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We analyze an optimal stopping problem with a series of inequality-type
and equality-type expectation constraints in a general non-Markovian frame-
work. We show that the optimal stopping problem with expectation con-
straints (OSEC) in an arbitrary probability setting is equivalent to the con-
strained problem in weak formulation (an optimization over joint laws of
stopping rules with Brownian motion and state dynamics on an enlarged
canonical space) and thus the OSEC value is independent of a specific prob-
abilistic setup. Using a martingale-problem formulation, we make an equiv-
alent characterization of the probability classes in weak formulation, which
implies that the OSEC value function is upper semi-analytic. Then we ex-
ploit a measurable selection argument to establish a dynamic programming
principle in weak formulation for the OSEC value function, in which the
conditional expected costs act as additional states for constraint levels at the
intermediate horizon.

1. Introduction. In this article, we study a continuous-time optimal stopping problem
with a series of inequality-type and equality-type expectation constraints in a general non-
Markovian framework.

Given a historical path x|[0,t], let the state of the game X t,x
· evolve according to some

SDE on a probability space (Q,F ,p) whose drift and diffusion coefficients depend on the
past trajectories of the solution. The player decides an exercise time τ to maximize her ex-
pected reward while being subject to a series of constraints: for i∈N, the expectation of
some accumulative cost

∫ τ
t gi(r,X

t,x
r∧·)dr should not overpass certain level yi and the expec-

tation of some other accumulative cost
∫ τ
t hi(r,X

t,x
r∧·)dr should exactly hit certain level zi.

This optimal stopping problem with expectation constraints (OSEC for short), or optimiza-
tion problem over constrained stopping times, has many applications in various economic,
engineering and financial areas such as travel problem with fuel constraint, evaluation of
American-type derivatives, quickest detection problem, etc.

Let V (t,x, y, z) denote the OSEC value with (y, z) :=
(
{yi},{zi}

)
. We aim to study the

measurability of this value function and establish an associated dynamic programming prin-
ciple (DPP) without imposing any continuity condition on reward and cost functions in time
and state variables. Inspired by [30] and [31], we embed the constrained stopping rule τ
together with the Brownian and state information into an enlarged canonical space Ω and re-
gard their joint distribution as a new type of controls. Then the optimization of the expected
reward over constrained stopping times transforms into a maximal expectation of reward
functional over a class Pt,x(y, z) of probability measures on Ω under which three canoni-
cal coordinates (W,X,T ) serve as Brownian motion, state process and constrained stopping
rules respectively.
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One of our achievements is to show that the two optimization problems are equivalent:
the value V (t,x, y, z) of OSEC in strong formulation (i.e., on Q) is equal to the value
V (t,x, y, z) of OSEC in weak formulation (i.e., over Ω). This result indicates that the OSEC
value is actually a robust value, independent of a specific probability model.

A dynamic programming principle of a stochastic optimization problem allows one to
maximize/minimize the problem stage by stage in a backward recursive way. It requires the
problem value function to be measurable so that one can do optimization at an intermediate
horizon first. To show the measurability of the OSEC value functions, we construct a Polish
space of stopping times (which is of independent interest) and exploit the martingale-problem
formulation of [63] to describe the probability class Pt,x(y, z) as a series of probabilistic tests
on stochastic behaviors of the canonical coordinates of Ω. Under such countable character-
ization, the set-valued mapping (t,x, y, z) 7→Pt,x(y, z) has Borel-measurable graph and the
OSEC value function V =V is thus upper semi-analytic in (t,x, y, z).

In the next step we establish a DPP for V in weak formulation, which takes conditional
expectations of the remaining costs as additional states for constraint levels at the intermedi-
ate horizon. For the subsolution side of this DPP, we use the regular conditional probability
distribution to indicate that the probability classes Pt,x(y, z), ∀ (t,x, y, z) are stable under
conditioning. For the supersolution side of the DPP, we employ a measurable selection theo-
rem in the analytic-set theory to paste a class of locally ε−optimal probability measures. By
the martingale-problem formulation again, the canonical coordinates (W,X) are still Brow-
nian motion and the state process under the pasted probability measure. Finally we make a
delicate analysis to show that the third canonical coordinate T serves as a constrained stop-
ping time under the pasted probability measure. To wit, the probability classes Pt,x(y, z)’s
are also stable under pasting (or concatenation).
Relevant Literature.

Since Arrow et al. [2] and Snell [58], the theory of (unconstrained) optimal stopping
has been plentifully developed over decades. Expositions of this theory are presented in
monographs [26, 57, 29, 37]. For the recent development of the optimal stopping under
model uncertainty/non-linear expectations and the closely related controller-stopper-games,
see [38, 39, 24, 27, 40, 55, 7, 8, 5, 23, 4, 28, 9, 47, 10, 11].

Kennedy [41] initiated the study of optimal stopping problem with expectation constraint.
The author used a Lagrange multiplier method to reformulate a discrete-time optimal stop-
ping problem with first-moment constraint as a minimax problem and showed that the optimal
value of the dual problem is equal to that of the primal problem. Since then, the Lagrangian
technique has been prevailing in research of OSEC (see e.g. [52, 42, 3, 66, 43, 65]) and
has been applied to various economic/financial problems such as Markov decision processes
with constrained stopping times [34, 33], mean-variance optimal control/stopping problem
[48, 49], quickest detection problem [50], etc.

Recently, Ankirchner et al. [1] and Miller [44] took different approaches to optimal stop-
ping problems for diffusion processes with expectation constraints by transforming them
to stochastic optimization problems with martingale controls. The former characterizes the
value function in terms of a Hamilton-Jacobi-Bellman equation and obtains a verification
theorem, while the latter embeds the optimal stopping problem with first-moment constraint
into a time-inconsistent (unconstrained) stopping problem. However, the authors only pos-
tulate dynamic programming principles for their corresponding problems. In contrast, we
rigorously prove in this article a dynamic programming principle for the optimal stopping
problem with expectation constraints.

In their study of a continuous-time stochastic optimization problem of controlled Markov
processes, El Karoui, Huu Nguyen and Jeanblanc-Picqué [30] regarded joint laws of state and
control processes as control rules on the product space of canonical state space and control
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space. Then they used a measurable selection theorem in the analytic-set theory to estab-
lish a DPP without assuming any regularity on the reward functional. Nutz & van Handel
[46] and Neufeld & Nutz [45] came up with a similar idea to address a superheging prob-
lem under volatility uncertainty. They modeled the “uncertainty" by path-dependent classes
of controlled-diffusion laws and explored the analytic measurability of these classes. Us-
ing the measurable selection techniques, the authors obtained DPP result in a form of time-
consistency of a sub-linear expectation and they thus established a duality formula for the
robust superhedging of measurable claims. The approach of [46, 45] was later extended to
derive DPPs of various non-Markovian control problems, see [53] for a dual formulation of
robust semi-static trading and its application to martingale optimal transportation and see [54]
for stochastic control of a class of nonlinear kernels and its relation to second-order backward
stochastic differential equations. Since the class of controlled-diffusion laws is naturally dif-
ferent from the class of stopping-time laws, the results of these works are not applicable to
our optimal stopping problem with expectation constraints.

In [32, 31], El Karoui and Tan utilized the measurable selection argument to attain the
DPP for a general stochastic control/stopping problem by embedding stopping times with
controlled diffusions into an enlarged canonical space in the spirit of [30]. However, the
probability class they considered in weak formulation is not suitable for optimal stopping
with expectation constraints, see our Remark 3.4 for details. In this paper, we make a more
accurate description of probability classes Pt,x(y, z) in which the third canonical coordinate
serves as some constrained stopping time. We construct a Polish space of stopping times and
use it to show the Borel measurability of the graph

[[
P
]]

. We also verify the stability of
probability classes Pt,x(y, z) under conditioning and concatenation so that we can exploit
measurable selection theorem to establish a DPP for the OSEC value function.

A closely related topic to our research is optimal stopping with constraint on the distribu-
tion of stopping times. Bayraktar and Miller [6] studied the problem of optimally stopping a
Brownian motion with the restriction that the distribution of the stopping time must equal a
given measure with finitely many atoms, and obtained a dynamic programming result which
relates each of the sequential optimal control problems. Källblad [35] used measure-valued
martingales to transform the distribution-constrained optimal stopping problem to a stochas-
tic control problem and derived a DPP by measurable selection arguments. From the per-
spective of optimal transport, Beiglböck et al. [13] gave a geometric interpretation of optimal
stopping times of a Brownian motion with distribution constraint.

As to the stochastic control problems with expectation constraints, Pfeiffer et al. [51] ob-
tained a duality result by a Lagrange relaxation approach and Yu et al. [25] used the mea-
surable selection argument to derive a DPP result. Moreover, for stochastic control problems
with state constraints, stochastic target problems with controlled losses and related geometric
DPP, see [18, 19, 21, 59, 60, 61, 22, 16, 20, 17].

The rest of the paper is organized as follows: Section 2 introduces the optimal stopping
problem with expectation constraints in a generic probabilistic setting. Section 3 shows that
the constrained optimal stopping problem can be equivalently embedded into an enlarged
canonical space: i.e., the OSEC in strong formulation has the same value as the OSEC in
weak formulation. In Section 4, we construct a Polish space of stopping times and use the
martingale-problem formulation to make a countable characterization of the probability class
in weak formulation, from which we deduce that the OSEC value function is upper semi-
analytic. Then in Section 5, we utilize a measurable selection argument to establish a dynamic
programming principle in weak formulation for the OSEC value function. We defer the proofs
of our results to Section 6 and put some technical lemmata in the appendix.

We close this section by a description of our notation and a review of the martingale-
problem formulation.
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1.1. Notation and Preliminaries. Throughout this paper, let us denote a+ :=a∨0 and
a− :=(−a)∨0 for any a∈R. We set Q+ :=Q∩ [0,∞), Q2,<

+ :=
{
(s, r)∈Q+×Q+ : s<r

}
and

set ℜ:=(−∞,∞]N as the product of countably many copies of (−∞,∞]. On T:=[0,∞] we
define a metric ρ+(t1, t2):=

∣∣arctan(t1)−arctan(t2)
∣∣, ∀ t1, t2∈T and consider the induced

topology by ρ+.
For a general topological space

(
X,T(X)

)
, we denote its Borel sigma-field by B(X) and

let P(X) be the set of all probability measures on
(
X,B(X)

)
. Recall that a topological space

X is called a Borel space if it is homeomorphic to a Borel subset of a complete separable
metric space.

Let n∈N. For any x∈Rn and δ∈ (0,∞), let Oδ(x) denote the open ball centered at
x with radius δ and let Oδ(x) be its closure. For any x, x̃∈Rn we denote the usual inner
product by x · x̃:=

∑n
i=1 xix̃i, and for any n×n−real matrices A, Ã we denote the Frobenius

inner product by A : Ã := trace
(
AÃT

)
, where ÃT is the transpose of Ã. Let

{
En
i

}
i∈N be

a countable subbase of the Euclidean topology T(Rn) on Rn. Then O(Rn) :=
{ n

∩
i=1

En
ki
:

{ki}ni=1⊂N
}
∪{∅,Rn} forms a countable base of T(Rn) and thus B(Rn)=σ

(
O(Rn)

)
. We

also set Ô(Rn):= ∪
k∈N

(
Q+×O(Rn)

)k. For any φ∈C2(Rn), letDφ be its gradient,D2φ be its

Hessian matrix and denoteD0φ:=φ. For i=1, · · · , n, define φi(x):=xi, ∀x=(x1, · · ·, xn)∈
Rn. We let C(Rn) be the collection of these coordinate functions and their products, i.e.,
C(Rn):={φi}ni=1∪{φiφj}ni,j=1.

Let (Ω,F , P ) be a generic probability space. For subsets A1,A2 of Ω, we denote
A1∆A2 := (A1∩Ac

2)∪ (A2∩Ac
1). For a random variable ξ on Ω with values in a mea-

surable space (Q,G), we say ξ is F/G−measurable if its induced sigma-field ξ−1(G) :=
{ξ−1(A) : ∀A∈G} is included in F . For a sub-sigma-field F of F , define NP (F) :={
N ⊂Ω: N ⊂A for some A∈F with P (A)=0

}
, which collects all P−null sets with re-

spect to F. For two sub-sigma-fields F1,F2 of F , we denote F1∨F2 :=σ(F1∪F2). Let
t∈ [0,∞). For a filtration F= {Fs}s∈[t,∞) of F , we set F∞ :=σ

(
∪

s∈[t,∞)
Fs

)
and refer

to filtration FP=
{
FP
s :=σ

(
Fs∪NP (F∞)

)}
s∈[t,∞)

as the P−augmentation of F. For a
process X = {Xs}s∈[t,∞) on Ω with values in a topological space, denote its raw filtra-
tion by FX =

{
FX
s :=σ(Xr; r∈ [t, s])

}
s∈[t,∞)

and denote the P−augmentation of FX by

FX,P=
{
FX,P
s :=σ

(
FX
s ∪NP (FX

∞)
)}

s∈[t,∞)
. We call X a continuous process if its paths are

all continuous. When the time variable s of X has complicated form, we may write X(s,ω)
as Xs(ω) for readability. By default, a Brownian motion {Bs}s∈[t,∞) on (Ω,F , P ) is with
respect to its raw filtration FB unless stated otherwise.

Fix d, l∈N. Let Ω0=
{
ω∈C([0,∞);Rd): ω(0)=0

}
be the space of all Rd−valued con-

tinuous paths starting from 0, which is a Polish space under the topology of locally uni-
form convergence. Let P0 be the Wiener measure on

(
Ω0,B(Ω0)

)
, under which the canon-

ical process W ={Ws}s∈[0,∞) of Ω0 is a d−dimensional standard Brownian motion. For
any t∈ [0,∞), W t

s :=Ws−Wt, s∈ [t,∞) is also a Brownian motion on
(
Ω0,B(Ω0), P0

)
.

Let Ω
X
=C([0,∞);Rl) be the space of all Rl−valued continuous paths endowed with the

topology of locally uniform convergence. The function l1(t,ω0):=ω0(t∧·) is continuous in
(t,ω0)∈[0,∞)×Ω0 while the function

l2(t,ωX
):=ω

X
(t∧·)(1.1)

is continuous in (t,ω
X
)∈[0,∞)×Ω

X
.
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Let b : (0,∞)×Ω
X
7→Rl and σ : (0,∞)×Ω

X
7→Rl×d be two Borel-measurable functions

such that for any t∈(0,∞) and any ω
X
, ω′

X
∈Ω

X∣∣b(t,ω
X
)−b(t,ω′

X
)
∣∣+∣∣σ(t,ω

X
)−σ(t,ω′

X
)
∣∣≤κ(t)∥∥ω

X
−ω′

X

∥∥
t

(1.2)

and
∫ t

0

(
|b(r,0)|2+|σ(r,0)|2

)
dr<∞,(1.3)

where κ: (0,∞) 7→(0,∞) is some non-decreasing function and
∥∥ω

X
−ω′

X

∥∥
t
:= sup

s∈[0,t]

∣∣ω
X
(s)−

ω′
X
(s)

∣∣. Under conditions (1.2) and (1.3), SDEs with coefficients (b, σ) are well-posed (see
e.g. Theorem V.12.1 of [56]):

PROPOSITION 1.1. Let (Ω,F , P ) be a probability space. Given t∈[0,∞), let {Bs}s∈[t,∞)

be a d−dimensional Brownian motion with respect to a right-continuous complete filtration
F={Fs}s∈[t,∞) on (Ω,F , P ). For any x∈Ω

X
, the SDE

Xs=x(t) +

∫ s

t
b(r,Xr∧·)dr+

∫ s

t
σ(r,Xr∧·)dBr, ∀s ∈ [t,∞)(1.4)

with initial condition X
∣∣
[0,t]

=x|[0,t] admits a unique strong solution Xt,x={Xt,x
s }s∈[0,∞)

on (Ω,F ,{Fs}s∈[t,∞), P )
(
i.e., Xt,x is an {Fs∨t}s∈[0,∞)− adapted continuous pro-

cess satisfying (1.4) and P
{
Xt,x

s = X̃t,x
s , ∀s∈ [0,∞)

}
= 1 if

{
X̃t,x

s

}
s∈[0,∞)

is another

{Fs∨t}s∈[0,∞)−adapted continuous process satisfying (1.4)
)
.

Let oXt,x = {oXt,x
s }s∈[0,∞) be the unique strong solution of (1.4) on (Ω,F , P ) =(

Ω0,B(Ω0), P0

)
with (B,F) =

(
W t,FW t,P0

)
and denote by Ho the collection of all

(−∞,∞]−valued Borel-measurable functions ϕ on (0,∞)×Ω
X

such that

EP0

[∫ ∞

t
ϕ−(r, oXt,x

r∧·)dr
]
<∞, ∀ (t,x)∈[0,∞)×Ω

X
.

Moreover, we take the conventions inf ∅:=∞, sup∅:=−∞ and (+∞)+(−∞)=−∞. In
particular, on a measure space (Ω,F ,m), one can define the integral

∫
Ω ξ dm :=

∫
Ω ξ

+ dm−∫
Ω ξ

− dm for any [−∞,∞]−valued F−measurable random variable ξ on Ω.

1.2. Review of Martingale-Problem Formulation of SDEs. In this subsection, we con-
sider a general measurable space (Ω,F). Let {Bs}s∈[0,∞) be an Rd−valued continuous pro-
cess on Ω with B0=0 and let X={Xs}s∈[0,∞) be an Rl−valued continuous process on Ω
such that (Bs,Xs) is F−measurable for each s∈[0,∞).

Let t∈ [0,∞). We set Bt
s :=Bs−Bt, ∀s∈ [t,∞) and define filtration Ft={F t

s}s∈[t,∞)

by F t
s :=FBt

s ∨FX
s =σ

(
Bt

r; r∈ [t, s]
)
∨σ(Xr; r∈ [0, s]), ∀s∈ [t,∞). For any φ∈C2(Rd+l),

define

M t
s(φ):=φ

(
Bt

s,Xs

)
−
∫ s

t
b
(
r,Xr∧·

)
·Dφ

(
Bt

r,Xr

)
dr− 1

2

∫ s

t
σ σT

(
r,Xr∧·

)
:D2φ(Bt

r,Xr)dr,

∀s ∈ [t,∞), where b(r,ω
X
) :=

(
0

b(r,ω
X
)

)
∈Rd+l, σ(r,ω

X
) :=

(
Id×d

σ(r,ω
X
)

)
∈R(d+l)×d,

∀ (r,ω
X
)∈(0,∞)×Ω

X
. Clearly,

{
M t

s(φ)
}
s∈[t,∞)

is an Ft−adapted continuous process. For

any n∈N and a∈Rd+l, set τ tn(a):=inf
{
s∈[t,∞): |(Bt

s,Xs)−a|≥n
}
∧(t+n), which is an

Ft−stopping time. In particular, we denote τ tn(0) by τ tn.
In virtue of [63], we have the following martingale-problem formulation of SDEs with

coefficients (b, σ) on Ω.
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PROPOSITION 1.2. Let (t,x)∈ [0,∞)×Ω
X

and let P be a probability measure on
(Ω,F) such that P

{
Xs=x(s), ∀s∈ [0, t]

}
=1. Then

{
M t

s∧τ t
n(a)

(φ)
}
s∈[t,∞)

is a bounded

Ft−adapted continuous process under P for any (φ,n,a)∈C2(Rd+l)×N×Rd+l and the
following statements are equivalent on (Ω,F , P ):
(i) The process Bt is a Brownian motion and P{Xs =Xt,x

s , ∀s ∈ [0,∞)} = 1, where{
Xt,x

s

}
s∈[0,∞)

is the unique
{
FBt,P
s∨t

}
s∈[0,∞)

−adapted continuous process solving SDE
(1.4).
(ii)

{
M t

s∧τ t
n(a)

(φ)
}
s∈[t,∞)

is a bounded Ft−martingale for any (φ,n,a)∈C2(Rd+l)×N×
Rd+l.
(iii)

{
M t

s∧τ t
n
(φ)

}
s∈[t,∞)

is a bounded Ft−martingale for any (φ,n)∈C(Rd+l)×N.

Under either of these situations, one clearly has P
{
Xt,x

s = oXt,x
s (B), ∀s∈ [0,∞)

}
=1

and EP

[ ∫∞
t ϕ−(r,Xt,x

r∧·)dr
]
=EP0

[ ∫∞
t ϕ−(r,oXt,x

r∧·)dr
]
<∞ for any ϕ∈Ho.

2. Optimal Stopping with Expectation Constraints. Let (Q,F ,p) be a probability
space equipped with a d−dimensional standard Brownian motion {Bs}s∈[0,∞).

Let t∈ [0,∞). We set Bt
s :=Bs−Bt, ∀s∈ [t,∞), which is also a Brownian motion on

(Q,F ,p). For any x∈Ω
X

, Proposition 1.1 shows that the SDE

Xs=x(t) +

∫ s

t
b(r,Xr∧·)dr+

∫ s

t
σ(r,Xr∧·)dBr, ∀s ∈ [t,∞)(2.1)

with initial condition X
∣∣
[0,t]

=x|[0,t] admits a unique strong solution X t,x=
{
X t,x
s

}
s∈[0,∞)

on
(
Q,F ,FBt,p,p

) (
i.e., X t,x is the unique

{
FBt,p
s∨t

}
s∈[0,∞)

−adapted continuous process

solving SDE (2.1)
)
. Let St collect all [t,∞]−valued FBt,p−stopping times.

Let f ∈Ho, {gi, hi}i∈N⊂Ho and let π : [0,∞)×Ω
X
7→(−∞,∞] be a Borel-measurable

function bounded from below by some cπ∈(−∞,0).
Given a historical path x|[0,t], the state of the game then evolves along process {X t,x

s }s∈[t,∞).
The player of the game need to select an exercise time τ∈St to cease the game, at which she
will receive an accumulative reward

∫ τ
t f

(
r,X t,x

r∧·
)
dr plus a terminal reward π

(
τ,X t,x

τ∧·
)

(both
random rewards can take negative values). The player intends to maximize the expectation
of her total wealth, but her choice τ is subject to a series of expectation constraints

Ep

[∫ τ

t
gi(r,X t,x

r∧·)dr
]
≤yi, Ep

[∫ τ

t
hi(r,X t,x

r∧·)dr
]
=zi, ∀ i∈N(2.2)

for some (y, z)=
(
{yi}i∈N,{zi}i∈N

)
∈ℜ×ℜ. One can view

∫ τ
t gi(r,X

t,x
r∧·)dr or

∫ τ
t hi(r,X

t,x
r∧·)dr

as certain accumulative costs. So the value of this optimal stopping problem with expectation
constraints (OSEC for short) is

V (t,x, y, z):= sup
τ∈St,x(y,z)

Ep

[∫ τ

t
f
(
r,X t,x

r∧·
)
dr+1{τ<∞}π

(
τ,X t,x

τ∧·
)]
,(2.3)

where St,x(y, z):=
{
τ∈St :Ep

[ ∫ τ
t gi(r,X

t,x
r∧·)dr

]
≤yi, Ep

[ ∫ τ
t hi(r,X

t,x
r∧·)dr

]
=zi, ∀ i∈N

}
.

REMARK 2.1. Let (t,x)∈[0,∞)×Ω
X

.
1) (finitely many constraints) For i∈N, the constraint Ep

[ ∫ τ
t gi(r,X

t,x
r∧·)dr

]
≤yi holds for

any τ ∈St if yi=∞, and the constraint Ep

[ ∫ τ
t hi(r,X

t,x
r∧·)dr

]
=zi holds for any τ ∈St if(

hi(·, ·), zi
)
=(0,0).

1a) If we take
(
yi, hi(·, ·), zi

)
=(∞,0,0), ∀ i∈N, there is no expectation constraint at all.
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1b) If one takes yi=∞, ∀ i≥2 and
(
hi(·, ·), zi

)
=(0,0), ∀ i∈N, (2.2) reduces to a single

constraint Ep

[ ∫ τ
t g1(r,X

t,x
r∧·)dr

]
≤y1. In addition, if y1≥0, then t∈St,x(y,0).

1c) If one takes yi =∞, ∀ i∈N and
(
hi(·, ·), zi

)
= (0,0), ∀ i≥ 2, (2.2) degenerates to

Ep

[ ∫ τ
t h1(r,X

t,x
r∧·)dr

]
=z1.

1d) If we take
(
yi, hi(·, ·), zi

)
=(∞,0,0), ∀ i≥ 2, (2.2) becomes a couple of constraints

Ep

[ ∫ τ
t g1(r,X

t,x
r∧·)dr

]
≤y1 and Ep

[ ∫ τ
t h1(r,X

t,x
r∧·)dr

]
=z1.

1e) If we take g2=−g1, y2≥−y1; yi=∞, ∀ i≥3 and
(
hi(·, ·), zi

)
=(0,0), ∀ i∈N, (2.2)

becomes a range constraint −y2≤Ep

[ ∫ τ
t g1(r,X

t,x
r∧·)dr

]
≤y1.

2) (moment constraints) Let i∈N, a∈(0,∞) and q∈ [1,∞). If gi(s,x)=aqsq−1, ∀ (s,x)∈
(0,∞)×Ω

X

(
resp. hi(s,x)=aqsq−1, ∀ (s,x)∈ (0,∞)×Ω

X

)
, then the expectation con-

straint Ep

[ ∫ τ
t gi(r,X

t,x
r∧·)dr

]
≤yi

(
resp. Ep

[ ∫ τ
t hi(r,X

t,x
r∧·)dr

]
=zi

)
specifies as a moment

constraint Ep

[
a(τ q−tq)

]
≤yi

(
resp. Ep

[
a(τ q−tq)

]
=zi

)
.

We would like to study the measurability of value function V and derive a dynamic
programming principle for V without imposing any continuity condition on functions
f,π, gi’s and hi’s in time and state variables. Inspired by [30], we will use mapping ω 7→(
B·(ω),X t,x

· (ω), τ(ω)
)

to transfer the OSEC onto an enlarged canonical space and regard
joint laws of (B·,X t,x

· , τ) as a new type of controls.

3. Weak Formulation. In this section, we study the optimal stopping problem with ex-
pectation constraints in a weak formulation or over an enlarged canonical space

Ω:=Ω0×Ω
X
×T.

Clearly, Ω is a Borel space under the product topology. Let P
(
Ω
)

be the space of all prob-
ability measures on

(
Ω,B(Ω)

)
equipped with the topology of weak convergence, which is

also a Borel space (see e.g. Corollary 7.25.1 of [14]). For any P ∈P
(
Ω
)
, set BP (Ω) :=

σ
(
B(Ω)∪NP (B(Ω))

)
. We define the canonical coordinates on Ω by

Ws(ω):=ω0(s), Xs(ω):=ωX
(s), s∈[0,∞) and T (ω):=t, ∀ω=

(
ω0, ωX

, t
)
∈Ω,

in which one can regard W as a canonical coordinate for Brownian motion, X as a canonical
coordinate for the state process, and T as a canonical coordinate for stopping rules. Given
t∈[0,∞), we also set W t

s :=Ws−Wt, ∀s∈[t,∞).
The weak formulation of the OSEC relies on the following probability classes of P

(
Ω
)
.

