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We analyze an optimal stopping problem with a series of inequality-type
and equality-type expectation constraints in a general non-Markovian frame-
work. We show that the optimal stopping problem with expectation con-
straints (OSEC) in an arbitrary probability setting is equivalent to the con-
strained problem in weak formulation (an optimization over joint laws of
stopping rules with Brownian motion and state dynamics on an enlarged
canonical space) and thus the OSEC value is independent of a specific prob-
abilistic setup. Using a martingale-problem formulation, we make an equiv-
alent characterization of the probability classes in weak formulation, which
implies that the OSEC value function is upper semi-analytic. Then we ex-
ploit a measurable selection argument to establish a dynamic programming
principle in weak formulation for the OSEC value function, in which the
conditional expected costs act as additional states for constraint levels at the
intermediate horizon.

1. Introduction. In this article, we study a continuous-time optimal stopping problem
with a series of inequality-type and equality-type expectation constraints in a general non-
Markovian framework.

Given a historical path x][oﬂ, let the state of the game X5* evolve according to some
SDE on a probability space (Q,F,p) whose drift and diffusion coefficients depend on the
past trajectories of the solution. The player decides an exercise time 7 to maximize her ex-
pected reward while being subject to a series of constraints: for ¢ € N, the expectation of
some accumulative cost ftT gi(r, Xf’ﬁ)dr should not overpass certain level y; and the expec-

tation of some other accumulative cost f;hi(r, Xf}\’f)dr should exactly hit certain level z;.
This optimal stopping problem with expectation constraints (OSEC for short), or optimiza-
tion problem over constrained stopping times, has many applications in various economic,
engineering and financial areas such as travel problem with fuel constraint, evaluation of
American-type derivatives, quickest detection problem, etc.

Let V (t,x,y,2) denote the OSEC value with (y,z):= ({y;},{z}). We aim to study the
measurability of this value function and establish an associated dynamic programming prin-
ciple (DPP) without imposing any continuity condition on reward and cost functions in time
and state variables. Inspired by [30] and [31], we embed the constrained stopping rule
together with the Brownian and state information into an enlarged canonical space 2 and re-
gard their joint distribution as a new type of controls. Then the optimization of the expected
reward over constrained stopping times transforms into a maximal expectation of reward
functional over a class ftyx(y, 2) of probability measures on {2 under which three canoni-
cal coordinates (W, X, T) serve as Brownian motion, state process and constrained stopping
rules respectively.
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One of our achievements is to show that the two optimization problems are equivalent:
the value V(¢,x,y,z) of OSEC in strong formulation (i.e., on Q) is equal to the value
V(t,x,y,2) of OSEC in weak formulation (i.e., over Q). This result indicates that the OSEC
value is actually a robust value, independent of a specific probability model.

A dynamic programming principle of a stochastic optimization problem allows one to
maximize/minimize the problem stage by stage in a backward recursive way. It requires the
problem value function to be measurable so that one can do optimization at an intermediate
horizon first. To show the measurability of the OSEC value functions, we construct a Polish
space of stopping times (which is of independent interest) and exploit the martingale-problem
formulation of [63] to describe the probability class Py x(y, 2) as a series of probabilistic tests
on stochastic behaviors of the canonical coordinates of . Under such countable character-
ization, the set-valued mapping (¢,X,y, 2)— P x(y, 2) has Borel-measurable graph and the
OSEC value function V=V is thus upper semi-analytic in (¢,x, v, 2).

In the next step we establish a DPP for V in weak formulation, which takes conditional
expectations of the remaining costs as additional states for constraint levels at the intermedi-
ate horizon. For the subsolution side of this DPP, we use the regular conditional probability
distribution to indicate that the probability classes Pt x(y,2), V (t,x,y, 2) are stable under
conditioning. For the supersolution side of the DPP, we employ a measurable selection theo-
rem in the analytic-set theory to paste a class of locally e —optimal probability measures. By
the martingale-problem formulation again, the canonical coordinates (W, X) are still Brow-
nian motion and the state process under the pasted probability measure. Finally we make a
delicate analysis to show that the third canonical coordinate 7T serves as a constrained stop-
ping time under the pasted probability measure. To wit, the probability classes Py x(y, z)’s
are also stable under pasting (or concatenation).

Relevant Literature.

Since Arrow et al. [2] and Snell [58], the theory of (unconstrained) optimal stopping
has been plentifully developed over decades. Expositions of this theory are presented in
monographs [26, 57, 29, 37]. For the recent development of the optimal stopping under
model uncertainty/non-linear expectations and the closely related controller-stopper-games,
see [38, 39, 24, 27, 40, 55,7, 8, 5, 23, 4, 28, 9, 47, 10, 11].

Kennedy [41] initiated the study of optimal stopping problem with expectation constraint.
The author used a Lagrange multiplier method to reformulate a discrete-time optimal stop-
ping problem with first-moment constraint as a minimax problem and showed that the optimal
value of the dual problem is equal to that of the primal problem. Since then, the Lagrangian
technique has been prevailing in research of OSEC (see e.g. [52, 42, 3, 66, 43, 65]) and
has been applied to various economic/financial problems such as Markov decision processes
with constrained stopping times [34, 33], mean-variance optimal control/stopping problem
[48, 49], quickest detection problem [50], etc.

Recently, Ankirchner et al. [1] and Miller [44] took different approaches to optimal stop-
ping problems for diffusion processes with expectation constraints by transforming them
to stochastic optimization problems with martingale controls. The former characterizes the
value function in terms of a Hamilton-Jacobi-Bellman equation and obtains a verification
theorem, while the latter embeds the optimal stopping problem with first-moment constraint
into a time-inconsistent (unconstrained) stopping problem. However, the authors only pos-
tulate dynamic programming principles for their corresponding problems. In contrast, we
rigorously prove in this article a dynamic programming principle for the optimal stopping
problem with expectation constraints.

In their study of a continuous-time stochastic optimization problem of controlled Markov
processes, El Karoui, Huu Nguyen and Jeanblanc-Picqué [30] regarded joint laws of state and
control processes as control rules on the product space of canonical state space and control
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space. Then they used a measurable selection theorem in the analytic-set theory to estab-
lish a DPP without assuming any regularity on the reward functional. Nutz & van Handel
[46] and Neufeld & Nutz [45] came up with a similar idea to address a superheging prob-
lem under volatility uncertainty. They modeled the “uncertainty" by path-dependent classes
of controlled-diffusion laws and explored the analytic measurability of these classes. Us-
ing the measurable selection techniques, the authors obtained DPP result in a form of time-
consistency of a sub-linear expectation and they thus established a duality formula for the
robust superhedging of measurable claims. The approach of [46, 45] was later extended to
derive DPPs of various non-Markovian control problems, see [53] for a dual formulation of
robust semi-static trading and its application to martingale optimal transportation and see [54]
for stochastic control of a class of nonlinear kernels and its relation to second-order backward
stochastic differential equations. Since the class of controlled-diffusion laws is naturally dif-
ferent from the class of stopping-time laws, the results of these works are not applicable to
our optimal stopping problem with expectation constraints.

In [32, 31], El Karoui and Tan utilized the measurable selection argument to attain the
DPP for a general stochastic control/stopping problem by embedding stopping times with
controlled diffusions into an enlarged canonical space in the spirit of [30]. However, the
probability class they considered in weak formulation is not suitable for optimal stopping
with expectation constraints, see our Remark 3.4 for details. In this paper, we make a more
accurate description of probability classes P; x(y, z) in which the third canonical coordinate
serves as some constrained stopping time. We construct a Polish space of stopping times and
use it to show the Borel measurability of the graph [[fﬂ We also verify the stability of
probability classes P; x(y,z) under conditioning and concatenation so that we can exploit
measurable selection theorem to establish a DPP for the OSEC value function.

A closely related topic to our research is optimal stopping with constraint on the distribu-
tion of stopping times. Bayraktar and Miller [6] studied the problem of optimally stopping a
Brownian motion with the restriction that the distribution of the stopping time must equal a
given measure with finitely many atoms, and obtained a dynamic programming result which
relates each of the sequential optimal control problems. Kéllblad [35] used measure-valued
martingales to transform the distribution-constrained optimal stopping problem to a stochas-
tic control problem and derived a DPP by measurable selection arguments. From the per-
spective of optimal transport, Beiglbock et al. [13] gave a geometric interpretation of optimal
stopping times of a Brownian motion with distribution constraint.

As to the stochastic control problems with expectation constraints, Pfeiffer et al. [51] ob-
tained a duality result by a Lagrange relaxation approach and Yu et al. [25] used the mea-
surable selection argument to derive a DPP result. Moreover, for stochastic control problems
with state constraints, stochastic target problems with controlled losses and related geometric
DPP, see [18, 19, 21, 59, 60, 61, 22, 16, 20, 17].

The rest of the paper is organized as follows: Section 2 introduces the optimal stopping
problem with expectation constraints in a generic probabilistic setting. Section 3 shows that
the constrained optimal stopping problem can be equivalently embedded into an enlarged
canonical space: i.e., the OSEC in strong formulation has the same value as the OSEC in
weak formulation. In Section 4, we construct a Polish space of stopping times and use the
martingale-problem formulation to make a countable characterization of the probability class
in weak formulation, from which we deduce that the OSEC value function is upper semi-
analytic. Then in Section 5, we utilize a measurable selection argument to establish a dynamic
programming principle in weak formulation for the OSEC value function. We defer the proofs
of our results to Section 6 and put some technical lemmata in the appendix.

We close this section by a description of our notation and a review of the martingale-
problem formulation.



1.1. Notation and Preliminaries. Throughout this paper, let us denote a™:=a V0 and
a”:=(—a)VO0 forany aeR. We set Q1 :=QN [0, c0), Qi’< = {(s, r)€Q4 xQy: s<7’} and
set R :=(—o0, oo]" as the product of countably many copies of (—o00,oc]. On T:=[0, oo] we
define a metric p+(t1, to):= } arctan(ty)—arctan(to)|, Vt1,t2 €T and consider the induced
topology by p, .

For a general topological space (X, ‘E(X)) , we denote its Borel sigma-field by #(X) and
let PB(X) be the set of all probability measures on (X, #(X)). Recall that a topological space
X is called a Borel space if it is homeomorphic to a Borel subset of a complete separable
metric space.

Let n€N. For any x € R™ and § € (0,00), let Og(x) denote the open ball centered at
x with radius § and let Os(z) be its closure. For any x,7 € R™ we denote the usual inner
product by = - Z:=> """ | x;¥;, and for any nxn—real matrices A, A we denote the Frobenius
inner product by A: A= trace (AKT), where A7 is the transpose of A. Let {EZ"}Z oy be

a countable subbase of the Euclidean topology T(R™) on R™. Then O(R") ::{ ﬁl &
iy ki

{ki}™ CN} U{0,R"} forms a countable base of T(R™) and thus B(R")=0 (O (R")). We

also set ﬁA(R”) ::kUN (Qerﬁ(]R”))k. For any € C?(R"), let D be its gradient, D¢ be its
€
Hessian matrix and denote Dp:=¢. Fori=1,--- ,n, define @;(z):=x;, Vo= (21, -, 7)€

R™. We let €(R™) be the collection of these coordinate functions and their products, i.e.,
¢(Rn)1:{<Pi}?:1u{‘ﬂi<ﬂj}gj:1-

Let (2, F,P) be a generic probability space. For subsets Aj, Ay of 2, we denote
A1AAy = (A1 NAS)U (AN AS). For a random variable £ on € with values in a mea-
surable space (Q,G), we say & is F/G—measurable if its induced sigma-field ¢~1(G) :=
{671(A): VA€G} is included in F. For a sub-sigma-field § of F, define Ap(F):=
{N CQ: N CA for some AeF with P(A)=0}, which collects all P—null sets with re-
spect to §. For two sub-sigma-fields 1,32 of F, we denote §1V F2:=0(F1UF2). Let

t€[0,00). For a filtration F = {Fs} s o0) Of F, we set Fo:=0 [U : .7-"5) and refer
s€|t,00

to filtration F¥'= {]—"SP::U(]-"SUJ/p(FOO))}Se[t o) 3 the P—augmentation of F. For a

process X = {XS}SG[WO) on 2 with values in a topological space, denote its raw filtra-

tion by F¥ = {F* :=a(X,;relt,s])}, and denote the P—augmentation of FX by

FX’P:{F§{7P::U(‘F§(U</VP(F£))}Se[t,oo

all continuous. When the time variable s of X has complicated form, we may write X (s,w)
as X(w) for readability. By default, a Brownian motion {Bs}cjt,0) On (£2,F, P) is with

€[t,00)
) We call X a continuous process if its paths are

respect to its raw filtration FZ unless stated otherwise.

Fix d,l€N. Let Qo={weC([0,00); R?): w(0)=0} be the space of all R?—valued con-
tinuous paths starting from O, which is a Polish space under the topology of locally uni-
form convergence. Let P be the Wiener measure on (QO, %’(Qg)), under which the canon-
ical process W = {WS}SE[OW) of )¢ is a d—dimensional standard Brownian motion. For
any t€[0,00), Wi:=W,;—W,, s€|t,00) is also a Brownian motion on (Q0, Z(), ).
Let Q, =C([0, 00); R!) be the space of all R!—valued continuous paths endowed with the
topology of locally uniform convergence. The function [4 (¢, wq) :=wq(tA-) is continuous in
(t,wo) €[0, 00) x 2y while the function

(1.1) l2(t,wy ) =wy (EA)

is continuous in (t,w,,)€[0,00) X Q..
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Let b: (0,00) x Q2 R and o (0,00) x 2, R4 be two Borel-measurable functions
such that for any £€(0,00) and any w ., w’X €y,

(1.2) !b(t,wX)—b(t,w'X)‘+ ‘J(t,wx)—a(t,wlxﬂS/i(t)HwX—w’XHt

t
(13) and / (b(r, 0+ |0 (r, 0) ) dr < o,
0

where k: (0, 00)— (0, 00) is some non-decreasing function and HwX—w;( Ht 1:8861[1011] |wy (s)—

w;( (s)‘ Under conditions (1.2) and (1.3), SDEs with coefficients (b, o) are well-posed (see
e.g. Theorem V.12.1 of [56]):

PROPOSITION 1.1.  Let (2, F, P) be a probability space. Givent € [0,00), let { Bs } s¢[t,00)
be a d—dimensional Brownian motion with respect to a right-continuous complete filtration
F={Fs}sclt,o0) on (Q, F, P). For any x€Q ., the SDE

(1.4) XS:x(t)—i—/ b(r,XM.)dr—i—/ o(r,X,p.)dBy, Vs€lt,00)
t t

with initial condition X’[O,t] =x/|(0,) admits a unique strong solution Xt7x:{X£’x}5€[0’OO)
on (Q,F {Fs}setoo), P) (e, X" is an {Fovi}sep,o0)— adapted continuous pro-
cess satisfying (1.4) and P{Xﬁ’x =X* vse [0,00)} =1 if {)Z'é’x}
{Fsvt}se(0,00)—adapted continuous process satisfying (1.4)).

5€[0,00) is another

Let °Xt* = {"Xﬁ’x}se[om) be the unique strong solution of (1.4) on (Q,F,P)=
(Q0, #(Q0), Py) with (B,F)= (Wt,FWt7P0) and denote by 7, the collection of all
(—oc, oo]—valued Borel-measurable functions ¢ on (0,00) X, such that

EPO[/ ¢7(7’,0X7€’/§)d7°}<00, Y (t,x)€[0,00) x Q..
t

Moreover, we take the conventions inf ():=o0, sup :=—o00 and (400)+(—o0)=—00. In
particular, on a measure space ({2, F, m), one can define the integral fQ Edm:= fQ ET dm—
Jo & dm for any [—o0, oo]—valued F—measurable random variable £ on .

1.2. Review of Martingale-Problem Formulation of SDEs. In this subsection, we con-
sider a general measurable space (€2, F). Let { Bs} s¢[0,00) be an R?—valued continuous pro-
cess on ) with By=0 and let X ={X} (0, be an R!—valued continuous process on €2
such that (Bs, X;) is F—measurable for each s€[0,00).

Let t€[0,00). We set BL:=B,— B, Vs€(t,00) and define filtration F'={F!}cp; o)
by Fli=FB'VFX=0(Blirelt,s|) Vo(X,;r€0,s]), Vs€[t,00). For any p € C2(RIH),
define

M;(ap)::go(Bz,Xs)—/ b(r,XrA.)-Dgp(Bﬁ,XT)dr—;/ 55" (r,Xrn.): D%p(BL, X, )dr,
t t

_ o 0 d+l — L Tixaq (d+1)xd
Vs € [t,00), where b(r,w, ) := (b(r, WX)> eER™™, 7(r,w,) = <a(r, WX)> eR ,
VY (r,wy ) €(0,00) x Q.. Clearly, { M!(y) }Se[tm) is an F*—adapted continuous process. For
any n€N and aeR, set 7 (a):=inf {s€[t, 00): |(BL, Xs) —a| >n} A(t+n), which is an
F!—stopping time. In particular, we denote 75,(0) by 7.
In virtue of [63], we have the following martingale-problem formulation of SDEs with
coefficients (b, o) on (.



