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For two measures ` and a that are in convex-decreasing order, Nutz and Stebegg (Canonical supermartingale
couplings, Ann. Probab. 46(6) 3351–3398, 2018) studied the optimal transport problem with supermartingale
constraints and introduced two canonical couplings, namely the increasing and decreasing transport plans, that are
optimal for a large class of cost functions. In the present paper we provide an explicit construction of the decreasing
coupling c� by establishing a Brenier-type result: (a generalised version of) c� concentrates on the graphs of two
functions. Our construction is based on the concept of the supermartingale shadow measure and requires a suitable
extension of the results by Juillet (Stability of the shadow projection and the left-curtain coupling, Ann. Inst. H.
Poincaré Probab. Statist. 52(4) 1823–1843, November 2016) and Beiglböck and Juillet (Shadow couplings, Trans.
Amer. Math. Soc. 374 4973–5002, 2021) established in the martingale setting. In particular, we prove the stability
of the supermartingale shadow measure with respect to initial and target measures `, a, introduce an infinite family
of lifted supermartingale couplings that arise via shadow measure, and show how to explicitly determine the
martingale points of each such coupling.
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1. Introduction

The classical optimal transport (OT) problem is to find a joint law c of random variables - ∼ ` and
. ∼ a that, for a given 2 : R2→ R, minimises the total expected cost Ec [2(-,. )]. Any such joint law
corresponds to a measure on R2, with first and second marginals ` and a, respectively, and is called
a transport plan from ` to a (or a coupling of ` and a). Let Π(`, a) be the set of all such couplings.
It is often convenient to express a coupling c ∈ Π(`, a) via its disintegration with respect to the first
marginal `: c(3G, 3H) = `(3G)cG (3H) where (cG)G∈R is a `-almost surely unique family of probability
kernels.

The cornerstone result in R3 , and with an Euclidean cost 2(G, H) = |G − H |2, is Brenier’s theorem (see
[12] and [39]): under some regularity conditions on the initial measure `, the optimal coupling takes the
form c(3G, 3H) = `(3G)Xk (G) (3H), where k := ∇q is the gradient of a convex function q. In dimension
one, the supporting function is non-decreasing and the optimal coupling coincides with the Hoeffding-
Fréchet (or quantile) coupling c�� , which, in the case ` is continuous, is given by c�� (3G, 3H) =
`(3G)X�a (�` (G)) (3H), where �a and �` are the quantile function of a and the cumulative distribution
function of `, respectively. An important feature of c�� is that it is optimal for a large class of cost
functions (essentially those that satisfy the Spence-Mirrlees condition 2GH > 0).

In the last decade, there has been a significant interest in the OT problems where the coupling c
is required to constitute a martingale. In particular, in the martingale optimal transport (MOT) one
still seeks to minimise (or maximise) the total expected cost (or payoff)

∫
R2 23c, but only over the

set of martingale transport plans: c ∈ Π(`, a) is a martingale coupling, and we write c ∈ Π" (`, a) ⊆
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Π(`, a), if
∫
R
HcG (3H) = G for `-a.e. G ∈ R (or equivalently, c ∈ Π" (`, a) if Ec [. |-] = -). Such

problems arise naturally in the context of model-independent mathematical finance [5,18] and have
important consequences for martingale inequalities [10,19,37] and the Skorokhod embedding problem
[3,32].

The first explicit solutions to the MOT problem is due to Hobson and Neuberger [26] and Hobson
and Klimmek [25] where the authors showed how construct couplings c�# and c� that maximise
and minimise Ec [|. − - |], receptively. It is not known, however, whether these couplings are optimal
for non-Euclidean costs functions. A more general result was obtained by Beiglböck et al. [8]. Using
an extension of the cyclical monotonicity from the classical OT setting, the authors introduced the left-
monotone martingale coupling and baptised it as the left-curtain transport plan c;2 . It was shown that
such left-monotone coupling exists, is unique and also optimal for a particular class of cost functions.
Henry-Labordére and Touzi [20] extended the results of [8] to show that c;2 is optimal for even wider
class of payoffs (namely those that satisfy the martingale Spence-Mirrlees condition 2GHH < 0), and
in the case when the initial measure ` is atom-less, provided an explicit construction using (coupled)
ordinary differential equations. A general construction for arbitrary ` and a was recently obtained by
Hobson and Norgilas [29]. Several other properties and extensions of c;2 where further investigated in
[4,6,7,13,14,21,27,30,31,34,35].

In this paper we shall study the couplings that constitute a supermartingale: Π( (`, a) ⊆ Π(`, a) is
the set of all supermartingale couplings, and we write c ∈ Π( (`, a) if∫

R
HcG (3H) ≤ G, for `-a.e. G ∈ R.

By the classical result of Strassen [40], Π( (`, a) is non-empty if and only if ` and a are in convex-
decreasing order (denoted by ` ≤23 a), i.e.,

∫
R
5 3` ≤

∫
R
5 3a for all convex and non-increasing 5 :

R→ R (if the inequality holds for all convex functions, then ` and a are in convex order, i.e., ` ≤2 a,
and Π" (`, a) ≠ ∅). Note that Π" (`, a) ⊆ Π( (`, a). In particular, if ` ≤23 a and with equal means
then Π" (`, a) = Π( (`, a). However, even when ` ≤23 a holds, it is a non-trivial problem to construct
particular supermartingale transport plans.

Similarly as in the contexts of OT and MOT, for a given 2 : R2→ R it is natural to seek for elements
c ∈ Π( (`, a) that minimise/maximise the total expected cost

∫
R2 2(G, H)c(3G, 3H). In this setting Nutz

and Stebegg [34] introduced two canonical supermartingale couplings, namely the increasing coupling
c� and decreasing coupling c� . Our main interest in this article is the latter. In [34, Theorems 1.1,
1.2, 1.3] it was shown that c� is the unique supermartingale coupling that can be equivalently char-
acterised by any, and then all of the following properties (see Definition 6.2): the optimality (in terms
of minimization problem) for a large class of cost functions (essentially those that satisfy 2GH < 0 and
2GHH > 0), the monotonicity of the support, and the (stochastic) order-theoretic minimality. (A similar
characterisation is valid for c� as well.) While this can be viewed as an existence result, our aim is to
provide an explicit construction of c� . In particular, and in the light of Brenier’s theorem in OT, our
goal is to construct functions on the graph of which the decreasing coupling c� concentrates. (Indeed,
all of the aforementioned martingale couplings and the increasing supermartingale coupling c� are
constructed in such way.)

The main ingredient in our construction is the so-called shadow measure, introduced by Beiglböck
and Juillet [8, Lemma 4.6] in the martingale setting and later extended by Nutz and Stebegg [34, Lemma
6.2] to supermartingales. For [ ≤ ` ≤23 a the (supermartingale) shadow of [ in a, denoted by (a ([),
is the measure satisfying [ ≤23 (a ([) ≤ a and (a ([) ≤23 j for all [ ≤23 j ≤ a (if one replaces ≤23
by ≤2 then the notion of the martingale shadow measure (a

"
([) is recovered). In particular, (a ([) is

the smallest (with respect to ≤23) measure within a to which [ can be mapped to in a supermartingale
way. Our interest in (a ([) lies in the fact that the decreasing supermartingale coupling c� can be
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defined as a unique coupling such that, for each G ∈ R, c� |[G,∞)×R has first marginal ` |[G,∞) and
second marginal (a (` |[G,∞) ). On the other hand, in [1, Theorem 3.1] (among other things) the authors
showed how to construct a potential function of the shadow measure (a ([), denoted by %(a ([) . (For a
measure [, an associated potential function : ↦→ %[ (:) =

∫
R
(: − G)+[(3G) is a convex function whose

second derivative uniquely identifies the underlying measure [; see Section 2.1.1) One of our main
contributions is to show how, given the graph of the potential function of (a ([), to identify a pair of
candidate functions that support the decreasing supermartingale coupling c� .

An idea of constructing canonical couplings via corresponding potential functions is not new and
dates back to [25] at least (such approach is often taken to obtain particular solutions to the Skorokhod
embedding problem; see [24,36] for an overview). On the other hand, Hobson and Norgilas [29] were
first to show that the functions that support the left-curtain coupling c;2 can be identified from the po-
tential function of the (martingale) shadow measure (a

"
(` |(−∞,G ]), G ∈ R. Similarly, one can construct

the right-curtain coupling cA2 (the symmetric counterpart of c;2) by studying the potential functions
of (a

"
(` |[G,∞) ), G ∈ R. In [1] the authors used this approach and constructed a pair of functions that

support the increasing supermartingale coupling c� .
The increasing supermartingale transport plan c� is obtained by working from left to right (i.e.,

by mapping, for each G ∈ R, ` |(−∞,G ] to (a (` |(−∞,G ])) and thus can be viewed as a supermartingale
counterpart of c;2 . (Indeed if ` ≤23 a and with equal means then ` ≤2 a and (a ([) = (a

"
([) for all

[ ≤ `.) One of the main achievements of [1] is that the authors showed how to obtain G∗ ∈ R, such
that (under c� ) ` |(−∞,G∗ ] is embedded in a via the martingale shadow measure (a

"
(` |(−∞,G∗ ]), while

the remaining mass (` − ` |(−∞,G∗ ]) is mapped to a via supermartingale shadow (a (·). In particular,
c� |(−∞,G∗ ]×R= c;2 |(−∞,G∗ ]×R while c� |(G,∞)×R corresponds to the (deterministic) antitone coupling
c�) (a symmetric counterpart of the quantile coupling c�� ).

On the other hand, the decreasing coupling c� is a supermartingale variant of the right-curtain
coupling cA2 . Indeed, both transport plans are constructed by embedding ` |[G,∞) in a via (a (·) and
(a
"
(·), respectively. More precisely, and as already observed in [34, Remark 9.6], c� corresponds to

cA2 on a specific part of the state space (the so-called martingale points) and is equal to the quantile
coupling c�� elsewhere. Even though we can explicitly determine the martingale points of c� (see
Section 5), there could be countably many regime switching points where c� alternates between cA2

and c�� (compare this with the unique regime switching point in the case of c� ). Therefore (due to the
lack of symmetry between c� and c�) the pasting arguments employed in [1] seem to be hard to adapt.
Instead, we relate our construction to the notion of the lifted (martingale) shadow couplings introduced
in [9].

In the case of lifted couplings the idea is to consider a lift of `, given by ˆ̀ ∈ Π(_, `), where _ is the
Lebesgue measure on [0,1], and then to construct a lifted (martingale) transport plan ĉ that has first
and second marginals ˆ̀ and a, respectively. Note that each such ĉ is a measure on [0,1] × R × R. If
we disintegrate ĉ with respect to ˆ̀, so that ĉ(3D, 3G, 3H) = ˆ̀(3D, 3G)ĉ (D,G) , · (3H), then the martingale
condition reads

∫
R
Hĉ (D,G) , · (3H) = G for ˆ̀-a.e. (D, G) ∈ [0,1] ×R. A corresponding martingale coupling

on R2 is then recovered by integrating out the Lebesgue measure. In [9, Theorem 2.9] the authors
showed that for each lift ˆ̀ there exists the unique lifted martingale shadow coupling ĉ that, for each D ∈
[0,1], maps ˆ̀ |[0,D ]×R to (a

"
( ˆ̀ |[0,D ]×R). (Then in order to obtain a (a version of a) particular martingale

coupling, e.g., c;2 or cA2 , one just needs to choose an appropriate lift ˆ̀.) More precisely, represent ĉ as
ĉ(3D, 3G, 3H) = 3D ˆ̀D, · (3G)ĉ (D,G) , · (3H), where ( ˆ̀D, ·)D∈[0,1] corresponds to the disintegration of ˆ̀ with
respect to _. Then one of the main insights of [9] is that the kernel ĉ (D,G) , · corresponds to the hitting
coupling (of ˆ̀D, · to a suitably defined subset of R) introduced by Kellerer [33]. A crucial observation
for our purposes is that when ˆ̀D, · is a point mass, then the hitting coupling ĉ (D,G) , · is a measure
concentrated on at most two points. Our aim is to generalise these results in the supermartingale setting,
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and then show how, using the potential function of the shadow measure (a (·), to identify the points on
which the supermartingale hitting coupling concentrates. Consequently, this will allow us to recover
the supporting functions (and thus also an explicit construction) of c� .

The motivation of studying the representation of optimal supermartingale couplings in terms of
corresponding supporting functions is two-fold. First, similarly as in the martingale case (see Henry-
Labordère and Touzi [20]), using the supporting functions of an optimal coupling one can explicitly
construct the optimizers of the Monge-Kantorovich-type dual problem (see Nutz and Stebegg [34,
Theorem 4.11]). Second, by using Markovian iterations of an optimal supermartingale coupling and
taking limits, one can (again explicitly) obtain a (continuous-time) supermartingale that fits a contin-
uum of marginals (`C )C≥0 and solves a continuous-time supermartingale optimal transport problem (see
Henry-Labordère [21] for such extension in the martingale case). The developments in these directions
are studied in a companion paper [2].

