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Abstract
Let k be a base field of characteristic p > 0 and let U be the restricted enveloping algebra of
a 2-dimensional nonabelian restricted Lie algebra. We classify all inner-faithful U -actions
on noetherian Koszul Artin-Schelter regular algebras of global dimension up to three.

Keywords Hopf algebra action · Artin-Schelter regular algebra · Indecomposable
module · Green ring
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1 Introduction

Invariant theory of commutative polynomial rings under finite group actions is closely con-
nected to commutative algebra and algebraic geometry. Artin-Schelter regular algebras [1],
viewed as a natural noncommutative generalization of the commutative polynomial rings,
play an important role in noncommutative algebraic geometry, representation theory, and
the study of noncommutative algebras [2, 3, 6]. Hopf actions (including group actions) on
Artin-Schelter regular algebras have been studied extensively by many authors in recent
years, see [7–9, 15, 18–20, 24–27] and so on. A very nice survey was given by Kirkman
[23] a few years ago. In most papers, only semisimple Hopf algebras are considered due
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to the fact that non-semisimple Hopf actions are much more difficult to handle. A list of
significant differences between semisimple and non-semisimple actions can be found in
Observation 5.1.

Recall that a Hopf H -action on an algebra A is called inner-faithful if there is no nonzero
Hopf ideal I ⊆ H such that IA = 0 [7, Definition 1.5]. Our goal is to construct examples
of inner-faithful and homogeneous U -actions on T where U is the non-semisimple Hopf
algebra given in Definition 1.1 and T is a connected graded Artin-Schelter regular algebra.
The main result consists of Proposition 4.2 and Theorem 1.5 that together classify all inner-
faithful U -actions on noetherian Koszul Artin-Schelter regular algebras of global dimension
at most three.

Throughout let k be a base field with char k = p > 0.

Definition 1.1 Let U be the k-algebra generated by u and w and subject to the relations

up = 0, wp = w, [w, u](:= wu − uw) = u. (1)

Then U has a Hopf algebra structure with coalgebra structure and antipode determined by

�(u) = u ⊗ 1 + 1 ⊗ u, ε(u) = 0, S(u) = −u,

�(w) = w ⊗ 1 + 1 ⊗ w, ε(w) = 0, S(w) = −w.

Note that dimk U = p2 and {uiwj |0 � i, j � p − 1} is a k-basis of U . It is easy to see that
U is isomorphic, as a Hopf algebra, to the restricted enveloping algebra of the 2-dimensional
nonabelian restricted Lie algebra g := ku ⊕ kw with structure determined by Eq. 1.

A very first step of understandingU -actions on Artin-Schelter regular algebras is to work
out representations of U . Similar to the Taft algebras, there are exactly p2 indecomposable
U -modules up to isomorphisms, denoted by

{M(l, i)|1 � l � p, i ∈ Zp := Z/(p)}
where dimk M(l, i) = l for all l, i, see Convention 2.4 and Proposition 2.7. We also need
the following tensor decomposition result.

Theorem 1.2 Retain the notation as above. Let r, r ′ ∈ Zp.

(1) Let 1 � l � m � p and l + m � p. Then

M(l, r) ⊗ M(m, r ′) ∼=
l⊕

i=1

M(m − l − 1 + 2i, r + r ′ + l − i).

(2) Let 1 � l � m � p and l + m > p. Then

M(l, r)⊗M(m, r ′) ∼= (

p−m⊕

i=1

M(m− l −1+2i, r + r ′ + l − i))
⊕

(

l+m−p⊕

i=1

M(p, r + r ′ + i −1)).

The proof of Theorem 1.2 follows from the ideas in [12]. Note that the Green ring (or
the representation ring) of Hopf algebras has been studied extensively, see [10, 12, 21,
29, 30, 40–42] and more. If we can describe the Green ring of a Hopf algebra H , then it
is extremely useful for understanding the representations, the fusion rules, Grothendieck
group, Frobenius-Perron dimension [28, 45, 46], and many other invariants and structures
of H . However, it is notoriously difficult to understand the Green ring for a general Hopf
algebra (even, of small dimension, see Question 6.1). It is not a surprise that most of positive
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results so far concern Hopf algebras of finite or tame representation type. Using Theorem
1.2 we can present the Green ring of U – another non-semisimple Hopf algebra of finite
representation type [Corollary 1.3].

For each positive integer n, define

fn(y, z) =
[(n−1)/2]∑

i=0

(−1)i
(

n − 1 − i

i

)
yizn−1−2i ,

where [(n−1)/2] denotes the integer part of (n−1)/2. Recall that p = char k. Let I denote
the ideal of Z[y, z] generated by yp − 1 and (z − y − 1)fp(y, z).

Corollary 1.3 (Corollary 3.15) The Green ring of U is isomorphic to the factor ring
Z[y, z]/I .

The proof of this corollary is based on the tensor decomposition of indecomposable U -
modules given in Theorem 1.2. Corollary 1.3 should be compared with [12, Theorem 3.10].
One basic message of Theorem 1.2 and Corollary 1.3 is that the representation theory of
U is similar to the representation theory of the Taft algebras, though U does not have any
nontrivial grouplike elements.

Another application of Theorem 1.2 is computation of the Frobenius-Perron dimension
of U -modules, which was studied in [45]. We give some comments in the last section, see
Remark 6.5.

Going back to our main topic, note that the explicit description of the tensor of two
representations of U [Theorem 1.2] is the key to understanding U -actions on Artin-Schelter
regular algebras. If T is a noetherian Artin-Schelter regular of global dimension two, then
the existence of an inner-faithful U -action on T forces T to be a commutative polynomial
ring. From now on Artin-Schelter is abbreviated as AS.

Proposition 1.4 Let H be any Hopf algebra containing U as a Hopf subalgebra. If H acts
inner-faithfully and homogeneously on a noetherian Koszul AS regular algebra T of global
dimension two, then T is isomorphic to the commutative polynomial ring k[x1, x2].

Explicit U -actions on a noetherian Koszul AS regular algebra of global dimension two
are given in Proposition 4.2. The next result is a classification of all inner-faithful U -actions
on T when T has global dimension 3. Historically, over an algebraically closed field of
characteristic zero, AS regular algebras of global dimension three were classified by Artin,
Schelter, Tate and Van den Bergh in their seminal papers [1–3]. Since our base field has
positive characteristic, we have to use a different method. But the purpose of this paper is
not to classify all AS regular algebras over a field of positive characteristic which is another
extremely difficult project, see Remark 1.7(2).

Theorem 1.5 Let k be an algebraically closed field of characteristic p > 0. Let T be a
noetherian Koszul AS regular k-algebra of global dimension three and let V = T1. Suppose
there is an inner-faithful and homogeneousU -action on T . Then one of the following occurs,
up to a change of basis.

(1) T is the commutative polynomial ring k[V ] where the left U -module V is either
M(3, i) or M(2, i) ⊕ M(1, j) for some i, j ∈ Zp.
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(2) p = 3, V = M(3, i) = kx1 ⊕ kx2 ⊕ kx3 as in Convention 2.4, and the relations of T
are

x2x1 − x1x2 + x2
3 = 0, x3x1 − x1x3 = 0, x3x2 − x2x3 = 0.

In the rest of the theorem let V = M(2, i)⊕M(1, j) = (kx1⊕kx2)⊕ky for some i, j ∈ Zp .

(3) j = i + 1 and the relations of T are

x1x2 + x1y − yx1 = 0, x2x1 − x1x2 = 0, x2
2 + x2y − yx2 = 0.

(4) (i − j)(2i + 1 − 2j) �= 0 in Zp, and the relations in T are

yx1 + ax1y = 0, yx2 + ax2y = 0, x2x1 − x1x2 = 0

for a �= 0 in k.
(5) 2i + 1 − 2j = 0 in Zp, and the relations in T are

yx1 + ax1y = 0, yx2 + ax2y = 0, x2x1 − x1x2 + εy2 = 0

where a �= 0, ε = 0 or 1 and ε(a2 − 1) = 0.
(6) i = j in Zp, and the relations in T are

yx1 + ax1y + by2 = 0, yx2 + ax2y = 0, x2x1 − x1x2 + εx2y = 0

where a �= 0, ε = 0 or 1 and (a + 1)(b − ε) = 0.
(7) j = i + 2 in Zp and the relations in T are

yx2 − x2y = 0, x1x2 − x2x1 + cx2y + by2 = 0, x2
2 + yx1 − x1y + dy2 = 0

where c �= 0 or d �= 0 only if p = 2 and where b �= 0 only if p = 3.
(8) p = 2, i = j in Z2 and the relations in T are

yx2 + x2y = 0, x2
1 + y2 + ex2

2 = 0, x1x2 + x2x1 = 0,

where e ∈ k.
(9) p = 2, i �= j in Z2 and the relations in T are

yx2 + x2y + by2 = 0, x2
1 + cx2y + y2 + ex2

2 , x1x2 + x2x1 = 0,

with e ∈ k and (b, c) = (0, 1) or (1, 0).
(10) p = 2, i �= j in Z2, and the relations of T are one of the following forms:

(10a) c ∈ k, and

x2
1 + c(x2y + yx2) + y2 = 0, x1x2 + x2x1 = 0, x2

2 + x2y + yx2 = 0.

(10b) e ∈ k, and

x2
1 + x2y + yx2 + ey2 = 0, x1x2 + x2x1 = 0, x2

2 + y2 = 0.

Combining Theorem 1.5 with Lemma 5.2(3), we obtain

Corollary 1.6 Let H be any Hopf algebra containing U as a Hopf subalgebra. If H acts
inner-faithfully and homogeneously on a noetherian Koszul AS regular algebra T of global
dimension three, then T is one of the AS regular algebras listed in Theorem 1.5.

Remark 1.7 The following remarks aim to clarify potential confusion.

(1) The list in Theorem 1.5 is long. This is due to the fact that there are many different
AS regular algebras of global dimension three. Even for the same T there could be
different and non-equivalent U -actions on T .
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(2) The classification of all noetherian Koszul AS regular algebras of global dimension
three over a field of positive characteristic has not been done. This could be a huge
project which is parallel to the work of Artin, Schelter, Tate and Van den Bergh [1–3].
The AS regular algebras listed in Theorem 1.5 form a very small portion in the class
of all noetherian Koszul AS regular algebras of global dimension three.

(3) If we are given a Koszul AS regular algebra T generically, it is likely that there
is no inner-faithful U -action on T . For example, let T be a skew polynomial ring
kpij

[x1, x2, x3] where pij �= 1 for all i < j , then there is no inner-faithful U -action
on T [Proposition 5.3].

(4) There are some obvious overlaps between part (1) and parts (4,5,6) in Theorem 1.5.
(5) Given a specific Hopf algebra H strictly containing U , there could be one or more AS

regular algebras T listed in Theorem 1.5 on which H cannot act inner-faithfully.
(6) Given a specific Hopf algebra H containing U , there could be more than one H -action

on the same T , similar to some parts of Theorem 1.5.
(7) In a weak sense, Corollary 1.6 provides a “universal” classification of H -actions on

noetherian Koszul AS regular algebras of global dimension three for all H containing
U . See Observation 5.5 for more comments.

There are a few reasons for us to consider to this particular Hopf algebra U .
The first one is that U is of finite representation type. This makes it possible to list all

U -module V := T1, which serves as an initial step in our classification. If U were of wild
representation type, it is unrealistic to list all U -modules (even for a given dimension).

The second reason is that U is generated by primitive elements u and w. So u and w acts
on an algebra T as derivatives. This kind of well-understood operation is helpful when we
are dealing with a lot of computation.

The first two reasons make the project possible. The third reason is our motivation,
namely, U is not semisimple and does not contain any nontrivial grouplike elements. The
invariant theory under U -action is different from the classical invariant theory of polyno-
mial rings under finite group actions. Observation 5.1 lists some significant differences in
terms of homological properties. We would like to use the examples in this paper to further
study non-semisimple Hopf actions on AS regular algebras.

Classifying U -actions on AS regular algebras is also helpful for understanding other H -
actions on AS regular algebras when H is related to U , see Corollary 1.6, Remark 1.7 and
Observation 5.5.