PROPOSITION 1.2.  Let (t,x)€[0,00) x Q2 and let P be a probability measure on
(Q,F) such that P{X,=x(s), Vs€[0,t]} —1 Then { s/\ﬂ_,(a)(gp)}se[tm) is a bounded
F!—adapted continuous process under P for any (¢,n,a) € C2(R™) x N x R* and the
following statements are equivalent on (Q0, F, P):

(i) The process B! is a Brownian motion and P{X,=X"* Vsec[0,00)} = 1, where
{Xﬁx}s €[0,00) is the unique { SWP}S €[0,00) —adapted continuous process solving SDE
(1.4).

(i) {M s/\rf(a) )}Se[t’oo) is a bounded F*—martingale for any (p,n,a) € C?(R¥!) x N x
RA+

(i) { M, s/\T' }se[t,oo) is a bounded F*—martingale for any (p,n) € €(R4) x N,

Under either of these situations, one clearly has P{Xt X —oxX(B), Vselo, 00)}=1
and Ep[ [ ¢~ (r, Xﬁf)dr] Ep,|[ [0 OX,E,’\()dr] < oo for any p€ .

2. Optimal Stopping with Expectation Constraints. Let (Q,F,p) be a probability
space equipped with a d—dimensional standard Brownian motion {BS}SE[O,OO)-

Let t€[0,00). We set BL:=B;—B;, Vs€|t,00), which is also a Brownian motion on
(Q,F,p). For any x€Q ., Proposition 1.1 shows that the SDE

(2.1) stx(t)+/ b(r,Xr/\.)err/ o(r,Xep)dBy, Ys€lt,00)
t t

with initial condition X ‘ —x|[0 4 admits a umque strong solution X" = {X; b *1
on (Q,F,FB'% p) (e, th is the unique {F5 ;" s€f0,00)

solving SDE (2.1)). Let S; collect all [¢, oo] —valued FB"? _stopping times.

Let f €95, {gi, hi}ien CH5 and let 7: [0,00) X 2+ (—00, 00] be a Borel-measurable
function bounded from below by some ¢, € (—o0,0).

Given a historical path x| 4, the state of the game then evolves along process { X ! ) s€[t,00) -
The player of the game need to select an exercise time 7€ S; to cease the game, at which she
will receive an accumulative reward ftT f (T, Xf}f) dr plus a terminal reward 7 (7', Xﬁ/i() (both
random rewards can take negative values). The player intends to maximize the expectation
of her total wealth, but her choice 7 is subject to a series of expectation constraints

2.2) Ep{ / gi(r,xfﬁ)dr}gyi, Ep{ / hi(r,Xf’A’f)dr}:zi, VieN
t

s€[0,00)
—adapted continuous process

for some (y, 2) = ({y; }ien, {2 }ien) ERXR. One can view [ g;(r, X2 )dr or [ hi(r, X5%)dr
as certain accumulative costs. So the value of this optimal stopping problem with expectatlon
constraints (OSEC for short) is

(2.3) V(t,x,y,z):= sup Ep[/ f(T,X,f}\)f)dr+1{T<oo}7r(T,Xi}i{,)},
TES: x(y,2) t

where S x(y, 2):={T€Ss: Ep [ [ 9i(r, X53)dr] <yi, B[ [ ha(r, X/ 35)dr] =2, VieN}.

REMARK 2.1.  Let (t,x)€[0,00) xQ
1) (finitely many constraints) For i €N, the constraint F, [ ftT gi(r, Xf /\x)dr] <y, holds for
any 7€S; if y; =00, and the constraint Ey [ [7 h;(r, (r, X} n)dr] =z; holds for any 7€ S if

(hi(-,-),21)=(0,0).

la) If we take (y;, hi(-,-),2i) =(00,0,0), Vi€N, there is no expectation constraint at all.



OPTIMAL STOPPING WITH EXPECTATION CONSTRAINTS 7

1b) If one takes y; =00, Vi>2 and (h (-, '),zi) =(0,0), VieN, (2.2) reduces to a single
constraint Ey | [, g1 (r, Xr/\,)dr] <y;1. In addition, if 1 >0, then t €S; x(y, 0).

lc) If one takes y; =00, Vi€ N and (h;(-,-),2) =(0,0), Vi>2, (2.2) degenerates to
Ey[ ] ha(r, Xf}\x,)dr] =2z.

1d) If we take (yi,hi(~,-),zi) =(00,0,0), Vi>2, (2.2) becomes a couple of constraints
Byl ] g1(r, Xf}f)dr] <yi and By [ [ ha(r, Xf}\x)dr] =2z1.

le) If we take go=—g1, y2 > —y1; ¥i =00, Vi>3 and (h;(-,-),z)=(0,0), VieN, (2.2)
becomes a range constraint —y2 <E, [ [ g1(r, Xr/\.)dr] <y1.

2) (moment constraints) Let i €N, a € (0,00) and g€[1,00). If g;(s,x)=aqs?™ !, V(s,x) €
(0,00) x Q2 (resp hi(s,x)=agqs?™!, V(s,x) € (0,00) x ), then the expectation con-
straint E, [ [ gi(r, XX S)dr] <y; (resp. Ey[ [ hi(r, X,f,\x)dr] =2z;) specifies as a moment
constraint E, [a(77—19)] <y; (resp. E, [a (Tq—tq)] =2z).

We would like to study the measurability of value function V and derive a dynamic
programming principle for V' without imposing any continuity condition on functions
f,m,9;’s and h;’s in time and state variables. Inspired by [30], we will use mapping w —
(B.(w), x5 (w), 7(w)) to transfer the OSEC onto an enlarged canonical space and regard

joint laws of (B., X""*,7) as a new type of controls.

3. Weak Formulation. In this section, we study the optimal stopping problem with ex-
pectation constraints in a weak formulation or over an enlarged canonical space

Q:=QpxQ, xT.

Clearly, €2 is a Borel space under the product topology. Let 2]3(5) be the space of all prob-
ability measures on (€2, 2(€2)) equipped with the topology of weak convergence, which is
also a Borel space (see e.g. Corollary 7.25.1 of [14]). For any FE‘B(Q), set %p(ﬁ) =
o (B(Q)UANE(B(K2))). We define the canonical coordinates on €2 by

Wi(@):=wo(s), Xs(@):=wy(s), s€[0,00) and T(@):=t, Y= (wo,wy,t) €,

in which one can regard W as a canonical coordinate for Brownian motion, X as a canonical
coordinate for the state process, and 7" as a canonical coordinate for stopping rules. Given

te[0,00), we also set Wst::WS—Wt, Vse[t,o00). B
The weak formulation of the OSEC relies on the following probability classes of 3 (Q)

DEFINITION 3.1.  For any (¢,x) €[0,00)x€2 ., let P x be the collection of all probability
measures Peiﬁ(i) satisfying
(D1) The process W' is a d—dimensional Brownian motion on (Q %(Q) F).
(D2) P{X, =2, Vs€[0,00)} =1, where { Z,™} ) P
continuous process that uniquely solves the following SDE on (Q, B (Q) ,ﬁ) :

is an {]:svt }Se[o,oo)—adapted

Gl Ta—x(t)+ / b(r, T )dr+ / o (r, Zop )W, Vselt, o)
t t

with initial condition 27| , =x

(D3) There exists a [t, oo]—valued F"V'-* —stopping time 7 on ) such that P{T=7(W)}=
1.




Let t€[0,00). For any s € [t,00), define 72 ::]:SWt \/]:SY:a(Wﬁ;re [t,s]) Vo (Xyire
[0, s]), which is countably generated by

{Y;l(O): reQnlo,t],0ed( R! }U{(Wﬁ,fr)"l((’)'); TEQm(t,S],O/Eﬁ(Rdﬂ)},

We denote the filtration {J—" } ) by F'. For any (p,n,a) €C2(RH) x Nx R4+,

s€[t,00)
=t

Ms((p)::@(W§7Y5) _/ b(rer/\-)'D@(WLXr)dr_;/ EET(T’YT/\,):D%O(Wﬁ,yr)d?“,
t t

. =t .
Vs€(t,00) is an F —adapted continuous process and

71, (a):=inf {s€[t,00): ’(Wz,ys)—a‘ >n}A(t+n)

n

is an F' —stopping time. We will simply denote 7L (0) by 71,

Let us also define a shifted canonical process on Q by 7.(@) =W s(@) — W (@) =
Wﬁ +s(@), V(s,w)€[0,00) x Q. (Note: the subscript s € [0,00) of W' is the relative time
after ¢ while the subscript s€ [t, c0) of W' is the real time.)

According to the martingale-problem formulation of SDEs (Proposition 1.2), we have an
alternative description of the probability class P; :

REMARK 3.1.  Let (t,x) €[0,00)x€,. In Definition 3.1 of Pt x, (D1) and (D2) is equiv-
alentto L
(D1") P{Xs=x(s), Vs€[0,t]}=1and {MS/\T )}se[t ~o) is @ bounded (F', P)—martingale

for any (¢,n)€C(R4) xN,
while (D3) is equivalent to o
(D3') There exists a [0,00]—valued F"-"—stopping time 7 on € such that P{T =t+

F(7')}=1.

REMARK 3.2. Let (t,x)€[0,00) x €2, and let PeP(Q) satisfy (D1) and (D2) of Defi-
nition 3.1.
(1) For any ¢ € 5%, Proposition 1.2 shows that

EP[/OOQS(T,XM.)dT} :EP[/tooqﬁ (r,yi’;\c,)dr} <00

(2) Let (¢,n,a) € C*(RH) x Nx R, As {MW o(©)}

martingale, the optional sampling theorem implies that for any two [t, oo] —valued Ft—stopping
times (y,(y with (; <(,, P—a.s.,

(3.2) Eﬁ[(ﬂgﬁg(a)( )— Mg A7 (o) (P ))1Z]

= Bp | Bp[ Mt et (o) (9) ~ Mt a0 () [P, | 17] =0, VAT

. =t —
seft o) 158 bounded (F ,P)—

Let (t,X) S [0, OO) X QX’ (y, Z)Z ({y,;}ieN, {Zi}ieN) €R xRN and set
T

R(t):= [ f(r, XT/\)dr+1{T<OO}7r( X /\)’
TAL
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Given a historical state path x|[g 4, the value of the optimal stopping problem with expecta-
tion constraints

T T
(3.3) EP{/ gi(r,Xr/\.)dr] <y, EP[/ hi(r,XT/\.)dr} =z;, VieN
t t

in weak formulation is

V(t,x,y,2):= sup Ep|[R(t)]= sup / flr, X )dr+1{T<OO}7r(T TA )}
PEP x(y:2) PeP: x(y, Z)

where Pt,x(y,z)::{PEPLx: Ep[ftTgi(r, Xop)dr| <yi, E [ft (r, Xrp)dr| =2, Vie
N}. We will simply call V(¢,x,y,z) the weak value of the optimal stopping problem
with expectation constraints. In case P (y,z) =0, V(t,x,y,z) =—0cc by the convention
sup f):=—o0.

We can consider another weak value function of the OSEC: Let w € )y and define
Piwx={PEPix: P{W;=w(s),Vs€[0,t]} =1} as the subclass of P; given the his-
torical Brownian path w/|(y ;. The weak value of the optimal stopping problem with expec-
tation constraints (3.3) given (W,x)’[0 q is V(t,w,x,y,2):= sup  Ep[R(t)], where

’ PEP: w x(y,2)
Piwx(y, 2 {PEPtx Y, 2 P{Ws—w ),Vse[O,t]}zl}.

One of our main results (Theorem 3.1 below) exposes that the value function V' (¢, x,y, 2)

in (2.3) coincides with the weak value function V (¢, x, v, z), and is even equal to V (t, w, X, ¥, 2).

THEOREM 3.1. Let (t,w,x,y,z) €[0,00) x Qg X Q. x R x R. Then V(t,x,y,2) =
V(t)xu Y, Z) = V(t7 w,X,Y, Z)r and St,x(yv Z)#Q = ft,x(y) Z)#@ @ﬁt,w,x(yv Z)#w

Theorem 3.1 demonstrates that the value of the OSEC is independent of a specific prob-
abilistic setup and is also indifferent to the Brownian history. This result even allows us to
deal with the robust case:

REMARK 3.3. Let {(Qa, Fa,pa)}a co be a family of probability spaces, where 2 is a
countable or uncountable index set (e.g. one can consider a non-dominated class {p, }aes

of probability measures on a measurable space (Q, F ))
Given a €2, let B ={B{}c[0,c) be a d—dimensional standard Brownian motion on

a,t
(0%} Cw [0} ) ) s = s ’ )
(Q pa). For any (t,x)€[0,00) xQ,, set B :=BS =B, s€[t,00) and let X*H* =
Eauay , be the unique (FE, e
SDE

}S E[O,Oo)—adapted continuous process solving the

s€[0,00

XS:X(t)—i—/ b(r,XrA.)dr+/ o(r,Xepn)dBy, Vsel[t,00)
t t

with initial condition | 0] :x\[o j on (Qa, Fo, FB P2 ).
Then we know from Theorem 3.1 that for any (¢,x) € [0,00) x Q, and (y,z) =
({wi}ien, {zi tien) ER xR

V(t,x,y,z)=sup sup  Ey, [/ f(r, ij{?’x)dr—{—l{u<oo}7r(7'a, Xi’f\’x)] ,
acd 7,e8, (y,2) t

where S¢% (y, 2

) collects all [t, oo]—valued FB*" P~ —stopping times 7,, satisfying
TOL Ta
By.| / gi(r, XF)dr| <y, and By, | / hi(r, X5V dr] =z, VieN,
t t
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To wit, the weak value V(t, X, Y, z) is also equal to the robust value of the OSEC under model
uncertainty.

The equivalence between strong and weak formulation of an (unconstrained) optimal stop-
ping problem was discussed in [31]. However, their argument may not be applicable to opti-
mal stopping with expectation constraints:

REMARK 3.4.  When (y;, hi(-,-),2) =(00,0,0), Vi€N, the unconstrained version of
Theorem 3.1 states that for any (t,x)€[0,00) x Q. V(t,x):=sup E,[ [ f(r, Xf’f)drjt
7'681,

Lircooym(T, Xi/f)] is equal to V' (¢,x):= sup Ep[R(t)]. On the other hand, [31] showed
PEP; «
that for any (t,x) €[0,00) x Q. V(t,x) equals V(t,x):= sup Ep[R(t)], where P
PeP.
collects all Pe3(Q) satisfying (D1), (D2) of Definition 3.1 and “P{th} =1" (We sum-
marize [31]’s result in our terms for an easy comparison with our work). As Py x C Py, the
equality V(t,x)= sup Ep|R(t)]= sup Ep[R(t)] indicates that the probability classes
PEP, « PP,
Pix’s are more accurate than P; x’s to describe the (unconstrained) optimal stopping prob-
lem in weak formulation.
The condition (D3) of Definition 3.1 is necessary for the expectation-constraint case.
Without it, the weak value V(t,x,y, z):= sup FEp[R(t)] <w1th Pix(y,2):= {PE
B PP x(y,2)
Pix: Eﬁ[ftTgi(r,YM.)dr] <y, B [ft i(r, Xop)dr] =z, VzeN}) may not be equal
to V (t,x,y, z) for the following reason: B
In Proposition 4.3 of [31], the key to show V (¢,x) <V (t,x), or E[ R(t)] <V (¢,x) for a

given PE%M, relies on transforming the hitting times of process {Ef [1 (Telt,s} ’]-' WJ’P] }
FW Po

s€t,00)
to a member of S;. More precisely, the so-called Property (K) assures an —adapted

cadlag process 9. such that J,(W)=F [1{T6[t o} ’]-' } [ {Telt,s]} ‘.7-"00 ], P-as.

{%’xeA}ﬁ (W)=
s 9, t,X

I; 1{yt,x€A}'[9(d7a, W), P—a.s. forany (s, A)€[t,00)x%(Q,.), where " —{5&” }se 10,00)

is the unique solution of SDE (3.1). Let ® be a nonnegative Borel-measurable function
on [0,00) x Q.. Then a standard approximation argument and the “change of-variable"

formula yield that Fy[®(T, X)L "] = [ (r, X)d(dr, W) = [, @ X)d,
P—a.s., where o(wo,\) :=inf {s€[t,00): D (wp) > )\} (wo, A) € Qg x (O, 1). Slnce the
joint P—distribution of (W,?t’x) is equal to the joint p—distribution of (B3, X'**),

for any s € [t,00). It follows that F+ [ (Telt,s} {ytxeA}‘f ]

1 1
(3.4) Ep[cb(T,X)]:/O Ep[®(o(W, A),%t”‘)]dx:/o Ey[®(o(B, X), X"*)]dA.

