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Abstract— We study the problem of bipedal robot navigation
in complex environments with uncertain and rough terrain.
In particular, we consider a scenario in which the robot is
expected to reach a desired goal location by traversing an
environment with uncertain terrain elevation. Such terrain
uncertainties induce not only untraversable regions but also
robot motion perturbations. Thus, the problems of terrain
mapping and locomotion stability are intertwined. We evaluate
three different kernels for Gaussian process (GP) regression to
learn the terrain elevation. We also learn the motion deviation
resulting from both the terrain as well as the discrepancy
between the reduced-order Prismatic Inverted Pendulum Model
used for planning and the full-order locomotion dynamics. We
propose a hierarchical locomotion-dynamics-aware sampling-
based navigation planner. The global navigation planner plans
a series of local waypoints to reach the desired goal locations
while respecting locomotion stability constraints. Then, a local
navigation planner is used to generate a sequence of dynami-
cally feasible footsteps to reach local waypoints. We develop a
novel trajectory evaluation metric to minimize motion deviation
and maximize information gain of the terrain elevation map.
We evaluate the efficacy of our planning framework on Digit
bipedal robot simulation in MuJoCo.'

I. INTRODUCTION

Legged robots show great promise for navigation tasks in
environments with difficult-to-traverse or unknown terrain.
As opposed to wheeled mobile robots, legged robots have the
superior capability of traversing through irregular terrains by
taking discrete footsteps [1]-[3]. However, highly varying
and uncertain terrain profiles often induce tracking errors
when executing bipedal motion plans or even pose a high risk
in locomotion failures (i.e., falling) [4]-[6]. Thus, navigation
through complex and uncertain terrain requires collecting
terrain data online to build a realistic terrain map and
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Fig. 1. (Top) The bipedal robot Digit navigates through an environment
with rough terrain in our MuJoCo simulation. (Bottom) Snapshots of the
trajectory of the bipedal robot at various time instants as it navigates towards
the goal (yellow star). The white line depicts the traversed trajectory, and
the orange dot is the current targeted local waypoint.

improve locomotion performance accordingly. On the other
hand, the complex dynamics inherent to bipedal locomotion
complicate the problem of designing navigation plans to
sample the environment. Thus, the objectives of locomotion
stability (i.e., minimizing motion deviation from the desired
stable trajectory in this study) and accurate environmental
sampling are coupled, increasing the complexity of the entire
navigation problem.

In this work, we propose a hierarchical planning strategy
for bipedal robots which satisfies high-level global navi-
gation objectives while maintaining dynamic feasibility of
the generated trajectories in the local navigation planner.
Additionally, we use Gaussian processes (GPs) with three
different kernels to learn unknown terrain elevation. We also
learn motion perturbation resulting from both terrain and
model errors. Our planner is designed to incorporate the
GP predictions in order to online improve the feasibility of
reaching the desired goal. An example run of our planner is
shown in Fig. 1.

A. Related Works

The RRT family of algorithms is commonly used in
concert with GPs for robotic motion planning problems in
uncertain environments. The study in [7] considers an aerial
vehicle navigation problem and uses RRT to navigate around
collision regions modeled using a GP. The work [8] uses
RRT* to enable a mobile robot to avoid hazardous regions
which are learned and updated online using a GP. For an
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Fig. 2. Prismatic Inverted Pendulum Model (PIPM) model for our robot
Digit for traversing over uncertain and uneven terrain.

information-gathering objective, the paper [9] learns optimal
points to sample using a GP model of the environment and
uses RRT* to plan information-gain-maximizing trajectories.
Finally, the work [10] trains a GP model of terrain elevation
using both external perception and proprioception sensors
and then proposes an RRT* variant to plan a safe trajectory.

The problem of bipedal robot navigation in rough terrain
has not yet been widely explored. The studies in [11], [12]
propose methods for identifying stable footstep sequences
for bipedal robots using sensor data to traverse over uneven
terrain. The focus of these works is on finding stable local
trajectories rather than long-run trajectories to reach global
goals. The authors in [2] propose a terrain-adaptive bipedal
locomotion controller that uses a piecewise linear terrain
approximation for computing foot placements. The work
in [3] proposes an omnidirectional control Lyapunov function
(CLF) as a controller for a bipedal robot navigating on
undulating terrain and integrates the CLF into a RRT*
planner. In this work, an elevation map is constructed online
using sensor data, but is not otherwise learned. Additionally,
the omnidirectional nature of the planner relies on special
behaviors such as turn-in-place and lateral stepping for
bipedal locomotion feasibility.

In terrain mapping, GPs are employed to quantify un-
certainties and learn complex terrain maps. The work in
[13] introduce a novel nonstationary kernel that prioritizes
exploration in regions with higher variation, effectively mod-
eling rapidly changing terrain through a mixture model
of base kernels. Another approach is the neural network
kernel explained in [14], which designs a GP approximating
a simple neural network while retaining the information-
theoretic learning guarantees of Gaussian process theory.
The nonstationary nature of this kernel is well-suited for
learning discontinuous data. Additionally, KD-trees are used
to manage dataset size, improving computational efficiency.

Leveraging GP approaches for terrain mapping has gained
increasing attention in the locomotion community. In [15],
a locally adaptive GP is implemented for terrain mapping
in a legged navigation problem for the Boston Dynamics

LittleDog quadruped, balancing GP model fidelity with com-
putational tractability. In [16], GPs are used to evaluate can-
didate trajectories for a hopping robot locomotion planning
problem. The work [17] learns a GP-based terrain map and
uses the GP model to design foothold placements for the
ETH ANYmal quadrupedal robot. However, learning terrain
uncertainty via GP models for bipedal robot navigation has
not been explored, to the best of the authors’ knowledge. The
inherent stability-critical, complex robot dynamics make the
terrain learning and navigation problem more challenging.

B. Contributions

We propose a novel hierarchical planning framework for
bipedal robot locomotion with high-level navigation tasks
that generates dynamically feasible locomotion trajectories
while simultaneously learning unknown terrain features. Our
specific contributions are as follows.

e We propose a hierarchical locomotion-dynamics-aware
planner based on RRT* which enables computationally
efficient bipedal navigation while explicitly considering
dynamical feasibility of the locomotion trajectories and
learning uncertain rough terrain online. We construct
both a footstep-by-footstep local navigation planner
as well as a coarser global navigation planner which
consider locomotion safety constraints.

e We develop the first ever planning framework that
integrates Gaussian process models of unknown terrain
elevation and motion perturbations for full-order bipedal
locomotion. We propose a novel trajectory evaluation
metric utilizing the GPs to minimize motion deviation
and maximize information gain of the terrain estimation,
thus increasing the feasibility of the navigation task. We
benchmark the performance of multiple state-of-the-art
GP terrain mapping methods to evaluate their relative
advantages for the bipedal navigation task.

o We evaluate the proposed methodology on simulations
of a Digit bipedal robot in MuJoCo [18], demonstrating
the validity of the reduced-order trajectories generated
by our planner when implemented on the simulator
using full-order robot dynamics.

II. PRELIMINARIES
A. Robot Model

We design our locomotion planner based on the Prismatic
Inverted Pendulum Model (PIPM). PIPM has been proposed
for agile, non-periodic locomotion over rough terrain [19]
and integrated with Digit for navigation in partially observ-
able environments and stair climbing tasks [20].

Here we reiterate for completeness the mathematical for-
mulation of our ROM. As shown in Fig. 2, the CoM position
Peom = (Teoms Yeom, Zeom ) is composed of the sagittal,
lateral, and vertical positions in the global frame. We denote
the apex COM position as Papex = (Tapexs Yapexs Zapex) . » the
foot placement as Proot = (Ttoot s Ytoot s Zf00t>T, and h,pex 1S
the relative apex CoM height with respect to the stance foot
height. v,pex denotes the CoM velocity at p,pex. We denote
Ay as the lateral distance between CoM and the high-level
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waypoint at apex. We formulate the dynamics for the next
walking step as a hybrid control system

W?L (zcom - Ifoot,n)

2 (ycom yfoot n)
Tfoot n) + bnw (ycom

Pcom,n =
yfoot,n)

where the asymptote slope wy, = \/g/Zapex,n» A Zapex,n =
AnZoot,n + bnYfoot,n + Rapex.- The hybrid control input is
Wy, = (Wn, Proot,n)> With Proot,» being a discontinuous input
which creates a reset map.

