
Local-Global Interval MDPs for Efficient Motion
Planning with Learnable Uncertainty

Jesse Jiang, Ye Zhao, and Samuel Coogan

Abstract— We study the problem of computationally effi-
cient control synthesis for Interval Markov Decision Processes
(IMDPs), that is, MDPs with interval uncertainty on the tran-
sition probabilities, against tasks specified in linear temporal
logic. To address the scalability challenge when synthesizing this
control policy in a holistic way, we propose decomposing the
monolithic global IMDP into a collection of interconnected local
IMDPs. We focus on the problem of robotic motion planning.
Specifically, we assume a setting in which the transition proba-
bilities can be learned and their interval uncertainty reduced by
observing the dynamics of the system at runtime. This creates
an objective of exploration to ensure that the planning task can
be completed with sufficient probability of success. We perform
decoupled exploration and learning on the local IMDPs and
then combine local control policies to guarantee global task
satisfaction. In a simulation-based case study, we show that,
compared to existing approaches, our proposed decomposition
leads to faster learning and satisfaction of the planning task and
provides a feasible controller when other methods are infeasible.

I. INTRODUCTION

Markov Decision Processes (MDPs) have been widely

used for robotic motion planning tasks [1], [2]. In par-

ticular, abstraction-based planning methods utilizing MDPs

are applied to tasks specified using the language of Linear

Temporal Logic (LTL) [3], [4]. More recently, Interval MDPs

(IMDPs) have been explored in the literature to model

stochastic or uncertain dynamics [5]–[7]. Gaussian process

(GP) [8] learning of uncertainties has proven especially well-

suited for IMDP planning approaches [9]. In robotics, GP

learning has been applied effectively to quantify environ-

mental uncertainty such as terrain variation [10], [11].

A major challenge with abstraction-based control synthesis

techniques is the curse of dimensionality arising from the

poor scaling of these algorithms with the size of the state

space [12], [13]. One approach that has been proposed to

address this problem for MDPs is the use of partitioning

[14] to reduce computational burden. Another approach is

the hierarchical MDP [15], [16], which further abstracts the

MDP to improve scaling with problem size.

In this work, we propose a novel local-global IMDP frame-

work to enable computationally efficient motion planning

This work was supported in part by the National Science Foundation
under grant #1924978 and by the National Science Foundation Graduate
Research Fellowship under grant #DGE-2039655.

Jesse Jiang and Samuel Coogan are with the School of Electrical and
Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332
USA (e-mail: jjiang@gatech.edu, sam.coogan@gatech.edu). S. Coogan is
also with the School of Civil and Environmental Engineering.

Ye Zhao is with the School of Mechanical Engineering, Georgia Institute
of Technology, Atlanta, GA 30332 USA (e-mail: ye.zhao@me.gatech.edu).

(a) (b)

Fig. 1. Visualization of the problem setup with robotic motion planning
motivation. (a): The unknown terrain elevation which results in motion
perturbation is overlaid over the 2D x–y plane which depicts the grid used
for IMDP abstraction and motion planning. (b): The graph representation of
the LG-PIMDP is shown. Computations are performed on the local regions
enclosed in boxes, with PIMDP states represented as circles. Interactions
between the regions are captured by the edges which cross region borders.

on robotic systems with formal guarantees on system be-

haviors with respect to complex specifications. We consider

a scenario in which unknown environmental features create

control error and thus uncertainty in the system dynamics,

and the objective is to learn the uncertainties and satisfy

LTL specifications with sufficient probability. Our specific

contributions are as follows:

• We propose a control policy synthesis algorithm which

operates on local regions of the state space for compu-

tational efficiency. We then combine these local control

policies such that we obtain global guarantees on a robot

satisfying LTL task specifications.

• We use local GPs to learn state-dependent motion

perturbations. As opposed to using a single GP to learn

global motion perturbations, local GPs allow for ex-

ploitation of environments with local regions of varying

uncertainty in the environment.

• We evaluate the effectiveness of our framework on sim-

ulation examples and compare to baseline approaches.

The structure of the remainder of the paper is as follows.

In Section II, we introduce the tools used in our approach

and briefly summarize our previous work on global control

policy synthesis for IMDPs which serves as a baseline of

comparison for this work. We then define our problem setup

in Section III. In Section IV, we explain the local control

policy synthesis algorithm performed on individual regions

of the state space, and in Section V we detail a methodology

to combine these local control policies and prove that we

obtain global system behavior guarantees. Finally, in Section

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 15,2025 at 17:35:40 UTC from IEEE Xplore. Restrictions apply.

VI we show simulation results of our methodology and

provide an ablation study to show its effectiveness.