As y:=0(B,\) €S; for each A€ (0, 1), taking  to be the total reward function implies that
_ 1 Tx
(3.5) Ep[R(t)] :/ E, [/ F(r, XY dr 1, ooy (7, K55 )} A
0 t

1
§/O V(t,x)dA=V(t,x).
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However, this argument is not applicable to the expectation-constraint case: Given a
PePyx(y,z), since 7, may not belong to S x(y,z) for a.e. A€ (0,1), one can not get
Ep|R(t)] <V (t,x,y,z) like (3.5). Actually, for each A€ (0,1), 7y is only of S x(yx,2))
with (yx, 2x) = ({¥4 biew, {24 Fien), (44, 23) = <Ep[ 7 gi(r, X dr] By [ [ ha(r, Xf}\%)er-
For 7€N, choosing accumulative cost functions for ® in (3.4) renders that

T

1 Tx
| B[ st amal o=t [ ae.Xona]<u
0 t t

and similarly f)' By [ [ hi(r, &2 dr]dA =z, so V (t,x,{ f; yad\}ien, { fy 2adA}ien) <
V (t,x,y, z). Then the attempt to show E [ R(t)] <V (t,x,y, z) reduces to deriving a Jensen-

type inequality:
1 1
yAd/\} {/ z,\d)\} )
ieN’ U Jg iEN

1
/ V(t, %, yx, 22)dASV (t, X, { /
0 0

But this does not hold since the value function V' is not concave in level z of equality-type
expectation constraints.

4. The Measurability of OSEC Values. In this section, using the martingale-problem
formulation of SDEs, we characterize the probability class P x by countably many stochas-
tic behaviors of the canonical coordinates (W, X, T) of Q. This will enable us to analyze
the measurability of value functions of the optimal stopping problem with expectation con-
straints.

Let & be the equivalence classes of all [0, oo] —valued FW-¥> —stopping times on g in the
sense that 71, 79 €S are equivalent if Py{m =72}=1. We endow & with the metric

P (T1,72):=ERp, [p+(7'177'2)] , V1,meG.
LEMMA 4.1. (6, pg) is a complete separable metric space, i.e., a Polish space.

For any 7 €&, we define its joint distribution with W under Py by I'(7):=Pyo(W,7)"t€
PB(QxT).

LEMMA 4.2. The mapping T': GH‘B(QO X ’]I‘) is a continuous injection from & into

B(QoxT).

We can use Remark 3.1 and Lemma 4.2 to decompose the probability class P x as the
intersection of countable many action sets of processes (W, X, T):

PROPOSITION 4.1.  For any (t,x)€[0,00) X, the probability class Py is the inter-
section of the following three subsets of ‘13 (ﬁ) :
D Py xi={PeP(Q): P{X,=x(s), Vs€[0,t]}=1}.
52 = = —t ——t k
ll) Pt = {P € s:B(S)) . Eﬁ[<M7fl/\(t+t) ((,0) - M?ﬁz/\(t+5) (QO)) H 1{(Wz+5iyyt+si)€0i}:| =

=1

0, V(p,n)€C(R¥) xN, V(s,t)eQiK, V{(si, 05}, c(QN[0,8]) x ﬁ(RdH)}
iii) Py = {PeP(Q): Po(7' . T—1)"LeI(6)}.
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Based on the countable decomposition of the probability class P; x by Proposition 4.1, the

next proposition shows that the graph of probability classes {ft7x} (t.%)€[0,00) X2 is a Borel
subset of [0,00) x Q. x ‘B(ﬁ), which is crucial for the measurability of the value functions

V=V.

LEMMA 4.3.  The mapping T'(t, P):=Po (Wt, T—t) - EP(QoxT), V(t,P)€[0,00)x
‘B(ﬁ) is continuous.

PROPOSITION 4.2.  The graph <<ﬁ>> = { (t, X,P) €[0,00)xQ, X‘B(ﬁ) : ?eﬁ;x} isa
Borel subset of [0,00) x Q. xB(Q).

Set D:={(t,x,y,2) €[0,00) X 2y, x RxR: Pyx(y,2) #0} and D:={(t,w,x,y,2) €
[0,00) x Q20 x Q. xR X R: Prwx(y,2)#0}.

COROLLARY 4.1.  The graph [[P]]:=={(t,x,y,2,P) e DxP(Q): PPy x(y,2)} is
a Borel subset of D x*B(Q) and the graph {{P}}:={(t,w,x,y,2,P)eDxP(Q): Pe
Piwx(y,2)} is a Borel subset of DxB(€2).

By Corollary 4.1, the value function V is upper semi-analytic and is thus universally
measurable.

THEOREM 4.1.  The value function V(t,x,y,2) is upper semi-analytic on D and the
value function V (t,w,x,y, z) is upper semi-analytic on D.

5. Dynamic Programming Principle for V. In this section, we explore a dynamic pro-
gramming principle (DPP) for the value function V' in weak formulation, which takes the

conditional expected integrals of constraint functions as additional states.
Given t€[0,00), let 7 be a [t,00)—valued F" —stopping time and let P €P(Q). Ac-

cording to Lemma 1.3.3 and Theorem 1.1.8 of [63], .7:%/‘/ s countably generated and there

is thus a family {P%@} of probability measures in ‘,B(ﬁ), called the regular conditional

we A

probability distribution (r.c.p.d.) of P with respect to }%W , such that

(5.1) for any A< %(Q)), the mapping EH?%@ (A) is .7-'7W ' _measurable;

(5.2) for any (—oc, oo]—valued, %5(£2) —measurable random variable £ that is bounded
from below under P, it holds for all w€ ) except on a N eNG (f W ) that ¢ is

B—

P;f(ﬁ)—measurable and Eﬁ;@ [g] - EF[ ¢ ’ ‘/—_%/V ] @)

t

(5.3) for some No€ A5 (FW'), PL (A) =1 5. ¥ (@, A) €N xf?.

Let wc ) and set Wf— ={w'eq: W@ =W,
Galmarino’s test that

(5.4) F@)=7@), V&' eWzg,

(@), Yrelt,7(w)]}. We know from

and Wf - is thus ]: W —measurable. Since w GWf — for any we(Q, (5.3) shows that

(5.5) ﬁ;w(ww)ﬂ{ cwe =1 V@ENT,
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For any i €N, define Y5(7) [fT/\,gl (r, X ra. dr‘}"w } and Z'(7 [fT/\
(r, Xpp.)dr .7:7“/:|.SO (Yf(y),ff( ).-({YP }ieN’{ZP }ieN) is an RxR—valued

Tt
]-%W —measurable random variable.

In terms of the r.c.p.d. {P%@}weﬁ’ the probability class {Pyx(y,z): (t,x,y,2) €D}
is stable under conditioning as follows. It will play an important role in deriving the sub-
solution side of the DPP for V.

PROPOSITION 5.1 Given (t,x)€[0,00) xQ ., let ¥ be a [t,00)—valued FWt—stopping
time and let ?eft,x. There exists a P—null set /\/ such that

56 Pio€Prox, oM@ Zp@) @), voe{T>7}nN"

Now, we are ready to present a dynamic programming principle in weak formulation for
the value function V, in which (Y5(¥), Z5(7)) act as additional states for constraint levels
at the intermediate horizon 7.

;FHEOREM 5.1. Given (t,x,y,2)€D, let {Wﬁ}?eﬁ,x(y,z) be a family of [t,c0)—valued
FW' —stopping times. Then

T
5.7 V(t,x,y,2)=  sup Ep[l{T<,Y}(/ F(r, Xon)dr+7(T, TA_))
PePy x(y,2) P t

g }</ F0, X )dr+V (75, X5, A,YP(P),ZP(VP)))].

6. Proofs.

Proof of Proposition 1.2: 1) Set NV:={w e Q: X,(w)#x(s) for some s€[0,t]} € Ap(F;*)

and let (p,n,a) €C?(RT)xNxR . We denote i, (a):=  sup (37, |Dip(w,z)|)+
[(w,z)|<n+a

|¢(0,x(t))| < oo and ¢, (a):= [d/2+ K (t+n)(|| x|t +n+a)+ K2 (t+n) (||| +n+a)?|n+
[ (1b(r,0)| + o (r,0)[?) dr < co. Given w e N, since | Xon- ()], = sup | Xp(w)] <
r’'€[0,r]

%[tV (n+a), Vre [t (ri(a))(w)], we can deduce from (1.2), (1.3) and Cauchy-Schwarz
inequality that

(6.1) sup  [(Mi(p)) )< sup  [p(Bi(w), Xs(w))|
s€[t, (7 (a))(w)] s€[L, (7} () (w)]

(75, () (w) 2
sefl@) [ (b Xon )] 5 (o Xon )) )
t

(7 (@) (w)
<c@+ci@ [ (5OXen @], +b 02

()| Xon (@) 2+ (r,0) ) dr < (a) (1 ¢ (@)
So {M! AT, a)( )}S €lt00) is a bounded F*—adapted continuous process under P.

2) We next show that (i) implies (ii): Suppose that (i) holds and let (¢, n,a) € C?(R4*!) x
Nx R, We simply denote Z5™:= (B, X.*), Vs€[t,00) and set 7, (a):=inf { s€[t, 00):
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=5 s —al >n}/\ (t4+n), which is an FB.P —stopping time. Applying It6’s formula yields that
P—as.

87 1 S
MU p)i=p(E) - [ B(nX0%)-D(EX)dr 5 [ 5o (r XIX): D o(Ei )
t t

= ¢(0,x(¢) /an (EE%) 5 (r, X[X)dB,, s€t, ).

For any w €2, an analogy to (6.1) shows that sup |(M* () (w)| < cf(a)(1+
s€lt,(r (@) ()]
Th* w —t,x _ x 2
cf(@) and [T Dp( (w)) -7 (r, X (@) [*dr < (cR (@) [d+ 262 (t4n) (x| +
nta)?Jn+2(ch(a))? [/ |o(r,0)[2dr < co. So

(6.2) {Mmx, *(a) () }se[t ~o) 18 @ bounded FB"P _martingale.

SATR

Set N x:={weQ: X (w)# Xe™(w) for some s € [0, 00)} € Np(Foo & P\/.FX) For any
(s,w) €[0,00) x Ny,

(6.3) XP(w)=Xs(w), (M) (W)= (Miyy(9) (w) and (r%(a)) (@) = (7, (a)) (w).

(
Fix tq,t2 € [t,OO) with t1 <ts. Let {(Si,gi } [t tl] X %(Rd) and {(TJ, )}] 1 C
[0,¢1]xZ(R'). We can derive from (6.2) and (6.3) that Ep [lj\/;; (M} tanrt (a (90) tl/wf(a (‘P))

m t,X t,X m
[T Lme ) ren Tl Lo (A )} Ep [1N (M7 eox(ay () =M, oy () T2 152 )16
H§:1 1(X,f,a")71(Aj)] =0. So the Lambda-system

A= {Ae]: EP[(Mt ATE(a )( ) szl/\Tt(a)((p))lA] :O}

contains the Pi-system {( 'F%l (B;)_l(&)) N ( jgl X,,_jl(Aj)) : {(81,&)}?;1 C [t,t1] x

BRY), {(r;, Aj)}k C[0,t1] x %’(Rl)} which generates F/ . Dynkin’s Pi-Lambda Theo-
rem (see e.g Theorem 3.2 of [15]) renders 7}, CA, i.e., Ep [(Mt /\T‘(a)( v)— Mfl/\f,g(u)(@))lf‘l]
=0, VA€F] . Hence, { M} At (a)(© )}se[t »o) is @ bounded F!—martingale.

3) As ¢(R) c C2(RIH), (ii) = (iii) is straightforward. It remains to show that (iii) gives

rise to (i).

3a) Let 4P = {.Ft P} selt.oo be the P—augmentation of F! (i.e., Fol' =o(FLUNp(FL))

with ::0( U F)) We define il := ﬂo]-';f;, Vselt,00) and set GHF = {Gy" =
e>

s€(t,00)

t,P
‘FS+ }se[t 00)

Leti,je {1 -+, d}. We set ¢;(w, x) :=w; and ¢y (w, x) :=w;w; for any w=(wy, - - -, wq) €
R? and 2 € R!. Clearly, ¢;, ¢;; € C(R). One can calculate that M!(¢;) = By", Mt(¢ij)=
BY'BY —6,5(s—t), Vs€[t, 00), where Bt = (Bé’l, ey Bﬁ’d) and §;; is the (7, j)—element of
the identity matrix I;jx.

Let n€N. By (iii), { M! sArt ¢’)}se .00) and{ SATﬁ gsz)}se[t’oo) are bounded F* —martingales

and are thus bounded F%*— martingales. The optional sampling theorem (e.g. Theorem
1.3.22 of [36]) implies that they are further G*”’ —martingales. Since lim 1 7 =00, we see
n—oo

that { M!(¢;) = BY' seltoo) A0 {M!(¢;;)= By B —0ij(5 = 1)} yey.00) A€ G —local
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martingales. Lévy’s characterization theorem then yields that B is a Brownian motion with
respect to filtration G**” and is thus a Brownian motion with respect to filtration F5°.

3b) We simply denote =, := (B!, X;), Bs:=b(s, Xsr.) and as:=07" (s, Xsp.), VsE[t,00).
Let i,j€{1,---,d+1}. We set 1;(7):=0; and ;;(@):=0:8; for any E] (E1,- ,E]dH)
R, Similar to Mt((ﬁl) and Mt(qﬁw) the processes M!(1;) = =" - I Bdr and
M (ij)= === ft A=Y g — N B= gy — [ (en)ijdr, s€[t,00) are GIF—local
martingales. Usmg the integration by parts formula, we obtain that P—a.s.

SO0 - MUIML ) =M [ BPdr4Miws) [ 89dr+ [ 0ar- [ 0
t t t t

-/ M (i) BOdr + / | / ar ) amt v+ / M ()89
/ /BT/)dr de(zp] / /5 dr J>dr+/ /5” dr' 5<i>dr
:/t {ng@ﬂgj)ﬁg)}d”/t (/ 5<>dr)th W) / /5”dr th (1),

Vs€[t,00). So MY (1) ME (1)~ [ (o )ijr=DME (i) — [ ([T BY dr'ydMt (i) [* ([ BY
dr’)dML(v;), s€[t,00) is also an G»"’—local martingale, which implies that the quadratic
variation of the G""—local martingale M := (M!(41), -, M!(¢as1)) =Es — [ Brdr,
s€(t,00) is (M, M") = [’ apdr, s€[t,00).
—O’T(S,Xs/\.)a
a
tial of the G'*"'— martingale { [, T Mo dMt)

Let n€N, acR and set H%:= < ), V' s€(t,00). The stochastic exponen-

s€ft, oo)

1 ThAS TENs
exp / H- th—2/ (Hy) aﬂ-[“dr} exp / HE-d=, — / Hgﬂrdr}
t

; TENs
:exp{ / dX, / 7’ XM dB / b(r, XM.)dr> }, s€E|t,00).
¢ t

Letting a vary over R’ yields that P—a.s., X« ps =x(t +fT nsy b(r, XM.)dr+ftT'tL/\s o(r, X,n.)
dB,, Vs€(t,00). Sending n— oo then renders that P—a.s., Xy =x(t)+ [;’ b(r, X;».)dr +
[l o(r, X,p.)dBy, Vs € [t,00). Viewing SDE (1.4) on (€, F,G"" P), we know from

Proposition 1.1 that there is a unique {G%/;} —adapted continuous process satisfy-

$€[0,00)
ing (1.4). Hence, P{XSZX?X, Vsel0,00)}=1. -

Proof of Theorem 3.1: Fix (t,w,x)€[0,00) x Qo x Q. and (y,2) = ({yi}ien, {2 }ien) €
RxR.

1) We first show that V' (¢,x,y,2) <V(t,w,x,y,2): If Six(y,2)=0, then V(t,x,y,2)=
—00<V(t,w,X,y,z). So we assume S;x(y,z)#0 and let 7€ S, x(y, z). Define a process
BoY (w):=w(sAt)+BL,,(w), ¥V (s,w)€[0,00) x Q and define a mapping ¥: Q2 by

U (w):=(B""(w), X" (w),7(w)) €Q, VweQ.

It holds for any (s,w) € [t,00) x Q that Wt( U(w ))ZWS( ( ) = Wi(¥(w)) =B (w) -

BI™ (w) =B (w). Since Xt* = {th}se[Ooo is an {F5,F «e[0,00) —2dapted continuous
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process and since 7 is an FZ P —stopping time, we can deduce that the mapping VU is
FE ¥ /% (Q)—measurable and is Fy P / T —measurable for any s€[t,00). Let Py eP(Q)
be the probability measure induced by ¥, i.e., Py (A4):=p(¥~!(4)), VZE%’(Q).

Fix (¢,n) € ¢(R¥) x N. We define an FB'» — adapted contlnuous process M5 () :=
@(BE,X?X) —J7b(r, X:’K) o(BL, tx)dr— ,ft ool (r, X, ) 20(BL, XX dr, Vse
[t,00) and define an FBP_stopping time T 5% :=inf {s e [t,00) ‘(Bt X ’ >n} A
(t+ n) Applying Proposition 1.2 with (2, F, P,B,X) =(Q,F,p, B, X% X) yields that
{Ms/\T )}Se[t’oo) is a bounded (FBtvp, p) —martingale.