2
Wi (Teom —

B. Phase-space Planning

In phase-space planning (PSP), the sagittal CoM plan-
ning takes precedence over the lateral CoM planning. The
decisions for the planning algorithm are primarily made in
the sagittal phase-space, such as step length and CoM apex
velocity, where we propagate the dynamics forward from the
current apex state and backward from the next apex state until
the two phase-space trajectories intersect. The intersection
state defines the foot stance switching instant. On the other
hand, the lateral phase-space parameters are searched for to
adhere to the sagittal phase-space plan and have consistent
timings between the sagittal and lateral plans. In this paper,
we use the PSP method detailed in our previous work [20].

C. Gaussian Processes

In order to learn the uncertainties present in our bipedal
system, we use Gaussian process (GP) regression:

Definition 1 (Gaussian Process Regression): Gaussian
Process (GP) regression models a function g; : R* — R as
a distribution with covariance x : R” X R" — R . Assume
a dataset of m samples D = {(&,y/)},eq1,....m}» Where
¢/ € R” is the input and 3/ is an observation of g;(¢&%)
under Gaussian noise with variance o2 . Let K € R™X™
be a kernel matrix defined elementwise by Kjo = r(&7, 55)
and for € € R", let K(€) = [k(6,€) (&€,
k(€,€™)]T € R™. Then, the predictive distribution of g;
at a test point & is the conditional distribution of g; given
D, which is Gaussian with mean p4, p and variance 0'21_7 D
given by

Hg:,0(€) = K(€)T (K + 07, 1) Y
o5.p(&) = K(&,€) — k(&) (K + o}, I,) ' k(€),
where I,,, is the identity and Y = [y} 3?7 ... yzm]T

In practice, we use a sparse Gaussian process regression
approximation [21] to reduce computational complexity.

In this work, three different terrain mapping method using
GP are benchmarked, namely a radial basis function (RBF)
kernel, a Neural Network (NN) kernel with local approxima-
tion method [14], and an Attentive Kernel (AK) [13].

1) RBF kernel: The RBF kernel, a stationary kernel com-
monly used in GP regression, produces smooth predictions
with uniform variability. The kernel is defined as

le'~ 1)
202 ’

where O’J% is signal variance and ¢ is a lengthscale.

k(& €7) = of exp <

2) NN kernel: The NN kernel is non-stationary and re-
sembles a neural network with a single hidden layer of
infinite nodes and a sigmoid activation function [22]. It
models local correlation between data points based on their
distance from the data origin until a saturation region is
reached. The kernel is defined as

k(g &) =
B+26" £/
V1 +5+2675EN (14 5+ 2877 5¢0)

6 0177
[O Eyj ’
are the lengthscales for input = and y, respectively.

The work by [14] applied the NN kernel to large-scale
terrain reconstruction by introducing a local approximation
method, facilitated by a KD-Tree algorithm for efficient near-
est neighbor search. This approach enhances the accuracy of
GP predictions in terrains with high variability by utilizing
only the nearest training data around the query point.

However, this method introduces significant computational
overhead due to the need for unique nearest neighbor search
and separate predictions for each query point. To mitigate
this, we propose a K-means clustering strategy to group
all input locations into k clusters, where each cluster is
defined by a center point c¢; and a subset of training data
{€};. When a query point is provided, the nearest ¢; is
identified, and the GP prediction is computed using only
the corresponding training data {£};. This extended local
approximation method reduces the computational runtime
compared to the approach in [14].

3) Attentive Kernel: The AK is a nonstationary kernel that
adapts to terrain variability by employing a neural network to
determine the optimal weighted sum of multiple base kernels.
Additionally, it assigns a membership vector to each input
location through a secondary neural network. This approach
allows the model to break correlations among training inputs
within the same vicinity when abrupt changes occur in the
training output, in contrast to the smooth behavior charac-
teristic of the RBF kernel. The kernel is defined as

(712‘- arcsin {

where ¥ = B is a bias factor, and ¢, and /¢,

M
H(€i7£j) = OZETE/ + Z wmﬁm(siaéj)m/
m=1

where « is a constant, w and Z are the trained weight and
membership vectors, respectively, and {x(&%,&7)}M_, are
base RBF kernels with different pre-defined lengthscales.

III. PROBLEM STATEMENT

We now formally define the problem we study in this
work. Consider an environment in which the terrain ele-
vation is uncertain, creating multiple challenges for bipedal
locomotion. First, regions with high terrain elevation may be
untraversable and therefore become obstacles. Second, the
terrain elevation is an input to the PSP model, so inaccurate
terrain estimations increase deviation and create instability in
planned footstep trajectories. The primary objective is for the
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Fig. 3.  Overall block diagram of the proposed global-local planning
framework for bipedal navigation over rough terrain.

robot to reach a desired location in such uncertain environ-
ment. Thus, in addition to the reach-avoid objective, the robot
must learn an accurate representation of the environment
to improve the dynamical feasibility of planned trajectories.
Additionally, there also exists motion perturbations resulting
from the model error between the PIPM used for planning
and the full-order dynamics, which increases the complexity
of the overall uncertainty learning problem.

Problem Statement: Design a hierarchical planning
framework for a bipedal robot which generates dynamically
feasible trajectories to reach a desired goal location in an
environment with unknown terrain features. Learn online
the terrain elevation and the resulting motion perturbations
in order to avoid untraversable regions and minimize the
error between the desired motion plans and the measured
trajectories from a full-body robot dynamic simulation.

Overall Framework: Our approach to this problem is
as follows. We first initialize the terrain GP with an a
priori dataset of terrain elevations. The model error GP is
trained offline, as detailed in Section IV-A, to characterize
the terrain’s impact on robot motion. The local planner, LDA-
L-RRT#*, introduced in Section IV-B, generates dynamically
feasible waypoints that avoid untraversable regions while
balancing exploration and minimizing motion perturbation.
The global planner, LDA-G-RRT*, outlined in Section V,
provides near-horizon targets for the local planner, guiding
the robot towards the global goal. As the robot reaches each
local waypoint, the terrain GP is updated with new data,
and the global planner is re-executed. This process repeats
until the robot reaches the global target. The framework is
depicted in Fig. 3 and summarized in Algorithm 1.

IV. LOCAL NAVIGATION PLANNER

In this section, we propose a local navigation planner to
generate a footstep-by-footstep motion plan. We first define

Algorithm 1: Global-Local Planning Framework

Input: Start waypoint wg, target waypoint w;

1 Initialize Terrain GP %(x,y);

2 Initialize Model Error GP Ajy;

3 Initialize Current position w. = wy;

4 while w, # w; do

5 Run LDA-G-RRT* algorithm with target x; and
obtain local target waypoint wy;

6 Run LDA-L-RRT* with target w, and obtain
footstep plan;

7 Execute footstep plan and collect terrain data
{(x4,v:), z:} along the trajectory;

8 Update current waypoint w.;
9 Retrain terrain GP Z on collected data;
10 end

local navigation trajectories.

Definition 2 (Local Navigation Trajectory): A local
navigation trajectory A, . from a start waypoint
w = (x,y,0) to an end waypoint w’ is an n-step
sequence {amro0, - ,0HLn—1} Of high level actions
apr; = (d;, Af;, Az;), where the parameters d, Af, Az
represent the distance, heading angle change, and terrain
elevation change, respectively, between two adjacent
waypoints. The sequence A, induces a set of
apex CoM waypoints W(Aw—w') = {wo, -, wn_1}
such that wy = w, w,_; = w', and w;1; = w; +
[di cos(X4_o A8, + 0), dy sin(X_o AG; + 6), Aol} :

Vi € {0,---,n—2}. The local navigation trajectory
parameters are illustrated in Fig. 4(c).

A. Gaussian Process Learning of Terrain and Model Errors

We first detail the two GP structures we use to learn
the unknown terrain elevation and the motion perturbations
resulting from both terrain and model errors. This structure
builds on our previous GP modeling work in [23].

We use a terrain GP Z(x,y) with sensor noise ¢ ~
N(0,02) which takes a global location (z,y) as input
and predicts terrain height at that location, z. The three
terrain GP approaches discussed in Section II-C are evaluated
independently for their respective accuracy and complexity.
At runtime, the GP is updated with data collected as the robot
traverses through the environment. The mean prediction of
the terrain GP is used in the PSP controller to generate
feasible footstep trajectories and to construct global and local
elevation maps, with the latter being a subset of the former.
While the local map could be constructed independently
without using a GP, we opt for using a subset of the global
map as the GP prediction is generally more reliable with
denser data points at the local level. The variance of the
terrain GP is used to determine the information gain along
each local trajectory as discussed later in Section IV-B.