II. PRELIMINARIES

Consider a robotic system with a data-driven controller

modeled using the discrete-time dynamics

x[k + 1] = f(x[k], u[k]) + g(x[k], u[k]) + ν[k] (1)

where x ∈ X is the state of the system, u ∈ U is the control

input, f represents the known dynamics of the system, g

models perturbations arising from controller imperfections,

and ν is stochastic noise with stationary, symmetric, and

unimodal distribution ρν which is independent in each di-

mension, zero mean, and has bounded support. For the

remainder of this paper, we will use a mobile robot case

study to motivate and explain the methodology.

We assume that the state space X is bounded and parti-

tioned into hyper-rectangular regions {Xq}q∈Q:

Xq = {x | aq f x f bq} ¢ X, (2)

where the inequality is taken elementwise for lower and

upper bounds aq, bq ∈ R
n and Q is a finite index set of

the regions.

Tasks are specified using Linear Temporal Logic (LTL).

Definition 1 (Linear Temporal Logic [17, Def. 2.1]):

A linear temporal logic (LTL) formula φ over a set of

observations O is recursively defined as

φ =¦ | o | ¬o | φ1 ' φ2 | φ1 (φ2 | ⃝ φ |

φ1Uφ2 | ♢φ | □φ | φ1 → φ2 | φ1 ´ φ2

where o ∈ O is an observation and φ, φ1, and φ2 are LTL

formulas. We define the next operator ⃝ as meaning that φ

will be satisfied in the next state transition, the until operator

U as meaning that the system satisfies φ1 until it satisfies φ2,

the eventually operator ♢φ as ¦Uφ, and the always operator

□φ as ¬♢¬φ. Finally, we have that φ1 → φ2 = ¬φ1 (φ2

and φ1 ´ φ2 = (φ1 → φ2) ' (φ2 → φ1).
The satisfaction of LTL formulas can be checked using

deterministic Rabin automata (DRA) [17, Def. 2.7].

Definition 2 (Deterministic Rabin Automaton): A deter-

ministic Rabin automaton is a tuple R = (S, s0, O, δ, F),
where

• S is a finite set of states,

• s0 ¢ S is a singleton initial state,

• O is the input alphabet, which corresponds to the set of

observations from the LTL formula,

• δ : S × O → 2S is a transition map which is either ∅
or a singleton for all s ∈ S and o ∈ O, and

• F = {(G1, B1), · · · , (Gn, Bn)}, where Gi, Bi ¦
S, i = 1, 2, · · · , n is the acceptance condition.

The semantics of a Rabin automaton R are defined

over infinite input words in Oω (the set of infinite se-

quences of observations). A run of R over an infinite

word wO = wO(1), wO(2), wO(3) · · · ∈ Oω is a sequence

wS(1)wS(2)wS(3) · · · ∈ Sω , where wS(1) = s0 and wS(k+
1) = δ(wS(k), wO(k)) for all k g 1. A run wS admits a

set inf(wS) = {wS(i) : ∀m ∈ N ∃k > m s.t. wS(k) =
wS(i)}, defined as the set of observations in wS which

appear infinitely often. Then, a run wS is accepted by R
if inf(wS) ∩ Gi ̸= ∅ ' inf(wS) ∩ Bi = ∅ for some i ∈
{1, · · · , n}. If wS is accepted by R, we say that wS |= R.

We use Interval Markov Decision Processes to abstract the

system dynamics.

Definition 3 (Interval Markov Decision Process): An In-

terval Markov Decision Process (IMDP) is a tuple I =
(Q,A, Ť , T̂ , Q0, O, L) where:

• Q is a finite set of states,

• A is a finite set of actions,

• Ť , T̂ : Q×A×Q −→ [0, 1] are lower and upper bounds,

respectively, on the transition probability from state q ∈
Q to state q′ ∈ Q under action α ∈ A,

• Q0 ¦ Q is a set of initial states,

• O is a finite set of atomic propositions or observations,

• L : Q −→ O is a labeling function.

For our setting, the set of IMDP states Q corresponds

to the set of hyper-rectangular regions {Xq} of the state

space such that IMDP state q abstracts hyper-rectangular

region Xq . Then, the set of actions A also corresponds to the

hyper-rectangular regions of the state space, i.e., the action

αq targets the center of region Xq . However, due to system

uncertainty, the robot may be perturbed from its targeted

point. We use methods proposed in [18], [19] to learn the

motion uncertainties using Gaussian processes (GP) [8] and

map learned bounds of the motion perturbations onto the

transition probability intervals of an IMDP.

For control policy synthesis, we combine an IMDP with

the DRA of the LTL specification to form a product IMDP.