DEFINITION 3.1. For any (t,x)∈[0,∞)×Ω
X

, let Pt,x be the collection of all probability
measures P ∈P

(
Ω
)

satisfying:
(D1) The process W t is a d−dimensional Brownian motion on

(
Ω,B(Ω), P

)
.

(D2) P
{
Xs=X

t,x
s , ∀s∈[0,∞)

}
=1, where

{
X

t,x
s

}
s∈[0,∞)

is an
{
FW

t
,P

s∨t
}
s∈[0,∞)

−adapted

continuous process that uniquely solves the following SDE on
(
Ω,B

(
Ω
)
, P

)
:

X s = x(t) +

∫ s

t
b
(
r,X r∧·

)
dr+

∫ s

t
σ
(
r,X r∧·

)
dWr, ∀s∈[t,∞)(3.1)

with initial condition X
∣∣
[0,t]

=x
∣∣
[0,t]

.

(D3) There exists a [t,∞]−valued FW t,P0−stopping time τ̂ on Ω0 such that P
{
T= τ̂(W )

}
=

1.
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Let t∈ [0,∞). For any s ∈ [t,∞), define F t
s :=FW

t

s ∨FX
s =σ

(
W

t
r ; r∈ [t, s]

)
∨σ

(
Xr; r∈

[0, s]
)
, which is countably generated by{

X
−1
r (O): r∈Q∩[0, t],O∈O(Rl)

}
∪
{
(W

t
r,Xr)

−1

(O′): r∈Q∩(t, s],O′∈O(Rd+l)
}
.

We denote the filtration
{
F t

s

}
s∈[t,∞)

by F
t. For any (φ,n,a)∈C2(Rd+l)×N×Rd+l,

M
t
s(φ):=φ

(
W

t
s,Xs

)
−
∫ s

t
b
(
r,Xr∧·

)
·Dφ

(
W

t
r ,Xr

)
dr− 1

2

∫ s

t
σ σT

(
r,Xr∧·

)
:D2φ(W

t
r ,Xr)dr,

∀s∈[t,∞) is an F
t−adapted continuous process and

τ tn(a):=inf
{
s∈[t,∞):

∣∣(W t
s,Xs)−a

∣∣≥n}∧(t+n)
is an F

t−stopping time. We will simply denote τ tn(0) by τ tn.
Let us also define a shifted canonical process on Ω by W

t
s(ω) :=W t+s(ω)−W t(ω)=

W
t
t+s(ω), ∀ (s, ω)∈ [0,∞)×Ω.

(
Note: the subscript s∈ [0,∞) of W

t
is the relative time

after t while the subscript s∈[t,∞) of W t is the real time.
)

According to the martingale-problem formulation of SDEs (Proposition 1.2), we have an
alternative description of the probability class Pt,x:

REMARK 3.1. Let (t,x)∈[0,∞)×Ω
X

. In Definition 3.1 of Pt,x, (D1) and (D2) is equiv-
alent to
(D1 ′) P{Xs=x(s), ∀s∈[0, t]}=1 and

{
M

t
s∧τ t

n
(φ)

}
s∈[t,∞)

is a bounded
(
F
t
, P

)
−martingale

for any (φ,n)∈C(Rd+l)×N,
while (D3) is equivalent to

(D3 ′) There exists a [0,∞]−valued FW,P0−stopping time τ̈ on Ω0 such that P
{
T = t+

τ̈
(
W

t)}
=1.

REMARK 3.2. Let (t,x)∈ [0,∞)×Ω
X

and let P ∈P(Ω) satisfy (D1) and (D2) of Defi-
nition 3.1.
(1) For any ϕ∈Ho, Proposition 1.2 shows that

EP

[∫ ∞

t
ϕ−(r,Xr∧·)dr

]
=EP

[∫ ∞

t
ϕ−

(
r,X

t,x
r∧·

)
dr
]
<∞.

(2) Let (φ,n,a)∈C2(Rd+l)×N×Rd+l. As
{
M

t
s∧τ t

n(a)
(φ)

}
s∈[t,∞)

is a bounded
(
F
t
, P

)
−

martingale, the optional sampling theorem implies that for any two [t,∞]−valued F
t−stopping

times ζ1, ζ2 with ζ1≤ζ2, P−a.s.,

EP

[(
M

t
ζ2∧τ t

n(a)
(φ)−M t

ζ1∧τ t
n(a)

(φ)
)
1A

]
(3.2)

=EP

[
EP

[
M

t
ζ2∧τ t

n(a)
(φ)−M t

ζ1∧τ t
n(a)

(φ)
∣∣∣F t

ζ1

]
1A

]
=0, ∀A∈F t

ζ1
.

Let (t,x)∈[0,∞)×Ω
X

, (y, z)=
(
{yi}i∈N,{zi}i∈N

)
∈ℜ×ℜ and set

R(t):=

∫ T

T∧t
f(r,Xr∧·)dr+1{T<∞}π

(
T ,XT∧·

)
.
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Given a historical state path x|[0,t], the value of the optimal stopping problem with expecta-
tion constraints

EP

[∫ T

t
gi(r,Xr∧·)dr

]
≤yi, EP

[∫ T

t
hi(r,Xr∧·)dr

]
=zi, ∀ i∈N(3.3)

in weak formulation is

V (t,x, y, z):= sup
P∈Pt,x(y,z)

EP

[
R(t)

]
= sup

P∈Pt,x(y,z)

EP

[∫ T

t
f(r,Xr∧·)dr+1{T<∞}π

(
T ,XT∧·

)]
,

where Pt,x(y, z):=
{
P ∈Pt,x :EP

[ ∫ T
t gi(r,Xr∧·)dr

]
≤yi, EP

[ ∫ T
t hi(r,Xr∧·)dr

]
=zi, ∀ i∈

N
}

. We will simply call V (t,x, y, z) the weak value of the optimal stopping problem

with expectation constraints. In case Pt,x(y, z)=∅, V (t,x, y, z)=−∞ by the convention
sup∅:=−∞.

We can consider another weak value function of the OSEC: Let w ∈Ω0 and define
Pt,w,x :=

{
P ∈Pt,x : P

{
Ws=w(s), ∀s∈ [0, t]

}
=1

}
as the subclass of Pt,x given the his-

torical Brownian path w|[0,t]. The weak value of the optimal stopping problem with expec-
tation constraints (3.3) given (w,x)

∣∣
[0,t]

is V (t,w,x, y, z):= sup
P∈Pt,w,x(y,z)

EP

[
R(t)

]
, where

Pt,w,x(y, z):=
{
P ∈Pt,x(y, z): P

{
Ws=w(s), ∀s∈[0, t]

}
=1

}
.

One of our main results (Theorem 3.1 below) exposes that the value function V (t,x, y, z)
in (2.3) coincides with the weak value function V (t,x, y, z), and is even equal to V (t,w,x, y, z).

THEOREM 3.1. Let (t,w,x, y, z) ∈ [0,∞)×Ω0 ×Ω
X
×ℜ×ℜ. Then V (t,x, y, z) =

V (t,x, y, z) = V (t,w,x, y, z), and St,x(y, z) ̸=∅⇔Pt,x(y, z) ̸=∅⇔Pt,w,x(y, z) ̸=∅.

Theorem 3.1 demonstrates that the value of the OSEC is independent of a specific prob-
abilistic setup and is also indifferent to the Brownian history. This result even allows us to
deal with the robust case:

REMARK 3.3. Let
{
(Qα,Fα,pα)

}
α∈A be a family of probability spaces, where A is a

countable or uncountable index set
(
e.g. one can consider a non-dominated class {pα}α∈A

of probability measures on a measurable space (Q,F)
)
.

Given α∈A, let Bα={Bα
s }s∈[0,∞) be a d−dimensional standard Brownian motion on

(Qα,Fα,pα). For any (t,x)∈ [0,∞)×Ω
X

, set Bα,t
s :=Bα

s −Bα
t , s∈ [t,∞) and let Xα,t,x={

Xα,t,x
s

}
s∈[0,∞)

be the unique
{
FBα,t,pα

s∨t
}
s∈[0,∞)

−adapted continuous process solving the
SDE

Xs=x(t) +

∫ s

t
b(r,Xr∧·)dr+

∫ s

t
σ(r,Xr∧·)dBα

r , ∀s ∈ [t,∞)

with initial condition X
∣∣
[0,t]

=x
∣∣
[0,t]

on
(
Qα,Fα,F

Bα,t,pα ,pα
)
.

Then we know from Theorem 3.1 that for any (t,x) ∈ [0,∞)× Ω
X

and (y, z) =(
{yi}i∈N,{zi}i∈N

)
∈ℜ×ℜ

V (t,x, y, z)=sup
α∈A

sup
τα∈Sα

t,x(y,z)
Epα

[∫ τα

t
f
(
r,Xα,t,x

r∧·
)
dr+1{τα<∞}π

(
τα,Xα,t,x

τα∧·
)]
,

where Sα
t,x(y, z) collects all [t,∞]−valued FBα,t,pα−stopping times τα satisfying

Epα

[∫ τα

t
gi
(
r,Xα,t,x

r∧·
)
dr
]
≤yi and Epα

[∫ τα

t
hi
(
r,Xα,t,x

r∧·
)
dr
]
=zi, ∀ i∈N.
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To wit, the weak value V (t,x, y, z) is also equal to the robust value of the OSEC under model
uncertainty.

The equivalence between strong and weak formulation of an (unconstrained) optimal stop-
ping problem was discussed in [31]. However, their argument may not be applicable to opti-
mal stopping with expectation constraints:

REMARK 3.4. When
(
yi, hi(·, ·), zi

)
=(∞,0,0), ∀ i∈N, the unconstrained version of

Theorem 3.1 states that for any (t,x)∈ [0,∞)×Ω
X

, V (t,x) := sup
τ∈St

Ep

[ ∫ τ
t f

(
r,X t,x

r∧·
)
dr+

1{τ<∞}π
(
τ,X t,x

τ∧·
)]

is equal to V (t,x):= sup
P∈Pt,x

EP

[
R(t)

]
. On the other hand, [31] showed

that for any (t,x)∈ [0,∞)×Ω
X

, V (t,x) equals V (t,x) := sup
P∈Pt,x

EP

[
R(t)

]
, where Pt,x

collects all P ∈P(Ω) satisfying (D1), (D2) of Definition 3.1 and “P
{
T≥t

}
=1" (We sum-

marize [31]’s result in our terms for an easy comparison with our work). As Pt,x⊂Pt,x, the
equality V (t,x)= sup

P∈Pt,x

EP

[
R(t)

]
= sup

P∈Pt,x

EP

[
R(t)

]
indicates that the probability classes

Pt,x’s are more accurate than Pt,x’s to describe the (unconstrained) optimal stopping prob-
lem in weak formulation.

The condition (D3) of Definition 3.1 is necessary for the expectation-constraint case.
Without it, the weak value V (t,x, y, z) := sup

P∈Pt,x(y,z)

EP

[
R(t)

] (
with Pt,x(y, z) :=

{
P ∈

Pt,x : EP

[ ∫ T
t gi(r,Xr∧·)dr

]
≤yi, EP

[ ∫ T
t hi(r,Xr∧·)dr

]
=zi, ∀ i∈N

})
may not be equal

to V (t,x, y, z) for the following reason:
In Proposition 4.3 of [31], the key to show V (t,x)≤V (t,x), or EP

[
R(t)

]
≤V (t,x) for a

given P ∈Pt,x, relies on transforming the hitting times of process
{
EP

[
1{T∈[t,s]}

∣∣FW
t
,P

∞
]}

s∈[t,∞)

to a member of St. More precisely, the so-called Property (K) assures an FW t,P0−adapted
càdlàg process ϑ̂· such that ϑ̂s(W )=EP

[
1{T∈[t,s]}

∣∣FW
t

s

]
=EP

[
1{T∈[t,s]}

∣∣FW
t
,P

∞
]
, P−a.s.

for any s∈ [t,∞). It follows that EP

[
1{T∈[t,s]}1{X t,x∈A}

∣∣FW
t
,P

∞
]
= 1{X t,x

· ∈A}ϑ̂s(W ) =∫ s
t 1{X t,x∈A}ϑ̂(dr,W ), P−a.s. for any (s,A)∈[t,∞)×B(Ω

X
), where X

t,x
=
{
X

t,x
s

}
s∈[0,∞)

is the unique solution of SDE (3.1). Let Φ be a nonnegative Borel-measurable function
on [0,∞)×Ω

X
. Then a standard approximation argument and the “change-of-variable"

formula yield that EP

[
Φ(T ,X)

∣∣FW
t
,P

∞
]
=

∫∞
t Φ(r,X)ϑ̂(dr,W ) =

∫ 1
0 Φ(ϱ(W,λ),X)dλ,

P−a.s., where ϱ(ω0, λ) := inf
{
s∈ [t,∞) : ϑ̂s(ω0)>λ

}
, ∀ (ω0, λ)∈Ω0× (0,1). Since the

joint P−distribution of
(
W,X

t,x)
is equal to the joint p−distribution of (B,X t,x),

EP

[
Φ(T ,X)

]
=

∫ 1

0
EP

[
Φ(ϱ(W,λ),X

t,x
)
]
dλ=

∫ 1

0
Ep

[
Φ(ϱ(B, λ),X t,x)

]
dλ.(3.4)

As τλ :=ϱ(B, λ)∈St for each λ∈(0,1), taking Φ to be the total reward function implies that

EP

[
R(t)

]
=

∫ 1

0
Ep

[∫ τλ

t
f
(
r,X t,x

r∧·
)
dr+1{τλ<∞}π

(
τλ,X t,x

τλ∧·
)]
dλ(3.5)

≤
∫ 1

0
V (t,x)dλ=V (t,x).
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However, this argument is not applicable to the expectation-constraint case: Given a
P ∈Pt,x(y, z), since τλ may not belong to St,x(y, z) for a.e. λ∈ (0,1), one can not get
EP

[
R(t)

]
≤V (t,x, y, z) like (3.5). Actually, for each λ∈(0,1), τλ is only of St,x(yλ, zλ)

with (yλ, zλ)=
(
{yiλ}i∈N,{ziλ}i∈N

)
, (yiλ, z

i
λ):=

(
Ep

[ ∫ τλ
t gi(r,X t,x

r∧·)dr
]
,Ep

[ ∫ τλ
t hi(r,X t,x

r∧·)dr
])

.
For i∈N, choosing accumulative cost functions for Φ in (3.4) renders that∫ 1

0
Ep

[∫ τλ

t
gi(r,X t,x

r∧·)dr
]
dλ=EP

[∫ T

t
gi(r,Xr∧·)dr

]
≤yi

and similarly
∫ 1
0 Ep

[ ∫ τλ
t hi(r,X t,x

r∧·)dr
]
dλ=zi, so V

(
t,x,{

∫ 1
0 yλdλ}i∈N,{

∫ 1
0 zλdλ}i∈N

)
≤

V (t,x, y, z). Then the attempt to showEP

[
R(t)

]
≤V (t,x, y, z) reduces to deriving a Jensen-

type inequality:∫ 1

0
V (t,x, yλ, zλ)dλ≤V

(
t,x,

{∫ 1

0
yλdλ

}
i∈N

,
{∫ 1

0
zλdλ

}
i∈N

)
.

But this does not hold since the value function V is not concave in level z of equality-type
expectation constraints.

4. The Measurability of OSEC Values. In this section, using the martingale-problem
formulation of SDEs, we characterize the probability class Pt,x by countably many stochas-
tic behaviors of the canonical coordinates (W,X,T ) of Ω. This will enable us to analyze
the measurability of value functions of the optimal stopping problem with expectation con-
straints.

Let S be the equivalence classes of all [0,∞]−valued FW,P0−stopping times on Ω0 in the
sense that τ1, τ2∈S are equivalent if P0{τ1=τ2}=1. We endow S with the metric

ρ
S
(τ1, τ2):=EP0

[
ρ+(τ1, τ2)

]
, ∀ τ1, τ2∈S.

LEMMA 4.1.
(
S, ρ

S

)
is a complete separable metric space, i.e., a Polish space.

For any τ∈S, we define its joint distribution with W under P0 by Γ(τ):=P0◦(W,τ)−1∈
P
(
Ω0×T

)
.

LEMMA 4.2. The mapping Γ: S 7→P
(
Ω0×T

)
is a continuous injection from S into

P
(
Ω0×T

)
.

We can use Remark 3.1 and Lemma 4.2 to decompose the probability class Pt,x as the
intersection of countable many action sets of processes (W,X,T ):

PROPOSITION 4.1. For any (t,x)∈ [0,∞)×Ω
X

, the probability class Pt,x is the inter-
section of the following three subsets of P

(
Ω
)
:

i) P1
t,x :=

{
P ∈P

(
Ω
)
: P{Xs=x(s), ∀s∈[0, t]}=1

}
.

ii) P2
t :=

{
P ∈ P

(
Ω
)
: EP

[(
M

t
τ t
n∧(t+r)(φ) −M

t
τ t
n∧(t+s)(φ)

) k∏
i=1

1{(W t

t+si
,Xt+si

)∈Oi}

]
=

0, ∀ (φ,n)∈C(Rd+l)×N, ∀ (s, r)∈Q2,<
+ , ∀{(si,Oi)}ki=1⊂

(
Q∩[0, s]

)
×O(Rd+l)

}
.

iii) P3
t :=

{
P ∈P

(
Ω
)
: P ◦(W t

, T−t)−1∈Γ(S)
}

.
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Based on the countable decomposition of the probability class Pt,x by Proposition 4.1, the
next proposition shows that the graph of probability classes

{
Pt,x

}
(t,x)∈[0,∞)×Ω

X

is a Borel

subset of [0,∞)×Ω
X
×P

(
Ω
)
, which is crucial for the measurability of the value functions

V =V .

LEMMA 4.3. The mapping Γ(t,P ):=P ◦
(
W

t
, T−t

)−1∈P
(
Ω0×T

)
, ∀ (t,P )∈[0,∞)×

P
(
Ω
)

is continuous.

PROPOSITION 4.2. The graph
〈〈
P
〉〉
:=

{(
t,x, P

)
∈[0,∞)×Ω

X
×P

(
Ω
)
: P ∈Pt,x

}
is a

Borel subset of [0,∞)×Ω
X
×P

(
Ω
)
.

Set D :=
{
(t,x, y, z)∈ [0,∞)×Ω

X
×ℜ×ℜ : Pt,x(y, z) ̸=∅

}
and D :=

{
(t,w,x, y, z)∈

[0,∞)×Ω0×Ω
X
×ℜ×ℜ: Pt,w,x(y, z) ̸=∅

}
.

COROLLARY 4.1. The graph
[[
P
]]
:=

{(
t,x, y, z,P

)
∈D×P

(
Ω
)
: P ∈Pt,x(y, z)

}
is

a Borel subset of D×P
(
Ω
)

and the graph
{{

P
}}

:=
{(
t,w,x, y, z,P

)
∈D×P

(
Ω
)
: P ∈

Pt,w,x(y, z)
}

is a Borel subset of D×P
(
Ω
)
.

By Corollary 4.1, the value function V is upper semi-analytic and is thus universally
measurable.

THEOREM 4.1. The value function V (t,x, y, z) is upper semi-analytic on D and the
value function V (t,w,x, y, z) is upper semi-analytic on D.

5. Dynamic Programming Principle for V . In this section, we explore a dynamic pro-
gramming principle (DPP) for the value function V in weak formulation, which takes the
conditional expected integrals of constraint functions as additional states.

Given t∈ [0,∞), let γ be a [t,∞)−valued FW
t

−stopping time and let P ∈P
(
Ω
)
. Ac-

cording to Lemma 1.3.3 and Theorem 1.1.8 of [63], FW
t

γ is countably generated and there

is thus a family
{
P

t
γ,ω

}
ω∈Ω of probability measures in P

(
Ω
)
, called the regular conditional

probability distribution (r.c.p.d.) of P with respect to FW
t

γ , such that

for any A∈B(Ω), the mapping ω 7→P
t
γ,ω

(
A
)

is FW
t

γ −measurable;(5.1)

for any (−∞,∞]−valued, BP (Ω)−measurable random variable ξ that is bounded(5.2)

from below under P , it holds for all ω∈Ω except on a N ξ∈NP

(
FW

t

γ

)
that ξ is

B
P

t

γ,ω
(Ω)−measurable and E

P
t

γ,ω

[
ξ
]
=EP

[
ξ
∣∣FW

t

γ

]
(ω);

for some N 0∈NP

(
FW

t

γ

)
, P t

γ,ω

(
A
)
=1{ω∈A}, ∀

(
ω,A

)
∈N c

0×FW
t

γ .(5.3)

Let ω∈Ω and set Wt
γ,ω :=

{
ω′∈Ω:W

t
r(ω

′)=W
t
r(ω), ∀ r∈ [t, γ(ω)]

}
. We know from

Galmarino’s test that

γ(ω′)=γ(ω), ∀ω′∈Wt
γ,ω,(5.4)

and W
t
γ,ω is thus FW

t

γ −measurable. Since ω∈Wt
γ,ω for any ω∈Ω, (5.3) shows that

P
t
γ,ω

(
W

t
γ,ω

)
=1{

ω∈Wt

γ,ω

}=1, ∀ω∈N c
0.(5.5)
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For any i∈N, define Y i
P (γ):=EP

[∫ T
T∧γ gi(r,Xr∧·)dr

∣∣∣FW
t

γ

]
and Zi

P (γ):=EP

[∫ T
T∧γ hi

(r,Xr∧·)dr
∣∣∣FW

t

γ

]
. So

(
YP (γ),ZP (γ)

)
:=

({
Y

i
P (γ)

}
i∈N,

{
Z

i
P (γ)

}
i∈N

)
is an ℜ×ℜ−valued

FW
t

γ −measurable random variable.

In terms of the r.c.p.d.
{
P

t
γ,ω

}
ω∈Ω, the probability class

{
Pt,x(y, z) : (t,x, y, z)∈D

}
is stable under conditioning as follows. It will play an important role in deriving the sub-
solution side of the DPP for V .

PROPOSITION 5.1. Given (t,x)∈[0,∞)×Ω
X

, let γ be a [t,∞)−valued FW
t

−stopping
time and let P ∈Pt,x. There exists a P−null set N such that

P
t
γ,ω∈Pγ(ω),Xγ∧·(ω)

((
YP (γ)

)
(ω),

(
ZP (γ)

)
(ω)

)
, ∀ω∈

{
T≥γ

}
∩N c

.(5.6)

Now, we are ready to present a dynamic programming principle in weak formulation for
the value function V , in which

(
YP (γ),ZP (γ)

)
act as additional states for constraint levels

at the intermediate horizon γ.

THEOREM 5.1. Given (t,x, y, z)∈D, let
{
γ
P

}
P∈Pt,x(y,z)

be a family of [t,∞)−valued

FW
t

−stopping times. Then

V (t,x, y, z)= sup
P∈Pt,x(y,z)

EP

[
1{T<γ

P
}

(∫ T

t
f(r,Xr∧·)dr+π

(
T ,XT∧·

))
(5.7)

+1{T≥γ
P
}

(∫ γ
P

t
f(r,Xr∧·)dr+V

(
γ
P
,Xγ

P
∧·, YP

(
γ
P

)
,ZP

(
γ
P

)))]
.

6. Proofs.

Proof of Proposition 1.2: 1) Set N :=
{
ω∈Ω:Xs(ω) ̸=x(s) for some s∈ [0, t]

}
∈NP (FX

t )

and let (φ,n,a)∈C2(Rd+l)×N×Rd+l. We denote cφn(a):= sup
|(w,x)|≤n+a

(∑2
i=0 |Diφ(w,x)|

)
+∣∣φ(0,x(t))∣∣<∞ and cnt,x(a):=

[
d/2+κ(t+n)(∥x∥t+n+a)+κ2(t+n)(∥x∥t+n+a)2

]
n+∫ t+n

t

(
|b(r,0)|+ |σ(r,0)|2

)
dr<∞. Given ω∈N c, since

∥∥Xr∧·(ω)
∥∥
r
= sup

r′∈[0,r]

∣∣Xr′(ω)
∣∣≤

∥x∥t∨(n+a), ∀ r∈
[
t, (τ tn(a))(ω)

]
, we can deduce from (1.2), (1.3) and Cauchy-Schwarz

inequality that

sup
s∈[t,(τ t

n(a))(ω)]

∣∣(M t
s(φ)

)
(ω)

∣∣≤ sup
s∈[t,(τ t

n(a))(ω)]

∣∣φ(Bt
s(ω),Xs(ω)

)∣∣(6.1)

+cφn(a)

∫ (τ t
n(a))(ω)

t

(∣∣b(r,Xr∧·(ω))
∣∣+1

2

(
d+

∣∣σ(r,Xr∧·(ω))
∣∣2))dr

≤cφn(a)+cφn(a)
∫ (τ t

n(a))(ω)

t

(
κ(r)

∥∥Xr∧·(ω)
∥∥
r
+|b(r,0)|+d/2

+κ2(r)
∥∥Xr∧·(ω)

∥∥2
r
+|σ(r,0)|2

)
dr≤cφn(a)(1+cnt,x(a)).

So
{
M t

s∧τ t
n(a)

(φ)
}
s∈[t,∞)

is a bounded Ft−adapted continuous process under P .

2) We next show that (i) implies (ii): Suppose that (i) holds and let (φ,n,a)∈C2(Rd+l)×
N×Rd+l. We simply denote Ξt,x

s :=(Bt
s,X

t,x
s ), ∀s∈[t,∞) and set τ t,xn (a):=inf

{
s∈[t,∞):
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|Ξt,x
s −a|≥n

}
∧(t+n), which is an FBt,P−stopping time. Applying Itô’s formula yields that

P−a.s.

M t,x
s (φ):=φ(Ξt,x

s )−
∫ s

t
b
(
r,Xt,x

r∧·
)
·Dφ(Ξt,x

r )dr− 1

2

∫ s

t
σ σT

(
r,Xt,x

r∧·
)
:D2φ(Ξt,x

r )dr

= φ
(
0,x(t)

)
+

∫ s

t
Dφ(Ξt,x

r )·σ
(
r,Xt,x

r∧·
)
dBr, s∈[t,∞).

For any ω∈Ω, an analogy to (6.1) shows that sup
s∈[t,(τ t,x

n (a))(ω)]

∣∣(M t,x
s (φ)

)
(ω)

∣∣≤cφn(a)(1+
cnt,x(a)) and

∫ (τ t,x
n (a))(ω)

t

∣∣Dφ(Ξt,x
r (ω)) ·σ(r,Xt,x

r∧·(ω))
∣∣2dr≤(cφn(a))2

[
d+2κ2(t+n)(∥x∥t+

n+a)2
]
n+2(cφn(a))2

∫ t+n
t |σ(r,0)|2dr<∞. So{

M t,x

s∧τ t,x
n (a)

(φ)
}
s∈[t,∞)

is a bounded FBt,P−martingale.(6.2)

Set Nt,x := {ω ∈Ω : Xs(ω) ̸=Xt,x
s (ω) for some s∈ [0,∞)} ∈NP

(
FBt,P
∞ ∨FX

∞
)
. For any

(s,ω)∈[0,∞)×N c
t,x,

Xt,x
s (ω)=Xs(ω),

(
M t,x

s∨t(φ)
)
(ω)=

(
M t

s∨t(φ)
)
(ω) and (τ t,xn (a))(ω)=(τ tn(a))(ω).(6.3)

Fix t1, t2∈ [t,∞) with t1<t2. Let
{
(si,Ei)

}m

i=1
⊂ [t, t1]×B(Rd) and

{
(rj ,Aj)

}k

j=1
⊂

[0, t1]×B(Rl). We can derive from (6.2) and (6.3) thatEP

[
1N c

t,x

(
M t

t2∧τ t
n(a)

(φ)−M t
t1∧τ t

n(a)
(φ)

)
∏m

i=1 1(Bt
si
)−1(Ei)

∏k
j=1 1X−1

rj (Aj)

]
=EP

[
1N c

t,x

(
M t,x

t2∧τ t,x
n (a)

(φ)−M t,x

t1∧τ t,x
n (a)

(φ)
)∏m

i=1 1(Bt
si
)−1(Ei)∏k

j=1 1(Xt,x
rj )−1(Aj)

]
=0. So the Lambda-system

Λ:=
{
A∈F :EP

[(
M t

t2∧τ t
n(a)

(φ)−M t
t1∧τ t

n(a)
(φ)

)
1A

]
=0

}
contains the Pi-system

{( m
∩
i=1

(Bt
si)

−1(Ei)
)
∩
( k

∩
j=1

X−1
rj (Aj)

)
:
{
(si,Ei)

}m

i=1
⊂ [t, t1]×

B(Rd),
{
(rj ,Aj)

}k

j=1
⊂[0, t1]×B(Rl)

}
, which generates F t

t1 . Dynkin’s Pi-Lambda Theo-

rem (see e.g Theorem 3.2 of [15]) renders F t
t1⊂Λ, i.e.,EP

[(
M t

t2∧τ t
n(a)

(φ)−M t
t1∧τ t

n(a)
(φ)

)
1A

]
=0, ∀A∈F t

t1 . Hence,
{
M t

s∧τ t
n(a)

(φ)
}
s∈[t,∞)

is a bounded Ft−martingale.

3) As C(Rd+l)⊂C2(Rd+l), (ii)⇒ (iii) is straightforward. It remains to show that (iii) gives
rise to (i).
3a) Let Ft,P =

{
F t,P
s

}
s∈[t,∞)

be the P−augmentation of Ft
(

i.e., F t,P
s :=σ(F t

s∪NP (F t
∞))

with F t
∞ :=σ

(
∪

s∈[t,∞)
F t
s

))
We define F t,P

s+ := ∩
ε>0

F t,P
s+ε, ∀s∈[t,∞) and set Gt,P =

{
Gt,P
s :=

F t,P
s+

}
s∈[t,∞)

.
Let i, j∈{1, · · ·, d}. We set ϕi(w,x):=wi and ϕij(w,x):=wiwj for anyw=(w1, · · ·,wd)∈

Rd and x∈Rl. Clearly, ϕi, ϕij∈C(Rd+l). One can calculate that M t
s(ϕi)=B

t,i
s , M t

s(ϕij)=

Bt,i
s B

t,j
s −δij(s−t), ∀s∈[t,∞), where Bt

s=
(
Bt,1

s , · · ·,Bt,d
s

)
and δij is the (i, j)−element of

the identity matrix Id×d.
Let n∈N. By (iii),

{
M t

s∧τ t
n
(ϕi)

}
s∈[t,∞)

and
{
M t

s∧τ t
n
(ϕij)

}
s∈[t,∞)

are bounded Ft−martingales

and are thus bounded Ft,P− martingales. The optional sampling theorem (e.g. Theorem
1.3.22 of [36]) implies that they are further Gt,P−martingales. Since lim

n→∞
↑ τ tn=∞, we see

that
{
M t

s(ϕi)=B
t,i
s

}
s∈[t,∞)

and
{
M t

s(ϕij)=B
t,i
s B

t,j
s −δij(s− t)

}
s∈[t,∞)

are Gt,P−local
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martingales. Lévy’s characterization theorem then yields that Bt is a Brownian motion with
respect to filtration Gt,P and is thus a Brownian motion with respect to filtration FBt

.
3b) We simply denote Ξs :=(Bt

s,Xs), βs :=b
(
s,Xs∧·

)
and αs :=σ σ

T
(
s,Xs∧·

)
, ∀s∈[t,∞).

Let i, j∈{1, · · ·, d+ l}. We set ψi( ) := i and ψij( ) := i j for any =
(

1, · · ·, d+l

)
∈

Rd+l. Similar to M t
· (ϕi) and M t

· (ϕij), the processes M t
s(ψi) = Ξ

(i)
s −

∫ s
t β

(i)
r dr and

M t
s(ψij)=Ξ

(i)
s Ξ

(j)
s −

∫ s
t β

(i)
r Ξ

(j)
r dr−

∫ s
t β

(j)
r Ξ

(i)
r dr−

∫ s
t (αr)ijdr, s∈ [t,∞) are Gt,P−local

martingales. Using the integration by parts formula, we obtain that P−a.s.

Ξ(i)
s Ξ(j)

s −M t
s(ψi)M

t
s(ψj)=M

t
s(ψi)

∫ s

t
β(j)r dr+M t

s(ψj)

∫ s

t
β(i)r dr+

∫ s

t
β(i)r dr ·

∫ s

t
β(j)r dr

=

∫ s

t
M t

r(ψi)β
(j)
r dr+

∫ s

t

(∫ r

t
β
(j)
r′ dr

′
)
dM t

r(ψi)+

∫ s

t
M t

r(ψj)β
(i)
r dr

+

∫ s

t

(∫ r

t
β
(i)
r′ dr

′
)
dM t

r(ψj) +

∫ s

t

(∫ r

t
β
(i)
r′ dr

′
)
β(j)r dr+

∫ s

t

(∫ r

t
β
(j)
r′ dr

′
)
β(i)r dr

=

∫ s

t

[
Ξ(i)
r β(j)r +Ξ(j)

r β(i)r

]
dr+

∫ s

t

(∫ r

t
β
(i)
r′ dr

′
)
dM t

r(ψi)+

∫ s

t

(∫ r

t
β
(j)
r′ dr

′
)
dM t

r(ψj),

∀s∈[t,∞). SoM t
s(ψi)M

t
s(ψj)−

∫ s
t (αr)ijdr=M

t
s(ψij)−

∫ s
t

(∫ r
t β

(i)
r′ dr

′)dM t
r(ψi)−

∫ s
t

(∫ r
t β

(j)
r′

dr′
)
dM t

r(ψj), s∈ [t,∞) is also an Gt,P−local martingale, which implies that the quadratic
variation of the Gt,P−local martingale M t

s :=
(
M t

s(ψ1), · · ·,M t
s(ψd+l)

)
=Ξs −

∫ s
t βrdr,

s∈[t,∞) is
〈
M t,M t

〉
s
=
∫ s
t αrdr, s∈[t,∞).

Let n∈N, a∈Rl and set Ha
s :=

(
−σT

(
s,Xs∧·

)
a

a

)
, ∀s∈(t,∞). The stochastic exponen-

tial of the Gt,P− martingale
{∫ τ t

n∧s
t Ha

r ·dM t
r

}
s∈[t,∞)

is

exp
{∫ τ t

n∧s

t
Ha

r ·dM t
r−

1

2

∫ τ t
n∧s

t
(Ha

r )
TαrHa

rdr
}
=exp

{∫ τ t
n∧s

t
Ha

r ·dΞr−
∫ τ t

n∧s

t
Ha

r ·βrdr
}

=exp

{
a·
(∫ τ t

n∧s

t
dXr−

∫ τ t
n∧s

t
σ
(
r,Xr∧·

)
dBr−

∫ τ t
n∧s

t
b
(
r,Xr∧·

)
dr
)}

, s∈[t,∞).

Letting a vary over Rl yields that P−a.s.,Xτ t
n∧s=x(t)+

∫ τ t
n∧s

t b
(
r,Xr∧·

)
dr+

∫ τ t
n∧s

t σ
(
r,Xr∧·

)
dBr , ∀s∈ [t,∞). Sending n→∞ then renders that P−a.s., Xs=x(t)+

∫ s
t b

(
r,Xr∧·

)
dr+∫ s

t σ
(
r,Xr∧·

)
dBr , ∀s∈ [t,∞). Viewing SDE (1.4) on

(
Ω,F ,Gt,P , P

)
, we know from

Proposition 1.1 that there is a unique
{
Gt,P
s∨t

}
s∈[0,∞)

−adapted continuous process satisfy-

ing (1.4). Hence, P{Xs=X
t,x
s , ∀s∈[0,∞)}=1. □

Proof of Theorem 3.1: Fix (t,w,x)∈ [0,∞)×Ω0×Ω
X

and (y, z)=
(
{yi}i∈N,{zi}i∈N

)
∈

ℜ×ℜ.
1) We first show that V (t,x, y, z)≤V (t,w,x, y, z): If St,x(y, z)= ∅, then V (t,x, y, z)=
−∞≤V (t,w,x, y, z). So we assume St,x(y, z) ̸=∅ and let τ ∈St,x(y, z). Define a process
Bt,w
s (ω):=w(s∧t)+Bt

s∨t(ω), ∀ (s,ω)∈[0,∞)×Q and define a mapping Ψ:Q7→Ω by

Ψ(ω):=
(
Bt,w(ω),X t,x(ω), τ(ω)

)
∈Ω, ∀ω∈Q.

It holds for any (s,ω)∈ [t,∞)×Q that W t
s(Ψ(ω))=W s(Ψ(ω))−W t(Ψ(ω))=Bt,w

s (ω)−
Bt,w
t (ω)=Bt

s(ω). Since X t,x=
{
X t,x
s

}
s∈[0,∞)

is an
{
FBt,p
s∨t

}
s∈[0,∞)

−adapted continuous
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process and since τ is an FBt,p−stopping time, we can deduce that the mapping Ψ is
FBt,p
∞

/
B(Ω)−measurable and is FBt,p

s

/
F t

s−measurable for any s∈[t,∞). Let PΨ∈P
(
Ω
)

be the probability measure induced by Ψ, i.e., PΨ

(
A
)
:=p

(
Ψ−1

(
A
))

, ∀A∈B(Ω).
Fix (φ,n)∈C(Rd+l)×N. We define an FBt,p−adapted continuous process Mt,x

s (φ) :=
φ
(
Bt
s,X

t,x
s

)
−
∫ s
t b

(
r,X t,x

r∧·
)
·Dφ

(
Bt
r,X

t,x
r

)
dr− 1

2

∫ s
t σ σ

T
(
r,X t,x

r∧·
)
:D2φ(Bt

r,X
t,x
r )dr, ∀s∈

[t,∞) and define an FBt,p−stopping time t,x
n := inf

{
s ∈ [t,∞) :

∣∣(Bt
s,X

t,x
s )

∣∣≥ n
}
∧

(t+ n). Applying Proposition 1.2 with (Ω,F , P,B,X) = (Q,F ,p,B,X t,x) yields that{
Mt,x

s∧ t,x
n
(φ)

}
s∈[t,∞)

is a bounded
(
FBt,p,p

)
−martingale.

Since PΨ

{
Xs=x(s), ∀s∈ [0, t]

}
=p

{
Xs(Ψ)=x(s), ∀s∈ [0, t]

}
=p

{
X t,x
s =x(s), ∀s∈

[0, t]
}
=1, using Proposition 1.2 with (Ω,F , P,B,X)=

(
Ω,B(Ω), PΨ,W ,X

)
shows that{

M
t
s∧τ t

n
(φ)

}
s∈[t,∞)

is a bounded F
t−adapted continuous process under PΨ. Given ω∈Q,

since W t
s

(
Ψ(ω)

)
=Bt

s(ω), ∀s∈[t,∞), we see that
(
M

t
s(φ)

)(
Ψ(ω)

)
=
(
Mt,x

s (φ)
)
(ω), ∀s∈

[t,∞) and τ tn
(
Ψ(ω)

)
= t,x

n (ω). Then(
M

t
s∧τ t

n
(φ)

)(
Ψ(ω)

)
=
(
M

t
(φ)

)(
s∧τ tn(Ψ(ω)),Ψ(ω)

)
=
(
M

t
(φ)

)(
s∧ t,x

n (ω),Ψ(ω)
)

=
(
Mt,x(φ)

)(
s∧ t,x

n (ω), ω
)
=
(
Mt,x

s∧ t,x
n
(φ)

)
(ω), ∀ (s,ω)∈[t,∞)×Q.(6.4)

Let t1, t2∈[t,∞) with t1<t2 and letA∈F t
t1 . As Ψ−1(A)∈FBt,p

t1 , the
(
FBt,p,p

)
−martingality

of
{
Mt,x

s∧ t,x
n
(φ)

}
s∈[t,∞)

and (6.4) imply that

EPΨ

[(
M

t
t2∧τ t

n
(φ)−M t

t1∧τ t
n
(φ)

)
1A

]
=Ep

[((
M

t
t2∧τ t

n
(φ)

)
(Ψ)−

(
M

t
t1∧τ t

n
(φ)

)
(Ψ)

)
1Ψ−1(A)

]
=Ep

[(
Mt,x

t2∧ t
n
(φ)−Mt,x

t1∧ t
n
(φ)

)
1Ψ−1(A)

]
=0.

So
{
M

t
s∧τ t

n
(φ)

}
s∈[t,∞)

is a bounded
(
F
t
, PΨ

)
−martingale. By Remark 3.1, PΨ satisfies

(D1) and (D2) of Definition 3.1.
Since W t

s(Bt,w(ω))=Bt,w
s (ω)−Bt,w

t (ω)=Bt
s(ω) for any (s,ω) ∈ [t,∞)× Ω, taking

(Ω,F , P,B,Φ)=(Q,F ,p,B,Bt,w) in Lemma A.2 (2) shows that p
{
τ = τ̂(Bt,w)

}
=1 for

some [t,∞]−valued FW t,P0−stopping time τ̂ on Ω0, it follows that PΨ

{
T = τ̂(W )

}
=

p
{
T (Ψ)= τ̂(W (Ψ))

}
= p

{
τ = τ̂(Bt,w)

}
=1. As Ws

(
Ψ(ω)

)
=Bt,w

s (ω)=w(s), ∀ (s,ω)∈
[0, t]×Q, it is clear that PΨ

{
W s=w(s), ∀s∈ [0, t]

}
=p

{
W s(Ψ)=w(s), ∀s∈ [0, t]

}
=1.

Thus PΨ∈Pt,w,x. For any i∈N, EPΨ

[∫ T
t gi

(
r,Xr∧·

)
dr
]
=Ep

[∫ T (Ψ)
t gi

(
r,Xr∧·(Ψ)

)
dr
]
=

Ep

[ ∫ τ
t gi(r,X

t,x
r∧·)dr

]
≤yi and EPΨ

[∫ T
t hi

(
r,Xr∧·

)
dr
]
=Ep

[ ∫ τ
t hi(r,X

t,x
r∧·)dr

]
=zi, which

means that PΨ∈Pt,w,x(y, z). Similarly, we can deduce that

Ep

[∫ τ

t
f(r,X t,x

r∧·)dr+1{τ<∞}π
(
τ,X t,x

τ∧·
)]

=EPΨ

[∫ T

t
f
(
r,Xr∧·

)
dr+1{T<∞}π

(
T ,XT∧·

)]
≤V (t,w,x, y, z).

Taking supremum over τ∈St,x(y, z) yields that V (t,x, y, z)≤V (t,w,x, y, z).

2) As Pt,w,x(y, z)⊂Pt,x(y, z), we automatically have V (t,w,x, y, z)≤V (t,x, y, z). It re-
mains to demonstrate that V (t,x, y, z)≤V (t,x, y, z). If Pt,x(y, z)=∅, then V (t,x, y, z)=
−∞≤V (t,x, y, z).
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Assume Pt,x(y, z) ̸=∅ and let P ∈Pt,x(y, z). Given (φ,n)∈C(Rd+l)×N, M t,x
s (φ) :=

φ(W
t
s,X

t,x
s )−

∫ s
t b

(
r,X

t,x
r∧·

)
·Dφ(W t

r ,X
t,x
r )dr− 1

2

∫ s
t σ σ

T
(
r,X

t,x
r∧·

)
:D2φ(W

t
r ,X

t,x
r )dr,

s∈[t,∞) is an FW
t
,P−adapted continuous process and τ t,xn :=inf

{
s∈[t,∞):

∣∣(W t
s,X

t,x
s )

∣∣
≥n

}
∧(t+n) is an FW

t
,P−stopping time. Since W t is a Brownian motion under P by (D1)

of Definition 3.1, applying Proposition 1.2 with (Ω,F , P,B,X)=
(
Ω,B(Ω), P ,W,X

t,x)
shows that {

M
t,x
s∧τ t,x

n
(φ)

}
is a bounded FW

t
,P−martingale.(6.5)

Let (xo, to) be an arbitrary pair in Ω
X
× [t,∞] and define a mapping Ψo : Q 7→Ω by

Ψo(ω) :=
(
B(ω), xo, to

)
∈Ω, ∀ω∈Q. (Actually, we are indifferent to the second and third

components of Ψo(ω).) Since W
t
s(Ψo(ω)) =W s(Ψo(ω))−W t(Ψo(ω)) =Bt

s(ω) for any
(s,ω)∈ [t,∞)×Q and since W

t is a Brownian motion under P by (D1) of Definition
3.1, applying Lemma A.1 with t0= t, (Ω1,F1, P1,B

1)=
(
Q,F ,p,B

)
, (Ω2,F2, P2,B

2)=(
Ω,B(Ω), P ,W

)
and Φ=Ψo yields that

Ψ−1
o

(
FW

t

s

)
=FBt

s , Ψ−1
o

(
FW

t
,P

s

)
⊂FBt,p

s , ∀s∈[t,∞] and(6.6) (
p◦Ψ−1

o

)
(A)=P (A), ∀A∈FW

t
,P

∞ .(6.7)

Then X t,x
s (ω):=X

t,x
s (Ψo(ω)), s∈ [0,∞) defines an

{
FBt,p
s∨t

}
s∈[0,∞)

−adapted continuous
process.

Let (φ,n)∈C(Rd+l)×N. We define an FBt,p−adapted continuous process M t,x
s (φ) :=

φ(Bt
s,X

t,x
s )−

∫ s
t b

(
r,X t,x

r∧·
)
·Dφ(Bt

r,X
t,x

r )dr − 1
2

∫ s
t σ σ

T
(
r,X t,x

r∧·
)
:D2φ(Bt

r,X
t,x

r )dr,
∀s∈ [t,∞) and define an FBt,p−stopping time ζt,xn :=inf

{
s∈ [t,∞) :

∣∣(Bt
s,X

t,x
s )

∣∣≥n}∧
(t+n).

Applying Proposition 1.2 with (Ω,F , P,B,X)=
(
Q,F ,p,B,X t,x

)
and using an analogy

to (6.4) renders that
{
M t,x

s∧ζt,x
n
(φ)

}
s∈[t,∞)

is a bounded FBt,p−adapted continuous process
under p satisfying(

M
t,x
s∧τ t,x

n
(φ)

)(
Ψo(ω)

)
=
(
M t,x

s∧ζt,x
n
(φ)

)
(ω), ∀ (s,ω)∈[t,∞)×Q.(6.8)

Let t1, t2 ∈ [t,∞) with t1 < t2 and let A ∈ FBt

t1 . Since Ψ−1
o

(
A
)
=A for some A ∈

FW
t

t1 by (6.6), we can derive from (6.5), (6.7) and (6.8) that 0 =EP

[(
M

t,x
t2∧τ t,x

n
(φ)−

M
t,x
t1∧τ t,x

n
(φ)

)
1A

]
=Ep

[(
M

t,x
t2∧τ t,x

n
(φ)−M

t,x
t1∧τ t,x

n
(φ)

)
(Ψo)1Ψ−1

o (A)

]
=Ep

[(
M t,x

t2∧ζt,x
n
(φ) −

M t,x

t1∧ζt,x
n
(φ)

)
1A

]
, which implies that

{
M t,x

s∧ζt,x
n
(φ)

}
s∈[t,∞)

is a bounded FBt,p−martingale.

Then an application of Proposition 1.2 with (Ω,F , P,B,X)=
(
Q,F ,p,B,X t,x

)
shows that

p{X t,x
s =X t,x

s , ∀s∈[0,∞)}=1.(6.9)

By (D3) of Definition 3.1, there exists a [t,∞]−valued FW t,P0−stopping time γ̂ on Ω0

such that P
{
T = γ̂(W )

}
=1. Lemma A.2 (1) renders that γ := γ̂(B) is an FBt,p−stopping

time on Q while γ̂(W ) is an FW
t
,P−stopping time on Ω. For any i∈N, we can deduce from

(D2) of Definition 3.1, (6.7) and (6.9) that

yi≥EP

[∫ T

t
gi
(
r,Xr∧·

)
dr

]
=EP

[∫ γ̂(W )

t
gi
(
r,X

t,x
r∧·

)
dr

]
(6.10)

=Ep

[∫ γ̂(W (Ψo))

t
gi
(
r,X

t,x
r∧·(Ψo)

)
dr

]
=Ep

[∫ γ

t
gi(r,X t,x

r∧·)dr

]
,
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and similarly that Ep

[ ∫ γ
t hi(r,X

t,x
r∧·)dr

]
=EP

[ ∫ T
t hi(r,Xr∧·)dr

]
= zi. So γ ∈St,x(y, z).

Analogous to (6.10),

EP

[∫ T

t
f
(
r,Xr∧·

)
dr+1{T<∞}π

(
T ,XT∧·

)]
=Ep

[∫ γ

t
f
(
r,X t,x

r∧·
)
dr+1{γ<∞}π

(
γ,X t,x

γ∧·
)]

≤V (t,x, y, z).

Taking supremum over P ∈Pt,x(y, z) yields that V (t,x, y, z)≤V (t,x, y, z). □

Proof of Lemma 4.1: 1) We first show that the metric space
(
S, ρ

S

)
is complete. Let

{τn}n∈N be a Cauchy sequence in
(
S, ρ

S

)
such that sup

k∈N
ρ
S
(τn, τn+k)<2−n for any n∈N.

For any n∈N, the monotone convergence theorem implies that

EP0

[
sup
k∈N

∣∣arctan(τn)−arctan(τn+k)
∣∣]≤EP0

[ ∑
k∈N

∣∣arctan(τn+k−1)−arctan(τn+k)
∣∣]

=
∑
k∈N

ρ
S

(
τn+k−1, τn+k

)
≤
∑
k∈N

21−n−k=21−n.

So lim
n→∞

EP0

[
sup
k∈N

∣∣arctan(τn)−arctan(τn+k)
∣∣]=0. Then one can extract a subsequence{

τnj

}
j∈N of {τn}n∈N such that lim

j→∞

(
sup
k∈N

∣∣arctan(τnj
(ω0))−arctan(τk+nj

(ω0))
∣∣)=0 for

all ω0∈Ω0 except on a P0−null set N . Given ω0∈N c, we see that lim
j→∞

(
sup
ℓ∈N

∣∣arctan(τnj
(ω0))

−arctan(τn
j+ℓ

(ω0))
∣∣)=0, i.e.,

{
arctan

(
τnj

(ω0)
)}

j∈N is a Cauchy sequence in [0, π/2]. Let

ξ∗(ω0) be the limit of
{
arctan

(
τnj

(ω0)
)}

j∈N in [0, π/2].
As FW,P0 is a right-continuous complete filtration, Lemma 1.2.11 of [36] implies that

τ∗ := lim
j→∞

τnj
is an FW,P0−stopping time on Ω0 satisfying

arctan
(
τ∗(ω0)

)
=arctan

(
sup
j∈N

inf
ℓ≥j

τnℓ
(ω0)

)
=sup

j∈N
arctan

(
inf
ℓ≥j

τnℓ
(ω0)

)
=sup

j∈N
inf
ℓ≥j

arctan
(
τnℓ

(ω0)
)
= lim

j→∞
arctan

(
τnj

(ω0)
)
= lim

j→∞
arctan

(
τnj

(ω0)
)
=ξ∗(ω0),

∀ω0 ∈N c. Applying the bounded convergence theorem renders that lim
j→∞

ρ
S
(τnj

, τ∗) =

lim
j→∞

EP0

[∣∣arctan(τnj
)−arctan(τ∗)

∣∣]=0.

We next let {τn}n∈N be a general Cauchy sequence in
(
S, ρ

S

)
. For any j∈N, there ex-

ists nj∈N such that sup
k∈N

ρ
S
(τnj

, τk+nj
)<2−j . In particular, the subsequence

{
τ̃j :=τnj

}
j∈N

of {τn}n∈N satisfies that sup
ℓ∈N

ρ
S

(
τ̃j , τ̃j+ℓ

)
<2−j for any j∈N and thus has a limit τ̃∗ in(

S, ρ
S

)
by the above argument. Let ε∈(0,1). There exists a k∈N with k≥1− log2 ε such

that ρ
S

(
τ̃k, τ̃∗

)
≤ε/2. Then it holds for any j≥nk that ρ

S

(
τj , τ̃∗

)
≤ρ

S

(
τj , τ̃k

)
+ρ

S

(
τ̃k, τ̃∗

)
≤

sup
ℓ∈N

ρ
S

(
τnk , τnk+ℓ

)
+ε/2<2−k+ε/2≤ε. So lim

j→∞
ρ
S

(
τj , τ̃∗

)
=0, which shows the complete-

ness of
(
S, ρ

S

)
.

2) We need some technical preparation for constructing a countable dense subset of S.
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Fix s∈ [0,∞). Given δ∈Q+, set Os
δ(ω0) :=

{
ω′
0∈Ω0 : sup

r∈[0,s]

∣∣ω′
0(r)−ω0(r)

∣∣<δ}. Since

Ω0 is a continuous-path space, we can deduce that

Os
δ(ω0)= ∪

n∈N
∩

r∈(0,s)∩Q

{
ω′
0∈Ω0 : |ω′

0(r)−ω0(r)|≤δ−δ/n
}

= ∪
n∈N

∩
r∈(0,s)∩Q

{
ω′
0∈Ω0 :Wr(ω

′
0)∈Oδ−δ/n

(
ω0(r)

)}
∈FW

s .

Let Ts(Ω0) collect the empty set ∅ and all subsets O of Ω0 such that for any ω0∈O there
exists some δ∈(0,1) satisfying Os

δ(ω0)⊂O. Obviously, Ts(Ω0) forms a topology on Ω0.
We claim that for any A∈FW

s and ε∈(0,1),

there are O1,O2∈Ts(Ω0) such that Oc
1⊂A⊂O2 and P0(A∩O1)∨P0(A

c∩O2)<ε.(6.11)

To see this, we define Λs :={A∈B(Ω0): for any ε∈(0,1) there exist O1,O2 in Ts(Ω0) such
that Oc

1⊂A⊂O2 and P0(A∩O1)∨P0(A
c∩O2)<ε}. Clearly, ∅,Ω0∈Λs as they both belong

to Ts(Ω0). It is also easy to see that Ac ∈ Λs if A ∈ Λs.
Let {An}n∈N⊂Λs and ε∈(0,1). For any n ∈ N, there exist O1

n,O2
n in Ts(Ω0) such that

(O1
n)

c⊂An⊂O2
n and P0(An∩O1

n)∨P0(A
c
n∩O2

n)<ε2
−1−n. The set O2 := ∪

n∈N
O2

n∈Ts(Ω0)

contains A := ∪
n∈N

An and satisfies P0(A
c∩O2)≤

∑
n∈N

P0(A
c∩O2

n)≤
∑
n∈N

P0(A
c
n∩O2

n)<ε/2.

Similarly, it holds for E := ∩
n∈N

O1
n that P0(A ∩ E)≤

∑
n∈N

P0(An ∩O1
n)<ε/2. We can find an

N∈N such that P0

( N
∩

n=1
O1

n

)
<P0(E)+ε/2. Then O1 :=

N
∩

n=1
O1

n is a set of Ts(Ω0) satisfying

that Oc
1=

N
∪

n=1
(O1

n)
c⊂ ∪

n∈N
An=A and P0(A∩O1)=P0(A∩E)+P0

(
A∩(O1\E)

)
≤P0(A∩

E)+P0(O1\E)<ε, which shows ∪
n∈N

An=A∈Λs. Hence Λs is a sigma-field of Ω0.

Let r∈ [0, s] and let O be a nonempty open subset of Rd. Given ω0∈W−1
r (O), there

exists δ ∈ (0,1) such that Oδ

(
Wr(ω0)

)
⊂O. As Wr

(
Os

δ(ω0)
)
⊂Oδ

(
Wr(ω0)

)
, we obtain

that Os
δ(ω0)⊂W−1

r (O) and thus W−1
r (O) ∈ Ts(Ω0). Let ε ∈ (0,1) and define closed

sets Dn := {x ∈Rd : dist(x,Oc)≥ 1/n}, ∀n ∈N. Since ∩
n∈N

W−1
r (O\Dn) =W−1

r

(
∩

n∈N

(O\Dn)
)
= ∅, there exists N such that P0

(
W−1

r (O\DN )
)
<ε. Similar to the inclusion

W−1
r (O)∈Ts(Ω0), one has O1 :=W

−1
r (Dc

N )∈Ts(Ω0). Since Oc
1=W

−1
r (DN )⊂W−1

r (O)

and P0(W
−1
r (O)∩O1)=P0

(
W−1

r (O∩Dc
N )

)
<ε, we see that W−1

r (O)∈Λs. It follows that

FW
s =σ

(
W−1

r (O); r∈[0, s], open subset O of Rd
)
⊂Λs. So (6.11) holds.

Let
{
ωi
0

}
i∈N be a countable dense subset of Ω0 and let s∈[0,∞). We set Θs :=

{
Os

δ(ω
i
0):

δ∈Q+, i∈N
}
⊂FW

s . Let A∈FW
s and ε∈(0,1). By (6.11), there exists O2∈Ts(Ω0) such

that A⊂O2 and P0(O2)−P0(A)<ε. As usual, O2 is the union of some sequence
{
Oi

}
i∈N

in Θs. So A satisfies that

A⊂ ∪
i∈N
Oi and P0(A)>P0

(
∪
i∈N

Oi

)
−ε.(6.12)

3) Now we are ready to demonstrate the separability of
(
S, ρ

S

)
.

Given q ∈Q+, let us simply denote by {Oq
j}j∈N the countable sub-collection Θq ={

Oq
δ(ω

i
0): δ∈Q+, i∈N

}
of FW

q and define Υq
k,α :=

{
q1 ∪

j∈I
Oq

j
+α1 ∩

j∈I
(Oq

j )
c : I⊂{1, · · · , k}

}
⊂

S, ∀k ∈ N, ∀α∈N∩ [q,∞). For any k,n ∈ N, we set Υ̂k,n := ∪
α∈N

{ 2nα
∧
i=1

τi : τi∈Υi2−n

k,α , i=
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1, · · ·,2nα
}

, which is a countable subset of S. Then Υ̂:= ∪
k,n∈N

Υ̂k,n is also a countable sub-

set of S. To show Υ̂ is dense in
(
S, ρ

S

)
, we let τ ∈S, ε∈(0,1) and try to pick γ∈Υ̂ such

that

ρ
S
(τ, γ)<ε.(6.13)

Since lim
α→∞

ρ
S
(τ, τ∧α)= lim

α→∞
EP0

[∣∣arctan(τ)−arctan(τ∧α)
∣∣]=0, one can find α̂∈N

such that ρ
S
(τ, τ∧α̂)<ε/4.

Let n∈N and set sn0 :=0. Given i∈{0,1, · · ·,2nα̂}, we set sni :=i2
−n and An

i :={sni−1≤
τ <sni }∈FW,P0

sni
. By e.g. Problem 2.7.3 of [36], there exists An

i ∈FW
sni

such that N n
i :=

An
i ∆An

i ∈NP0
(FW

∞ ). Define Ãn
i :=An

i

∖(
∪
j<i

An
j

)
∈FW

sni
and Ãn :=

2nα̂
∪
i=1

Ãn
i =

2nα̂
∪
i=1

An
i ∈FW

α̂ .

The FW,P0−stopping time τn :=
2nα̂∑
i=1

sni 1An
i
+α̂1{τ≥α̂} coincides with the FW−stopping time

τ̃n :=

2nα̂∑
i=1

sni 1Ãn
i
+α̂1Ãc

n
over Ωn :=

( 2nα̂
∪
i=1

(
An

i ∩Ãn
i

))
∪
(
{τ≥α̂}∩Ãc

n

)
. We can deduce that

An
i \Ãn

i =A
n
i ∩

[(
An

i

)c∪( ∪
j<i

An
j

)]
=
(
An

i ∩(An
i )

c
)
∪
(

∪
j<i

(
An

j ∩An
i

))
(6.14)

⊂
(
An

i ∆An
i

)
∪
(

∪
j<i

(
An

j ∩(An
j )

c
))

⊂ ∪
j≤i

N n
j ∈NP0

(FW
∞ ),

for i=1, · · ·,2nα̂ and that {τ≥ α̂}∩Ãn=
2nα̂
∪
i=1

(
{τ≥ α̂}∩An

i

)
⊂

2nα̂
∪
i=1

(
(An

i )
c∩An

i

)
⊂

2nα̂
∪
i=1

N n
i ∈

NP0
(FW

∞ ). Putting them together shows that Ωc
n=

(2nα̂
∪
i=1

(
An

i \Ãn
i

))
∪
(
{τ≥α̂}∩Ãn

)
belongs

to NP0
(FW

∞ ). To wit,

τn= τ̃n, P0−a.s.(6.15)

Since lim
n→∞

↓ τn=τ∧α̂, one has lim
n→∞

ρ
S
(τ∧α̂, τn)= lim

n→∞
EP0

[∣∣arctan(τ∧α̂)−arctan(τn)∣∣]=
0. So there exists n∈N such that ρ

S

(
τ∧α̂, τn

)
<ε/4.

Given i∈{1, · · ·,2nα̂}, we know from (6.12) that for some sequence {Oi
j}j∈N in Θsni ={

O
sni
j

}
j∈N

Ãn
i ⊂ ∪

j∈N
Oi

j and P0

(
Ãn

i

)
>P0

(
∪
j∈N

Oi
j

)
− ε

22+2nπα̂2
.(6.16)

And we can find ℓi∈N such that Oi :=
ℓi∪

j=1
Oi

j∈FW
sni

satisfies

P0(Oi)>P0

(
∪
j∈N

Oi
j

)
− ε

22+2nπα̂2
.(6.17)

Clearly, γi :=sni 1Oi
+α̂1Oc

i
∈Υsni

ki,α̂
for some ki∈N.

Let i∈{1, · · ·,2nα̂} and set Õi :=Oi\ ∪
i<i

Oi ∈ FW
sni

. Analogous to (6.14), Ãn
i \Õi=Ã

n
i ∩[

Oc
i ∪

(
∪
i<i

Oi

)]
⊂
((

∪
j∈N

Oi
j

)
∩Oc

i

)
∪
(

∪
i<i

(
Oi∩(Ãn

i )
c
))

. So (6.16) and (6.17) yield that

P0(Ã
n
i \Õi)≤ P0

((
∪
j∈N

Oi
j

)
∩Oc

i

)
+
∑
i<i

P0

((
∪
j∈N

Oi
j

)
∩(Ãn

i )
c
)

(6.18)
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<
∑
i≤i

ε

22+2nπα̂2
=

iε

22+2nπα̂2
≤ ε

22+nπα̂
.

Define Õ :=
2nα̂
∪
i=1

Õi=
2nα̂
∪
i=1

Oi∈FW
α̂ and k :=max{ki : i=1, · · ·,2nα̂}. Then γ :=

2nα̂
∧
i=1
γi is

a stopping time of Υ̂k,n

(
and is thus of Υ̂

)
. In particular, γ=

2nα̂∑
i=1
sni 1Õi

+ α̂1Õc is equal to

τ̃n=
2nα̂∑
i=1
sni 1Ãn

i
+α̂1Ãc

n
over Â :=

( 2nα̂
∪
i=1

(
Õi∩Ãn

i

))
∪
(
Õc∩Ãc

n

)
∈FW

α̂ . Since (6.16) implies

that

P0

(
Õ∩Ãc

n

)
≤

2nα̂∑
i=1

P0

(
Õi∩Ãc

n

)
≤

2nα̂∑
i=1

P0

(
Õi∩(Ãn

i )
c
)
≤

2nα̂∑
i=1

P0

(
Oi\Ãn

i

)
≤

2nα̂∑
i=1

P0

{(
∪
j∈N

Oi
j

)∖
Ãn

i

}
<

2nα̂∑
i=1

ε

22+2nπα̂2
=

ε

22+nπα̂
,

(6.18) renders that P0

(
Âc

)
=P0

{( 2nα̂
∪
i=1

(
Ãn

i \Õi

))
∪
(
Õ∩Ãc

n

)}
=

2nα̂∑
i=1

P0

(
Ãn

i \Õi

)
+P0

(
Õ∩

Ãc
n

)
<(2nα̂+1)

ε

22+nπα̂
≤ ε

2π
and thus ρ

S

(
τ̃n, γ

)
= EP0

[
1Âc

∣∣arctan(τ̃n)−arctan(γ)
∣∣] ≤

πP0

(
Âc

)
<ε/2. By (6.15), it follows that ρ

S
(τ, γ)≤ρ

S
(τ, τ∧α̂)+ρ

S

(
τ∧α̂, τn

)
+ρ

S

(
τ̃n, γ

)
<

ε, proving (6.13). Therefore,
(
S, ρ

S

)
is a complete separable space. □

Proof of Lemma 4.2: 1) We first show that Γ is injective: Set Qπ :=
(
Q∩[0, π/2)

)
∪{π/2}

and let τ1, τ2∈S such that Γ(τ1)=Γ(τ2).
Given q ∈Qπ and n ∈N, we define Eq

n := (q− 1/n, q+ 1/n)∩ [0, π/2] and Ai
n,q :={

arctan(τi)∈Eq
n

}
∈FW,P0

∞ for i=1,2. Then An,q :=A
1
n,q∩(A2

n,q)
c satisfies

P0(An,q)=P0

{
ω0∈(A2

n,q)
c : τ1(ω0)∈tan(Eq

n)
}
=
(
Γ(τ1)

)(
(A2

n,q)
c×tan(Eq

n)
)

(6.19)

=
(
Γ(τ2)

)(
(A2

n,q)
c×tan(Eq

n)
)
=P0

{
ω0∈(A2

n,q)
c : τ2(ω0)∈tan(Eq

n)
}
=P0(∅)=0.

Clearly, ∪
n∈N

∪
q∈Qπ

An,q ⊂ {τ1 ̸= τ2}. To see the reverse inclusion, we let ω0 ∈
(

∪
n∈N

∪
q∈Qπ

An,q

)c
and let n∈N. There exists q= q(n)∈Qπ such that arctan

(
τ1(ω0)

)
∈Eq

n , or

ω0∈
{
arctan(τ1)∈Eq

n

}
=A1

n,q. As ω0∈Ac
n,q, we see that ω0∈A2

n,q, i.e., arctan(τ2(ω0)) also
belongs to Eq

n . It follows that ρ+
(
τ1(ω0), τ2(ω0)

)
=
∣∣arctan(τ1(ω0))−arctan(τ2(ω0))

∣∣<
2/n. Letting n→∞ yields that τ1(ω0)=τ2(ω0). So ∪

n∈N
∪

q∈Qπ

An,q={τ1 ̸=τ2}. It follows

from (6.19) that P0

{
τ1 ̸= τ2

}
=0, which means that τ1 = τ2 in S. Hence, the mapping

Γ:S 7→P
(
Ω0×T

)
is injective.

2) We next discuss the continuity of Γ: Let {τn}n∈N be a sequence of S that converges to a
τ ∈S under ρ

S
. We need to show that Pn :=Γ(τn) converges to P :=Γ(τ) under the weak

topology of P
(
Ω0×T

)
, i.e.

lim
n→∞

∫
(ω0,t)∈Ω0×T

ϕ(ω0, t)P
n
(
d(ω0, t)

)
=

∫
(ω0,t)∈Ω0×T

ϕ(ω0, t)P
(
d(ω0, t)

)
(6.20)

for any bounded continuous function ϕ: Ω0×T 7→R.
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Let ϕ be a bounded continuous function on Ω0×T. For (6.20), it suffices to show that for
any subsequence {τnk

}k∈N of {τn}n∈N, we can find a subsequence
{
τn′

k

}
k∈N of {τnk

}k∈N
satisfying (6.20).

Let {τnk
}k∈N be an arbitrary subsequence of {τn}n∈N. As 0 = lim

k→∞
ρ
S

(
τnk

, τ
)
=

lim
k→∞

EP0

[
ρ+(τnk

, τ)
]
, one can extract a subsequence

{
n′k

}
k∈N from

{
nk

}
k∈N such that

lim
k→∞

ρ+
(
τn′

k
(ω0), τ(ω0)

)
=0 for all ω0∈Ω0 except on a P0−null set N . Given ω0∈N c,

since lim
k→∞

ρ+
(
τn′

k
(ω0), τ(ω0)

)
=0, the continuity of ϕ renders that lim

k→∞
ϕ
(
ω0, τn′

k
(ω0)

)
=

ϕ
(
ω0, τ(ω0)

)
. Applying the bounded convergence theorem yields that

lim
k→∞

∫
(ω0,t)∈Ω0×T

ϕ(ω0, t)P
n′

k

(
d(ω0, t)

)
= lim

k→∞

∫
Ω0

ϕ
(
ω0, τn′

k
(ω0)

)
P0(dω0)

=

∫
Ω0

ϕ
(
ω0, τ(ω0)

)
P0(dω0)=

∫
(ω0,t)∈Ω0×T

ϕ(ω0, t)P
(
d(ω0, t)

)
. □

Proof of Proposition 4.1: Fix (t,x)∈[0,∞)×Ω
X

.

1) Let P ∈Pt,x. It is clear that P ∈P1
t,x. Let (φ,n) ∈ C(Rd+l)×N. By (D1′) of Re-

mark 3.1,
{
M

t
s∧τ t

n
(φ)

}
s∈[t,∞)

is a bounded (F
t
, P )−martingale. For any (s, r)∈Q2,<

+ and

{(si,Oi)}ki=1⊂
(
Q∩ [0, s]

)
×O(Rd+l), as

{
(W

t
t+si ,Xt+si)∈Oi

}
∈F t

t+s for i=1, · · ·, k, one

directly has EP

[(
M

t
τ t
n∧(t+r)(φ)−M

t
τ t
n∧(t+s)(φ)

) k∏
i=1

1{(W t

t+si
,Xt+si

)∈Oi}

]
=0. So P ∈P2

t .

By (D3′) of Remark 3.1, there exists a [0,∞]−valued FW,P0−stopping time τ̈ on Ω0

such that P
{
T =t+ τ̈

(
W

t)}
=1. Since W

t
s=W t+s−W t, s∈ [0,∞) is a Brownian motion

under P by (D1) of Definition 3.1, applying Lemma A.1 with t0=0, (Ω1,F1, P1,B
1)=(

Ω,B(Ω), P ,W
t)

, (Ω2,F2, P2,B
2)=

(
Ω0,B(Ω0), P0,W

)
and Φ=W

t
shows that

P ◦
(
W

t)−1
(A0)=P0(A0), ∀A0∈FW,P0

∞ .(6.21)

For any A0∈B(Ω0)=FW
∞ and E∈B(T), since τ̈−1(E)∈FW,P0

∞ , we can derive that

P ◦
(
W

t
, T−t

)−1
(A0×E)=P

{(
W

t
, T−t

)
∈A0×E

}
=P

{(
W

t
, τ̈(W

t
)
)
∈A0×E

}
=P ◦(W t

)−1
{
(W, τ̈)∈A0×E

}
=P ◦(W t

)−1
(
A0∩τ̈−1(E)

)
=P0

(
A0∩τ̈−1(E)

)
=P0

{
(W, τ̈)∈A0×E

}
=P0◦(W, τ̈)−1(A0×E).

Then Dynkin’s Pi-Lambda Theorem implies that P◦
(
W

t
, T−t

)−1
=P0◦(W, τ̈)−1 on B

(
Ω0×

T
)
. i.e., P ◦

(
W

t
, T − t

)−1
=Γ(τ̈)∈Γ(S). So P also belongs to P3

t , which shows Pt,x⊂
P1

t,x∩P
2
t ∩P

3
t .

2a) Let P ∈P1
t,x∩P

2
t . To see that P satisfies (D1′) of Remark 3.1, we take (φ,n)∈C(Rd+l)×

N. As P
{
Xs = x(s), ∀s ∈ [0, t]

}
= 1, applying Proposition 1.2 with

(
Ω,F , P,B,X

)
=(

Ω,B(Ω), P ,W,X
)

implies that
{
M

t
s∧τ t

n
(φ)

}
s∈[t,∞)

is a bounded F
t−adapted continuous

process under P .
Let (s, r)∈Q2,<

+ ,
{
(ti,Oi)

}k

i=1
⊂
(
Q ∩ [0, t]

)
×O(Rl) and

{
(sj ,O′

j)
}m

j=1
⊂
(
Q ∩ (0, s]

)
×

O(Rd+l). If x(ti) /∈Oi for some i∈{1, · · ·, k}, then P{Xti∈Oi}=0 and thus

EP

[(
M

t
τ t
n∧(t+r)(φ)−M

t
τ t
n∧(t+s)(φ)

) k∏
i=1

1{Xti
∈Oi}

m∏
j=1

1{(W t

t+sj
,Xt+sj

)∈O′
j}

]
=0.
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On the other hand, if x(ti)∈Oi for each i∈{1, · · ·, k}, then

EP

[(
M

t
τ t
n∧(t+r)(φ)−M

t
τ t
n∧(t+s)(φ)

) k∏
i=1

1{Xti
∈Oi}

m∏
j=1

1{(W t

t+sj
,Xt+sj

)∈O′
j}

]

=EP

[(
M

t
τ t
n∧(t+r)(φ)−M

t
τ t
n∧(t+s)(φ)

) m∏
j=1

1{(W t

t+sj
,Xt+sj

)∈O′
j}

]
=0.

So the Lambda-system Λ
t,n
s,r :=

{
A∈B

(
Ω
)
: EP

[(
M

t
τ t
n∧(t+r)(φ)−M

t
τ t
n∧(t+s)(φ)

)
1A

]
=0

}
includes the Pi-system

{( k
∩
i=1

X
−1
ti (Oi)

)
∩
( m

∩
j=1

(W
t
t+sj ,Xt+sj )

−1(O′
j)
)
:
{
(ti,Oi)

}k

i=1
⊂(

Q ∩ [0, t]
)
× O(Rl),

{
(sj ,O′

j)
}m

j=1
⊂

(
Q ∩ (0, s]

)
× O(Rd+l)

}
, which generates F t

t+s.

Dynkin’s Pi-Lambda Theorem renders that F t
t+s⊂Λ

t,n
s,r , i.e.,

EP

[(
M

t
τ t
n∧(t+r)(φ)−M

t
τ t
n∧(t+s)(φ)

)
1A

]
=0, ∀A∈F t

t+s.(6.22)

Let t≤s<r<∞ and A∈F t
s. Taking (s, r)=

(
⌈(s−t)2k⌉

2k , 1+⌈(r−t)2k⌉
2k

)
, k∈N in (6.22) and

sending k→∞, we can deduce from the continuity of bounded process
{
M

t
s∧τ t

n
(φ)

}
s∈[t,∞)

thatEP

[(
M

t
τ t
n∧r(φ)−M

t
τ t
n∧s(φ)

)
1A

]
=0. So

{
M

t
s∧τ t

n
(φ)

}
s∈[t,∞)

is an
(
F
t
, P

)
−martingale.

By Remark 3.1, P satisfies (D1) and (D2) of Definition 3.1.

2b) Let P ∈P1
t,x∩P

2
t∩P

3
t . There exists a [0,∞]−valued FW,P0−stopping time τ̈ on Ω0 such

that P ◦
(
W

t
, T−t

)−1
=Γ(τ̈)=P0◦(W, τ̈)−1. We still have (6.21) since W

t
is a Brownian

motion under P by (D1) of Definition 3.1. GivenD∈B(Ω0×T), takingA0=
(
W, τ̈

)−1
(D)∈

FW,P0
∞ in (6.21) yields that

P
{(

W
t
, T−t

)
∈D

}
=P ◦

(
W

t
, T−t

)−1
(D)=P0◦(W, τ̈)−1(D)

=P ◦
(
W

t)−1((
W, τ̈

)−1
(D)

)
=P

{(
W

t
, τ̈(W

t
)
)
∈D

}
.

So the joint distribution of (W
t
, T − t) is the same as that of

(
W

t
, τ̈(W

t
)
)

under P . In
particular, the P−law of T is equal to the P−law of t+ τ̈(W

t
) and therefore P satisfies

(D3’) of Remark 3.1 or equivalently (D3) of Definition 3.1. □

Proof of Lemma 4.3: Let {tn}n∈N⊂[0,∞) converge to t∈[0,∞) and let {Pn}n∈N⊂P
(
Ω
)

converge to P ∈P
(
Ω
)

under the weak topology of P
(
Ω
) (

i.e., lim
n→∞

∫
ω∈Ω ϕ(ω)Pn(dω)=∫

ω∈Ω ϕ(ω)P (dω) for any bounded continuous function ϕ: Ω 7→R
)
. To see that

{
Γ(tn, Pn)=

Pn◦
(
W

tn
, T−tn

)−1}
n∈N converges to Γ(t,P )=P ◦

(
W

t
, T−t

)−1 under the weak topology
of P

(
Ω0×T

)
, we let ψ : Ω0×T 7→R be a bounded continuous function and show that

lim
n→∞

∫
(ω0,λ)∈Ω0×T

ψ(ω0, λ)
(
Pn◦(W

tn
, T−tn)−1

)(
d(ω0, λ)

)
=

∫
(ω0,λ)∈Ω0×T

ψ(ω0, λ)
(
P ◦(W t

, T−t)−1
)(
d(ω0, λ)

)
.
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Set ∥ψ∥∞ := sup
(ω0,λ)∈Ω0×T

∣∣ψ(ω0, λ)
∣∣ and let ε∈ (0,1). Since the weakly convergent se-

quence {Pn}n∈N is relatively compact in P
(
Ω
)
, Prohorov’s Theorem yields that {Pn}n∈N

is tight, i.e., sup
n∈N

Pn

(
Kc

ε

)
≤ ε

4∥ψ∥∞
for some compact subset Kε of Ω.

The topology of locally uniform convergence on Ω0 implies that (s,ω) 7→W
s
(ω) is a

continuous mapping from [0,∞)×Ω to Ω0 and Φ(s,ω):=
(
W

s
(ω), T (ω)−s

)
is thus a con-

tinuous mapping from [0,∞)×Ω to Ω0×T. There exists δ∈(0,1) such that
∣∣ψ◦Φ(s,ω)−

ψ◦Φ(s′, ω′)
∣∣<ε/4 for any (s,ω), (s′, ω′)∈ [0, t+1]×Kε with |s−s′| ∨ ρ

Ω
(ω,ω′)<δ. And

one can find N ∈N such that
∣∣ ∫

ω∈Ωψ ◦Φ(t,ω)Pn(dω)−
∫
ω∈Ωψ ◦Φ(t,ω)P (dω)

∣∣< ε
4 and

|tn−t|<δ for any n≥N .
For any n≥N , we can deduce that∣∣∣ ∫

(ω0,λ)∈Ω0×T
ψ(ω0, λ)

(
Pn◦(W

tn
, T−tn)−1

)(
d(ω0, λ)

)
−
∫
(ω0,λ)∈Ω0×T

ψ(ω0, λ)
(
P ◦(W t

, T−t)−1
)(
d(ω0, λ)

)∣∣∣
≤
∣∣∣ ∫

ω∈Ω

(
ψ
(
Φ(tn, ω)

)
−ψ

(
Φ(t,ω)

))
Pn(dω)

∣∣∣
+
∣∣∣ ∫

ω∈Ω
ψ
(
Φ(t,ω)

)
Pn(dω)−

∫
ω∈Ω

ψ
(
Φ(t,ω)

)
P (dω)

∣∣∣
<

∫
ω∈Kε

∣∣∣ψ(Φ(tn, ω))−ψ(Φ(t,ω))∣∣∣Pn(dω)+

∫
ω∈Kc

ε

∣∣∣ψ(Φ(tn, ω))∣∣∣Pn(dω)

+

∫
ω∈Kc

ε

∣∣∣ψ(Φ(t,ω))∣∣∣Pn(dω)+ε/4

≤ ε

4
Pn(Kε)+2∥ψ∥∞Pn

(
Kc

ε

)
+ε/4≤ε. □

Proof of Proposition 4.2: According to Proposition 4.1,
〈〈
P
〉〉

is the intersection of〈〈
P
〉〉

1
:=

{(
t,x, P

)
∈ [0,∞)×Ω

X
×P

(
Ω
)
: P ∈P1

t,x

}
and

〈〈
P
〉〉

i
:=

{(
t,x, P

)
∈ [0,∞)×

Ω
X
×P

(
Ω
)
: P ∈P i

t

}
for i=2,3.