The last reason is that U appears in several different topics of recent interest. The Hopf
algebra U originates from Lie theory, and is related to (small) quantum group theory,

computation of Frobenius-Perron dimension, study of the Azumaya locus of a family of
PI Hopf algebras, called iterated Hopf Ore extensions, or IHOEs, as we explain next. In
[5], a family of noncommutative PI Hopf algebras H in characteristic p were studied. The
algebra U appears naturally as a “fiber” at every non-Azumaya point of 2-step IHOEs in
[5, Proposition 8.2(3)]. The only other possible fiber of other 2-step IHOEs in [5] is the
Hopf algebra U0 := k[X, Y ]/(Xp, Yp), – the restricted enveloping algebra of the abelian
Lie algebra of dimension 2 with trivial restriction – see [5, Proposition 8.2(2)]. Geometric
and representation theoretic properties of the Hopf algebras in [5] are largely encoded in the
properties of algebras U and U0. Using the representations of U , we can describe all brick
modules over 2-step IHOEs, see Remark 6.6.

This paper is organized as follows. Sections 2 and 3 follow from the structure of [12] and
prove Theorem 1.2 and Corollary 1.3. In Section 4 we classify all U -actions on noetherian
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Koszul AS regular algebras of global dimension at most three as stated in Proposition 4.2
and Theorem 1.5. We give some easy, but interesting, observations in Section 5. Section 6
contains some comments, projects, and remarks.

2 Preliminaries and Representations of U

Unless otherwise stated, all algebras, Hopf algebras and modules are defined over k. All
modules are left modules and all maps are k-linear. We use ⊗ for ⊗k. For the theory of
Hopf algebras, we refer to the standard text books [22, 32, 33, 39]. Let k× denote the
multiplicative group of all nonzero elements in the field k.

It is well-known that Zp is a subfield of k. For an integer r ∈ Z, the image of r under the
canonical epimorphism Z → Zp is still denoted by r . Then Z×

p = {1, 2, · · · , p − 1}, which
is a cyclic subgroup of the multiplicative group k×.

LetH be a finite dimensional Hopf algebra. The representation rings (or theGreen rings)
r(H) and R(H) can be defined as follows. Recall that r(H) is the abelian group generated
by the isomorphism classes [V ] of finitely generated H -modules V modulo the relations
[M ⊕ V ] = [M] + [V ]. The multiplication of r(H) is induced by the tensor product of H -
modules, that is, [M][V ] = [M ⊗V ]. Then r(H) is an associative ring. Recall that R(H) is
an associative k-algebra defined by k⊗Z r(H). Note that r(H) is a free abelian group with
the Z-basis {[V ]|V ∈ ind(H)}, where ind(H) denotes the category of all finitely generated
indecomposable H -modules.

For a module M over a finite dimensional algebra, let rl(M) denote the Loewy length
(=radical length=socle length) of M , and l(M) denote the length of M . Let P(M) denote
the projective cover of M and I (M) denote the injective hull of M .

Let U be defined as in Definition 1.1. The following facts about U are folklore. Let B

denote the subalgebra of U generated by w. Then B is a p-dimensional semisimple Hopf
subalgebra of U . Moreover, there is a Hopf algebra epimorphism π : U → B defined by
π(u) = 0 and π(w) = w. It follows that kerπ = (u) ⊇ J (U), the Jacobson radical of
U . On the other hand, since Uu = uU and up = 0, J (U) ⊇ (u) = uU , the ideal of U

generated by the normal element u. Hence kerπ = (u) = J (U). Thus, an U -module M is
semisimple if and only if u · M = 0, and moreover, M is simple if and only if u · M = 0
and M is simple as a module over B. Note that wp − w = ∏

i∈Zp
(w − i) over a field of

characteristic p. Therefore, we have the following lemma, and its proof follows from the
fact that w acts semisimply on any finite dimensional U -module.

Lemma 2.1 For every finite dimensional U -module M and every i ∈ Zp ⊆ k, let M[i] =
{m ∈ M|w · m = im}, then we have

M =
⊕

i∈Zp

M[i], and uM[i] ⊆ M[i + 1].

Lemma 2.2 There are p non-isomorphic simple U -modules {Si}i∈Zp
, and each Si is 1-

dimensional and determined by

u · x = 0, and w · x = ix,

where x is a basis element in Si .
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Note that J (U)m = umU for all m � 1. Hence J (U)p−1 �= 0 and J (U)p = 0. This
means that the Loewy length of U is p. Since every simple U -module is 1-dimensional,
l(M) = dim(M) for all U -modules M . Let M be an U -module. Since J (U)s = Uus =
usU , we have rads(M) = us · M for all s � 1.

Lemma 2.3 Let 1 � l � p and i ∈ Zp . Then there is an algebra homomorphism ρl,i :
U → Ml(k) given by

ρl,i (u) =

⎛

⎜⎜⎜⎜⎜⎜⎝

0
1 0

1
. . .
. . .

. . .
1 0

⎞

⎟⎟⎟⎟⎟⎟⎠
, ρl,i (w) =

⎛

⎜⎜⎜⎜⎜⎝

i

i + 1
i + 2

. . .
i + l − 1

⎞

⎟⎟⎟⎟⎟⎠
.

Let M(l, i) denote the corresponding left U -module.

Proof It follows from a straightforward verification.

In some other papers when one uses a different convention, the matrix ρl,i (u) in Lemma
2.3 should be replaced by its transpose. But we fix the following convention.

Convention 2.4 By Lemma 2.3, the module M(l, i) has a k-basis {x1, x2, · · · , xl} such that
w · xj = (i + j − 1)xj for all 1 � j � l and

u · xj =
{

xj+1, 1 � j � l − 1,
0, j = l.

Hence we have xj = uj−1 · x1 for all 2 � j � l. Such a basis is called a standard basis of
M(l, i).

We now list some easy facts.

Lemma 2.5 The following hold.

(1) soc(M(l, i)) = kxl
∼= Si+l−1 and M(l, i)/rad(M(l, i)) ∼= Si .

(2) M(l, i) is indecomposable and uniserial.
(3) If 1 � l′ � p and i′ ∈ Zp, then M(l, i) ∼= M(l′, i′) if and only if l′ = l and i′ = i.

Proof It is similar to the proof of [12, Lemma 2.3].

The next corollary is similar to [12, Corollary 2.4].

Corollary 2.6 The following hold.

(1) M(l, i) is simple if and only if l = 1. In this case, M(1, i) ∼= Si .
(2) M(l, i) is projective (respectively, injective) if and only if l = p.
(3) M(p, i) ∼= P(Si) ∼= I (Si−1).

Proof (1) It follows from Lemma 2.5(1).
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(2,3) Note that every finite dimensional Hopf algebra is self-injective as an algebra. If
l = p, then it follows from [11, Lemma 3.5] that M(p, i) is projective and injective.

Define e0 = 1 − wp−1 (for i = 0) and ei = 1
p−1

∑p−1
j=1 i−jwj for i ∈ Z

×
p . It is easy to

check that e20 = e0, e0ei = 0 and eiel = δilel for all i, l ∈ Z
×
p . That is, {e0, e1, · · · , ep−1} is

a set of orthogonal idempotents ofU . SinceZ×
p is a cyclic group of order p−1,

∑p−1
i=1 i−j =

δj,p−1(p − 1) for any 1 � j � p − 1. Then one can check that
∑p−1

i=1 ei = wp−1, and so
∑p−1

i=0 ei = 1. We also have wei = iei and up−1ei �= 0, where the latter follows from the
fact that {uiwj | 0 � i, j � p − 1} is a k-linear basis of U . Therefore,

Uei = span{ei, uei, · · · , up−1ei} ∼= M(p, i).

Thus, we have the decomposition of the regular module U as follows

U =
p−1⊕

i=0

Uei
∼=

p−1⊕

i=0

M(p, i).

Hence M(p, i) ∼= P(Si), and M(p, 0), M(p, 1), · · · , M(p, p − 1) are all non-isomorphic
indecomposable projective U -modules. So parts (2,3) follow from Lemma 2.5.

Since the indecomposable projective U -modules are uniserial, any indecomposable U -
module is uniserial and is isomorphic to a quotient of an indecomposable projective module.
Therefore, we have the following proposition (which is well-known).

Proposition 2.7 Up to isomorphism, there are p2 finite dimensional indecomposable U -
modules as follows

{M(l, i)|1 � l � p, i ∈ Zp}.

It is easy to see that HomU(M(l, i),M(l, i)) = k for all modules in Proposition 2.7.

3 Tensor Decomposition and the Green ring of U

Since U is cocommutative, the tensor category U -mod is symmetric. By Proposition 2.7,
there are p2 non-isomorphic indecomposable modules over U , namely,

{M(l, r)|1 � l � p, r ∈ Zp}.
For any U -module M and r ∈ Zp , recall from Lemma 2.1 that

M[r] = {m ∈ M|w · m = rm}.
Then M[r] is a subspace of M . Next we list some easy facts in the following lemma.

Lemma 3.1 Let M be an U -module. Then

(1) If M is indecomposable, then dim(M[r]) � 1 for every r ∈ Zp.
(2) If M = M1 ⊕ M2 for some submodules M1 and M2, then M[r] = M1[r] ⊕ M2[r] for

every r ∈ Zp .
(3) When M is decomposed into a direct sum of indecomposable submodules, the number

of summands is at least max{dim(M[r])|r ∈ Zp}.
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Lemma 3.2 Let 1 � l � p and r, r ′ ∈ Zp. Then

Sr ′ ⊗ M(l, r) ∼= M(l, r) ⊗ Sr ′ ∼= M(l, r + r ′)

as U -modules. In particular, Sr ⊗ Sr ′ ∼= Sr+r ′ and M(l, r) ∼= Sr ⊗ M(l, 0).

Throughout the rest of the section, let 2 � l � m � p, and let

M = M(l, 0) ⊗ M(m, 0).

Let {x1, x2, · · · , xl} and {y1, y2, · · · , ym} be the standard bases of M(l, 0) and M(m, 0),
respectively, as stated in Convention 2.4. Then

{xi ⊗ yj |1 � i � l, 1 � j � m}
is a k-basis of M . For any 2 � s � l + m, let

M(s) = span{xi ⊗ yj |i + j = s}.

Then we have M =
l+m⊕
s=2

M(s) as k-spaces.

Lemma 3.3 Retain the above notation.

(1) u · M(s) ⊆ M(s + 1) for all 2 � s � l + m, where M(l + m + 1) = 0.
(2) M(s) ⊆ M[s − 2] for all 2 � s � l + m.

(3) dim(M(s)) =
⎧
⎨

⎩

s − 1, if 2 � s � l + 1
l, if l + 1 < s < m + 1
l + m + 1 − s, if m + 1 � s � l + m

Proof It follows from a straightforward verification.

Lemma 3.4 The socle of M has the following decomposition

soc(M) =
⊕

2�s�l+m

soc(M) ∩ M(s).

Proof It follows from Lemma 3.3(1) since soc(M) = {z ∈ M|u · z = 0}.

Lemma 3.5 The following statements hold.

(1) If 2 � s � m, then soc(M) ∩ M(s) = 0.
(2) If m + 1 � s � l + m, then dim(soc(M) ∩ M(s)) = 1.
(3) dim(soc(M)) = l.

Proof (1) Let 2 � s � l and let z ∈ M(s). Then z =
s−1∑
i=1

αixi ⊗ ys−i for some αi ∈ k. A

straightforward computation shows that

u · z = α1x1 ⊗ ys +
∑

2�i�s−1

(αi−1 + αi)xi ⊗ ys+1−i + αs−1xs ⊗ y1.

Now by an easy linear algebra argument, u · z = 0 if and only if z = 0. Thus, z ∈
soc(M) if and only if z = 0. This shows that soc(M) ∩ M(s) = 0 for all 2 � s � l.
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Now let l+1 � s � m and let z ∈ M(s). In this case, l < m and z =
l∑

i=1
αixi ⊗ys−i

for some αi ∈ k. Hence we have u · z = α1x1 ⊗ys +
l∑

i=2
(αi−1 +αi)xi ⊗ys+1−i . Thus,

by a similar argument as above, one can show that z ∈ soc(M) if and only if z = 0.
Hence soc(M) ∩ M(s) = 0 for all l + 1 � s � m.

(2) Obviously, u·M(l+m) = 0. HenceM(l+m) ⊆ soc(M), and soM(l+m)∩soc(M) =
M(l + m) is one dimensional. Now let m + 1 � s < l + m and z ∈ M(s). Then

z =
l∑

i=s−m

αixi ⊗ ys−i for some αi ∈ k. One can check that

u · z =
l∑

i=s+1−m

(αi−1 + αi)xi ⊗ ys+1−i .

