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For two measures y and v that are in convex-decreasing order, Nutz and Stebegg (Canonical supermartingale
couplings, Ann. Probab. 46(6) 3351-3398, 2018) studied the optimal transport problem with supermartingale
constraints and introduced two canonical couplings, namely the increasing and decreasing transport plans, that are
optimal for a large class of cost functions. In the present paper we provide an explicit construction of the decreasing
coupling 72 by establishing a Brenier-type result: (a generalised version of) 72 concentrates on the graphs of two
functions. Our construction is based on the concept of the supermartingale shadow measure and requires a suitable
extension of the results by Juillet (Stability of the shadow projection and the left-curtain coupling, Ann. Inst. H.
Poincaré Probab. Statist. 52(4) 18231843, November 2016) and Beiglbock and Juillet (Shadow couplings, Trans.
Amer. Math. Soc. 374 4973-5002, 2021) established in the martingale setting. In particular, we prove the stability
of the supermartingale shadow measure with respect to initial and target measures y, v, introduce an infinite family
of lifted supermartingale couplings that arise via shadow measure, and show how to explicitly determine the
martingale points of each such coupling.
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1. Introduction

The classical optimal transport (OT) problem is to find a joint law n of random variables X ~ u and
Y ~ v that, for a given ¢ : R — R, minimises the total expected cost E” [c(X,Y)]. Any such joint law
corresponds to a measure on R?, with first and second marginals y and v, respectively, and is called
a transport plan from y to v (or a coupling of u and v). Let I1(y, v) be the set of all such couplings.
It is often convenient to express a coupling 7 € I1(u, v) via its disintegration with respect to the first
marginal u: 7(dx, dy) = u(dx)my(dy) where (7 )yer is a u-almost surely unique family of probability
kernels.

The cornerstone result in R, and with an Euclidean cost c¢(x, y) = |x — y|?, is Brenier’s theorem (see
[12] and [39]): under some regularity conditions on the initial measure u, the optimal coupling takes the
form 7 (dx, dy) = u(dx)dy(x)(dy), where ¢ := V¢ is the gradient of a convex function ¢. In dimension
one, the supporting function is non-decreasing and the optimal coupling coincides with the Hoeffding-
Fréchet (or quantile) coupling 7F, which, in the case u is continuous, is given by 7 (dx, dy) =
u(dx)0G, (F, (x)) (dy), where G,, and F}, are the quantile function of v and the cumulative distribution
function of u, respectively. An important feature of 7% is that it is optimal for a large class of cost
functions (essentially those that satisfy the Spence-Mirrlees condition ¢y, > 0).

In the last decade, there has been a significant interest in the OT problems where the coupling 7
is required to constitute a martingale. In particular, in the martingale optimal transport (MOT) one
still seeks to minimise (or maximise) the total expected cost (or payoff) fR2 cdn, but only over the
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M(u,v), if fRynx(dy) =x for py-a.e. x € R (or equivalently, 7 € Ilps (i, v) if E*[Y|X] = X). Such
problems arise naturally in the context of model-independent mathematical finance [5,18] and have
important consequences for martingale inequalities [10,19,37] and the Skorokhod embedding problem
[3,32].

The first explicit solutions to the MOT problem is due to Hobson and Neuberger [26] and Hobson
and Klimmek [25] where the authors showed how construct couplings 77N and 77X that maximise
and minimise E” [|Y — X|], receptively. It is not known, however, whether these couplings are optimal
for non-Euclidean costs functions. A more general result was obtained by Beiglbock et al. [8]. Using
an extension of the cyclical monotonicity from the classical OT setting, the authors introduced the left-
monotone martingale coupling and baptised it as the left-curtain transport plan 7/, It was shown that
such left-monotone coupling exists, is unique and also optimal for a particular class of cost functions.
Henry-Labordére and Touzi [20] extended the results of [8] to show that rlis optimal for even wider
class of payoffs (namely those that satisfy the martingale Spence-Mirrlees condition cxyy < 0), and
in the case when the initial measure u is atom-less, provided an explicit construction using (coupled)
ordinary differential equations. A general construction for arbitrary u and v was recently obtained by
Hobson and Norgilas [29]. Several other properties and extensions of 7/ where further investigated in
[4,6,7,13,14,21,27,30,31,34,35].

In this paper we shall study the couplings that constitute a supermartingale: TTg(u,v) C I1(y, v) is
the set of all supermartingale couplings, and we write € I1g(u, v) if

/yﬂx(dy) <x, forpu-ae xeR.
R

By the classical result of Strassen [40], I1g(u,v) is non-empty if and only if x4 and v are in convex-
decreasing order (denoted by u <.4 v), i.e., fR fdu < fR fdv for all convex and non-increasing f :
R — R (if the inequality holds for all convex functions, then u and v are in convex order, i.e., u <. v,
and TTps (u,v) # 0). Note that TTps (1, v) C g (u,v). In particular, if u <.4 v and with equal means
then ITps (u, v) =g (u, v). However, even when u <.4 v holds, it is a non-trivial problem to construct
particular supermartingale transport plans.

Similarly as in the contexts of OT and MOT, for a given ¢ : R? — R it is natural to seek for elements
7 € Ilg(u, v) that minimise/maximise the total expected cost /11{2 c(x,y)n(dx,dy). In this setting Nutz
and Stebegg [34] introduced two canonical supermartingale couplings, namely the increasing coupling
n! and decreasing coupling 7”. Our main interest in this article is the latter. In [34, Theorems 1.1,
1.2, 1.3] it was shown that 7 is the unique supermartingale coupling that can be equivalently char-
acterised by any, and then all of the following properties (see Definition 6.2): the optimality (in terms
of minimization problem) for a large class of cost functions (essentially those that satisfy ¢,y <0 and
Cxyy > 0), the monotonicity of the support, and the (stochastic) order-theoretic minimality. (A similar
characterisation is valid for 7! as well.) While this can be viewed as an existence result, our aim is to
provide an explicit construction of 7. In particular, and in the light of Brenier’s theorem in OT, our
goal is to construct functions on the graph of which the decreasing coupling 7 concentrates. (Indeed,
all of the aforementioned martingale couplings and the increasing supermartingale coupling 7! are
constructed in such way.)

The main ingredient in our construction is the so-called shadow measure, introduced by Beiglbock
and Juillet [8, Lemma 4.6] in the martingale setting and later extended by Nutz and Stebegg [34, Lemma
6.2] to supermartingales. For n < u <.4 v the (supermartingale) shadow of 1 in v, denoted by S (n),
is the measure satisfying 7 <.4 SV () < v and $” (1) <.q x for all n <.4 x < v (if one replaces <.4
by <. then the notion of the martingale shadow measure S}, (77) is recovered). In particular, $¥(n7) is
the smallest (with respect to <.;) measure within v to which 7 can be mapped to in a supermartingale
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defined as a unique coupling such that, for each x € R, 7" |[x,00)xr has first marginal p|[y ) and
second marginal S” (][ x,«)). On the other hand, in [1, Theorem 3.1] (among other things) the authors
showed how to construct a potential function of the shadow measure S¥(7), denoted by Pgv (. (For a
measure 77, an associated potential function k — P, (k) = /R(k —x)*n(dx) is a convex function whose
second derivative uniquely identifies the underlying measure 7; see Section 2.1.1) One of our main
contributions is to show how, given the graph of the potential function of S (n), to identify a pair of]
candidate functions that support the decreasing supermartingale coupling 7.

An idea of constructing canonical couplings via corresponding potential functions is not new and
dates back to [25] at least (such approach is often taken to obtain particular solutions to the Skorokhod
embedding problem; see [24,36] for an overview). On the other hand, Hobson and Norgilas [29] were
first to show that the functions that support the left-curtain coupling /¢ can be identified from the po-
tential function of the (martingale) shadow measure S}, ([(~c0,x]), * € R. Similarly, one can construct
the right-curtain coupling 7" (the symmetric counterpart of 7€) by studying the potential functions
of Sy, (#l[x,c0))> X € R. In [1] the authors used this approach and constructed a pair of functions that
support the increasing supermartingale coupling 7.

The increasing supermartingale transport plan 7! is obtained by working from left to right (i.e.,
by mapping, for each x € R, pt|(—co,x] t0 S”(tt](=c0,x])) and thus can be viewed as a supermartingale
counterpart of 7/¢. (Indeed if u <.4 v and with equal means then u <. v and S” () = Sy, (m) for all
n < p.) One of the main achievements of [1] is that the authors showed how to obtain x* € R, such
that (under /) H|(~co,x*] is embedded in v via the martingale shadow measure S}, (¢|(-co,x*]), While
the remaining mass (¢ — t|(—co,x*]) is mapped to v via supermartingale shadow S (-). In particular,
nl |(—o0,x*]xR= nlc|(,w, x*]xr While ! |(x,00)xr corresponds to the (deterministic) antitone coupling
AT (a symmetric counterpart of the quantile coupling 77 F).

On the other hand, the decreasing coupling 7 is a supermartingale variant of the right-curtain
coupling 7"¢. Indeed, both transport plans are constructed by embedding p[x o) in v via §¥(-) and
Sy, (+), respectively. More precisely, and as already observed in [34, Remark 9.6], 7P corresponds to
"¢ on a specific part of the state space (the so-called martingale points) and is equal to the quantile
coupling 7' elsewhere. Even though we can explicitly determine the martingale points of 7 (see
Section 5), there could be countably many regime switching points where 7 alternates between 7"¢
and 71 (compare this with the unique regime switching point in the case of 7! ). Therefore (due to the
lack of symmetry between 7! and 72) the pasting arguments employed in [1] seem to be hard to adapt.
Instead, we relate our construction to the notion of the lifted (martingale) shadow couplings introduced
in [9].