1) Since the function l2(t,ωX
):=ω

X
(t∧·) is continuous in (t,ω

X
)∈ [0,∞)×Ω

X
, the map-

ping ψ
X
(t,x, ω):=1{l2(t,X(ω))−l2(t,x)=0}, (t,x, ω)∈[0,∞)×Ω

X
×Ω is B[0,∞)⊗B(Ω

X
)⊗

B(Ω)−measurable. Lemma A.3 implies that ΨX(t,x, P ) :=
∫
ω∈ΩψX

(t,x, ω)P (dω) =

P
{
Xs=x(s), ∀s∈[0, t]

}
, (t,x, P )∈[0,∞)×Ω

X
×P

(
Ω
)

is B[0,∞)⊗B(Ω
X
)⊗B

(
P
(
Ω
))
−

measurable. So
〈〈
P
〉〉

1
=
{
(t,x, P )∈ [0,∞)×Ω

X
×P

(
Ω
)
: ΨX(t,x, P )=1

}
∈B[0,∞)⊗

B(Ω
X
)⊗B

(
P
(
Ω
))

.

2) Since W (s,ω0):=ω0(s) is continuous in (s,ω0)∈ [0,∞)×Ω0 and WX(s,ω
X
):=ω

X
(s)

is continuous in (s,ω
X
) ∈ [0,∞)×Ω

X
, the function Ξ(t, s, ω0, ωX

) :=
(
W (t+ s, ω0)−

W (t,ω0),W
X(t+s, ω

X
)
)

is continuous in (t, s, ω0, ωX
)∈[0,∞)×[0,∞)×Ω0×Ω

X
.

Let (φ,n)∈C(Rd+l)×N. The measurability of functions b, σ, l2,Ξ imply that the mapping

Hφ(t, s, r,ω0, ωX
):=1{t≤r≤t+s}

{
b
(
r, l2(r,ωX

)
)
·Dφ

(
Ξ(t, r−t,ω0, ωX

)
)

+
1

2
σσT

(
r, l2(r,ωX

)
)
:D2φ

(
Ξ(t, r−t,ω0, ωX

)
)}
,
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(t, s, r,ω0, ωX
)∈[0,∞)×[0,∞)×(0,∞)×Ω0×ΩX

is Borel-measurable. For each (t, s, ω0, ωX
)

∈[0,∞)×[0,∞)×Ω0×Ω
X

, an analogy to (6.1) renders that
∫∞
0

∣∣Hφ(t, s, r,ω0, ωX
)
∣∣dr<∞.

So Iφ(t, s, ω0, ωX
):=

∫∞
0 Hφ(t, s, r,ω0, ωX

)dr is a real-valued, Borel-measurable mapping
on [0,∞)×[0,∞)×Ω0×Ω

X
. Define Tn(t,ω0, ωX

):=inf
{
s∈[0,∞): |Ξ(t, s, ω0, ωX

)|≥n
}

,
(t,ω0, ωX

)∈[0,∞)×Ω0×Ω
X

, which is also Borel-measurable since for any a∈[0,∞),{
(t,ω0, ωX

)∈[0,∞)×Ω0×Ω
X
: Tn(t,ω0, ωX

)>a
}

=
{
(t,ω0, ωX

)∈[0,∞)×Ω0×Ω
X
: sup
a′∈[0,a]

|Ξ(t, a′, ω0, ωX
)|<n

}
=
(

∪
k∈N

∩
q∈Q∩[0,a]

{
(t,ω0, ωX

)∈[0,∞)×Ω0×Ω
X
: |Ξ(t, q,ω0, ωX

)|≤n−1/k
})

∈B[0,∞)⊗B(Ω0)⊗B(Ω
X
).

For any s∈ [0,∞), since the path-valued random variables (W,X) on Ω are B(Ω0)⊗
B(Ω

X
)−measurable, we can derive from the Borel measurability of Iφ and Tn that the

mapping

M
φ,n
s (t,ω):=(φ◦Ξ−Iφ)

(
t,Tn

(
t,W (ω),X(ω)

)
∧n∧s,W (ω),X(ω)

)
(6.23)

=
(
M

t
(φ)

)(
τ tn(ω)∧(t+s), ω

)
, (t,ω)∈[0,∞)×Ω

is B[0,∞)⊗B(Ω)−measurable, where we used the fact τ tn(ω)=t+Tn

(
t,W (ω),X(ω)

)
∧n.

Let θ :=
(
φ,n, (s, r),{(si,Oi)}ki=1

)
∈C(Rd+l)×N×Q2,<

+ × Ô(Rd+l). Since fθ(t,ω) :=(
M

φ,n
r (t,ω)−Mφ,n

s (t,ω)
)
×

k∏
i=1

1{Ξ(t,si∧s,W (ω),X(ω))∈Oi}, (t,ω)∈ [0,∞)×Ω is B[0,∞)⊗

B(Ω)−measurable by (6.23), applying Lemma A.3 yields that the mapping (t,P ) 7→∫
ω∈Ω fθ(t,ω)P (dω) is B[0,∞)⊗B

(
P
(
Ω
))
−measurable and the set

{
(t,x, P )∈ [0,∞)×

Ω
X
×P

(
Ω
)
: EP

[(
M

t
τ t
n∧(t+r)(φ)−M

t
τ t
n∧(t+s)(φ)

) k∏
i=1

1{(W t

t+si∧s,Xt+si∧s)∈Oi}

]
=0

}
is thus

Borel-measurable. Letting θ run through the countable collection C(Rd+l)×N×Q2,<
+ ×

Ô(Rd+l) shows
〈〈
P
〉〉

2
∈B[0,∞)⊗B(Ω

X
)⊗B

(
P
(
Ω
))

.

3) We know from Lemma 4.1 and Lemma 4.2 that the mapping Γ:S ∋ τ 7→P0◦(W,τ)−1∈
P
(
Ω0×T

)
is a continuous injection from the Polish space S to P

(
Ω0×T

)
and the image

Γ(S) is thus a Lusin subset of P
(
Ω0×T

)
. According to Theorem A.6 of [64], Γ(S) is even

a Borel subset of the Borel space P
(
Ω0×T

)
. Then Lemma 4.3 implies

〈〈
P
〉〉

3
=
{(
t,x, P

)
∈

[0,∞)×Ω
X
×P

(
Ω
)
: Γ(t,P )∈Γ(S)

}
∈B[0,∞)⊗B(Ω

X
)⊗B

(
P
(
Ω
))

. Totally,
〈〈
P
〉〉
=〈〈

P
〉〉

1
∩
〈〈
P
〉〉

2
∩
〈〈
P
〉〉

3
is a Borel subset of [0,∞)×Ω

X
×P

(
Ω
)
. □

Proof of Corollary 4.1: 1) Let i∈N. By the measurability of functions gi and l2
(
defined

in (1.1)
)
, the mapping gi(t, s, r,ωX

) :=1{t∧s≤r≤s}gi
(
r, l2(r,ωX

)
)

is Borel-measurable in
(t, s, r,ω

X
)∈[0,∞)×[0,∞)×(0,∞)×Ω

X
. It follows that

Igi(t,ω):=

∫ ∞

0
gi
(
t, T (ω), r,X(ω)

)
dr=

∫ T (ω)

T (ω)∧t
gi
(
r,Xr∧·(ω)

)
dr ,(6.24)

(t,ω)∈[0,∞)×Ω is B[0,∞)⊗B(Ω)−measurable. Lemma A.3 implies that

Φgi(t,P ):=

∫
ω∈Ω

Igi(t,ω)P (dω)=EP

[∫ T

T∧t
gi
(
r,Xr∧·

)
dr
]
, (t,P )∈[0,∞)×P

(
Ω
)
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is B[0,∞) ⊗ B
(
P
(
Ω
))
−measurable. Similarly, Φhi

(t,P ) := EP

[ ∫ T
T∧t hi

(
r,Xr∧·

)
dr
]
,

(t,P )∈[0,∞)×P
(
Ω
)

is B[0,∞)⊗B
(
P
(
Ω
))
−measurable. Then the set

D :=
{
(t,x, y, z,P )∈[0,∞)×Ω

X
×ℜ×ℜ×P

(
Ω
)
: Φgi(t,P )≤yi, Φhi

(t,P )=zi, ∀ i∈N
}

is Borel-measurable. Since
〈〈
P
〉〉
∈B[0,∞)⊗B

(
Ω
X

)
⊗B

(
P(Ω)

)
by Proposition 4.1, using

the projection Π1(t,x, y, z,P ):=
(
t,x, P

)
yields that

[[
P
]]
=
{
(t,x, y, z,P )∈[0,∞)×Ω

X
×

ℜ×ℜ×P
(
Ω
)
: P ∈Pt,x; EP

[ ∫ T
T∧t gi

(
r,Xr∧·

)
dr
]
≤yi, EP

[ ∫ T
T∧t hi

(
r,Xr∧·

)
dr
]
=zi, ∀ i∈

N
}
=Π

−1
1

(〈〈
P
〉〉)

∩D is a Borel subset of D×P
(
Ω
)
.

2) Similarly to ΨX(t,x, P ), defined in the proof of Proposition 4.2, the mapping

ΨW (t,w, P ):=P
{
Ws=w(s), ∀s∈[0, t]

}
is Borel-measurable in (t,w, P )∈[0,∞)×Ω0×P

(
Ω
)
. By the projections Π2(t,w,x, y, z,P )

:=
(
t,x, P

)
, Π3(t,w,x, y, z,P ):=

(
t,x, y, z,P

)
and Π4(t,w,x, y, z,P ):=(t,w, P ), we can

deduce that
{{

P
}}

=Π
−1
2

(〈〈
P
〉〉)

∩Π−1
3 (D)∩Π−1

4

(
Ψ−1

W (1)
)

is a Borel subset of D×P
(
Ω
)
.

□

Proof of Theorem 4.1: Analogous to (6.24), If (t,ω):=
∫ T (ω)

T (ω)∧t f
(
r,Xr∧·(ω)

)
dr is Borel-

measurable in (t,ω)∈ [0,∞)×Ω. Since the measurability of functions π and l2
(
defined

in (1.1)
)

implies that the mapping (s,ω) 7→π
(
s, l2(s,X(ω))

)
=π

(
s,Xs∧·(ω)

)
is B(0,∞)⊗

B(Ω)−measurable, the random variable ϕπ(ω):=1{T (ω)<∞}π
(
T (ω),X(T (ω)∧·, ω)

)
, ω∈Ω

is B(Ω)−measurable. Lemma A.3 shows that

V (t,P ):=

∫
ω∈Ω

(
If (t,ω)+ϕπ(ω)

)
P (dω)=EP

[
R(t)

]
, (t,P )∈[0,∞)×P

(
Ω
)

is B[0,∞)⊗B
(
P
(
Ω
))
−measurable. Then Corollary 4.1 and Proposition 7.47 of [14] yield

that V (t,x, y, z)= sup
P∈Pt,x(y,z)

V (t,P )= sup
(t,x,y,z,P )∈[[P]]

V (t,P ) is upper semi-analytic on D

and V (t,w,x, y, z)= sup
(t,w,x,y,z,P )∈{{P}}

V (t,P ) is upper semi-analytic on D. □

Proof of Proposition 5.1: Let us set tω :=γ(ω)≥t for any ω∈Ω.
1) We first demonstrate that for P−a.s. ω∈Ω, P t

γ,ω belongs to P1
tω,Xγ∧·(ω)∩P2

tω and thus
satisfies (D1) and (D2) in Definition 3.1 of Ptω,Xγ∧·(ω)

according to Part (2a) of the proof of
Proposition 4.1.
1a) By (D2) in Definition 3.1 of Pt,x, NX :=

{
ω ∈Ω : Xs(ω) ̸=X

t,x
s (ω) for some s∈

[0,∞)
}
∈NP

(
F t
∞
)
. As

{
X

t,x
s

}
s∈[t,∞)

is an FW
t
,P−adapted continuous process, one can

construct an Rl−valued FW
t

−predictable process
{
K

t
s

}
s∈[t,∞)

such that NK :=
{
ω∈Ω:

K
t
s(ω) ̸=X

t,x
s (ω) for some s∈ [t,∞)

}
∈NP

(
FW

t

∞
) (

see e.g. Lemma 2.4 of [62]
)
. Since

K
t
γ,ω := ∩

r∈Q∩(t,∞)

{
ω′∈Ω:K

t
γ∧r(ω

′)=K
t
γ∧r(ω)

}
is an FW

t

γ −measurable set including ω,

(5.3) shows that P t
γ,ω

(
K

t
γ,ω

)
=1, ∀ω∈N c

0.

Given ω∈
(
NX∪NK

)c, we can deduce from (5.4) that for any ω′∈Wt
γ,ω∩

(
NX∪NK

)c
ω∈Kt

γ,ω ⇐⇒ Xs(ω
′)=x(s), ∀s∈[0, t] and Kt

γ(ω)∧r(ω
′)=K

t
γ(ω)∧r(ω), ∀ r∈Q∩(t,∞)



OPTIMAL STOPPING WITH EXPECTATION CONSTRAINTS 27

⇐⇒ Xs(ω
′)=Xs(ω), ∀s∈[0, t] and Xγ(ω)∧r(ω

′)=Xγ(ω)∧r(ω), ∀ r∈Q∩(t,∞)

⇐⇒ Xr(ω
′)=Xγ∧r(ω), ∀ r∈[0, γ(ω)].(6.25)

And (5.2) shows that P t
γ,ω

(
NX∪NK

)
=EP

[
1NX∪NK

∣∣FW
t

γ

]
(ω)=0 for all ω∈Ω except on

a N̂X,K∈NP

(
FW

t

γ

)
.

Set N 1 :=NX ∪NK ∪N̂X,K ∈NP

(
F t
∞
)
. Given ω∈

(
N 0∪N 1

)c, taking P (·) in (6.25)
and using (5.5) yield that P t

γ,ω

{
ω′∈Ω: Xr(ω

′)=Xγ∧r(ω), ∀ r∈ [0, tω]
}
=1, i.e., P t

γ,ω ∈
P1

tω,Xγ∧·(ω).

1b) For any φ∈C(Rd+l) and q∈Qd, define a function φq(w,x):=φ(w−q,x), (w,x)∈Rd+l.
We set C :={φq : φ∈C(Rd+l), q∈Ql}, which is a countable sub-collection of C2(Rd+l). For
any n∈N, define an F

t−stopping time by ζn(ω):=inf
{
r∈[γ(ω),∞): |W t

r(ω)−W
t
γ(ω)|2+

|Xr(ω)|2≥n2
}
∧
(
γ(ω)+n

)
, ω∈Ω.

Let θ :=
(
ϕ,n, j, (s, r),{(si,Oi)}ki=1

)
∈C×N×N×Q2,<

+ ×Ô(Rd+l). Since
{
M

t
s∧τ t

j
(ϕ)

}
s∈[t,∞)

is a bounded (F
t
, P )−martingale by applying Proposition 1.2 with

(
Ω,F , P,B,X

)
=(

Ω,B(Ω), P ,W,X
)
, the optional sampling theorem implies that

EP

[
M

t
(γ+r)∧ζn∧τ t

j
(ϕ)

∣∣∣F t
γ+s

]
=M

t
(γ+s)∧ζn∧τ t

j
(ϕ), P−a.s.

Set ξθ :=M
t
(γ+r)∧ζn∧τ t

j
(ϕ)−M t

(γ+s)∧ζn∧τ t
j
(ϕ)=1{τ t

j>γ}
(
M

t
(γ+r)∧ζn∧τ t

j
(ϕ)−M t

(γ+s)∧ζn∧τ t
j
(ϕ)

)
and ηθ :=

k∏
i=1

1{(W t

γ+si∧s−W
t

γ ,Xγ+si∧s)∈Oi}∈F t
γ+s. As FW

t

γ ⊂F t
γ⊂F t

γ+s, the tower property

renders that EP

[
ξθηθ

∣∣FW
t

γ

]
=EP

[
ηθEP

[
ξθ
∣∣F t

γ+s

]∣∣∣FW
t

γ

]
=0, P−a.s. By (5.2) again, there

exists an N θ∈NP

(
FW

t

γ

)
such that

E
P

t

γ,ω

[
ξθηθ

]
=EP

[
ξθηθ

∣∣FW
t

γ

]
(ω)=0, ∀ω∈N c

θ.(6.26)

Define N 2 :=
⋃{

N θ : θ∈C ×N×N×Q2,<
+ ×Ô(Rd+l)

}
∈NP

(
F t
∞
)

and fix ω∈
(
N 0∪

N 1∪N 2

)c. We let
(
φ,n, (s, r),{(si,Oi)}ki=1

)
∈C(Rd+l)×N×Q2,<

+ ×Ô(Rd+l) and let j∈N.
There exists a sequence {qm=qm(ω)}m∈N of Qd that converges to W t

γ(ω).
Let m∈N. We set θm :=

(
φqm , n, j, (s, r),{(si,Oi)}ki=1

)
and define

δj,mω := sup
|(w,x)|≤j

( 2∑
i=0

∣∣Diφqm(w,x)−Diφ
(
w−W t

γ(ω), x
)∣∣)

= sup
|(w,x)|≤j

( 2∑
i=0

∣∣Diφ(w−qm, x)−Diφ
(
w−W t

γ(ω), x
)∣∣).

Given ω′∈W
t
γ,ω∩N c

X ∩
{
τ tj>γ

}
, (5.4) implies that τ tj(ω

′)>γ(ω′)= tω and ζn(ω′)=

inf
{
r∈[tω,∞): |W r(ω

′)−W tω(ω
′)|2+|Xr(ω

′)|2≥n2
}
∧
(
tω+n

)
=τ tωn (ω′). As W tω

r (ω′)=

W
t
r(ω

′)−W t
tω(ω

′)=W
t
r(ω

′)−W t
γ(ω), ∀ r∈[tω,∞), it holds for any tω≤s1≤s2<∞ that(

M
tω
s2 (φ)−M

tω
s1 (φ)

)
(ω′)=φ

(
W

t
s2(ω

′)−W t
γ(ω),Xs2(ω

′)
)
−φ

(
W

t
s1(ω

′)−W t
γ(ω),Xs1(ω

′)
)

−
∫ s2

s1

b
(
r,Xr∧·(ω

′)
)
·Dφ

(
W

t
r(ω

′)−W t
γ(ω),Xr(ω

′)
)
dr
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−1
2

∫ s2

s1

σ σT
(
r,Xr∧·(ω

′)
)
:D2φ(W

t
r(ω

′)−W t
γ(ω),Xr(ω

′))dr.

Since
∣∣(W t

r(ω
′),Xr(ω

′)
)∣∣≤j for any r∈[tω, τ tj(ω′)], an analogy to (6.1) shows that for any

tω≤s1≤s2≤τ tj(ω′)∣∣∣(M tω
s2 (φ)−M

tω
s1 (φ)−M

t
s2(φqm)+M

t
s1(φqm)

)
(ω′)

∣∣∣
≤2δj,mω +δj,mω

∫ τ t
j(ω

′)

t

(∣∣b(r,Xr∧·(ω
′)
)∣∣+1

2

∣∣σ(r,Xr∧·(ω
′)
)∣∣2)dr≤δj,mω (2+cjt,x),

where cjt,x :=
[
d/2+κ(t+j)(∥x∥t+j)+κ2(t+j)(∥x∥t+j)2

]
j+

∫ t+j
t

(
|b(r,0)|+|σ(r,0)|2

)
dr<

∞. Taking s1=
(
(γ+s)∧ζn∧τ tj

)
(ω′)=(tω+s)∧τ tωn (ω′)∧τ tj(ω′) and s2=(tω+r)∧τ tωn (ω′)∧

τ tj(ω
′) yields

∣∣∣(M tω
(tω+r)∧τ tω

n ∧τ t
j
(φ)−M

tω
(tω+s)∧τ tω

n ∧τ t
j
(φ)

)
(ω′)−ξθm(ω

′)
∣∣∣≤δj,mω (2 + cjt,x).

As ηθm(ω
′)=

k∏
i=1

1{(W tω
tω+si∧s(ω

′),Xtω+si∧s(ω′))∈Oi} by (5.4), we see from (5.5) that

E
P

t

γ,ω

[
1{τ t

j>γ}

∣∣∣(M tω
(tω+r)∧τ tω

n ∧τ t
j
(φ)−M tω

(tω+s)∧τ tω
n ∧τ t

j
(φ)

)
×

k∏
i=1

1{(W tω
tω+si∧s,Xtω+si∧s)∈Oi}−ξθmηθm

∣∣∣]≤δj,mω (2+cjt,x).

The uniform continuity of Diφ’s over compact sets implies lim
m→∞

↓ δj,mω =0, and one can
then deduce from (6.26) that

E
P

t

γ,ω

[
1{τ t

j>γ}

(
M

tω
(tω+r)∧τ tω

n ∧τ t
j
(φ)−M tω

(tω+s)∧τ tω
n ∧τ t

j
(φ)

) k∏
i=1

1{(W tω
tω+si∧s,Xtω+si∧s)∈Oi}

]
= lim

m→∞
E

P
t

γ,ω

[
ξθmηθm

]
=0.(6.27)

Since P t
γ,ω

{
ω′ ∈Ω : Xr(ω

′)=Xγ∧r(ω), ∀ r∈ [0, tω]
}
=1 by Part (1a), applying Proposi-

tion 1.2 with
(
Ω,F , P,B,X

)
=
(
Ω,B(Ω), P

t
γ,ω,W ,X

)
and (t,x)=

(
tω,Xγ∧·(ω)

)
renders

that
{
M

tω
s∧τ tω

n
(φ)

}
s∈[tω,∞)

is a bounded process under P t
γ,ω . As lim

j→∞
↑ τ tj(ω′)=∞ for any

ω′ ∈Ω, letting j→∞ in (6.27) and using the bounded convergence theorem, we obtain

that E
P

t

γ,ω

[(
M

tω
(tω+r)∧τ tω

n
(φ)−M tω

(tω+s)∧τ tω
n
(φ)

) k∏
i=1

1{(W tω
tω+si∧s,Xtω+si∧s)∈Oi}

]
=0. Hence,

P
t
γ,ω∈P

1
tω,Xγ∧·(ω)∩P

2
tω for any ω∈

(
N 0∪N 1∪N 2

)c.
2) We next show that for P−a.s. ω∈Ω, P t

γ,ω satisfies (D3) in Definition 3.1 of Ptω,Xγ∧·(ω)
.

By (D3) in Definition 3.1 of Pt,x, there is a [t,∞]−valued FW t,P0−stopping time τ̂
such that P

{
T = τ̂(W )

}
=1. Since Lemma A.2 (1) implies that τ̂(W ) is a [t,∞]−valued

FW
t
,P−stopping time on Ω, applying Lemma A.4 with (Pt, τ)=

(
{P}, τ̂

)
assures that there

exists A∗∈FW
t

γ satisfying {
τ̂(W )≥γ

}
∆A∗∈NP

(
FW

t

∞
)
.(6.28)

Let n, i∈N. Set sni := t+ i2
−n and An

i :=
{
sni−1≤ τ̂ <sni

}
∈FW t,P0

sni
with sn0 := t. Using

Lemma A.5, we can find N n
i ∈NP

(
FW

t

∞
)

such that for any (s,ω)∈ [t, sni ]×Ω, there exists
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As,ω
n,i ∈FW s

sni
satisfying 1{W (ω′)∈An

i }=1{W (ω′)∈As,ω
n,i }, ∀ω

′∈Wt
s,ω∩

(
N n

i

)c. For each ω∈{γ≤
sni }, taking s=tω yields some Aω

n,i=A
tω,ω
n,i ∈FW tω

sni
such that

1{W (ω′)∈An
i }=1{W (ω′)∈Aω

n,i}, ∀ω′∈Wt
γ,ω∩

(
N n

i

)c
.(6.29)

Set N τ̂ := ∪
n,i∈N

N n
i ∈NP

(
FW

t

∞
)
. By (5.2), it holds for any ω∈Ω except on an N 3 ∈

NP

(
FW

t

γ

)
that

P
t
γ,ω

((
{τ̂(W )≥γ}∆A∗

)
∪N τ̂∪

{
T ̸= τ̂(W )

})
=EP

[
1({τ̂(W )≥γ}∆A∗)∪N τ̂∪{T ̸=τ̂(W )}

∣∣∣FW
t

γ

]
(ω)=0.(6.30)

Fix ω∈N c
0∩N

c
3∩A∗. For any n∈N, set in(ω):=

⌊
2n(tω−t)

⌋
+1>2n(tω−t) and defines

a (tω,∞]−valued FW tω−stopping time:

τ̂ωn (ω0):=

∞∑
i=in(ω)

1{ω0∈Aω
n,i}s

n
i +∞1{

ω0∈
∞
∩

i=in(ω)
(Aω

n,i)
c

}, ∀ω0∈Ω0.

As FW tω ,P0 is a right-continuous complete filtration, Lemma I.2.11 of [36] implies that
τ̂ω(ω0):= lim

n→∞
τ̂ωn (ω0), ∀ω0∈Ω0 is a [tω,∞]−valued FW tω ,P0−stopping time.

Let ω′∈Wt
γ,ω∩N

c
τ̂∩

{
τ̂(W )≥γ

}
and n∈N. Since (5.4) shows that τ̂

(
W (ω′)

)
≥γ(ω′)=

tω , (6.29) renders that∑
i∈N

1{sni−1≤τ̂(W (ω′))<sni }s
n
i +∞1{τ̂(W (ω′))=∞}

=

∞∑
i=in(ω)

1{W (ω′)∈An
i }s

n
i +∞1{

W (ω′)∈
∞
∩

i=in(ω)
(An

i )
c

}
=

∞∑
i=in(ω)

1{W (ω′)∈Aω
n,i}s

n
i +∞1{

W (ω′)∈
∞
∩

i=in(ω)
(Aω

n,i)
c

}= τ̂ωn (W (ω′)
)
.

Sending n→∞ reaches that τ̂
(
W (ω′)

)
= lim

n→∞
↓ τ̂ωn (W (ω′))= τ̂ω(W (ω′)). So W

t
γ,ω∩N

c
τ̂∩{

τ̂(W )≥γ
}
∩
{
T = τ̂ω(W )

}
=W

t
γ,ω∩N c

τ̂ ∩
{
τ̂(W )≥γ

}
∩
{
T = τ̂(W )

}
. Since P t

γ,ω

{
T ̸=

τ̂(W )
}
=0, P t

γ,ω

(
{τ̂(W )≥ γ}∆A∗

)
=0 by (6.30) and since A∗ ∈FW

t

γ , we can deduce

from (5.5) and (5.3) that P t
γ,ω

({
τ̂(W )≥γ

}
∩
{
T = τ̂ω(W )

})
=P

t
γ,ω

({
τ̂(W )≥γ

}
∩
{
T =

τ̂(W )
})

=P
t
γ,ω

{
τ̂(W )≥γ

}
=P

t
γ,ω(A∗)=1{ω∈A∗}=1. Hence, for any ω∈N c

0∩N c
3∩A∗,

P
t
γ,ω

{
T= τ̂ω(W )

}
=1, i.e., P t

γ,ω satisfies (D3) in Definition 3.1 of Ptω,Xγ∧·(ω)
.

3) Let i∈N. According to (5.2), it holds for all ω∈Ω except on N i
g,h∈NP

(
FW

t

γ

)
that

E
P

t

γ,ω

[ ∫ T
T∧γ gi(r,Xr∧·)dr

]
=
(
Y

i
P (γ)

)
(ω) and E

P
t

γ,ω

[ ∫ T
T∧γ hi(r,Xr∧·)dr

]
=
(
Z

i
P (γ)

)
(ω).