Since Py {X,=x(s), Vs€[0,t]} =p{X (V) =x(s),Vs€[0,]} :p{xﬁ" =x(s),Vse
[0, t]} =1, using Proposition 1.2 with (Q,F, P, B, X)=(Q,2(Q), Py,W,X) shows that
{M ST go)}s €lt,00) is a bounded Ft—adapted continuous process under Py. Given we Q,

since WS( (w))=B(w), Vse[t,00), we see that (MZ(QO)) (U (w))=(ME(p)) (w), Vs€
[t,00) and 7, (¥ (w)) =74 (w). Then

(Mopze (9)) (T(w)) = (M () (sAT4 (T (W), T(w)) = (M () (sATEX (w), U(w))

(6.4) = (M () (AT (W), w) = (M () (W), ¥ (s,0) €[t,00) X Q.
Letty,ta€[t,00) with ¢} <t9 and let Ze?ﬁl LAsUTL(A) Efft’p, the (FB”"’, p) —martingality
of {MZ’/)\(T%X(QD) }Se[tm) and (6.4) imply that

Bp, | (M iy (9) =1, e () 12] = By | ( (M, () (9) = (M, () (9) ) L |
= By [(M{25r0 (£) = M5 (9)) Ly 2y | =0

So {Ms/\T )}se[tm) is a bounded (Ft,ﬁq,)—martingale. By Remark 3.1, Py satisfies
(D1) and (D2) of Definition 3.1.

Since WH(B"W(w))=BLY (w)—Br™ (w)=B!(w) for any (s,w) € [t,00) x €, taking
(Q,F,P,B,®)=(Q,F,p,B,B") in Lemma A.2 (2) shows that p{7=7(B"")} =1 for
some [t,00]—valued FW"-Fo —stopping time 7 on €, it follows that Py {T=7W)}=
p{T(0)=F(W(¥))} =p{r=F(B"™)} =1. As W,(¥(w)) =B (w)=w(s), V(s,w) €
[0,2] x Q, it is clear that Py {W=w(s), Vs€[0,t]} =p{Ws(¥)=w(s),Vs€[0,t]} =1

Thus Py € Py x. Forany i €N, Ep, {ftT gi(r, Yr/\.)dr] =E, [ftﬂlp) gi(r, YTA.(\IJ))dr} =

E, UtT gi(r, Xrt’A’f)dr] <y; and Eﬁw [J;T h; (r, Ym.)dr} =FE, U;T hi(r, Xf}\’f)dr] =z;, which
means that Py € Py w x (v, 2). Similarly, we can deduce that

Ep[/t f(r, X:}\%)dT+1{T<OO}7T(T, Xi’f)}

T
Y T SRR 0 T,

Taking supremum over 7€ S; x (v, 2) yields that V (t,x,y, 2) <V (t,w,x,y, 2).

2) As Prwx(y;2) CPex(y, 2), we automatically have V (t,w,x,y,2) <V (t,x,y,2). It re-
mains to demonstrate that V' (t,x,y,2) <V (t,x,y,2). If Ptx(y, )=, then V (t,x,y,2)=
—oo <V (t,x,y,2).
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Assume Py (y,z) #0 and let ?Eft,x(y, z). Given ( )E(’:(Rd”) N, M ’x(cp)
)= [0(r, Z0) - De(Wy, 2 )dr =% [P57 (r, 2,7 : D2p(W,, 2, dr,

s€|t,00) is an FWt’ﬁ—adapted continuous process and 75 :=inf {s€lt,00): }(W %t

)

>n}A(t+n) is an FW'P_stopping time. Since 7" is a Brownian motion under P by (D1)
of Definition 3.1, applying Proposition 1.2 with (2, F, P, B, X)= (ﬁ, BQ),P,W, yt’x)
shows that

(6.5) (M

snrtx ()} is a bounded F"'P_martingale.

Let (ro,t,) be an arbitrary pair in €2, x [t,00] and define a mapping ¥,: Q+— Q by
U, (w):= (B (W), Tos to) €Q, Ywe Q. (Actually, we are indifferent to the second and third
components of Wo(w).) Since We(¥o(w)) = Ws(Vo(w)) — Wi(To(w)) = Bt (w) for any
(s,w) € [t,00) x Q and since W' is a Brownian motion under P by (D1) of Definition
3.1, applying Lemma A.1 with to=t, (Q1, 7, P, BY)=(Q,F,p,B), (Qa, F2, P2, B%) =
(Q,2(Q),P,W) and ®=1, yields that

(6.6) W (FVY =B w  (FVOP)c FBP ) Vselt 0] and
6.7) (pow; 1) (A)=P(A), vZeff?

Then 2% (w):=Z 2 (¥o(@)), s€[0,00) defines an { ik
process.

Let (¢,n) € €(R4T) x N. We define an FBp_ adapted continuous process .2+ () :=

B 2% — (. 27) - DB 22y — | o (1 271%) : D281, 7).
Vse [t,00) and define an FBP—stopping time ¢ :=inf {36 [t,00): |(B§, %st’x)‘ >n}A
(t+n).

Applying Proposition 1.2 with (Q, F, P, B, X)=(Q, F,p, B, Z'"*) and using an analogy

t,x
to (6.4) renders that {//ls h G{x(cp)}
under p satisfying
—1,% X

68)  (5n(9) (Wol)) = (A7 n(0)) @), ¥ (s,0)€lt,00) x Q.

Let t1,t9 € [t,00) with t; <to and let Ae}"tlft. Since \IIO_I(Z) = A for some A€

X

FV " by (6.6), we can derive from (6.5), (6.7) and (6.8) that O:Eﬁ[(ﬁﬁ;m,{(@) -

=, ——t, ,

Mere (9)) L] = By | (M nrtn (0) = My (0)) (Wo) L )| = B | (A5 () —
///tt;ici”‘(go)) 1 A} which implies that {/// e (@ )}, €[t.00) 18 @ bounded F5'? _martingale.
Then an application of Proposition 1.2 with (Q2, F, P, B, X )= (Q, F.p, B, %t’x) shows that
(6.9) p{ 2 X=X, Vs€[0,00)}=1.

By (D3) of Definition 3.1, there exists a [t, co]—valued FW*" P _stopping time 5 on €
such that P{T=5(W)}=1. Lemma A.2 (1) renders that v:=7(B) is an FB"? —stopping

time on Q while 7(W) is an Fwv'P —stopping time on Q. For any i €N, we can deduce from
(D2) of Definition 3.1, (6.7) and (6.9) that

T _ (W) Cx
(6.10) yz'ZEP[/ gi(r,XT/\.)dr} :EP[/ gi(r, z%”r}\_)dr]
t t

SV (V) . y .
[ g -] [ ainaion]
t t

s€[0,00) —adapted continuous

is a bounded FB'* —adapted continuous process
s€[t,00)
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and similarly that E, [ [ hi(r, X/%)dr] = Ep[ft?hi(r,yr,\.)dr] =z. So Y€ S x(y,2).
Analogous to (6.10),

' X — = v
EP|:/t f(T7 XrA')dT+1{T<oo}7T(T,XT/\_):| :Ep |:/t f(T', Xﬁ}\x)dT+1{fy<oo}7T(")/,X,$’/i():|

<V (t,x,y,z2).

Taking supremum over P€P; «(y, z) yields that V (¢, x,y,2) <V (¢,x,y, 2). O

Proof of Lemma 4.1: 1) We first show that the metric space (6, pG) is complete. Let
{7n}nen be a Cauchy sequence in (&, pG) such that sup p (7, Tnik) <27" for any n€N.
keN

For any n €N, the monotone convergence theorem implies that

Ep, [sup |arctan(r,) —arctan(7,,4x) ” <Ep, [ Z |arctan (7,4 4—1) —arctan (7, x) ’]
keN keN

:Z Ps (TnJrkfl, TnJrk) SZ 217n*k:217n'

keN keN

So lim Ep, [sup | arctan(7,,) — arctan(TnJrk)u =0. Then one can extract a subsequence
n—oo keN

{70, } .oy OF {Tn}nen such that lim (sup | arctan(7y, (wo)) —arctan(7k+n.(w0))‘) =0 for
iJjeN J—00 \LeN J J

all wo € except on a Py—null set V. Given wy € NV, we see that lim <sup | arctan(7,, (wo))
J—r00 \eN '

—arctan(ry_, ,(wo)) D =0, i.e., { arctan (7, (wo)) }jeN is a Cauchy sequence in [0, 7/2]. Let

&« (wo) be the limit of { arctan (7, (wo)) }jeN in [0,7/2].

As FW:70 s a right-continuous complete filtration, Lemma 1.2.11 of [36] implies that

Te:= lim 7,, is an F""P _stopping time on € satisfying
Jj—00

arctan (7 (wp)) =arctan (sup inf 7,, (wg)) =sup arctan (inf oy (w0)>
jEN £2j JEN £2j

=sup inf arctan (TW (wo)) = lim arctan (7, (wo)) = lim arctan (7, (wo)) =&« (wo),
jeN £2j j—ro0 J—oo

Vwo € N¢. Applying the bounded convergence theorem renders that lim Pe (Tn],,q-*) =
j—o00
lim Ep, H arctan(7,,) —arctan(7) H =0.
Jj—00
We next let {7, }nen be a general Cauchy sequence in (6, pG). For any j €N, there ex-
ists nj €N such that sup pg (7, Th1n,) < 277, In particular, the subsequence {?J =T, }
keN
of {7, }nen satisfies that sup p (75, 7j4¢) <277 for any j €N and thus has a limit 7, in
£eN

JEN

(6, pG) by the above argument. Let € € (0, 1). There exists a €N with £>1—log, € such
that po (ﬁ, ﬁ) <¢/2. Then it holds for any j > that pg (Tj, ﬁ) <ps (Tj, ﬁ)—kpe (ﬁ, ﬁ) <
SUD P (Tnes Tnete) +6/2<27 42/2<e. So lim p (75, 7.) =0, which shows the complete-
LeN J—=reo

ness of (&,pg).

2) We need some technical preparation for constructing a countable dense subset of &.
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Fix s€[0,00). Given 6 € Q, set Of(wp) := {woeﬂo sup |w(r) —wo(r)| <(5}. Since
rel0,s]
Qg is a continuous-path space, we can deduce that
O3(w)= U, _ O {wheQ :luh(r) —n(r)| <6—6/n)
— W
nLGJNre(O hne {WOGQO W, (WO)GO(S 5/n(wg )}E]:

Let T,(€) collect the empty set () and all subsets O of € such that for any wy € O there
exists some d € (0, 1) satisfying O35 (wp) C O. Obviously, T4(€2) forms a topology on (2.
We claim that for any A€ F}Y and e€(0,1),

(6.11) there are O, 02€F,(€) such that Of CAC O and Py(ANO1)V Py(A°NO2) <e.

To see this, we define Ag:={A€AB(Qp): for any e€ (0, 1) there exist O1, Oz in T4(2y) such
that O C AC O3 and Py(ANO1)V Py(A°NO2)<e}. Clearly, 0, Qo€ A, as they both belong
to T5(€). It is also easy to see that A° € Ay if A € A,.

Let {A,}nen CAs and €(0,1). For any n € N, there exist O}, O2 in T4(€2) such that
(O)C A, CO? and Py(A,NOL)V Py (ASNO2) <2717 The set Oy ::nLGJNOfL €%5(Q0)

contains A:= U An and satisfies Py(A°NO7) < Z Py(A°N0O2) < Z Py(ASNO2)<e/2.

Similarly, it holds for £:= ﬂ O} that Py(AN 5) < Z Py(An N Ol) <5/2 We can find an
neN

N €N such that Po( 0 (’),11) <Py(E)+e/2. Then Op:= rjl(’)}1 is a set of T4(£2) satisfying

N
that 0% = L_Jl((’);)Cc LGJNAR:A and Po(ANO1)=Py(ANE)+ Py (AN(01\E)) < Py(An
E)+Py(0O1\E) <&, which shows LGJNAnZAGAs~ Hence A is a sigma-field of €.
Let 7€0,s] and let O be a nonempty open subset of RY. Given wy € W,"1(0), there

exists 0 € (0,1) such that Os(W,(wo)) CO. As W, (Oj(wo)) C Os(Wy(wp)), we obtain
that O3(wp) C W,1(O) and thus W, 1(0) € T5(). Let € € (0,1) and define closed

sets D, :={z € R?: dist(z,0%) > 1/n}, Vn eN. Since mNW;l(O\D”) - W;l( QN

(O\Dn)> =), there exists N such that Py(W,"'(O\Dy)) <e. Similar to the inclusion
W, 10) € %45(Q0), one has O1:=W,1(D$;) € T5(Q). Since O=W,"Y(Dy)CcW,1(0)
and Py(W,"1(O)NO1)=P, <W*1(ODDC )) <e, we see that W,1(O) € A. It follows that
FY=0(W,;1(0);re€|0,s], open subset O of RY) CA,. So (6.11) holds.

Let {MO}ieN be a countable dense subset of 2y and let s€[0,00). We set ©:={O5 (wp):
§€Q,ieN}CFV. Let Ac FV and €€(0,1). By (6.11), there exists O2 € T,(Qp) such

that AC O and Py(O2) — Py(A) <e. As usual, Oy is the union of some sequence {O; }
in O,. So A satisfies that

(6.12) AC UO; and PO(A)>Po(iéJNOi)—

3) Now we are ready to demonstrate the separability of (6 Pe )
Given ¢ € Q, let us simply denote by {O }jen the countable sub-collection ©, =

{08(wh): 0€Qy, i€} of FJ¥ anddefine Tf ,:={a1 y or+al  one: IC{L -+ kY€

2’7
6, VkeN, YaeNN|g, o). For any k,n € N, we set Tkn = UN{ A T T; € T}fa e
ac
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1,--- 2”04}, which is a countable subset of &. Then T :—k U N Tk n 1s also a countable sub-
ne

set of &. To show T is dense in (6,p6), we let €S, £€(0,1) and try to pick ’yET such
that

(6.13) plrm)<e
Since lim pg (7,7Aa)= lim Ep, [| arctan(7) —arctan(T/\oz)H =0, one can find aeN
a—r00 a—00

such that p (7, 7AQ) <e/4.

Let n€N and set s :=0. Given i€{0, 1,---,2"a}, we set s]':=i27" and A7 :={s]" ; <
T} EfWPO By e.g. Problem 2.7.3 of [36], there exists A7 e]-'W such that N" =
AP DAL €N (FI). Define A= A7\ (U A7) 7Y and A= u S A= u fAne FY.

J<t
2" Q

The FW:% —stopping time 7,,:= Z i Lar+al{;>4 coincides with the FW —stopping time
i=1

5} (A”ﬁA”)) U ({TE@}H.Z?L). We can deduce that

u A7) | = (Arnan)u( U, (nar)

oy, (agn(apy ))c YN en, (FL).

n/\

for i=1,---,2"a and that {T>a}ﬂAn— ({T>a}ﬂAn)C U (( e ﬂA”)C UN”

N5, (FV). Putting them together shows that Q¢ = < ,91 (A?\Af) > U <{T > a}ﬁAn> belongs
to Ap, (F). To wit,

(6.15) Th=Tn, Py—a.s.
Since lim | 7,,=7AQ, one has lim P (TA@, )= lim Ep, H arctan(T/\&)—arctan(Tn)H =
n—o0 n—o0 n—oo

0. So there exists n€N such that p (T/\&, Tn) <e/4.
Given i€ {1,---,2"a}, we know from (6.12) that for some sequence {O;.}JEN in Ogn =
s

{Oj }jeN

(6.16) Arc Y Oj and Py(A}) >P0(jgN 0}) s

0
And we can find /; €N such that O;:= UlO; eF SVY satisfies
j= :

g

(6.17) PO(Oi)>P0(jgN 0?>—m-

J

Clearly, v;:=s}1p, +aloe GTZ:;a for some k; €N.
Letie{l,---,2"a} and set O;:=0;\ U O; € FW. Analogous to (6.14), ﬁ;‘\@zzﬁ;‘ N
1<t K

o U o] (( U.0) NO5)u( U (OiN(A))). S0 (6.16) and (6.17) yield that

(6.18) Py(AN\O;) < Py <(jEN 0)N05) + > Ry ((J%N 0 N(AY)°)
i<i
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< Z e 25 < e
— 22+2nﬂ-a2 22+2nﬂ-a2 — 22+nﬂ-a'
i<i

~ 2n g , N PA A
Define O := ) 0;= .UIOZ' e]—"g’ and ¢:=max{k;: 1=1,---,2"a}. Then v:= ./\1% is
1= 1=
~ ~ 207
a stopping time of T (and is thus of T). In particular, y= 3 s}'15 +alg, is equal to
i=1 ’

2" —~ NG~ ~ ~ ~
To=p_sp1z.+al g over A= ( ,Uoll (OiﬂA2)> U(0°NAS) e FY . Since (6.16) implies

i=1 : " =
that

2"a 2"a 2"
Py(ONAL) <> Py (0;nAL) <Y Ry (0in(AN)°) <Ry (0)\AY)
=1 =1 =1

2"a

2"a
% i 3 . £
< Z;PO{ (jgN Oj) \.Ai } <z; 921252 924ng g’
1= =

ngy o~ ~ ~ ~ 2"a ~ ~ ~
(6.18) renders that Py (./TC) :Po{ ( 2L_J1 (A;’\OJ) U(ONAY) } =Y Ry(ANO;)+P (0N
B i=1
.Zﬁ) <(2"a+ l)ﬁ < % and thus ps (7a,7) = Ep, [1 4. | arctan(7,) —arctan(y)|] <

7Py (A°) <e/2. By (6.15), it follows that p (7, 7) < p (T, TAQ) +p (TAG, T ) +p s (Fas7) <
€, proving (6.13). Therefore, (6, pG) is a complete separable space. O

Proof of Lemma 4.2: 1) We first show that I' is injective: Set Qr:=(QN[0,7/2)) U{r/2}
and let 71,72 €& such that I'(71) =I'(72). ‘

Given ¢ € Q; and neN, we define & :=(¢—1/n,q+1/n)N[0,7/2] and A; ,:=
{arctan(r;) €&} € FA0™ for i=1,2. Then A, :=A; ,N(A2 )¢ satisfies

(6.19) Py(Apq)=Po{woe (A,Q%q)c : 71 (wo) Etan(ET) } = (T'(1)) ((A%,q)C x tan(E7))
= (F(TQ)) ((A?Lq)C xtan(é’g)) :Po{woe (Ai’q)C : 7o (wo) Etan(é'g)}:Po((Z)):O.