There are several main results in this paper, for each of which there is a dedicated section. First,
in Section 3 we prove the stability of the supermartingale shadow measure (a ([) with respect to the
given data [ ≤ ` ≤23 a; see Theorem 3.3 (this generalises the results obtained in [30] for martingales).
This is a crucial ingredient in the proof of existence and uniqueness result (see Theorem 4.4) regarding
the lifted supermartingale shadow couplings (this generalises the corresponding (martingale) result
obtained in [9]); this is presented in Section 4. In Section 5 we show how to explicitly determine
the martingale points of each lifted shadow coupling of Theorem 3.3; see Proposition 5.2. Finally, in
Section 6 we link the potential function of the shadow measure and the transition kernel of a lifted
shadow coupling, and show how to explicitly construct the increasing supermartingale coupling c� ;
see Theorem 6.7.

2. Preliminaries

2.1. Spaces of measures and related notions

For 3 ≥ 1, we denote byM3 (resp. P3) the space of positive measures (resp. probability measures) on
R3 with finite first moments. In the case 3 = 1 we write P = P1 andM =M1.

The support of a measure [ ∈M3 is denoted by supp([). It is the smallest closed (Borel) set � ⊆ R3
with [(R3 \ �) = 0.

We use _� to denote the restriction of the Lebesgue measure (on R) to an interval � ⊆ R. In the case
� = [0,1], we write _ = _ [0,1] .

Given a measure [ ∈M (not necessarily a probability measure), define [̄ =
∫
R
G[(3G) to be the first

moment of [ (and then [̄/[(R) is the barycentre of [). Let I[ be the smallest interval containing the
support of [, and let {ℓ[ , A[} be the endpoints of I[ . If [ has an atom at ℓ[ then ℓ[ is included in I[ ,
and otherwise it is excluded, and similarly for A[ .

For [ ∈M, the (right-continuous) cumulative distribution function �[ : R→ [0, [(R)] is defined by
�[ (G) := [((−∞, G]), G ∈ R. A quantile function of [, i.e., a generalised inverse of �[ , is denoted by
�[ : [0, [(R)] ↦→ R. There are two canonical versions of �[ : the left-continuous and right-continuous
versions correspond to �−[ (D) = sup{: ∈ R : �[ (:) < D} and �+[ (D) = inf{: ∈ R : �[ (:) > D}, for D ∈
[0, [(R)], respectively. However any� with�−[ (D) ≤ � (D) ≤ �+[ (D), for all D ∈ [0, [(R], is still called
a quantile function of [, which is motivated by the fact that for any such � we have that Law(� (*)) =
[/[(R), where * ∼* [0, [(R)]. (Note that �[ may take values −∞ and ∞ at the left and right end-
points of [0, [(R)], respectively.)
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2.1.1. Potential functions

For U ≥ 0 and V ∈ R let D↑(U, V) denote the set of non-negative, non-decreasing and convex func-
tions 5 : R ↦→ R+ such that limI↓−∞ 5 (I) = 0 and limI↑∞{ 5 (I) − (UI − V)} = 0. Then, when U = 0,
D↑(0, V) is empty unless V = 0 and then D↑(0,0) contains one element, the zero function. Similarly,
letD↓(U, V) denote the set of non-negative, non-increasing and convex functions 5 : R ↦→ R+ such that
limI↓−∞{ 5 (I) − (V − UI)} = 0 and limI↑∞ 5 (I) = 0.

For [ ∈M, define the functions %[ ,�[ : R ↦→ R+ by

%[ (:) :=
∫
R
(: − G)+[(3G), : ∈ R, �[ (:) :=

∫
R
(G − :)+[(3G), : ∈ R,

respectively. Then %[ (:) ≥ 0 ∨ ([(R): − [) and �[ (:) ≥ 0 ∨ ([ − [(R):). Also, the Put-Call parity
holds: �[ (:) − %[ (:) = ([ − [(R):), : ∈ R.

The following properties of %[ (resp. �[) can be found in [15,16]: %[ ∈ D↑([(R), [) (resp. �[ ∈
D↓([(R), [)) and {: : %[ (:) > ([(R): − [)+} = {: : �[ (:) > ([ − [(R):)+} = (ℓ[ , A[). Conversely
(see, for example, [22, Proposition 2.1]), if ℎ ∈ D↑(:<, : 5 ) for some numbers :< ≥ 0 and : 5 ∈ R
(with : 5 = 0 if :< = 0), then there exists a unique measure [ ∈ M, with total mass [(R) = :< and
mean [ = : 5 , such that ℎ = %[ . In particular, [ is uniquely identified by the second derivative of ℎ in
the sense of distributions. Furthermore, let*[ : R→ R− be the potential function of [, so that*[ (:) =
−

∫
R
|: − G |[(3G), : ∈ R. Then −*[ = �[ + %[ . Finally note that all three second derivatives � ′′[ , %

′′
[

and −* ′′[/2 identify the same underlying measure [ (and thus we will slightly abuse the terminology
and treat all three functions %[ ,�[ ,*[ as potentials of [.)

2.1.2. Wasserstein distance

For (`=)=≥1, ` ∈ M with `= (R) = `(R) for all = ≥ 1, we use the notation `=
F−→ ` for the usual

weak convergence of measures, i.e., `=
F−→ ` if

∫
R
5 3`= →

∫
R
5 3` for all continuous and bounded

5 : R→ R.
For `, a ∈ P, the Wasserstein-1 distance is defined by

, (`, a) = sup
5 ∈!8? (1)

����∫ 5 3` −
∫

5 3a

���� ,
where the supremum is taken over all 1-Lipschitz functions 5 : R→ R. It endows (P,,) with T1, the
usual topology for probability measures with finite first moments (a sequence of measures (`=)=≥1
converges to ` w.r.t. T1, and we write `=→ `, if

∫
R
5 3`=→

∫
R
5 3` for every continuous 5 : R→ R

with at most linear growth). Moreover, if `=→ ` (or, equivalently,, (`=, `) → 0) then `=
F−→ `, while

the converse is true if the first moments also converge (see, for example, [41, Theorem 6.9]). For a fixed
< ∈ R, we will often work with a subspace {[ ∈M : [(R) =<} ⊆M, and in this case we still consider
the distance, with the same definition.

Note that, for each C ∈ R, 5C : G ∈ R→−|G − C |∈ R belongs to !8?(1), and therefore, if `=→ ` in
M, then the potential functions *`= converge to *` pointwise. The reverse implication does not hold
in general and we need additional assumptions on the given data (for example, it is enough for all the
measures to have the same mass and mean; see [22, Proposition 2.3]).

By Kantorovich duality theorem (see [41]), and in the case `, a ∈ P, one has an alternative definition
of the Wasserstein-1 distance given by

, (`, a) = inf
c

∫
R2
|H − G |3c(G, H),
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where the infimum is over all c ∈ P2 with marginals ` and a. In particular, the infimum is attained by
the Hoeffding-Fréchet (or quantile) coupling c�� ∈ P2, defined by

c�� (� × �) = _({D ∈ [0,1] :�` (D) ∈ �,�a (D) ∈ �}), �, � ∈ B(R).

Then

, (`, a) =
∫ 1

0
|�a (D) −�` (D) |3D, (1)

which, in the case when `, a ∈ M are with equal mass, generalises to , (`, a) =
∫ ` (R)=a (R)

0 |�a (D) −
�` (D) |3D.

2.2. Stochastic orders and supermartingale couplings

For [, j ∈M, we write [ ≤ j if [(�) ≤ j(�) for all Borel measurable subsets � of R, or equivalently if∫
5 3[ ≤

∫
5 3j for all (measurable) non-negative 5 : R ↦→ R. Since [ and j can be identified as second

derivatives of the potential functions %[ and %j, we have [ ≤ j if and only if %j − %[ is convex, i.e.,
%[ has a smaller curvature than %j.

Two measures [, j ∈M with equal mass are in stochastic order, and we write [ ≤BC> j, if
∫
5 3[ ≤∫

5 3j, for all non-decreasing 5 : R ↦→ R. In particular, [ ≤BC> j if and only if �[ ≥ �j on R, or
equivalently, �[ ≤ �j on [0,1].

Two measures [, j ∈ M are in convex (resp. convex-decreasing) order, and we write [ ≤2 j (resp.
[ ≤23 j), if

∫
5 3[ ≤

∫
5 3j for all convex (resp. convex and non-increasing) 5 : R ↦→ R. Note that

if [ ≤2 j (or [ ≤23 j) then [(R) = j(R). On the other hand, we have that [̄ ≥ j̄ whenever [ ≤23 j
(however, a reversed inequality [̄ ≤ j̄ holds only in the case [ ≤2 j)

Given two probability measures [, j on Polish spaces X,Y, respectively, let Π([, j) be the set of
probability measures on X ×Y with the first marginal [ and second marginal j.

For [, j ∈ P let Π( ([, j) be the set of supermartingale couplings of [ and j. Then

Π( ([, j) =
{
c ∈ Π([, j) : (2) holds

}
,

where (2) is the supermartingale condition∫
G∈�

∫
H∈R

Hc(3G, 3H) ≤
∫
G∈�

∫
H∈R

Gc(3G, 3H) =
∫
�

G[(3G), ∀ Borel � ⊆ R. (2)

Equivalently, Π( ([, j) consists of all transport plans c (i.e., elements of Π([, j)) such that the disin-
tegration in probability measures (cG)G∈R with respect to [ satisfies

∫
R
HcG (3H) ≤ G for [-almost every

G.
The following is classical (see, for example, [17, Theorem 2.58]).

Lemma 2.1. Let [, j ∈ P. The following are equivalent:

1. [ ≤23 j,
2. [(R) = j(R) and %[ ≤ %j on R,
3. Π( ([, j) ≠ ∅.

If [, j ∈ P with [ ≤23 j, but [̄ = j̄, then Π( ([, j) reduces to the set of martingale couplings,
denoted by Π" ([, j) (i.e., elements of Π([, j) for which (2) holds with equality). Indeed, any super-
martingale with constant mean is a martingale. In this case [ ≤2 j (see Strassen [40]).
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For our purposes in the sequel we need a generalisation of the convex (resp. convex-decreasing) order
of two measures. We say [, j ∈M are in positive convex (resp. positive convex-decreasing) order, and
write [ ≤?2 j (resp. [ ≤?23 j), if

∫
5 3[ ≤

∫
5 3j, for all non-negative and convex (resp. non-negative,

convex and non-increasing) 5 : R ↦→ R+. If [ ≤2 j (resp. [ ≤23 j) then also [ ≤?2 j (resp. [ ≤?23 j).
If [ ≤ j then both, [ ≤?2 j and [ ≤?23 j. Note that, if [ ≤?2 j or [ ≤?23 j, then [(R) ≤ j(R). On
the other hand, if [(R) = j(R), then [ ≤?2 j (resp. [ ≤?23 j) is equivalent to [ ≤2 j (resp. [ ≤23 j).

Let [, j ∈M with [ ≤?23 j, and introduce the set

Mj
[ := {\ ∈M : [ ≤23 \ ≤ j}. (3)

ThenMj
[ is the set of target measures of a supermartingale that transports (or embeds) [ to j. It is

not hard to show thatMj
[ ≠ ∅. Indeed, the so-called left-most measure \ ≤ j of mass [(R), denoted by

\ = \[,j ∈M, and defined by

\ = j |(−∞,�j ([ (R))+([(R) − j |(−∞,�j ([ (R)) (R))X�j ([ (R)) , (4)

is the largest measure inMj
[ with respect to ≤23 (see [1, Proposition 3.1]). Note that \ does not depend

on the choice of the quantile function �j.

2.2.1. Irreducible decomposition of c ∈ Π( (`, a)

For a pair of measures [, j ∈M, let the function � = �[,j : R ↦→ R be defined by �[,j (:) = %j (:) −
%[ (:), : ∈ R. Note that if [, j have equal mass then [ ≤23 j is equivalent to � ≥ 0 on R. In particular,
lim:→−∞ � (:) = 0 and lim:→∞ � (:) = [ − j ≥ 0. Let ℓ� := inf{: ∈ R : �[,j (:) > 0} and A� :=
sup{: ∈ R : �[,j (:) ≠ [ − j}. (Note that if [ ≤23 j and [ = j then A� = sup{: ∈ R : �[,j (:) > 0}.)
Let I� be the open interval (ℓ� , A�) together with {ℓ�} if ℓ� > −∞ and � ′(ℓ�+) := lim:↓ℓ� (� (:) −
� (ℓ�))/(: − ℓ�) > 0 and {A�} if A� < ∞ and � ′(A�−) := lim:↑ℓ� (� (:) − � (ℓ�))/(: − ℓ�) ≠ 0.
Note that, if [ ≤2 j (or equivalently, [ ≤23 j and [ = j), then ℓa ≤ ℓ` ≤ A` ≤ Aa and I� ⊆ [ℓa , Aa].
On the other hand, if [ ≤23 j then in general we only have that ℓa ≤ ℓ` and ℓa ≤ ℓ� .