Thus, z ∈ soc(M) if and only if u · z = 0 if and only if αi−1 + αi = 0 for all
s + 1 − m � i � l. It follows that dim(soc(M) ∩ M(s)) = 1 in this case.

(3) It follows from (1), (2) and Lemma 3.4.

Corollary 3.6 Retain the above notation.

(1) For anym+1 � s � l+m, let zs =
l∑

i=s−m

(−1)ixi ⊗ys−i . Then soc(M)∩M(s) = kzs .

(2) soc(M) = span{zs |m + 1 � s � l + m}.
(3) soc(M) ∼=

l+m⊕
s=m+1

M(1, s − 2) ∼=
l+m⊕

s=m+1
Ss−2.

Proof It follows from the proof of Lemma 3.5.

Define head(M) = M/u · M .

Corollary 3.7 Retain the above notation. Then head(M) ∼=
l−1⊕
i=0

M(1, i) ∼=
l−1⊕
i=0

Si .

Proof By Lemma 3.3(1), we have u · M(s) ⊆ M(s + 1), and hence

u · M =
l+m−1⊕

s=2

u · M(s).

Now by Lemmas 3.3 and 3.5 and a dimension counting, we have

dim(M(s + 1)/u · M(s)) =
{
1, if 2 � s � l,

0, otherwise.
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Hence u · M = (
l⊕

s=2
u · M(s))

⊕
(

l+m⊕
s=l+2

M(s)). Thus, as modules over U/J (U) ∼= B, we

have

M/u · M ∼= M(2)
⊕

(
l⊕

s=2
M(s + 1)/u · M(s))

∼=
l+1⊕
s=2

M(1, s − 2) =
l−1⊕
i=0

M(1, i) ∼=
l−1⊕
i=0

Si .

If m = p, then M is projective since M(p, 0) is. Hence by Corollaries 2.6 and 3.7, we
have

M ∼= P(M) ∼= P(M/u · M) ∼=
l−1⊕
i=0

P(Si) ∼=
l−1⊕
i=0

M(p, i).

Thus, we have the following proposition.

Proposition 3.8 Let 2 � l � p and r, r ′ ∈ Zp . Then we have the U -module isomorphism

M(l, r) ⊗ M(p, r ′) ∼=
l−1⊕

i=0

M(p, r + r ′ + i).

Proof We have already proven that M(l, 0)⊗M(p, 0) ∼=
l−1⊕
i=0

M(p, i). Then the proposition

follows from the isomorphism and Lemma 3.2.

Lemma 3.9 Let 2 � l � m � p and retain the above notation.

(1) M contains a submodule isomorphic to M(l − 1, 1) ⊗ M(m − 1, 0).
(2) For each r ∈ Zp, M(l, r)⊗M(m, 0) contains a submodule isomorphic to M(l−1, r+

1) ⊗ M(m − 1, 0).
(3) For r ∈ Zp and 1 � s � l − 1, M(l, r) ⊗ M(m, 0) contains a submodule isomorphic

to M(l − s, r + s) ⊗ M(m − s, 0).

Proof (1) Recall that {xi ⊗ yj |1 � i � l, 1 � j � m} is a basis of M . Let N = M(l −
1, 1) ⊗ M(m − 1, 0). Let {a1, a2, · · · , al−1} and {b1, b2, · · · , bm−1} be the standard bases
of M(l −1, 1) and M(m−1, 0), respectively. Then {ai ⊗bj |1 � i � l −1, 1 � j � m−1}
is a basis of N . By definition, we have w · (xi ⊗ yj ) = (i + j − 2)xi ⊗ yj for all 1 � i � l

and 1 � j � m, and w · (ai ⊗ bj ) = (i + j − 1)ai ⊗ bj for all (i, j).
Now define a k-linear map f : N → M by

f (ai ⊗ bj ) = (l − i)xi ⊗ yj+1 + (j − m)xi+1 ⊗ yj ,

where 1 � i � l − 1 and 1 � j � m − 1. It is easy to see that f is a k-linear injection and
that f (w · (ai ⊗ bj )) = w · f (ai ⊗ bj ) for all (i, j).

Then by a straightforward computation, one can check that f (u·(ai⊗bj )) = u·f (ai⊗bj )

for all (i, j). This finishes the proof of part (1).
(2) This follows from part (1) and Lemma 3.2.
(3) The assertion follows from induction on s and part (2).

Theorem 3.10 Let 1 � l � m < p and suppose that l + m � p.
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(1)

M(:= M(l, 0) ⊗ M(m, 0)) ∼=
l⊕

i=1

M(m − l − 1 + 2i, l − i).

(2) Let r, r ′ ∈ Zp. Then

M(l, r) ⊗ M(m, r ′) ∼=
l⊕

i=1

M(m − l − 1 + 2i, r + r ′ + l − i).

Proof (1) We use induction on l. If l = 1, it follows from Lemma 3.2 that the assertion
holds. Now assume l > 1. Then m � 2. By Lemma 3.9(1), there exists a submodule N of
M such that N ∼= M(l − 1, 1)⊗M(m− 1, 0). By the induction hypothesis and Lemma 3.2,
we have

N ∼= S1 ⊗ M(l − 1, 0) ⊗ M(m − 1, 0) ∼=
l−1⊕
i=1

M(m − l − 1 + 2i, l − i).

Therefore, one knows that

soc(N) ∼=
l−1⊕

i=1

M(1, l − i + (m − l − 1 + 2i) − 1) ∼=
l−1⊕

i=1

Sm+i−2.

Now we use the k-basis of M as stated before, and consider the submodule 〈x1 ⊗ y1〉
of M generated by x1 ⊗ y1. For the convenience, we set xi = 0 for i > l, and yj = 0 for
j > m. Then since 1 < l + m � p, we have

ul+m−2 · (x1 ⊗ y1) =
l+m−2∑

i=0

(
l+m−2

i

)
ui · x1 ⊗ ul+m−2−i · y1

=
l+m−2∑

i=0

(
l+m−2

i

)
xi+1 ⊗ yl+m−1−i

= (
l+m−2

l−1

)
xl ⊗ ym �= 0.

However, ul+m−1 · (x1 ⊗ y1) = 0. It is easy to see that w · (x1 ⊗ y1) = 0. It follows that
〈x1 ⊗ y1〉 is isomorphic to M(l + m − 1, 0) with soc(〈x1 ⊗ y1〉) = k(xl ⊗ ym) ∼= Sl+m−2.
Note that Sl+m−2 is not isomorphic to any submodule of soc(N). Hence N ∩〈x1 ⊗y1〉 = 0,
and consequently, the sum N +〈x1 ⊗ y1〉 of the two submodules of M is a direct sum in M .
Thus, we have

dim(N + 〈x1 ⊗ y1〉) = dim(N) + dim(〈x1 ⊗ y1〉)
=(l − 1)(m − 1) + l + m − 1 = lm = dim(M).

It follows that M = N ⊕ 〈x1 ⊗ y1〉 ∼=
l⊕

i=1
M(m − l − 1 + 2i, l − i).

(2) It follows from Lemma 3.2 and part (1).

Theorem 3.11 Let 1 � l � m < p and suppose that l + m > p.

(1)

M ∼= (

p−m⊕

i=1

M(m − l − 1 + 2i, l − i))
⊕

(

l+m−p⊕

i=1

M(p, i − 1)).
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(2) Let r, r ′ ∈ Zp. Then

M(l, r)⊗M(m, r ′) ∼= (

p−m⊕

i=1

M(m− l −1+2i, r + r ′ + l − i))
⊕

(

l+m−p⊕

i=1

M(p, r + r ′ + i −1)).

Proof (1) Since l+m > p and p > m � l � 2, we have 1 � l+m−p = l−(p−m) � l−1.
It follows from Lemma 3.9(3) that there exists a submodule N of M such that

N ∼= M(l − (l + m − p), l + m − p)) ⊗ M(m − (l + m − p), 0)

= M(p − m, l + m) ⊗ M(p − l, 0).

Note that (p − l) + (p − m) = 2p − (l + m) < p and 1 � p − m � p − l < p. Then by
Theorem 3.10(2), one gets that

N ∼= M(p − m, l + m) ⊗ M(p − l, 0) ∼=
p−m⊕
i=1

M(m − l − 1 + 2i, l − i)

and

soc(N) ∼=
p−m⊕

i=1

M(1, l − i + (m − l − 1 + 2i) − 1) ∼=
p−m⊕

i=1

Sm+i−2.

Now we use the k-basis of M as stated before. Let 1 � i � l + m − p. Consider
the submodule 〈xi ⊗ y1〉 of M generated by xi ⊗ y1. At first, we have w · (xi ⊗ y1) =
(i − 1)xi ⊗ y1. For the convenience, we set xj = 0 for j > l, and yj = 0 for j > m. Since
i + 1 + (p − 1) = i + p � l + m and p − m � l − i, we have

up−1 · (xi ⊗ y1) =
p−1∑
j=0

(
p−1

j

)
uj · xi ⊗ up−1−j · y1

=
p−1∑
j=0

(
p−1

j

)
xi+j ⊗ yp−j

=
l−i∑

j=p−m

(
p−1

j

)
xi+j ⊗ yp−j �= 0.

Hence 〈xi ⊗ y1〉 = span{uj · (xi ⊗ y1)|j = 0, 1, · · ·p − 1} ∼= M(p, i − 1), a projective
(injective) module. Thus, soc(〈xi ⊗ y1〉) ∼= Si−2. Obviously,

S1−2, S2−2, · · · , S(l+m−p)−2

are non-isomorphic simple U -modules, and none of them is isomorphic to a submodule of

N . It follows that the sum N +
l+m−p∑

i=1
〈xi ⊗y1〉 of the submodules of M is direct in M . Hence

dim(N +
l+m−p∑

i=1

〈xi ⊗ y1〉) = dim(N) +
l+m−p∑

i=1

dim(〈xi ⊗ y1〉)

=(p − m)(p − l) + p(l + m − p) = lm = dim(M).

Thus, we have

M = N
⊕

(
l+m−p⊕

i=1
〈xi ⊗ y1〉)

∼= (
p−m⊕
i=1

M(m − l − 1 + 2i, l − i))
⊕

(
l+m−p⊕

i=1
M(p, i − 1)).
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(2) It follows from Lemma 3.2 and part (1).

Corollary 3.12 Let 1 � l � m < p and r, r ′ ∈ Zp.

(1) There is a simple summand in M(l, r) ⊗ M(m, r ′) if and only if l = m.
(2) If l = m = 2 < p, then M(2, r) ⊗ M(2, r ′) ∼= Sr+r ′+1 ⊕ M(3, r + r ′).

Proof It follows from Corollary 2.6, Theorems 3.10 and 3.11.

Proof of Theorem 1.2 (1) This is Theorem 3.10.
(2) If m = p, this follows from Lemma 3.2 and Proposition 3.8. If m < p, it is Theorem

3.11.

Throughout the rest of this section, let a = [S1] and x = [M(2, 0)] in the Green ring
r(U) of U . Since U is cocommutative, r(U) is a commutative ring. The following lemma
is similar to [12, Lemma 3.8] (see [12, Lemma 3.8] for a proof.)

Lemma 3.13 Retain the above notation. The following hold.

(1) ap = 1 and [M(l, r)] = ar [M(l, 0)] for all 2 � l � p and r ∈ Zp .
(2) If p > 2, then [M(l + 1, 0)] = x[M(l, 0)] − a[M(l − 1, 0)] for all 2 � l � p − 1.
(3) x[M(p, 0)] = (a + 1)[M(p, 0)].
(4) r(U) is generated by a and x as a ring.

Note that Lemma 3.13(1) is slightly different from [12, Lemma 3.8(1)]. The following is
similar to [12, Corollary 3.9] and its proof is omitted.

Corollary 3.14 Let u1, u2, · · · , up be a series of elements of the ring r(U) defined
recursively by u1 = 1, u2 = x and

ul = xul−1 − aul−2, p � l � 3.

Then [M(l, 0)] = ul for all 1 � l � p and (x − a − 1)up = 0.

Let R be the subring of r(U) generated by a, and 〈a〉 the subgroup of the group of the
invertible elements of r(U) generated by a. Then 〈a〉 is a cyclic group of order p by Lemma
3.13(1), and R = Z〈a〉 is the group ring of 〈a〉 over Z. Let Z[y, z] be the polynomial
algebra over Z in two variables y and z. Define fn(y, z) ∈ Z[y, z], n � 1, recursively, by
f1(y, z) = 1, f2(y, z) = z and

fn(y, z) = zfn−1(y, z) − yfn−2(y, z), n � 3.