In the case of lifted couplings the idea is to consider a lift of u, given by f € I1(4, u), where A is the
Lebesgue measure on [0, 1], and then to construct a lifted (martingale) transport plan 7 that has first
and second marginals i and v, respectively. Note that each such 7 is a measure on [0, 1] X R X R. If
we disintegrate 7 with respect to I, so that #(du, dx, dy) = ji(du, dx)7 (, x),.(dy), then the martingale
condition reads fRyﬁ(u’x)’_(dy) =x for fg-a.e. (u,x) € [0, 1] XxR. A corresponding martingale coupling
on R? is then recovered by integrating out the Lebesgue measure. In [9, Theorem 2.9] the authors
showed that for each lift /i there exists the unique lifted martingale shadow coupling 7 that, for each u €
[0, 1], maps £]{0,u1xr t0 Sy, (A][0,uxr)- (Then in order to obtain a (a version of a) particular martingale
coupling, e.g., 7€ or 77¢, one just needs to choose an appropriate lift /1.) More precisely, represent 7 as
#(du,dx,dy) = dufly,.(dx)7t , x),.(dy), where (f,,.)uc[0,1] corresponds to the disintegration of & with
respect to A. Then one of the main insights of [9] is that the kernel 7, ),. corresponds to the hitting
coupling (of fi,,,. to a suitably defined subset of R) introduced by Kellerer [33]. A crucial observation
for our purposes is that when f,,, . is a point mass, then the hitting coupling 7, ) . is a measure
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and then show how, using the potential function of the shadow measure S” (-), to identify the points on
which the supermartingale hitting coupling concentrates. Consequently, this will allow us to recover
the supporting functions (and thus also an explicit construction) of 72

The motivation of studying the representation of optimal supermartingale couplings in terms of
corresponding supporting functions is two-fold. First, similarly as in the martingale case (see Henry-
Labordere and Touzi [20]), using the supporting functions of an optimal coupling one can explicitly
construct the optimizers of the Monge-Kantorovich-type dual problem (see Nutz and Stebegg [34,
Theorem 4.11]). Second, by using Markovian iterations of an optimal supermartingale coupling and
taking limits, one can (again explicitly) obtain a (continuous-time) supermartingale that fits a contin-
uum of marginals (y; ), ¢ and solves a continuous-time supermartingale optimal transport problem (see
Henry-Labordere [21] for such extension in the martingale case). The developments in these directions
are studied in a companion paper [2].

There are several main results in this paper, for each of which there is a dedicated section. First,
in Section 3 we prove the stability of the supermartingale shadow measure S” (17) with respect to the
given data 7 < u <.4 v; see Theorem 3.3 (this generalises the results obtained in [30] for martingales).
This is a crucial ingredient in the proof of existence and uniqueness result (see Theorem 4.4) regarding
the lifted supermartingale shadow couplings (this generalises the corresponding (martingale) result
obtained in [9]); this is presented in Section 4. In Section 5 we show how to explicitly determine
the martingale points of each lifted shadow coupling of Theorem 3.3; see Proposition 5.2. Finally, in
Section 6 we link the potential function of the shadow measure and the transition kernel of a lifted
shadow coupling, and show how to explicitly construct the increasing supermartingale coupling 7
see Theorem 6.7.

2. Preliminaries

2.1. Spaces of measures and related notions

For d > 1, we denote by M (resp. P¢) the space of positive measures (resp. probability measures) on
R4 with finite first moments. In the case d = 1 we write # = P! and M = M.

The support of a measure 7 € M is denoted by supp (7). It is the smallest closed (Borel) set E C RY
with (R \ E) =0.

We use A7 to denote the restriction of the Lebesgue measure (on R) to an interval / C R. In the case
I=10,1], we write 4 = A{0,1]-

Given a measure 77 € M (not necessarily a probability measure), define 77 = fon(dx) to be the first
moment of 7 (and then 77/57(R) is the barycentre of 7). Let 7, be the smallest interval containing the
support of , and let {¢;,,r,} be the endpoints of 7;,. If  has an atom at £;, then £, is included in .17,
and otherwise it is excluded, and similarly for ;.

For 1 € M, the (right-continuous) cumulative distribution function Fy, : R — [0,7(R)] is defined by
Fp(x) :=n((=00,x]), x € R. A quantile function of 7, i.e., a generalised inverse of F;,, is denoted by
Gy 1 [0,7(R)] = R. There are two canonical versions of G,;: the left-continuous and right-continuous
versions correspond to G, (u) = sup{k € R: Fy,(k) <u} and G‘,}(u) =inf{k € R: F;;(k) > u}, foru €
[0,7(R)], respectively. However any G with G}, (1) < G(u) < G} (u), for all u € [0,5(R], is still called
a quantile function of n, which is motivated by the fact that for any such G we have that Law (G (U)) =
n/n(R), where U ~ U[0,77(R)]. (Note that G, may take values —co and oo at the left and right end-
points of [0,7(R)], respectively.)
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2.1.1. Potential functions

For a > 0 and B8 € R let DT(a,B) denote the set of non-negative, non-decreasing and convex func-
tions f: R+ Ry such that lim,|_, f(z) =0 and lim 1o {f(z) — (@z — B)} = 0. Then, when a =0,
DT1(0,B) is empty unless 8 =0 and then DT(0,0) contains one element, the zero function. Similarly,
let D! (e, B) denote the set of non-negative, non-increasing and convex functions f : R — R, such that

lim, |- f{f(2) — (B — @z)} =0and lim 1 f(2) =0.
For n € M, define the functions Py, Cyp:R—> R,y by

P (k)= '[R(k—x)Jrn(dx), keR, Cp(k) = '/R(x—k)Jrn(dx), keR,

respectively. Then P, (k) > 0V (n(R)k —77) and C,,(k) > 0V (77 — n(R)k). Also, the Put-Call parity
holds: Cy, (k) — Py (k) = (7 —n(R)k), k €R.

The following properties of P, (resp. C;,) can be found in [15,16]: P,, € DT ((R),7) (resp. C, €
Dl(U(R),ﬁ)) and {k : P;;(k) > (n(R)k =)} = {k : Cy(k) > (7 = n(R)k)*} = (€5, 7y). Conversely
(see, for example, [22, Proposition 2.1]), if & € Z)T(km, k) for some numbers k,;, > 0 and ky € R
(with k¢ =0 if k;, = 0), then there exists a unique measure € M, with total mass n(R) = k,,, and
mean 77 = k ¢, such that 7 = P;,. In particular, 7 is uniquely identified by the second derivative of 4 in
the sense of distributions. Furthermore, let U,, : R — R_ be the potential function of 7, so that U,,(k) =
- fR |k = x|n(dx), k € R. Then —U,, = C;; + Py, Finally note that all three second derivatives Cy/, Py
and —U7/ /2 identify the same underlying measure 7 (and thus we will slightly abuse the terminology

7
and treat all three functions P;;, C;;, U;; as potentials of 77.)

2.1.2. Wasserstein distance

For (un)ns>1,1 € M with y,(R) = u(R) for all n > 1, we use the notation yu, BN u for the usual

weak convergence of measures, i.e., (y BN u if fR fdu, — /R fdu for all continuous and bounded
f:R—>R.
For u, v € P, the Wasserstein-1 distance is defined by

[ rau= | sav

where the supremum is taken over all 1-Lipschitz functions f : R — R. It endows (P, W) with 77, the
usual topology for probability measures with finite first moments (a sequence of measures (up)n>1
converges to u w.r.t. 71, and we write y, — y, if /R fdu, — /R fdu for every continuous f: R — R

W(u,v)= sup
feLip(1)

b}

with at most linear growth). Moreover, if u,, — u (or, equivalently, W (uy,, 1) — 0) then u, BN U, while
the converse is true if the first moments also converge (see, for example, [41, Theorem 6.9]). For a fixed
m € R, we will often work with a subspace {n € M : n(R)=m} C M, and in this case we still consider
the distance W with the same definition.

Note that, for each r € R, f; : x € R — —|x — t|€ R belongs to Lip(1), and therefore, if u,, — u in
‘M, then the potential functions U, converge to U,, pointwise. The reverse implication does not hold
in general and we need additional assumptions on the given data (for example, it is enough for all the
measures to have the same mass and mean; see [22, Proposition 2.3]).

By Kantorovich duality theorem (see [41]), and in the case u, v € P, one has an alternative definition
of the Wasserstein-1 distance given by

W(#av):ir}fJ[R |y—x|d7r(x,Y),
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where the infimum is over all 7 € P2 with marginals 4 and v. In particular, the infimum is attained by
the Hoeffding-Fréchet (or quantile) coupling 7f1F € P2, defined by

i (AxB)=A({ue[0,1]:Gu(u) € A,G\(u) € B}), A,BeB(R).

Then
1
W(p,v) = /O Gy (1) — G ()|, (1)

which, in the case when u, v € M are with equal mass, generalises to W(u, v) = foﬂ(R):V(R) |Gy (u) —
G (u)ldu.

2.2. Stochastic orders and supermartingale couplings

Forn, y € M, we write n < y if n(A) < x(A) for all Borel measurable subsets A of R, or equivalently if]
f fdn < / fdyx for all (measurable) non-negative f : R +— R. Since n7 and y can be identified as second
derivatives of the potential functions P;, and P,, we have 5 < y if and only if P, — P;, is convex, i.e.,
P, has a smaller curvature than P,

Two measures 77, y € M with equal mass are in stochastic order, and we write 7 <gs0 ¥, if f fdn <
/fd)(, for all non-decreasing f : R — R. In particular, n <y, x if and only if F;, > F,, on R, or
equivalently, G, <G, on [0, 1].

Two measures 7, y € M are in convex (resp. convex-decreasing) order, and we write 7 <. y (resp.
N <ca x), if / fdn < f fdy for all convex (resp. convex and non-increasing) f : R + R. Note that
if n <c x (or p <cq x) then n(R) = y(R). On the other hand, we have that 77 > ¥ whenever 1 <.q ¥
(however, a reversed inequality 77 < j holds only in the case <. x)

Given two probability measures 7, y on Polish spaces X, Y, respectively, let I1(n, x) be the set of
probability measures on X x Y with the first marginal n and second marginal y.

For n, y € P let Il (7, x) be the set of supermartingale couplings of 7 and y. Then

s (1, x) = {x €11(, x) : (2) holds},

where (2) is the supermartingale condition

/ / yﬂ(dx,dy)s/ / xn(dx,dy)=/x77(dx), V Borel B C R. 2)
xeB JyeR xeB JyeR B

Equivalently, ITg (7, y) consists of all transport plans 7 (i.e., elements of T1(%, x)) such that the disin-
tegration in probability measures (7, )xer With respect to i satisfies fR yrtx(dy) < x for n-almost every
X.

The following is classical (see, for example, [17, Theorem 2.58]).