It is well know (see [23, page 254] or [8, Section A.1]) that, if [ ≤2 j and �[,j (G) = 0 for some G,
then in any martingale coupling of [ and j no mass can cross G. More precisely, if c ∈ Π" ([, j) and
G is such that � (G) = 0, then we have c((−∞, G), (G,∞)) + c((G,∞), (−∞, G)) = 0.

In the supermartingale case with [ ≤23 j, define G∗ := G∗[,j := sup{G ∈ R : � (G) = 0}. Then under
any supermartingale coupling c ∈ Π( ([, j), if � (G) = 0 for some G ≤ G∗, then no mass can cross G
and c is a martingale on (−∞, G] × R, and G∗ is the largest such G (see [34]). In particular, if there are
multiple {G 9 } 9≥1 (with G 9 ≤ G∗ and) with �[,j (G 9 ) = 0, then we can divide the problem of constructing
a supermartingale coupling into a sequence of irreducible problems, each taking place on an interval
I8 such that � > 0 on the interior of I8 and � = 0 at the endpoints. All mass starting in a given interval
is transported to a point in the same interval. Moreover, by the martingale property, any mass starting
at a finite endpoint of I8 (that is smaller than G∗) must stay there. Putting this together we may restrict
attention to intervals � on which � > 0 (with limG→4� � (G) = 0 at endpoints 4� of �), and we may
assume that the starting law has support within the interior of � and the target law has support within
the closure of � (and � is the smallest set with this last property). This is summarized in the following
result.

Lemma 2.2 ([34, Proposition 3.4]). Let `, a ∈ P with ` ≤23 a. Define �0 := (G∗,+∞), let (�: ):≥1 be
the open components of {� > 0} ∩ (−∞, G∗) and set �−1 := R \⋃:≥0 �: . Let `: := ` |�: for : ≥ −1, so
that ` =

∑
:≥−1 `: .
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Then there exists a unique decomposition a =
∑
:≥−1 a: such that

`−1 = a−1, `0 ≤23 a0 and `: ≤2 a: for all : ≥ 1.

Furthermore, any c ∈ Π( (`, a) admits a unique decomposition c =
∑
:≥−1 c: where c0 ∈ Π( (`0, a0)

and c: ∈ Π" (`: , a: ) for all : ≠ 0.

2.3. Lifted couplings

Let _ be the Lebesgue measure on [0,1]. Fix ` ∈ P. We follow [9] and call ˆ̀ ∈ Π(_, `) a lift of `. The
following two ways will be interchangeably used to represent the measure ˆ̀.

Let \̂ be a measure on [0,1] ×R. Then

(i) (\̂D, ·)D∈[0,1] denotes the (_-a.s. unique) disintegration (w.r.t. the first coordinate) of \̂ w.r.t. _.
(ii) (\̂ [0,D ], ·)D∈[0,1] denotes the family of measures defined by

\̂ [0,D ], · (�) = \̂ ( [0, D] × �) =
∫ D

0
\̂B, · (�)3B, � ∈ B(R).

ˆ̀ [0,0], · corresponds to the zero measure on R, while ˆ̀ [0,1], · = `. Furthermore, ˆ̀ [0,D ], · ≤ ˆ̀ [0,D′ ], · for
all D, D′ ∈ [0,1] with D ≤ D′.

In [9] the authors call (\̂ [0,D ], ·)D∈[0,1] and (\̂D, ·)D∈[0,1] the primitive and derivatives curves, respec-
tively. Indeed, \̂D, · can be considered as a derivative of (\̂ [0,D ], ·)D∈[0,1] w.r.t. T1 (see [9, Section 2.2]).
In particular, the set ! ⊆ [0,1] of times at which, for any continuous 5 with linear growth at most,∫
5 3\̂D, · = limℎ↓0 (

∫
5 3\̂ [0,D+ℎ], · −

∫
5 3\̂ [0,D ], ·)/ℎ holds, is a (Borel) set of full measure.

Now, in addition to ˆ̀ ∈ Π(_, `), let a ∈ P with ` ≤23 a. Then the set of lifted supermartingale
couplings (or transport plans) is given by

Π̂( ( ˆ̀, a) :=
{
ĉ ∈ Π( ˆ̀, a) :

∫
H3c (D,G) , · ≤ G for ˆ̀-a.e. (D, G) ∈ [0,1] ×R

}
,

where (ĉ (D,G) , ·)(D,G) ∈[0,1]×R denotes the disintegration of ĉ with respect to ˆ̀. Similarly as for a lifted
measure ˆ̀, we denote the primitive and derivative curves of ĉ by (ĉ [0,D ], ·, ·)D∈[0,1] and (ĉD, ·, ·)D∈[0,1] ,
respectively. Note that both ĉ [0,D ], ·, · and ĉD, ·, · are measures on R2. Moreover, for any ĉ ∈ Π̂( ( ˆ̀, a),
the corresponding element of Π( (`, a) is given by c =

∫ 1
0 ĉD3D.

For ˆ̀ ∈ Π(_, `) and ĉ ∈ Π( ( ˆ̀, a) we have two canonical disintegrations of ĉ: ĉ(3D, 3G, 3H) =
ĉD, ·, · (3G, 3H)3D and ĉ(3D, 3G, 3H) = ĉ (D,G) , · (3H) ˆ̀D, · (3G)3D. In particular, (for _-a.e. D ∈ [0,1] and
ˆ̀D, ·-a.e. G ∈ R) ĉ (D,G) , · represents the disintegration of ĉD, ·, · with respect to the first marginal ˆ̀D, ·.
Then, if âD, · denotes the second marginal of ĉD, ·, ·, we have that ĉD, ·, · ∈ Π( ( ˆ̀D, ·, âD, ·).

Notation: For G ∈ R let XG ∈ P denote the unit mass at G. For real numbers 2, G, 3 with 2 ≤ G ≤ 3
define the probability measure j2,G,3 by j2,G,3 = 3−G

3−2 X2 +
G−2
3−2 X3 if 2 < 3 and j2,G,3 = XG otherwise.

(Note that j2,G,3 has mean G and is the law of a Brownian motion started at G evaluated on the first
exit from (2, 3).) We extend the definition of j2,G,3 in the case when one of {2, 3} takes infinite
value. In particular, if −∞ = 2 < G ≤ 3 < ∞ we set j2,G,3 = X3 , and similarly, j2,G,3 = X2 whenever
−∞ < 2 ≤ G < 3 =∞.
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3. The shadow measure and its stability

Let `, a ∈M with ` ≤?23 a. Recall the definition ofMa
`, i.e., the set of a target measures of a super-

martingale that embeds ` in a (see Section 2.2 and (3)). In this section we study the stability properties
of the smallest element ofMa

` with respect to ≤23 . In what follows, this measure, the so-called shadow
of ` in a, will be denoted by (a (`).

Note that, for any \ ∈Ma
` we have that \ ≤ `. It turns out that we can capture the difference `−(a (`)

precisely. For this purpose, for any two measures [, j ∈ M with [ ≤?23 j, we introduce a constant
2[,j ∈ [0,∞):

2[,j : = sup
:∈R
{�[ (:) −�j (:)} (5)

= sup
:∈R
{(j(R) − [(R)): − (j − [) − %j (:) + %[ (:)}. (6)

(The equivalence between (5) and (6) is justified by the Put-Call parity.)

Remark 3.1. Note that, if [, j ∈ M with [ ≤?23 j, then 2[,j = 0 if and only if [ ≤?2 j. Then it
follows that ∅ ≠ {\ ∈ M : ` ≤2 \ ≤ a} ⊆ Ma

`, see [7, Lemma 4.4]. In order to verify the claim,
note that, by (5) we have that 2[,j = 0 if and only if �[ ≤ �j everywhere (since lim:→∞�[ (:) =
lim:→∞�j (:) = 0). On the other hand, by [1, Lemma 3.2] we have that �[ ≤ �j (everywhere) if and
only if [ ≤?2 j.

The convex hull of a function 5 : R→ R is denoted by 5 2; see Appendix B. The next lemma defines,
and explicitly determines the shadow measure (a (`); see [1,34].

Lemma 3.2 (Shadow measure (a (`)). Let `, a ∈M with ` ≤?23 a.

1. There exists the unique measure (a (`) ∈ Ma
` such that (a (`) ≤23 \ for all \ ∈Ma

`.
2. The measure (a (`) is explicitly determined by its potential function %(a (`) , given by

%(a (`) (:) = %a (:) − (%a − %`)2 (:), : ∈ R. (7)

In particular, 2`,a = ` − (a (`).
3. If ` = `1 + `2 for some `1, `2 ∈M, then

(a (`) = (a (`1) + (a−(
a (`1) (`2). (8)

We are now ready to present the main result of this section. The following theorem establishes
stability of the shadow measure (a (`) with respect to initial and target measures `, a.

Theorem 3.3. Let `, `′, a, a′ ∈ M with `(R) = `′(R) and a(R) = a′(R). Suppose ` ≤?23 a and
`′ ≤?23 a′. The following relation holds

, ((a (`), (a′ (`′)) ≤, (`, `′) + 2, (a, a′). (9)

The proof of Theorem 3.3 relies on two auxiliary propositions and the following up and down mea-
sures.
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For [, [′ ∈M with [(R) = [′(R) let Up([, [′), Down([, [′) ∈ M be given by

Up([, [′) (�) = _ |[0,[ (R)=[′ (R) ] ({D ∈ R : (�[ (D) ∨�[′ (D)) ∈ �}), � ∈ B(R), (10)

Down([, [′) (�) = _ |[0,[ (R)=[′ (R) ] ({D ∈ R : (�[ (D) ∧�[′ (D)) ∈ �}), � ∈ B(R) (11)

(relevant results regarding these measures are presented in Appendix A). Observe that Up([, [′) (R) =
Down([, [′) (R) = [(R) = [′(R).

Proposition 3.4. Let `, `′, a ∈M be such that `(R) = `′(R), ` ≤?23 a and `′ ≤?23 a. We have

, ((a (`), (a (`′)) ≤, (`, `′).

Proposition 3.5. Let `, a, a′ ∈M be such that ` ≤?23 a, ` ≤?23 a′ and a(R) = a′(R). Then

, ((a (`), (a′ (`)) ≤ 2, (a, a′).

Proof of Theorem 3.3. First, by Lemma A.1, we have that Down(a, a′) ≤BC> j for j ∈ {a, a′}, while
by Lemma A.3, [ ≤?23 Down(a, a′) for [ ∈ {`, `′}. Then

, ((a (`), (a′ (`′))

≤, ((a (`), (Down(a,a′) (`)) +, ((Down(a,a′) (`), (Down(a,a′) (`′)) +, ((Down(a,a′) (`′), (a′ (`′))

≤ 2, (a,Down(a, a′)) +, (`, `′) + 2, (a′,Down(a, a′)),

where the first inequality follows from the triangle inequality (applied twice), while for the second
one we used Propositions 3.4 and 3.5. We finish the proof by observing that , (a,Down(a, a′)) +
, (a′,Down(a, a′)) =, (a, a′), see Lemma A.2.

Remark 3.6. Theorem 3.3 is a supermartingale generalisation of [30, Theorem 2.31]. While our proof
uses similar structure, it is simpler and more direct.

For example, in several instances the proof relies on the explicit representation of the shadow mea-
sure (a (`). In the martingale case, Juillet [30] first uses the representation of (a (`) when ` is atomic,
and then obtains general statements by approximation. In our case, and directly for general `, we use
the representation of (a (`) via potential function %(a (`) (see Lemma 3.2), and thus bypass the ap-
proximation step.

Furthermore, a supermartingale has a natural direction (i.e., a tendency to decrease), which translates
to convenient relations between measures in terms of stochastic orders. To illustrate this, let `, a, a′ be
as in the statement of Theorem 3.3, i.e., ` ≤?23 a and ` ≤?23 a′. Then ` ≤?23 Down(a, a′), see
Lemma A.3. On the other hand, if ` ≤?2 a and ` ≤?2 a′ then, in general, ` ≤?2 Down(a, a′) does not
hold, and thus in the martingale case Juillet [30] needs additional arguments.

3.1. Proofs of Propositions 3.4 and 3.5

The proofs of both propositions rely on the following important lemma.

Lemma 3.7. Let `, `′, a ∈ M with `(R) = `′(R), ` ≤?23 a and `′ ≤?23 a. If ` ≤BC> `′, then
(a (`) ≤BC> (a (`′).
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Proof. Note that (a (`) ≤BC> (a (`′) is equivalent to �(a (`) ≥ �(a (`′) on R. On the other hand, for any
[ ∈M, �[ (G) = [((−∞, G]) = (%[) ′+ (G) for each G ∈ R. Hence it is enough to show that

(%(a (`) ) ′+ (G) ≥ (%(a (`′) ) ′+ (G), G ∈ R. (12)

(Recall that 5 2 denotes the convex hull of 5 : R→ R.) By Lemma 3.2 (see (7)), (12) will be established
if we can show that [(%a−%`)2] ′+ (G) ≤ [(%a−%`′)2] ′+ (G), G ∈ R. But since ` ≤BC> `′, (%a−%`) ′+ (G) ≤
(%a − %`′) ′+ (G), G ∈ R. Then an application of Lemma B.1 with 5 = (%a − %`) and 6 = (%a − %`′)
completes the proof.