Definition 4 (PIMDP): Let I = (Q,A, Ť , T̂ , Q0, O, L)
be a IMDP and A = (S, s0, O, δ, F) be an DRA. The product

IMDP (PIMDP) is defined as a tuple P = I ¹ A =
(Q× S,A, Ť ′, T̂ ′, Q× s0, F

′), where

• Ť ′ : (q, s)×A×(q′, s′) := Ť (q, α, q′) if s′ ∈ δ(s, L(q))
and 0 otherwise (where α ∈ A is an IMDP action),

• T̂ ′ : (q, s)×A×(q′, s′) := T̂ (q, α, q′) if s′ ∈ δ(s, L(q))
and 0 otherwise,

• (q0, δ(s0, L(q0))) ∈ (Q0 × S) is a set of initial states

of I ¹ A, and

• F ′ = Q × F = {Q × (G1, B1), · · · , Q × (Gn, Bn)},

where Gi, Bi ¦ S is the ith acceptance condition.

We next define the control policies we consider.

Definition 5 (Control Policy): A control policy π ∈ Π of

a PIMDP is a mapping (Q× S)+ −→ A, where (Q× S)+ is

the set of finite sequences of states of the PIMDP.

The transition probability intervals in PIMDPs resulting

from learnable uncertainties are resolved at planning time

using adversaries.

Definition 6 (PIMDP Adversary): Given a PIMDP state

(q, s) and action α, an adversary ξ ∈ Ξ is an assignment

of transition probabilities T ′
ξ to all states (q′, s′) such that

Ť ′((q, s), α, (q′, s′)) f T ′
ξ((q, s), α, (q

′, s′))

f T̂ ′((q, s), α, (q′, s′)).

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 15,2025 at 17:35:40 UTC from IEEE Xplore. Restrictions apply.

In particular, we use a minimizing adversary, which realizes

transition probabilities such that the probability of satisfying

the specification is minimal, and a maximizing adversary,

which maximizes the probability of satisfaction.

A. Global Control Policy Synthesis

We give a brief overview of the global control policy

synthesis algorithm for IMDPs detailed in our previous works

[18], [19]. We will refer to this baseline as “Global VI,

Global GP” later in this work. We consider two distinct

objectives. First, we want to synthesize a control policy

which allows a robot to traverse its state space without violat-

ing LTL specification φ, thus sampling and learning system

uncertainties using a global GP. Then, once the uncertainties

have been learned sufficiently to make φ feasible, we want

to synthesize a control policy to satisfy φ.

For the first objective, a value iteration algorithm [20] is

first performed with respect to a maximizing adversary to

determine the probability of satisfying φ from each state.

States which have probability zero are considered violating.

Then, a graph pruning algorithm is used to find a global

control policy which avoids transitions to violating states.

For the second objective, global value iteration is per-

formed with respect to a minimizing adversary to determine

the probability of satisfying φ from each state. The control

policy is then synthesized by selecting the action at each state

which produces the maximum probability of satisfaction.

III. PROBLEM SETUP

We now explain the problem we address in the remainder

of the paper. We consider a scenario in which a robot

modeled by (1) has a task given as LTL specifications.

However, there exist state-dependent motion perturbations

which we seek to learn with GPs. Additionally, we assume

that there exists a priori knowledge of local variation in

the perturbations which should be leveraged for more ef-

ficient learning. This assumption can be relaxed by learning

the local uncertainty regions online through hyperparameter

tuning of local GPs, although that is not explored in this

work. Figure 1(a) illustrates an example of the types of

environments we consider.

Our ultimate goal is to synthesize a high-level control pol-

icy which allows the robot to satisfy the LTL specifications

while learning and accounting for motion perturbations.

Problem 1: Synthesize a computationally efficient control

policy for the system (1) to satisfy LTL specifications by

learning and reducing system uncertainties.

To improve the speed of the computations and incorporate

knowledge of regions with varying perturbation characteris-

tics, we want an algorithm which can perform calculations

on sub-regions of the state space using local data:

Subproblem 1.1: Develop an algorithm which reduces

computation time by performing calculations on sub-regions

of the state space using localized data.

Then, we need to combine these local calculations in a man-

ner which gives global guarantees on LTL task satisfaction:

Subproblem 1.2: Use the local calculations generated by

the algorithm solving Subproblem 1.1 to synthesize a control

policy with global guarantees on LTL task satisfaction.

Solving Subproblems 1.1 and 1.2 solves Problem 1.

IV. LOCAL-GLOBAL PIMDPS

In this section, we detail the local-global PIMDP structure

which we use to perform control policy synthesis.

A. Partition Structure

We first define the union and intersection of PIMDPs.

Definition 7 (Union of PIMDPs): Let P = {P0, ...,Pn}
be a set of PIMDPs, where each PIMDP Pi has a set of

states Qi ×Si and a set of actions Ai. Then, the union
⋃
P

is a PIMDP with tuple (Q×S,A, Ť ′, T̂ ′, