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Abstract— We study the problem of bipedal robot navigation
in complex environments with uncertain and rough terrain.
In particular, we consider a scenario in which the robot is
expected to reach a desired goal location by traversing an
environment with uncertain terrain elevation. Such terrain
uncertainties induce not only untraversable regions but also
robot motion perturbations. Thus, the problems of terrain
mapping and locomotion stability are intertwined. We evaluate
three different kernels for Gaussian process (GP) regression to
learn the terrain elevation. We also learn the motion deviation
resulting from both the terrain as well as the discrepancy
between the reduced-order Prismatic Inverted Pendulum Model
used for planning and the full-order locomotion dynamics. We
propose a hierarchical locomotion-dynamics-aware sampling-
based navigation planner. The global navigation planner plans
a series of local waypoints to reach the desired goal locations
while respecting locomotion stability constraints. Then, a local
navigation planner is used to generate a sequence of dynami-
cally feasible footsteps to reach local waypoints. We develop a
novel trajectory evaluation metric to minimize motion deviation
and maximize information gain of the terrain elevation map.
We evaluate the efficacy of our planning framework on Digit
bipedal robot simulation in MuJoCo.i

I. INTRODUCTION

Legged robots show great promise for navigation tasks in

environments with difficult-to-traverse or unknown terrain.

As opposed to wheeled mobile robots, legged robots have the

superior capability of traversing through irregular terrains by

taking discrete footsteps [1]–[3]. However, highly varying

and uncertain terrain profiles often induce tracking errors

when executing bipedal motion plans or even pose a high risk

in locomotion failures (i.e., falling) [4]–[6]. Thus, navigation

through complex and uncertain terrain requires collecting

terrain data online to build a realistic terrain map and
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Fig. 1. (Top) The bipedal robot Digit navigates through an environment
with rough terrain in our MuJoCo simulation. (Bottom) Snapshots of the
trajectory of the bipedal robot at various time instants as it navigates towards
the goal (yellow star). The white line depicts the traversed trajectory, and
the orange dot is the current targeted local waypoint.

improve locomotion performance accordingly. On the other

hand, the complex dynamics inherent to bipedal locomotion

complicate the problem of designing navigation plans to

sample the environment. Thus, the objectives of locomotion

stability (i.e., minimizing motion deviation from the desired

stable trajectory in this study) and accurate environmental

sampling are coupled, increasing the complexity of the entire

navigation problem.

In this work, we propose a hierarchical planning strategy

for bipedal robots which satisfies high-level global navi-

gation objectives while maintaining dynamic feasibility of

the generated trajectories in the local navigation planner.

Additionally, we use Gaussian processes (GPs) with three

different kernels to learn unknown terrain elevation. We also

learn motion perturbation resulting from both terrain and

model errors. Our planner is designed to incorporate the

GP predictions in order to online improve the feasibility of

reaching the desired goal. An example run of our planner is

shown in Fig. 1.

A. Related Works

The RRT family of algorithms is commonly used in

concert with GPs for robotic motion planning problems in

uncertain environments. The study in [7] considers an aerial

vehicle navigation problem and uses RRT to navigate around

collision regions modeled using a GP. The work [8] uses

RRT* to enable a mobile robot to avoid hazardous regions

which are learned and updated online using a GP. For an
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Fig. 2. Prismatic Inverted Pendulum Model (PIPM) model for our robot
Digit for traversing over uncertain and uneven terrain.

information-gathering objective, the paper [9] learns optimal

points to sample using a GP model of the environment and

uses RRT* to plan information-gain-maximizing trajectories.

Finally, the work [10] trains a GP model of terrain elevation

using both external perception and proprioception sensors

and then proposes an RRT* variant to plan a safe trajectory.

The problem of bipedal robot navigation in rough terrain

has not yet been widely explored. The studies in [11], [12]

propose methods for identifying stable footstep sequences

for bipedal robots using sensor data to traverse over uneven

terrain. The focus of these works is on finding stable local

trajectories rather than long-run trajectories to reach global

goals. The authors in [2] propose a terrain-adaptive bipedal

locomotion controller that uses a piecewise linear terrain

approximation for computing foot placements. The work

in [3] proposes an omnidirectional control Lyapunov function

(CLF) as a controller for a bipedal robot navigating on

undulating terrain and integrates the CLF into a RRT*

planner. In this work, an elevation map is constructed online

using sensor data, but is not otherwise learned. Additionally,

the omnidirectional nature of the planner relies on special

behaviors such as turn-in-place and lateral stepping for

bipedal locomotion feasibility.