Lemma 2.1. Let n, y € P. The following are equivalent:

1' ]7 SCCZ /\/)
2. n(R) = y(R) and P, < P, onR,

3. Ms(n, x) #0.

If n,x € P with n <.4 x, but 7 = y, then II5(7, y) reduces to the set of martingale couplings,
denoted by I/ (77, x) (i.e., elements of I1(7, y) for which (2) holds with equality). Indeed, any super-
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For our purposes in the sequel we need a generalisation of the convex (resp. convex-decreasing) order
of two measures. We say n, y € M are in positive convex (resp. positive convex-decreasing) order, and
write 7 <p¢ x (1€sp. 7 <pca X), if f fdn < f fdyx, for all non-negative and convex (resp. non-negative,
convex and non-increasing) f : R Ry. If n <. y (resp. 7 <cq4 x) then also 7 <p¢ x (resp. 1 <pca ).
If 7 < x then both, 7 <, xy and 7 <p,cq x. Note that, if n <, y or n <pcq x, then n(R) < x¥(R). On
the other hand, if 7(R) = y (R), then 17 <p¢ x (resp. 7 <peq x) is equivalent to n <. y (resp. 7 <cq ).
Letn, y € M withn < ped X and introduce the set

MY ={0eM:n<cqab<x}. 3)

Then M),g is the set of target measures of a supermartingale that transports (or embeds) 7 to y. It is
not hard to show that M),; # (0. Indeed, the so-called left-most measure 6 < y of mass (R), denoted by
0=0, , €M, and defined by

0=xl(-.Gy (n®) T(N(R) = X|(~00,G, (n(®)) (R))IG, (n(r))> )

is the largest measure in M% with respect to <4 (see [1, Proposition 3.1]). Note that 8 does not depend
on the choice of the quantile function G .

2.2.1. Irreducible decomposition of n € Tlg(u, v)

For a pair of measures 77, y € M, let the function D = D, , : R+ R be defined by D, , (k) = P, (k) -
P, (k), k € R. Note that if 57, y have equal mass then 57 <. x is equivalent to D > 0 on R. In particular,
limg oo D(k) =0 and limg_eo D(k) =77 — ¥ 2 0. Let {p = inf{k € R: D;, , (k) > 0} and rp =
sup{k eR: Dy, , (k) #77 — x}. (Note that if  <.4 y and iy = ) then rp =sup{k €R: D, , (k) > 0}.)
Let Ip be the open interval ({p,rp) together with {{p} if {p > —co and D’({p+) :=limy ¢, (D (k) —
D({p))/(k —¢tp) >0and {rp} if rp < oo and D'(rp-) :=limgqe, (D (k) = D(€p))/(k — tp) # 0.
Note that, if n <. y (or equivalently, 7 <.q y and 7 =), then £, < £, <r, <r, and Ip C [{,,1,].
On the other hand, if 7 <.4 x then in general we only have that ¢, < ¢, and ¢, < {p.

It is well know (see [23, page 254] or [8, Section A.1]) that, if n <. x and D, , (x) =0 for some x,
then in any martingale coupling of 7 and y no mass can cross x. More precisely, if 7 € I1js (7, x) and

is such that D (x) = 0, then we have 7 ((—00,x), (x,0)) + 7((x, 00), (—00,x)) =0.

In the supermartingale case with 7 <.4 x, define x* := xj,  :=sup{x € R: D(x) = 0}. Then under
any supermartingale coupling 7 € Ilg(n, x), if D(x) =0 for some x < x*, then no mass can cross x
and 7 is a martingale on (—oo,x] X R, and x* is the largest such x (see [34]). In particular, if there are
multiple {x;};>1 (with x; < x* and) with D, , (x;) = 0, then we can divide the problem of constructing
a supermartingale coupling into a sequence of irreducible problems, each taking place on an interval
J; such that D > 0 on the interior of J; and D = 0 at the endpoints. All mass starting in a given interval
is transported to a point in the same interval. Moreover, by the martingale property, any mass starting
at a finite endpoint of 7; (that is smaller than x*) must stay there. Putting this together we may restrict
attention to intervals I on which D > 0 (with limy_,., D(x) = 0 at endpoints e; of I), and we may
assume that the starting law has support within the interior of / and the target law has support within
the closure of 7 (and [ is the smallest set with this last property). This is summarized in the following
result.

Lemma 2.2 ([34, Proposition 3.4]). Let u,v € P with u <.q v. Define Iy := (x*,+00), let (I )r>1 be
the open components of {D > 0} N (—00,x*) and set I_y :=R\ Uy o Ix. Let u == |y, for k > -1, so
that j1= 3> [k




Then there exists a unique decomposition v =, »_1 Vi such that
H_1=V_1, Mo ZcaVo and ur<cvr forallk>1.

Furthermore, any nt € Ils(u,v) admits a unique decomposition m = ), »_; nx where mo € Ils(uo, vo)
and my € Mpy (ug, vy) for all k 0.

2.3. Lifted couplings

Let A be the Lebesgue measure on [0, 1]. Fix u € . We follow [9] and call i € I1(A4, ) a lift of u. The
following two ways will be interchangeably used to represent the measure f.
Let § be a measure on [0, 1] x R. Then

@) (éu,‘)ue[o,l] denotes the (1-a.s. unique) disintegration (w.r.t. the first coordinate) of O wrt. A.
@ii) (8 [0,u],-)ue[o,1] denotes the family of measures defined by

é[o,u],.(A)zé([o,u]xA):/Oués,.(A)ds, A€ B(R).

f110,01,- corresponds to the zero measure on R, while fifq 1],. = u. Furthermore, fifg ,],. < fd[0,u],- Tor
all u,u’ € [0,1] withu <u’.

In [9] the authors call (9 [0,u], Juefo,1] and (éu,-)ue[o,l] the primitive and derivatives curves, respec-
tively. Indeed, éu,. can be considered as a derivative of (4 [0,u], Juef0,1] W.I.L. 77 (see [9, Section 2.2]).
In particular, the set L C [0, 1] of times at which, for any continuous f with linear growth at most,
f fdb,. . = limhlo(f fdé[o’,ﬁh],. - / fdé[o’u]’.)/h holds, is a (Borel) set of full measure.

Now, in addition to g € IT1(4, u), let v € P with u <.4 v. Then the set of lifted supermartingale
couplings (or transport plans) is given by

Ms(4,v) = {ﬁ ell(g,v): / ydn (y,y),. < x for -ae. (u,x) € [0, 1] XR} ,

where (7 (4, x),.)(u,x)e[0,1]xr denotes the disintegration of /& with respect to /. Similarly as for a lifted
measure /1, we denote the primitive and derivative curves of 7 by (#[0,.],., Juefo,1] and (&4, ., ue[0,1]+
respectively. Note that both 7 ,],. . and &, ... are measures on R2. Moreover, for any # € [g(,v),

the corresponding element of Ig(u, v) is given by 7 = /01 Aydu.

For j € II(A,u) and # € Ig(f4,v) we have two canonical disintegrations of 7: #(du,dx,dy) =
Ru,.,-(dx,dy)du and 7(du,dx,dy) = &, x),.(dy)fiu,. (dx)du. In particular, (for A-a.e. u € [0, 1] and
fiy,-a.e. x € R) R, y),. represents the disintegration of 7, .. with respect to the first marginal £, ..
Then, if ¥,,. denotes the second marginal of &, . ., we have that 7, . . € IIs(fy,.., Vu..).

Notation: For x € R let 6, € P denote the unit mass at x. For real numbers c,x,d with c <x < d
define the probability measure x. x,.4 by Yc.x.a = %66 + ﬁéd if c <d and y. x.qa = x otherwise.
(Note that . x4 has mean x and is the law of a Brownian motion started at x evaluated on the first
exit from (c,d).) We extend the definition of y. x4 in the case when one of {c,d} takes infinite
value. In particular, if —co = ¢ <x < d < 00 we set y¢ x,4 = 04, and similarly, y. x4 = 6. whenever
—o<c<L<x<d=c
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3. The shadow measure and its stability

Let u,v € M with u <p,.4 v. Recall the definition of M;, i.e., the set of a target measures of a super-
martingale that embeds u in v (see Section 2.2 and (3)). In this section we study the stability properties
of the smallest element of Ml‘j with respect to <.4. In what follows, this measure, the so-called shadow
of u in v, will be denoted by S” (u).

Note that, for any 6 € M, we have that 6 < 1. It turns out that we can capture the difference 1 —S” (1)
precisely. For this purpose, for any two measures 7, y € M with 7 <4 ¥, we introduce a constant
Cp.x €[0,00):

Cnxy: = l?gé{cn(k) - C)((k)} )

=iu§{(X(R) —-n(R)k - (¢ —n) = Py(k) + Pyp(k)}. (6)
€
(The equivalence between (5) and (6) is justified by the Put-Call parity.)

Remark 3.1. Note that, if , ¥ € M with n <,.q x, then ¢ ), =0 if and only if 7 <, x. Then it
follows that @ # {0 e M : u <. 0 < v} C M), see [7, Lemma 4.4]. In order to verify the claim,
note that, by (5) we have that ¢, , =0 if and only if C,, < C, everywhere (since limy_,, C, (k) =
limg 0 Cy (k) = 0). On the other hand, by [1, Lemma 3.2] we have that C,, < C, (everywhere) if and
only if 7 <p¢ .

The convex hull of a function f : R — R is denoted by f; see Appendix B. The next lemma defines,
and explicitly determines the shadow measure S (u); see [1,34].

Lemma 3.2 (Shadow measure S (u)). Let p1,v € M with u <pcqv.

L. There exists the unique measure S” () € My, such that S¥ () <cq 6 for all 6 € M}
2. The measure S” () is explicitly determined by its potential function Pgv ), given by

Psv () (k) = P, (k) = (P, — Py)“(k), keR. (7)

In particular, ¢y, = — S¥ ().
3. If u=puy + uy for some uy, uy € M, then

SY (1) = Y (1) + 877D (). (8)

We are now ready to present the main result of this section. The following theorem establishes
stability of the shadow measure S” (u) with respect to initial and target measures u, v.

Theorem 3.3. Let u,p’,v,v' € M with u(R) = p’(R) and v(R) = v'(R). Suppose y <pcq v and
u' <pca v'. The following relation holds

W(S” (1), S (1) < W (g, 1) +2W (v,v"). )

The proof of Theorem 3.3 relies on two auxiliary propositions and the following up and down mea-
sures
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For n,1" € M with n(R) =n’(R) let Up(n,n"), Down(1n,n") € M be given by

Up(n,1")(B) = [0, (®)=ry ®)] {ut €R : (G, (u) V Gy (u)) € B}), B € B(R), (10)
Down(n,n")(B) = A'[O»U(RFTI'(R)J({M eR: (Gﬂ(u) A G,,/(u)) € B}), B € B(R) (11)

(relevant results regarding these measures are presented in Appendix A). Observe that Up(r,n")(R) =
Down(n,7")(R) =n(R) =n"(R).