Then by [12, Lemma 3.11], for any n � 1, we have

fn(y, z) =
[(n−1)/2]∑

i=0

(−1)i
(

n − 1 − i

i

)
yizn−1−2i ,

where [(n−1)/2] denotes the integer part of (n−1)/2. Hence degz(fn(y, z)) = n−1 for all
n � 1, where degz(f (y, z)) denotes the degree of f (y, z) ∈ Z[y, z] in z. See [12, Section
3] for more information about fn(y, z). Let I = (yp − 1, (z − y − 1)fp(y, z)) be the ideal
of Z[y, z] generated by yp − 1 and (z − y − 1)fp(y, z).
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With the above notations, we have the following corollary that is similar to [12, Theorem
3.10]. See the proof of [12, Theorem 3.10] for some details.

Corollary 3.15 The Green ring r(U) is isomorphic to the factor ring Z[y, z]/I .

Corollary 3.16 The Green ring r(U) is isomorphic to the Green ring r(Hp(q)) where
Hp(q) is the Taft algebra of rank p (over a possibly different base field).

Proof This is clear by comparing Corollary 3.15 with [12, Theorem 3.10].

4 U-actions on AS regular Algebras

Recall from [1, p. 171] that a connected graded algebra T is called Artin-Schelter regular
(or AS regular, for short) of dimension d if the following hold:

(a) T has global dimension d < ∞,
(b) ExtiT (T k, T T ) = ExtiT (kT , TT ) = 0 for all i �= d , where k = T/T≥1,
(c) ExtdT (T k, T T ) ∼= ExtdT (kT , TT ) ∼= k(l) for some integer l,
(d) T has finite Gelfand–Kirillov dimension, see [26, Definition 1.7].

We will use the following general setting.

1. Let T be a noetherian connected graded AS regular algebra.
2. Let H be a finite-dimensional Hopf algebra acting on T inner-faithfully and homoge-

neously (namely, each degree i piece Ti of T is a left H -submodule of T ), such that T
is a left H -module algebra.

For any H -action on T , the fixed subring of the action is defined to be

T H := {a ∈ T | h · a = ε(h)a, ∀ h ∈ H }.

Lemma 4.1 Let T be a graded algebra generated in degree 1 and let U act on T inner-
faithfully. Then V := T1 is a direct sum of indecomposable left U -modules, and at least one
of which is not 1-dimensional. As a consequence, dimk V ≥ 2.

Proof Note that U has three Hopf ideals, namely, 0, ker ε, and the ideal generated by u. If
V is a direct sum of 1-dimensional left U -modules, then u · V = 0. Then u · T = 0 since
T is generated by V . So the U -action is not inner-faithful, yielding a contradiction. The
assertion follows.

Note that commutative AS regular algebras are exactly commutative polynomial rings.
Let T be a commutative polynomial ring k[x1, · · · , xn] with deg xi = 1 for all i. Since
U is cocommutative, every U -action on T is uniquely induced and uniquely determined
by its action on the degree 1 piece. The following classifies completely all U -actions on
noetherian AS regular algebras of global dimension 2.

Proposition 4.2 Let U act inner-faithfully on a noetherian Koszul AS regular algebra T of
global dimension 2.

(1) T is commutative, namely, T = k[V ] where V = T1. As a consequence, V is a
2-dimensional indecomposable left U -module.
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(2) Using the notation introduced in Convention 2.4, we write V as M(2, i) = kx1 ⊕ kx2
for some 0 � i � p − 1. Then the following hold.

(2a) If V = M(2, p − 1), then T U = k[xp

1 , x2].
(2b) If V = M(2, i) for some 0 ≤ i ≤ p − 2, then T U = k[xp

1 , x
p

2 ].

Proof (1) Since the U -action on T is inner-faithful, V is not a direct sum of two 1-
dimensional simples by Lemma 4.1. Hence V = M(2, i) for some i, and then
T = k〈V 〉/(r) where r ∈ V ⊗ V is the relation of T . By Lemma 3.2 and Corollary
3.6, the socle of V ⊗ V is two dimensional, spanned by z3 := −x1 ⊗ x2 + x2 ⊗ x1
and z4 := x2 ⊗ x2. Since kr is a left U -module, it must be either kz3 or kz4. Since
an AS regular algebra of global dimension two is a domain, r cannot be z4. Therefore
r = z3, and T is commutative.

(2) By part (1), T = k[x1, x2]. Since u and w are primitive, both of them act on T as
derivatives. Then it is easy to show that xp

1 , x
p

2 ∈ T U .
Let V = M(2, i). For any 0 ≤ a, b ≤ p − 1, it is straightforward to check that

u · (xa
1xb

2 ) = axa−1
1 xb+1

2 , and w · (xa
1xb

2 ) = (ai + b(i + 1))xa
1xb

2 . (2)

(2a) If i = p − 1, then Eq. 2 implies that x2 ∈ T U and that T U = k[xp

1 , x2].
(2b) If i �= p − 1, then one sees that T U = k[xp

1 , x
p

2 ] by Eq. 2.

For a generalization of Proposition 4.2(1), see Proposition 1.4 (and Proposition 5.3).
Next we would like to determine U -actions on noetherian Koszul AS regular algebras

of global dimension 3. We will use the fact that a noetherian connected graded algebra of
global dimension three is a domain [38, Theorem].

Convention 4.3 The following are assumed for the rest of this section.

(1) Let U act inner-faithfully and homogeneously on a noetherian Koszul AS regular
algebra T of global dimension 3.

(2) Let V := T1 be the degree 1 piece of the algebra T . It is well-known that V is a
3-dimensional left U -module.

(3) Let R ⊆ V ⊗ V be the relation space of T , namely, T = k〈V 〉/(R). It is well-known
that R is a 3-dimensional left U -submodule of V ⊗ V .

(4) If V is M(3, i), then we write V = kx1 ⊕ kx2 ⊕ kx3 using the notation introduced in
Convention 2.4.

(5) If V is M(2, i) ⊕ Sj (where Sj = M(1, j)), then we write M(2, i) = kx1 ⊕ kx2 using
the notation introduced in Convention 2.4 and Sj = ky.

(6) Since T is noetherian Koszul AS regular of global dimension three, the Hilbert series
of T is (1 − t)−3. In particular, dimk T3 = 10.

There is a large class of noetherian Koszul AS regular algebras of global dimension 3
and the classification of such algebras over a field of positive characteristic has not been
done. We can classify all U -actions on noetherian Koszul AS regular algebras of global
dimension 3 because there is no inner-faithful U -action on a generic AS regular algebra, see
Proposition 5.3. The basic idea in the following is to work out the left U -module R which
is a U -submodule of V ⊗ V .
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Lemma 4.4 Suppose V is M(3, i). Let z4 := −x1 ⊗ x3 + x2 ⊗ x2 − x3 ⊗ x1, z5 :=
x2 ⊗ x3 − x3 ⊗ x2 and z6 := −x3 ⊗ x3. The following hold.

(1) soc(V ⊗V ) = S2i+2 ⊕S2i+3 ⊕S2i+4 where basis elements for simple modules S2i+2,
S2i+3, S2i+4 respectively are z4, z5, z6 respectively.

(2) If p = 3, then V ⊗ V = M(3, 2i) ⊕ M(3, 2i + 1) ⊕ M(3, 2i + 2) where the socles of
M(3, 2i), M(3, 2i + 1), M(3, 2i + 2) are generated by z4, z5, z6 respectively.

(3) If p ≥ 5, then V ⊗ V = M(1, 2 + 2i) ⊕ M(3, 1 + 2i) ⊕ M(5, 2i) where the socles
of M(1, 2 + 2i), M(3, 1 + 2i), M(5, 2i) respectively are generated by z4, z5, z6
respectively.

Proof (1) This follows from Lemma 3.2 and Corollary 3.6.
(2) This follows from part (1) and Proposition 3.8.
(3) This follows from part (1) and Theorem 3.10(2) when p > 5 and Theorem 3.11(2)

when p = 5.

Lemma 4.5 Suppose V = M(3, i) = kx1 ⊕ kx2 ⊕ kx3. Let W = x3 ⊗ V + V ⊗ x3.

(1) R ∩ (x3 ⊗ V ) = R ∩ (V ⊗ x3) = 0 and dimk(R ∩ W) ≤ 2.
(2) dimk(R ∩ W) �= 1.
(3) R does not contain three linearly independent elements of the form

f1 := x1 ⊗ x2 + ξ1,

f2 := x2 ⊗ x1 + ξ2,

f3 := x2 ⊗ x2 + ξ3,

where ξ1, ξ2, ξ3 ∈ W .
(4) dimk(R ∩ W) �= 0.
(5) dimk(R ∩ W) = 2, x3 is a normal element in T , and one of the following occurs:

(5a) p ≥ 3, T is commutative.
(5b) p = 3 and the relations of T are

x2x1 − x1x2 + x2
3 = 0, x3x1 − x1x3 = 0, x3x2 − x2x3 = 0.

Proof Some non-essential computations are skipped. Since V = M(3, i), p ≥ 3.

(1) If R ∩ (x3 ⊗ V ) �= 0, then there is a relation of the form x3 ⊗ v = 0 for some
0 �= v ∈ V . This contradicts the fact that T is a domain. Therefore R ∩ (x3 ⊗ V ) = 0.
By symmetry, R ∩ (V ⊗ x3) = 0.

The inclusion R ∩ W → W induces an injective map R ∩ W → W/(V ⊗ x3). Therefore
dimk R ∩ W ≤ dimk W/(V ⊗ x3) = 2.

(2) Suppose to the contrary that dimk R ∩ W = 1. Let f be a basis element in R ∩ W and
write it as

f = ax3 ⊗ x1 + bx3 ⊗ x2 + v ⊗ x3

for some v ∈ V . By part (1), either a or b is nonzero. Suppose first that a �= 0. Then
u · f = ax3 ⊗ x2 + w ⊗ x3 for some w ∈ V . So {f, u · f } are linearly independent
elements in R∩W , yielding a contradiction. Therefore a = 0, and in this case we may
assume that b = 1 and

f = x3 ⊗ x2 + a1x1 ⊗ x3 − qx2 ⊗ x3 + c1x3 ⊗ x3.

733



H.-X. Chen et al.

Note that

(2i + 3 − w) · f = a1x1 ⊗ x3 − c1x3 ⊗ x3

which must be zero as dimk R ∩ W = 1. Therefore a1 = c1 = 0 and f = x3 ⊗
x2 − qx2 ⊗ x3. Since kf is in the socle of V ⊗ V , by Lemma 4.4, we have that
f1 := z5 = x2 ⊗ x3 − x3 ⊗ x2 ∈ R ∩ W .

Now let g ∈ R \ W and write it as

g = a11x1 ⊗ x1 + a12x1 ⊗ x2 + a21x2 ⊗ x1 + a22x2 ⊗ x2 + φ0

where φ0 ∈ W . Since dimk R/R ∩ W = dimk R − dimk(R ∩ W) = 2, u2 · g ∈ W . By a
computation, u2 · g = 2a11x2 ⊗ x2 + φ1 where φ1 ∈ W . Thus a11 = 0. In this case

u · g = (a12 + a21)x2 ⊗ x2 + a12x1 ⊗ x3 + a21x3 ⊗ x1 + φ2

where φ2 ∈ W . If 3(a12 + a21) �= 0, then

u2 · g ≡ (2a12 + a21)x2 ⊗ x3 + (a12 + 2a21)x3 ⊗ x2 mod kx3 ⊗ x3

≡ 3(a12 + a21)x2 ⊗ x3 mod kx3 ⊗ x3 + kz5

as u2 · (a22x2 ⊗ x2 + φ0) ≡ 0 modulo kx3 ⊗ x3. Then u2 · g and z5 are linearly independent
elements in R ∩ W , yielding a contradiction. Therefore 3(a12 + a21) = 0.