In terrain mapping, GPs are employed to quantify un-

certainties and learn complex terrain maps. The work in

[13] introduce a novel nonstationary kernel that prioritizes

exploration in regions with higher variation, effectively mod-

eling rapidly changing terrain through a mixture model

of base kernels. Another approach is the neural network

kernel explained in [14], which designs a GP approximating

a simple neural network while retaining the information-

theoretic learning guarantees of Gaussian process theory.

The nonstationary nature of this kernel is well-suited for

learning discontinuous data. Additionally, KD-trees are used

to manage dataset size, improving computational efficiency.

Leveraging GP approaches for terrain mapping has gained

increasing attention in the locomotion community. In [15],

a locally adaptive GP is implemented for terrain mapping

in a legged navigation problem for the Boston Dynamics

LittleDog quadruped, balancing GP model fidelity with com-

putational tractability. In [16], GPs are used to evaluate can-

didate trajectories for a hopping robot locomotion planning

problem. The work [17] learns a GP-based terrain map and

uses the GP model to design foothold placements for the

ETH ANYmal quadrupedal robot. However, learning terrain

uncertainty via GP models for bipedal robot navigation has

not been explored, to the best of the authors’ knowledge. The

inherent stability-critical, complex robot dynamics make the

terrain learning and navigation problem more challenging.

B. Contributions

We propose a novel hierarchical planning framework for

bipedal robot locomotion with high-level navigation tasks

that generates dynamically feasible locomotion trajectories

while simultaneously learning unknown terrain features. Our

specific contributions are as follows.

• We propose a hierarchical locomotion-dynamics-aware

planner based on RRT* which enables computationally

efficient bipedal navigation while explicitly considering

dynamical feasibility of the locomotion trajectories and

learning uncertain rough terrain online. We construct

both a footstep-by-footstep local navigation planner

as well as a coarser global navigation planner which

consider locomotion safety constraints.

• We develop the first ever planning framework that

integrates Gaussian process models of unknown terrain

elevation and motion perturbations for full-order bipedal

locomotion. We propose a novel trajectory evaluation

metric utilizing the GPs to minimize motion deviation

and maximize information gain of the terrain estimation,

thus increasing the feasibility of the navigation task. We

benchmark the performance of multiple state-of-the-art

GP terrain mapping methods to evaluate their relative

advantages for the bipedal navigation task.

• We evaluate the proposed methodology on simulations

of a Digit bipedal robot in MuJoCo [18], demonstrating

the validity of the reduced-order trajectories generated

by our planner when implemented on the simulator

using full-order robot dynamics.

II. PRELIMINARIES

A. Robot Model

We design our locomotion planner based on the Prismatic

Inverted Pendulum Model (PIPM). PIPM has been proposed

for agile, non-periodic locomotion over rough terrain [19]

and integrated with Digit for navigation in partially observ-

able environments and stair climbing tasks [20].

Here we reiterate for completeness the mathematical for-

mulation of our ROM. As shown in Fig. 2, the CoM position

pcom = (xcom, ycom, zcom)
T is composed of the sagittal,

lateral, and vertical positions in the global frame. We denote

the apex CoM position as papex = (xapex, yapex, zapex)
T , the

foot placement as pfoot = (xfoot, yfoot, zfoot)
T , and hapex is

the relative apex CoM height with respect to the stance foot

height. vapex denotes the CoM velocity at papex. We denote

∆y1 as the lateral distance between CoM and the high-level
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waypoint at apex. We formulate the dynamics for the next

walking step as a hybrid control system

p̈com,n =





É2
n(xcom − xfoot,n)

É2
n(ycom − yfoot,n)

anÉ
2
n(xcom − xfoot,n) + bnÉ

2
n(ycom − yfoot,n)





where the asymptote slope Én =
√

g/zapex,n, and zapex,n =
anxfoot,n + bnyfoot,n + hapex. The hybrid control input is

un = (Én,pfoot,n), with pfoot,n being a discontinuous input

which creates a reset map.