Proposition 3.4. Let u,u’,v € M be such that p(R) = p' (R), u <pca v and p’ <pcq v. We have
W(S” (1), 8" (1) <W(u,pt').

Proposition 3.5. Let u,v,v’ € M be such that (1 <pcq v, t <pca v' and v(R) =v'(R). Then
W(S” (). S” (W) <2W (v,7").

Proof of Theorem 3.3. First, by Lemma A.1, we have that Down(v,v’) <, x for y € {v,v’}, while
by Lemma A.3, 7 <,cq Down(v,v’) for g € {u, u’}. Then

W(S” (1), S” (1))
< W(sV(M)’ SDown(v,v’) ('u)) + W(SDown(v,v’) (#)’ SDown(v,v’) ('u/)) + W(SDown(v,v’) (#/)’ Sv’ ('u/))
<2W(v,Down(v,v")) + W(u, 1) + 2W(v’,Down(v,v")),

where the first inequality follows from the triangle inequality (applied twice), while for the second
one we used Propositions 3.4 and 3.5. We finish the proof by observing that W (v, Down(v,v’)) +
W(v’,Down(v,v’)) =W (v,v’), see Lemma A.2. O

Remark 3.6. Theorem 3.3 is a supermartingale generalisation of [30, Theorem 2.31]. While our proof
uses similar structure, it is simpler and more direct.

For example, in several instances the proof relies on the explicit representation of the shadow mea-
sure S” (u). In the martingale case, Juillet [30] first uses the representation of S”(u) when y is atomic,
and then obtains general statements by approximation. In our case, and directly for general u, we use
the representation of S¥(u) via potential function Pgv(,) (see Lemma 3.2), and thus bypass the ap-
proximation step.

Furthermore, a supermartingale has a natural direction (i.e., a tendency to decrease), which translates
to convenient relations between measures in terms of stochastic orders. To illustrate this, let u, v, v’ be
as in the statement of Theorem 3.3, i.e., 4 <pcq v and p <,cq v'. Then u <,.q Down(v,v’), see
Lemma A.3. On the other hand, if 4 <, v and u <), v’ then, in general, y <, Down(v,»’) does not
hold, and thus in the martingale case Juillet [30] needs additional arguments.

3.1. Proofs of Propositions 3.4 and 3.5
The proofs of both propositions rely on the following important lemma.

Lemma 3.7. Let u,u’,v € M with u(R) = p'(R), p <pca v and p’ <pca v. If pt <s10 p’, then
S¥ (1) <sr0 S” (1)
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Proof. Note that S (1) <s70 S”(u’) is equivalent to Fsv(,) = Fsv(,) on R. On the other hand, for any
n €M, Fy(x) =n((—oc0,x]) = (P;);(x) for each x € R. Hence it is enough to show that

(Psv(u))+(x) = (Psv(u))i(x), x€R. (12)

(Recall that f¢ denotes the convex hull of f : R — R.) By Lemma 3.2 (see (7)), (12) will be established
if we can show that [(P,, — P, )] (x) < [(Py—Pw)]i(x),x € R. Butsince u <g0 p’, (P, —Py)i(x) <
(Py — Pu);(x), x € R. Then an application of Lemma B.1 with f = (P, — P,) and g = (P, — P.)
completes the proof. O

Proof of Proposition 3.4. To ease the notation, set @ =Up(y, u’). From Lemma A.l we have that
U <st0 fi and p’ <g, fi, while Lemma A.4 ensures that i <4 v. This permits us to apply Lemma
3.7, from which we conclude that S (1) <gro S¥ () and S¥ (1’) <510 S” (7).

Using the above observations we have that

W, p') =W(p, i)+ W', fi)
=A-fE+f-p
=W(S”(k),S” (1) + W(S” (i), S” (j1)) (13)
+{a-8v(a) - (E-S5"(u)}

+{i=SY(@) — (1 =8 (u")},

where the first equality follows from Lemma A.2, while the other two use the fact (see Section 2.1) that
W(n, x) =x — 7 whenever 7, y € M are such that n(R) = y (R) and <4, x-

We claim that the last two summands in (13) are non-negative. We will only verify this for y, i.e.,
we consider the penultimate summand (the case for ¢’ is identical). By Lemma 3.2 we have that

ﬁ_ Sv(ﬂ) - (ﬁ_ SV(,U)) =Ca,v —Cu,v-

But since, for each k € R, s +— (s — k)* is non-decreasing, and also u <y, fi, we have that C; (k) >
Cu(k), and it follows that

Cay = Cpy = :UP{Cﬂ(k) —Cy(k)} - 2UP{Cﬂ(k) - Cy(k)} 2 0.
€R €R
Finally,

W, 1) > W(SY (1), 8" (1)) + W(S” (1), 8" (1)) = W(S” (w), 8" (1)),

where the last inequality follows from the triangle inequality. O

The proof of Proposition 3.5 will need one additional result.

Lemma 3.8. Let u,v € Mwith u <pcq v, and let (uy),»1 be a sequence of measures in M increasing
in convex order and such that p, <; .
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Proof. Itis well-known that y,, BN U (increasingly with respect to convex order) for some po, € M if]
and only if U, | Uy, pointwise (see, for example, [15]). In this case, the first moments also converge

(i.e., Uy, (0) | Uy, (0)), and therefore u,, BN Ueo 1S equivalent to u;,, — u.

Since p, <¢ pns1 <c M, Uy, (k) 2 Uy, (k) > U, (k) and hence lim, o Uy, (k) exists for each
k € R. It is easy to see that Us :=lim, . U, is concave and with the same asymptotic behaviour
as Uy, and U,,. It follows that U, = Uy, for some po, € M with the same mean and mass as u. We
conclude that u; — pe. Furthermore, since Uy, = Us 2> Uy, we have that pe <. u, and therefore
Moo <ped Vs 0 that the shadow measure S” (po0) is well-defined.
Now note that, for n > 1, by Lemma 3.2 we have that

PSV(/ln) = PV - (PV - Pﬂn)c = PSV(#nH) + (PV - P/Jn+l)c - (PV - Pﬂn)c
= PSV(FOO) + (PV - PI‘OO)C - (PV - Pﬂn)c'

Therefore, since Py, < Py, ., < Py, we have that Pgv () < Psv(u,.,,) < Psv(uw)- It follows that, for
alln > 1, 8" (un) <ca S” (Un+1) <ca S”(H) and therefore S¥ (u,) > SY (Un+1) = SV (Uoo)- In partic-
ular, lim,—,o S¥ (1) exists and (since v is integrable) it is finite. Furthermore, applying Lemma B.2
with f,, = (P, — Py,) and f = (P, — P,,) we have that Pgv(,,,) T Psv(u.) pointwise, as n — oco.

Recall that U;, = —-C;, — P;; for n € M. Using the Put-Call parity we further have that U, (k) =
n(R)k — 1 — 2P, (k) for each k € R. Then, since S¥ (u,) (R) = 12 (R) = pio (R) = §¥ (o) (R), we have
that, for each k € R,

Tim U () (k) = 8" (too) (R)K = 1im $7 (1) = 2P 1 (K)

= Usv (o (k) = { lim $7 () = 57 ()}

It follows that limy,—co Usv(y,,) (k) exists for all k € R, and by [15, Lemma 2.6], S¥(u,) 25 S for
some So € M.

Finally, let Uc :=lim, 0 Usv(y,) and C = limy 0S¥ (in) — §¥ (4eo) = 0. Then applying [15,
Lemma 2.5] we have that Us,, = U + C = Ugv(4,,)- Since the potential functions uniquely identify

the underlying measures, it follows that S” (u;,) 2 Seo = S” (Ueo)-

It is left to show that C = 0 (from which we can conclude that the first moments of S¥ (u,,) converge
to the first moment of S (u«)) and therefore S¥ (uy) 2y Se is equivalent to S¥(u,) — Se. By [11,
Theorem 3.5] it is enough to show that {S” (u,)}, > is uniformly integrable. Note that S¥ (u,)(R) =
u(R) for all n > 1. Let 6,0 € M be such that §(R) = 9(R) = u(R), § < v, 6 < v and 6 <y, 17 <s10 0 for
all n € M with n(R) = u(R) and 7 < v. Then 6, 8 are the left-most (see (4)) and right-most measures
(of mass u(R)) within v, respectively, and we have that

0< lim sup / Ix1dS” () (x)
(=00,—K JU[K ,4+0)

K—co, 51

s( lim / |x|dQ(x))+( lim / |x|d§(x))= lim/ lx]dv(x) =0
K —+0c0 (~c0,~K] K —+c0 [K ,+0) K—x (=c0,—K JU[K ,+0)

(for the equalities we use that  and @ are the restrictions of v, and that v is integrable, respectively). [J

Proof of Proposition 3.5. Let ¥ =Down(v,v’). Note that, by Lemma A.l, ¥ <5, v and ¥ <sto v/,
while Lemma A.3 ensures that u <,.q 7. Furthermore, W (S (u),S” (p)) < W(S¥(u),S”(n)) +

’

HZ( SV([!) SV (”)) which follows from the trian g]e mequaht;r
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Suppose the claim of Proposition 3.5 is true for v/ <y, v. Then W(S¥ (1), S” (1)) < 2W(v,¥) and
W(S”(u),S” (1)) <2W(v’,7), and then using Lemma A.2 we obtain W (S” (1), S” (1)) < 2W(v,v"),
as required.

It is left to show that the claim of Proposition 3.5 holds under an assumption that v’ <y, v. Because
of Lemma 3.8 we can further assume that y is of type 3.7 | @;dy, (the general yu is then approximated
by a sequence of atomic measures increasing in convex order).

Then, by Lemma 3.9, there exists u’ € M with y’(R) = u(R), and such that g <g, p’, SY (1) <sto
S¥(u’) and W(S” (1), S”(u’)) < W(v,v’) . From Lemma 3.7 we also have that S” (1) <s10 S” (1),
and it follows that

W(S” (1), S” (1)) S W(S” (1), S (1)) +W(S” ('), S” (1)) = ¥ (1) = S () + S” (') = S” (1)
S2WO ) + 87 () = 87 (),

where we used the triangle inequality and the fact (see Section 2.1.2 and (1)) that W(n, x) =
R - =
fon( ) Gy (u) = Gy(u)du =) — 7 whenever n(R) = x(R) and 7 <50 x.