Clearly, U U A, ,C{m #m}. To see the reverse inclusion, we let wy € ( U
neN qeQx neN

C
Lé Amq) and let n € N. There exists q=q(n) € Q. such that arctan (1 (wo)) € ], or
4€Q~

wo€ { arctan(r) €EI} =A), . Aswo€ A, . we see that wy € A2 |, i.e., arctan(rz(wo)) also
belongs to &J. It follows that p_ (11(wo), T2(wo)) = } arctan (7 (wo)) —arctan(m (wo))‘ <

2/n. Letting n— oo yields that 71 (wgp) =72(wp). So UN % Ay q={m1 #m}. It follows
neN qeQx

from (6.19) that P[){Tl 757'2} =0, which means that 7y =79 in &. Hence, the mapping

I': 6P (Qo xT) is injective.

2) We next discuss the continuity of I': Let {7, },en be a sequence of & that converges to a
7€ under pg. We need to show that P":=T'(7,,) converges to P:=I'(7) under the weak
topology of sﬁ(QO X T) , 1.e.

(6.20) lim ¢(wo, t) P" (d(wo, t)) = / ¢(wo, t) P (d(wo, 1))

=00 J(wo, )€ XT (wo,t)EQYXT

for any bounded continuous function ¢: 2o x T+—R.
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Let ¢ be a bounded continuous function on €2y x T. For (6.20), it suffices to show that for
any subsequence {7y, }ren of {7 }nen, We can find a subsequence {7,/ }kEN of {7, }ren
satisfying (6.20).

Let {7, }reny be an arbitrary subsequence of {7,}nen. As 0= kli_)rrolo P (T T) =

Jim Ep, [p(Tn,,7)], one can extract a subsequence {nj }, . from {n4},  such that

Jim py (Tny (wo), 7(wo)) =0 for all wp €y except on a Py—null set N. Given wy €N,

—00 '

since lim p, (7 (wo), 7(wo)) =0, the continuity of ¢ renders that lim ¢ (wp, T, (wo)) =
koo T k k—o0 k

d)(wo, T(wo)). Applying the bounded convergence theorem yields that

Jim (w0, ) P (d(wo, 1)) = lim/ ¢ (wo, Ty, (wo) ) Po(dwo)
=00 J (wp,t)EQ X T k—oo Jq,
:/ ¢(w0,7(w0))P0(dwo):/ ¢(wo, t) P (d(wp,1)). O
Qo (wo,t)EQoXT

Proof of Proposition 4.1: Fix (¢,x)€[0,00) x €2

1) Let PePyy. It is clear that P € Py, Let (p,n) € €(R*) x N. By (D1') of Re-
mark 3.1, {MSAT )}se[t o) 18 @ bounded (Ft P)—martingale. For any (s,t) 6@2’< and
{(s:, 0¥ C(QN0,8]) x O(RHH), as {( WH& XHS )€O; }G]—'t+5 fori=1,--- k, one

directly has Eﬁ[(M?f,’L/\(t-i-t) (@)—M?tl/\(t_i_ﬁ ( )) H 1 H— 7Xt+si)€(9i}:| =0. So PEft .

By (D3’) of Remark 3.1, there exists a [0,00] valued FW:Fo _stopping time 7 on €
such that F{th—k%(%t) } =1. Since W§:Wt+5 —Wy, s€ [0,00) is a Brownian motion
under P by (Dl) of Definition 3.1, applying Lemma A.1 with ty =0, (Ql,}"l,Pl,Bl) =
(0, BQ), P, 7", (2, Fa, P2, B2) = (Q0,B(Q), Po, W) and d=7" shows that
6.21) Po(#') ' (A0)=Po(Ao), VAgeFHh.

For any A€ Z(Q)=F2 and €€ %(T), since 71 (£) € Far'™, we can derive that

?o(Wt,T_t)*l(ong —P{(W' T—t)cAyxEX=P{(W" #(W")) e Agx E}

—Po(W')y (W, 7)€ AgxEY=Po(#") " (AN 1 (E)) =Py (Aon# 1 (E))
:P(){(VV,T)E.A()XE}:P()O VV,T)_ (.A()X(C;)
Then Dynkin’s Pi-Lambda Theorem implies that Po (Wt, T—t) - = Poo(W,7)~" on Z(Qox
T). ie., Po (Wt,T—t)_lzf(%) €T'(&). So P also belongs to ff, which shows P x C
P xNPiNP,.
2a) Let ?Efixﬂff. To see that P satisfies (D1’) of Remark 3.1, we take (¢, n) € €(R% ) x
N. As P{X,=x(s),Vse€[0,t]} =1, applying Proposition 1.2 with (Q,F,P,B,X) =
(Q,2(Q), P,W,X) implies that {M SATL )}S €lt.00) is a bounded Ft—adapted continuous

process under P.
Let (5,v) € Q%< {(t, O }1_, (Qm [0,4]) x O(R") and {(s5,0})}7" (@M (0,5]) x
O (R If x(t;) ¢ O; for some 16{1 k:} then P{X;, €0;}=0 and thus

—t
Eﬁ[(M?;A(Hr)() MTtA t+s) Hl{xt eO}Hl Wi, o ey eo;}]zo-
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On the other hand, if x(¢;) € O; for each i€ {1,---, k}, then

—t
EF[(M?M(M)( )= Mt pr4) (2 Hl{x, eO}Hl{(m+ Xiin))e0, }}
=1 7j=1

=Ep {(Mt?;/\(tﬂ) (¢) _Mt?;/\

So the Lambda-system Ki: {AE%’(Q) |:(M7.t Atte) (@) — M%A(tﬁ)(‘ﬁ)) lz} :0}

includes the Pi-system {( n Y;%OQ) ﬂ( n (WHSJ,,XHSJ)_ (O;)) {(t:;,00) lec
j=1

(@QNJo0,8]) x O(RY), {(s],O’)} C (@n(0,s]) x ﬁ(RdH)}, which generates 7;5.

5,00 1.6 .

Dynkin’s Pi-Lambda Theorem renders that i s cAL"

——t =t —= =t
(6.22) EF[(M?;/\(HQ(SD)_Mﬁ/\(tﬂ)(@))lz] =0, VAeF,.,.

Let t<s<r<oo and A€ F.. Taking (s,t)= ( [(S?)Qk] 1H(T7t)2k]) k€N in (6.22) and
sending k— oo, we can deduce from the continuity of bounded process {M snrt (9) ), lt.00)
that B [(MT /\T(SO)_M%/\S(SO)) } 0.So {MS,\T )}Se[t o) isan (F , P) —martingale.
By Remark 3.1, P satisfies (D1) and (D2) of Definition 3.1.
2b) Let ﬁefixﬂff NP; . There exists a [0, 00] —valued F-P —stopping time # on €2 such
that Po (%', T—t) ' =T(¥)=Pyo(W,#)~1. We still have (6.21) since #" is a Brownian
motion under P by (D1) of Definition 3.1. Given D € 2(QyxT), taking Ag= (W, ) ! (D)e
F 0 in (6.21) yields that

P{(#', T—t)eDY=Po(#',T—t)""(D)=Pyo(W,#) (D)
=Po(#") " (W,7) (D)) =P{(#",#(#"))eD}.
So the joint distribution of (7, T —t) is the same as that of (Wt,%(Wt)) under P. In

particular, the P—law of T is equal to the P—law of t+7';(Wt) and therefore P satisfies
(D3’) of Remark 3.1 or equivalently (D3) of Definition 3.1. O

Proof of Lemma 4.3: Let {t,, },en C [0, 00) converge to t€ [0, 00) and let {Pn}neNC‘B( )
converge to P €B(Q) under the weak topology of B(Q) (i.e., lim fweﬂ H(W) Py (dw) =

Jscq ¢(@)P(dw) for any bounded continuous function ¢: Q»—>R) To see that {T'(t,, Pp)=

P,o (7/ T—tn)" ! } e converges to I'(t, P)=Po (7/ ,T—t)" ~! under the weak topology
of B(QoxT), we let o: Qo x T—R be a bounded continuous function and show that

lim (w0, A) (Pro(7"™  T—t,) 1) (d(wo, N))

n—00 (wo,)\)GQQXT

:/ D(wo, N) (Po (7, T—t)~1) (d(wo, V).
(wo,\)EQoXT
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Set ||¢|loc: = sup W(wo,)\)‘ and let £ €(0,1). Since the weakly convergent se-
(WQ,)\)GQQ xT

quence { Py, }nen is relatively compact in 3 (€2), Prohorov’s Theorem yields that { Py, }nen

— €
is tight, i.e., sup P, (K5) <
ght, ., sup Pu (Ke) < g

The topology of locally uniform convergence on €y implies that (s,)— # (@) is a
continuous mapping from [0, o0) x Q2 to Qg and ®(s,w):= (Ws (@), T(w)—s) is thus a con-
tinuous mapping from [0, 00) x Q to Qg x T. There exists J € (0, 1) such that |1)o®(s,w)—
Yod(s',w')|<e/4 for any (s,w), (s, w')€[0,t+1] x K. with |s—s'| v pﬁ(w,w’) <d. And
one can find N €N such that | [ ¢ o®(t,0)Py(dw) — [ ¢ o®(t,w)P(dw)| <% and
|tp, —t| <6 for any n>N.

For any n> N, we can deduce that

/ (w0, N) (P (77 T—t) 1) (e, V)
(wo,\)EQoXT

for some compact subset K. of Q.

- /(wo A)EQoXT w(wo’ )\) (FO (Wt’T_t)_l) (d(wo’ )\>) ‘
(4@t )~ (B(t,)) ) Pu(dw)

+

/ Y (B(t,m)) Po(dw) — / 7@[)(5(75,@))?((1@)’
weN weN

<[ Jo@nm) —e@0.@) [Pudars [ [o@02) [Puim)

EICE
/E

<Zﬁn(m+2uwumﬁn(ﬁ)+e/4gg. 0

W (T(t,)) ’ﬁn(dw)—m/z}

Proof of Proposition 4.2: According to Proposition 4.1, ((P)) is the intersection of
<<ﬁ>>1 ={(t,x,P) €[0,00) x 2y, xP() : Feftl,x} and <<f>>l :={(t,x,P) €[0,00) x

Q, xPB(Q): PEP, } for i=2,3.

1) Since the function l(t,w ) :=w, (tA-) is continuous in (¢,w ) €[0,00) x {2, the map-
ping ¥y (£, %,W): =111, , ¥(@)) -t (t.x)=0}> (1%, W) €[0,00) X Q2 x Y is B[0,00) 0 A (2 )®
%(Q))—measurable. Lemma A.3 implies that Ux(t,x,P):= [ ¥ (t,x,w)P(dw) =
P{X,=x(s), Vs€[0,1]}, (t,x, P)€[0,00)xQ . xP(Q) is B0, 00)RB(Q, ) @B (B(Q) ) —
measurable. So ((P)), = {(t,x,P)€[0,00) x Q, x P(Q) : Ux(t,x,P)=1} € B[0,00) ®

B0 )0 B(B(Q)).

2) Since W (s,wg):=wp(s) is continuous in (s,wp) € [0,00) x Qg and W (s,w, ) :=w(s)
is continuous in (s,w, ) €[0,00) X 2, the function Z(,5,wp,wy ) := (W (t+s,wo) —
W (t,wo), WX (t+s,w,)) is continuous in (t,5,wo,w ) €[0,00) x [0,00) X Qo x .

Let (p,n) € €(R¥) x N. The measurability of functions b, o, 5, Z imply that the mapping

Hop(t,s,7,w0,wy ) =L1<r<its) {B(T, lo(r, wX)) 'Dgo(E(t,r—t,wo,wX))

—I—%WT (7’, lo(r, wX)) :DQLp(E(t,r—t,wo,wX)) },
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(t,5,7,wo,wy ) €[0,00)x[0,00)x(0, 00) €22 is Borel-measurable. For each (t,s,wo,wX)
€[0,00) %[0, oo)xQon an analogy to (6.1) renders that [ |H,(t,5,7,wo,w, ) |dr<oc.
So Z(t,5,wo,wy ) fo o(t,5,7,wo,w, )dr is a real-valued, Borel-measurable mapping
on [0, 00) x [0, oo)xQon Deﬁne T (t,wo,wy ) :=inf {s€[0,00): [E(t,8,wp,wy )| >n},
(t,wo,wy ) €10,00) x Qg x QX, which is also Borel-measurable since for any a & [O, 00),

{(t,wo,wy)€[0,00) X Qo x Q0 T, (t,wo,w ) >a}

:{(t,wo,wx)e[(),oo) xQoxQy: sup \E(t,a',wo,wX)Kn}
a’€[0,a]

(ng quQ[Oja]{(t,wo,wX)e[O,OO)XQ()XQX.| (t7Q7w07wx)|—n 1/]{;})
€ B(0,00) 2B ()2 B(2,,).

For any s € [0,00), since the path-valued random variables (W, X) on Q are %(Q) ®
%(12 ) —measurable, we can derive from the Borel measurability of Z, and 7, that the

mapping
(623) M. (t,w):=(po=E~IL,)(t, Z(t, W (@), X (@)) AnAs, W (@), X (@))

— (M'(9)) (7 (@) A (t+5), @), (t,@)€[0,00)xQ
is 20, 00)®%(2) —measurable, where we used the fact 7%, () =t+.7, (t, W (w), X (w) ) An.
Let 0:= (¢,n,(s,v), {(sl,(’) M) € €(RHH) x N x Q% x ORI, Since T,(t,w):=

(M?"(t,w) - M (t,m)) x Hl (t5:80, T (@) X(@))c0,} (H:W) €[0,00) xQ is B[0,00)®

%(Q)—measurable by (6.23), applylng Lemma A.3 yields that the mapping (¢, P) —
Joca Fo(t,w) P(dw) is B[0,00) © 2 (P(Q) ) —measurable and the set {(t,x, P)elo,

_ k
QxPB(Q): E [(M?f/\(t—&-t)( )— M;M(Hs)(80))il;lll{(Wst,Yusws)eoi}}:0} is thus

Borel-measurable. Letting 6 run through the countable collection ¢(R%*!) x N x fo
O(R™) shows ((P)), € B[0,00)B(,, ) . B(P()).