B. Phase-space Planning

In phase-space planning (PSP), the sagittal CoM plan-

ning takes precedence over the lateral CoM planning. The

decisions for the planning algorithm are primarily made in

the sagittal phase-space, such as step length and CoM apex

velocity, where we propagate the dynamics forward from the

current apex state and backward from the next apex state until

the two phase-space trajectories intersect. The intersection

state defines the foot stance switching instant. On the other

hand, the lateral phase-space parameters are searched for to

adhere to the sagittal phase-space plan and have consistent

timings between the sagittal and lateral plans. In this paper,

we use the PSP method detailed in our previous work [20].

C. Gaussian Processes

In order to learn the uncertainties present in our bipedal

system, we use Gaussian process (GP) regression:

Definition 1 (Gaussian Process Regression): Gaussian

Process (GP) regression models a function gi : R
n → R as

a distribution with covariance » : Rn ×R
n −→ R>0. Assume

a dataset of m samples D = {(ξj , yji )}j∈{1,...,m}, where

ξj ∈ R
n is the input and yji is an observation of gi(ξ

j)
under Gaussian noise with variance Ã2

¿i
. Let K ∈ R

m×m

be a kernel matrix defined elementwise by Kjℓ = »(ξj , ξℓ)
and for ξ ∈ R

n, let k(ξ) = [»(ξ, ξ1) »(ξ, ξ2) . . .
»(ξ, ξm)]T ∈ R

m. Then, the predictive distribution of gi
at a test point ξ is the conditional distribution of gi given

D, which is Gaussian with mean µgi,D and variance Ã2
gi,D

given by

µgi,D(ξ) = k(ξ)T (K + Ã2
¿i
Im)−1Y

Ã2
gi,D

(ξ) = »(ξ, ξ)− k(ξ)T (K + Ã2
¿i
Im)−1k(ξ),

where Im is the identity and Y =
[

y1i y2i . . . ymi
]T

.

In practice, we use a sparse Gaussian process regression

approximation [21] to reduce computational complexity.

In this work, three different terrain mapping method using

GP are benchmarked, namely a radial basis function (RBF)

kernel, a Neural Network (NN) kernel with local approxima-

tion method [14], and an Attentive Kernel (AK) [13].

1) RBF kernel: The RBF kernel, a stationary kernel com-

monly used in GP regression, produces smooth predictions

with uniform variability. The kernel is defined as

»(ξi, ξj) = Ã2
f exp

(

−
∥ξi − ξj∥2

2ℓ2

)

,

where Ã2
f is signal variance and ℓ is a lengthscale.

2) NN kernel: The NN kernel is non-stationary and re-

sembles a neural network with a single hidden layer of

infinite nodes and a sigmoid activation function [22]. It

models local correlation between data points based on their

distance from the data origin until a saturation region is

reached. The kernel is defined as

k(ξi, ξj) =

Ã2
f arcsin

[

´ + 2ξi
T

Σξj
√

(1 + ´ + 2ξiTΣξi)(1 + ´ + 2ξjTΣξj)

]

where Σ =

[

ℓx 0
0 ℓy

]−2

, ´ is a bias factor, and ℓx and ℓy

are the lengthscales for input x and y, respectively.

The work by [14] applied the NN kernel to large-scale

terrain reconstruction by introducing a local approximation

method, facilitated by a KD-Tree algorithm for efficient near-

est neighbor search. This approach enhances the accuracy of

GP predictions in terrains with high variability by utilizing

only the nearest training data around the query point.

However, this method introduces significant computational

overhead due to the need for unique nearest neighbor search

and separate predictions for each query point. To mitigate

this, we propose a K-means clustering strategy to group

all input locations into k clusters, where each cluster is

defined by a center point ci and a subset of training data

{ξ}i. When a query point is provided, the nearest ci is

identified, and the GP prediction is computed using only

the corresponding training data {ξ}i. This extended local

approximation method reduces the computational runtime

compared to the approach in [14].

3) Attentive Kernel: The AK is a nonstationary kernel that

adapts to terrain variability by employing a neural network to

determine the optimal weighted sum of multiple base kernels.

Additionally, it assigns a membership vector to each input

location through a secondary neural network. This approach

allows the model to break correlations among training inputs

within the same vicinity when abrupt changes occur in the

training output, in contrast to the smooth behavior charac-

teristic of the RBF kernel. The kernel is defined as

»(ξi, ξj) = ³z̄T z̄′ +

M
∑

m=1

w̄m»m(ξi, ξj)w̄′
m

where ³ is a constant, w̄ and z̄ are the trained weight and

membership vectors, respectively, and {»(ξi, ξj)}Mm=1 are

base RBF kernels with different pre-defined lengthscales.