Proof of Proposition 3.4. To ease the notation, set ˜̀ =Up(`, `′). From Lemma A.1 we have that
` ≤BC> ˜̀ and `′ ≤BC> ˜̀, while Lemma A.4 ensures that ˜̀ ≤?23 a. This permits us to apply Lemma
3.7, from which we conclude that (a (`) ≤BC> (a ( ˜̀) and (a (`′) ≤BC> (a ( ˜̀).

Using the above observations we have that

, (`, `′) =, (`, ˜̀) +, (`′, ˜̀)

= ˜̀ − ` + ˜̀ − `′

=, ((a (`), (a ( ˜̀)) +, ((a (`′), (a ( ˜̀)) (13)

+ { ˜̀ − (a ( ˜̀) − (` − (a (`))}

+ { ˜̀ − (a ( ˜̀) − (`′ − (a (`′))},

where the first equality follows from Lemma A.2, while the other two use the fact (see Section 2.1) that
, ([, j) = j − [ whenever [, j ∈M are such that [(R) = j(R) and [ ≤BC> j.

We claim that the last two summands in (13) are non-negative. We will only verify this for `, i.e.,
we consider the penultimate summand (the case for `′ is identical). By Lemma 3.2 we have that

˜̀ − (a ( ˜̀) − (` − (a (`)) = 2 ˜̀ ,a − 2`,a .

But since, for each : ∈ R, B ↦→ (B − :)+ is non-decreasing, and also ` ≤BC> ˜̀, we have that � ˜̀ (:) ≥
�` (:), and it follows that

2 ˜̀ ,a − 2`,a = sup
:∈R
{� ˜̀ (:) −�a (:)} − sup

:∈R
{�` (:) −�a (:)} ≥ 0.

Finally,

, (`, `′) ≥, ((a (`), (a ( ˜̀)) +, ((a (`′), (a ( ˜̀)) ≥, ((a (`), (a (`′)),

where the last inequality follows from the triangle inequality.

The proof of Proposition 3.5 will need one additional result.

Lemma 3.8. Let `, a ∈M with ` ≤?23 a, and let (`=)=≥1 be a sequence of measures inM increasing
in convex order and such that `= ≤2 `.

Then `=→ `∞ and (a (`=) → (∞ for some `∞, (∞ ∈M. In particular, (∞ = (a (`∞).
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Proof. It is well-known that `=
F−→ `∞ (increasingly with respect to convex order) for some `∞ ∈M if

and only if *`= ↓*`∞ pointwise (see, for example, [15]). In this case, the first moments also converge
(i.e.,*`= (0) ↓*`∞ (0)), and therefore `=

F−→ `∞ is equivalent to `=→ `.
Since `= ≤2 `=+1 ≤2 `, *`= (:) ≥ *`=+1 (:) ≥ *` (:) and hence lim=→∞*`= (:) exists for each

: ∈ R. It is easy to see that *∞ := lim=→∞*`= is concave and with the same asymptotic behaviour
as *`= and *`. It follows that *∞ =*`∞ for some `∞ ∈ M with the same mean and mass as `. We
conclude that `= → `∞. Furthermore, since *`∞ = *∞ ≥ *`, we have that `∞ ≤2 `, and therefore
`∞ ≤?23 a, so that the shadow measure (a (`∞) is well-defined.

Now note that, for = ≥ 1, by Lemma 3.2 we have that

%(a (`=) = %a − (%a − %`= )
2 = %(a (`=+1) + (%a − %`=+1 )

2 − (%a − %`= )2

= %(a (`∞) + (%a − %`∞ )
2 − (%a − %`= )2 .

Therefore, since %`= ≤ %`=+1 ≤ %`∞ , we have that %(a (`=) ≤ %(a (`=+1) ≤ %(a (`∞) . It follows that, for
all = ≥ 1, (a (`=) ≤23 (a (`=+1) ≤23 (a (`∞) and therefore (a (`=) ≥ (a (`=+1) ≥ (a (`∞). In partic-
ular, lim=→∞ (a (`=) exists and (since a is integrable) it is finite. Furthermore, applying Lemma B.2
with 5= = (%a − %`= ) and 5 = (%a − %`∞ ) we have that %(a (`=) ↑ %(a (`∞) pointwise, as =→∞.

Recall that *[ = −�[ − %[ for [ ∈ M. Using the Put-Call parity we further have that *[ (:) =
[(R): − [ − 2%[ (:) for each : ∈ R. Then, since (a (`=) (R) = `= (R) = `∞ (R) = (a (`∞) (R), we have
that, for each : ∈ R,

lim
=→∞

*(a (`=) (:) = (
a (`∞) (R): − lim

=→∞
(a (`=) − 2%(a (`∞) (:)

=*(a (`∞) (:) −
{

lim
=→∞

(a (`=) − (a (`∞)
}
.

It follows that lim=→∞*(a (`=) (:) exists for all : ∈ R, and by [15, Lemma 2.6], (a (`=)
F−→ (∞ for

some (∞ ∈M.
Finally, let *∞ := lim=→∞*(a (`=) and � := lim=→∞ (a (`=) − (a (`∞) ≥ 0. Then applying [15,

Lemma 2.5] we have that *(∞ = *∞ + � = *(a (`∞) . Since the potential functions uniquely identify

the underlying measures, it follows that (a (`=)
F−→ (∞ = (a (`∞).

It is left to show that � = 0 (from which we can conclude that the first moments of (a (`=) converge
to the first moment of (a (`∞)) and therefore (a (`=)

F−→ (∞ is equivalent to (a (`=) → (∞. By [11,
Theorem 3.5] it is enough to show that {(a (`=)}=≥1 is uniformly integrable. Note that (a (`=) (R) =
`(R) for all = ≥ 1. Let \, \ ∈M be such that \ (R) = \ (R) = `(R), \ ≤ a, \ ≤ a and \ ≤BC> [ ≤BC> \ for
all [ ∈ M with [(R) = `(R) and [ ≤ a. Then \, \ are the left-most (see (4)) and right-most measures
(of mass `(R)) within a, respectively, and we have that

0 ≤ lim
 →∞

sup
=≥1

∫
(−∞,− ]∪[ ,+∞)

|G |3(a (`=) (G)

≤
(

lim
 →+∞

∫
(−∞,− ]

|G |3\ (G)
)
+

(
lim

 →+∞

∫
[ ,+∞)

|G |3\ (G)
)
= lim
 →∞

∫
(−∞,− ]∪[ ,+∞)

|G |3a(G) = 0

(for the equalities we use that \ and \ are the restrictions of a, and that a is integrable, respectively).

Proof of Proposition 3.5. Let ã =Down(a, a′). Note that, by Lemma A.1, ã ≤BC> a and ã ≤BC> a′,
while Lemma A.3 ensures that ` ≤?23 ã. Furthermore, , ((a (`), (a′ (`)) ≤ , ((a (`), (ã (`)) +
, ((ã (`), (a′ (`)), which follows from the triangle inequality.
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Suppose the claim of Proposition 3.5 is true for a′ ≤BC> a. Then , ((a (`), (ã (`)) ≤ 2, (a, ã) and
, ((ã (`), (a′ (`)) ≤ 2, (a′, ã), and then using Lemma A.2 we obtain , ((a (`), (a′ (`)) ≤ 2, (a, a′),
as required.

It is left to show that the claim of Proposition 3.5 holds under an assumption that a′ ≤BC> a. Because
of Lemma 3.8 we can further assume that ` is of type

∑=
8=1 U8XG8 (the general ` is then approximated

by a sequence of atomic measures increasing in convex order).
Then, by Lemma 3.9, there exists `′ ∈M with `′(R) = `(R), and such that ` ≤BC> `′, (a

′ (`) ≤BC>
(a (`′) and , ((a′ (`), (a (`′)) ≤ , (a, a′) . From Lemma 3.7 we also have that (a (`) ≤BC> (a (`′),
and it follows that

, ((a (`), (a′ (`)) ≤, ((a′ (`), (a (`′)) +, ((a (`′), (a (`)) = (a (`′) − (a′ (`) + (a (`′) − (a (`)

≤ 2, (a′, a) + (a′ (`) − (a (`),

where we used the triangle inequality and the fact (see Section 2.1.2 and (1)) that , ([, j) =∫ [ (R)
0 �j (D) −�[ (D)3D = j − [ whenever [(R) = j(R) and [ ≤BC> j.

Hence the claim of the proposition holds if we can show that (a′ (`) − (a (`) ≤ 0. However, by
Lemma 3.2,

(a
′ (`) − (a (`) = ` − 2`,a′ + 2`,a − ` = sup

:∈R
{�` (:) −�a (:)} − sup

:∈R
{�` (:) −�a′ (:)} ≤ 0,

where the inequality follows from the fact that �a′ ≤ �a , since a′ ≤BC> a and, for each : ∈ R, B ↦→
(B − :)+ is non-decreasing.

In the proof of Proposition 3.5 we used the following lemma, which can be proved using a con-
struction provided in the first part of the proof of [30, Proposition 2.36]. We sketch the proof for the
convenience of the reader.

Lemma 3.9. Let `, a, a′ ∈M be such that a(R) = a′(R), a′ ≤BC> a, ` ≤?23 a and ` ≤?23 a′. Suppose
` is of the form

∑=
8=1 U8XG8 for some = ∈ N. Then there exists `′ ∈M such that `′(R) = `(R), ` ≤BC> `′,

(a
′ (`) ≤BC> (a (`′) and, ((a′ (`), (a (`′)) ≤, (a, a′).

Proof. The construction of `′ relies on the following fact: if ` is as in the statement and = = 1, then
(a
′ (`) is a restriction of a′ between two quantiles (see [34, Lemma 6.3]). More generally (when = > 1),

there exists a sequence of sets �1 ⊆ · · · ⊆ �= ⊆ (0, a(R) = a′(R)] such that, for any : ∈ {1, . . . , =},
(a
′ (∑:

8=1 U8XG8 ) (�) = _ |[0,a′ (R) ] ({D ∈ �: :�a′ (D) ∈ �}), for all Borel subsets � of R.
Now introduce `′ =

∑=
8=1 U8XG′8

, where G′
8

is the barycenter of a measure [8 , defined by [8 (�) =
_ |[0,a (R) ] ({D ∈ �8 \ �8−1 : �a (D) ∈ �}). Since a′ ≤BC> a, �a′ ≤ �a and therefore G8 ≤ G′8 . It follows
that ` ≤BC> `′ and (since ` ≤?23 a) `′ ≤?23 a. Then the shadow of `′ in a is given by (a (`′) (�) =
_ |[0,a (R) ] ({D ∈ �= :�a (D) ∈ �}) and, in particular, (a

′ (`) ≤BC> (a (`′). Finally,

, ((a′ (`), (a (`′)) = (a (`′) − (a′ (`) =
∫
�=

[�a (D) −�a′ (D)]3D

≤
∫ a (R)=a′ (R)

0
[�a (D) −�a′ (D)]3D =, (a, a′).
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4. Existence of lifted shadow couplings

In this section we show that the shadow measure allows to construct a large family of (lifted) super-
martingale couplings.

Let F (R) be the space of closed subsets of R. The space F (R) is endowed with the coarsest topology
such that � ∈ F (R) ↦→ 3 (G, �) is continuous for every G ∈ R (see [33, Section 2.1]). We write ) ∈ I if
) ∈ F (R) and inf{: ∈ )} = −∞.

Definition 4.1. Let ) ∈ I. For every G ∈ R, let G−
)

:= sup{: ∈ ) ∩ (−∞, G]} and G+
)

:= inf{: ∈ ) ∩
[G,∞)} with inf ∅ =∞. The Kellerer dilation is given by

�) (G, ·) =


XG if G ∈ ) ;
G+
)
− G

G+
)
− G−

)

XG−
)
+
G − G−

)

G+
)
− G−

)

XG+
)

otherwise.

(If G ∉ ) and G+
)
=∞, then �) (G, ·) = XG−

)
.)

If ` ∈ P, then the hitting projection of ` in ) is a measure `�) (�) =
∫
R
�) (G, �)3`(G), and the

hitting coupling of ` and `�) is defined by c`,) (� × �) =
∫
�
�) (G, �)3`(G).

Note that if ) is not an element of I, but inf{: ∈ )} ≤ inf{G ∈ supp(`)}, then the kernel �) still
makes sense `-a.s.

Remark 4.2. The kernel �) is slightly different from the original dilation introduced in [33, Definition
16]. The difference lies in the definition of I. Kellerer [33] considers martingales only, and therefore
writes) ∈ I if) ∈ F (R), inf{: ∈ )} = −∞ and sup{: ∈ )} =∞. The last condition, however, cannot be
guaranteed in the supermartingale setting. (For example, consider a supermartingale with the starting
law ` supported on (0,∞) and the target law a supported on (−∞,0), and take G ∈ supp(`) together
with ) = supp(a).) Therefore in the supermartingale case we need to explicitly deal with a situation
when, for some G ∈ R, {: ∈ ) ∩ [G,∞)} is empty.