3) We know from Lemma 4.1 and Lemma 4.2 that the mapping I': & > 7+ Pyo (W, 7)1 €
2]3((20 X T) is a continuous injection from the Polish space & to ’B(Qo X T) and the image
I'(6) is thus a Lusin subset of (2o x T). According to Theorem A.6 of [64], I'(&) is even
a Borel subset of the Borel space (29 x T). Then Lemma 4.3 implies ((P)), = { (¢,x, P)
[0,00) xQy xB(Q): [(t,P) L (S) } € B[0,00) @ B(Q) 0 B(B(2)). Totally, ((P))=
<<77>>1 ﬂ<<77>>2 (P >>3 is a Borel subset of [0,00) x ;. x B (). O

00) X

Proof of Corollary 4.1: 1) Let i € N. By the measurability of functions g; and [ (deﬁned
in (1.1)), the mapping g;(t,s,7,wy ) = 1gas<r<s39i (7 [2(r,wy)) is Borel-measurable in
(t,s,7,w,)€[0,00) % [0,00) x (0,00) x Q. It follows that

Wy
. oo . - T(w) L
6.24 Ly (t,w it T(w),r, X(w))dr= i, X (W) )dr,
620 T,02= [ 0t T@rX@)dr=[ 0 X @)
(t,w)€[0,00) x Q is B[0,0) @A (2)—measurable. Lemma A.3 implies that
T
/ Pdw)=Ep| / 0 (1 Xon)dr], (5 P)El0,00) xB(Q)
we TAt
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is A[0,00) @ #(PB(Q))—measurable. Similarly, @y, (¢, P) [fT/\t i(r, Xrp.)dr],
(t,P)€0,00) xP(Q) is B0, 00) % (P(2) ) —measurable. Then the set

2:={(t,x,y,2,P)€[0,00) x 2, x RXRXP(Q): Dy, (t, P) <y, Py, (t, P)=2;, VieN}
is Borel-measurable. Since ((P)) € %[0, 00) 0% (2, ) % (B(€2)) by Proposition 4.1, using
the projection IT; (¢, x, y, 2, P):=(¢,x, P) yields that [[ P || ={(¢,x,y,2, P)€[0, 00) x €, X
RxRXP(Q): PePrx; Bpl [, 0i(r Xon)dr] <yi, Ep| f2,, hi(r, Xop)dr] =2, Vi€
N} =1, " ({((P)))N2Z is a Borel subset of D xJB(€2).
2) Similarly to Wy (¢,x, P), defined in the proof of Proposition 4.2, the mapping
Uy (t, w, P):=P{W,=w(s), Vs€[0,t]}

is Borel-measurable in (¢, w, P) €[0, 00) x € ><£I3(Q) . By the projections 5 (¢, w,x, ¥, z, P)
:(t,x,ﬁ),ﬁg(t,w,x,y,z P):= (t X y,z P) and Iy (¢, w,X,y, z, P):=(t,w, P), we can
deduce that {{P}} :ﬁ2_1 ({(P)) ﬂﬂg ﬂﬁ;l (\I/;V1 (1)) is a Borel subset of D x*B(2).
O

Proof of Theorem 4.1: Analogous to (6.24), Z¢(t,w): ff((“;) f(r, X;n.(@))dr is Borel-

measurable in (¢,w) € [0, 00) x 2. Since the measurability of functions 7 and [, (defined
in (1.1)) implies that the mapping (s,w)—7 (s, l2(s, X (w))) =7 (s, Xsp.(@)) is £(0,00)®
%(Q2)—measurable, the random variable ¢, (w):=1 T@) (T(@), X(T(@)A\,w)),we
is A({))—measurable. Lemma A.3 shows that

V(t,P)= / @ 0.3)+3,@) P(dm)=Ep [ Ft). (. P)ef0.0)xB()

is 0, 00) ® % (B (Q) ) —measurable. Then Corollary 4.1 and Proposition 7.47 of [14] yield

<oo}7r

that V(t,x,y,2)= sup ¥ (t,P)= sup ¥ (t, P) is upper semi-analytic on D
B PeP:x(y,2) (txy,2,P)E[[P]]
and V(t,w,x,y,z)= sup ¥ (t, P) is upper semi-analytic on D. O

(t,w,x,y,z,ﬁ)e{{"P}}

Proof of Proposition 5.1: Let us set tz:=%(w) >t for any we .
1) We first demonstrate that for P—a.s. w€ (2, F%w belongs to ftlmym@ ﬁffw and thus

satisfies (D1) and (D2) in Definition 3.1 of ﬁtwfm @) according to Part (2a) of the proof of
Proposition 4.1.

la) By (D2) in Definition 3.1 of P;x, Nx :={weQ: X,() #?Z’x(w) for some s €
[0,00)} € A5(F). As {2707}
construct an R!—valued FW' —predictable process {ft} 00) such that N := {weﬁ:
Fi(*)yé?t’x(*) for some s € [t,00 }GJV (]-"Wt) (see e. 2 Lemma 2.4 of [62]). Since

—t
5@ { 'eq: K'y/\r w')= KW/\T

=
s€[t,00) 1s an F"'»P _adapted continuous process, one can

} is an Fz W' _measurable set including w,
rEQﬂ (t,00)

(5.3) shows that P~ (K= ;) =1, Ywe Ny,
Given we (NxUNK)®, we can deduce from (5.4) that for any @ EW— 5N (NVxUNK)®

weKs, < X,(@)=x(s), ¥s€[0,t] and K ) (@) =Ko )00 (@), V7 €QN(t, 00)
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— Ys (w/) :Ys (w)7 Vse [07 t] and yW(D)/\T (w/) :YW(D)/\T (w)a VreQn <t7 OO)
6.25) = X,([@)=Xmx(@), Vre[0,7w)].

And (5.2) shows that ?%7 (NxUNgk)=E [1quNK |.7: ] w) =0 for all we N except on
a./VX,KG,/Vp(JTVWt).
Set N1 :=Nx UNx UNx x € N5 (Fa). Given we (NgUN)®, taking P(-) in (6.25)

and using (5.5) yield that P {@' € Q: X, (@) = Xqr, (@), V7 €[0,15]} =1, ie., P €
=1
P X @)

1b) For any ¢ € €(R¥*!) and ¢€Q?, define a function ¢, (w, ):=p(w—q, ), (v, r) R,
We set € :={p, : p€ €(R¥*!), g€ Q'}, which is a countable sub-collection of C?(R%*!). For
any n€N, define an Ft—stopping time by (,, () :=inf {r € [y(w), 00): \Wi (@) —W'%(w) 2+
X, @) 20} A (@) +n). €0

Let0:= (0,1, J, (5.1), {(51, O1) }i_y ) €€ xNxNx Q% x5 (RH). Since {7y (8)} iy o)
is a bounded (F',P)—martingale by applying Proposition 1.2 with (Q,F,P,B,X) =
(Q,2(Q), P,W,X), the optional sampling theorem implies that

Eﬁ[ﬁ F+T)AC, AT ’ 'y—i-s} w—i-s)/\fn/\ﬁ (¢)7 P—as.

- ==t ——t ——t ——t
Sety:= M(ﬁﬂ)/\Zn/\?; (¢)_M(W+s)/\2n/\ﬁ. ()= 1{?7: >} (M(ﬁﬂ)/\f AT (¢)_M(W+s)/\2n/\ﬁ. (¢))

k —
and m::]_[l A 2 M)EOI_}E}" . As ]-"W C]-" CF 5+ the tower property

renders that F= [59179}]-" } [UQE [59} 7+5] fw} 0, P—a.s. By (5.2) again, there

exists an Ny e A5 (]-' W' ) such that
(6.26) Ep:_[&7ig) = Ep[ &g Y |(@)=0, YweN,.

Define NVo:=J{Ny: 9€‘€><N><N><Qi’< X ﬁ’A(RdH)} ez/Vp(fio) and fix we (NMoU
N1UN2)E. We let (p,n, (5,1), {(51, O) i, ) €E(RH) x Nx Q3= x G/(R%) and let j €N,
There exists a sequence { ¢y, =qm (@) }men of Q7 that converges to WL 7(@).

Let meN. We set 0,,,:= (¢q,., 1, j, (5,t), {(si,0;) }F_, ) and define

e s (Y10 ) D530
w,r ]

= sup (Z D’ (W—qm,x)— Din(w—W%(w),m)D.
|(w,2)|<j
Given o’ GW%@HN)C( N{75>7}, (5.4) implies that 74(w') >7(W') =tz and ¢, (@)=
inf {r€ [tz 00): W, (@) =W (@) +| X, (@) [*>n? } A (tg+n) =Tl (@'). As W (@)=
Wf(w’) —wa(w’):Wf(w’)—W%(w), V1€ [tz,00), it holds for any t5<s1 <s9<oo that
- e _ =t wt e w =t ot v
(M (0) =M () @) =9 (W, (@) - W5(@), Xe, @) = (W, (@) - W5(@), X, @)

—[ B, Xn (@) -Dp (W, (@)~ We(@), X (@) dr
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. / 77 (r, Xy (@) : D?0(W @) - (@), X, (@) dr.
Since | (W: (@), X, (@"))|<j for any retz, 7%4(@")], an analogy to (6.1) shows that for any

lo<s1<s2 Sﬂ- (@)

te tw

| T35 ()~ M5 () =M, (0,) + M, (04,)) @)

o me _ | .
<250m 4 57 / <|b(r, XM.(w’))H%\E(r, Xm.(w’))}2>dr§5£m(2+cfﬁ’x),
t

wherecg [d/2+f£(t+j)(Hth+j)+f£ (t+7) (||x[++7) ]]—i—ftﬂ (\b r,0
oo. Taking 51—((7—{—5)/\Cn/\7j)( W)= (lg+5) ATt (w )/\T (@') and so=

~to o
M ;1 oynrie et () = M(t;«#s)/\?ﬁ?/\ﬁ-( ) (@) =&, (@)

[+|o(r,0)]?)dr<
tm o) AT (WA
<622+ ).

—

7h(@') yields

k
AsTy (W)= H 1{(Wt e @) Ko ene @))EO} by (5.4), we see from (5.5) that

e Tte
Eﬁg [1{?3 >7} ‘ (M (t+e) AT AT (p)—M (tart+8)ATo& AT (90)>
k _ . .
XH 1{(Wz§+siA5 aytwi»s,;As)EOi} _gemﬁem H S 6%7% (2+CZ,X) °
i=1

The uniform continuity of D?p’s over compact sets implies lim | 5%7”:0, and one can
m—0o0
then deduce from (6.26) that
k

t —t
Ep; [1{T >7}< (tate) AT AT (o) M (tﬁﬁ)ﬁ?ﬁ;(“@))n1{<Wx’+s M,Xmsm)eoi}}
=1
(6.27) = Tr}gnooE—; (&9, 7. ]=0.

Since P—w{ '€Q: X, (@) =X5a W), Vr€[0,t5]} =1 by Part (la), applying Proposi-

tion 1.2 with (Q,F, P,B,X) = (2, 2(9Q), WJ,W X) and (¢,x) = (tz, X5n.(w)) renders
. -t . —t (—1\

that {Ms/w (p )}Se[tmoo) is a bounded process under Px ;. As jlggoT 75(w') = oo for any

w' €9, letting j — oo in (6.27) and using the bounded convergence theorem, we obtain
ter e

that EP77[<M(:U+t)/\?fF((p) —M ;i (p )) H 1{(Wt e Xﬁﬁ‘sws)e@i}} =0. Hence,

?%’EEP%XW_ @) ﬂf?ﬁ for any we (NoUN UNQ) )

2) We next show that for P—a.s. W€, Pf— satisfies (D3) in Definition 3.1 of Pt Xon (@)

By (D3) in Definition 3.1 of Py, there is a [t,00]—valued FW*" P _stopping time 7
such that P{T=7(W)} =1. Since Lemma A.2 (1) implies that 7(W) is a [t, 00]—valued

FW'P _stopping time on €2, applying Lemma A.4 with (;,7)= ({P},7) assures that there

exists A, € FV " satisfying
(6.28) {FW)>7}AA, € N5 (]—"W ).

Let n,i €N. Set s7:=t+i27" and A?:={s" | <7<sP}cFu ' with s :=t. Using
Lemma A.5, we can find N € 4% (]:E t) such that for any (s,w) € [t, s7] x §, there exists
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AS’QGFWS satisfying 1y gy e ary = 1w @) eas®ys v EW ﬂ(/\/ )¢. Foreachwe {7<
s}, taking s=tz yields some A} ; —At““ €Fgn W' such that

(6.29) L @year) = Liv@)eas 3 Vo' eW- N (NT)".
Set Nz:= UENW 6/1%(]—1?). By (5.2), it holds for any @ e Q except on an N3¢
N5 (]-‘W ) that

Pl ({(F(W)=7}AA ) UN-U{T #7(W)} )

(6.30) =Ep [ {F(W)>F}AA, \UN-U{T#7(W)} )f } (@)=0.
Fix We NyNN5NA,. For any n€N, set i, (@):= |27 (tz—1) | +1>2"(tz—t) and defines
a (tz, 00]—valued F"'“ —stopping time:

o0

To(wo)i= Y gyeaz ysi+ool woe B (4T} Vwo €€.

i=in(@) i=in(@)

As FW'@.P 5 a right-continuous complete filtration, Lemma 1.2.11 of [36] implies that
79(wo):= lim 7% (wp), Ywo €y is a [tg, co]—valued FW'“ o _stopping time.

n—oo
Let E/EW%@QNAQ{T )>7%} and neN. Since (5.4) shows that 7(W (@) >7(w') =
tz, (6.29) renders that

Z]‘{s” <AW" <sr} i TOOL AT @) =00}
€N

Sending n— oo reaches that 7(W (@')) = lim ¢ (W (W) =7(W(@")). So WE—HN;Q
{T >'y}ﬂ{T }—W ﬂ./\/Aﬂ{T )>7 N {T=7( } Since P i T#
W)} =0, va({r( )>7}AA*) 0 by (6.30) and since A* E]-" , we can deduce
from (5.5) and (5.3) that PW({T ) >N {T=7(W)})=P ({T )>7}n{T=
? }) {7- >'y} P (A*)—l{weA*}—L Hence, for any wENOON3ﬂA*,
PW{T_ W)l=1,ie, Pw satisﬁes (D3) in Definition 3.1 of ftmym @)
3) Let i € N. According to (5.2), it holds for all @€ ) except on N, ih € JV*(]-%W t) that
Eﬁ;m[f%wgi(r,yw\.)dr} = (?%(7))(@) and Fp [fT/\fh 7, Xy )dr] (Zﬁ(ﬁ))(w).
Givenwe (/Vo UN uﬁih)crﬂ*, (5.4), (5.5) and PW{T: (W) >t} =1 from Part (2)
imply that (7%(&))(*) P,,[fTMgl 7, X A )dr] P [lw fT/\t gZ(T,YM.)dT]

—EPii[ftzgi(r,YM.)dr] and similarly that Ep: [ft (r, Xr/\ )dr] = (7%(7))(@)
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Hence,
631)  PrnePiox, @ (@) @), (Zp7) @), veednkr,

where NV, :=NoUN; UNs UN3 U ( U Ni ) EJVf(ft ). In particular, (5.6) holds for
P—null set N:=N,U{T#7(W }U({T )>AIAAL) NG (B(Q)). O
Proof of Theorem 5.1: We first show the measurability of the random variable
1{72%}?(7*7 X5 Y5 (T5), 25 (7))

for each P€P; x(y, 2) so that the right hand side of (5.7) is well-defined.

Let P€P;x(y,2) and simply denote 5 by 7. Like in Part (1a) of the proof of Propo-
sition 5.1, we still set Ay := {weﬁ X;s(@) #ft’x(*) for some s € [0, 0o }EJV (7t )
and let {K } be the FV' —predictable process such that N := {w e Q: K (W) #

Z% (@) for some s € [t,00) }GJ%(.FO"X ). Since X/ 4) =x][o and X\too)—K on
(N Y UN K)C, one can deduce that the path-valued random variable X~ A Q»—>Q
(.7: W UAN5(F, ) /P (S),,)—measurable.
Set 2:=|0, oo) x €y X §R x RO D. Let 7 be the [t, 00]—valued FW" % —stopping time
with P{T=7(W)}= 1and1et.,4*e]-'W N . € N5(Fe) be as in (6.28) and (6.31). For any
@€ A. NN, we know from (6.31) that ( (@), X3 (@), (Y5(7)) (@), (Zﬁ(ﬁ))(w)) eD.

By the measurability of X=x.,

\TJ(W) = 1{weﬁjuﬁ*}(t> X, Y, Z)

(6.32) e o) <7(w),fm.(w), V@) @), (Z5®)) (w)) €D, VYwel

isac (f WU ( )) / %(D)—measurable random variable, which induces a probability

measure P:=P o U~ (Q,%(Q)) Then W is further a(]—"W UANs(F, )/U(
N5 (%(D)))—measurable.

As the universally measurable function (¢',x',y',2")— V(t',x,y,2') is o(#(D)U
N3 (#(D)))/PB|—o0, ] —measurable by Theorem 4.1,

9

V(w):= 1{weﬂmﬁi}v(\i’(w))
6.33) = 1@@*@@?(7@),?%(w), Y5) @), (Zs() (w)), VoeQ

is o(fW U,/V ( ))/93 —00 oo] —measurable. We see from (6.28) that (71 NNA{T>
7’_\

is the FW"-Fo stoppmg time with P {T =7( }— 1.1t follows that

1{?(@) 27(@)}V(7(w) ) Yﬁ/\- (w)7 (?ﬁ(ﬁ)) (w)a (Zﬁ(ﬁ)) (w)) ’ weg
is U(]—%Wt UANG(2(R))) ] PB|—o0, 00]— measurable and the right hand side of (5.7) is thus
well-defined. ., B
For any [t,00)—valued F"" —stopping time ¢, we denote
T
R(Q)i= [ [0 Xen)dr+1goqym (T, X7,.)-
TAC
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(I) (sub-solution side) Fix P€P; «(y, z) and simply denote ¥ by 7

Let 7 be the [t, 0o]—valued FW"" —stopping time with P{T=7(W)} =1 and let A, €
.FW N.eNs (.7-" ) be as in (6.28) and (6.31). By (5.2), there is a N j - € A5 (FW ) such
that B [R(¥)|=Ep[R(Y }FW] w) for any weN; .. For any we A,N(N,UN )", a
NoCN.. (5.4), (5.5) and (6.31) imply that

Ep[R@)|F @) =Ep_[RA)|=Fp:_[1w. RE@)|=Ep:_[RF@))]

<V(7(@), X5n. @), (Vﬁ(ﬁ)) @), (Zp() @)).