III. PROBLEM STATEMENT

We now formally define the problem we study in this

work. Consider an environment in which the terrain ele-

vation is uncertain, creating multiple challenges for bipedal

locomotion. First, regions with high terrain elevation may be

untraversable and therefore become obstacles. Second, the

terrain elevation is an input to the PSP model, so inaccurate

terrain estimations increase deviation and create instability in

planned footstep trajectories. The primary objective is for the
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Fig. 3. Overall block diagram of the proposed global-local planning
framework for bipedal navigation over rough terrain.

robot to reach a desired location in such uncertain environ-

ment. Thus, in addition to the reach-avoid objective, the robot

must learn an accurate representation of the environment

to improve the dynamical feasibility of planned trajectories.

Additionally, there also exists motion perturbations resulting

from the model error between the PIPM used for planning

and the full-order dynamics, which increases the complexity

of the overall uncertainty learning problem.

Problem Statement: Design a hierarchical planning

framework for a bipedal robot which generates dynamically

feasible trajectories to reach a desired goal location in an

environment with unknown terrain features. Learn online

the terrain elevation and the resulting motion perturbations

in order to avoid untraversable regions and minimize the

error between the desired motion plans and the measured

trajectories from a full-body robot dynamic simulation.

Overall Framework: Our approach to this problem is

as follows. We first initialize the terrain GP with an a

priori dataset of terrain elevations. The model error GP is

trained offline, as detailed in Section IV-A, to characterize

the terrain’s impact on robot motion. The local planner, LDA-

L-RRT*, introduced in Section IV-B, generates dynamically

feasible waypoints that avoid untraversable regions while

balancing exploration and minimizing motion perturbation.

The global planner, LDA-G-RRT*, outlined in Section V,

provides near-horizon targets for the local planner, guiding

the robot towards the global goal. As the robot reaches each

local waypoint, the terrain GP is updated with new data,

and the global planner is re-executed. This process repeats

until the robot reaches the global target. The framework is

depicted in Fig. 3 and summarized in Algorithm 1.

IV. LOCAL NAVIGATION PLANNER

In this section, we propose a local navigation planner to

generate a footstep-by-footstep motion plan. We first define

Algorithm 1: Global-Local Planning Framework

Input: Start waypoint w0, target waypoint wt

1 Initialize Terrain GP ẑ(x, y);
2 Initialize Model Error GP ∆ŷ1;

3 Initialize Current position wc = w0;

4 while wc ̸= wt do

5 Run LDA-G-RRT* algorithm with target xt and

obtain local target waypoint wℓ;

6 Run LDA-L-RRT* with target wℓ and obtain

footstep plan;

7 Execute footstep plan and collect terrain data

{(xi, yi), zi} along the trajectory;

8 Update current waypoint wc;

9 Retrain terrain GP ẑ on collected data;

10 end

local navigation trajectories.

Definition 2 (Local Navigation Trajectory): A local

navigation trajectory Aw→w
′ from a start waypoint

w = (x, y, ¹) to an end waypoint w′ is an n-step

sequence {aHL,0, · · · , aHL,n−1} of high level actions

aHL,i = (di,∆¹i,∆zi), where the parameters d,∆¹,∆z
represent the distance, heading angle change, and terrain

elevation change, respectively, between two adjacent

waypoints. The sequence Aw→w
′ induces a set of

apex CoM waypoints W(Aw→w
′) = {w0, · · · ,wn−1}

such that w0 = w, wn−1 = w′, and wi+1 = wi +
[

di cos(
∑i

j=0 ∆¹j + ¹0), di sin(
∑i

j=0 ∆¹j + ¹0),∆¹i

]

,

∀i ∈ {0, · · · , n− 2}. The local navigation trajectory

parameters are illustrated in Fig. 4(c).

A. Gaussian Process Learning of Terrain and Model Errors

We first detail the two GP structures we use to learn

the unknown terrain elevation and the motion perturbations

resulting from both terrain and model errors. This structure

builds on our previous GP modeling work in [23].

We use a terrain GP ẑ(x, y) with sensor noise ϵ ∼
N (0, Ã2

¿) which takes a global location (x, y) as input

and predicts terrain height at that location, z. The three

terrain GP approaches discussed in Section II-C are evaluated

independently for their respective accuracy and complexity.

At runtime, the GP is updated with data collected as the robot

traverses through the environment. The mean prediction of

the terrain GP is used in the PSP controller to generate

feasible footstep trajectories and to construct global and local

elevation maps, with the latter being a subset of the former.