Hence the claim of the proposition holds if we can show that $¥'(u) — S (1) < 0. However, by
Lemma 3.2,

SV () = S” (W) =H — cppy +Cpy —H= Zug{cy(k) -Gy (k)} - iuﬁ{cp(k) —-Cy(k)} <0,

where the inequality follows from the fact that C,» < C,, since v’ <g, v and, for each k € R, s -
(s — k)™ is non-decreasing. O

In the proof of Proposition 3.5 we used the following lemma, which can be proved using a con-
struction provided in the first part of the proof of [30, Proposition 2.36]. We sketch the proof for the
convenience of the reader.

Lemma 3.9. Let u,v,v’ € M be such that v(R) = v'(R), v/ <s10 v, ft <pea v and pt <pcq v'. Suppose
w is of the form 37", a6y, for some n € N. Then there exists i’ € M such that u'(R) = u(R), u <gs0 pt’,
SY (1) 510 S¥ (1) and W(SY (1), S* (1)) S W (v, ).

Proof. The construction of u’ relies on the following fact: if u is as in the statement and n = 1, then
s () is a restriction of v’ between two quantiles (see [34, Lemma 6.3]). More generally (when n > 1),
there exists a sequence of sets J; C --- C J, € (0,v(R) = v/(R)] such that, for any k € {1,...,n},
S"'(Zf.‘:1 @;0x;)(B) = A]j0,»(r)|({u € Ji : G,+(u) € B}), for all Borel subsets B of R.

Now introduce u" = 3" | @0y, where x/ is the barycenter of a measure 7;, defined by 7;(B) =
Alj0,v )] ({u € Ji \ Ji-1 : Gy (u) € B}). Since v’ <, v, Gy» < G, and therefore x; < x]. It follows
that u <¢o p’ and (since u <pcq v) 4’ <pca v. Then the shadow of u’ in v is given by S (u")(B) =
Aljo,v(r)]({u € Jy : G, (u) € B}) and, in particular, SV'(u) <sto 8¥(u’). Finally,

W(S” (1), 8" (1) =87 (') = $” (1) = /J [Gy(u) =Gy (u)]du

v(R)=v'(R)
< / (G (1) = G ()] dit = W(v. ).
0
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4. Existence of lifted shadow couplings

In this section we show that the shadow measure allows to construct a large family of (lifted) super-
martingale couplings.

Let ¥ (R) be the space of closed subsets of R. The space ¥ (R) is endowed with the coarsest topology
such that F € ¥ (R) — d(x, F) is continuous for every x € R (see [33, Section 2.1]). We write T € 1 if
T € F(R) and inf{k € T} = —co0.

Definition 4.1. Let T € 7. For every x € R, let x7. := sup{k € T N (—co,x]} and x7. :=inf{k € T N
[x,00)} with inf @ = co. The Kellerer dilation is given by

Ox ifxeT;
Dr(x,))=4 xj—x X — X7 .
' +T —0x> + — T 5.+ otherwise.
X5 — X T xI—-x T
T 1 T X1

(If x ¢ T and x7. = oo, then D (x, ) =0xz)

If u € P, then the hitting projection of p in T is a measure uDr (B) = fRDT (x, B)du(x), and the
hitting coupling of u and uDr is defined by 7, 7 (A X B) = fA D7 (x, B)du(x).

Note that if 7" is not an element of 7, but inf{k € T} < inf{x € supp(u)}, then the kernel Dt still
makes sense u-a.s.

Remark 4.2. The kernel Dr is slightly different from the original dilation introduced in [33, Definition
16]. The difference lies in the definition of 7. Kellerer [33] considers martingales only, and therefore
writes T € 7 if T € ¥ (R), inf{k € T} = —oo and sup{k € T} = oo. The last condition, however, cannot be
guaranteed in the supermartingale setting. (For example, consider a supermartingale with the starting
law u supported on (0, c0) and the target law v supported on (—o0,0), and take x € supp(u) together
with T = supp(v).) Therefore in the supermartingale case we need to explicitly deal with a situation
when, for some x € R, {k € T N [x,0)} is empty.

Before stating the main result of this section, we present a useful result regarding the dilation Dr.
The proof is postponed until Appendix C.

Lemma 4.3. FixT € ¥ (R) and p € P with inf{k € T} < inf{k € supp(u)}.

L. The hitting coupling m,, T is the unique element of Ils (u, D).
2. Let (Un)n>1 be a sequence in P with u, (R) = u(R) foralln > 1. If u,, — u then up, Dt — uDr.

With the help of dilation D7 we can now formulate the main result of this section. Recall that
A denotes the Lebesgue measure on [0, 1]; see also Section 2.3 for the definitions of primitive and
derivative curves of a lifted measure.

Theorem 4.4. Let yu,v € P with y <.q v, and let [i € TI(A, u). Then there exists a unique element
# € s (4, v), the lifted shadow coupling of [i and v, such that for every u € [0, 1], the first and second
marginals of (0 u),... are fijo,u],. and V(o u],. = S” (A[0,u],.), respectively. If we denote by V,,. the
derivative of (V[0.u], Jue[0,1] Gt u (whenever it exists), we have moreover V. = fiy Dt (), where
T (u) == supp(v = V(g u1.-)
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The proof of Theorem 4.2 relies on the following result.

Proposition 4.5. Let y,v € P with u <.q v, and let fi € T1(A, u). Suppose ug € [0,1) is such that
u v fifo,y], has a right derivative at ug, and let Vo ,,. = S¥(fi{0,u],-)- Then a right derivative of
(V10,u], Juelo,1] at ug exists and is given by fi,,,.Dt, where T = supp(v — V|0,y,],.). Furthermore,
inf{k € T} < inf{k € supp(fly,,.)}.

Proof of Theorem 4.4. Using Proposition 4.5, the proof can be obtained by the arguments of [8, The-
orem 2.9]. Nevertheless, we sketch the proof for completeness.

Let fifo,u],-» V[0,u],- and T'(u) be as in the statement. Then using Proposition 4.5, and by setting
Vu,. = fiu,-D1 (), we can define Ry = 7wy, 7 (u) € s (Au,., Vu,.) for almost every u € [0, 1] (recall

that g, 7 (u) denotes the hitting coupling), and then the associated 7 € Ig (f,v) and &,
Iy At

On the other hand, if # € ITg(/, v) is such that the marginals of R[0,u],-,- are A[o,u],- and V(o ,1,. =
8 (f[0,u],-) then at points u where the derivatives of {i[ 4],., V[0,u],- and Z[0,,],.,. exist we have that
Ru,.,- € Us(fu,., Vu,.). But by Proposition 4.5 we necessarily have that V. = fi,,,.D7 (4. Then the
uniqueness part of Lemma 4.3 completes the proof.

It is left to prove Proposition 4.5. We will need the following lemma.

Lemma 4.6. Let (H,),>1 be a sequence of positive numbers tending to infinity, (N,)n>1 a sequence in
P converging ton € P, and v € M. Assume 0, <pcq Hyv for every n > 1. Then, setting T = supp(v),
it holds inf{k € T} <inf{k € supp(n)} and S"" (n,)) — nDr in P.

Proof. The proof follows the same arguments as in the martingale case of [9, Lemma 2.8]. The main
difference lies in the assumption 7, <pcq Hyv (and not <) and the definition of D7 . Therefore we
will only highlight the necessary modifications.

First, since 17, <pcq Hyv we have that inf{k € T} <inf{k € supp(n,)} for every n > 1, and therefore
nn ([inf T, 00)) = 1. Letting n — oo we find supp(n) C [inf{k € T}, oo].

1. First suppose that 17,, = 5 for all n > 1. The proof in the martingale case relies on the fact that
(when 6 <, H,v) the martingale shadow measure SHnv(§.) is supported on an interval. However,
the same is true in the supermartingale case, see [34, Lemma 6.3].

2. Now suppose that 17, =7 = }}_ midyx, for all n > 1. The proof in the martingale case relies
on Step 1, associativity of the (martingale) shadow measure and the induction argument. Since the
associativity also holds in the supermartingale case (recall Lemma 3.2), the result follows.

3. In this step the result is established for a constant sequence 7, = 1. To achieve this, approximate
a general measure 1 by atomic measures (17 )x>1 With 7x <. n and such that ny — 7 in P as k — oo.
Note that all the measures (7% )x>1,7 have the same total mass and mean, which will enable us to use
Lemma 4.3.

To establish the claim (and similarly as in the martingale case) we use Step 2 and the following two
facts: first, by Theorem 3.3 we have that W(S™V (), SH7V (17)) < W(57x, 1) (which converges to zero
uniformly in n as k goes to infinity), and second, nx DT — nDr which is guaranteed by Lemma 4.3.

4. If n,, is a non-constant sequence, then note that

W (S (in). nD1) < WS (1), S () + W (ST (). nD) < W (g, ) + W (S (). nDr),

where the second inequality follows from Theorem 3.3. Since n,, — 1, W(n,,n) — 0, while Step 3
ensures that W(S7V (y),nD7) — 0 O
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Finally we can prove Proposition 4.5; the arguments are identical to those of [9, Proposition 2.7] and
thus we only give a sketch.

Proof of Proposition 4.5. For h > 0 consider h‘l(f/[o,uwh] = Voul,) = h‘l(S"(ﬁ[o,uOJ,h],,) -

SV (f110,up],-)) =t on € P. By associativity of the shadow measure and by using an appropriate scal-
ing of measures we have that o, = Sh_l(v_ﬁ[‘)v“o]-') (h~'(a [0,up+h],- — [0,u0],-))- Replacing h by a se-
quence (hy,),>1 (of positive numbers decreasing to zero) and applying Lemma 4.6 with H,, := h;l,
Ny i= h,‘l1 (10,ug+hn],- = A[0,u0],-) @and v :=v = V[, ],. completes the proof. O

5. Doob-like decomposition of the shadow couplings

Fix p,v € P with u <.q v. Let g € TI(A, u). The goal of this section is to determine the martingale
points of an arbitrary lifted supermartingale shadow coupling.