Before stating the main result of this section, we present a useful result regarding the dilation �) .
The proof is postponed until Appendix C.

Lemma 4.3. Fix ) ∈ F (R) and ` ∈ P with inf{: ∈ )} ≤ inf{: ∈ supp(`)}.

1. The hitting coupling c`,) is the unique element of Π( (`, `�) ).
2. Let (`=)=≥1 be a sequence in P with `= (R) = `(R) for all = ≥ 1. If `=→ ` then `=�) → `�) .

With the help of dilation �) we can now formulate the main result of this section. Recall that
_ denotes the Lebesgue measure on [0,1]; see also Section 2.3 for the definitions of primitive and
derivative curves of a lifted measure.

Theorem 4.4. Let `, a ∈ P with ` ≤23 a, and let ˆ̀ ∈ Π(_, `). Then there exists a unique element
ĉ ∈ Π( ( ˆ̀, a), the lifted shadow coupling of ˆ̀ and a, such that for every D ∈ [0,1], the first and second
marginals of ĉ [0,D ], ·. · are ˆ̀ [0,D ], · and â [0,D ], · := (a ( ˆ̀ [0,D ], ·), respectively. If we denote by âD, · the
derivative of (â [0,D ], ·)D∈[0,1] at D (whenever it exists), we have moreover âD, · = ˆ̀D, ·�) (D) , where
) (D) := supp(a − â [0,D ], ·).
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The proof of Theorem 4.2 relies on the following result.

Proposition 4.5. Let `, a ∈ P with ` ≤23 a, and let ˆ̀ ∈ Π(_, `). Suppose D0 ∈ [0,1) is such that
D ↦→ ˆ̀ [0,D ], · has a right derivative at D0, and let â [0,D ], · = (a ( ˆ̀ [0,D ], ·). Then a right derivative of
(â [0,D ], ·)D∈[0,1] at D0 exists and is given by ˆ̀D0 , ·�) , where ) = supp(a − â [0,D0 ], ·). Furthermore,
inf{: ∈ )} ≤ inf{: ∈ supp( ˆ̀D0 , ·)}.

Proof of Theorem 4.4. Using Proposition 4.5, the proof can be obtained by the arguments of [8, The-
orem 2.9]. Nevertheless, we sketch the proof for completeness.

Let ˆ̀ [0,D ], ·, â [0,D ], · and ) (D) be as in the statement. Then using Proposition 4.5, and by setting
âD, · = ˆ̀D, ·�) (D) , we can define ĉD, ·, · = c ˆ̀D,· ,) (D) ∈ Π( ( ˆ̀D, ·, âD, ·) for almost every D ∈ [0,1] (recall
that c ˆ̀D,· ,) (D) denotes the hitting coupling), and then the associated ĉ ∈ Π̂( ( ˆ̀, a) and ĉ [0,D ], ·, · =∫ D

0 ĉC , ·, ·3C.
On the other hand, if ĉ ∈ Π̂( ( ˆ̀, a) is such that the marginals of ĉ [0,D ], ·, · are ˆ̀ [0,D ], · and â [0,D ], · =

(a ( ˆ̀ [0,D ], ·), then at points D where the derivatives of ˆ̀ [0,D ], ·, â [0,D ], · and ĉ [0,D ], ·, · exist we have that
ĉD, ·, · ∈ Π( ( ˆ̀D, ·, âD, ·). But by Proposition 4.5 we necessarily have that âD, · = ˆ̀D, ·�) (D) . Then the
uniqueness part of Lemma 4.3 completes the proof.

It is left to prove Proposition 4.5. We will need the following lemma.

Lemma 4.6. Let (�=)=≥1 be a sequence of positive numbers tending to infinity, ([=)=≥1 a sequence in
P converging to [ ∈ P, and E ∈ M. Assume [= ≤?23 �=E for every = ≥ 1. Then, setting ) = supp(E),
it holds inf{: ∈ )} ≤ inf{: ∈ supp([)} and (�=E ([=) → [�) in P.

Proof. The proof follows the same arguments as in the martingale case of [9, Lemma 2.8]. The main
difference lies in the assumption [= ≤?23 �=E (and not ≤?2) and the definition of �) . Therefore we
will only highlight the necessary modifications.

First, since [= ≤?23 �=E we have that inf{: ∈ )} ≤ inf{: ∈ supp([=)} for every = ≥ 1, and therefore
[= ( [inf),∞)) = 1. Letting =→∞ we find supp([) ⊆ [inf{: ∈ )},∞].

1. First suppose that [= = XG for all = ≥ 1. The proof in the martingale case relies on the fact that
(when XG ≤?2 �=E) the martingale shadow measure (�=E (XG) is supported on an interval. However,
the same is true in the supermartingale case, see [34, Lemma 6.3].

2. Now suppose that [= = [ =
∑=
:=1<:XG: for all = ≥ 1. The proof in the martingale case relies

on Step 1, associativity of the (martingale) shadow measure and the induction argument. Since the
associativity also holds in the supermartingale case (recall Lemma 3.2), the result follows.

3. In this step the result is established for a constant sequence [= = [. To achieve this, approximate
a general measure [ by atomic measures ([: ):≥1 with [: ≤2 [ and such that [: → [ in P as :→∞.
Note that all the measures ([: ):≥1, [ have the same total mass and mean, which will enable us to use
Lemma 4.3.

To establish the claim (and similarly as in the martingale case) we use Step 2 and the following two
facts: first, by Theorem 3.3 we have that, ((�=E ([: ), (�=E ([)) ≤, ([: , [) (which converges to zero
uniformly in = as : goes to infinity), and second, [:�) → [�) which is guaranteed by Lemma 4.3.

4. If [= is a non-constant sequence, then note that

, ((�=E ([=), [�) ) ≤, ((�=E ([=), (�=E ([)) +, ((�=E ([), [�) ) ≤, ([=, [) +, ((�=E ([), [�) ),

where the second inequality follows from Theorem 3.3. Since [= → [, , ([=, [) → 0, while Step 3
ensures that, ((�=E ([), [�) ) → 0.
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Finally we can prove Proposition 4.5; the arguments are identical to those of [9, Proposition 2.7] and
thus we only give a sketch.

Proof of Proposition 4.5. For ℎ > 0 consider ℎ−1 (â [0,D0+ℎ], · − â [0,D0 ], ·) = ℎ−1 ((a ( ˆ̀ [0,D0+ℎ], ·) −
(a ( ˆ̀ [0,D0 ], ·)) =: fℎ ∈ P. By associativity of the shadow measure and by using an appropriate scal-

ing of measures we have that fℎ = (
ℎ−1 (a−â[0,D0 ],·) (ℎ−1( ˆ̀ [0,D0+ℎ], · − ˆ̀ [0,D0 ], ·)). Replacing ℎ by a se-

quence (ℎ=)=≥1 (of positive numbers decreasing to zero) and applying Lemma 4.6 with �= := ℎ−1
= ,

[= := ℎ−1
= ( ˆ̀ [0,D0+ℎ= ], · − ˆ̀ [0,D0 ], ·) and E := a − â [0,D0 ], · completes the proof.

5. Doob-like decomposition of the shadow couplings

Fix `, a ∈ P with ` ≤23 a. Let ˆ̀ ∈ Π(_, `). The goal of this section is to determine the martingale
points of an arbitrary lifted supermartingale shadow coupling.

Any ĉ ∈ Π̂( ( ˆ̀, a) can be represented as ĉ(3D, 3G, 3H) = ĉ (D,G) , · (3H) ˆ̀(3D, 3G), where the family
of kernels (ĉ (D,G) , ·)(D,G) ∈[0,1]×R satisfies

∫
R
H3ĉ (D,G) , · (3H) ≤ G for ˆ̀-a.e. (D, G) ∈ [0,1] × R. On the

other hand, if ĉ is a lifted supermartingale shadow coupling, then by Theorem 4.4 we have that
ĉ(3D, 3G, 3H) = c ˆ̀D,· ,) (D) (3G, 3H)3D, where (for _-a.e. D ∈ [0,1]) the hitting coupling c ˆ̀D,· ,) (D) is
the unique element of Π( ( ˆ̀D, ·, ˆ̀D, ·�) (D) ). Recall that âD, · := ˆ̀D, ·�) (D) is the (right) derivative of
the curve (â [0,D ], · := (a ( ˆ̀ [0,D ], ·))D∈[0,1] . Then ĉ (D,G) , · corresponds to the disintegration of the hit-
ting coupling c ˆ̀D,· ,) (D) with respect to the first marginal ˆ̀D, ·. It follows that (for _-a.e. D ∈ [0,1])
c ˆ̀D,· ,) (D) ∈ Π" ( ˆ̀D, ·, âD, ·) if and only if

∫
R
Hĉ (D,G) , · (3H) = G for ˆ̀D, ·-a.e. G ∈ R. But, since c ˆ̀D,· ,) (D)

is a supermartingale coupling, it is a martingale coupling whenever the means of its marginal distribu-
tions are equal, i.e., whenever ˆ̀D, · = âD, · (we call such D ∈ [0,1] a martingale point of ĉ).

In order to identify the points D ∈ [0,1] for which ˆ̀D, · = âD, · consider 2 : [0,1] → [0, ` − a] defined
by

2(D) = 2 ˆ̀ [0,D ],· ,a , D ∈ [0,1], (14)

where 2[,j is as in (5).

Lemma 5.1. Let 2 : [0,1] → [0,∞) be given by (14). Then 2(·) is continuous and non-decreasing.

Proof. Fix D, E ∈ [0,1] with D ≤ E. By definition of 2[,j (see (5)) we have that

2(D) = sup
:∈R
{� ˆ̀ [0,D ],· (:) −�a (:)} ≤ sup

:∈R
{� ˆ̀ [0,E ],· (:) −�a (:)} = 2(E),

where we used that ˆ̀ [0,E ], · ≥ ˆ̀ [0,D ], · and thus � ˆ̀ [0,E ],· ≥ � ˆ̀ [0,D ],· on R.
We now prove that 2(·) is continuous. Let [E−D := ˆ̀ [0,E ], · − ˆ̀ [0,D ], · and jE−D := (a ( ˆ̀ [0,E ], ·) −

(a ( ˆ̀ [0,D ], ·) = (a−(
a ( ˆ̀ [0,D ],·) ([E−D). By Lemma 3.2 we have that 2(E) − 2(D) = [E−D − jE−D . Note

that [E−D , jE−D ∈ M and [E−D (R) = jE−D (R) = E − D. Hence both [E−D and jE−D weakly converge
to the zero measure, when either E ↓ D or D ↑ E. Hence to conclude that limE↓D [2(E) − 2(D)] = 0 and
limD↑E [2(E) − 2(D)] = 0 it is enough to show that the first moments of [E−D and jE−D converge to zero
when E ↓ D or D ↑ E, respectively. But this follows by observing that [E−D ≤ `, jE−D ≤ a and both `
and a are integrable (indeed, one can adapt the arguments of the last paragraph of the proof of Lemma
3.8).
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We are now ready to present the main result of this section. Proposition 5.2 shows how given the
initial data (i.e., ` ≤23 a and a lift ˆ̀ ∈ Π(_, `)) one can immediately identify the martingale points of
the corresponding lifted supermartingale shadow coupling from the graph of function 2(·).

Proposition 5.2. Fix `, a ∈ P with ` ≤23 a and consider a lift ˆ̀ ∈ Π(_, a). Define

"̂ := {D ∈ [0,1] : 2′(D) exists and 2′(0) = 0}.

Then, for any lifted supermartingale shadow coupling ĉ ∈ Π̂( ( ˆ̀, a) (as in Theorem 4.4), "̂ is a
_-a.s. unique (Borel) set for which ĉ |"̂×R×R is a martingale.

Proof. By the definition of 2(·) and Lemma 3.2 we have that 2(D) = ˆ̀ [0,D ], · − (a ( ˆ̀ [0,D ], ·), D ∈ [0,1],
and therefore, for each ℎ > 0,

2(D + ℎ) − 2(D)
ℎ

=
ˆ̀ [0,D+ℎ], · − ˆ̀ [0,D ], ·

ℎ
−
(a− ˆ̀ [0,D ],· ( ˆ̀ [0,D+ℎ], · − ˆ̀ [0,D ], ·)

ℎ
.

Now let ! ⊆ [0,1] be a set for which ˆ̀D, · and âD, · exist. Recall that _(!) = 1. Then

ˆ̀D, · − âD, · = lim
ℎ↓0

2(D + ℎ) − 2(D)
ℎ

= 2′(D+),

i.e., the right derivative of 2(·) at D exists. But 2(·) is non-decreasing, and therefore differentiable
almost everywhere on [0,1]. It follows that ˆ̀D, · − âD, · = 2′(D) for all D ∈ !̂ := ! \ #2 where #2 :=
{D ∈ [0,1] : 2′(D) does not exist} is a _-null set. Hence, if D ∈ {E ∈ !̂ : 2′(E) = 0}, then Π( ( ˆ̀D, ·, âD, ·) =
Π" ( ˆ̀D, ·, âD, ·) is a singleton with a unique element c ˆ̀D,· ,) (D) , and it follows that ĉ is a martingale on
"̂ ×R ×R. The (_-a.s.) uniqueness of "̂ is straightforward.