Since R/R ∩W has dimension two, either a12 �= 0 or a21 �= 0. By symmetry, we assume
that a12 �= 0. So we can assume that a12 = −1. We need to consider the following two
cases:

Case (2a): a21 = −a12 = 1. Then R has two elements of the form

f2 = x2 ⊗ x1 − x1 ⊗ x2 + a1x1 ⊗ x3 + b1x3 ⊗ x1 + c1x2 ⊗ x3 + d1x3 ⊗ x3,

f3 = x2 ⊗ x2 + a2x1 ⊗ x3 + b2x3 ⊗ x1 + c2x2 ⊗ x3 + d2x3 ⊗ x3.

It is easy to see that

u · f2 = x3 ⊗ x1 − x1 ⊗ x3 + a1x2 ⊗ x3 + b1x3 ⊗ x2 + c1x3 ⊗ x3

which is in R ∩ W but not in kf1. This yields a contradiction.
Case (2b): q := a21 �= −a12 = 1. Since 3(a12 +a21) = 0, we obtain that p = 3. We also

have relations similar to f2 and f3 in Case (2a). Since R is a left U -module, we can choose
f2, f3 so that (2i + 1 − w) · f2 = 0 = (2i + 2 − w) · f3. In this case, we have

f2 = qx2 ⊗ x1 − x1 ⊗ x2 + dx3 ⊗ x3,

f3 = x2 ⊗ x2 + ax1 ⊗ x3 + bx3 ⊗ x1.

By easy calculation,

u · f2 = (q − 1)x2 ⊗ x2 − x1 ⊗ x3 + qx3 ⊗ x1,

u · f3 = (1 + a)x2 ⊗ x3 + (1 + b)x3 ⊗ x2.

Since u · f2 and u · f3 are relations of T , by comparing u · f2 with f3 and u · f3 with
f1 and using the fact that p = 3, we obtain that a = −(q − 1)−1 and b = q(q − 1)−1.
This algebra can be built from k[x2, x3] by adding x1 with relations f2 and f3. So if T is
AS regular (consequently having Hilbert series (1 − t)−3), it must be an Ore extension of
the form k[x2, x3][x1; σ, δ] for some automorphism σ and σ -derivation δ of the polynomial
ring k[x2, x3]. Now an easy ring theory argument shows that the existence of (σ, δ) forces
that q = 1, yielding a contradiction.

734



Examples of Non-Semisimple Hopf Algebra Actions on Artin-Schelter...

(3) Suppose to the contrary that R contains three linearly independent elements of the
form

f1 = x1 ⊗ x2 + ξ1,

f2 = x2 ⊗ x1 + ξ2,

f3 = x2 ⊗ x2 + ξ3,

where ξ1, ξ2, ξ3 ∈ W . Then u · f1 and u · f2 must be equal to f3. Then R/(kf3) is
a direct sum of two 1-dimensional simples. Then R is not indecomposable. Then R

contains at least two of elements z4, z5, z6 by Lemma 4.4(1). Clearly z5 and z6 are not
a linear combination of these fi . This yields a contradiction.

(4) On the contrary we suppose that R ∩ W = 0.

First we assume that p > 3. If f = x1 ⊗ x1 + ∑
(i,j)�=(1,1) ai,j xi ⊗ xj is in R, then

u3 · f = 3(x2 ⊗ x3 + x3 ⊗ x2) + cx3 ⊗ x3 for some c ∈ k, which is a nonzero element
in R ∩ W , a contradiction. So R does not contain any element of the form x1 ⊗ x1 +∑

(i,j)�=(1,1) ai,j xi ⊗xj . Since R ∩W = 0, R must contain three elements of the form given
in part (3). This contradicts part (3).

Now we assume that p = 3. By Lemma 4.4(1), one of the relations is z4 ∈ R as z5 and
z6 are in W . By part (3), we have a relation f ∈ R of the form

f = x1 ⊗ x1 + higher terms.

Then u · f = x1 ⊗ x2 + x2 ⊗ x1 + higher terms. Modulo z4 and u · f , we can assume that

f = x1 ⊗ x1 + ax1 ⊗ x2 + bx1 ⊗ x3 + cx3 ⊗ x1 + dx2 ⊗ x3 + ex3 ⊗ x2 + gx3 ⊗ x3.

Then

(2i − w) · f = −ax1 ⊗ x2 − 2bx1 ⊗ x3 − 2cx3 ⊗ x1 − gx3 ⊗ x3.

Since (2i − w) · f ∈ R and it is not a nonzero linear combination of z4, f and u · f , it must
be zero. Therefore a = b = c = g = 0 and

f = x1 ⊗ x1 + dx2 ⊗ x3 + ex3 ⊗ x2.

Consequently, we have two more relations

u · f = x1 ⊗ x2 + x2 ⊗ x1 + (d + e)x3 ⊗ x3,

−u2 · f = −x1 ⊗ x3 + x2 ⊗ x2 − x3 ⊗ x1.

Since T is a domain one of d and e is nonzero. By symmetry, we can assume e �= 0. After
changing a basis element, we may assume that e = 1. Next we consider two cases dependent
on whether d + e is zero or not.

Case 1: d + e = 0. Since e = 1, d = −1. So three relations of T are, after we omit the
⊗ symbol:

x3x2 = x2x3 − x2
1 , x2x1 = −x1x2, x3x1 = −x1x3 + x2

2 .

Following ideas from Bergman’s Diamond lemma [4], the next computation is referred to
as resolving the overlap ambiguity of x3(x2x1) = (x3x2)x1. Using the order x1 < x2 < x3
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in the algebra T , we have

(x3x2)x1 = (x2x3 − x2
1)x1 = x2(x3x1) − x3

1

= x2(−x1x3 + x2
2 ) − x3

1 = x1x2x3 + x3
2 − x3

1 ,

x3(x2x1) = x3(−x1x2) = −(x3x1)x2

= −(−x1x3 + x2
2 )x2 = x1(x3x2) − x3

2

= x1(x2x3 − x2
1 ) − x3

2 = x1x2x3 − x3
1 − x3

2 .

Since x3(x2x1) = (x3x2)x1, we obtain that x1x2x3 + x3
2 − x3

1 = x1x2x3 − x3
1 − x3

2 , or
equivalently, x3

2 = 0. But T is a domain, so this case cannot happen.
Case 2: d + e = d + 1 �= 0. In this case, the relations of T are

x3x2 = −dx2x3 − x2
1 , x2

3 = −(d + e)−1(x2x1 + x1x2), x3x1 = −x1x3 + x2
2 .

By resolving the overlap ambiguity of (x2
3)x3 = x3(x

2
3) (details omitted, same as below),

we obtain that
(d − 1)x3

2 = (d − 1)(x2x1 + x1x2)x3.
By resolving the overlap ambiguity of (x3)

2x1 = x3(x3x1), we obtain that

(d2 − 1)x2
2x3 = (d + (d + 1)−1)x2x

2
1 − (1 + (d + 1)−1)x2

1x2.

By resolving the overlap ambiguity of (x2
3)x2 = x3(x3x2), we obtain that

(1+d2(d +1)−1)x2
2x1 = (d −1)x2

1x3+ (1+ (d +1)−1)−1x1x
2
2 + (d +1)−1(1−d2)x2x1x2.

If d �= 1, by using the relations of degree 2 and three relations coming from resolving
the overlap ambiguities, then T3 is a k-span of

{x3
1 , x

2
1x2, x1x2x1, x1x

2
2 , x2x

2
1 , x2x1x2, x

2
1x3, x1x2x3, x2x1x3}.

As a consequence, dimk T3 = 9 < 10, yielding a contradiction. Therefore d = 1. We
already have e = 1, so the three relations of T become

x1x3 + x3x1 = x2
2 ,

x1x2 + x2x1 = −2x2
3 = x2

3 ,

x3x2 + x2x3 = −x2
1 .

Note that, after setting x1 → −x1 in the above algebra, the new algebra, denoted by T ′, has
relations

x1x3 + x3x1 = −x2
2 ,

x1x2 + x2x1 = −x2
3 ,

x3x2 + x2x3 = −x2
1 .

Its Koszul dual, denoted by B, is a commutative algebra generated by y1, y2, y3 subject to
relations:

y1y3 − y3y1 = 0, y1y3 − y2
2 = 0,

y1y2 − y2y1 = 0, y1y2 − y2
3 = 0,

y3y2 − y2y3 = 0, y2y3 − y2
1 = 0.

It is easy to see that there is a surjective algebra map from B to k[t] by setting yi → t for
i = 1, 2, 3. Therefore B is not finite dimensional Frobenius. By [37, Proposition 5.10] or
[31, Corollary D], T ′ is not AS regular. As a consequence, T is not AS regular, yielding a
contradiction. Thus the assertion follows.
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(5) By parts (1,2,4), dimk R ∩ W = 2. By the proof of part (1), the natural k-linear map
φ : R ∩ W → W/(V ⊗ x3) is an isomorphism. Let f1, f2 be two linearly independent
elements in R ∩ W . Since φ(f1) and φ(f2) are linearly independent, we may assume
φ(f1) = x3 ⊗ x1 and φ(f2) = x3 ⊗ x2. In other words, we can write

f1 := x3 ⊗ x1 + a1x1 ⊗ x3 + b1x2 ⊗ x3 + c1x3 ⊗ x3,

f2 := x3 ⊗ x2 + a2x1 ⊗ x3 + b2x2 ⊗ x3 + c2x3 ⊗ x3.

Therefore x3T = T x3 and hence, x3 is a normal element in T .

Since x3 is normal and kx3 is a left U -module, the U -action on T induces a natural
U -action on Z := T/(x3) where Z is a noetherian Koszul AS regular algebra of global
dimension two. Note that the degree 1 piece of Z is Z1 = M(2, i), whence the U -action on
Z is inner-faithful. By Proposition 4.2(1), Z is commutative, so x2x1 − x1x2 = 0 in Z. This
implies that the third relation in T is

f3 := x2 ⊗ x1 − x1 ⊗ x2 + a3x1 ⊗ x3 + b3x2 ⊗ x3 + c3x3 ⊗ x3.

Easy computations show that

u · f1 = x3 ⊗ x2 + a1x2 ⊗ x3 + b1x3 ⊗ x3, (3)

u · f2 = x3 ⊗ x3 + a2x2 ⊗ x3 + b2x3 ⊗ x3, (4)

u · f3 = x3 ⊗ x1 − x1 ⊗ x3 + a3x2 ⊗ x3 + b3x3 ⊗ x3, (5)

(2i + 2 − w) · f1 = −b1x2 ⊗ x3 − 2c1x3 ⊗ x3, (6)

(2i + 3 − w) · f2 = a2x1 ⊗ x3 − c2x3 ⊗ x3, (7)

(2i + 1 − w) · f3 = −a3x1 ⊗ x3 − 2b3x2 ⊗ x3 − 3c3x3 ⊗ x3. (8)

Since R is a U -submodule, the above elements are in R ∩ W . Equations 6-8 imply that
b1 = c1 = a2 = c2 = a3 = b3 = 3c3 = 0. Equation 5 says that f1 = x3 ⊗ x1 − x1 ⊗ x3
and that a1 = −1, Eq. 3 says that f2 = x3 ⊗ x2 − x2 ⊗ x3 and that b2 = −1. Combining all
these we obtain two cases:

(a) p ≥ 3, T is commutative, or
(b) p = 3 and relations of T are, up to a change of basis,

x2 ⊗ x1 − x1 ⊗ x2 + x3 ⊗ x3 = x3 ⊗ x1 − x1 ⊗ x3 = x3 ⊗ x2 − x2 ⊗ x3 = 0.

This finishes the proof.

We will recycle the letter z4 with a different meaning in the next lemma. Similar to
Lemma 4.4, we have

Lemma 4.6 Suppose V = M(2, i) ⊕ Sj = kx1 ⊕ kx2 ⊕ ky for some i, j ∈ Zp .

(1) V ⊗ V = [M(2, i) ⊗ M(2, i)] ⊕ [M(2, i) ⊗ Sj ⊕ Sj ⊗ M(2, i)] ⊕ Sj ⊗ Sj .
(2) soc(V ⊗ V ) = [S2i+1 ⊕ S2i+2] ⊕ [Si+1+j ⊕ Sj+i+1] ⊕ S2j with corresponding basis

elements z3 = −x1 ⊗ x2 + x2 ⊗ x1 and z4 = x2 ⊗ x2 for S2i+1 ⊕S2i+2, x2 ⊗ y, y ⊗ x2
for Si+1+j ⊕ Sj+i+1, and y ⊗ y for S2j .