Since 1752y =1 757, = 17, P—a.s. by (6.28) and since A, E}%W ', the tower prop-
erty renders that

Bp[1ram) V(3. X V() fm)}=Ef[Iﬂ(v,Ym.,?m,}@))}

ZEﬁ[lﬁ*Ef[Rﬁ)‘fVWtH:Eﬁ{E (12 RO)[F H Ep[Liom R()]-

It follows that E5[ R(t)] < Ep [ (> <ft (r YTA-)dT+V(77YWA-7?ﬁ(7)7Zﬁﬁ))) +
1{T<7}R(t)} . Letting P vary over P; x(y, 2) yields that

T
V(t,x,y.2)=_ sup  Ep|R(H)]<_ sup Eﬁ[l{T@J (/ fr, Xr/\~)d7"+7r(T7XT/\'))
PEP: x(y,2) PEP, «(y,2) PINJy

T = = = Z
Agpay ([ 10T )47 (35, X, 0 Vol0). Zp (7)) )

(IT) (super-solution side) Let P€7P; «(y, ) and simply denote % by 7. We shall show that
_ _ Y
V(t, X,Y, Z) ZEﬁ |:1{T<7}R(t) +1{TZV} (/ f(’l“, Xr/\.)d’l“
t

As ]-"tW; ={0,Q}, the [t, 00)—valued V' —stopping time 7 satisfies either {F=t}=0 or
{v>t}=q.
Suppose first that {7 =t}=Q: for any i €N, ﬁ( [fTAtgl 7, XA dr‘]-“t ]_
[ft gz T, XT‘/\ )dT‘] <y; and Zp [ft T‘ d ]:Zi.Then

Ep [ T B+ 1755 / FOr, Xon)dr+V (7, X5 vY?@)ai?@))ﬂ
=Ep[V(t, Xin, Yp(t), Zp(1) | <V (t.x,y,2).
Let us assume {7>¢} = in the rest of this proof and set Ny :={weQ: X (W) #
2 (@) for some s€|0, 00) } eﬂ/ﬁ(fio).

s

ILa) Define a random variable ' : € by Wﬁﬁ(w) =T (rvt)ny(@),w), ¥ (r,w)e
[0, 00) x Q, which is clearly ]-%W /% () —measurable.
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Set 2:=10, 00) x Q x Q, xRxRDD and pick up an arbitrary element w from Q. We
let 7 be the [t oo]—valued FW"7 —stopping time with P{T=7(W)}=1 and let A, GfVWt,
N.eNs ( ) be asin (6.28) and (6.31). Since (¢,x,y, z) €D, Theorem 3.1 and (6.31) show
that (t,w.x.3.2) €D and that (7(@). W' (@), X0 (@). (V5(7) (@). (Z5(7)) @)) €D
for any we A, NN.. Similarly to (6.32),

\I/(w) ::l{weﬁiuﬁ*}(tvwaxj Y, %)
N TV e T e (T N\ (e (B )
(635) "H-{we?l*mﬁz} (7((“‘})7 w ’Y(w)v 7/\.(00), (Yf(’)/)) (w)v (Zﬁ(’}/)) (w)> EDa
VweQ is U(]‘%W t UJ%(?;)) / %(D)—measurable, which induces a probability mea-
sure P:=P o ¥~! on (Q,%’(Q)) Then ¥ is further a(fW U A5(F, )/a(
N3(%(D))) —measurable.

ILb) Fix £€(0,1) through Part (ILe).
According to Jankov-von Neumann Theorem (Proposition 7.50 of [14]), Corollary 4.1 and
Theorem 4.1, there exists an analytically measurable function Q. : D»—>‘,]3( ) such that for

any (4,10, 5,9,3) €D, Q. (t,10,7,1,3) belongs to Pyo,c (1, 3) and satisfies

1 D V(t m7;7075)_87 1fv(£am7137073)<00a
636 Eq (g | RO)2 {1/5 if V(t,10,7,1,3) =00

As Q. is universally measurable, it is also o (2(D)U.4;5(%(D))) / (B (1) ) —measurable,

@f:zl{wefuﬁ }F"‘l{weﬁmﬁi}ae(q}(w))’ vweQ
is thus O'(]:W U</V )/%’( ( )) —measurable.

Given a [0, o0]— Valued %(Q)—measurable random variable ¢, Proposition 7.25 of [14]
implies that the mappin SQ—FE~ is & ) ) —measurable. The measurabilit
p pping B(0) > Q— Eq | ] y

of {@f}w g renders that

(6.37) the random variable 2 > w»—>Fﬁw [¢]iso (.7-"? ' UAs (ff,o)) —measurable.
Let we A, NN and denote tz:=7(w). We know from (6.35) that

638  @L=Q(1@)P o o x,. @ (PO @) (Zp) @),

By (D3) in Definition 3.1 of P; , there is a [tz, 00] —valued FW'“-Fo —stopping time 7_ with

(6.39) Q- ({T=7,W)})=1
Set O = {w eQ: (W, X,)(@)=(W.", X,)(@), Vs€[0,7@)] } and B :={w' €
W(@)=W,(@), [mw] Xs(@)=Xs(@), Vs€(0,7(® )]} Since 0y 5 {@' € 0
W( =0, VsG[O t] Wo(@)=We(@), Vs (t,7(@)); Xo(@) =X @), Vs€[0,7@)]}
CWWJ,We see from (6.38) that
(6.40) Q2(25)=1, andthus Q- (W%, )=0Q:(E-.)=1.

Let Ac %(Q). We claim that
(6.41) Q(ANA) =14, (A), VAEF, VoeANN;.
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To see this, we take 167;. Letw; € ANA, ﬁﬁi and set s1:=7%(tw ). Since AN{F<s1} is

—=t . L
an F, —measurable set including w1, one can deduce that

B =@ €W, (@) =W (@), Yrelt, si); X (@) =X, (@1), Vre[0,s1]}

(6.42) is also contained in AN{7<s1}.
By (6.40), Q~" (A)=1 and thus Q" (ANA) Q> (A)=1 = GX}@? (A). We next let wa €
ZCHZ NN and set 52 =7(ws). As A°N{F<s9} is an 7;—measurable set including
Wy, Be o, ={W €Q: W,(@) =W, (@2), Vr e[t s); X (@) =X (@2), Vre[0,50]} is also
1ncluded in A°N{F<s2}. We correspondingly have Q.°(A%)=1 and thus Q. (ANA)=0=
1{@2 EX}Q(:Q (Z) o -

Consider a pasted probability measure P. €33 (2):
(6.43) P.(A):=P(AnA)+ [  Q(A)P(dw), YAcBQ).

weA.

In particular, taking A=) in (6.41) renders that
644)  P.(A)=P(ANA)+ / Laen Pld)=P(A) VAEE.,
weA

In the next three parts, we demonstrate that P, also belongs to Py x(y, 2), i.e., the proba-
bility class Py x(y, z) is stable under the pasting (6.43).

IL.c) We first show that P, is of fi,xﬂﬁf and thus satisfies (D1) and (D2) in Definition 3.1
of ft,x-

ILc.1) Set Qx :={X,=x(s), Vs€[0,t]}. By the proof of Proposition 5.1, Oy C Ny ={we
Q: X4(w) #yt’x(f) for some s € [0,00) } CN1 CN,. Given we A, NN CQx, one has
Xs(w)=x(s), Vs€[0,t] and thus Qf— C{we: X,(0)=X (w), Vs€[0,1]} =Qx. As
F(ﬁx) zP(N )=1, (6.40) implies that P. (QX) (A* ﬂQX) +fwelmﬁc 1-P(dw)=
P(A)+P(A)=1,ie, P.€P, .

IL.c.2) We need some technical preparation for checking P- fo :Letwe A.NN. i and set
a_ = (—W%(D),O) € R4t We define an Ftw—stopping time (o (@') :=inf {s€ [tm,00):
|(WE, X)) (@) —a_|>n}, @' €.

Given @ € €(R¥), define a C?(R4H!) function ¢_(w,z):= (w+W (@),
R4 Fori=0, 13 and @’ EWWE, 51?ce Dip 7(W (w/%YT(Q/))sz (f (W)— W (F(@w),w)
+W (F(w),w), X, (@) =De_(W,” (@), X, (@), Vre|tz,00), one has
645) (M, (0) =M, () @)= (M, ()~ (¢2) @), Yiz<n <rs<oo.

be the {}"K:aw} —adapted continuous process

Let {% ‘%%XM “ }se[o o) 5€[0,00)

that uniquely solves the following SDE on (2, %(1), Qa)

%S:Xy(w)—i—/ b(r,%w\.)dr—i—/ o(r, Zpp)dW,., s€[ts,00)
te ter
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with initial condition 2 s = X,(@), Vs € [0,tz]. By (6.38), Ny := {We: X (w)#£
?f(w’ ) for some s € [0,00) } € t/V—f (7#@) And there exists an Rl'—valued WV~ — pre-
dictable process {Kf}se[tmoo) such that NK ={w'eQ: KY() ;é% (w') for some s €
[tz,00) } Gf/’/@f(fovgm)-

Let (¢,n) (R N, (5,t)€Q>< and {(s;,0;)}_, € (QN[0,5]) x @(R*). Denote

i _ ~ ko — _
M (9):=M i (), s€[t,00) and set A= O (Wi o, Kiws,) T O) €F
(i) To verify Ep_ [(M:ft(@ —Mﬁ’:s (¢))1 3] =0, we first show that

—t.n
(6.46) E [1{7>t+5} ( t—i—t(SO) _Mt+5(¢)) 1ﬁ:| =0.

: _ ~ k
Since {7>1+s}NA={7>1t+s}0 ( O (W sy Xants0) (O )) € Fontere)
and Mf,\(tﬂ)( ) — Mg:(tﬁ)( )E}" FA(t4) C.T;, using (6.44) and applying (3.2) with

(0,¢1,¢o) =(0,7A(t45),7A(t+t)) yield that

Bp [ (20 10 (9) = F15o(0) 5]
(6.47) =Ep [(Mi At (© )_M%/\W\(Hﬁ)(‘p))1{7>t+5}02}:0'
And (6.41) implies that
Bp, | (M3 (0) =M. Lt sajna] =B, | (Mautern () =15 () Ligsssopnd
=Lp [171i (M%m) () _Mgn (90)) 1{7>t+s}mﬂ
(6.48) Jr/%A*l{v( )>t+5}1{weA} Q° [M%C(Ht)(@_M%n(@)]?(dw)'
Taking (a,¢;,C5)=(0,7, 7V (t+t)) in (3.2) renders that
Ep [ (Mw(m)(@)_Mgn(@)l{wws}mﬁ]
649 =Ep[1a (Mr s iuern(@) Mo ng(9) Ly 17| =0

Fixwe {7, >7}NA.NN; and set t_:=t5V(t+t). As to=7(@) <7, (@) <t+n, n_:=[t+
n—tg] €N. Using (3.2) with (¢,x, P,¢,n,0,(y, (5)= (tm, Xoa- (@), QF, ¢ gy 0z o, T A
(t+n)) yields that

__t il
0= E@f [Mfg/\(tg—s—nm)/\rm/\(t—&—n) (‘Pw) - MZ;/\(tg-l—nU)/\tw(SDw)}

ts
(6.50) =Eg [Mc - A<t+n><<p ) M (25|

Because @€ {w’ eﬁ' 7t } , an analogy to (6.42) shows that =
{WeQ: 7 @) > } Let :7@ Smce 1nf{s€ [t,00): |(W X)) (@) ‘>n} >

7L (W) >7(w), one has ‘(WS,XS)( )| <n, Vse[t,t] and thus
inf{s€[t, 00): | (W3, X,) @) >n}

=inf {5€[tz,00): [W(@)-W (7@),&), X,(@)) + (W5(@),0)|>n} =Co@).
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It follows that 7, (&) =, (@) A (t+n). Taking (r1,72) = (tz, 74 (@) At) in (6.45), we can
deduce from (5.4) that
¢

(3'()) (7 @) AF@ )V (t+1), @) — (M () @), @)

3 (¢) (7, @) A (@) v (t+0). ) - (M () (7@), )
(7@ ) = (M () (1)
) (G@)A () Ay, @) = (M7 (o)) (1. D).
As (7>} efimcﬁ, (6.41), (6.40), and (6.50) then imply that

B [ M50 11 (9) = M5 ()] = Ege [t sy (M ey (9) = M5 ()]

—t
=Lz @)>7@) Ege [ Mas aiavieo) (0) ~ M5 (9)]

—tw ——te — 7 ~ R
=1l @)>v@) Ege [Mzg/\(t-‘rn)/\ti((pw) *Mta(é%)} =0, VweA.nN..
t,n ——t,n

So [Lea Ls@)>trst L ge Poe [ M=y 140y () — M5 ()] P(dg) =0, which together with
(6.47)—(6.49) leads to (6.46).

(i) If 5=0, as {7>t} =0, (6.46) directly gives E5_[( My, (p)—M;" ()1 1] =0.

Next, let > 0. In this case, we can assume with loss of generality that 0 =51 <--- <
se=5 with k>2. As A e 7YY C =, one has AN {7<t+s}eFy,,. Applying (3.2) with
(a,(y,C5)=(0,t+s5,t+1) yields that

—t, —t,
Ep1armerse) (Mri(o) = Mita(9) 15]
—t —t
(6.51) =bp [1ﬁjm{§§t+s} ( M?;/\(tﬂ)(@)_M?;/\(Hs)(@)) 1E] =0.
Fixi€{l,---,k—1} and fix we {7, >7 0 {t+s; <F<t+si41 }NANN. Since W%@C
= -1 =t .
{F>t+s;} by (5.4), A;:= m (WWt )0 XFA(ttsy))  (Of) €F5 satisfies

(6.52) W,

it ~ —1 it~
7wl (J.Ql (Wt+s]- J Xt+sj) (Oj)> :WW’EDA,‘.

Also, (5.4) shows that W= ; C {7<t+s} and thus W= {7, <7} C {7, <t+s}. By (6.40),
—t,
E [1{7" <"/}( t+t(90)_Mt—&T-Ls(<P))1A\]
=t =t
(6.53) SE@f[l{ﬂgtH} (MF;/\(tth)(SO) =M%t p (115 (@))12] =0.
= k —t = -1 .
Define A7 := N (Wi, Kf,,) (Oj)€ ]:t+s with Ojg:={r+a;:r€0;} €

Jj=i+1
PRI Since t="5(w) <7, (W) <t+n and since t; <t+s;41 <t-+8, we set n_ as in Step (i)

and using (3.2) with (t,x, P,,n,a,(y, ()= (tw,Xm.(w),Qf, R %,t+n/\5,t+n/\t)
renders that

OZEQEUKMQ‘ /\(t7+n7)/\(t+n/\r)(90 ) MC A(tz+n_)A (t+n/\5)( )) 1A“]

(6.54) :E KMZ /\(t+n/\t)( ) MZ /\(t+n/\s)( ))lAW]-
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Given je{i+1,---,k} and @ EW%EO (W; Uﬁfw() , we can derive that (W, X)(t+
sj,*’)eo if and only if (W', K®) (t+5;,&) = (W, (@)~ W (7(@), &), Xy, (@) =
(W X)(t4s5,0")+a_€0;z. So (6.52) implies that

655  ANWL NNy UNR) =ANAZNWE 0 (N UN) .

Let @’ e_f— Like in Step (i), we still have 7% (@) = (@') A (t+n) since 7(w) <7, ().
Taking (r1,72) = (74, (@ )A(t+s), 75 (@) A(t+t)) in (6.45) shows that (Ht(go)) (7L @A+
0, &) =(M(¢)) (74 @)A(t+9), &) = (7 (2,)) (Gal@ IA(tnme), @)~ (M (2,.)) (Go(@)
/\(t—i—n/\s),w’). Then we can deduce from (6.53), (6.55), (6.40), (6.41) and (6.54) that for
any We {t+s; < <t+si11}NANNG

t,n —t,n

Ege [(M1(0) =M 14(9)1 5] = Bge [Lzt oy (Mo (9) — M1 (9)) 1]
= Boe [11,0a5 L m 571 (Mt a0 (9) = Mo a(140) (9))]
tf
:1{we2i}1{ﬁ(w)>7(@)}E@f[(MC Atnnn) (Pe) = M2 A (tinns) (P )>1AW}:0

and thus [_ - Ltts, <3@)<t+sin} Eg® [(Mtft(cp) —Mt’fﬁ (¢))1 ;] P(dw)=0. Taking sum-
mation from ¢=1 through ¢=%k—1, we obtain from (6.51) that

t,n

Ep, [g<riay (M1 (0) =M 1o ()1 5) =Bp (15 s crsaynd (Mire(0) =M1 (0)) ]
- / L@z B [ (o) =TT, (9) 15] P(den)=0.
WE A <

Adding it to (6.46) yield Ep_[(My7 ()~ M4 (¢))15] =0.

