indicators are
pronounced. Conversely, in region B, the impact may be minimal due to
the lower correlations and variability between the errors in climate and
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hydrological indicators.

Furthermore, as illustrated in Fig. S1, the errors in High runoff in-
dicator generally show high correlations with errors in climate in-
dicators across most climate zones, accompanied by high variability in
these correlations, suggesting the accuracy of High runoff indicator is
closely tied to the accuracy of climate downscaling. Conversely, the
errors in Timing indicator exhibit low correlations and low correlation
variability in most zones, indicating it may be less affected by down-
scaling accuracy.

4.3. Analysis of variance for downscaling performance by climate regimes
and selection of downscaling methods

ANOVA is used to quantify the variability in downscaling perfor-
mance that can be explained by different climate regimes and down-
scaling methods. The results from ANOVA indicate that significant
variations in NRMSEs of the downscaled hydroclimate indicators are
attributable to climate regimes (VCR), downscaling methods (VDS), and
their interactions (VCD), each demonstrating statistical significance at
the 0.01 level for all indicators in F-test (Table S4). VDS, VCR, and VCD
collectively explain 17.7 %, 28.2 %, and 18.4 % of the averaged variance
in NRMSEs for temperature, precipitation, and runoff indicators,
respectively. VDS accounts for 11.1 %, VCR for 5.5 %, and VCD for 4.9 %
of the average explained variation in the NRMSEs of hydroclimate in-
dicators. A more detailed breakdown of the contributions of VDS, VCR,
and VCD to the variation in the downscaling performance for each in-
dicator is shown in Fig. 6.

VDS effectively explains the variations in the downscaling errors for
all hydroclimate indicators, with exception of the T quantile and Timing
indicators. Meanwhile, VCR is highly related to the variations in the
downscaling errors of all temperature-related indicators and certain
hydrological indicators, including Wet and dry, MAM, SON, and High
runoff indicators. VCD effectively explains the variations in the down-
scaling errors for High runoff and precipitation indicators except Heavy
P intensity. Considering VCR and VCD, all temperature and precipitation
indicators have a large variability of downscaling errors depending on
climate regimes. Moreover, MAM, SON, and High runoff indicators also
have large variations by climate regimes.

4.4. Potential causes behind the variance of downscaling performances
under different climate regimes

We establish and validate two hypotheses to understand the sources
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of the variation in the downscaling performances across different
climate zones. The first hypothesis posits that this variation is due to
spatial variability in the performance of the GCM across the climate
zones. The second hypothesis suggests that the interaction between the
downscaling method and climate regimes leads to the differences in the
downscaling performances across these climate zones.

To test the first hypothesis, the downscaling performance of BILR and
others are compared (Fig. 7). BILR performance can represent the GCM
performance on the same scale as the downscaled output since it does
not involve any bias correction. This comparison allows us to discern
whether the variation in the downscaling performances across different
climate zones are due to the spatially variant GCM performance or not. A
positive correlation between the performances of the downscaling
method and GCM suggests that variations in downscaling performances
are influenced by the GCM performance.

Fig. 7 illustrates a positive correlation between the downscaling er-
rors of BILR and those achieved by other downscaling methods across
different climate zones. Here, the downscaling error of each method in
different climate zones is represented by the mean NRMSE specific to
each respective climate zone. The positive relationship can be found in
regions A, D, and E for temperature indicators, and regions A, B, and E
for precipitation indicators, and in all regions for runoff indicators. In
comparison to BCSD, LOCA, and BCIA, BCCA shows a weak positive
relationship due to the limitations of BCCA described in subsection 3.1.

The Pearson correlation analysis results between NRMSEs of BILR
and other downscaling methods show a strong positive correlation co-
efficient of 0.6 or higher, with significance levels ranging from 0.01 to
0.02 for all methods except BCCA. NRMSEs of BCCA also show a positive
relationship with NRMSEs of BILR, but this relationship is relatively
weak, as the correlation coefficient and significance level are 0.39 and
0.15, respectively. By confirming a similar performance of BILR and
other downscaling methods in estimating hydroclimatic indicators, we
validate our first hypothesis that the spatial variability in the GCM
performance is the key factor that leads to the spatially varying per-
formances of downscaling across different climate zones. This can ac-
count for most of VCR, as positive relationships are found in most
downscaling methods.

The second hypothesis is that the downscaling performances vary by
climate regimes due to interaction between climate regimes and
downscaling methods (VCD). This hypothesis is substantiated when a
particular downscaling method shows unusual accuracy in specific cli-
matic zones compared to other climatic zones. We investigate the CDF of
indicators with high VCD to identify the combinations of climate zones
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Fig. 8. Comparison of empirical cumulative distribution functions (ECDFs) for the 42 indicators where the interactions between climate regimes and downscaling
methods 43 exhibit significant effects on explaining the variability of their NRMSEs. The CDFs are 44 derived from grids belonging to each climate zone.

and downscaling methods that exhibit unusual accuracy (hereafter
interaction case). Fig. 8 includes CDFs of indicators that show interac-
tion cases, such as ID, Rxlday, R20mm, and WD.