6. The geometric construction of 0J

We fix `, a ∈ P with ` ≤23 a and a < ` throughout this section. Our goal here is to give an explicit
construction of the decreasing supermartingale coupling introduced in [34]. We begin by introducing
monotonicity properties of the support of this coupling.

Definition 6.1. A pair (Γ, ") ∈ B(R2) ×B(R) is said to be first-order left-monotone and second-order
right-monotone if

1. Γ is second-order right-monotone: for all (G, H1), (G, H2), (G′, H′) ∈ Γ with G′ < G we have that
H′ ∉ (H1, H2);

2. (Γ, ") is first-order left-monotone: for all (G1, H1), (G2, H2) ∈ Γ with G1 < G2 and G2 ∉ " we have
that H1 ≤ H2.

The following defines and characterizes the decreasing supermartingale coupling; see [34, Theorems
1.1, 1.2 and 1.3].

Definition 6.2. The decreasing supermartingale coupling, denoted by c� , is the unique element of
Π( (`, a) which satisfies any, and then all of the following

1. for each G ∈ R, c� transports ` |[G,∞) to the shadow (a (` |[G,∞) );
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2. for all Borel 5 : R2 → R such that 5 (G2, ·) − 5 (G1, ·) is strictly decreasing and strictly convex
for all G1 < G2, and | 5 (G, H) |≤ 0(G) + 1(H) for all G, H ∈ R and some `, a integrable functions
0, 1 : R→ R, respectively, we have that∫

5 3c� = inf
c∈Π( (`,a)

∫
5 3c;

3. there exists first-order left-monotone and second-order right-monotone (Γ, ") ∈ B(R2) × B(R)
such that c� is concentrated on Γ and c� |"×R is a martingale.

Note that c� is obtained by working from right to left and using the shadow measure (see the first
characterization of Definition 6.2). In terms of lifted measures, this corresponds to taking ˆ̀ ∈ Π̂(_, `)
to be the decreasing quantile lift of `. Then by applying Theorem 4.4 we obtain existence of a coupling
ĉ ∈ Π̂( ( ˆ̀, a), for which

∫ 1
0 ĉ3D = c� (see Lemma 6.3). Hence a construction of ĉ leads to an explicit

construction of c� .
Let � = �` be the right continuous quantile function of `. Let ˆ̀� ∈ Π(_, `) be the decreasing

quantile lift of `, so that ˆ̀� (3D, 3G) = 3DX� (1−D) (3G), or equivalently, ˆ̀�D, · = X� (1−D) , D ∈ [0,1].
(Note that we could redefine ˆ̀�D, · on a _-null set, and thus in fact we could use any version of a
generalized inverse of �` to represent ˆ̀�).

For each D ∈ [0,1], define `D ∈M by

`D (�) = `
(
� ∩

(
� (1 − D),∞

) )
+

(
D − `

( (
� (1 − D),∞

) ))
X� (1−D) (�), for all Borel � ⊆ R. (15)

Then `D =
∫ D

0 ˆ̀�E, ·3E = ˆ̀�[0,D ], ·.

Lemma 6.3. Let `, a ∈ P with ` ≤23 a. Let c� be the decreasing supermartingale coupling of ` and
a. Let ĉ� ∈ Π̂( ( ˆ̀� , a) be the unique lifted shadow coupling of ˆ̀� and a (as in Theorem 4.4). Then∫ 1
0 ĉ�3D = c� .

Proof. By Theorem 4.4, ĉ� is a unique measure that, for each D ∈ [0,1], transports `D to (a (`D). On
the other hand, fix G ∈ Ì and let DG ∈ [0,1] be given by DG := sup{D ∈ [0,1] : G ≤ � (1−D)}. It follows
that `DG = ` |[G,∞) , and then for all Borel � ⊆ R we have that∫
[0,1]×[G,∞)×�

ĉ� (3D, 3G, 3H) =
∫
[0,DG ]×[G,∞)×�

ĉ� (3D, 3G, 3H) = (a (`DG ) (�) = (a (` |[G,∞) ) (�),

which shows that
∫ 1

0 ĉ�3D = c� .

We now provide an explicit construction of ĉ� ∈ Π̂( ( ˆ̀� , a).
Recall the definition of � (:) = %a (:) − %` (:), : ∈ R, and that � ≥ 0 on R. Note that, since a < `,

lim:→∞ � (:) = ` − a > 0. In what follows (and in the light of Section 2.2.1) we assume that {: ∈ R :
� (:) > 0} = (ℓ� , A�) = (ℓ� ,∞) is an (open) interval, `((ℓ� ,∞)) = 1 and a((ℓ� ,∞)) + a({ℓ�}) = 1
with a({ℓ�}) = 0 whenever ℓ� = −∞.

Recall also the definition of the sub-differential mℎ(G) of a ℎ : R ↦→ R at G:

mℎ(G) = {q ∈ R : ℎ(H) ≥ ℎ(G) + q(H − G) for all H ∈ R}.
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If ℎ is convex then mℎ is non-empty everywhere, but this is not the case for non-convex functions.
Instead we have that mℎ(G) is non-empty if and only if ℎ(G) = ℎ2 (G) and then mℎ2 (G) = mℎ(G).

For each D ∈ [0,1], let `D ∈ M be defined as in (15). We have �`D (:) = �` (:) for : ≥ � (1 − D),
while �`D (:) ≤ �` (:) for : < � (1 − D). In particular,

�`D (:) =�` (: ∨� (1 − D)) − D(� (1 − D) − :)+, : ∈ R,

and thus �`D (·) is linear on (−∞, � (1 − D)) and (−D) ∈ m�` (� (1 − D)), so that � ′` (� (1 − D)−) ≤
−D ≤ � ′` (� (1 − D)+).

For each D ∈ [0,1] define ED : R ↦→ R+ by ED = � + �` − �`D . Note that ED (:) = � (:) for : ≥
� (1−D). Since�`−�`D is non-negative onR, we have that ED (:) ≥ � (:) for : < � (1−D). Moreover,
since �`D is linear on (−∞, � (1− D)), ED is convex on (−∞, � (1− D)). It is also easy to see that both
D ↦→ ED (:) (for a fixed : ∈ R) and : ↦→ ED (:) − � (:) (for a fixed D ∈ [0,1]) are non-increasing.

Recall that by Lemma 3.2

%(a (`D) (:) = %a (:) − (%a − %`D )
2 (:), : ∈ R.

Next lemma shows that we can also identify (a (`D) by considering the convex hull of ED .

Lemma 6.4. Let `, a ∈ P with ` ≤2G a. Consider (`D)D∈[0,1] where `D is defined as in (15). Let
2 : [0,1] → R be as in (14), i.e., 2(D) = 2`D ,a , D ∈ [0,1]. Then, for each D ∈ [0,1],

�(a (`D) (:) =�a (:) − E
2
D (:) + (` − a) − (`D − (a (`D)) =�a (:) − E2D (:) + 2(1) − 2(D), : ∈ R.

In particular, (a (`D) corresponds to second (distributional) derivative of (�a − E2D).

Proof. Using the Put-Call parity (twice) and Lemma 3.2 we have that

�(a (`D) (:) = %(a (`D) (:) + (a (`D) − (
a (`D) (R):

= (�a (:) − a + a(R):) − (%a − %`D )2 (:) + ((a (`D) − (a (`D) (R):), : ∈ R. (16)

On the other hand, by the Put-Call parity and definition of ED we also have that

%a (:) − %`D (:) = ED (:) − (` − `(R):) + (`D − D:), : ∈ R.

Then by [7, Lemma 3] and linearity of : ↦→ {(`D − D:) − (` − `(R):)}, (%a − %`D )2 (:) = E2D (:) −
(` − `(R):) + (`D − D:), which together with (16) and definition of 2(·) proves the claim (here we
used that `(R) = a(R) and D = `D (R) = (a (`D) (R)).

Since ˆ̀�D, · = X� (1−D) , D ∈ [0,1], the hitting coupling c ˆ̀D,· ,) (D) is in fact a product measure of
X� (1−D) and the hitting projection (X� (1−D)�) (D) ) (recall that ) (D) = supp(a − (a ( ˆ̀ [0,D ], ·))). In par-
ticular,

c ˆ̀D,· ,) (D) (3G, 3H)

=X� (1−D) (3G) (X� (1−D)�) (D) ) (3H)

=


X� (1−D) (3G)X� (1−D) (3H) if � (1 − D) ∈ ) (D);

X� (1−D) (3G)
[
B(D) −� (1 − D)
B(D) − A (D) XA (D) (3H) +

� (1 − D) − A (D)
B(D) − A (D) XB (D) (3H)

]
otherwise;

=X� (1−D) (3G)jA (D) ,� (1−D) ,B (D) (3H), (17)
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where

A (D) = sup{: ∈ ) (D) ∩ (−∞, � (1 − D)]}, B(D) = inf{: ∈ ) (D) ∩ [� (1 − D),∞)}.

Our goal is, using Lemma 6.4, to identify the versions of A and B from the graphs of E2D , D ∈ [0,1].

Definition 6.5. q : [0,1] ↦→ R is given by q(D) = sup{k : k ∈ mE2D (� (1 − D))} = (ED) ′(� (1 − D)+).

' (E) � (1 − E) ' (D) � (1 − D) ( (D)

H ↦→ ED (H)

H ↦→ EE (H)
H ↦→� (H)

H ↦→ E2D (H)

H ↦→ E2E (H)

Figure 1: Plot of locations of '(D), � (1 − D), ((D), '(E) and � (1 − E), for D < E, and in the case
where −∞ < '(D) < � (1 − D) < ((D) <∞ and −∞ < '(E) < � (1 − E) < ((E) =∞. The dashed curve
represents �. Note that lim:→∞ � (:) = ` − a > 0. The dotted curves correspond to the graphs of ED
and EE . Note that � = ED on [� (1 − D),∞) (resp. � = EE on [� (1 − E),∞)), while ED (resp. EE ) is
convex and � ≤ ED (resp. � ≤ EE ) on (−∞, � (1−D)) (resp. (−∞, � (1− E))). The solid curves below
ED and EE represent E2D and E2E , respectively. The convex hull E2D (resp. E2E ) is linear on ('(D), ((D))
(resp. ('(D),∞)).

For 5 : R ↦→ R and 0, 1 ∈ R with 0 < 1, let ! 5
0,1

be the line passing through (0, 5 (0)) and (1, 5 (1));
see (20) (in the case 0 = 1 we set ! 5

0,1
≡ 5 (0)). For k ∈ R, define also ! 5 ,k0 : R→ R by ! 5 ,k0 (H) =

5 (0) +k(H − 0) so that ! 5 ,k0 is the line passing through (0, 5 (0)) with slope k. (Note that, in the case
0 = 1, ! 50,0 = !

5 ,0
0 .)

Define ', ( : [0,1] ↦→ R∪ {−∞,∞} by

'(D) := inf{: ∈ R : : ≤ � (1 − D),E2D (:) = !
E2D ,q (D)
� (1−D) (:)}, D ∈ [0,1], (18)

((D) := sup{: ∈ R : : ≥ � (1 − D),E2D (:) = !
E2D ,q (D)
� (1−D) (:)}, D ∈ [0,1] . (19)

See Figure 1.
We first establish global monotonicity properties of (', (). See Figure 2.
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Proposition 6.6. Let ' and ( be as in (18) and (19), respectively. Then the pair (', () is first-order
left-monotone and second order right-monotone with respect to � on [0,1]:

1. '(D) ≤ � (1 − D) ≤ ((D) for all D ∈ [0,1];
2. ' is decreasing on [0,1];
3. For D, E ∈ [0,1] with D < E, ((E) ∉ ('(D), ((D));
4. For D, E ∈ [0,1] with D < E, sup{: ∈ ) (E)} ≤ inf{: ∈ ) (D)} on {D ∈ [0,1] : ((D) =∞}.

(

�

'

(1 − D2
A ) (1 − D1

;
) (1 − D1

A )0 1

Figure 2: Sketch of the supporting functions of the lifted decreasing supermartingale coupling ĉ� : '
(dashed), � (solid) and ( (dotted). In the figure, �1 := (1 − D1

;
,1 − D1

A ) and �2 := (0,1 − D2
A ) are the

strict supermartingale regions of ĉ� . In particular, for D ∈ [0,1] with (1 − D) ∈ (�1 ∪ �2), the mass at
� (1− D) is mapped to '(D) only, and thus (since ' is non-decreasing) ĉ� resembles the deterministic
(lifted) Hoeffding-Fréchet coupling ĉ�� . On the other hand, for D ∈ [0,1] with (1 − D) ∉ (�1 ∪ �2),
ĉ� maps the mass at � (1− D) to two points {'(D), ((D)}, and thus resembles the (lifted) right-curtain
martingale coupling ĉA2 .