Given ω∈
(
N 0∪N 3∪N i

g,h

)c
∩A∗, (5.4), (5.5) and P t

γ,ω

{
T= τ̂ω(W )≥tω

}
=1 from Part (2)

imply that
(
Y

i
P (γ)

)
(ω)=E

P
t

γ,ω

[ ∫ T
T∧γ gi(r,Xr∧·)dr

]
=E

P
t

γ,ω

[
1
W

t

γ,ω

∫ T
T∧tω gi(r,Xr∧·)dr

]
= E

P
t

γ,ω

[ ∫ T
tω
gi(r,Xr∧·)dr

]
and similarly that E

P
t

γ,ω

[ ∫ T
tω
hi(r,Xr∧·)dr

]
=

(
Z

i
P (γ)

)
(ω).
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Hence,

P
t
γ,ω∈Pγ(ω),Xγ∧·(ω)

((
YP (γ)

)
(ω),

(
ZP (γ)

)
(ω)

)
, ∀ω∈A∗∩N

c
∗,(6.31)

where N ∗ :=N 0 ∪N 1 ∪N 2 ∪N 3 ∪
(

∪
i∈N

N i
g,h

)
∈NP

(
F t
∞
)
. In particular, (5.6) holds for

P−null set N :=N ∗∪
{
T ̸= τ̂(W )

}
∪
(
{τ̂(W )≥γ}∆A∗

)
∈NP

(
B(Ω)

)
. □

Proof of Theorem 5.1: We first show the measurability of the random variable

1{T≥γ
P
}V

(
γ
P
,Xγ

P
∧·, YP

(
γ
P

)
,ZP

(
γ
P

))
for each P ∈Pt,x(y, z) so that the right hand side of (5.7) is well-defined.

Let P ∈Pt,x(y, z) and simply denote γ
P

by γ. Like in Part (1a) of the proof of Propo-

sition 5.1, we still set NX :=
{
ω∈Ω: Xs(ω) ̸=X

t,x
s (ω) for some s∈ [0,∞)

}
∈NP

(
F t
∞
)

and let
{
K

t
s

}
s∈[t,∞)

be the FW
t

−predictable process such that NK :=
{
ω∈Ω: K

t
s(ω) ̸=

X
t,x
s (ω) for some s∈ [t,∞)

}
∈NP

(
FW

t

∞
)
. Since X|[0,t) =x|[0,t) and X|[t,∞) =K

t on(
NX ∪NK

)c, one can deduce that the path-valued random variable Xγ∧· : Ω 7→Ω
X

is

σ
(
FW

t

γ ∪NP (F
t
∞)

)/
B(Ω

X
)−measurable.

Set Ω̆ :=[0,∞)×Ω
X
× ℜ × ℜ⊃D. Let τ̂ be the [t,∞]−valued FW t,P0−stopping time

with P
{
T= τ̂(W )

}
=1 and let A∗∈FW

t

γ , N ∗∈NP

(
F t
∞
)

be as in (6.28) and (6.31). For any

ω ∈ A∗ ∩N c
∗, we know from (6.31) that

(
γ(ω),Xγ∧·(ω),

(
Y P (γ)

)
(ω),

(
ZP (γ)

)
(ω)

)
∈D.

By the measurability of Xγ∧·,

Ψ̆(ω):=1{ω∈Ac

∗∪N ∗}(t,x, y, z)

+1{ω∈A∗∩N
c

∗}

(
γ(ω),Xγ∧·(ω),

(
Y P (γ)

)
(ω),

(
ZP (γ)

)
(ω)

)
∈D, ∀ω∈Ω(6.32)

is a σ
(
FW

t

γ ∪NP

(
F t
∞
))/

B(D)−measurable random variable, which induces a probability

measure P̆ :=P ◦ Ψ̆−1 on
(
Ω̆,B(Ω̆)

)
. Then Ψ̆ is further σ

(
FW

t

γ ∪NP (F
t
∞)

)/
σ
(
B(D)∪

NP̆

(
B(D)

))
−measurable.

As the universally measurable function (t′,x′, y′, z′) 7→ V (t′,x′, y′, z′) is σ
(
B(D) ∪

NP̆

(
B(D)

))/
B[−∞,∞]−measurable by Theorem 4.1,

V̆ (ω):=1{ω∈A∗∩N
c

∗}V
(
Ψ̆(ω)

)
= 1{ω∈A∗∩N

c

∗}V
(
γ(ω),Xγ∧·(ω),

(
Y P (γ)

)
(ω),

(
ZP (γ)

)
(ω)

)
, ∀ω∈Ω(6.33)

is σ
(
FW

t

γ ∪NP

(
F t
∞
))/

B[−∞,∞]−measurable. We see from (6.28) that (A∗∩N c
∗)∆{T≥

γ}⊂
(
A∗∆{T≥γ}

)
∪N ∗⊂

(
A∗∆{τ̂(W )≥γ}

)
∪ {T ̸= τ̂(W )} ∪N ∗∈NP

(
B(Ω)

)
, where τ̂

is the FW t,P0−stopping time with P
{
T= τ̂(W )

}
=1. It follows that

1{T (ω)≥γ(ω)}V
(
γ(ω),Xγ∧·(ω),

(
Y P (γ)

)
(ω),

(
ZP (γ)

)
(ω)

)
, ω∈Ω

is σ
(
FW

t

γ ∪NP

(
B(Ω)

))/
B[−∞,∞]− measurable and the right hand side of (5.7) is thus

well-defined.
For any [t,∞)−valued FW

t

−stopping time ζ , we denote

R(ζ):=

∫ T

T∧ζ
f(r,Xr∧·)dr+1{T<∞}π

(
T ,XT∧·

)
.
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(I) (sub-solution side) Fix P ∈Pt,x(y, z) and simply denote γ
P

by γ.

Let τ̂ be the [t,∞]−valued FW t,P0−stopping time with P
{
T = τ̂(W )

}
=1 and let A∗∈

FW
t

γ , N ∗∈NP

(
F t
∞
)

be as in (6.28) and (6.31). By (5.2), there is a N f,π∈NP

(
FW

t

γ

)
such

that E
P

t

γ,ω

[
R(γ)

]
=EP

[
R(γ)

∣∣FW
t

γ

]
(ω) for any ω∈N c

f,π . For any ω∈A∗∩
(
N ∗∪N f,π

)c, as

N 0⊂N ∗, (5.4), (5.5) and (6.31) imply that

EP

[
R(γ)

∣∣FW
t

γ

]
(ω)=E

P
t

γ,ω

[
R(γ)

]
=E

P
t

γ,ω

[
1Wγ,ω

R(γ(ω))
]
=E

P
t

γ,ω

[
R(γ(ω))

]
≤V

(
γ(ω),Xγ∧·(ω),

(
YP (γ)

)
(ω),

(
ZP (γ)

)
(ω)

)
.

Since 1{T≥γ}=1{τ̂(W )≥γ}=1A∗
, P−a.s. by (6.28) and since A∗∈FW

t

γ , the tower prop-
erty renders that

EP

[
1{T≥γ}V

(
γ,Xγ∧·, YP (γ),ZP (γ)

)]
=EP

[
1A∗

V
(
γ,Xγ∧·, YP (γ),ZP (γ)

)]
≥EP

[
1A∗

EP

[
R(γ)

∣∣FW
t

γ

]]
=EP

[
EP

[
1A∗

R(γ)
∣∣FW

t

γ

]]
=EP

[
1{T≥γ}R(γ)

]
.

It follows that EP

[
R(t)

]
≤EP

[
1{T≥γ}

(∫ γ
t f(r,Xr∧·)dr+V

(
γ,Xγ∧·, YP (γ),ZP (γ)

))
+

1{T<γ}R(t)
]
. Letting P vary over Pt,x(y, z) yields that

V (t,x, y, z)= sup
P∈Pt,x(y,z)

EP

[
R(t)

]
≤ sup
P∈Pt,x(y,z)

EP

[
1{T<γ

P
}

(∫ T

t
f(r,Xr∧·)dr+π

(
T ,XT∧·

))
+1{T≥γ

P
}

(∫ γ
P

t
f(r,Xr∧·)dr+V

(
γ
P
,Xγ

P
∧·, YP (γP

),ZP (γP
)
))]

.

(II) (super-solution side) Let P ∈Pt,x(y, z) and simply denote γP by γ. We shall show that

V (t,x, y, z)≥EP

[
1{T<γ}R(t)+1{T≥γ}

(∫ γ

t
f(r,Xr∧·)dr

+V
(
γ,Xγ∧·, YP (γ),ZP (γ)

))]
.(6.34)

As FW
t

t ={∅,Ω}, the [t,∞)−valued FW
t

−stopping time γ satisfies either {γ=t}=Ω or
{γ>t}=Ω.

Suppose first that {γ= t}=Ω: for any i∈N, Y i
P (t)=EP

[ ∫ T
T∧t gi(r,Xr∧·)dr

∣∣FW
t

t

]
=

EP

[ ∫ T
t gi(r,Xr∧·)dr

]
≤yi and Zi

P (t)=EP

[ ∫ T
t hi(r,Xr∧·)dr

]
=zi. Then

EP

[
1{T<γ}R(t)+1{T≥γ}

(∫ γ

t
f(r,Xr∧·)dr+V

(
γ,Xγ∧·, YP (γ),ZP (γ)

))]
=EP

[
V
(
t,Xt∧·, YP (t),ZP (t)

)]
≤V

(
t,x, y, z

)
.

Let us assume
{
γ > t

}
=Ω in the rest of this proof and set NX :=

{
ω∈Ω : Xs(ω) ̸=

X
t,x
s (ω) for some s∈[0,∞)

}
∈NP

(
F t
∞
)
.

II.a) Define a random variable W t,γ
: Ω 7→Ω0 by W t,γ

r (ω):=W
t(
(r∨t)∧γ(ω), ω

)
, ∀ (r,ω)∈

[0,∞)×Ω, which is clearly FW
t

γ

/
B(Ω0)−measurable.
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Set Ω̈:=[0,∞)×Ω0×Ω
X
×ℜ×ℜ⊃D and pick up an arbitrary element w from Ω0. We

let τ̂ be the [t,∞]−valued FW t,P0−stopping time with P
{
T= τ̂(W )

}
=1 and let A∗∈FW

t

γ ,

N ∗∈NP

(
F t
∞
)

be as in (6.28) and (6.31). Since (t,x, y, z)∈D, Theorem 3.1 and (6.31) show

that (t,w,x, y, z)∈D and that
(
γ(ω),W

t,γ
(ω),Xγ∧·(ω),

(
Y P (γ)

)
(ω),

(
ZP (γ)

)
(ω)

)
∈D

for any ω∈A∗∩N
c
∗. Similarly to (6.32),

Ψ̈(ω):=1{ω∈Ac

∗∪N ∗}(t,w,x, y, z)

+1{ω∈A∗∩N
c

∗}

(
γ(ω),W

t,γ
(ω),Xγ∧·(ω),

(
YP (γ)

)
(ω),

(
ZP (γ)

)
(ω)

)
∈D,(6.35)

∀ω ∈Ω is σ
(
FW

t

γ ∪NP (F
t
∞)

)/
B(D)−measurable, which induces a probability mea-

sure P̈ := P ◦ Ψ̈−1 on
(
Ω̈,B(Ω̈)

)
. Then Ψ̈ is further σ

(
FW

t

γ ∪NP (F
t
∞)

)/
σ
(
B(D)∪

NP̈ (B(D))
)
−measurable.

II.b) Fix ε∈(0,1) through Part (II.e).
According to Jankov-von Neumann Theorem (Proposition 7.50 of [14]), Corollary 4.1 and

Theorem 4.1, there exists an analytically measurable function Qε : D 7→P
(
Ω
)

such that for
any (t,w, x,y, z)∈D, Qε(t,w, x,y, z) belongs to Pt,w,x(y, z) and satisfies

EQε(t,w,x,y,z)

[
R(t)

]
≥
{
V (t,w, x,y, z)−ε, if V (t,w, x,y, z)<∞;
1/ε, if V (t,w, x,y, z)=∞.

(6.36)

As Qε is universally measurable, it is also σ
(
B(D)∪NP̈ (B(D))

)/
B
(
P
(
Ω
))
−measurable,

Q
ω
ε :=1{ω∈Ac

∗∪N ∗}P+1{ω∈A∗∩N
c

∗}Qε

(
Ψ̈(ω)

)
, ∀ω∈Ω

is thus σ
(
FW

t

γ ∪NP (F
t
∞)

)/
B
(
P
(
Ω
))
−measurable.

Given a [0,∞]−valued B(Ω)−measurable random variable ϕ, Proposition 7.25 of [14]
implies that the mapping P

(
Ω
)
∋Q 7→EQ

[
ϕ
]

is B
(
P
(
Ω
))
−measurable. The measurability

of
{
Q

ω
ε

}
ω∈Ω renders that

the random variable Ω ∋ ω 7→E
Q

ω

ε

[
ϕ
]

is σ
(
FW

t

γ ∪NP

(
F t
∞
))

−measurable.(6.37)

Let ω∈A∗∩N
c
∗ and denote tω :=γ(ω). We know from (6.35) that

Q
ω
ε =Qε

(
Ψ̈(ω)

)
∈P

γ(ω),W
t,γ

(ω),Xγ∧·(ω)

((
YP (γ)

)
(ω),

(
ZP (γ)

)
(ω)

)
.(6.38)

By (D3) in Definition 3.1 of Pt,x, there is a [tω,∞]−valued FW tω ,P0−stopping time τ̂ω with

Q
ω
ε

({
T= τ̂ω(W )

})
=1.(6.39)

Set Ωt
γ,ω :=

{
ω′∈Ω: (Ws,Xs)(ω

′)=(W
t,γ
s ,Xs)(ω), ∀s∈[0, γ(ω)]

}
and Ξ

t
γ,ω :=

{
ω′∈Ω:

W
t
s(ω

′)=W
t
s(ω), ∀s∈

[
t, γ(ω)

]
; Xs(ω

′)=Xs(ω), ∀s∈ [0, γ(ω)]
}

. Since Ω
t
γ,ω⊂

{
ω′∈Ω:

Ws(ω
′)=0, ∀s∈ [0, t];Ws(ω

′)=W
t
s(ω), ∀s∈(t, γ(ω)];Xs(ω

′)=Xs(ω), ∀s∈ [0, γ(ω)]
}
⊂

Ξ
t
γ,ω⊂W

t
γ,ω , we see from (6.38) that

Q
ω
ε

(
Ω
t
γ,ω

)
=1, and thus Q

ω
ε

(
W

t
γ,ω

)
=Q

ω
ε

(
Ξ
t
γ,ω

)
=1.(6.40)

Let A∈B(Ω). We claim that

Q
ω
ε (A∩A)=1{ω∈A}Q

ω
ε (A), ∀A∈F t

γ , ∀ω∈A∗∩N
c
∗.(6.41)
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To see this, we take A∈F t
γ . Let ω1∈A∩A∗∩N

c
∗ and set s1 :=γ(ω1). Since A∩{γ≤s1} is

an F t
s1−measurable set including ω1, one can deduce that

Ξ
t
γ,ω1

=
{
ω′∈Ω:W

t
r(ω

′)=W
t
r(ω1), ∀ r∈[t, s1]; Xr(ω

′)=Xr(ω1), ∀ r∈[0, s1]
}

is also contained in A∩{γ≤s1}.(6.42)

By (6.40), Qω1

ε

(
A
)
=1 and thus Qω1

ε

(
A∩A

)
=Q

ω1

ε

(
A
)
=1{ω1∈A}Q

ω1

ε (A). We next let ω2∈
Ac∩A∗∩N c

∗ and set s2 :=γ(ω2). As Ac∩{γ≤s2} is an F t
s2−measurable set including

ω2, Ξt
γ,ω2

=
{
ω′∈Ω:W

t
r(ω

′)=W
t
r(ω2), ∀ r∈ [t, s2]; Xr(ω

′)=Xr(ω2), ∀ r∈ [0, s2]
}

is also

included in Ac∩{γ≤s2}. We correspondingly have Qω2

ε (Ac
)=1 and thus Qω2

ε

(
A∩A

)
=0=

1{ω2∈A}Q
ω2

ε (A).
Consider a pasted probability measure P ε∈P

(
Ω
)
:

P ε(A):=P
(
Ac

∗∩A
)
+

∫
ω∈A∗

Q
ω
ε (A)P (dω), ∀A∈B(Ω).(6.43)

In particular, taking A=Ω in (6.41) renders that

P ε(A)=P
(
Ac

∗∩A
)
+

∫
ω∈A∗

1{ω∈A}P (dω)=P (A), ∀A∈F t
γ .(6.44)

In the next three parts, we demonstrate that P ε also belongs to Pt,x(y, z), i.e., the proba-
bility class Pt,x(y, z) is stable under the pasting (6.43).

II.c) We first show that P ε is of P1
t,x∩P

2
t and thus satisfies (D1) and (D2) in Definition 3.1

of Pt,x.
II.c.1) Set ΩX :=

{
Xs=x(s), ∀s∈[0, t]

}
. By the proof of Proposition 5.1, Ωc

X⊂NX=
{
ω∈

Ω: Xs(ω) ̸=X
t,x
s (ω) for some s∈ [0,∞)

}
⊂N 1⊂N ∗. Given ω∈A∗∩N c

∗⊂ΩX , one has
Xs(ω)=x(s), ∀s∈ [0, t] and thus Ω

t
γ,ω⊂

{
ω′∈Ω: Xs(ω

′)=Xs(ω), ∀s∈ [0, t]
}
=ΩX . As

P
(
ΩX

)
≥P (N c

∗)=1, (6.40) implies that P ε

(
ΩX

)
=P

(
Ac

∗∩ΩX

)
+
∫
ω∈A∗∩N

c

∗
1 ·P (dω)=

P
(
Ac

∗
)
+P (A∗)=1, i.e., P ε∈P

1
t,x.

II.c.2) We need some technical preparation for checking P ε∈P2
t : Let ω∈A∗∩N c

∗ and set
aω :=

(
−W t

γ(ω),0
)
∈Rd+l. We define an F

tω−stopping time ζ
n
ω(ω

′) := inf
{
s∈ [tω,∞) :∣∣(W tω

s ,Xs)(ω
′)−aω

∣∣≥n}, ω′∈Ω.
Given φ∈C(Rd+l), define a C2(Rd+l) function φω(w,x) :=φ

(
w+W

t
γ(ω), x

)
, (w,x)∈

Rd+l. For i=0,1,2 and ω′∈Wt
γ,ω , sinceDiφ

(
W

t
r(ω

′),Xr(ω
′)
)
=Diφ

(
W

t
r(ω

′)−W t
(γ(ω), ω′)

+W
t
(γ(ω), ω),Xr(ω

′)
)
=Diφω

(
W

tω
r (ω′),Xr(ω

′)
)
, ∀ r∈[tω,∞), one has(

M
t
r2(φ)−M

t
r1(φ)

)
(ω′)=

(
M

tω
r2 (φω)−M

tω
r1 (φω)

)
(ω′), ∀ tω≤r1≤r2<∞.(6.45)

Let
{
X
ω
s =X

tω,Xγ∧·(ω)
s

}
s∈[0,∞)

be the
{
FW

tω ,Q
ω

ε

s∨tω

}
s∈[0,∞)

−adapted continuous process

that uniquely solves the following SDE on
(
Ω,B(Ω),Q

ω
ε

)
:

X s=Xγ(ω)+

∫ s

tω

b(r,X r∧·)dr+

∫ s

tω

σ(r,X r∧·)dWr, s∈[tω,∞)
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with initial condition X s =Xs(ω), ∀s∈ [0, tω]. By (6.38), N ω
X :=

{
ω′ ∈Ω : Xs(ω

′) ̸=
X
ω
s (ω

′) for some s∈ [0,∞)
}
∈N

Q
ω

ε

(
F tω

∞
)
. And there exists an Rl−valued FW

tω− pre-

dictable process
{
Kω

s

}
s∈[tω,∞)

such that N ω
K :=

{
ω′ ∈Ω : Kω

s (ω
′) ̸=X

ω
s (ω

′) for some s∈

[tω,∞)
}
∈N

Q
ω

ε

(
FW

tω

∞
)
.

Let (φ,n)∈C(Rd+l)×N, (s, r)∈Q2,<
+ and {(si,Oi)}ki=1⊂

(
Q∩[0, s]

)
×O(Rd+l). Denote

M
t,n
s (φ):=M

t
s∧τ t

n
(φ), s∈[t,∞) and set Â:=

k
∩
i=1

(W
t
t+si ,Xt+si)

−1(Oi)∈F
t
t+s.

(i) To verify EP ε

[(
M

t,n
t+r(φ)−M

t,n
t+s(φ)

)
1Â

]
=0, we first show that

EP ε

[
1{γ>t+s}

(
M

t,n
t+r(φ)−M

t,n
t+s(φ)

)
1Â

]
=0.(6.46)

Since {γ > t+ s} ∩ Â= {γ > t+ s} ∩
( k

∩
i=1

(W
t
γ∧(t+si),Xγ∧(t+si))

−1(Oi)
)
∈F t

γ∧(t+s)

and M
t,n
γ∧(t+r)(φ)−M

t,n
γ∧(t+s)(φ)∈F t

γ∧(t+r) ⊂F t
γ , using (6.44) and applying (3.2) with(

a, ζ1, ζ2
)
=
(
0, γ∧(t+s), γ∧(t+r)

)
yield that

EP ε

[(
M

t,n
γ∧(t+r)(φ)−M

t,n
t+s(φ)

)
1{γ>t+s}∩Â

]
=EP

[(
M

t
τ t
n∧γ∧(t+r)(φ)−M

t
τ t
n∧γ∧(t+s)(φ)

)
1{γ>t+s}∩Â

]
=0.(6.47)

And (6.41) implies that

EP ε

[(
M

t,n
t+r(φ)−M

t,n
γ∧(t+r)(φ)

)
1{γ>t+s}∩Â

]
=EP ε

[(
M

t,n
γ∨(t+r)(φ)−M

t,n
γ (φ)

)
1{γ>t+s}∩Â

]
=EP

[
1Ac

∗

(
M

t,n
γ∨(t+r)(φ)−M

t,n
γ (φ)

)
1{γ>t+s}∩Â

]
+

∫
ω∈A∗

1{γ(ω)>t+s}1{ω∈Â}EQ
ω

ε

[
M

t,n
γ∨(t+r)(φ)−M

t,n
γ (φ)

]
P (dω).(6.48)

Taking
(
a, ζ1, ζ2

)
=
(
0, γ, γ∨(t+r)

)
in (3.2) renders that

EP

[
1Ac

∗

(
M

t,n
γ∨(t+r)(φ)−M

t,n
γ (φ)

)
1{γ>t+s}∩Â

]
=EP

[
1Ac

∗

(
M

t
τ t
n∧(γ∨(t+r))(φ)−M

t
τ t
n∧γ(φ)

)
1{γ>t+s}∩Â

]
=0.(6.49)

Fix ω∈
{
τ tn>γ

}
∩A∗∩N

c
∗ and set rω :=tω∨(t+r). As tω=γ(ω)<τ tn(ω)≤t+n, nω :=⌈t+

n−tω⌉∈N. Using (3.2) with (t,x, P ,φ,n,a, ζ1, ζ2)=
(
tω,Xγ∧·(ω),Q

ω
ε ,φω, nω,aω, tω, rω∧

(t+n)
)

yields that

0=E
Q

ω

ε

[
M

tω

ζ
n

ω∧(tω+n
ω
)∧r

ω
∧(t+n)(φω)−M

tω

ζ
n

ω∧(tω+n
ω
)∧tω(φω)

]
=E

Q
ω

ε

[
M

tω

ζ
n

ω∧rω∧(t+n)(φω)−M
tω
tω(φω)

]
.(6.50)

Because ω∈
{
ω′∈Ω: τ tn(ω

′)>γ(ω)
}
∈F t

γ(ω), an analogy to (6.42) shows that Ξt
γ,ω⊂{

ω′ ∈Ω : τ tn(ω
′)> γ(ω)

}
. Let ω′ ∈ Ξ

t
γ,ω . Since inf

{
s ∈ [t,∞) :

∣∣(W t
s,Xs)(ω

′)
∣∣≥ n

}
≥

τ tn(ω
′)>γ(ω), one has

∣∣(W t
s,Xs)(ω

′)
∣∣<n, ∀s∈[t, tω] and thus

inf
{
s∈[t,∞): |(W t

s,Xs)(ω
′)|≥n

}
=inf

{
s∈[tω,∞):

∣∣W t
s(ω

′)−W t
(γ(ω), ω′),Xs(ω

′)
)
+
(
W

t
γ(ω),0

)∣∣≥n}=ζnω(ω′).
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It follows that τ tn(ω
′)=ζ

n
ω(ω

′)∧(t+n). Taking (r1, r2)=
(
tω, τ

t
n(ω

′)∧rω
)

in (6.45), we can
deduce from (5.4) that(

M
t
(φ)

)(
τ tn(ω

′)∧(γ(ω′)∨(t+r)), ω′)−(
M

t
(φ)

)(
γ(ω′), ω′)

=
(
M

t
(φ)

)(
τ tn(ω

′)∧(γ(ω)∨(t+r)), ω′)−(
M

t
(φ)

)(
γ(ω), ω′)

=
(
M

tω
(φω)

)(
τ tn(ω

′)∧rω, ω
′)−(

M
tω
(φω)

)
(tω, ω

′)

=
(
M

tω
(φω)

)(
ζ
n
ω(ω

′)∧(t+n)∧rω, ω
′)−(

M
tω
(φω)

)
(tω, ω

′).

As {τ tn>γ}∈F
t
τ t
n∧γ⊂F t

γ , (6.41), (6.40), and (6.50) then imply that

E
Q

ω

ε

[
M

t,n
γ∨(t+r)(φ)−M

t,n
γ (φ)

]
=E

Q
ω

ε

[
1{τ t

n>γ}
(
M

t
τ t
n∧(γ∨(t+r))(φ)−M

t
γ(φ)

)]
=1{τ t

n(ω)>γ(ω)}EQ
ω

ε

[
M

t
τ t
n∧(γ∨(t+r))(φ)−M

t
γ(φ)

]
=1{τ t

n(ω)>γ(ω)}EQ
ω

ε

[
M

tω

ζ
n

ω∧(t+n)∧r
ω
(φω)−M

tω
tω(φω)

]
=0, ∀ω∈A∗∩N

c
∗.

So
∫
ω∈A∗

1{γ(ω)>t+s}1{ω∈Â}EQ
ω

ε

[
M

t,n
γ∨(t+r)(φ)−M

t,n
γ (φ)

]
P (dω)=0, which together with

(6.47)−(6.49) leads to (6.46).
(ii) If s=0, as {γ>t}=Ω, (6.46) directly gives EP ε

[(
M

t,n
t+r(φ)−M

t,n
t (φ)

)
1Â

]
=0.