Lemma 4.7 Suppose V = M(2, i)⊕Sj as in Lemma 4.6. Then u2·R = 0 and dimk u·R≤1.
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Proof Suppose to the contrary that u2 · R �= 0. Then the subspace M(2, i) ⊗ M(2, i) in
Lemma 4.6(1) has a direct summand that is a three-dimensional indecomposable module
M(3, 2i) (using Corollary 3.12) with socle kz4 = kx2 ⊗ x2. As a consequence p ≥ 3. In
this case, Lemma 4.6(1) implies that V ⊗V = M(3, 2i)⊕N where u2 ·N = 0. Pick f ∈ R

such that u2 · f �= 0 and write f = f0 + f1 where f0 ∈ M(3, 2i) and f1 ∈ N . Then
u2 · f0 = u2 · f ∈ R. Since u2 · f0 is in the socle of M(3, 2i), we obtain that u2 · f is a
nonzero element in kz4. Thus x2

2 = 0 in T , which contradicts the fact that every noetherian
Koszul AS regular algebra of global dimension three is a domain. Therefore u2 · R = 0.

Since u2 ·R = 0, then soc(R) has dimension at least 2. Therefore u ·R ∼= R/ ker(lu) has
dimension at most 1, where lu : R → R is a left multiplication by u.

We need the following lemma.

Lemma 4.8 Let char k = 2.

(1) Suppose A is generated by x1, x2, y and subject to the relations

0 = x2
1 + c1x2y + d1yx2 + e1y

2,

0 = x1x2 + x2x1,

0 = x2
2 + c3x2y + d3yx2 + e3y

2.

Then A is a noetherian Koszul AS regular algebra of global dimension 3 if and only if
the parameters satisfy the following conditions

d1 = c1, d3 = c3, c23 − e3 �= 0, c1e3 − c3e1 �= 0.

(2) Suppose A is generated by x1, x2, y and subject to the relations

0 = yx2 − qx2y,

0 = x1x1 + ax1y + dy2 + ex2
2 ,

0 = x1x2 + x2x1 + ax2y.

Then A is a noetherian Koszul AS regular algebra of global dimension 3 if and only if
the parameters satisfy the following conditions.

a = 0, q = 1, d �= 0.

In this case we can assume that d = 1.
(3) Suppose A is generated by x1, x2, y and subject to the relations

0 = yx2 − qx2y + c1y
2,

0 = x1x1 + cx2y + dy2 + ex2
2 ,

0 = x1x2 + x2x1.

Then A is a noetherian Koszul AS regular algebra of global dimension 3 if and only if
the parameters satisfy the following conditions

q = 1, d �= 0, c1c = 0.

As a consequence, we may assume d = 1, and (c1, c) = (1, 0) or (0, 1) by a change
of basis.

To save some space, we omit the proof of Lemma 4.8 as it takes a few pages. Here are a
list of ideas used in the proof.
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(a) We use the fact that the Hilbert series of A must be (1 − t)−3 if A is noetherian
Koszul AS regular of global dimension three. We will resolve the overlap ambiguitiy of
relations (ideas from Bergman’s Diamond lemma [4]) to make sure that dimA3 = 10.
The condition dimA3 = 10 forces some constraints on the parameters.

(b) We study the Koszul dual of the algebra. Note that A is Koszul AS regular if and
only if the Koszul dual of A is Koszul and Frobenius, see [37, Proposition 5.10] or
[31, Corollary D]. Both Koszul and Frobenius properties put more constraints on the
parameters.

(c) We use ideas in [6, Theorem 4.2] to show that A is noetherian Koszul AS regular.

Lemma 4.9 Retain the hypothesis in Lemma 4.7. Recycle the letter W for y ⊗ V + V ⊗ y.

(1) R ∩ (y ⊗ V ) = R ∩ (V ⊗ y) = 0 and dimk(R ∩ W) ≤ 2.
(2) If dimk(R ∩ W) = 2, then y is a normal element.
(3) Suppose dimk(R ∩ W) = 1. Then one of the following occurs.

(3a) j = i + 2 and the relations of T are

yx2−x2y = 0, x1x2−x2x1+c2x2y+d2y
2 = 0, x2

2+yx1−x1y+d3y
2 = 0

where c2 �= 0 or d3 �= 0 only if p = 2 and d2 �= 0 only if p = 3.
(3b) p = 2, i = j and the relations of T are

yx2 + x2y = 0, x2
1 + y2 + ex2

2 = 0, x1x2 + x2x1 = 0,

where e ∈ k.
(3c) p = 2, i �= j and the relations of T are

yx2 + x2y + by2 = 0, x2
1 + cx2y + y2 + ex2

2 , x1x2 + x2x1 = 0,

with (b, c) being (0, 1) or (1, 0).

(4) If R contains three linearly independent elements of the form

f1 = x1 ⊗ x2 + ξ1,

f2 = x2 ⊗ x1 + ξ2,

f3 = x2 ⊗ x2 + ξ3,

where ξ1, ξ2, ξ3 ∈ W , then i +1 = j , and, up to a change of basis, the above relations
are

x1x2 + x1y − yx1 = 0, x2x1 + x1y − yx1 = 0, x2
2 + x2y − yx2 = 0.

(5) Suppose R ∩ W = 0 and R is not in the situation of part (4). Then p = 2, i �= j , and
R is of the following cases:

(5a) c1 ∈ k,

x2
1 + c1(x2y + yx2) + y2 = 0, x1x2 + x2x1 = 0, x2

2 + x2y + yx2 = 0.

(5b) e1 ∈ k,

x2
1 + x2y + yx2 + e1y

2 = 0, x1x2 + x2x1 = 0, x2
2 + y2 = 0.

Proof (1) It follows from the proof of Lemma 4.5(1) by replacing x3 by y.
(2) The first paragraph of the proof of Lemma 4.5(5) works well for this situation after

replacing x3 by y.
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(3) Let f be a basis element in R ∩ W and write it as

f = ay ⊗ x1 + by ⊗ x2 + v ⊗ y

for some v ∈ V . Suppose that a �= 0. Then u · f = ay ⊗ x2 + w ⊗ y for some w ∈ V .
So {f, u · f } are linearly independent elements in R ∩ W , yielding a contradiction.
Therefore a = 0, and in this case we may assume that b = 1 and

f = y ⊗ x2 + a1x1 ⊗ y − qx2 ⊗ y + c1y ⊗ y

for some scalars a1, q, c1. Note that

u · f = a1x2 ⊗ y

which must be zero as dimk R ∩ W = 1. Therefore a1 = 0 and we obtain the first
relation of T ,

f1 = y ⊗ x2 − qx2 ⊗ y + c1y ⊗ y

where c1 �= 0 only if i + 1 = j .
Now let g ∈ R \ W and write it as

g = a11x1 ⊗ x1 + a12x1 ⊗ x2 + a21x2 ⊗ x1 + a22x2 ⊗ x2 + φ0

where φ0 ∈ W . By a computation, u2 · g = 2a11x2 ⊗ x2 + φ1 where φ1 ∈ W . By Lemma
4.7, u2 · g = 0. Thus 2a11 = 0. Then we have the following two cases to consider.

Case 1: a11 = 0. In this case u · g = (a12 + a21)x2 ⊗ x2 + φ2 where φ2 ∈ W . Since
dimk R/(R ∩ W) = 2, either a12 or a21 is nonzero. We may assume a12 = 1 by symmetry.
If a12 + a21 �= 0 , we have two other relations

f2 = x1 ⊗ x2 + a21x2 ⊗ x1 + ax1 ⊗ y + by ⊗ x1 + cx2 ⊗ y + dy ⊗ y,

(1 + a21)
−1u · f2 = f3 = x2 ⊗ x2 + (1 + a21)

−1ax2 ⊗ y + (1 + a21)
−1by ⊗ x2.

The subalgebra of T generated by x2 and y subject to relations f1 and f3 is not a domain.
This contradicts the fact that T is a domain. Therefore a12 + a21 = 0, or equivalently,
a12 = 1 and a21 = −1. Now we have three relations of the form

f1 = y ⊗ x2 − qx2 ⊗ y + c1y ⊗ y,

f2 = x1 ⊗ x2 − x2 ⊗ x1 + a2x1 ⊗ y + b2y ⊗ x1 + c2x2 ⊗ y + d2y ⊗ y,

f3 = x2 ⊗ x2 + a3x1 ⊗ y + b3y ⊗ x1 + c3x2 ⊗ y + d3y ⊗ y.

Since T is a domain, it may not have two relations only involving x2 and y. Thus a3x1 ⊗
y + b3y ⊗ x1 �= 0. This implies that u ·f3 = a3x2 ⊗ y + b3y ⊗ x2 �= 0. Therefore u ·f3 and
f1 are linearly dependent. Replacing y by b3y, we may assume that b3 = 1. Then a3 = −q

and c1 = 0. Similarly, we can get a2 = −qb2. After rearranging, using the fact that R is a
U -module, we have j = i + 2 and

f1 = y ⊗ x2 − qx2 ⊗ y,

f2 = x1 ⊗ x2 − x2 ⊗ x1 + c2x2 ⊗ y + d2y ⊗ y,

f3 = x2 ⊗ x2 + (y ⊗ x1 − qx1 ⊗ y) + d3y ⊗ y

where c2 �= 0 or d3 �= 0 only if p = 2 and d2 �= 0 only if p = 3. Finally by resolving the
overlap ambiguity of (x1x2)y = x1(x2y) with order y < x2 < x1 (details are omitted, but
similar to one given in the proof of Lemma 4.5(4)), we obtain that q = 1. So we obtain part
(3a). In this case it is easy to see that T is an Ore extension k[x2, y][x1; δ].
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Case 2: a11 �= 0 (so we may assume that a11 = 1) and p = 2. Let f2 = (2i + 1− w) · g
and f3 = u · f2, we have

f2 = x1 ⊗ x1 + ax1 ⊗ y + by ⊗ x1 + cx2 ⊗ y + dy ⊗ y + ex2 ⊗ x2,

f3 = x1 ⊗ x2 + x2 ⊗ x1 + ax2 ⊗ y + by ⊗ x2,

where a �= 0 or b �= 0 only if i = j . Replacing x1 by x1 + by, we can assume that b = 0.
So we have three relations

f1 = y ⊗ x2 − qx2 ⊗ y + c1y ⊗ y,

f2 = x1 ⊗ x1 + ax1 ⊗ y + cx2 ⊗ y + dy ⊗ y + ex2 ⊗ x2,

f3 = x1 ⊗ x2 + x2 ⊗ x1 + ax2 ⊗ y,

where c1 �= 0 only if i �= j and a �= 0 only if i = j .
If i = j , then c1 = 0 = c. In this case we are exactly in the situation of Lemma 4.8(2).

By Lemma 4.8(2), a = 0, q = 1 and d �= 0 (and we can assume d = 1 by changing a basis
element). Therefore we obtain (3b) by setting d = 1.

If i �= j , then a = 0. In this case we are exactly in the situation of Lemma 4.8(3). By
Lemma 4.8(3), q = 1, d �= 0, c1c = 0. By setting d = 1 and renaming c1 to b and changing
basis elements if necessary, we obtain (3c).

(4) Writing ξi out explicitly, we have the following three linearly independent elements in
R

f1 = x1 ⊗ x2 + a1x1 ⊗ y + b1y ⊗ x1 + c1x2 ⊗ y + d1y ⊗ x2 + e1y ⊗ y,

f2 = x2 ⊗ x1 + a2x1 ⊗ y + b2y ⊗ x1 + c2x2 ⊗ y + d2y ⊗ x2 + e2y ⊗ y,

f3 = x2 ⊗ x2 + a3x1 ⊗ y + b3y ⊗ x1 + c3x2 ⊗ y + d3y ⊗ x2 + e3y ⊗ y.

Using the fact that R ∩ W = 0, it is easy to see that

u · f1 = f3, u · f2 = f3, u · f3 = 0. (9)

Similarly, we have

(2i + 1 − w) · f1 = (2i + 1 − w) · f2 = (2i + 2 − w) · f3 = 0.

By Eq. 9, we obtain that a1 = a2 = c3, b1 = b2 = d3, a3 = b3 = e3 = 0. By part (1), both
c3 and d3 are nonzero. By using (2i + 2− w) · f3 = 0, we obtain that i + 1 = j . Under this
assumption, (2i + 1 − w) · f1 = (2i + 1 − w) · f2 = 0 imply that

c1 = d1 = e1 = 0 = c2 = d2 = e2.