Hence, P. Ef? . According to Part (2a) of the proof of Proposition 4.1, P. satisfies (D1)
and (D2) in Definition 3.1 of Py «.
IL.d) In this part, we show that P.{T=7.(WW) } =1 for some [t, oo]—valued F"":7* —stopping
time 7, i.e., P, satisfies (D3) in Definition 3.1 of P; x.

I1.d.1) For any s € [t,00), there is a [0, 1]—valued FV* —measurable random variable 95 on
Qo such that

(6.56) 95 (W (@) = Fp, [1{79}1 Terral} \J—;Wt} @), Voel.

Since W' is a Brownian motion under P by Part (II c), applying Lemma A.1 with {g=t,

(4, F1, P, BY) = (Q B(Q), P W) (g, Fo, Py, B?) = (Qo,%(ﬁo),Po,W) and =W
yields that {95(W)} €100 15 N F"' —adapted process and that Ep, [0°] =Ep [05(W)]=

Ep. [I{WSS}l{TeW,s]}] is right-continuous in s € [t,00). As F"W" is a right-continuous

complete filtration, the process {5 }sct,00) admits a [0, 1]—valued FW' " _adapted cadlag

modification {52} Define a [t, oo]—valued F* %% —stopping time by

s€[t,00)"
(6.57) Te(wo) :=inf {s€[t, 00) )=1}.

As Wt is also a Brownian motion under P, by Part (I.c), using Lemma A.1 with ¢y =t,

(Q, F1, P1, BY) = (2, B(Q), P., W), (Qg,]-"2,P2,B2) (Q, B(), Po, W) and & =T
implies that 7(W) and 7.(W) are [t, co]—valued FV.P = —stopping times. Then

e =T (W)L iz <qy + (e (W)V) Lizamy >y
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is also a [t, 0o]—valued FW P —stopping time. According to Lemma A.4, there exists two
[t, 00]—valued %(Q2)—measurable random variables £ and &, such that
(6.58)  both {7(W)#E} and {T.(W)#E.} belong to A5(FL YA (FX).

We can also update (6.28) to:
(6.59) (FOV) 27} A4 € N (F ) tis (F).
Since Q. (A N{T=¢}) = 1 eAc}Qf{T:E} =0, Yoe A.NN. by (6.41), one has

Z:-(.A*ﬁ{T—g}) ?(Z N{T=¢}). It follows from (6.59), (6.58) and P{T=7(W)} =1
that

P (AT =7.}) =P ({T(W) <7} {T=7c}) =P ({7 (W) <7}y {T=7(W)})
(6.60) =P. (AN {T=8})=P(An{T=¢E})=P(A;n{T=7(W)}) =P (A).
I1.d.2) We next show that P, (ﬂ*ﬂ{T 7:})=P(A,) and thus P.{T=7.}=1.

As {T-(W)#£E e tp (]:W ), there exists Ag 6.7:W C A(Q) such that {T(W) #
Zg} ng and Ps(Ag) =0. By (6.37), the random variable w&—)Q?(ZZ) is U(J%Wt U
(o) ) ~measurable. Since 0< [ QF (A7) P(dw) < P (Ag) =0, we can find Ng €
JVF(?;) such that
(6.61) Q2 (A7) =0 and thus Q {7 (W)#E.} =0, Vwe AN (NE)".

Let s€Q N [t, 00) and pick a countable Pi-system {O; }j <y that generates F7' . We also
letjeNand Ac FY' As A, NAN{7 < s} FIV itholds P-—ass. that 13 5. U5(W) =

lz*ﬁZﬁ@ﬂ{WSS}E [ {Tel, s]}|]: ] [IA NANO, 1{7<8}1{Te[7 s]}‘}— } Then (6.41)
and (6.56) imply that
/ 1{w€A mA}E [1 ﬂE(W)] P(dw)= [1,4 NANO; 196(W)]

=LEp, [EE [11 nano, Lr<silTeps,) \fsW} ] =Ep_[12.naro, Lt LTepm )
Z/w Lea.nayPae 1o, Lig<s L mep.y) P(d@)-
So FWV' Uﬂ/f(,%’ (Q)) is contained in the Lambda-system

K= {Ac 5(@): / ey B 1, 05 (W) Pd)

— 4

- Lgea.nayPge 1o, 1i<s L me.y) P(d) }
As th U.A5(2(Q)) is closed under intersection, Dynkin’s Pi-Lambda Theorem shows
that a(fW U (,%’( ))) CASJ, i.e., for any ZGJ(FVWt UJVp(%’(ﬁ)))

/ Vigea.nny For (1o, 95(W)| P(dw)

(662) :/GQ {UJGA ﬂA}E [1 1{V<S}1{T6[7 s}}}ﬁ(ﬁ)
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Since 15 U5 (W) and 15, Li5<sy ey oy are %(Q)—measurable, we see from (6.37)
that the random variables Q 5 @ Ez [10 V5(W)] and 2 3 W By [10 1iy<s)Liepsa)
are a(]-"W Uf/Vf(]-" )) —measurable. Letting A vary over J(J:W Ug/l/f(]-' )) in (6.62)
yleldS that 1{ EA }E ] 1{0.)6./4 }E [1 1{'Y<5}1{T6[’y S]}] fOI‘ all U.)EQ ex-

cept on some N s, ( ) It then follows from (6.39) that

(6.63) Eg= [15,95(W [1 A<y liz e, L Vo e ANN.N(V,)".

By Lemma A.1, N —w! ({19875195}) belongs to A5 (F F ). An analogy to (6.61) gives
Noo€EN (.7-" ) such that Q; (ﬂ) 0 for any we AN (Nso)c.
SetN*.:N*U< U U/\/ >U./\/'£€JV(]-" ). We fix @€ AN (N7)" and let

s€QN[t,00) 7=0

seQnNlt, c0).
e When s <tz Since (6.63), (5.4) and (6.40) show that 5 [1 196(W)] _E@Ez[lw%ila
1y <al (7. (W)elts S}}] =0 for any j € N, Dynkin’s P1 Lambda Theorem implies that
Ege [1z95(W)] =0 for any & € F] W' Letting & vary over 7V reaches that 0 (W(@))=0
for all @’ € except on some ‘31571 €Ngm (fng ).
e When s >tg5: Applying Lemma A.1 with #p =tg, (Q1, Fy1, P, Bll: (ﬁ,%’(ﬁ),@:},W),
(QQ,J:Q,PQ,B2) (Q0,B(Q), Py, W) and =W yields that ? (W) is a [tg, oo]—valued
FVe stopplng time and thus {7‘ [7/\5 S } Efs s . By Problem 2.7.3 of
[36], there is A~ € FV'" such that 9?872 =4, A7 (W) e FAs,s]} e%m(fztw).
Then we see from (6.63) that E@f[l@ﬁi(wﬂ = E@f [la1{7§3}1{%(W)€WAS7S]}} =

o [ A<l } for any j €N, and we know from Dynkin’s Pi-Lambda Theorem that

w[lgﬂi )| = [151{7<s}1 ] for any EE}"SWt. As f?tg:a(WT ;7€ [tw, 8]) =
o( Wt S [tw, ]) CO‘(W relts)) = ]—"Wt letting £ run over FW renders that
05 (W( ) =1 )<S}1{*’6A ) for all &’ €Q) except on some ‘ﬁs 3€JV (]:W ).

c —~ \C —~ —~ \C
Lt*’eWWm< U W)m( U ﬁ‘”)m( U ﬁ“uﬁ“’)m
et 7w s€QN[t,o0)  ° seQrtts) ot s€QMtm,00) 2 3

{7-(W)#&_}. The above analysis and (5.4) show that

(W @) =05 (W@) =1z i 6«4?}:1{32'5?}1{?U(W(w/))e[7(w/)/\s,s]}

= 1{52ti}1{?f(W(w’))e[tg,s]}’ VseQNlt, o).

So the right-continuity of process ¥ gives that 795(W( ) =101 [2.( Jeltos] L
Vs€lt, ), and we can deduce from (6.57) that

E.(@) =7 (T (@) =int {s€t,00): (W (@) =1} =7,(W(@)) >t =7(@).
In particular, one has & (@') V(@) =7_ (W (@')), which together with (6.40), (6.61) and
}

(6.39) implies that 1 :Qw{fs vy =7 (W :Qg{gg\/ﬁzf}, Vwe AN (Ni)c Then
(6.59), (6.58) and (6.41) render that

P (An{T=7.})=P-({TW) =7} {T=7.}) =P-({7(W) 27} {T=1.(W)V7})
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~P(ANT=E)) = | QHT=Ev3)P(@)=P(L,).
weA,

Adding it to (6.60) yields P.{T =7.} =1. Moreover, applying Lemma A.2 (2) with
(Q,F, P,B):(Q,%’(Q) PE,W) and ®=TW, we can find a [t, oo] —valued FW"-7* —stopping
time 7. on €2 such that 7. =7.(W), P.—a.s. Hence, P. satisfies (D3) in Definition 3.1 of
ftx

ILe) Fix i €N. Since { [ g(r, e dr}se[too) and { [ hq(r, e )dr}
FW P

se[t are two

—adapted continuous processes, Lemma 2.4 of [62] assures two FV —predictable
s —=t,X ,__
selt,00) and{\I/ } suchthat/\/'gh —{wEQ D ( @)# [ g9i(r, Zn.(@))dr
or U, (@)# [ hi(r, 7 (@ ))dr for some s € [t, oo)} ec/Vf(]-"W ). By Remark 3.2 (1),
[ft g; (r, Xpa) V hi (1, X,p.)dr] <oo. So it holds for any w e except on some
Nghe/i/ (]:X) that [*g; (r, Xr/\( ))\/h (7, Xpp (W) dr < oc.
For any we A.NN NN N (N, hUNg h) since ﬁ%@c {WeQ: X, (w)=X,(w), Vse
[Oﬁ(w)] } (6.40) and (6.38) show that

processes {61 }

T @ T
(6.64) Eg| / 9i(r, Xon.)dr| = / i (X (@) dr+ By | / ( )gi(r,XM.)dr}
<L/ t < L/3@w

7@) —=t,x —i
/t 6i (r, Z(@)) dr+ (V7)) (@)

IN

:@(w)JrEP[/Tivgi(r,Xm.)dr‘fyt] @)
and srmrlarly that Eyz [ft i(r, Xrn )dr] = [fTA*h 7, Xpp.)dr ]-‘W ]( ).

Since A,, <I> E]:W and since 17 —1{T(W)>ﬁ/} 1{T>’Y}’ P—as. by (6.28), we can deduce
from the tower property that

T T .
[Pl e oyl Paam =gl (5 [t Xonir) |77

—Ep{lA*(/tvgi(rv%?X-)dﬂr/Tgi(r,Xm)dTﬂ_Ep{lA* /tTgi(r’XM')dr]

and thus EE[ ffgi( X )dr] Ep| f?gi (r,Xr.)dr] < y;. Analogously, we have
Ep. [ftT hi(r,Xon.)dr]=E [ hi(r,Xrn.)dr] =z;. Hence, P- belongs to Py x(y, z).

ILf) Let V be the function defined in (6.33) and set DY, := {we: V(@) =oo}={we
A NNV (¥ (@) =00} GU(FWWtU,/Vf(?t )) By Theorem 3.1, DY is also equal to {@w€
A NNV (T(@))=00}. As B[ [ f~(r, X )dr] < o0, there exists a N; € A (FX)
such that [ f~ (T,YM.(E))dr<oo for any weN.

Let e€(0,1). For any w € A, ﬂﬁiﬂﬁﬁ, an analogy to (6.64), (6.36) and Theorem 3.1

imply that

N @ B +(@)
Ege [R(1)] - /t 1 (1, Kon (@) dr -+ B i) | BE@))] 2 /t (. Koop (@) dr
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+1(ze(DYy )<} (V(W(W),Ym- @), (Yp(7)) (@), (Zp(7)) @)) —5) + él{wea‘;}-

Since P.€P; x(y, z) and since 12, =1pmsy = Lzsyy P—a.s. by (6.28),

_ _ _ v —
V(t,x,9,2)2 Bp [R(0)] = Bp| 13 R(t) + 15, /t F(r, X )dr]

(6.65) —s+§?({?27}mD<‘;).

To verify (6.34), we set ftf:: L7y (fjf(n Xop)dr+V (7, Xsp., Yﬁ(ﬁ)vjfﬁ)n +
o If P({T>~}NDY))=0,then V(t,x,y,2)> Ep [1 T RO+ 755, ( L f(r, Xn ) dr+

V(7. X531, Yp(i),fp(i)))] —¢ holds for any £€(0, 1). Letting e —0 gives (6.34).

o If P{T>7}NDY)>0 and Eﬁ[(ftﬁ)_] =00, then EF[T%] =—c0<V(t,x,y,2), s0
(6.34) holds automatically.
o If P({T>7} N DY) >0and E5[(T5) ] <oc, since Remark 3.2 (1) shows that

— 7 - I v RV 7.
Bp| 17 R0 172 (/t 7 (- Xon)dr 10V (7. X0 V(7). Z5(7) )|

:EP[_l(DXO)CIP_lDXC/t F(r, Xon ) dr =Lz sypy 7 (T, T/\.)}

gEP[(z;)—+/ F (1 Ko ) dr] —en <o,
t
we can deduce from (6.65) that for any € (0, 1)
V(t.x.0.2) =~ Ep| (Tp) "+ / £ (Ko )dr] +ea—e4 TP((T27)0DY).
t

Sending ¢ — 0 yields V(¢,x,y,2) =00, so (6.34) still holds. This completes the proof of
Theorem 5.1. U

APPENDIX

In this appendix, we list some technical lemmata needed to verify our main results, we
refer interested readers to our ArXiv version [12] for detailed proofs of these lemmata.

LEMMA A.1. Letto€[0,00). For i=1,2, let (2, F;, P;) be a probability space and let
Bi:{Bg}se[O,oo) be an R¥—valued continuous process on Q2 with B{=0 such that B :=
Bi—Bj,, s&[tg,00) is a Brownian motion on (8, F;, P;). Let ®: Q1+ Qg be a mapping
such that B2(®(w))=BL(w) for any (s,w) E[tg,00) x Uy, then (i) 1 (.7:;32) =F2' Vse
[t0, 00]; (i) @1 (N, (FZ™)) C N (FE'); Gid) @ (FL ) c FEP, Wselto, 0] and
(iv) Po® ' (A)=Py(A) for any Ac F2 .
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LEMMA A.2. Let (2, F,P) be a probability space and let t € [0,00). Let B =
{Bs}se(0,00) be an R —valued continuous process on 2 with By=0 such that B.:=By— By,
s€[t,00) is a Brownian motion on (2, F, P).

(I) For any [t, 00| —valued FWV" Yo —stopping time 7 on Q, 7(B) is an FB"F —stopping time
on (.

(2) Let ®: Qv Qg be a mapping such that WiH(®(w)) = Bi(w) for any (s,w) € [t,00) x
Q. For any [t,c0]—valued FB"F —stopping time T on Q, there exists a [t,o0]—valued
FWV'P _stopping time T on Qg such that T=7(®), P—a.s.

LEMMA A.3. Let X be a topological space and let ) be a Borel space. If f: X XY+
(—00,00] is a B(X)® HB(Y)—measurable function bounded from below, then ¢s(x, P):=

fye@ f(z,y)P(dy), (x,P)eXxB(Y) is @(%)@%’(‘B@)))—measumbla

LEMMA A4. Given t€[0,00), let T be a [t,00]—valued FWV' o —stopping time and

let B, be a subset of P(Q) such that W' is a Brownian motion under each PeP.
There is a [t,00]|—valued % (Y)—measurable random variable € such that {T(W )755} €

ﬂ J%(Fovgt). If 7 is a [t,00)—valued FV —stopping time, one can find AG]—'W such

Pep,
that {T(W)>7}AAe N No(FY )

Pey,

’U

LEMMA A5. Let t€[0,00) and PR (). For any (s,w) € [t,00) x Q, set Wtf =
{weq: W w)= Wa( ), Ya€lt,s]}. Then for any r€[t, ), Ve f{ACQO
N, EJVﬁ(]:OVg ) such that for any (s,w) € [t,7] x ), there exists A>¥ € FV" satisfying

1 — ot “~7C
I{W(w’)GA}_I{W(U’)GAS*W}’ Vi EW&EHNT.}.
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