Any 7 € IIg(/,v) can be represented as 7 (du, dx,dy) = R(u,x),-(dy)fi(du, dx), where the family
of kernels (7, x),.)(u,x)e[0,1]xr Satisfies /Rydﬁ(u,x),.(dy) < x for f-a.e. (u,x) € [0,1] X R. On the
other hand, if 7 is a lifted supermartingale shadow coupling, then by Theorem 4.4 we have that
#(du,dx,dy) = ng, 1 (u)(dx,dy)du, where (for 1-a.e. u € [0,1]) the hitting coupling 7z, . 7 (u) 18
the unique element of Ig(fy, ., fAu,- D1 (4))- Recall that ¥, . := (. Dty is the (right) derivative of
the curve (V(0,u],. := 8" (A[0,u],-)uelo,1]- Then 7, xy . corresponds to the disintegration of the hit-
ting coupling 74, 7 (u) With respect to the first marginal £, .. It follows that (for A-a.e. u € [0,1])
Mt T () € g (flu,» P,.) if and only if [ y# (. x),.(dy) = x for fi,,,.-a.e. x € R. But, since 7, . 7 (u)
is a supermartingale coupling, it is a martingale coupling whenever the means of its marginal distribu-
tions are equal, i.e., whenever [, . = ¥,,.. (we call such u € [0, 1] a martingale point of 7).

In order to identify the points u € [0, 1] for which /,T = W consider c : [0, 1] — [0, u — V] defined
by

c(u) =cpg v ue€l0,1], (14)

where c¢;; , is as in (5).
Lemma 5.1. Let ¢ : [0,1] — [0, 00) be given by (14). Then c(-) is continuous and non-decreasing.

Proof. Fix u,v € [0, 1] with u <v. By definition of ¢, , (see (5)) we have that
() = Sup{Cgy . (K) = o (K)} < 5up{Cpy oy (K) = Cy ()} = (1),
keR keR

where we used that fi[9,y],. > f1[0,u],- and thus Cp, ;> Cpy ,,, ONR.

We now prove that c(-) is continuous. Let 7,y = fi[0,v],- = A[0,u],- and xy—yu =S¥ (fA[0,v],-) —
S”(f[0.u)..) =S¥~  (A0w1) (n,_,). By Lemma 3.2 we have that ¢(v) — c(u) = 7y—s — Xv—u. Note
that 17y,—y, ¥v-—u € M and 1,_,(R) = -, (R) = v — u. Hence both 5, _,, and y,_, weakly converge
to the zero measure, when either v | u or u T v. Hence to conclude that lim,, ,,[¢(v) — c¢(u#)] =0 and
lim,,1,, [¢(v) — c(u)] = 0 it is enough to show that the first moments of 77, —,, and x,—, converge to zero
when v | u or u T v, respectively. But this follows by observing that 1, _, < y, yy—, < v and both u
and v are integrable (indeed, one can adapt the arguments of the last paragraph of the proof of Lemma
3.8) 1
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We are now ready to present the main result of this section. Proposition 5.2 shows how given the
initial data (i.e., 4 <. v and a lift 4 € T1(4, u)) one can immediately identify the martingale points of]
the corresponding lifted supermartingale shadow coupling from the graph of function c(-).

Proposition 5.2. Fix u,v € P with u <.q v and consider a lift fi € I1(A,v). Define
M :={ue[0,1]:c’(u) exists and c’'(0) = 0}.

Then, for any lifted supermartingale shadow coupling # € Ys(4,v) (as in Theorem 4.4), M is a
A-a.s. unique (Borel) set for which |y, . g is a martingale.

Proof. By the definition of ¢(-) and Lemma 3.2 we have that c¢(u) = fi0,,],- =S¥ (d[0,u],.)» ¥ € [0, 1],
and therefore, for each 4 > 0,

c(u+h) = c(w) _ Apurnl, = Apoul, S 04 (Apourn), = Alo,ul,)
h a h h '

Now let L C [0, 1] be a set for which fi,, . and ¥,, . exist. Recall that A(L) = 1. Then

= — . clu+h)—c(u)
Au,. = Vy,. =lim —————

_
th l’l =c (M+),

i.e., the right derivative of c(-) at u exists. But ¢(+) is non-decreasing, and therefore differentiable
almost everywhere on [0, 1]. It follows that f,, . — W =c¢’(u) for all u € L := L\ N. where N, :=
{u € [0,1] : ¢’(u) does not exist} is a A-null set. Hence, if u € {v € L : ¢’(v) = 0}, then Ig (fiy.., V..) =
[ps (Ay,.» Vu,.) is a singleton with a unique element 7, | 7 (4), and it follows that # is a martingale on
M x R x R. The (1-a.s.) uniqueness of M is straightforward. O

6. The geometric construction of p

We fix u,v € P with u <.4 v and v < u throughout this section. Our goal here is to give an explicit
construction of the decreasing supermartingale coupling introduced in [34]. We begin by introducing
monotonicity properties of the support of this coupling.

Definition 6.1. A pair (I', M) € B(R?) x B(R) is said to be first-order left-monotone and second-order
right-monotone if

1. T is second-order right-monotone: for all (x,y;), (x,y2), (x’,y") € " with x" < x we have that

Yy & (y1y2);
2. (I", M) is first-order left-monotone: for all (xy, y1), (x2,y2) € I" with x| < x; and x, ¢ M we have
that y; < y».

The following defines and characterizes the decreasing supermartingale coupling; see [34, Theorems
1.1, 1.2 and 1.3].

Definition 6.2. The decreasing supermartingale coupling, denoted by 72, is the unique element of]
Mg (u, v) which satisfies any, and then all of the following

1. foreachx € R ZID transports to the shadow SV(” )
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2. for all Borel f:R? — R such that f(x;,-) — f(x1,-) is strictly decreasing and strictly convex
for all x| < xp, and |f(x,y)|< a(x) + b(y) for all x,y € R and some y, v integrable functions
a,b :R — R, respectively, we have that

drP? = inf dr;
J rax= e [ sar

3. there exists first-order left-monotone and second-order right-monotone (I', M) € B(R?) x B(R)
such that 72 is concentrated on I" and 7P |axr is a martingale.

Note that 7 is obtained by working from right to left and using the shadow measure (see the first
characterization of Definition 6.2). In terms of lifted measures, this corresponds to taking i € 1(4, u)
to be the decreasing quantile lift of u. Then by applying Theorem 4.4 we obtain existence of a coupling
# € g (a,v), for which /01 #du=nP (see Lemma 6.3). Hence a construction of 7 leads to an explicit
construction of 7.

Let G = G, be the right continuous quantile function of u. Let AP € TI(A, u) be the decreasing
quantile lift of u, so that AP (du,dx) = dudg(1—y)(dx), or equivalently, AL =G (1-u), u € [0,1].
(Note that we could redefine ﬁuD, . on a A-null set, and thus in fact we could use any version of a
generalized inverse of F, to represent aP).
For each u € [0, 1], define y,, € M by

11 (A) Z,U(A N (G(1 - u),oo)) + (u —,u((G(l - u),oo)))ac“_u) (A), forallBorel ACR. (15)

u . N
Then p,, = /0 /JVD’,dV = /"[Do,u],»'
Lemma 6.3. Let 1, v € P with u <cq v. Let 1 be the decreasing supermartingale coupling of u and
v. Let #P € TIg(AP,v) be the unique lifted shadow coupling of AP and v (as in Theorem 4.4). Then

folﬁDduzﬂD.

Proof. By Theorem 4.4, #7 is a unique measure that, for each u € [0, 1], transports u, to ¥ (1,,). On
the other hand, fix x € 7, and let u, € [0, 1] be given by u :=sup{u € [0,1] : x < G(1 —u)}. It follows
that g, = f1[x,c0). and then for all Borel B € R we have that

/ 7P (du, dx, dy) = / 22 (du, dr.dy) = ” (1, ) (B) = S” (4l x.000) (B).
[0,1]x[x,00)xB [0, |X[x,00)xB

which shows that [ #°du = . O

We now provide an explicit construction of #2 € fIg (42, v).

Recall the definition of D(k) = P, (k) — P, (k), k € R, and that D > 0 on R. Note that, since v < i,
limg 0o D(k) = —v > 0. In what follows (and in the light of Section 2.2.1) we assume that {k € R :
D(k) >0} =({p,rp) = ({p, ) is an (open) interval, u((£p,o0)) =1 and v(({p,)) +v({{p}) =1
with v({€p}) = 0 whenever {p = —c0.

Recall also the definition of the sub-differential dA4(x) of a h: R+ R at x:

= N > -
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If & is convex then dh is non-empty everywhere, but this is not the case for non-convex functions.
Instead we have that A (x) is non-empty if and only if #(x) = h°(x) and then dh€ (x) = dh(x).

For each u € [0, 1], let u,, € M be defined as in (15). We have C,,, (k) = C, (k) for k > G(1 —u),
while Cy,,, (k) < C, (k) for k < G(1 —u). In particular,

Cpuy (k) = Cu(k V G(1 —u)) —u(G(1 —u) —k)*, keR,

and thus Cp,, (+) is linear on (—c0,G(1 —u)) and (—u) € IC,(G(1 —u)), so that C;,(G(1 —u)-) <
—u < C,(G(1—u)t).

For each u € [0,1] define &, : R— Ry by &, =D +C, — C,,. Note that &, (k) = D(k) for k >
G(1-u). Since Cy, - C,,,, is non-negative on R, we have that &, (k) > D (k) for k < G(1—u). Moreover,
since Cy,, is linear on (—co, G(1 —u)), &, is convex on (—co, G(1 —u)). It is also easy to see that both
u— &, (k) (for a fixed k e R) and k +— &, (k) — D (k) (for a fixed u € [0, 1]) are non-increasing.

Recall that by Lemma 3.2

Psv () (k) = Py (k) = (Py = Py, ) (k), ke€R.
Next lemma shows that we can also identify S”(u,,) by considering the convex hull of &,,.

Lemma 6.4. Let yu,v € P with i <cx v. Consider (uy)yc[o,1] where u, is defined as in (15). Ler
c:[0,1] = Rbeasin (14), i.e., c(u) =cpy,,v, u € [0,1]. Then, for each u € [0,1],

Cs (g (k) = Cy (k) = E(K) + (T =¥) = (i = 87 () = Co (k) = E5 (k) + (1) = (u),  k €R.
In particular, ¥ (uy) corresponds to second (distributional) derivative of (C,, — ES).
Proof. Using the Put-Call parity (twice) and Lemma 3.2 we have that
Csv () (k) = Py () (k) + 87 (1) = 8” () (R)k

= (Cy (k) =V +v(R)k) = (Py = Py, ) (k) + (S (1) = 8” () (R)K),  k€R.  (16)
On the other hand, by the Put-Call parity and definition of &,, we also have that
Py (k) = Py, (k) = 8y (k) = (it = p(R)k) + (i —uk),  k eR.