While the local map could be constructed independently

without using a GP, we opt for using a subset of the global

map as the GP prediction is generally more reliable with

denser data points at the local level. The variance of the

terrain GP is used to determine the information gain along

each local trajectory as discussed later in Section IV-B.

Given the GP model of terrain elevation, we charac-

terize the model error between the referenced waypoint

and the actual CoM position at apex in the lateral direc-
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Fig. 4. (a) Illustration of the smoothing algorithm aims to find the smoothest
path from start w0 to target w4. A direct connection between w0 and w4

is invalid due to an obstacle, and connecting to w3 is infeasible because
the heading angle exceeds ∆θsafe. Thus, the algorithm connects w0 to w2

and then to w4. (b) Illustration of LDA-L-RRT* vertex selection criteria.
The left red vertex is invalid because it lies in an obstacle, and the right
red vertex is impossible because the heading angle change exceeds ∆θsafe.
(c) Illustration of the local navigation trajectory parameters. (d) Illustration
of the LDA-G-RRT* safety criteria: Solid green lines represent locomotion
safety barriers, and the shaded green area is their convex hull. Connecting
v0 to v4 is invalid as v4 lies outside the safety barriers. The connection
from v2 to v5 is also invalid due to crossing a safety barrier. However, the
connection from v2 to v3 is valid, as it does not intersect any safety barrier.

tion (i.e., ∆y1 = y − ycom) at each step using the GP

∆ŷ1(dc,∆¹c,∆zc, dn,∆¹n,∆zn). We focus on modeling

lateral deviation because the PSP controller is designed

to prioritize achieving the desired sagittal distance of the

waypoint with lateral error minimization as a secondary

objective. The model error GP takes high-level actions from

the last two walking steps as input. Parameters with sub-

script c denote values measured between the previous and

current waypoints, while subscript n denote values measured

between the current and next waypoints. The model error GP

is trained offline on a dataset generated by simulating steps

over the entire range of input parameters using the low-level

controller in Section VI and measuring the resulting motion

perturbation. In practice, the robot’s stance affects motion

perturbation, with left-foot steps causing leftward deviation

and right-foot steps causing rightward deviation. For efficient

learning, we train a single model error GP using the absolute

value of lateral deviations from both foot stances. Given GP

predictions, deviations are then assigned positive values for

left-foot steps and negative values for right-foot steps.

The local navigation planner requires predictions of the

expected model error for proposed waypoint sequences. To

obtain these predictions, we call the model error GP ∆ŷ1 for

each step of the sequence. While the input d and ∆¹ can be

directly extracted from the waypoint sequence, ∆z depends

on the unknown terrain elevation. We approximate ∆z using

the mean µẑ of the terrain GP predictions at the waypoints.

Since each output ∆ŷ1 is in the local frame w.r.t. a specific

waypoint, we apply coordinate transforms on the outputs to

place them in the global frame.

B. Locomotion-dynamics-aware Local RRT*

We now define the locomotion-dynamics-aware RRT*

algorithm we use for local planning.

Definition 3 (Locomotion-dynamics-aware Local RRT*):

The LDA-L-RRT* algorithm modifies the standard RRT*

algorithm by placing additional constraints on new vertices

in the search as follows. First, the configuration of a vertex

is w = (xapex, yapex, ¹), where (xapex, yapex) is the planar

apex position and ¹ is the heading angle. Then, consider

one step of the standard RRT* algorithm in which a random

point in the environment (xrand, yrand) is selected, for

which the nearest vertex is w1 = (xapex,1, yapex,1, ¹1). A

candidate vertex w′ = (x′
apex, y

′
apex, ¹

′) is calculated as

[

x′
apex y′apex

]

=

dsafe

[

xrand yrand
]

−
[

xapex,1 yapex,1
]

∥

∥

[

xrand yrand
]

−
[

xapex,1 yapex,1
]∥

∥

2

,

¹′ = arctan

(

yrand − yapex,1
xrand − xapex,1

)

,

where dsafe is a safe step distance determined as in [20,

Theorem IV.1]. Then, the candidate w′ is added to the graph

if and only if it satisfies the following conditions.

1) The heading angle change between connected vertices

is less than a dynamically feasible limit ∆¹safe calcu-

lated as in [20, Theorem IV.2]:

|¹′ − ¹1| f ∆¹safe.

2) The GP predicted terrain elevation at w′ is smaller than

a dynamically feasible limit zsafe:

µẑ(x
′
apex, y

′
apex) f zsafe,

where zsafe is the maximum height the robot’s

passivity-based controller can stabilize stepping motion

despite terrain variations. This limits our navigation to

relatively flat terrains, avoiding areas with significant

elevation changes.

If w′ does not satisfy the conditions above, a new can-

didate w′ is calculated by performing the above procedure

with the same random point (xrand, yrand) and the next

closest vertex in the graph w2. The process continues through

all of the vertices in the current graph until a candidate

vertex is successfully added to the graph. If there is no node

that satisfies both conditions, the nearest vertex wnear to

(xrand, yrand) that does not have a child node is identified.

A final candidate vertex w′′ is proposed with values
[

x′′
apex

y′′apex

]

=

[

xapex,near

yapex,near

]

+ dsafe

[

cos(¹near +∆¹safe)
sin(¹near +∆¹safe)

]

,

¹′′ = ¹near +∆¹safe.

This candidate vertex always satisfies condition 1), so it is

added to the graph if it also satisfies condition 2). If not,

then no vertex is added to the graph in the current step.

With these conditions, the waypoint sequences generated

by the LDA-L-RRT* algorithm are guaranteed to be dynam-

ically feasible with respect to the PIPM safety conditions

proposed in [20] and will avoid untraversable regions with

excessive terrain elevation. However, the resulting trajecto-

ries can change heading angle rapidly at each step, directly
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Fig. 5. (a) Trajectory generated by the LDA-L-RRT* algorithm for reaching
a local waypoint. The green dots show the trajectory modifications made
by the proposed smoothing algorithm. (b) Illustration of the locomotion
safety barrier region (green triangle) constraining vertices near the start point
in the global navigation planner. (c) Trajectory generated by the LDA-G-
RRT* algorithm. The black and orange dots combined represent the planned
trajectory, from which the orange dots are selected as local waypoints.

increasing motion errors. Thus, we propose a trajectory-

smoothing algorithm to smooth the LDA-L-RRT* trajectories

to improve trajectory tracking performance. The idea of the

smoothing algorithm is to replace the “zigzag”-prone tra-

jectories typical of RRT-generated trajectories with straight

lines more amenable to bipedal locomotion. The algorithm

begins at the starting waypoint w0 = (xapex,0, yapex,0, ¹0) of

a LDA-L-RRT* motion plan and finds the furthest waypoint

wi = (xapex,i, yapex,i, ¹i) along the trajectory which satisfies

the following conditions.

1) There is no untraversable terrain along the line con-

necting w0 and wi:

µẑ(x
′
apex, y

′
apex) f zsafe

∀(x′
apex, y

′
apex) ∈ conv(w0,wi),

where conv() is the convex hull, i.e., minimal convex

set containing the two points.

2) The heading angle change between w0 and wi and

between wi and wi+1 is valid:

|¹0 − ¹i| f ∆¹safe, |¹i − ¹i+1| f ∆¹safe

Once wi is identified, a new sequence of waypoints with

appropriate step lengths is generated on the line between

w0 and wi, replacing the waypoints {w1, · · · ,wi−1}. Then,

the smoothing algorithm continues from wi, repeating until

the target waypoint wℓ is reached. Fig. 4(a) illustrates the

smoothing algorithm, Fig. 4(b) shows the vertex safety

constraints, and Fig. 5(a) shows a conceptual example of

the waypoint sequence generated by LDA-L-RRT*.

For each local target, we run the LDA-L-RRT* algorithm

m times to generate candidate trajectories {Aw→w
′,j}, j ∈

{1, · · · ,m}. We then select an optimal trajectory A∗
w→w

′

using the formula

j∗ = argmax
j

[−³(error(Aw→w
′,j)) + ´(info(Aw→w

′,j))],

error(Aw→w
′,j) =

∑

aHL∈A
w→w

′,j

T (ŷ1(d,∆¹,∆z))

info(Aw→w
′,j) =

∑

wi∈W(A
w→w

′,j)

1

2
log(2ÃÃ2

ẑ(wi)) +
1

2
,

where ³, ´ ∈ Zg0 and T is the transform from a local

waypoint frame to the global frame. The optimal solution

is A∗
w→w

′ = Aw→w
′,j∗ . Intuitively, the optimal path min-

imizes the robot’s CoM lateral deviation, error, predicted

by the model error GP ŷ1 over the waypoint sequence. The

optimal path also maximizes the information gain, info,

rewarding traversal of areas which have high uncertainty

in the terrain elevation GP. The parameters ³, ´ tune the

importance of these two objectives.