Given the GP model of terrain elevation, we charac-
terize the model error between the referenced waypoint
and the actual CoM position at apex in the lateral direc-
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Fig. 4. (a) Illustration of the smoothing algorithm aims to find the smoothest
path from start wo to target w4. A direct connection between wo and w4
is invalid due to an obstacle, and connecting to wg is infeasible because
the heading angle exceeds Afg,s.. Thus, the algorithm connects wq to wa
and then to wy. (b) Illustration of LDA-L-RRT* vertex selection criteria.
The left red vertex is invalid because it lies in an obstacle, and the right
red vertex is impossible because the heading angle change exceeds Afgase.
(c) Iustration of the local navigation trajectory parameters. (d) Illustration
of the LDA-G-RRT* safety criteria: Solid green lines represent locomotion
safety barriers, and the shaded green area is their convex hull. Connecting
vo to vyq is invalid as w4 lies outside the safety barriers. The connection
from v2 to vs is also invalid due to crossing a safety barrier. However, the
connection from vy to w3 is valid, as it does not intersect any safety barrier.

tion (i.e., Ay = Y — Yeom) at each step using the GP
Ay (de, AOey Azey dy, AOy,, Azy,). We focus on modeling
lateral deviation because the PSP controller is designed
to prioritize achieving the desired sagittal distance of the
waypoint with lateral error minimization as a secondary
objective. The model error GP takes high-level actions from
the last two walking steps as input. Parameters with sub-
script ¢ denote values measured between the previous and
current waypoints, while subscript n denote values measured
between the current and next waypoints. The model error GP
is trained offline on a dataset generated by simulating steps
over the entire range of input parameters using the low-level
controller in Section VI and measuring the resulting motion
perturbation. In practice, the robot’s stance affects motion
perturbation, with left-foot steps causing leftward deviation
and right-foot steps causing rightward deviation. For efficient
learning, we train a single model error GP using the absolute
value of lateral deviations from both foot stances. Given GP
predictions, deviations are then assigned positive values for
left-foot steps and negative values for right-foot steps.

The local navigation planner requires predictions of the
expected model error for proposed waypoint sequences. To
obtain these predictions, we call the model error GP Ag; for
each step of the sequence. While the input d and Af can be
directly extracted from the waypoint sequence, Az depends
on the unknown terrain elevation. We approximate Az using
the mean p; of the terrain GP predictions at the waypoints.
Since each output Ag; is in the local frame w.r.t. a specific
waypoint, we apply coordinate transforms on the outputs to
place them in the global frame.

B. Locomotion-dynamics-aware Local RRT*

We now define the locomotion-dynamics-aware RRT*
algorithm we use for local planning.

Definition 3 (Locomotion-dynamics-aware Local RRT*):
The LDA-L-RRT#* algorithm modifies the standard RRT*
algorithm by placing additional constraints on new vertices
in the search as follows. First, the configuration of a vertex
is w = (Tapex, Yapex, 8), where (Zapex, Yapex) 1S the planar
apex position and 6 is the heading angle. Then, consider
one step of the standard RRT* algorithm in which a random
point in the environment (Zyand,Yrand) 1S selected, for
which the nearest vertex is w1 = (ZTapex,1; Yapex,1,01)- A

candidate vertex w' = (T}, cx, Ynpex: 0') is calculated as

[xilpex yellpex] -
[xrand yrand] - [xapex,l yapex,l]

ds
safe || [ [xapex.,l yapex,l} ||27

Yrand — Yapex,1
0’ = arctan (p ,
Trand — Tapex,1

Trand yrand] -

where dgafe is a safe step distance determined as in [20,
Theorem IV.1]. Then, the candidate w’ is added to the graph
if and only if it satisfies the following conditions.

1) The heading angle change between connected vertices
is less than a dynamically feasible limit Afg,¢ calcu-
lated as in [20, Theorem IV.2]:

|9/ - 91| S Aesaufe-

2) The GP predicted terrain elevation at w’ is smaller than
a dynamically feasible limit 2zgafe:

! /
Hz (xapex3 yapex) S Zsafe

where zgfe 1S the maximum height the robot’s
passivity-based controller can stabilize stepping motion
despite terrain variations. This limits our navigation to
relatively flat terrains, avoiding areas with significant
elevation changes.

If w’ does not satisfy the conditions above, a new can-
didate w’ is calculated by performing the above procedure
with the same random point (Zyand,Yrand) and the next
closest vertex in the graph w-. The process continues through
all of the vertices in the current graph until a candidate
vertex is successfully added to the graph. If there is no node
that satisfies both conditions, the nearest vertex wpeas tO
(Trand, Yrana) that does not have a child node is identified.
A final candidate vertex w” is proposed with values

xgpex _ | Tapex,near +dgs Cos(gnear‘FAasafe)
y;’pex e Sin(anear + Aosafe)

yap ex,near

9// = enear + AHsafer

This candidate vertex always satisfies condition 1), so it is
added to the graph if it also satisfies condition 2). If not,
then no vertex is added to the graph in the current step.
With these conditions, the waypoint sequences generated
by the LDA-L-RRT* algorithm are guaranteed to be dynam-
ically feasible with respect to the PIPM safety conditions
proposed in [20] and will avoid untraversable regions with
excessive terrain elevation. However, the resulting trajecto-
ries can change heading angle rapidly at each step, directly
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o

Fig. 5. (a) Trajectory generated by the LDA-L-RRT* algorithm for reaching
a local waypoint. The green dots show the trajectory modifications made
by the proposed smoothing algorithm. (b) Illustration of the locomotion
safety barrier region (green triangle) constraining vertices near the start point
in the global navigation planner. (c) Trajectory generated by the LDA-G-
RRT* algorithm. The black and orange dots combined represent the planned
trajectory, from which the orange dots are selected as local waypoints.

increasing motion errors. Thus, we propose a trajectory-
smoothing algorithm to smooth the LDA-L-RRT* trajectories
to improve trajectory tracking performance. The idea of the
smoothing algorithm is to replace the “zigzag’-prone tra-
jectories typical of RRT-generated trajectories with straight
lines more amenable to bipedal locomotion. The algorithm
begins at the starting waypoint wo = (Zapex,0, Yapex,0, o) of
a LDA-L-RRT* motion plan and finds the furthest waypoint
W; = (Tapex,i, Yapex,i, 0;) along the trajectory which satisfies
the following conditions.
1) There is no untraversable terrain along the line con-
necting wp and w;:

/ /
Kz (xape)o yapex) S Zsafe

v(x/apex’ y;pex) € CO”U('wm wi)7

where conv() is the convex hull, i.e., minimal convex
set containing the two points.

2) The heading angle change between wy and w; and
between w; and w;; is valid:

‘00 - 91| S Aesafa ‘91 - 9i+1| S Aesaufe

Once w; is identified, a new sequence of waypoints with
appropriate step lengths is generated on the line between
wyp and w;, replacing the waypoints {w1,--- ,w;_1 }. Then,
the smoothing algorithm continues from w;, repeating until
the target waypoint wy is reached. Fig. 4(a) illustrates the
smoothing algorithm, Fig. 4(b) shows the vertex safety
constraints, and Fig. 5(a) shows a conceptual example of
the waypoint sequence generated by LDA-L-RRT*.

For each local target, we run the LDA-L-RRT* algorithm
m times to generate candidate trajectories {Aw—w i}, 7 €
{1,---,m}. We then select an optimal trajectory A%, ...
using the formula

j* = argmax[—a(error(Aw—w ;) + B(info(Aw—w ;)]
j

error(Aww ;) = Z

aHLG.Aw*}w/'j

T(i1(d, A0, Az))

) 1 1
info(Aw—w,j) = Z 5109(271-03 (w;)) + 9

Wi €EW( Ay’ 5)

where «,8 € Z>¢ and 7' is the transform from a local
waypoint frame to the global frame. The optimal solution
is A% . = Aw_w j. Intuitively, the optimal path min-
imizes the robot’s CoM lateral deviation, error, predicted
by the model error GP ¢, over the waypoint sequence. The
optimal path also maximizes the information gain, info,
rewarding traversal of areas which have high uncertainty
in the terrain elevation GP. The parameters «, 3 tune the

importance of these two objectives.