Then by [7, Lemma 3] and linearity of k +— {(f, — uk) — (g — p(R)k)}, (P — Py, ) (k) = &5 (k) -
(u — u(R)k) + (g, — uk), which together with (16) and definition of c(-) proves the claim (here we
used that u(R) =v(R) and u = u, (R) =S¥ () (R)). O

Since ﬁuD" = 0G(1-u)> u € [0,1], the hitting coupling 7y, 74 is in fact a product measure of
0G(1-u) and the hitting projection (6G (1-u) D1 (1)) (recall that T'(u) = supp(v — S¥ (fi[0,4],-)))- In par-
ticular,

., T () (dx, dy)
=0G (1-u) (dx) (06 (1-u) DT () (dy)

0G (1-u) (dx)0G (1-u) (dy) if G(1-u) €T (u);
= s(u) —G(1—u) G(l-u)—r(u
0G (1-u) (dx) W(Sr(u)(dy) + TS =)

=0G (1-uw) (dX) Xr (w),G (1-u),s () (dY), (17)

Os(u) (dy) otherwise;
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where
r(u) =sup{k € T(u) N (—o0,G(1 —u)]}, s(u)=inf{keT(u)N[G(1 —u),c0)}.
Our goal is, using Lemma 6.4, to identify the versions of r and s from the graphs of &5, u € [0, 1].

Definition 6.5. ¢ : [0, 1] — R is given by ¢(u) =sup{y : ¢ € dES(G(1 —u))} = (Eu) (G(1 —u)+).

y =& (y)

Yy Eu(y)

y = Ev(y) ; - 3 ) 3
T N P |
R(‘v) G(l‘—v) R(u) G(l‘—u) S(‘u)

Figure 1: Plot of locations of R(u), G(1 —u), S(u), R(v) and G(1 —v), for u < v, and in the case
where —co < R(u) < G(1 —u) < S(u) < o0 and —co < R(v) < G(1 —v) < S(v) = o0. The dashed curve
represents D. Note that limg_,., D(k) = — v > 0. The dotted curves correspond to the graphs of &,
and &,,. Note that D =&, on [G(1 — u), ) (resp. D =&, on [G(1 —v),)), while &, (resp. &) is
convex and D < &, (resp. D < &, ) on (=00, G(1 —u)) (resp. (—oo, G(1 —v))). The solid curves below
&y and &, represent &, and &S, respectively. The convex hull ES (resp. EY) is linear on (R (u), S(u))
(resp. (R(u), )).

For f:R+—Randa,b e Rwitha < b, let Lc]: ,, be the line passing through (a, f(a)) and (b, f(b));
see (20) (in the case a = b we set LZ p» = f(a)). For y € R, define also Lf;’w :R—>Rby Lg"/’(y) =

f(a) +y¢(y—a) so that Lg’w is the line passing through (a, f(a)) with slope . (Note that, in the case
_ fo_gf0

a=b,L,,=L,".)
Define R, S : [0,1] — R U {—00, 0} by

R(u) :=inf{k €R: k < G(1-u),E5(K) = LI (k)}, we[0,1], (18)
S(u) =sup{k €R: k > G(1 —u),EE (k) = Lf;%q_’fg)(k)}, uel0,1]. (19)

See Figure 1.
We fi blish elobal . ics of (R.S). See Fi .
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Proposition 6.6. Let R and S be as in (18) and (19), respectively. Then the pair (R, S) is first-orde
left-monotone and second order right-monotone with respect to G on [0,1]:

1. R(u) <G(1—u) < S(u) forallu e [0,1];

2. R is decreasing on [0, 1];

3. Foru,ve[0,1] withu<v, S(v) & (R(u),S(u));

4, Foru,ve[0,1]withu <v,suplk € T(v)} <inf{k € T(u)} on {u € [0,1] : S(u) = co}.

Figure 2: Sketch of the supporting functions of the lifted decreasing supermartingale coupling #°: R
(dashed), G (solid) and S (dotted). In the figure, I} := (1 — ull,l - u}) and I, := (0,1 - u%) are the
strict supermartingale regions of 7. In particular, for u € [0, 1] with (1 —u) € (I; U I), the mass at
G (1 —u) is mapped to R(u) only, and thus (since R is non-decreasing) A resembles the deterministic
(lifted) Hoeffding-Fréchet coupling #7F". On the other hand, for u € [0,1] with (1 —u) ¢ (I; U I»),

#P maps the mass at G(1 — u) to two points {R(u), S(u)}, and thus resembles the (lifted) right-curtain
martingale coupling 77€.

Proof. Fix u,v € [0,1] with u <v.

1. This is immediate from the definitions of R and S.

2-3. If R(u) = G(1 — u) = S(u), then (R(u),S(u)) =0 and S(v) ¢ (R(u),S(u)) by default. Also,
R(v) <G(1-v) £G(1 —u)=R(u), as required.

Hence suppose that R(u) < S(u). We have that & is linear on (R(u),S(u)) and therefore (v —
SY(uy)) does not charge (R(u), S(u)). By the associativity of the shadow measure (see (8) in Lemma
32), v—8"(uy) =v — 8 (uy) — 85" () (u,, — p,,) and therefore (v — S¥(u,)) does not charge
(R(u),S(u)) as well. It follows that & is linear on (R(»),S(w)). |
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Now suppose S(v) € (R(u),S(u)). By the definition of S and convexity of & we have that &S >
ng(f_’(v‘;) on (S(v),00). It follows that the second derivative of &S corresponds to a measure 77,, € M
with 77, ([S(v), S(u))) > 0. But by Lemma 6.4 we have that (v — §”(u,)) =n,; a contradiction since
(v = 8Y(u,)) does not charge (R(u),S(u)) and thus also [S(v), S(u)).

We now show that (in the case R(u) < S(u)) R(v) < R(u). Suppose not, so that R(u) < R(v). If
R(u) < R(v) < S(u), then (similarly as in the case for S) we have that (v —S” (u,,))((R(u), R(v)]) >0,
which contradicts the fact that (v — S (u,,)) does not charge (R(u), S(u«)) and thus also (R(u), R(v)].
Hence we assume that R(v) > S(u). Then G(1 —u) < S(u) < R(v) £ G(1 —v), and since G is non-
decreasing and u < v, we have a contradiction if at least one inequality is strict. Therefore R(u) <
G(l-u)=S(u)=R(v)=G(1-v).

Now note that, since R(v) = G(1 —v), we must have that & = ES on [G(1 —v) = G(1 — u), )

and therefore ¢(v) = ¢(u). It follows that Lg‘ilqjg) = Lg‘%ﬁi’;) By convexity of &5 we have that

&S > ng(ﬁ(v‘;) on (—oo,G(1 —v)]. On the other hand, &, > &, on R, and therefore & > &S on R. It

follows that &; = Lff;fffj;) = Lge(l(f(v‘;) < &S on [R(u),G(1 —v)], and therefore ES = Lgs(l‘fi‘;) =&¢

on [R(u),G(1 - v)]. But then R(v) > R(u) > inf{k < G(1 — v) : (k) = Lgﬁ(’l‘f@(k)} =R, a
contradiction. We conclude that R(v) < R(u).

4. Finally suppose that R(u#) < G(1 — u) < S(u) = co. Then &, is linear on (R(u),o0) and (v —
SY(uy)) does not charge (R(u), ). It follows that sup{k € T (u)} = R(u). By the associativity of the
shadow measure we have that (v — S”(u,,)) does not charge (R(u), o) as well, and therefore sup{k €
T(v)} <sup{k € T(u)} = R(u) as required. O

The following is the main result of this section.
Theorem 6.7. Let j1,v € P with y1 <cq v. Let (R, S) be given by (18) and (19), and define #%-5 € M3
by
#%5 (du, dx, dy) = dud G (1-u) (dX) XR ()G (1-u), 5 (u) (4Y).
Then 785 = #P, so that /01 #AR-Sdu is the decreasing supermartingale coupling P

Proof. By (17) it is enough to show that X g (u),G (1-u).S () = Xr(u),G(1-u),s (1) -
We claim that

{uel0,11:GA-u)¢T(u)}={ue[0,1]:r(u) <Gl —u) <s(u)}
={uel0,1]:R(u) <G —u) <S(u)}
={uel0,1]:G(1 —u) ¢T(u),R(u)=r(u),S(u) =s(u)}.

Note that the first equality is an immediate consequence of the definitions of T'(u), r (1), s(u). We now
simultaneously establish the second and third equalities.

First, let u € [0,1] be such that r(u) < G(1 — u) < s(u). Then (v — S¥(u,)) does not charge
(r(u),s(u)). By Lemma 6.4 we then have that & is linear on (7(u), s(u)). But by the definitions
of r and s, (r(u),s(u)) is the largest open interval I > G(1 — u) with (v — S”(u,))(I) = 0. Conse-
quently, ((u), s(u)) is also the largest open interval 7 > G (1 —u) such that EE is linear on 1. It follows
that R(u) =r(u) and S(u) = s(u)
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Conversely, suppose u € [0,1] is such that R(u) < G(1 — u) < S(u). Then & is linear on
(R(u),S(u)) and by Lemma 6.4 we have that (v — §”(u,)) does not charge (R(u),S(u)). But
(R(u),S(u)) is the largest open interval 7 > G(1 — u) such that ES is linear on /. Consequently,
(R(u),S(u)) is the largest open interval I > G(1 — u) with (v — §”(u,))(I) = 0. It follows that
R(u) =r(u) and S(u) = s(u).

We conclude that X g (u),G (1-u),S(u) = Xr(u),G (1-u),s(u) Whenever G(1 —u) ¢ T (u), u € [0, 1].

Furthermore,

{uel0,1]:G(1—u)eT(u)}
=[0,1]\ {ue[0,1] :G(1 —u) ¢T(u)}
={uel0,1]:Ru)=G(1 —u) <S(w)} U{ue[0,1]:R(u) <G(1-u)=Su)}
U{uel0,1]:R(u)=G(1 —u)=S(u)}.

Butif R(u) =G (1 —u) or S(u) = G(1 — u) (or both) then

XR(w),G(1-u),S () = 0G (1=u) = Xr(u),G(1-u),s(u)>

where the second equality follows from the fact that r(u) = G (1 —u) = s(u) whenever G (1 —u) € T (u),
uel0,1].
Combining both cases we conclude that Y g (u),G (1-u),S (1) = Xr(u),G(1-1),5(u) - O

Remark 6.8. The proof of Theorem 6.7 can also be obtained by using Proposition 6.6 together with
the third characterization of 7 in Definition 6.2.
The first two properties of R and S in Proposition 6.6 translate to the second-order right-monotonicity

of the coupling fol ARS8 dy with respect to I := Uuelo,1] {(G(l —u),Rw)VU(G(1-u),G(1 -u)) U

(G(1=u), S(u))} (in the sense of Definition 6.1).