Next, let s>0. In this case, we can assume with loss of generality that 0= s1< · · ·<
sk=s with k≥2. As Ac

∗∈FW
t

γ ⊂F t
γ , one has Ac

∗∩{γ≤t+s}∈F t
t+s. Applying (3.2) with

(a, ζ1, ζ2)=(0, t+s, t+r) yields that

EP

[
1Ac

∗∩{γ≤t+s}
(
M

t,n
t+r(φ)−M

t,n
t+s(φ)

)
1Â

]
=EP

[
1Ac

∗∩{γ≤t+s}
(
M

t
τ t
n∧(t+r)(φ)−M

t
τ t
n∧(t+s)(φ)

)
1Â

]
=0.(6.51)

Fix i∈{1, · · ·, k−1} and fix ω∈
{
τ tn>γ

}
∩
{
t+si<γ≤t+si+1

}
∩A∗∩N

c
∗. Since W

t
γ,ω⊂

{γ>t+si} by (5.4), Ai :=
i
∩
j=1

(
W

t
γ∧(t+sj),Xγ∧(t+sj)

)−1
(Oj)∈F

t
γ satisfies

W
t
γ,ω∩

( i
∩
j=1

(
W

t
t+sj ,Xt+sj

)−1
(Oj)

)
=W

t
γ,ω∩Ai.(6.52)

Also, (5.4) shows that Wt
γ,ω⊂{γ≤t+s} and thus Wt

γ,ω∩{τ tn≤γ}⊂{τ tn≤t+s}. By (6.40),

E
Q

ω

ε

[
1{τ t

n≤γ}
(
M

t,n
t+r(φ)−M

t,n
t+s(φ)

)
1Â

]
≤E

Q
ω

ε

[
1{τ t

n≤t+s}
(
M

t
τ t
n∧(t+r)(φ)−M

t
τ t
n∧(t+s)(φ)

)
1Â

]
=0.(6.53)

Define Aω
i :=

k
∩

j=i+1

(
W

tω
t+sj ,K

ω
t+sj

)−1
(Oj,ω)∈FW

tω

t+s with Oj,ω :=
{
x+ aω : x∈Oj

}
∈

B(Rd+l). Since tω=γ(ω)<τ tn(ω)≤t+n and since tω≤t+si+1≤t+s, we set nω as in Step (i)

and using (3.2) with (t,x, P ,φ,n,a, ζ1, ζ2)=
(
tω,Xγ∧·(ω),Q

ω
ε ,φω, nω,aω, t+n∧s, t+n∧r

)
renders that

0=E
Q

ω

ε

[(
M

tω

ζ
n

ω∧(tω+n
ω
)∧(t+n∧r)(φω)−M

tω

ζ
n

ω∧(tω+n
ω
)∧(t+n∧s)(φω)

)
1Aω

i

]
=E

Q
ω

ε

[(
M

tω

ζ
n

ω∧(t+n∧r)(φω)−M
tω

ζ
n

ω∧(t+n∧s)(φω)
)
1Aω

i

]
.(6.54)
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Given j ∈{i+1, · · ·, k} and ω′ ∈W
t
γ,ω ∩

(
N ω

X ∪N ω
K

)c, we can derive that (W
t
,X)(t+

sj , ω
′)∈Oj if and only if

(
W

tω
,Kω

)
(t+sj , ω

′)=
(
W

t
t+sj (ω

′)−W t(
γ(ω), ω′),Xω

t+sj (ω
′)
)
=

(W
t
,X)(t+sj , ω

′)+aω∈Oj,ω . So (6.52) implies that

Â∩Wt
γ,ω∩

(
N ω

X∪N ω
K

)c
=Ai∩Aω

i ∩W
t
γ,ω∩

(
N ω

X∪N ω
K

)c
.(6.55)

Let ω′∈Ξt
γ,ω . Like in Step (i), we still have τ tn(ω

′)=ζ
n
ω(ω

′)∧(t+n) since γ(ω)<τ tn(ω).

Taking (r1, r2)=
(
τ tn(ω

′)∧(t+s), τ tn(ω
′)∧(t+r)

)
in (6.45) shows that

(
M

t
(φ)

)(
τ tn(ω

′)∧(t+
r), ω′)−(M t

(φ)
)(
τ tn(ω

′)∧(t+s), ω′)=(
M

tω
(φω)

)(
ζ
n
ω(ω

′)∧(t+n∧r), ω′)−(M tω
(φω)

)(
ζ
n
ω(ω

′)

∧(t+n∧s), ω′). Then we can deduce from (6.53), (6.55), (6.40), (6.41) and (6.54) that for
any ω∈{t+si<γ≤t+si+1}∩A∗∩N

c
∗

E
Q

ω

ε

[(
M

t,n
t+r(φ)−M

t,n
t+s(φ)

)
1Â

]
=E

Q
ω

ε

[
1{τ t

n>γ}
(
M

t,n
t+r(φ)−M

t,n
t+s(φ)

)
1Â

]
=E

Q
ω

ε

[
1Ai∩Aω

i
1{τ t

n>γ}
(
M

t
τ t
n∧(t+r)(φ)−M

t
τ t
n∧(t+s)(φ)

)]
=1{ω∈Ai}1{τ t

n(ω)>γ(ω)}EQ
ω

ε

[(
M

tω

ζ
n

ω∧(t+n∧r)(φω)−M
tω

ζ
n

ω∧(t+n∧s)(φω)
)
1Aω

i

]
=0,

and thus
∫
ω∈A∗

1{t+si<γ(ω)≤t+si+1}EQ
ω

ε

[(
M

t,n
t+r(φ)−M

t,n
t+s(φ)

)
1Â

]
P (dω)=0. Taking sum-

mation from i=1 through i=k−1, we obtain from (6.51) that

EP ε

[
1{γ≤t+s}

(
M

t,n
t+r(φ)−M

t,n
t+s(φ)

)
1Â

]
=EP

[
1Ac

∗∩{γ≤t+s}∩Â
(
M

t,n
t+r(φ)−M

t,n
t+s(φ)

)]
+

∫
ω∈A∗

1{γ(ω)≤t+s}EQ
ω

ε

[(
M

t,n
t+r(φ)−M

t,n
t+s(φ)

)
1Â

]
P (dω)=0.

Adding it to (6.46) yield EP ε

[(
M

t,n
t+r(φ)−M

t,n
t+s(φ)

)
1Â

]
=0.

Hence, P ε∈P2
t . According to Part (2a) of the proof of Proposition 4.1, P ε satisfies (D1)

and (D2) in Definition 3.1 of Pt,x.

II.d) In this part, we show that P ε

{
T= τ̂ε(W )

}
=1 for some [t,∞]−valued FW t,P0−stopping

time τ̂ε, i.e., P ε satisfies (D3) in Definition 3.1 of Pt,x.
II.d.1) For any s∈ [t,∞), there is a [0,1]−valued FW t

s −measurable random variable ϑεs on
Ω0 such that

ϑεs
(
W (ω)

)
=EP ε

[
1{γ≤s}1{T∈[γ,s]}

∣∣FW
t

s

]
(ω), ∀ω∈Ω.(6.56)

Since W t is a Brownian motion under P ε by Part (II.c), applying Lemma A.1 with t0= t,
(Ω1,F1, P1,B

1)=
(
Ω,B(Ω), P ε,W

)
, (Ω2,F2, P2,B

2)=
(
Ω0,B(Ω0), P0,W

)
and Φ=W

yields that
{
ϑεs(W )

}
s∈[t,∞)

is an FW
t

−adapted process and that EP0
[ϑεs]=EP ε

[
ϑεs(W )

]
=

EP ε

[
1{γ≤s}1{T∈[γ,s]}

]
is right-continuous in s∈ [t,∞). As FW t,P0 is a right-continuous

complete filtration, the process {ϑεs}s∈[t,∞) admits a [0,1]−valued FW t,P0−adapted càdlàg
modification

{
ϑ̂εs
}
s∈[t,∞)

. Define a [t,∞]−valued FW t,P0−stopping time by

ε(ω0):=inf
{
s∈[t,∞): ϑ̂εs(ω0)=1

}
.(6.57)

As W t is also a Brownian motion under P ε by Part (II.c), using Lemma A.1 with t0=t,
(Ω1,F1, P1,B

1)=
(
Ω,B(Ω), P ε,W

)
, (Ω2,F2, P2,B

2)=
(
Ω0,B(Ω0), P0,W

)
and Φ=W

implies that τ̂(W ) and ε(W ) are [t,∞]−valued FW
t
,P ε−stopping times. Then

τ ε := τ̂(W )1{τ̂(W )<γ}+
(

ε(W )∨γ
)
1{τ̂(W )≥γ}
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is also a [t,∞]−valued FW
t
,P ε−stopping time. According to Lemma A.4, there exists two

[t,∞]−valued B(Ω)−measurable random variables ξ and ξε such that

both
{
τ̂(W ) ̸=ξ

}
and

{
ε(W ) ̸=ξε

}
belong to NP

(
FW

t

∞
)
∩NP ε

(
FW

t

∞
)
.(6.58)

We can also update (6.28) to:{
τ̂(W )≥γ

}
∆A∗∈NP

(
FW

t

∞
)
∩NP ε

(
FW

t

∞
)
.(6.59)

Since Qω
ε

(
Ac

∗∩{T = ξ}
)
=1{ω∈Ac

∗}Q
ω
ε {T = ξ}=0, ∀ω∈A∗∩N c

∗ by (6.41), one has
P ε

(
Ac

∗∩{T=ξ}
)
=P

(
Ac

∗∩{T=ξ}
)
. It follows from (6.59), (6.58) and P

{
T= τ̂(W )

}
=1

that

P ε

(
Ac

∗∩{T=τ ε}
)
=P ε

(
{τ̂(W )<γ}∩{T=τ ε}

)
=P ε

(
{τ̂(W )<γ}∩{T= τ̂(W )}

)
=P ε

(
Ac

∗∩{T=ξ}
)
=P

(
Ac

∗∩{T=ξ}
)
=P

(
Ac

∗∩{T= τ̂(W )}
)
=P

(
Ac

∗
)
.(6.60)

II.d.2) We next show that P ε

(
A∗∩{T=τ ε}

)
=P (A∗) and thus P ε{T=τ ε}=1.

As
{

ε(W ) ̸= ξε
}
∈NP ε

(
FW

t

∞
)
, there exists Aε

ξ ∈FW
t

∞ ⊂B(Ω) such that
{

ε(W ) ̸=
ξε
}
⊂A

ε
ξ and P ε

(
A

ε
ξ

)
= 0. By (6.37), the random variable ω 7→Q

ω
ε

(
A

ε
ξ

)
is σ

(
FW

t

γ ∪

NP

(
F t
∞
))

−measurable. Since 0≤
∫
ω∈A∗

Q
ω
ε

(
A

ε
ξ

)
P (dω)≤P ε

(
A

ε
ξ

)
=0, we can find N ε

ξ∈

NP

(
F t
∞
)

such that

Q
ω
ε

(
A

ε
ξ

)
=0 and thus Qω

ε

{
ε(W ) ̸=ξε

}
=0, ∀ω∈A∗∩

(
N ε

ξ

)c
.(6.61)

Let s∈Q ∩ [t,∞) and pick a countable Pi-system
{
Oj

}
j∈N that generates FW

t

s . We also

let j∈N andA∈FW
t

γ . As A∗∩A∩{γ ≤ s}∈FW
t

s , it holds P ε−a.s. that 1A∗∩A∩Oj
ϑεs(W )=

1A∗∩A∩Oj∩{γ≤s}EP ε

[
1{T∈[γ,s]}

∣∣FW
t

s

]
=EP ε

[
1A∗∩A∩Oj

1{γ≤s}1{T∈[γ,s]}
∣∣FW

t

s

]
. Then (6.41)

and (6.56) imply that∫
ω∈Ω

1{ω∈A∗∩A}EQ
ω

ε

[
1Oj

ϑεs(W )
]
P (dω)=EP ε

[
1A∗∩A∩Oj

ϑεs(W )
]

=EP ε

[
EP ε

[
1A∗∩A∩Oj

1{γ≤s}1{T∈[γ,s]}
∣∣FW

t

s

]]
=EP ε

[
1A∗∩A∩Oj

1{γ≤s}1{T∈[γ,s]}
]

=

∫
ω∈Ω

1{ω∈A∗∩A}EQ
ω

ε

[
1Oj

1{γ≤s}1{T∈[γ,s]}
]
P (dω).

So FW
t

γ ∪NP

(
B
(
Ω
))

is contained in the Lambda-system

Λ
ε
s,j :=

{
A∈BP (Ω):

∫
ω∈Ω

1{ω∈A∗∩A}EQ
ω

ε

[
1Oj

ϑεs(W )
]
P (dω)

=

∫
ω∈Ω

1{ω∈A∗∩A}EQ
ω

ε

[
1Oj

1{γ≤s}1{T∈[γ,s]}
]
P (dω)

}
.

As FW
t

γ ∪NP

(
B
(
Ω
))

is closed under intersection, Dynkin’s Pi-Lambda Theorem shows

that σ
(
FW

t

γ ∪NP

(
B
(
Ω
)))

⊂Λ
ε
s,j , i.e., for any A∈σ

(
FW

t

γ ∪NP

(
B
(
Ω
)))

∫
ω∈Ω

1{ω∈A∗∩A}EQ
ω

ε

[
1Oj

ϑεs(W )
]
P (dω)

=

∫
ω∈Ω

1{ω∈A∗∩A}EQ
ω

ε

[
1Oj

1{γ≤s}1{T∈[γ,s]}
]
P (dω).(6.62)
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Since 1Oj
ϑεs(W ) and 1Oj

1{γ≤s}1{T∈[γ,s]} are B(Ω)−measurable, we see from (6.37)
that the random variables Ω ∋ ω 7→E

Q
ω

ε

[
1Oj

ϑεs(W )
]

and Ω ∋ ω 7→E
Q

ω

ε

[
1Oj

1{γ≤s}1{T∈[γ,s]}
]

are σ
(
FW

t

γ ∪NP

(
F t
∞
))

−measurable. Letting A vary over σ
(
FW

t

γ ∪NP

(
F t
∞
))

in (6.62)

yields that 1{ω∈A∗}EQ
ω

ε

[
1Oj

ϑεs(W )
]
=1{ω∈A∗}EQ

ω

ε

[
1Oj

1{γ≤s}1{T∈[γ,s]}
]

for all ω∈Ω ex-

cept on some N ε
s,j∈NP

(
F t
∞
)
. It then follows from (6.39) that

E
Q

ω

ε

[
1Oj

ϑεs(W )
]
=E

Q
ω

ε

[
1Oj

1{γ≤s}1{τ̂
ω
(W )∈[γ,s]}

]
, ∀ω ∈A∗∩N

c
∗∩

(
N ε

s,j

)c
.(6.63)

By Lemma A.1, N ϑ
s :=W

−1({
ϑ̂εs ̸=ϑεs

})
belongs to NP ε

(FW
t

∞ ). An analogy to (6.61) gives

N ε
s,0∈NP

(
F t
∞
)

such that Qω
ε

(
N ϑ

s

)
=0 for any ω∈A∗∩

(
N ε

s,0

)c.
Set N ε

∗ :=N ∗∪
(

∪
s∈Q∩[t,∞)

∞
∪
j=0

N ε
s,j

)
∪N ε

ξ ∈NP

(
F t
∞
)
. We fix ω∈A∗∩

(
N ε

∗
)c and let

s∈Q∩[t,∞).
• When s<tω: Since (6.63), (5.4) and (6.40) show that E

Q
ω

ε

[
1Oj

ϑεs(W )
]
=E

Q
ω

ε

[
1
W

t

γ,ω
1Oj

1{tω≤s}1{τ̂
ω
(W )∈[tω,s]}

]
= 0 for any j ∈ N, Dynkin’s Pi-Lambda Theorem implies that

E
Q

ω

ε

[
1Eϑ

ε
s(W )

]
=0 for any E∈FW

t

s . Letting E vary over FW
t

s reaches that ϑεs
(
W (ω′)

)
=0

for all ω′∈Ω except on some N
ω
s,1∈N

Q
ω

ε

(
FW

t

∞
)
.

• When s≥ tω: Applying Lemma A.1 with t0= tω , (Ω1,F1, P1,B
1)=

(
Ω,B(Ω),Q

ω
ε ,W

)
,

(Ω2,F2, P2,B
2)=

(
Ω0,B(Ω0), P0,W

)
and Φ=W yields that τ̂ω(W ) is a [tω,∞]−valued

FW
tω ,Q

ω

ε −stopping time and thus
{
τ̂ω(W )∈ [γ ∧ s, s]

}
∈FW

tω ,Q
ω

ε
s . By Problem 2.7.3 of

[36], there is Aω
s ∈ FW

tω

s such that N
ω
s,2 :=Aω

s ∆
{
τ̂ω(W ) ∈ [γ ∧ s, s]

}
∈ N

Q
ω

ε

(
FW

tω

∞
)
.

Then we see from (6.63) that E
Q

ω

ε

[
1Oj

ϑεs(W )
]
= E

Q
ω

ε

[
1Oj

1{γ≤s}1{τ̂
ω
(W )∈[γ∧s,s]}

]
=

E
Q

ω

ε

[
1Oj

1{γ≤s}1Aω

s

]
for any j∈N, and we know from Dynkin’s Pi-Lambda Theorem that

E
Q

ω

ε

[
1Eϑ

ε
s(W )

]
=E

Q
ω

ε

[
1E1{γ≤s}1Aω

s

]
for any E ∈FW

t

s . As FW
tω

s =σ
(
W

tω
r ; r∈ [tω, s]

)
=

σ
(
W

t
r−W

t
tω ; r∈ [tω, s]

)
⊂σ

(
W

t
r; r∈ [t, s]

)
=FW

t

s , letting E run over FW
t

s renders that

ϑεs
(
W (ω′)

)
=1{γ(ω′)≤s}1{ω′∈Aω

s }
for all ω′∈Ω except on some N

ω
s,3∈N

Q
ω

ε

(
FW

t

∞
)
.

Let ω′ ∈W
t
γ,ω ∩

(
∪

s∈Q∩[t,∞)
N ϑ

s

)c
∩
(

∪
s∈Q∩[t,tω)

N
ω
s,1

)c
∩
(

∪
s∈Q∩[tω,∞)

N
ω
s,2 ∪N

ω
s,3

)c
∩{

ε(W ) ̸=ξε
}

. The above analysis and (5.4) show that

ϑ̂εs
(
W (ω′)

)
=ϑεs

(
W (ω′)

)
=1{s≥tω}1{ω′∈Aω

s }
=1{s≥tω}1

{
τ̂
ω
(W (ω′))∈[γ(ω′)∧s,s]

}
=1{s≥tω}1

{
τ̂
ω
(W (ω′))∈[tω,s]

}, ∀s∈Q∩[t,∞).

So the right-continuity of process ϑ̂ε· gives that ϑ̂εs
(
W (ω′)

)
=1{s≥tω}1

{
τ̂
ω
(W (ω′))∈[tω,s]

},

∀s∈[t,∞), and we can deduce from (6.57) that

ξε(ω
′)= ε(W (ω′))=inf

{
s∈[t,∞): ϑ̂εs(W (ω′))=1

}
= τ̂ω(W (ω′))≥tω=γ(ω′).

In particular, one has ξε(ω′)∨γ(ω′)= τ̂ω
(
W (ω′)

)
, which together with (6.40), (6.61) and

(6.39) implies that 1=Q
ω
ω

{
ξε∨γ= τ̂ω(W )

}
=Q

ω
ω

{
ξε∨γ=T

}
, ∀ω∈A∗∩

(
N ε

∗
)c. Then

(6.59), (6.58) and (6.41) render that

P ε

(
A∗∩{T=τ ε}

)
=P ε

(
{τ̂(W )≥γ}∩{T=τ ε}

)
=P ε

(
{τ̂(W )≥γ}∩{T= ε(W )∨γ}

)
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=P ε

(
A∗∩{T=ξε∨γ}

)
=

∫
ω∈A∗

Q
ω
ε {T=ξε∨γ}P (dω)=P (A∗).

Adding it to (6.60) yields P ε{T = τ ε}= 1. Moreover, applying Lemma A.2 (2) with
(Ω,F , P,B)=

(
Ω,B(Ω), P ε,W

)
and Φ=W , we can find a [t,∞]−valued FW t,P0−stopping

time τ̂ε on Ω0 such that τ ε= τ̂ε(W ), P ε−a.s. Hence, P ε satisfies (D3) in Definition 3.1 of
Pt,x.
II.e) Fix i∈N. Since

{∫ s
t gi(r,X

t,x
r∧·)dr

}
s∈[t,∞)

and
{∫ s

t hi(r,X
t,x
r∧·)dr

}
s∈[t,∞)

are two

FW
t
,P−adapted continuous processes, Lemma 2.4 of [62] assures two FW

t

−predictable
processes

{
Φ
i
s

}
s∈[t,∞)

and
{
Ψ

i
s

}
s∈[t,∞)

such that N i,1
g,h :=

{
ω∈Ω: Φ

i
s(ω) ̸=

∫ s
t gi

(
r,X

t,x
r∧·(ω)

)
dr

or Ψ
i
s(ω) ̸=

∫ s
t hi

(
r,X

t,x
r∧·(ω)

)
dr for some s∈ [t,∞)

}
∈NP

(
FW

t

∞
)
. By Remark 3.2 (1),

EP

[ ∫∞
t g−i (r,Xr∧·)∨ h−i (r,Xr∧·)dr

]
<∞. So it holds for any ω ∈Ω except on some

N i,2
g,h∈NP

(
FX
∞
)

that
∫∞
t g−i

(
r,Xr∧·(ω)

)
∨h−i

(
r,Xr∧·(ω)

)
dr<∞.

For any ω∈A∗∩N
c
∗∩N

c
X∩

(
N i,1

g,h∪N
i,2
g,h

)c, since Ω
t
γ,ω⊂

{
ω′∈Ω:Xs(ω

′)=Xs(ω), ∀s∈[
0, γ(ω)

]}
, (6.40) and (6.38) show that

E
Q

ω

ε

[∫ T

t
gi
(
r,Xr∧·

)
dr
]
=

∫ γ(ω)

t
gi
(
r,Xr∧·(ω)

)
dr+E

Q
ω

ε

[∫ T

γ(ω)
gi
(
r,Xr∧·

)
dr
]

(6.64)

≤
∫ γ(ω)

t
gi
(
r,X

t,x
r∧·(ω)

)
dr+

(
Y

i
P (γ)

)
(ω)

=Φ
i
γ(ω)+EP

[∫ T

T∧γ
gi(r,Xr∧·)dr

∣∣∣FW
t

γ

]
(ω)

and similarly that E
Q

ω

ε

[∫ T
t hi

(
r,Xr∧·

)
dr
]
=Ψ

i
γ(ω)+EP

[∫ T
T∧γ hi(r,Xr∧·)dr

∣∣∣FW
t

γ

]
(ω).

Since A∗,Φ
i
γ∈FW

t

γ and since 1A∗
=1{τ̂(W )≥γ}=1{T≥γ}, P−a.s. by (6.28), we can deduce

from the tower property that∫
ω∈A∗

E
Q

ω

ε

[∫ T

t
gi
(
r,Xr∧·

)
dr
]
P (dω)≤EP

[
EP

[
1A∗

(
Φ
i
γ+

∫ T

T∧γ
gi(r,Xr∧·)dr

)∣∣∣FW
t

γ

]]

=EP

[
1A∗

(∫ γ

t
gi
(
r,X

t,x
r∧·

)
dr+

∫ T

γ
gi(r,Xr∧·)dr

)]
=EP

[
1A∗

∫ T

t
gi
(
r,Xr∧·

)
dr
]

and thus EP ε

[ ∫ T
t gi

(
r,Xr∧·

)
dr
]
≤ EP

[ ∫ T
t gi

(
r,Xr∧·

)
dr
]
≤ yi. Analogously, we have

EP ε

[ ∫ T
t hi

(
r,Xr∧·

)
dr
]
=EP

[ ∫ T
t hi

(
r,Xr∧·

)
dr
]
=zi. Hence, P ε belongs to Pt,x(y, z).

II.f) Let V̆ be the function defined in (6.33) and set DV
∞ :=

{
ω∈Ω: V̆ (ω)=∞

}
=
{
ω∈

A∗∩N c
∗ : V

(
Ψ̆(ω)

)
=∞

}
∈σ

(
FW

t

γ ∪NP

(
F t
∞
))

. By Theorem 3.1,DV
∞ is also equal to

{
ω∈

A∗ ∩ N c
∗ : V

(
Ψ̈(ω)

)
=∞

}
. As EP

[ ∫∞
t f−(r,Xr∧·)dr

]
<∞, there exists a Nf ∈NP

(
FX
∞
)

such that
∫∞
t f−

(
r,Xr∧·(ω)

)
dr<∞ for any ω∈N c

f .
Let ε∈ (0,1). For any ω∈A∗∩N c

∗∩N c
f , an analogy to (6.64), (6.36) and Theorem 3.1

imply that

E
Q

ω

ε

[
R(t)

]
=

∫ γ(ω)

t
f
(
r,Xr∧·(ω)

)
dr+EQε(Ψ̈(ω))

[
R(γ(ω))

]
≥
∫ γ(ω)

t
f
(
r,Xr∧·(ω)

)
dr
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+1{ω∈(DV
∞)c}

(
V
(
γ(ω),Xγ∧·(ω),

(
YP (γ)

)
(ω),

(
ZP (γ)

)
(ω)

)
−ε

)
+
1

ε
1{ω∈DV

∞}.

Since P ε∈Pt,x(y, z) and since 1A∗
=1{τ̂(W )≥γ}=1{T≥γ}, P−a.s. by (6.28),

V (t,x, y, z)≥EP ε

[
R(t)

]
≥EP

[
1Ac

∗
R(t)+1A∗

∫ γ

t
f
(
r,Xr∧·

)
dr
]

+EP

[
1A∗

(
1(DV

∞)c
[
V
(
γ,Xγ∧·, YP (γ),ZP (γ)

)
−ε

]
+
1

ε
1DV

∞

)]
≥EP

[
1{T<γ}R(t)+1{T≥γ}

(∫ γ

t
f
(
r,Xr∧·

)
dr+1(DV

∞)cV
(
γ,Xγ∧·, YP (γ),ZP (γ)

))]
−ε+1

ε
P
(
{T≥γ}∩DV

∞
)
.(6.65)

To verify (6.34), we set It
P :=1{T≥γ}

(∫ γ
t f(r,Xr∧·)dr+V

(
γ,Xγ∧·, YP (γ),ZP (γ)

))
+

1{T<γ}R(t).

• If P
(
{T≥γ}∩DV

∞
)
=0, then V (t,x, y, z)≥EP

[
1{T<γ}R(t)+1{T≥γ}

(∫ γ
t f

(
r,Xr∧·

)
dr+

V
(
γ,Xγ∧·, YP (γ),ZP (γ)

))]
−ε holds for any ε∈(0,1). Letting ε→0 gives (6.34).