Most of the interaction cases are found in these indicators when they
are derived from variables downscaled by the BCSD and BCCA methods.
The BCSD method tends to result in greater errors in these indicators
compared to other methods, especially when the BILR output signifi-
cantly deviates from the observed values (Fig. 8a and b). The BCSD,
which is based on only QM, is more sensitive to the performance of
GCMs compared to other methods that involve combining QM and
analogue.

BCSD exhibit a large uncertainty when downscaling extreme values
as shown in Fig. 8(c) ~ Fig. 8(f). For example, the Rx1day, which rep-
resents 1-day maximum rainfall (Rx1), exhibits a larger error in region A
compared to region B. This is attributable to the high variability and
heavy-tailed distribution of Rx1 in region A, as opposed to the low
variability and a lighter-tailed distribution in region B. Similarly, the
R20mm, which indicates the number of days rainfall exceeding 20 mm,
exhibits higher errors in region E. In this region, the 20 mm rainfall may
be considered extreme. However, in region A, where the 20 mm
threshold does not coincide with the tail of the precipitation CDF, the
BCSD method demonstrates greater accuracy for this indicator.

Meanwhile, the BCCA method, which has limitations in reproducing
rainfall days and tends to underestimate rainfall amounts, demonstrates
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higher accuracy for the R20mm indicator in region E compared to region
A. Notably, the number of rainfall days exceeding 20 mm is relatively
lower in region E than in region A. Similarly, in region B, which has
fewer rainfall days, the BCCA method shows greater accuracy compared
to region D, which has more rainfall days and greater variability.

The second hypothesis is validated for interaction cases as Fig. 8
shows evidence for the unusual performances of downscaling output
interacting with climate regimes. Characteristics of climate regimes
amplify or diminish the influence of structural limitations of down-
scaling methods, resulting in varying downscaling performance by cli-
matic regimes.

5. Discussion

5.1. Heterogeneous climate characteristics leading to varying regional
uncertainties in large-scale downscaling results

This study addresses the first research question by demonstrating
significant variability in downscaling performance across different
climate regimes, with the optimal downscaling methods being spatially
aligned with these regimes. For large-scale GCM-based analysis, down-
scaling methods that outperform across the entire study area are
generally selected. However, uncertainty levels of downscaling outputs
vary by region due to the different climate regimes (Figs. 3 and 4). The
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performance of the selected downscaling method can dramatically
decrease within certain climate regions (Fig. 7). Hence, conducting
inter-regional comparisons of downscaling outputs based on a single
downscaling method is not a fair comparison under identical conditions.
There is a need to consider how to account for varying levels of uncer-
tainty in inter-regional comparisons of downscaling results, especially
for sensitive indicators identified during this study.

The discussion can be further expanded regarding the third research
question. This study analyzed VCR, VDM, and VCD. Indicators exhibit-
ing high VCR and VCD are sensitive to climate regimes. When consid-
ering VCR and VCD collectively, indicators such as Wet and dry, High
runoff, and Heavy P frequency are shown to be particularly sensitive to
different climate regimes. These indicators are mostly associated with
extreme precipitation events, implying that greater attention must be
paid to the spatially different uncertainty levels across climate regimes
when comparing downscaled precipitation extremes. A potential
approach to minimize these spatial differences in uncertainty levels is to
select downscaling methods tailored to each climate zone, thereby
reducing VCR, as the spatial distribution of downscaling errors aligns
with climate zones (Fig. 4). Additionally, employing a sufficient number
of downscaling methods can help reduce VCD by smoothing the inter-
active impacts between the climate regime and downscaling structure.

5.2. Supporting the selection of evaluation measures for choosing a
climate downscaling method for hydrological applications

This study demonstrates the varying impacts of different climate
downscaling methods on the accuracy of hydrological indicators across
various climate regimes, addressing our second research question. Hy-
drological indicators are simulated through the interaction between
precipitation and temperature (Das Bhowmik et al., 2017; Seo et al.,
2019). Hence, the accuracy of a downscaling method for climate vari-
ables, as evaluated using only the climate indicators, may not directly
correspond to its accuracy in predicting hydrological indicators (Fig. 5).
The linkages between errors of climate and hydrological indicators vary
by climate regimes. Therefore, hydrological indicators are deemed
optimal for evaluating and selecting downscaling methods for hydro-
logical applications. However, assessing hydrological indicators through
hydrological models requires significant time and resources. Due to
these costs, climate indicators are still commonly used for evaluating
downscaling methods. Our findings suggest that this approach may be
unsuitable in regions B, C, and D, where the linkage of errors of hy-
drological and climate indicators is not robust.