Therefore we have the following relations, after setting a = a1 and b = b1,

f1 = x1 ⊗ x2 + ax1 ⊗ y + by ⊗ x1,

f2 = x2 ⊗ x1 + ax1 ⊗ y + by ⊗ x1,

f3 = x2 ⊗ x2 + ax2 ⊗ y + by ⊗ x2,

where j = i + 1. Using these relations, one can check that T contains a subalgebra B :=
k[x2][y; σ1, δ] and T = ∑

n≥0 Bxn
1 = ∑

n≥0 xn
1B. Then T is AS regular if and only if T is

an iterated Ore extension of the form k[x2][y; σ1, δ1][x1; σ2] for some σ1, σ2 and δ1 if and
only if b = −a �= 0 (details are omitted). The assertion follows by setting new y to be ay.

(5) Since R is not in the situation of part (4), R contains an element g = x1 ⊗ x1 +
other terms. Then u2 · g = 2(x2 ⊗ x2) �= 0. If p > 2, then u2 · g �= 0, contradicts
Lemma 4.7. Therefore p = 2.
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For the rest of the proof, p = 2. We have an injective U -morphism

R′ := (R + W)/W → (V ⊗ V )/W ∼= M(2, i) ⊗ M(2, i),

so we can consider R′ as a submodule of M(2, i) ⊗ M(2, i). By Lemma 4.6, R′ contains
elements z3 := −x1 ⊗x2 +x2 ⊗x1 and z4 = x2 ⊗x2. Since R′ has dimension three, it must
has basis elements x1 ⊗ x1, z3 and z4. Lifting these elements from R′ to R, we obtain three
linearly independent elements in R (using the fact p = 2):

f1 = x1 ⊗ x1 + a1x1 ⊗ y + b1y ⊗ x1 + c1x2 ⊗ y + d1y ⊗ x2 + e1y ⊗ y,

f2 = x1 ⊗ x2 + x2 ⊗ x1 + a2x1 ⊗ y + b2y ⊗ x1 + c2x2 ⊗ y + d2y ⊗ x2 + e2y ⊗ y,

f3 = x2 ⊗ x2 + a3x1 ⊗ y + b3y ⊗ x1 + c3x2 ⊗ y + d3y ⊗ x2 + e3y ⊗ y.

Under this setting, R ∩ W = 0 implies that

u · f1 = f2, u · f2 = 0, u · f3 = 0. (10)

Further we have,

(2i − w) · f1 = (2i + 1 − w) · f2 = (2i + 2 − w) · f3 = 0. (11)

Using Eqs. 10 and 11, one has

a2 = b2 = e2 = a3 = b3 = 0, a1 = c2, b1 = d2,

and

(i −j)a1 = (i −j)b1 = (i −j +1)c1 = (i −j +1)d1 = (i −j +1)c3 = (i −j +1)d3 = 0.

If i = j , then
f1 = x1 ⊗ x1 + a1x1 ⊗ y + b1y ⊗ x1 + e1y ⊗ y,

f2 = x1 ⊗ x2 + x2 ⊗ x1 + a1x2 ⊗ y + b1y ⊗ x2,

f3 = x2 ⊗ x2 + e3y ⊗ y.

Since f1 and f3 are not of the form v ⊗ w for some v, w ∈ V , e3 �= 0 (so we can assume
that e3 = 1) and e1 �= a1b1. Replacing x1 by x1+b1y (which will not change the U -module
structure of V ), we may assume that b1 = 0; and up to a rescaling, e1 = 1. Thus we have
i = j and

f1 = x1 ⊗ x1 + ax1 ⊗ y + y ⊗ y,

f2 = x1 ⊗ x2 + x2 ⊗ x1 + ax2 ⊗ y,

f3 = x2 ⊗ x2 + y ⊗ y.

We claim that this is not AS regular. To see this, consider its Koszul dual B, which is
generated by y1 := x∗

1 , y2 := x∗
2 , y3 := y∗ subject to relations

y2
1 + y2

2 + y2
3 = 0, ay2

1 + y1y3 = 0, y3y1 = 0,

and
y1y2 + y2y1 = 0, ay1y2 + y2y3 = 0, y3y2 = 0.

Now it is easy to check that y2
3 (ky1 + ky2 + ky3) = 0 which implies that B is not of finite

dimensional and Frobenius. By [37, Proposition 5.10] or [31, Corollary D], T is not AS
regular, yielding a contradiction.

If i �= j , then

f1 = x1 ⊗ x1 + c1x2 ⊗ y + d1y ⊗ x2 + e1y ⊗ y,

f2 = x1 ⊗ x2 + x2 ⊗ x1,

f3 = x2 ⊗ x2 + c3x2 ⊗ y + d3y ⊗ x2 + e3y ⊗ y.
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By Lemma 4.8(1), we have

d1 = c1, d3 = c3, c23 − e3 �= 0, c1e3 − c3e1 �= 0.

If e3 = 0, then e1 �= 0 and c3 �= 0. Up to a change of basis, the relations of T are

x2
1 + c1(x2y + yx2) + y2 = 0,

x1x2 + x2x1 = 0,

x2
2 + x2y + yx2 = 0.

If e3 �= 0, then, up to a change of basis (by letting new y be αx1 + βy for some scalars
α, β), we may assume that e3 = 1 and c3 = 0, then the relations of T are

x2
1 + x2y + yx2 + e1y

2 = 0,

x1x2 + x2x1 = 0,

x2
2 + y2 = 0.

This finishes the proof.

Lemma 4.10 Retain the hypothesis in Lemma 4.7. If y ∈ Sj ⊆ V is a normal element in
T , then one of the following holds.

(1) (i − j)(2i + 1 − 2j) �= 0 in Zp , and the relations in T are

yx1 + ax1y = 0, yx2 + ax2y = 0, x2x1 − x1x2 = 0

for a �= 0.
(2) 2i + 1 − 2j = 0 (then i �= j ) in Zp, and the relations in T are

yx1 + ax1y = 0, yx2 + ax2y = 0, x2x1 − x1x2 + εy2 = 0

where a �= 0, ε = 0 or 1 and ε(a2 − 1) = 0.
(3) i = j (then 2i + 1 − 2j �= 0) in Zp, and the relations in T are

yx1 + ax1y + by2 = 0, yx2 + ax2y = 0, x2x1 − x1x2 + εx2y

where a �= 0, ε = 0 or 1 and (a + 1)(b − ε) = 0.

Proof First of all, every algebra on the list can be written as an iterated Ore extensions of
the form k[x2][y; σ1][x1, σ1, δ2]. So these are noetherian Koszul AS regular.

Since y is normal and ky is a left U -module, the U -action on T induces naturally a
U -action on Z := T/(y) where Z is a noetherian Koszul AS regular algebra of global
dimension two. Note that the degree 1 piece of Z is Z1 = M(2, i), whence the U -action on
Z is inner-faithful. By Proposition 4.2(1), Z is commutative, so x2x1 − x1x2 = 0 in Z.

Let R be the relation space of T . By the previous paragraph, one can show that R has a
basis elements of the form

r1 = yx1 + a1x1y + b1x2y + c1y
2,

r2 = yx2 + a2x1y + b2x2y + c2y
2,

r3 = x2x1 − x1x2 + a3x1y + b3x2y + c3y
2.
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By the U -action on the basis elements and the fact �(u) = u ⊗ 1 + 1 ⊗ u, we have

u · r1 = yx2 + a1x2y,

u · r2 = a2x2y,

u · r3 = a3x2y.

Since u · R ⊆ R, we obtain that

a2 = a3 = c2 = 0, a1 = b2.

Similarly, using the above equations and easy computations, we have

(i + j − w) · r1 = −b1x2y + (i − j)c1y
2,

(i + j + 1 − w) · r2 = 0,

(2i + 1 − w) · r3 = (i − j)b3x2y + (2i + 1 − 2j)c3y
2.

Therefore
b1 = 0

and

(i − j)c1 = 0, (12)

(i − j)b3 = 0, (13)

(2i + 1 − 2j)c3 = 0. (14)

Now we have three relations of the form

r1 = yx1 + a1x1y + c1y
2,

r2 = yx2 + a1x2y,

r3 = x2x1 − x1x2 + b3x2y + c3y
2.

with coefficients satisfying (12)-(14).
Similar to the process of resolving the overlap ambiguity, we calculate

y(x2x1) = y[x1x2 − b3x2y − c3y
2]

= (yx1)x2 − b3(yx2)y − c3y
3

= (−a1x1y − c1y
2)x2 − b3(−a1x2y)y − c3y

3

= a21x1x2y − a21c1x2y
2 + a1b3x2y

2 − c3y
3

(yx2)x1 = −a1(x2y)x1 = −a1x2(yx1)

= −a1x2[−a1x1y − c1y
2]

= a21(x2x1)y + a1c1x2y
2

= a21[x1x2 − b3x2y − c3y
2]y + a1c1x2y

2

= a21x1x2y − a21b3x2y
2 + a1c1x2y

2 − a21c3y
3.

Since {xi
1x

j

2yk | i, j, k ≥} is a k-linear basis, we have
c3(a

2
1 − 1) = 0 (15)

−a21c1 + a1b3 = −a21b3 + a1c1. (16)

Since R does not contain an element of the form v ⊗ w for some v,w ∈ V , a1 �= 0. Now
the system of Eqs. 12-16 has the following solutions:
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(a) (i − j)(2i +1−2j) �= 0 in Zp, r1 = yx1 +ax1y, r2 = yx2 +ax2y, r3 = x2x1 −x1x2.
This is case (1).

(b) 2i + 1 − 2j = 0 (then i �= j ) in Zp, r1 = yx1 + ax1y, r2 = yx2 + ax2y, r3 =
x2x1 − x1x2 + cy2 where c(a2 − 1) = 0. Replacing y by

√
cy, we obtain the case (2).

(c) i = j (then 2i + 1 − 2j �= 0) in Zp, r1 = yx1 + ax1y + cy2, r2 = yx2 + ax2y,
r3 = x2x1 − x1x2 + bx2y where (a + 1)(b − c) = 0. This is case (3) after rescaling.

This finishes the proof.

Proof of Theorem 1.5 First of all, it is routine to check that all algebras in Theorem 1.5 are
noetherian connected graded Koszul AS regular of global dimension three, as we did in the
proofs of Lemmas 4.5, 4.8, 4.9 and 4.10.

If T is commutative, we only need to specify the U -action on V := T1. There are two
cases: either V = M(3, i) or V = M(2, i) ⊕ Sj . This is part (1).

Next we suppose that T is not commutative. If V = M(3, i), then, by Lemma 4.5, only
part (2) can occur.

For the rest of the proof, we assume that T is not commutative and V = M(2, i) ⊕ Sj .
We use dimk R ∩ W to classify the pairs (U, T ).

If dimk R∩W = 2, by Lemma 4.9(2), y is a normal element. By Lemma 4.10, we obtain
parts (4,5,6). If dimk R∩W = 1, by Lemma 4.9(3) we obtain parts (7,8,9). If dimk R∩W =
0, by Lemma 4.9(4,5), we obtain parts (3) and (10). This finishes the proof.

5 Easy Observations

From the limited information in the global dimension 2 case, we see differences between
the semisimple and non-semisimple actions.

Observation 5.1 The following remarks demonstrate differences between semisimple and
non-semisimple Hopf actions on AS regular algebras. Suppose we are in the setting of
Proposition 4.2.

(1) Let p be an odd prime and let i = p−1
2 . Let V = M(2, i). Then the relation of T =

k[V ] is of the form r = x1⊗x2−x2⊗x1 ∈ V ⊗V . By definition,w ·xj = (i+j −1)xj

for j = 1, 2. Hence

w · r = (w ⊗ 1 + 1 ⊗ w)(x1 ⊗ x2 − x2 ⊗ x1)

= (2i + 1)(x1 ⊗ x2 − x2 ⊗ x1)

= p(x1 ⊗ x2 − x2 ⊗ x1) = pr = 0.

It is clear that u · r = 0. Therefore the U -action on kr is trivial. If we use the statement
in [7, Theorem 2.1] as our definition of trivial homological determinant, then the U -
action on T has trivial homological determinant. By Proposition 4.2(2), T U is AS
regular. Therefore [7, Theorem 0.6] fails without H being semisimple.