Furthermore, for u € [0,1], ¥Rr(x),G(1-u),S(x) 18 a strict supermartingale kernel (i.e., G(1 —u) >
XR(w),G(1-u).S(w)) if and only if R(u) < G(1 —u) < S(u) =co. Hence M := {u € [0,1] : S(u) < oo} U
{ue[0,1]: R(u) =p(1 - u) < SA(u) = 001 is such thaAt ﬁ'R’SlMxRxR is a martingale. Furthermore, it is
easy to see that A(M N M) =A(M) = A(M), where M is as in Proposition 5.2. This together with the
third property of Proposition 6.6 imply the first-order left-monotonicity of /01 #R-S dy with respect to
(I'yM :={G(1 —u) : u € M}) (in the sense of Definition 6.1).

Using the characterization of 7 (in terms of the monotonicity of its support) one then establishes
that )| #R-Sdu =P,

Appendix A: Up and Down measures

Consider y, y’ € M with y(R) = y’(R), and define Up(y, x’), Down(y, x’) € M as in (10) and (11),
respectively.

Lemma A.1. For y, x' € M(R) with y(R) = x’(R) the following holds

’
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Proof. We only prove that Down(y, x’)) <sro - The other relations use similar arguments. It is
enough to show that Fpown(y,,") = Fy everywhere: for each x € R,

Fpown(y.x) (X) = A0,y )=y’ ®)] ({1 €ER: (G (u) NGy (1)) <x})
2 Ao,y ®)({u €R: Gy (u) <x})=Fy(x).

Lemma A.2 ([30, Lemma 2.25]). For y, x’ € M with x(R) = x'(R) the following holds

W(x,x") =W(x,Down(y, x")) + W(x',Down(x, x"))
=W(x.Up(x. x") +W(x", Up(x, x))-

Lemma A.3. Consider y,x’ € M with x(R) = x"(R). Let 1 € M be such that 1 <pca x and n <pcq
x'. Thenn <pcq Down(y, x”).

Proof. By Lemma A.1 we have that Down(y, x’) <sto ¥ and Down(y, x’) <sso x’- Then, for any
non-increasing f : R — R, we have that (fR fd/\() \Y% (fR fd)(') < fRdeown()(,/\/’), where we used

that (—f) is non-decreasing. Clearly any positive, convex and non-increasing g : R — R is also non-
increasing, and thus the claim follows. O

Lemma A4. Let n,n’, x € M be such that n(R) =n’(R), n <pca X, 1" <pca x- Then Up(1,1") <pca
X.

Proof. Let f : R — R be non-negative, convex and non-increasing. By Lemma A.l we have that
n <stoUp(n,71"), from which we deduce that fR(—f)dn < /R(—f)dUp(n, n’), where we used that (—f)

is non-decreasing. It follows that fRdep(n,n’) < fRfdr] < fRfd)(. O

Appendix B: Convex hull

Let f : R — R be measurable, and denote by f¢ the convex hull of f (i.e., the largest convex function
below f). Note that we may have that f¢ = —co on R. Furthermore, if a function f = —co (or f = c0) on
R then we deem it to be both linear and convex, and then set f€ = f.

Fix x,z € R with x < z, and define L£,Z :R— R by

f(z) = f(x) .
X +T(y—x), ifx <z, 20)

(), ifx=z

Then (see [38, Corollary 17.1.5]),

[ = nf LL:(). yeR. @1

(Note that for (21), the definition of Lf’ . outside [x, 7] is irrelevant and we could restrict the domain of
p
L} ,to[x,z].)
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Lemma B.1. Let f, g : R — R be the differences of two convex functions. If f] < g/, then (f€)] < (g°)}
onR.

Proof. Note that for #: R — R and a € R we have h°(x) + a = (h + a)°(x), x € R, and therefore
(h€)i(x) = (h° +a)i(x) for each x e R.

Fix x € R. Using the above observation, without loss of generality we can assume that f(x) = g(x).
Then since f{ < g} on R, we have that f > g on (—o0,x) and f < g on (x,00). (This can be easily
proved by using the absolute continuity of f and g).

We will prove the claim by contradiction; suppose that ( f€); (x) > (g€); (x). There are three cases.

1. Suppose f€(x) = g°(x). Then g > £ > ¢ > X" > 15" on (x,00), where z — I(2) := h(x) +
h!.(x)(z = x). It follows that z — g(z) := g°(2) [z <x} + lf:c (2)Iz>x} is a convex minorant of g, and
therefore g¢ > g on R. But then, since g€ (x) = g(x), we have (g°);(x) = gL(x) = (f€)i(x) > (g°)i(x),
a contradiction.

2. Suppose g¢(x) > f¢(x). Then f(x) = g(x) = g°(x) > f°(x), and we have that there exists an
interval / C R with x € I° such that f€ is linear on I (see, for example, [29, Lemma 2.2]), so that
fe= l;c on I. Define z — I(z) := lﬁc (z) — g°(x) + f€(x), and note that [(x) = l,{c(x) and lf:c <l on
(—00,x). ‘

Suppose there exists x < x such that f¢(x) = I(x). Then, since f > g > g€ > l;‘;L > [ on (—00,x),
we have that z > f(2) 1= f(2)](z¢=\(x,x)} + [(2)]{ze[x,x]} is @ convex minorant of f, and therefore
f€ > fonR. Butfor z€In (x,x) we have that f(z) =1(z) > lf:c (z) = f°(z), a contradiction.

Now suppose that f€ <[ on (=0, x). Then z — f(z2) := f€(2)Iz>x} +1(2)]{z<x} is a convex mino-
rant of £, and thus f€ > f on R. But again, for z € N (o0, x) we have that f(z) =[(z) > I)J:c (2) = f(2),
which gives a required contradiction.

3. Suppose g€ (x) < f€(x). The proof uses the arguments of the previous case (reverse the roles of]
£¢ and g€, and consider I/, 18" on [x, ). O

Lemma B.2. Consider a sequence of measurable functions f,, : R — R, n > 1. Suppose f,, | f point-
wise, for some measurable f :R — R. Then f | f€ pointwise as n — oo.

Proof. Fix k € R. Since (f,(k)),>1 is decreasing and bounded by f(k), lim;, . f, (k) exists. The
same is true for the corresponding convex hulls. In particular, lim, e ff (k) = f€(k). On the other
hand,

Af(@)+ (1= ) f(b) = lim [Afu(@) + (1= D) fu(B)] = lim [ (K),

for all a,b € R witha < k < b and A € [0, 1] such that Aa + (1 — 1)b = k. Taking infimum over all such
a,b,A we obtain f€ (k) > lim,—e fii (k). O

Appendix C: Proof of Lemma 4.3

We first prove part 2. For a (Borel) measurable function f : R — R, define f7 : R — R by 7 (x) =
fR f(2)dD7 (x,z), x € R. Note that fR fx)du,Dr (x) = fR T (x)dpn (x), and similarly for g and uD7 .
Hence to conclude that u, D7 — uDr it is enough to show that u, Dr X, uDr and fR fOT duy, —
fRfOTd,u, where, for each t € R, f;(x) =t — x|, x €R.

e R\T . F disiod ; I q ). Note that / T forall k > 1
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We first establish the weak convergence. Let f : R — R be continuous and bounded. If x € T, then
fT(x)= f(x). Ifx ¢ T, then x € (I, rg) for some k > 1, and then f7 (x) = 225 £(I) + 22 () =

=l re—lx
L{ ., (). It follows that ST is also continuous and bounded, and therefore [ f* dun, — [, f7 dp,
which establishes the weak convergence.

Now we deal with the convergence of first moments. Since u, — u (i.e., w.r.t. 77), it is enough to
show that fOT is continuous with linear growth at most.

First suppose that sup7 = co. Note that, if 0 € T, then fy = fOT and we are done. On the other hand,
if0¢T,then O € (I, ry) for some k > 1. We have that fj is linear on (—o0, ;) U (rg, o) and therefore
fOT = fopon (—o0,l}) U (rg, ). It follows that fOT = max{ fy, L;E,rk} and thus fOT remains continuous
with linear growth at most .

Now suppose that sup 7' < co. If supT < 0, then fOT (x)=(supT —x)*—supT,x e R.If0 < supT and
0 €T, then fOT = fp on (—oco,sup7T] and fOT =sup7 on (sup7,co). Finally suppose that O < sup7 and
0¢T.ThenO € (I, ry) for some k > 1 and rp < supT. It follows that fOT = foon (=00, I |U[rg,supT],

f() Lﬁ) - (Ig,rx) and fOT =supT on (supT,o0). It is evident that in all the cases fOT remains
continuous with linear growth at most.

We now prove (the uniqueness) part 1.

We first recall the irreducible decomposition of two measures y <.4 v, see Lemma 2.2. Let x* :=
sup{k € R: P, (k) = P, (k)} € [—o0,+00] with convention inf() = —co. Represent an open set {k €
R:Pu(k) < Py(k)} N (=00,x™) by Urs0Tk = Ukso(ak,bk), where Iy = (x*,00), and set I_; =R\
k>0 k- If ux = ptlr,, then there exists a unique decomposition v = 3 ;5| v such that u_; =v_q,
1o <caq vo and ug <. vy for all k > 1. In particular, any 7 € IIg(u, v) admits a unique decomposition
7T =) »_1 Tk such that g € IIs (o, vo) and mx € Mps (pg, vi) for all k # 0.

Now let v = uD7. Note that P,,p, (k) = P, (k) for all k € T. It follows that supT < x*.

By applying the arguments of [8, Proposition 4.1] to each 7y € Iy (ug, vi) (for all k£ # 0), we obtain
Tk =Ty, T -

We are left to show that mg = 7, 7. Note that, if x* = co, then we must have that P, and P, have
the same asymptotic behaviour at co. In particular, v = 7 and thus u <. v. In this case the proof of
mo = my,,T is covered by the previous paragraph.

If supT = oo, then x* = sup T = oo, and there is nothing to prove.

Suppose supT' < oo. Recall that supT < x*. Since uDr ((supT,o0)) =0 we can, without loss of
generality, assume that supT =x". (Indeed, if sup7 < x*, then since P, p, has slope u(R) to the right
of supT and P,p, > P, everywhere, we must have that P,,p, = P, on [sup7,x*]. But then x* = oo,
and again there is nothing to prove.) It follows that v is an atomic measure concentrated on x*, and
therefore we necessarily have that o = 7, 1.
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