Proof. Fix D, E ∈ [0,1] with D < E.
1. This is immediate from the definitions of ' and (.
2-3. If '(D) = � (1 − D) = ((D), then ('(D), ((D)) = ∅ and ((E) ∉ ('(D), ((D)) by default. Also,

'(E) ≤ � (1 − E) ≤ � (1 − D) = '(D), as required.
Hence suppose that '(D) < ((D). We have that E2D is linear on ('(D), ((D)) and therefore (a −

(a (`D)) does not charge ('(D), ((D)). By the associativity of the shadow measure (see (8) in Lemma
3.2), a − (a (`E ) = a − (a (`D) − (a−(

a (`D) (`E − `D) and therefore (a − (a (`E )) does not charge
('(D), ((D)) as well. It follows that E2E is linear on ('(D), ((D)).
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Now suppose ((E) ∈ ('(D), ((D)). By the definition of ( and convexity of E2E we have that E2E >
!
E2E ,q (E)
� (1−E) on (((E),∞). It follows that the second derivative of E2E corresponds to a measure [E ∈ M

with [E ( [((E), ((D))) > 0. But by Lemma 6.4 we have that (a − (a (`E )) = [E ; a contradiction since
(a − (a (`E )) does not charge ('(D), ((D)) and thus also [((E), ((D)).

We now show that (in the case '(D) < ((D)) '(E) ≤ '(D). Suppose not, so that '(D) < '(E). If
'(D) < '(E) < ((D), then (similarly as in the case for () we have that (a− (a (`E )) (('(D), '(E)]) > 0,
which contradicts the fact that (a − (a (`E )) does not charge ('(D), ((D)) and thus also ('(D), '(E)].
Hence we assume that '(E) ≥ ((D). Then � (1 − D) ≤ ((D) ≤ '(E) ≤ � (1 − E), and since � is non-
decreasing and D < E, we have a contradiction if at least one inequality is strict. Therefore '(D) <
� (1 − D) = ((D) = '(E) =� (1 − E).

Now note that, since '(E) = � (1 − E), we must have that E2E = E2D on [� (1 − E) = � (1 − D),∞)
and therefore q(E) = q(D). It follows that !E

2
E ,q (E)

� (1−E) = !
E2D ,q (D)
� (1−D) . By convexity of E2E we have that

E2E ≥ !
E2E ,q (E)
� (1−E) on (−∞, � (1 − E)]. On the other hand, ED ≥ EE on R, and therefore E2D ≥ E2E on R. It

follows that E2D = !
E2D ,q (D)
� (1−D) = !

E2E ,q (E)
� (1−E) ≤ E

2
E on ['(D), � (1 − E)], and therefore E2D = !

E2E ,q (E)
� (1−E) = E

2
E

on ['(D), � (1 − E)]. But then '(E) > '(D) ≥ inf{: ≤ � (1 − E) : E2E (:) = !
E2E ,q (E)
� (1−E) (:)} = '(E), a

contradiction. We conclude that '(E) ≤ '(D).
4. Finally suppose that '(D) ≤ � (1 − D) < ((D) = ∞. Then E2D is linear on ('(D),∞) and (a −

(a (`D)) does not charge ('(D),∞). It follows that sup{: ∈ ) (D)} = '(D). By the associativity of the
shadow measure we have that (a − (a (`E )) does not charge ('(D),∞) as well, and therefore sup{: ∈
) (E)} ≤ sup{: ∈ ) (D)} = '(D) as required.

The following is the main result of this section.

Theorem 6.7. Let `, a ∈ P with ` ≤23 a. Let (', () be given by (18) and (19), and define ĉ',( ∈M3

by

ĉ',( (3D, 3G, 3H) = 3DX� (1−D) (3G)j' (D) ,� (1−D) ,( (D) (3H).

Then ĉ',( = ĉ� , so that
∫ 1

0 ĉ',(3D is the decreasing supermartingale coupling c� .

Proof. By (17) it is enough to show that j' (D) ,� (1−D) ,( (D) = jA (D) ,� (1−D) ,B (D) .
We claim that

{D ∈ [0,1] :� (1 − D) ∉ ) (D)} = {D ∈ [0,1] : A (D) < � (1 − D) < B(D)}

= {D ∈ [0,1] : '(D) < � (1 − D) < ((D)}

= {D ∈ [0,1] :� (1 − D) ∉ ) (D), '(D) = A (D), ((D) = B(D)}.

Note that the first equality is an immediate consequence of the definitions of ) (D), A (D), B(D). We now
simultaneously establish the second and third equalities.

First, let D ∈ [0,1] be such that A (D) < � (1 − D) < B(D). Then (a − (a (`D)) does not charge
(A (D), B(D)). By Lemma 6.4 we then have that E2D is linear on (A (D), B(D)). But by the definitions
of A and B, (A (D), B(D)) is the largest open interval � 3 � (1 − D) with (a − (a (`D)) (�) = 0. Conse-
quently, (A (D), B(D)) is also the largest open interval �̃ 3 � (1− D) such that E2D is linear on �̃. It follows
that '(D) = A (D) and ((D) = B(D).



Supermartingale shadow couplings: the decreasing case 23

Conversely, suppose D ∈ [0,1] is such that '(D) < � (1 − D) < ((D). Then E2D is linear on
('(D), ((D)) and by Lemma 6.4 we have that (a − (a (`D)) does not charge ('(D), ((D)). But
('(D), ((D)) is the largest open interval �̃ 3 � (1 − D) such that E2D is linear on �̃. Consequently,
('(D), ((D)) is the largest open interval � 3 � (1 − D) with (a − (a (`D)) (�) = 0. It follows that
'(D) = A (D) and ((D) = B(D).

We conclude that j' (D) ,� (1−D) ,( (D) = jA (D) ,� (1−D) ,B (D) whenever � (1 − D) ∉ ) (D), D ∈ [0,1].
Furthermore,

{D ∈ [0,1] :� (1 − D) ∈ ) (D)}

=[0,1] \ {D ∈ [0,1] :� (1 − D) ∉ ) (D)}

={D ∈ [0,1] : '(D) =� (1 − D) < ((D)} ∪ {D ∈ [0,1] : '(D) < � (1 − D) = ((D)}

∪ {D ∈ [0,1] : '(D) =� (1 − D) = ((D)}.

But if '(D) =� (1 − D) or ((D) =� (1 − D) (or both) then

j' (D) ,� (1−D) ,( (D) = X� (1−D) = jA (D) ,� (1−D) ,B (D) ,

where the second equality follows from the fact that A (D) =� (1−D) = B(D) whenever � (1−D) ∈ ) (D),
D ∈ [0,1].

Combining both cases we conclude that j' (D) ,� (1−D) ,( (D) = jA (D) ,� (1−D) ,B (D) .

Remark 6.8. The proof of Theorem 6.7 can also be obtained by using Proposition 6.6 together with
the third characterization of c� in Definition 6.2.

The first two properties of ' and ( in Proposition 6.6 translate to the second-order right-monotonicity
of the coupling

∫ 1
0 ĉ',(3D with respect to Γ :=

⋃
D∈[0,1]

{
(� (1 − D), '(D)) ∪ (� (1 − D), � (1 − D)) ∪

(� (1 − D), ((D))
}

(in the sense of Definition 6.1).
Furthermore, for D ∈ [0,1], j' (D) ,� (1−D) ,( (D) is a strict supermartingale kernel (i.e., � (1 − D) >

j' (D) ,� (1−D) ,( (D) ) if and only if '(D) < � (1 − D) < ((D) =∞. Hence "̃ := {D ∈ [0,1] : ((D) <∞} ∪
{D ∈ [0,1] : '(D) =� (1 − D) < ((D) =∞} is such that ĉ',( |"̃×R×R is a martingale. Furthermore, it is
easy to see that _("̂ ∩ "̃) = _("̂) = _("̃), where "̂ is as in Proposition 5.2. This together with the
third property of Proposition 6.6 imply the first-order left-monotonicity of

∫ 1
0 ĉ',(3D with respect to

(Γ, " := {� (1 − D) : D ∈ "̃}) (in the sense of Definition 6.1).
Using the characterization of c� (in terms of the monotonicity of its support) one then establishes

that
∫ 1

0 ĉ',(3D = c� .

Appendix A: Up and Down measures

Consider j, j′ ∈M with j(R) = j′(R), and define Up(j, j′), Down(j, j′) ∈ M as in (10) and (11),
respectively.

Lemma A.1. For j, j′ ∈M(R) with j(R) = j′(R) the following holds

Down(j, j′) ≤BC> j ≤BC> Up(j, j′) and Down(j, j′) ≤BC> j′ ≤BC> Up(j, j′).
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Proof. We only prove that Down(j, j′)) ≤BC> j. The other relations use similar arguments. It is
enough to show that �Down(j,j′) ≥ �j everywhere: for each G ∈ R,

�Down(j,j′) (G) = _ |[0,j (R)=j′ (R) ] ({D ∈ R : (�j (D) ∧�j′ (D)) ≤ G})

≥ _ |[0,j (R) ] ({D ∈ R :�j (D) ≤ G}) = �j (G).

Lemma A.2 ([30, Lemma 2.25]). For j, j′ ∈M with j(R) = j′(R) the following holds

, (j, j′) =, (j,Down(j, j′)) +, (j′,Down(j, j′))

=, (j,Up(j, j′)) +, (j′,Up(j, j′)).

Lemma A.3. Consider j, j′ ∈ M with j(R) = j′(R). Let [ ∈ M be such that [ ≤?23 j and [ ≤?23
j′. Then [ ≤?23 Down(j, j′).

Proof. By Lemma A.1 we have that Down(j, j′) ≤BC> j and Down(j, j′) ≤BC> j′. Then, for any
non-increasing 5 : R→ R, we have that

(∫
R
5 3j

)
∨

(∫
R
5 3j′

)
≤

∫
R
5 3Down(j, j′), where we used

that (− 5 ) is non-decreasing. Clearly any positive, convex and non-increasing 6 : R→ R is also non-
increasing, and thus the claim follows.

Lemma A.4. Let [, [′, j ∈M be such that [(R) = [′(R), [ ≤?23 j, [′ ≤?23 j. Then Up([, [′) ≤?23
j.

Proof. Let 5 : R→ R be non-negative, convex and non-increasing. By Lemma A.1 we have that
[ ≤BC>Up([, [′), from which we deduce that

∫
R
(− 5 )3[ ≤

∫
R
(− 5 )3Up([, [′), where we used that (− 5 )

is non-decreasing. It follows that
∫
R
5 3Up([, [′) ≤

∫
R
5 3[ ≤

∫
R
5 3j.

Appendix B: Convex hull

Let 5 : R→ R be measurable, and denote by 5 2 the convex hull of 5 (i.e., the largest convex function
below 5 ). Note that we may have that 5 2 = −∞ on R. Furthermore, if a function 5 = −∞ (or 5 =∞) on
R then we deem it to be both linear and convex, and then set 5 2 = 5 .

Fix G, I ∈ R with G ≤ I, and define ! 5G,I : R ↦→ R by

!
5
G,I (H) =


5 (G) + 5 (I) − 5 (G)

I − G (H − G), if G < I,

5 (G), if G = I.
(20)

Then (see [38, Corollary 17.1.5]),

5 2 (H) = inf
G≤H≤I

!
5
G,I (H), H ∈ R. (21)

(Note that for (21), the definition of ! 5G,I outside [G, I] is irrelevant and we could restrict the domain of
!
5
G,I to [G, I].)
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Lemma B.1. Let 5 , 6 : R→ R be the differences of two convex functions. If 5 ′+ ≤ 6′+ then ( 5 2) ′+ ≤ (62) ′+
on R.

Proof. Note that for ℎ : R→ R and 0 ∈ R we have ℎ2 (G) + 0 = (ℎ + 0)2 (G), G ∈ R, and therefore
(ℎ2) ′+ (G) = (ℎ2 + 0) ′+ (G) for each G ∈ R.

Fix G ∈ R. Using the above observation, without loss of generality we can assume that 5 (G) = 6(G).
Then since 5 ′+ ≤ 6′+ on R, we have that 5 ≥ 6 on (−∞, G) and 5 ≤ 6 on (G,∞). (This can be easily
proved by using the absolute continuity of 5 and 6).

We will prove the claim by contradiction; suppose that ( 5 2) ′+ (G) > (62) ′+ (G). There are three cases.
1. Suppose 5 2 (G) = 62 (G). Then 6 ≥ 5 ≥ 5 2 ≥ ; 5

2

G > ;
62

G on (G,∞), where I → ;ℎG (I) := ℎ(G) +
ℎ′+ (G) (I − G). It follows that I→ 6̃(I) := 62 (I)�{I≤G } + ; 5

2

G (I)�{I>G } is a convex minorant of 6, and
therefore 62 ≥ 6̃ on R. But then, since 62 (G) = 6̃(G), we have (62) ′+ (G) ≥ 6̃′+ (G) = ( 5 2) ′+ (G) > (62) ′+ (G),
a contradiction.