(2) Suppose the U -action on T has trivial homological determinant as in part (1). Since
T is a free module over T U , EndT U (T ) is a matrix algebra over T U . So T #U is
not isomorphic to EndT U (T ), consequently, [8, Theorem 0.3] fails without H being
semisimple.
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(3) Suppose the U -action on T has trivial homological determinant as in part (1). Note
that CMreg(T ) = 0 and

CMreg(T U ) = CMreg(k[xp

1 , x
p

2 ]) = 2p − 2 �= 0,

where the definition of Castelnuovo-Mumford regularity, denoted CMreg, can be
found in [26, Definition 2.9]. This example shows that [26, Lemma 2.15(2)] fails
without H being semisimple.

(4) In Proposition 4.2(2), T U is AS regular. We are wondering if there is a version of
the Shephard-Todd-Chevalley Theorem for non-semisimple Hopf actions on AS reg-
ular algebras, even if U does not have any nontrivial grouplike element. In the case
of Proposition 4.2(2a), we have that dimU = p2 and that the product of degrees of
generators is p. Hence the conclusion of both [26, Proposition 1.8(4)] and [18, Con-
jecture 0.3] fails. Since U is not semisimple, we are wondering if U is still qualified
to be called a reflection Hopf algebra, see [25, Definition 3.2].

(5) When H is semisimple (with mild hypotheses), by [16, Corollary 3.10], the rank of T

as a left T H -module is equal to dimk H . In Proposition 4.2(2a), the rank of T as a left
T U -module is p, while dimk U = p2. Therefore [16, Corollary 3.10] fails without H
being semisimple.

(6) When H is semisimple, acting on an AS regular algebra T inner-faithfully, T is usu-
ally a left free H -module. In the commutative case see, for example, [36, Theorem
6.19(2,3)]. In the noncommutative case, this was verified for many examples, see [18,
19]. However, in the non-semisimple case, T is never a free H -module as H T0 ∼= Hk

cannot be projective.
(7) Consider the case when p = 2 and i = 1 in Proposition 4.2(2a). Then it is clear that

T0 = k ∼= S0, T1 = kx1 + kx2 ∼= M(2, 1), and T2 = (kx1 + kx2)x2 + kx2
1

∼=
M(2, 1) ⊕ S0. For i ≥ 3, Ti

∼=
{

M(2, 1)m i = 2m,

M(2, 1)m ⊕ S0 i = 2m + 1.
Therefore neither S1

nor M(2, 0) appears as a direct summand of T . Further annU(T ) = kwu �= 0. So the
U -action on T is not faithful, though it is inner-faithful. However, in the semisimple
case, an inner-faithful H -action on an AS regular algebra is expected to be faithful.

Next we verify the claim made in Remark 1.7(3).

Lemma 5.2 Let H be a Hopf algebra containing K as a Hopf subalgebra. Let H act on an
algebra T inner-faithfully.

(1) Suppose every nonzero Hopf ideal of K contains a nonzero skew primitive element.
Then the induced K-action on T is inner-faithful.

(2) If K is pointed, then the induced K-action on T is inner-faithful.
(3) If K = U , then the induced U -action on T is inner-faithful.

Proof (1) If the K-action on T is not inner-faithful, then x ·T = 0 for some nonzero skew
primitive in K . It is clear that x is also a skew primitive element in H . Let I be the
ideal of H generated by x. Since x is a primitive element, I is a Hopf ideal of H . It
is clear that I · T = 0 as x · T = 0. Therefore the H -action is not inner-faithful. The
assertion follows.

(2) By [33, Corollary 5.4.7], every nonzero Hopf ideal of the pointed Hopf algebra K

contains a nonzero skew primitive. The assertion follows from part (1).
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(3) This is a special case of (2) as U is pointed (in fact, connected).

Proof of Proposition 1.4 Let H act inner-faithfully on a noetherian Koszul AS regular alge-
bra T of global dimension two. By Lemma 5.2, the induced U -action on T is inner-faithful.
By Proposition 4.2(1), T is k[x1, x2].

Let m be an integer ≥ 2. Let {pij | 1 ≤ i < j ≤ m} be a set of nonzero scalars. Define
pij = p−1

ji if i > j . Recall that the skew polynomial ring is defined to be

kpij
[x1, · · · , xm] = k〈x1, · · · , xm〉

(xj xi = pij xixj , ∀ i < j)
.

Proposition 5.3 Suppose pij �= 1 for all i < j . Let T = kpij
[x1, · · · , xm] and let H be

a Hopf algebra containing k[u]/(up), with u being primitive, as a Hopf subalgebra. Then
there is no inner-faithful homogeneous H -action on T .

Proof By Lemma 5.2(2), we may assume H = k[u]/(up) with u being primitive. Suppose
to the contrary that there is an inner-faithful homogeneous H -action on T . By [24, Lemma
5.9(d)] and cocommutativity of H , H acts on the Koszul dual (equal to the Ext-algebra) of
T , denoted by

B := Ext∗T (k,k) = k〈y1, · · · , ym〉
(yj yi = −p−1

ij yiyj , ∀ i < j, y2
i , ∀ i)

where yi = x∗
i for each i.

Since u is primitive, u acts on B as a derivation. For every i, write u(yi) = ∑
j ajiyj .

Then
0 = u(y2

i ) = (
∑

j

ajiyj )yi + yi(
∑

j

ajiyj )

=
∑

j

aji(yj yi + yiyj ) =
∑

j �=i

aji(yj yi + yiyj )

=
∑

j �=i

aji(1 − p−1
ij )yiyj

which implies that aji = 0 for all j �= i. Equivalently, u(yi) = aiiyi for each i. Since
up = 0, we obtain that a

p
ii = 0, or equivalently, aii = 0. Thus u · B1 = 0. Recall that

B1 = (T1)
∗. Hence u·T1 = 0. Consequently, u·T = 0 and theH -action is not inner-faithful,

yielding a contradiction.

As an immediately consequence of Lemma 5.2(2) and Proposition 5.3, we have the
following very simple universal non-existence result.

Corollary 5.4 Let H be a nontrivial finite dimensional connected local Hopf algebra. Then
there is no inner-faithful homogeneous H -action on T = kpij

[x1, · · · , xm] where pij �= 1
for all i < j .

Proof Note that every nontrivial finite dimensional connected local Hopf algebra contains
k[u]/(up). Therefore the assertion follows from Lemma 5.2(2) and Proposition 5.3.
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It is easy to check that k[u]/(up) acts inner-faithfully on both the polynomial ring
k[x1, x2] and the Jordan plane k〈x1, x2〉/(x1x2 − x2x1 − x2

1 ).
Note that most of p3-dimensional connected Hopf algebras in the classification [34, 35,

43, 44] contain a Hopf subalgebra of the form k[u]/(up). So Proposition 5.3 applies to these
Hopf algebras. The next observation is a continuation of Remark 1.7(7).

Observation 5.5 Let H be a Hopf algebra containing U as a Hopf subalgebra. If H acts
on a noetherian Koszul AS regular algebra T of global dimension three, then it induces
naturally a U -action on T . This induced U -action must be inner-faithful by Lemma 5.2(3).
As a consequence, T must be one of the algebras listed in Theorem 1.5. This basically gives
a proof of Corollary 1.6.

(1) Theorem 1.5 is helpful for understanding explicit H -actions on T when H contains
U . Even if H is of wild representation type, we can start from the list of T in Theorem
1.5 to work out all possible H -actions on T . This strategy is different from the one in
the proof of Theorem 1.5.

(2) Suggested by Zhuang’s result [48, Theorem 1.1], every pointed Hopf algebra over a
field of positive characteristic is expected to contain one of the special Hopf algebras
such as U , U0, or Taft algebras and so on (this list should be short). By understanding
actions on noetherian Koszul AS regular algebras of global dimension three under
Hopf algebras from this list, we should get a pretty good picture of Hopf actions on
Koszul AS regular algebras of global dimension three for all pointed Hopf algebra
over a field of positive characteristic.

(3) The classification of p3-dimensional connected or pointed Hopf algebras is undergo-
ing in [34, 35, 43, 44]. It is known from their work thatU appears as a Hopf subalgebra
in many of their examples. Therefore Theorem 1.5 is really helpful for understanding
the actions on noetherian Koszul AS regular algebras of global dimension three under
the Hopf algebras listed in [34, 35, 43, 44].

6 Comments, Projects, and Remarks

In this final section we randomly collect some general comments, related projects, remarks
and questions related to the projects in the previous sections.

As noted in [12, Remark 3.13(2)], the representations of the Drinfeld double of a Hopf
algebra H are generally much more complicated than the representations of H . So we start
with the following question.

Question 6.1 What is the Green ring of the Drinfeld double of U?

The work [10, 11] is closely related to this question.
The next few projects concern the Hopf actions of AS regular algebras of global

dimension three or higher. A test case is the next.

Project 6.2 Classify all U -actions on noetherian Koszul AS regular algebras of global
dimension 4.

The tensor decomposition in Theorem 1.2 is again the key to this project.
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Project 6.3 For all U -actions given in Theorem 1.5, work out the fixed subrings T U and
understand the connection between the U -actions and the properties of T U .

This would be a very interesting project as little is known about non-semisimple Hopf
actions on AS regular algebras.

As noted before Taft algebras are similar to U in several aspects. So the following project
seems doable.

Project 6.4 Let H be a Taft algebra Hn(q) of dimension n2 over a field of arbitrary charac-
teristic [12, p. 767]. Classify all inner-faithful H -actions on noetherian Koszul AS regular
algebras of global dimension three.

Unrelated to Hopf actions, the results in Section 3 are useful for the computation of
Frobenius-Perron dimensions of representations of U .

The Frobenius-Perron dimension of an object in a semisimple finite tensor (or fusion)
category was introduced by Etingof-Nikshych-Ostrik in 2005 [17]. Since then it has become
an extremely useful invariant in the study of fusion categories and representations of
semisimple (weak and/or quasi-)Hopf algebras. Recently, a new definition of Frobenius-
Perron dimension was introduced in [13, 14] where the original definition was extended
from an object in a semisimple finite tensor category to an endofunctor of any k-linear cate-
gory. In particular, it is defined for objects in non-semisimple k-linear monoidal categories.
This new Frobenius-Perron dimension has been computed in various cases, see [13, 14,
45–47].

Remark 6.5 (1) Xu computed Frobenius-Perron dimensions of representations of Taft
algebras in [45], whose method can be used to give Frobenius-Perron dimension of
representations of U for some small prime p. For example,

(a) let p = 2 and X be a finite dimensional U -module, then fpdim(X) equals to the
k-dimension of X;

(b) let p = 3 and X = ∑2
i=0

∑3
l=1 M(l, i)⊕ali , then

fpdim(X) = 1

2

[
(α + γ ) +

√
(α − γ )2 + 4β2

]

where

α = a10 + a11 + a12 + 2(a20 + a21 + a22) + 3(a30 + a31 + a32),

β = a12 + a21 + a22 + a30 + a31 + a32,

γ = a10 + a22 + a31.

This formula is similar to [45, Proposition 7.1]. Since our Convention 2.4 is
slightly different from the one used in [45], the formula does not match up with
[45, Proposition 7.1] exactly.

(2) It would be interesting to work out a formula of fpdim(X)

when p = 5.

A general algebra B is usually of wild representation type, then it is impossible to under-
stand all indecomposable left B-modules. Sometime it is possible to work out all brick
modules which are a special class of indecomposable module. A left B-module is called
a brick if HomB(M,M) = k. Brick modules are fundamental objects in the study of
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Frobenius-Perron dimension of endofunctors [13, 46]. Even when B is of wild representa-
tion type, it would be extremely helpful to understand all brick modules. The next remark
is a consequence of Proposition 2.7.

Remark 6.6 Let H be a 2-step iterated Hopf Ore extension given in [5]. In parts (2,3), Let
Z be the center of H and let M be a brick left H -module. Let m = annH (M).

(1) Suppose H is commutative. Then each brick left H -module is 1-dimensional and
there is a one-to-one correspondence between brick H -modules and a closed point in
Spec H .

(2) Suppose H is noncommutative and d0 = 0 as in [5, Proposition 8.2]. Then

M ∼=
{
the unique 1-dimensional simple associated to m if m is not Azumaya,

the unique p-dimensional simple associated to m if m is Azumaya.

(3) Suppose H is noncommutative and d0 �= 0 as in [5, Proposition 8.2]. Then

M ∼=
{
one of p2 indecomopsable modules associated to m if m is not Azumaya,

the unique p-dimensional simple associated to m if m is Azumaya.
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