V. GLOBAL NAVIGATION PLANNER

In large, global environments, footstep-by-footstep local
planning to reach a global goal is computationally expensive.
Therefore, we propose a coarse global planner to generate
waypoints as inputs for the LDA-L-RRT* algorithm (Section
IV). This planner guides the robot toward the global goal,
completing the local-global planning framework.

We now define the locomotion-dynamics-aware RRT*
algorithm we use for global planning.

Definition 4 (Locomotion-dynamics-aware Global RRT*):
The locomotion-dynamics-aware global RRT* (LDA-G-
RRT#) algorithm modifies the standard RRT* algorithm by
placing additional constraints on new vertices in the search
as follows. First, we partition the global environment into
hyper-rectangular regions {W,},cq:

Wq = {(xcom7ycom) | Qq < Lcom < Equq < Ycom < ?q}7

where the inequality is taken elementwise for lower and
upper bounds :,7, € R and @ is a finite index set of the
regions. The configuration of a vertex is v = (Zcom, Yeom)-
Additionally, for the starting vertex vyp = (xo,yo) we know
the heading angle 6y from the robot’s current state. We create
locomotion safety barriers around the start vertex, defined as

- o cos(6p = Abgate)
l3b1,2 - { |:y0:| + sttepry [Sin(@o + Aesafe) , Y € [0, 1]7
where dgep, 18 a desired distance between vertices.
Then, consider one step of the standard RRT* algorithm
in which a random point in the environment (Zyand, Yrand)

is selected, for which the nearest vertex is v. A candidate
vertex v’ = (2/,y’) is calculated as

[$rand yrand] - [LE y]

@ y]||2

Then, the candidate v’ is added to the graph if and only if it
satisfies the following conditions.

! /
e d,
[x Y ] step || [:Erand yrand] -

1) Any vertex connected to the starting vertex vy must be
in the convex hull conv{lsby,lsbs}.

2) Any connection between vertices in the graph must not
intersect a locomotion safety barrier.

3) The GP predicted terrain elevation at v’ is smaller than
a dynamically feasible limit zgafe:

Kz (-7;,7 yl) S Zsafe-
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Fig. 6. Snapshots of the system during a sample run. In each plot, the
white line shows the CoM trajectory, the orange dot marks the local target
waypoint, and the yellow star indicates the global goal. The left plot shows
early terrain characterization near the start. The middle plot depicts the robot
navigating initial obstacles and mapping the obstacle near the goal. The final
plot shows that the robot learned the terrain sufficiently to reach the goal.

The locomotion safety barriers, illustrated in Fig. 4(d),
serve as warm starts for the LDA-L-RRT* by ensuring that
the initial steps of the robot towards the nearest local way-
point from LDA-G-RRT#* are feasible, taking into account
of the heading angle of the starting vertex vy.

In practice, we select the step size dgiep for the LDA-G-
RRT* larger than dg,f for the LDA-L-RRT*. Additionally,
the locomotion safety barrier constraints on vertex selection
for LDA-G-RRT* only hold within a small radius of the
starting vertex vg, shown in Fig. 5(b),(c), whereas LDA-L-
RRT* constrains every vertex. These two features result in
the computational efficiency of LDA-G-RRT*.

Once a sequence of vertices {vg, v, -+ ,v,} from vy to
the desired target position v,, has been found, we generate
a sequence of corresponding local waypoints recursively as
follows. We start at vy and identify the largest index ¢ such
that the vertices {vg,v1,---,v;} are all elements of the
same hyper-rectangular region Wy. The vertex v; is the first
local waypoint. Then, we move to vertex v;4; and find the
largest index j such that the vertices {v;11,v1,--- ,v;} are
all elements of the same hyper-rectangular region W;, adding
v; to the sequence of local waypoints. We repeat this process
until the target v,, has been added to the sequence of local
waypoints and return the complete sequence.