• If P
(
{T ≥γ}∩DV

∞
)
>0 and EP

[(
It
P

)−]
=∞, then EP

[
It
P

]
=−∞≤V (t,x, y, z), so

(6.34) holds automatically.
• If P

(
{T≥γ} ∩DV

∞
)
>0 and EP

[(
It
P

)−]
<∞, since Remark 3.2 (1) shows that

EP

[
−1{T<γ}R(t)−1{T≥γ}

(∫ γ

t
f
(
r,Xr∧·

)
dr+1(DV

∞)cV
(
γ,Xγ∧·, YP (γ),ZP (γ)

))]
=EP

[
−1(DV

∞)cI
t
P−1DV

∞

∫ γ∧T

t
f
(
r,Xr∧·

)
dr−1{T<γ}∩DV

∞
π
(
T ,XT∧·

)]
≤EP

[(
It
P

)−
+

∫ ∞

t
f−

(
r,Xr∧·

)
dr
]
−cπ<∞,

we can deduce from (6.65) that for any ε∈(0,1)

V (t,x, y, z)≥−EP

[(
It
P

)−
+

∫ ∞

t
f−

(
r,Xr∧·

)
dr
]
+cπ−ε+

1

ε
P
(
{T≥γ}∩DV

∞
)
.

Sending ε→0 yields V (t,x, y, z)=∞, so (6.34) still holds. This completes the proof of
Theorem 5.1. □

APPENDIX

In this appendix, we list some technical lemmata needed to verify our main results, we
refer interested readers to our ArXiv version [12] for detailed proofs of these lemmata.

LEMMA A.1. Let t0∈ [0,∞). For i=1,2, let (Ωi,Fi, Pi) be a probability space and let
Bi={Bi

s}s∈[0,∞) be an Rd−valued continuous process on Ω with Bi
0=0 such that Bi

s :=

Bi
s−Bi

t0 , s∈ [t0,∞) is a Brownian motion on (Ωi,Fi, Pi). Let Φ: Ω1 7→Ω2 be a mapping
such that B2

s(Φ(ω))=B1
s(ω) for any (s,ω)∈[t0,∞)×Ω1, then (i) Φ−1

(
FB2

s

)
=FB1

s , ∀s∈
[t0,∞]; (ii) Φ−1

(
NP2

(FB2

∞ )
)
⊂NP1

(FB1

∞ ); (iii) Φ−1
(
FB2,P2
s

)
⊂FB1,P1

s , ∀s∈ [t0,∞] and
(iv) P1◦Φ−1(A)=P2(A) for any A∈FB2,P2

∞ .
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LEMMA A.2. Let (Ω,F , P ) be a probability space and let t ∈ [0,∞). Let B =
{Bs}s∈[0,∞) be an Rd−valued continuous process on Ω with B0=0 such that Bt

s :=Bs−Bt,
s∈[t,∞) is a Brownian motion on (Ω,F , P ).
(1) For any [t,∞]−valued FW t,P0−stopping time τ̂ on Ω0, τ̂(B) is an FBt,P−stopping time
on Ω.
(2) Let Φ: Ω 7→Ω0 be a mapping such that W t

s(Φ(ω))=B
t
s(ω) for any (s,ω)∈ [t,∞)×

Ω. For any [t,∞]−valued FBt,P−stopping time τ on Ω, there exists a [t,∞]−valued
FW t,P0−stopping time τ̂ on Ω0 such that τ= τ̂(Φ), P−a.s.

LEMMA A.3. Let X be a topological space and let Y be a Borel space. If f : X×Y 7→
(−∞,∞] is a B(X)⊗B(Y)−measurable function bounded from below, then ϕf(x,P ) :=∫
y∈Y f(x, y)P (dy), (x,P )∈X×P(Y) is B(X)⊗B

(
P(Y)

)
−measurable.

LEMMA A.4. Given t∈ [0,∞), let τ be a [t,∞]−valued FW t,P0−stopping time and
let Pt be a subset of P(Ω) such that W t is a Brownian motion under each P ∈Pt.
There is a [t,∞]−valued B(Ω)−measurable random variable ξ such that {τ(W ) ̸= ξ}∈
∩

P∈Pt

NP

(
FW

t

∞
)
. If γ is a [t,∞)−valued FW

t

−stopping time, one can find A∈FW
t

γ such

that {τ(W )≥γ}∆A∈ ∩
P∈Pt

NP

(
FW

t

∞
)
.

LEMMA A.5. Let t∈ [0,∞) and P ∈P
(
Ω
)
. For any (s,ω)∈ [t,∞)×Ω, set Wt

s,ω :={
ω′∈Ω:W

t
a(ω

′)=W
t
a(ω), ∀a∈ [t, s]

}
. Then for any r∈ [t,∞), FW t,P0

r ⊂Sr :=
{
A⊂Ω0 :

∃N r ∈NP

(
FW

t

∞
)

such that for any (s,ω)∈ [t, r]×Ω, there exists As,ω ∈FW s

r satisfying

1{W (ω′)∈A}=1{W (ω′)∈As,ω}, ∀ω′∈Wt
s,ω∩N

c
r

}
.

Acknowledgments We are grateful to Xiaolu Tan for helpful comments.

Funding. The first author is supported in part by the National Science Foundation un-
der DMS-2106556, and in part by the Susan M. Smith Professorship. The second author is
supported in part by the National Science Foundation under DMS-1613208.

REFERENCES

[1] ANKIRCHNER, S., KLEIN, M. and KRUSE, T. (2019). A verification theorem for optimal stopping problems
with expectation constraints. Appl. Math. Optim. 79 145–177. https://doi.org/10.1007/s00245-017-
9444-y MR3903782

[2] ARROW, K. J., BLACKWELL, D. and GIRSHICK, M. A. (1949). Bayes and minimax solutions of sequential
decision problems. Econometrica 17 213–244. https://doi.org/10.2307/1905525 MR0032173

[3] BALZER, T. and JANSSEN, K. (2002). A duality approach to problems of combined stopping and deciding
under constraints. Math. Methods Oper. Res. 55 431–446. https://doi.org/10.1007/s001860200195
MR1913575

[4] BAYRAKTAR, E. and HUANG, Y. (2013). On the multidimensional controller-and-stopper games. SIAM J.
Control Optim. 51 1263–1297. https://doi.org/10.1137/110847329 MR3036989

[5] BAYRAKTAR, E., KARATZAS, I. and YAO, S. (2010). Optimal stopping for dynamic convex risk measures.
Illinois J. Math. 54 1025–1067. MR2928345

[6] BAYRAKTAR, E. and MILLER, C. W. (2019). Distribution-constrained optimal stopping. Math. Finance 29
368–406. https://doi.org/10.1111/mafi.12171 MR3905747

[7] BAYRAKTAR, E. and YAO, S. (2011). Optimal stopping for non-linear expectations—Part I. Stochastic
Process. Appl. 121 185–211. https://doi.org/10.1016/j.spa.2010.10.001 MR2746173

https://doi.org/10.1007/s00245-017-9444-y
https://doi.org/10.1007/s00245-017-9444-y
https://mathscinet.ams.org/mathscinet-getitem?mr=3903782
https://doi.org/10.2307/1905525
https://mathscinet.ams.org/mathscinet-getitem?mr=0032173
https://doi.org/10.1007/s001860200195
https://mathscinet.ams.org/mathscinet-getitem?mr=1913575
https://doi.org/10.1137/110847329
https://mathscinet.ams.org/mathscinet-getitem?mr=3036989
https://mathscinet.ams.org/mathscinet-getitem?mr=2928345
https://doi.org/10.1111/mafi.12171
https://mathscinet.ams.org/mathscinet-getitem?mr=3905747
https://doi.org/10.1016/j.spa.2010.10.001
https://mathscinet.ams.org/mathscinet-getitem?mr=2746173


42

[8] BAYRAKTAR, E. and YAO, S. (2011). Optimal stopping for non-linear expectations—Part II. Stochastic
Process. Appl. 121 212–264. https://doi.org/10.1016/j.spa.2010.10.002 MR2746174

[9] BAYRAKTAR, E. and YAO, S. (2014). On the robust optimal stopping problem. SIAM J. Control Optim. 52
3135–3175. https://doi.org/10.1137/130950331 MR3267150

[10] BAYRAKTAR, E. and YAO, S. (2017). Optimal stopping with random maturity under nonlinear expectations.
Stochastic Process. Appl. 127 2586–2629. https://doi.org/10.1016/j.spa.2016.12.001 MR3660884

[11] BAYRAKTAR, E. and YAO, S. (2017). On the robust Dynkin game. Ann. Appl. Probab. 27 1702–1755.
https://doi.org/10.1214/16-AAP1243 MR3678483

[12] BAYRAKTAR, E. and YAO, S. (2020). Optimal Stopping with Expectation Constraints. Available on
https://arxiv.org/abs/2011.04886.

[13] BEIGLBÖCK, M., EDER, M., ELGERT, C. and SCHMOCK, U. (2018). Geometry of distribution-
constrained optimal stopping problems. Probab. Theory Related Fields 172 71–101.
https://doi.org/10.1007/s00440-017-0805-x MR3851830

[14] BERTSEKAS, D. P. and SHREVE, S. E. (1978). Stochastic optimal control. Mathematics in Science and
Engineering 139. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London
The discrete time case. MR511544

[15] BILLINGSLEY, P. (1986). Probability and measure, second ed. Wiley Series in Probability and Mathematical
Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York. MR830424

[16] BOUCHARD, B. and DANG, N. (2013). Generalized stochastic target problems for pricing and partial
hedging under loss constraints—application in optimal book liquidation. Finance Stoch. 17 31–72.
https://doi.org/10.1007/s00780-012-0198-8 MR3016777

[17] BOUCHARD, B., DJEHICHE, B. and KHARROUBI, I. (2020). Quenched Mass Transport of Particles To-
ward a Target. J. Optim. Theory Appl. 186 345–374. https://doi.org/10.1007/s10957-020-01704-y
MR4131972

[18] BOUCHARD, B., ELIE, R. and IMBERT, C. (2009/10). Optimal control under stochastic target constraints.
SIAM J. Control Optim. 48 3501–3531. https://doi.org/10.1137/090757629 MR2599929

[19] BOUCHARD, B., ELIE, R. and TOUZI, N. (2009/10). Stochastic target problems with controlled loss. SIAM
J. Control Optim. 48 3123–3150. https://doi.org/10.1137/08073593X MR2599913

[20] BOUCHARD, B., MOREAU, L. and NUTZ, M. (2014). Stochastic target games with controlled loss. Ann.
Appl. Probab. 24 899–934. https://doi.org/10.1214/13-AAP938 MR3199977

[21] BOUCHARD, B. and NUTZ, M. (2012). Weak dynamic programming for generalized state constraints. SIAM
J. Control Optim. 50 3344–3373. https://doi.org/10.1137/110852942 MR3024163

[22] BOUCHARD, B. and VU, T. N. (2010). The obstacle version of the geometric dynamic programming princi-
ple: application to the pricing of American options under constraints. Appl. Math. Optim. 61 235–265.
https://doi.org/10.1007/s00245-009-9084-y MR2585143

[23] CHENG, X. and RIEDEL, F. (2013). Optimal stopping under ambiguity in continuous time. Math. Financ.
Econ. 7 29–68. https://doi.org/10.1007/s11579-012-0081-6 MR3023890

[24] CHERIDITO, P., DELBAEN, F. and KUPPER, M. (2006). Dynamic monetary risk measures for
bounded discrete-time processes. Electron. J. Probab. 11 no. 3, 57–106 (electronic). MR2199055
(2006i:91065)

[25] CHOW, Y.-L., YU, X. and ZHOU, C. (2020). On dynamic programming principle for stochastic control
under expectation constraints. J. Optim. Theory Appl. 185 803–818. https://doi.org/10.1007/s10957-
020-01673-2 MR4110639

[26] CHOW, Y. S., ROBBINS, H. and SIEGMUND, D. (1971). Great expectations: the theory of optimal stopping.
Houghton Mifflin Co., Boston, Mass. MR0331675

[27] DELBAEN, F. (2006). The structure of m-stable sets and in particular of the set of risk neutral measures.
In In memoriam Paul-André Meyer: Séminaire de Probabilités XXXIX. Lecture Notes in Math. 1874
215–258. Springer, Berlin. MR2276899 (2008a:60108)

[28] EKREN, I., TOUZI, N. and ZHANG, J. (2014). Optimal stopping under nonlinear expectation. Stochastic
Process. Appl. 124 3277–3311. https://doi.org/10.1016/j.spa.2014.04.006 MR3231620

[29] EL KAROUI, N. (1981). Les aspects probabilistes du contrôle stochastique. In Ninth Saint Flour Probabil-
ity Summer School—1979 (Saint Flour, 1979). Lecture Notes in Math. 876 73–238. Springer, Berlin.
MR637471 (83c:93062)

[30] EL KAROUI, N., HUU NGUYEN, D. and JEANBLANC-PICQUÉ, M. (1987). Compactification methods
in the control of degenerate diffusions: existence of an optimal control. Stochastics 20 169–219.
https://doi.org/10.1080/17442508708833443 MR878312

[31] EL KAROUI, N. and TAN, X. (2013). Capacities, measurable selection and dynamic programming Part
II: applications in stochastic control problems. available at https://arxiv.org/abs/1310.
3364.

https://doi.org/10.1016/j.spa.2010.10.002
https://mathscinet.ams.org/mathscinet-getitem?mr=2746174
https://doi.org/10.1137/130950331
https://mathscinet.ams.org/mathscinet-getitem?mr=3267150
https://doi.org/10.1016/j.spa.2016.12.001
https://mathscinet.ams.org/mathscinet-getitem?mr=3660884
https://doi.org/10.1214/16-AAP1243
https://mathscinet.ams.org/mathscinet-getitem?mr=3678483
https://arxiv.org/abs/2011.04886
https://doi.org/10.1007/s00440-017-0805-x
https://mathscinet.ams.org/mathscinet-getitem?mr=3851830
https://mathscinet.ams.org/mathscinet-getitem?mr=511544
https://mathscinet.ams.org/mathscinet-getitem?mr=830424
https://doi.org/10.1007/s00780-012-0198-8
https://mathscinet.ams.org/mathscinet-getitem?mr=3016777
https://doi.org/10.1007/s10957-020-01704-y
https://mathscinet.ams.org/mathscinet-getitem?mr=4131972
https://doi.org/10.1137/090757629
https://mathscinet.ams.org/mathscinet-getitem?mr=2599929
https://doi.org/10.1137/08073593X
https://mathscinet.ams.org/mathscinet-getitem?mr=2599913
https://doi.org/10.1214/13-AAP938
https://mathscinet.ams.org/mathscinet-getitem?mr=3199977
https://doi.org/10.1137/110852942
https://mathscinet.ams.org/mathscinet-getitem?mr=3024163
https://doi.org/10.1007/s00245-009-9084-y
https://mathscinet.ams.org/mathscinet-getitem?mr=2585143
https://doi.org/10.1007/s11579-012-0081-6
https://mathscinet.ams.org/mathscinet-getitem?mr=3023890
https://mathscinet.ams.org/mathscinet-getitem?mr=MR2199055
https://mathscinet.ams.org/mathscinet-getitem?mr=MR2199055
https://doi.org/10.1007/s10957-020-01673-2
https://doi.org/10.1007/s10957-020-01673-2
https://mathscinet.ams.org/mathscinet-getitem?mr=4110639
https://mathscinet.ams.org/mathscinet-getitem?mr=0331675
https://mathscinet.ams.org/mathscinet-getitem?mr=MR2276899
https://doi.org/10.1016/j.spa.2014.04.006
https://mathscinet.ams.org/mathscinet-getitem?mr=3231620
https://mathscinet.ams.org/mathscinet-getitem?mr=637471
https://doi.org/10.1080/17442508708833443
https://mathscinet.ams.org/mathscinet-getitem?mr=878312
https://arxiv.org/abs/1310.3364
https://arxiv.org/abs/1310.3364


OPTIMAL STOPPING WITH EXPECTATION CONSTRAINTS 43

[32] EL KAROUI, N. and TAN, X. (2013). Capacities, measurable selection and dynamic programming Part I:
abstract framework. available at https://arxiv.org/abs/1310.3363.

[33] HORIGUCHI, M. (2001). Stopped Markov decision processes with multiple constraints. Math. Methods
Oper. Res. 54 455–469 (2002). https://doi.org/10.1007/s001860100160 MR1890914

[34] HORIGUCHI, M., KURANO, M. and YASUDA, M. (2000). Markov decision processes with constrained
stopping times. Proceedings of the 39th IEEE Conference on Decision and Control 1 706–710.

[35] KÄLLBLAD, S. (2017). A Dynamic Programming Principle for Distribution-Constrained Optimal Stopping.
Available on https://arxiv.org/abs/1703.08534.

[36] KARATZAS, I. and SHREVE, S. E. (1991). Brownian motion and stochastic calculus, second ed. Graduate
Texts in Mathematics 113. Springer-Verlag, New York. MR1121940 (92h:60127)

[37] KARATZAS, I. and SHREVE, S. E. (1998). Methods of mathematical finance. Applications of Mathematics
(New York) 39. Springer-Verlag, New York. MR1640352 (2000e:91076)

[38] KARATZAS, I. and SUDDERTH, W. D. (2001). The controller-and-stopper game for a linear diffusion. Ann.
Probab. 29 1111–1127. https://doi.org/10.1214/aop/1015345598 MR1872738 (2003b:60057)

[39] KARATZAS, I. and ZAMFIRESCU, I. M. (2005). Game approach to the optimal stopping problem. Stochas-
tics 77 401–435. MR2178425 (2006h:60071)

[40] KARATZAS, I. and ZAMFIRESCU, I. M. (2008). Martingale approach to stochastic differential games of
control and stopping. Ann. Probab. 36 1495–1527. MR2435857

[41] KENNEDY, D. P. (1982). On a constrained optimal stopping problem. J. Appl. Probab. 19 631–641.
MR664846

[42] LÓPEZ, F. J., SAN MIGUEL, M. and SANZ, G. (1995). Lagrangean methods and optimal stopping. Opti-
mization 34 317–327. https://doi.org/10.1080/02331939508844116 MR1754943

[43] MAKASU, C. (2009). Bounds for a constrained optimal stopping problem. Optim. Lett. 3 499–505.
https://doi.org/10.1007/s11590-009-0127-8 MR2525943

[44] MILLER, C. (2017). Nonlinear PDE approach to time-inconsistent optimal stopping. SIAM J. Control Optim.
55 557–573. https://doi.org/10.1137/15M1047064 MR3614676

[45] NEUFELD, A. and NUTZ, M. (2013). Superreplication under volatility uncertainty for measurable claims.
Electron. J. Probab. 18 no. 48, 14. https://doi.org/10.1214/EJP.v18-2358 MR3048120

[46] NUTZ, M. and VAN HANDEL, R. (2013). Constructing sublinear expectations on path space. Stochastic
Process. Appl. 123 3100–3121. https://doi.org/10.1016/j.spa.2013.03.022 MR3062438

[47] NUTZ, M. and ZHANG, J. (2015). Optimal stopping under adverse nonlinear expectation and related games.
Ann. Appl. Probab. 25 2503–2534. https://doi.org/10.1214/14-AAP1054 MR3375882

[48] PEDERSEN, J. L. and PESKIR, G. (2016). Optimal mean-variance selling strategies. Math. Financ. Econ.
10 203–220. https://doi.org/10.1007/s11579-015-0156-2 MR3462068

[49] PEDERSEN, J. L. and PESKIR, G. (2017). Optimal mean-variance portfolio selection. Math. Financ. Econ.
11 137–160. https://doi.org/10.1007/s11579-016-0174-8 MR3604446

[50] PESKIR, G. (2012). Optimal detection of a hidden target: the median rule. Stochastic Process. Appl. 122
2249–2263. https://doi.org/10.1016/j.spa.2012.02.004 MR2921979

[51] PFEIFFER, L., TAN, X. and ZHOU, Y.-L. (2021). Duality and approximation of stochastic opti-
mal control problems under expectation constraints. SIAM J. Control Optim. 59 3231–3260.
https://doi.org/10.1137/20M1349886 MR4313837

[52] PONTIER, M. and SZPIRGLAS, J. (1984). Optimal stopping with constraint. In Analysis and optimization
of systems, Part 2 (Nice, 1984). Lect. Notes Control Inf. Sci. 63 82–91. Springer, Berlin. MR876716

[53] POSSAMAÏ, D., ROYER, G. and TOUZI, N. (2013). On the robust superhedging of measurable claims.
Electron. Commun. Probab. 18 no. 95, 13. https://doi.org/10.1214/ECP.v18-2739 MR3151751

[54] POSSAMAÏ, D., TAN, X. and ZHOU, C. (2018). Stochastic control for a class of nonlinear kernels and
applications. Ann. Probab. 46 551–603. https://doi.org/10.1214/17-AOP1191 MR3758737

[55] RIEDEL, F. (2009). Optimal stopping with multiple priors. Econometrica 77 857–908.
https://doi.org/10.3982/ECTA7594 MR2531363 (2011a:60164)

[56] ROGERS, L. C. G. and WILLIAMS, D. (2000). Diffusions, Markov processes, and martingales. Vol. 2.
Cambridge Mathematical Library. Cambridge University Press, Cambridge Itô calculus, Reprint of
the second (1994) edition. https://doi.org/10.1017/CBO9781107590120 MR1780932

[57] SHIRYAYEV, A. N. (1978). Optimal stopping rules. Springer-Verlag, New York-Heidelberg Translated from
the Russian by A. B. Aries, Applications of Mathematics, Vol. 8. MR0468067

[58] SNELL, J. L. (1952). Applications of martingale system theorems. Trans. Amer. Math. Soc. 73 293–312.
MR0050209 (14,295a)

[59] SONER, H. M. and TOUZI, N. (2002). Dynamic programming for stochastic target problems and geometric
flows. J. Eur. Math. Soc. (JEMS) 4 201–236. https://doi.org/10.1007/s100970100039 MR1924400

https://arxiv.org/abs/1310.3363
https://doi.org/10.1007/s001860100160
https://mathscinet.ams.org/mathscinet-getitem?mr=1890914
https://arxiv.org/abs/1703.08534
https://mathscinet.ams.org/mathscinet-getitem?mr=MR1121940
https://mathscinet.ams.org/mathscinet-getitem?mr=MR1640352
https://doi.org/10.1214/aop/1015345598
https://mathscinet.ams.org/mathscinet-getitem?mr=1872738
https://mathscinet.ams.org/mathscinet-getitem?mr=MR2178425
https://mathscinet.ams.org/mathscinet-getitem?mr=MR2435857
https://mathscinet.ams.org/mathscinet-getitem?mr=664846
https://doi.org/10.1080/02331939508844116
https://mathscinet.ams.org/mathscinet-getitem?mr=1754943
https://doi.org/10.1007/s11590-009-0127-8
https://mathscinet.ams.org/mathscinet-getitem?mr=2525943
https://doi.org/10.1137/15M1047064
https://mathscinet.ams.org/mathscinet-getitem?mr=3614676
https://doi.org/10.1214/EJP.v18-2358
https://mathscinet.ams.org/mathscinet-getitem?mr=3048120
https://doi.org/10.1016/j.spa.2013.03.022
https://mathscinet.ams.org/mathscinet-getitem?mr=3062438
https://doi.org/10.1214/14-AAP1054
https://mathscinet.ams.org/mathscinet-getitem?mr=3375882
https://doi.org/10.1007/s11579-015-0156-2
https://mathscinet.ams.org/mathscinet-getitem?mr=3462068
https://doi.org/10.1007/s11579-016-0174-8
https://mathscinet.ams.org/mathscinet-getitem?mr=3604446
https://doi.org/10.1016/j.spa.2012.02.004
https://mathscinet.ams.org/mathscinet-getitem?mr=2921979
https://doi.org/10.1137/20M1349886
https://mathscinet.ams.org/mathscinet-getitem?mr=4313837
https://mathscinet.ams.org/mathscinet-getitem?mr=876716
https://doi.org/10.1214/ECP.v18-2739
https://mathscinet.ams.org/mathscinet-getitem?mr=3151751
https://doi.org/10.1214/17-AOP1191
https://mathscinet.ams.org/mathscinet-getitem?mr=3758737
https://doi.org/10.3982/ECTA7594
https://mathscinet.ams.org/mathscinet-getitem?mr=2531363
https://doi.org/10.1017/CBO9781107590120
https://mathscinet.ams.org/mathscinet-getitem?mr=1780932
https://mathscinet.ams.org/mathscinet-getitem?mr=0468067
https://mathscinet.ams.org/mathscinet-getitem?mr=0050209
https://doi.org/10.1007/s100970100039
https://mathscinet.ams.org/mathscinet-getitem?mr=1924400


44

[60] SONER, H. M. and TOUZI, N. (2002). Stochastic target problems, dynamic programming, and viscos-
ity solutions. SIAM J. Control Optim. 41 404–424. https://doi.org/10.1137/S0363012900378863
MR1920265

[61] SONER, H. M. and TOUZI, N. (2009). The dynamic programming equation for second order stochas-
tic target problems. SIAM J. Control Optim. 48 2344–2365. https://doi.org/10.1137/07071130X
MR2556347

[62] SONER, H. M., TOUZI, N. and ZHANG, J. (2011). Quasi-sure stochastic analysis through aggregation.
Electron. J. Probab. 16 no. 67, 1844–1879. https://doi.org/10.1214/EJP.v16-950 MR2842089

[63] STROOCK, D. W. and VARADHAN, S. R. S. (2006). Multidimensional diffusion processes. Classics in
Mathematics. Springer-Verlag, Berlin. Reprint of the 1997 edition. MR2190038 (2006f:60005)

[64] TAKESAKI, M. (2002). Theory of operator algebras. I. Encyclopaedia of Mathematical Sciences 124.
Springer-Verlag, Berlin Reprint of the first (1979) edition, Operator Algebras and Non-commutative
Geometry, 5. MR1873025

[65] TANAKA, T. (2019). A D-solution of a multi-parameter continuous time optimal stopping problem with con-
straints. J. Inf. Optim. Sci. 40 839–852. https://doi.org/10.1080/02522667.2018.1461781 MR3957628

[66] URUSOV, M. A. (2005). On a property of the moment at which Brownian motion attains its maximum and
some optimal stopping problems. Theory of Probability & Its Applications 49 169–176.

https://doi.org/10.1137/S0363012900378863
https://mathscinet.ams.org/mathscinet-getitem?mr=1920265
https://doi.org/10.1137/07071130X
https://mathscinet.ams.org/mathscinet-getitem?mr=2556347
https://doi.org/10.1214/EJP.v16-950
https://mathscinet.ams.org/mathscinet-getitem?mr=2842089
https://mathscinet.ams.org/mathscinet-getitem?mr=2190038
https://mathscinet.ams.org/mathscinet-getitem?mr=1873025
https://doi.org/10.1080/02522667.2018.1461781
https://mathscinet.ams.org/mathscinet-getitem?mr=3957628

	Introduction
	Notation and Preliminaries
	Review of Martingale-Problem Formulation of SDEs

	Optimal Stopping with Expectation Constraints
	Weak Formulation
	The Measurability of OSEC Values
	Dynamic Programming Principle for V
	Proofs
	Appendix
	Funding
	References