V. GLOBAL NAVIGATION PLANNER

In large, global environments, footstep-by-footstep local

planning to reach a global goal is computationally expensive.

Therefore, we propose a coarse global planner to generate

waypoints as inputs for the LDA-L-RRT* algorithm (Section

IV). This planner guides the robot toward the global goal,

completing the local-global planning framework.

We now define the locomotion-dynamics-aware RRT*

algorithm we use for global planning.

Definition 4 (Locomotion-dynamics-aware Global RRT*):

The locomotion-dynamics-aware global RRT* (LDA-G-

RRT*) algorithm modifies the standard RRT* algorithm by

placing additional constraints on new vertices in the search

as follows. First, we partition the global environment into

hyper-rectangular regions {Wq}q∈Q:

Wq = {(xcom, ycom) | xq f xcom f xq, yq f ycom f yq},

where the inequality is taken elementwise for lower and

upper bounds ·q, ·q ∈ R and Q is a finite index set of the

regions. The configuration of a vertex is v = (xcom, ycom).
Additionally, for the starting vertex v0 = (x0, y0) we know

the heading angle ¹0 from the robot’s current state. We create

locomotion safety barriers around the start vertex, defined as

lsb1,2 =

{[

x0

y0

]

+ 2dstepµ

[

cos(¹0 ±∆¹safe)
sin(¹0 ±∆¹safe)

]}

, µ ∈ [0, 1],

where dstep is a desired distance between vertices.

Then, consider one step of the standard RRT* algorithm

in which a random point in the environment (xrand, yrand)
is selected, for which the nearest vertex is v. A candidate

vertex v′ = (x′, y′) is calculated as

[

x′ y′
]

= dstep

[

xrand yrand
]

−
[

x y
]

∥

∥

[

xrand yrand
]

−
[

x y
]∥

∥

2

Then, the candidate v′ is added to the graph if and only if it

satisfies the following conditions.

1) Any vertex connected to the starting vertex v0 must be

in the convex hull conv{lsb1, lsb2}.

2) Any connection between vertices in the graph must not

intersect a locomotion safety barrier.

3) The GP predicted terrain elevation at v′ is smaller than

a dynamically feasible limit zsafe:

µẑ(x
′, y′) f zsafe.
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Fig. 6. Snapshots of the system during a sample run. In each plot, the
white line shows the CoM trajectory, the orange dot marks the local target
waypoint, and the yellow star indicates the global goal. The left plot shows
early terrain characterization near the start. The middle plot depicts the robot
navigating initial obstacles and mapping the obstacle near the goal. The final
plot shows that the robot learned the terrain sufficiently to reach the goal.

The locomotion safety barriers, illustrated in Fig. 4(d),

serve as warm starts for the LDA-L-RRT* by ensuring that

the initial steps of the robot towards the nearest local way-

point from LDA-G-RRT* are feasible, taking into account

of the heading angle of the starting vertex v0.

In practice, we select the step size dstep for the LDA-G-

RRT* larger than dsafe for the LDA-L-RRT*. Additionally,

the locomotion safety barrier constraints on vertex selection

for LDA-G-RRT* only hold within a small radius of the

starting vertex v0, shown in Fig. 5(b),(c), whereas LDA-L-

RRT* constrains every vertex. These two features result in

the computational efficiency of LDA-G-RRT*.

Once a sequence of vertices {v0, v1, · · · , vn} from v0 to

the desired target position vn has been found, we generate

a sequence of corresponding local waypoints recursively as

follows. We start at v0 and identify the largest index i such

that the vertices {v0, v1, · · · , vi} are all elements of the

same hyper-rectangular region W0. The vertex vi is the first

local waypoint. Then, we move to vertex vi+1 and find the

largest index j such that the vertices {vi+1, v1, · · · , vj} are

all elements of the same hyper-rectangular region Wi, adding

vj to the sequence of local waypoints. We repeat this process

until the target vn has been added to the sequence of local

waypoints and return the complete sequence.