VI. RESULTS

We evaluate our framework on simulations of a Digit
bipedal robot navigating three environments with varying ter-
rain features (including N37W112, N24W102, and N17E10)
retrieved from elevation dataset by Shuttle Radar Topography
Mission. Each environment is re-scaled to 20 x 20 meters
in size, with terrain elevation varying between 0 and 0.5
meters. The terrain GP Z model is initialized with 100 evenly-
spaced points across the terrain and updated online with new
data as the robot progresses. The sensor collects 10 sample
points within a 3-meter radius at each step. To facilitate GP
sampling, we assume no sensor occlusion, making all data
points accessible for collection. The model error GP Agy,
trained offline with 2,000 data points, yielded an average mo-
tion perturbation of 1.75e-2 meters per step and an average

TABLE 1
BENCHMARKING FOR EVALUATED GPsS

Metric AK RBF NN
Avg. Error (Path) [m] 2.04e-4 | 1.10e-3 | 2.83e-4
Avg. Std. Dev. (Path) [m] | 2.58e-2 | 2.67e-2 | 5.19e-2
Avg. Error (Env.) [m] 52.60 49.61 49.02
Avg. Std. Dev. (Env.) [m] | 3.13e-2 | 3.93e-2 | 5.48e-2
Avg. Total Steps 638 617 667
Retrain every # steps 20 14 19.33

prediction error of 2.06e-4 meters per step, demonstrating
its accuracy in evaluating motion perturbations. Finally, for
the LDA-L-RRT* local navigation planner, we evaluate three
candidate trajectories for each local target.

Fig. 6 shows snapshots of a sample run with the AK-based
terrain GP, illustrating the robot’s navigation and terrain
estimation improvements. Fig. 7 presents the final results,
highlighting the accuracy of the learned terrain model. All
simulations were run on a laptop with an Intel i7 CPU and
16 GB of RAM.

We also implement the simulation using full-order dynam-
ics in MuJoCo, as depicted in Fig. 1. We use a variation of the
angular momentum LIP planner [24] to track the PSP plans
as introduced in [20]. PSP hyperparameters (e.g., £gpes, and
A0) are used to design full-body joint trajectories through ge-
ometric inverse kinematics. A passivity-based controller [25]
is used for full-body trajectory tracking. The supplemental
video for this work shows Digit navigating through multiple
environments using our framework.

In Table I, we benchmark the efficacy of the AK, RBF,
and NN kernel. For each of the three environments, experi-
ments were conducted with each kernel until three successful
runs were achieved. Success was achieved by incrementally
increasing the GP retraining frequency (measured in walking
steps) until the robot reached the goal without encountering
impassable terrain heights. The AK demonstrated the lowest
prediction error along the robot’s traversed trajectory (Path)
and the lowest standard deviation in both path and global map
(Env.). The NN kernel excelled in minimizing accumulated
errors across the global map, despite higher uncertainty.
Although RBF kernel needed fewer steps to reach the goal, it
required more frequent GP retraining, whereas AK and NN
kernel permit longer intervals between retraining, highlight-
ing their adaptability to non-stationary terrain.

Fig. 8 shows a computational time analysis on terrain
N37W112. Initially, the NN kernel incurs higher prediction
times due to its local approximation method, but it maintains
a consistent time regardless of training data size by using a
fixed number of nearest neighbors. Conversely, the AK and
RBF start with faster prediction times but slow as training
data grows, eventually surpassing the NN kernel. The AK
also requires extra training time to optimize kernel weights
and membership vectors. Thus, the NN kernel is preferable
for long-horizon planning due to its consistent computational
time, while the AK is better suited for near-term reach-avoid
navigation, offering accuracy and low uncertainty.
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Fig. 7. A sample run of our framework using the AK-based GP. In each graph, the red line denotes the CoM trajectory and the yellow star marks the
global goal. (a) Ground truth elevation map with a heatmap; regions with elevation above 0.15 meters are untraversable. (b) Final GP terrain estimation
for the AK method. (c) Standard deviation of the terrain GP, indicating higher uncertainty with increasing distance from the trajectory. (d) Absolute error
of GP estimation compared to ground truth, showing high accuracy near the trajectory. (e) 3D view of the Digit robot’s traversed path.
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Fig. 8.  Analysis of the GPs’ computational runtime averaging over 10
successful runs per kernels: (a) Prediction times (b) Training times

VII. CONCLUSION

We propose a hierarchical planning framework for bipedal
navigation in rough and uncertain terrain using GP-based
uncertainty learning. Future work will involve hardware
experiments with Digit navigating outdoor fields.
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