2. Suppose 62 (G) > 5 2 (G). Then 5 (G) = 6(G) ≥ 62 (G) > 5 2 (G), and we have that there exists an
interval � ⊆ R with G ∈ �◦ such that 5 2 is linear on � (see, for example, [29, Lemma 2.2]), so that
5 2 = ;

5 2

G on �. Define I→ ;̃ (I) := ;6
2

G (I) − 62 (G) + 5 2 (G), and note that ;̃ (G) = ; 5
2

G (G) and ; 5
2

G < ;̃ on
(−∞, G).

Suppose there exists G < G such that 5 2 (G) = ;̃ (G). Then, since 5 ≥ 6 ≥ 62 ≥ ;6
2

G > ;̃ on (−∞, G),
we have that I→ 5̃ (I) := 5 2 (I)�{I∉R\(G,G) } + ;̃ (I)�{I∈[G,G ] } is a convex minorant of 5 , and therefore

5 2 ≥ 5̃ on R. But for I ∈ � ∩ (G, G) we have that 5̃ (I) = ;̃ (I) > ; 5
2

G (I) = 5 2 (I), a contradiction.
Now suppose that 5 2 < ;̃ on (−∞, G). Then I→ 5 (I) := 5 2 (I)�{I>G } + ;̃ (I)�{I≤G } is a convex mino-

rant of 5 , and thus 5 2 ≥ 5 on R. But again, for I ∈ �∩ (∞, G) we have that 5 (I) = ;̃ (I) > ; 5
2

G (I) = 5 2 (I),
which gives a required contradiction.

3. Suppose 62 (G) < 5 2 (G). The proof uses the arguments of the previous case (reverse the roles of
5 2 and 62 , and consider ; 5

2

G , ;
62

G on [G,∞)).

Lemma B.2. Consider a sequence of measurable functions 5= : R→ R, = ≥ 1. Suppose 5= ↓ 5 point-
wise, for some measurable 5 : R→ R. Then 5 2= ↓ 5 2 pointwise as =→∞.

Proof. Fix : ∈ R. Since ( 5= (:))=≥1 is decreasing and bounded by 5 (:), lim=→∞ 5= (:) exists. The
same is true for the corresponding convex hulls. In particular, lim=→∞ 5 2= (:) ≥ 5 2 (:). On the other
hand,

_ 5 (0) + (1 − _) 5 (1) = lim
=→∞
[_ 5= (0) + (1 − _) 5= (1)] ≥ lim

=→∞
5 2= (:),

for all 0, 1 ∈ R with 0 ≤ : ≤ 1 and _ ∈ [0,1] such that _0 + (1− _)1 = : . Taking infimum over all such
0, 1, _ we obtain 5 2 (:) ≥ lim=→∞ 5 2= (:).

Appendix C: Proof of Lemma 4.3

We first prove part 2. For a (Borel) measurable function 5 : R→ R, define 5 ) : R→ R by 5 ) (G) =∫
R
5 (I)3�) (G, I), G ∈ R. Note that

∫
R
5 (G)3`=�) (G) =

∫
R
5 ) (G)3`= (G), and similarly for ` and `�) .

Hence to conclude that `=�) → `�) it is enough to show that `=�)
F−→ `�) and

∫
R
5 )0 3`= →∫

R
5 )0 3`, where, for each C ∈ R, 5C (G) = |C − G |, G ∈ R.

Represent R \) as a union of disjoint open intervals
⋃
:≥1 (;: , A: ). Note that ;: , A: ∈ ) for all : ≥ 1.
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We first establish the weak convergence. Let 5 : R→ R be continuous and bounded. If G ∈ ) , then
5 ) (G) = 5 (G). If G ∉ ) , then G ∈ (;: , A: ) for some : ≥ 1, and then 5 ) (G) = A:−G

A:−;: 5 (;: ) +
G−;:
A:−;: 5 (A: ) =:

!
5

;: ,A:
(G). It follows that 5 ) is also continuous and bounded, and therefore

∫
R
5 ) 3`= →

∫
R
5 ) 3`,

which establishes the weak convergence.
Now we deal with the convergence of first moments. Since `=→ ` (i.e., w.r.t. T1), it is enough to

show that 5 )0 is continuous with linear growth at most.
First suppose that sup) =∞. Note that, if 0 ∈ ) , then 50 = 5

)
0 and we are done. On the other hand,

if 0 ∉ ) , then 0 ∈ (;: , A: ) for some : ≥ 1. We have that 50 is linear on (−∞, ;: ) ∪ (A: ,∞) and therefore
5 )0 = 50 on (−∞, ;: ) ∪ (A: ,∞). It follows that 5 )0 =max{ 50, ! 50;: ,A: } and thus 5 )0 remains continuous
with linear growth at most .

Now suppose that sup) <∞. If sup) ≤ 0, then 5 )0 (G) = (sup) − G)+ − sup) , G ∈ R. If 0 < sup) and
0 ∈ ) , then 5 )0 = 50 on (−∞, sup)] and 5 )0 ≡ sup) on (sup),∞). Finally suppose that 0 < sup) and
0 ∉ ) . Then 0 ∈ (;: , A: ) for some : ≥ 1 and A: ≤ sup) . It follows that 5 )0 = 50 on (−∞, ;: ] ∪ [A: , sup)],
5 )0 = !

50
;: ,A:

on (;: , A: ) and 5 )0 ≡ sup) on (sup),∞). It is evident that in all the cases 5 )0 remains
continuous with linear growth at most.

We now prove (the uniqueness) part 1.
We first recall the irreducible decomposition of two measures ` ≤23 a, see Lemma 2.2. Let G∗ :=

sup{: ∈ R : %` (:) = %a (:)} ∈ [−∞,+∞] with convention inf ∅ = −∞. Represent an open set {: ∈
R : %` (:) < %a (:)} ∩ (−∞, G∗) by

⋃
:≥0 �: =

⋃
:≥0 (0: , 1: ), where �0 = (G∗,∞), and set �−1 = R \⋃

:≥0 �: . If `: = ` |�: , then there exists a unique decomposition a =
∑
:≥−1 a: such that `−1 = a−1,

`0 ≤23 a0 and `: ≤2 a: for all : ≥ 1. In particular, any c ∈ Π( (`, a) admits a unique decomposition
c =

∑
:≥−1 c: such that c0 ∈ Π( (`0, a0) and c: ∈ Π" (`: , a: ) for all : ≠ 0.

Now let a = `�) . Note that %`�) (:) = %` (:) for all : ∈ ) . It follows that sup) ≤ G∗.
By applying the arguments of [8, Proposition 4.1] to each c: ∈ Π" (`: , a: ) (for all : ≠ 0), we obtain

c: = c`: ,) .
We are left to show that c0 = c`0 ,) . Note that, if G∗ =∞, then we must have that %` and %a have

the same asymptotic behaviour at ∞. In particular, a = ` and thus ` ≤2 a. In this case the proof of
c0 = c`0 ,) is covered by the previous paragraph.

If sup) =∞, then G∗ = sup) =∞, and there is nothing to prove.
Suppose sup) < ∞. Recall that sup) ≤ G∗. Since `�) ((sup),∞)) = 0 we can, without loss of

generality, assume that sup) = G∗. (Indeed, if sup) < G∗, then since %`�) has slope `(R) to the right
of sup) and %`�) ≥ %` everywhere, we must have that %`�) = %` on [sup), G∗]. But then G∗ =∞,
and again there is nothing to prove.) It follows that a0 is an atomic measure concentrated on G∗, and
therefore we necessarily have that c0 = c`0 ,) .

Funding

E. Bayraktar was supported by the NSF grant DMS–2106556 and by the Susan M. Smith chair.

References

[1] Bayraktar E., Deng S., Norgilas D. (2021). A potential-based construction of the increasing supermartingale
coupling. Preprint available online at https://arxiv.org/abs/2108.03450.

[2] Bayraktar E., Deng S., Norgilas D. (2022). Supermartingale Brenier’s Theorem with full-marginals con-
straint. Preprint available online at https://arxiv.org/abs/2212.14174.



Supermartingale shadow couplings: the decreasing case 27

[3] Beiglböck, M., Cox A.M.G., Huesmann, M. (2017). Optimal transport and Skorokhod embedding. Invent.
Math. 208(2) 327–400.

[4] Beiglböck, M., Cox A.M.G., Huesmann, M. (2019). The geometry of multi-marginal Skorokhod Embedding.
Probab. Theory Relat. Fields 176 1045–1096.

[5] Beiglböck M., Henry-Labordère P., Penkner F. (2013). Model-independent bounds for option prices—mass
transport approach. Finance Stoch. 17(3) 477–501.

[6] Beiglböck M., Henry-Labordère P., Touzi N. (2017). Monotone martingale transport plans and Skorokhod
embedding. Stochastic Process. Appl. 127(9) 3005–3013.

[7] Beiglböck M., Hobson D., Norgilas D. (2022). The potential of the shadow measure. Electron. J. Probab. 2
1–12.

[8] Beiglböck M., Juillet N. (2016). On a problem of optimal transport under marginal martingale constraints.
Ann. Probab. 44(1) 42–106.

[9] Beiglböck M., Juillet N. (2021). Shadow couplings. Trans. Amer. Math. Soc. 374 4973–5002.
[10] Beiglböck M., Nutz M. (2014). Martingale inequalities and deterministic counterparts. Electron. J. Probab.

19(95) 1–15.
[11] Billingsley P. (2013). Convergence of probability measures. John Wiley & Sons.
[12] Brenier Y. (1987). Décomposition polaire et réarrangement monotone des champs de vecteurs. C. R. Acad.

Sci. Paris Sér. I Math. 305(19) 805-808.
[13] Brückerhoff M., Huesmann M., Juillet N. (2020). Shadow martingales–a stochastic mass transport approach

to the peacock problem. Electron. J. Probab. 27 1–62.
[14] Campi L., Laachir I., Martini C. (2017). Change of numeraire in the two-marginals martingale transport

problem. Finance Stoch. 21 471–486.
[15] Chacon, R.V. (1977). Potential processes. Trans. Amer. Math. Soc. 226 39–58.
[16] Chacon, R.V., Walsh J.B. (1976). One-dimensional potential embedding. In Sémin. Probab. X vol. 511 of

Lecture Notes in Mathematics 19–23, Springer, Berlin.
[17] Föllmer, H., Schied A. (2016). Stochastic Finance: An Introduction in Discrete Time. W. de Gruyter, Berlin,

4th edition.
[18] Galcihon A., Henry-Labordère P., Touzi N. (2014). A stochastic control approach to no-arbitrage bounds

given marginals with an application to lookback options. Ann. Appl. Probab. 24(1) 313–336.
[19] Henry-Labordère P., Obłój J., Spoida P., Touzi N. (2016). The maximum maximum of a martingale with given

= marginals. Ann. Appl. Probab. 26(1) 1–44.
[20] Henry-Labordère P., Touzi N. (2016). An explicit martingale version of the one-dimensional Brenier’s theo-

rem. Finance Stoch. 20(3) 635–668.
[21] Henry-Labordère P., Tan X., Touzi N. (2016). An explicit martingale version of the one-dimensional Brenier’s

Theorem with full marginals constraint. Stochastic Process. Appl. 126(9) 2800–2834.
[22] Hirsch F., Roynette B. (2012). A new proof of Kellerer’s theorem. ESAIM Probab. Stat. 16 48–60.
[23] Hobson D.G. (1998). The maximum maximum of a martingale. In Séminaire de probabilités XXXII vol.

1686 of Lecture notes in Mathematics 250–263, Springer, Berlin.
[24] Hobson D.G. (2011). The Skorokhod embedding problem and model-independent bounds for option prices.

In Paris-Princeton Lectures on Mathematical Finance 2010 267–318, Springer, Berlin.
[25] Hobson D.G., Klimmek M. (2015). Robust price bounds for the forward starting straddle. Finance Stoch.

19(1) 189–214.
[26] Hobson D.G., Neuberger A. (2012). Robust bounds for forward start options. Math. Finance 22(1) 31–56.
[27] Hobson D.G., Norgilas D. (2019). Robust bounds for the American Put. Finance Stoch. 23(2) 359–395.
[28] Hobson D.G., Norgilas D. (2019). The left-curtain martingale coupling in the presence of atoms. Ann. Appl.

Probab. 29(3) 1904–1928.
[29] Hobson D.G., Norgilas D. (2022). A construction of the left-curtain coupling. Electron. J. Probab. 27 1-46.
[30] Juillet N. (2016). Stability of the shadow projection and the left-curtain coupling. Ann. Inst. Henri Poincaré

Probab. Stat. 52(4) 1823–1843.
[31] Juillet N. (2018). Martingales associated to peacocks using the curtain coupling. Electron. J. Probab. 23(9)

1–29.
[32] Källblad S., Tan X., Touzi N. (2017). Optimal Skorokhod embedding given full marginals and Azéma-Yor

peacocks. Ann. Appl. Probab. 27(2) 686–719.



28

[33] Kellerer H.G. (1973). Integraldarstellung von Dilationen. In Transactions of the Sixth Prague Conference on
Information Theory, Statistical Decision Functions, Random Processes (Tech. Univ., Prague, 1971; dedicated
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