VI. RESULTS

We evaluate our framework on simulations of a Digit

bipedal robot navigating three environments with varying ter-

rain features (including N37W112, N24W102, and N17E10)

retrieved from elevation dataset by Shuttle Radar Topography

Mission. Each environment is re-scaled to 20 × 20 meters

in size, with terrain elevation varying between 0 and 0.5

meters. The terrain GP ẑ model is initialized with 100 evenly-

spaced points across the terrain and updated online with new

data as the robot progresses. The sensor collects 10 sample

points within a 3-meter radius at each step. To facilitate GP

sampling, we assume no sensor occlusion, making all data

points accessible for collection. The model error GP ∆ŷ1,

trained offline with 2,000 data points, yielded an average mo-

tion perturbation of 1.75e-2 meters per step and an average

TABLE I

BENCHMARKING FOR EVALUATED GPS

Metric AK RBF NN

Avg. Error (Path) [m] 2.04e-4 1.10e-3 2.83e-4

Avg. Std. Dev. (Path) [m] 2.58e-2 2.67e-2 5.19e-2

Avg. Error (Env.) [m] 52.60 49.61 49.02

Avg. Std. Dev. (Env.) [m] 3.13e-2 3.93e-2 5.48e-2

Avg. Total Steps 638 617 667

Retrain every # steps 20 14 19.33

prediction error of 2.06e-4 meters per step, demonstrating

its accuracy in evaluating motion perturbations. Finally, for

the LDA-L-RRT* local navigation planner, we evaluate three

candidate trajectories for each local target.

Fig. 6 shows snapshots of a sample run with the AK-based

terrain GP, illustrating the robot’s navigation and terrain

estimation improvements. Fig. 7 presents the final results,

highlighting the accuracy of the learned terrain model. All

simulations were run on a laptop with an Intel i7 CPU and

16 GB of RAM.

We also implement the simulation using full-order dynam-

ics in MuJoCo, as depicted in Fig. 1. We use a variation of the

angular momentum LIP planner [24] to track the PSP plans

as introduced in [20]. PSP hyperparameters (e.g., ẋapex, and

∆¹) are used to design full-body joint trajectories through ge-

ometric inverse kinematics. A passivity-based controller [25]

is used for full-body trajectory tracking. The supplemental

video for this work shows Digit navigating through multiple

environments using our framework.

In Table I, we benchmark the efficacy of the AK, RBF,

and NN kernel. For each of the three environments, experi-

ments were conducted with each kernel until three successful

runs were achieved. Success was achieved by incrementally

increasing the GP retraining frequency (measured in walking

steps) until the robot reached the goal without encountering

impassable terrain heights. The AK demonstrated the lowest

prediction error along the robot’s traversed trajectory (Path)

and the lowest standard deviation in both path and global map

(Env.). The NN kernel excelled in minimizing accumulated

errors across the global map, despite higher uncertainty.

Although RBF kernel needed fewer steps to reach the goal, it

required more frequent GP retraining, whereas AK and NN

kernel permit longer intervals between retraining, highlight-

ing their adaptability to non-stationary terrain.

Fig. 8 shows a computational time analysis on terrain

N37W112. Initially, the NN kernel incurs higher prediction

times due to its local approximation method, but it maintains

a consistent time regardless of training data size by using a

fixed number of nearest neighbors. Conversely, the AK and

RBF start with faster prediction times but slow as training

data grows, eventually surpassing the NN kernel. The AK

also requires extra training time to optimize kernel weights

and membership vectors. Thus, the NN kernel is preferable

for long-horizon planning due to its consistent computational

time, while the AK is better suited for near-term reach-avoid

navigation, offering accuracy and low uncertainty.
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Fig. 7. A sample run of our framework using the AK-based GP. In each graph, the red line denotes the CoM trajectory and the yellow star marks the
global goal. (a) Ground truth elevation map with a heatmap; regions with elevation above 0.15 meters are untraversable. (b) Final GP terrain estimation
for the AK method. (c) Standard deviation of the terrain GP, indicating higher uncertainty with increasing distance from the trajectory. (d) Absolute error
of GP estimation compared to ground truth, showing high accuracy near the trajectory. (e) 3D view of the Digit robot’s traversed path.

(a) (b)

Fig. 8. Analysis of the GPs’ computational runtime averaging over 10
successful runs per kernels: (a) Prediction times (b) Training times

VII. CONCLUSION

We propose a hierarchical planning framework for bipedal

navigation in rough and uncertain terrain using GP-based

uncertainty learning. Future work will involve hardware

experiments with Digit navigating outdoor fields.
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