5.3. Transferability of identified causes for varying performances of
downscaling output depending on climate regimes

In this study, we identified the spatially varying performances of
GCMs and the interaction between downscaling methods and climate
regimes as key sources of the different downscaling performances across
climate regimes as related to the fourth research question. The observed
interactions are transferable findings since the relationship between
climate regimes and the downscaling methods may not dynamically
change. However, the spatially varying performance of GCMs across
climate regimes may depend on the GCM employed.

Cai et al. (2009) assessed the regional variability of GCM simulations
and suggested that the GCM zones, consisting of grids with similar
performance levels, are closely correlated with the Koppen climate
classifications. Although there have been no other comprehensive
studies assessing the performance of GCMs across various climate zones,
some studies have evaluated the performance of GCMs within specific
regions. Liu et al., (2018) found that reanalysis shows better perfor-
mance in lower elevated regions (<1000 m above sea level) than in
higher elevated regions within the Tibetan Plateau. Moreover, IPCC
(2007b) and Li et al. (2021) indicated that GCMs generally perform
poorly in arid and high-altitude regions due to the complex topography
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and, associated mesoscale weather system of high altitudes. These
findings collectively suggest that the spatially varying performance
across different climate regimes is a common characteristic of GCMs.

5.4. Comparison of downscaling methods for large-scale analysis

MOS-based methods show better downscaling performance for pre-
cipitation and runoff indicators compared to other methods based on
MOS-PP, which has a more complex structure (Table S5). This contra-
dicts the expectation that methods with a complicated structure would
outperform methods with a simpler structure. This discrepancy may be
attributed to the difficulty of fine-tuning the parameters of the PP
approach in large-scale applications. The performances of PP methods
are sensitive to parameters, such as predictors and domains (Bettolli,
2021). In large-scale applications, it is difficult to optimize the param-
eters for each region due to catastrophic costs. As an alternative, large-
scale studies often adopt regional parameters, potentially leading to a
decline in the performance of MOS-PP methods. The MOS-PP method
offers valuable advantages for large-scale applications despite its limi-
tations. The accuracy of the MOS-PP method, excluding BCCA, remains
stable across various climate regimes. It shows low sensitivity to the
regionally varying performance of GCM and exhibits minimal interac-
tion effects (Fig. 8). In addition, it can provide interpretability of
physical relationships, enhancing our understanding of the highly
complex large-scale climate.

5.5. Uncertainty of results from climate classification systems

Climate classifications are utilized for regional planning of water
resources, ecology, agriculture, and for understanding the differences in
climate systems or changes brought about by these classifications.
Consequently, they are determined based on the user’s needs, taking
into account factors such as precipitation, temperature, biotemperature,
humidity, etc. (Bergeron, 1928; Holdridge, 1967; Koppen, 1936;
Thornthwaite, 1948). While most climate classification systems adopt
precipitation and temperature as criteria, they differ in the additional
variables considered and the thresholds used for classification. There-
fore, the variability in downscaling performance across climate regimes,
as suggested in this study, differs based on the climate classification
used. Moreover, variability can be overestimated in regions where
climate conditions are close to the classification thresholds because
Koppen’s climate classification employs discrete thresholds to delineate
zones. Despite these limitations, the results of this study are valuable
and useful since the Koppen classification is the most commonly used
method for classifying climates, and our results are statistically
significant.

6. Conclusions

This study articulates the sources of spatially different accuracy/
uncertainty of large-scale downscaling that have never been addressed
before. The variability of downscaling performance across different
climate regimes was quantified and the underlying causes of such
variability were identified. Understanding the variability can provide
valuable information for assessing the reliability and applicability of
large-scale downscaling methods in various climate regimes. By
exploring the interactions between downscaling methods and climate
regimes across a wide geographic area, the study examined the strengths
and weaknesses of downscaling methods tailored to different climate
zones. Moreover, the optimal downscaling method and regional error
distribution associated with the selection of the methods for specific
regions were presented. This information can be useful for regional
experts and policymakers when conducting analyses based on GCM
products, such as climate change impact assessments. The insights
provided in this study are likely to contribute to enhancing the regional
applicability of future large-scale downscaling methods. Although this
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study already provides such advantages, further research could benefit
from different climate classifications. This refinement could further
enhance our understanding of how other climate conditions influence
downscaling performances. Furthermore, it is advisable to explore a
variety of downscaling methods, including stochastic weather genera-
tors, to better comprehend their applicability in various climate
conditions.
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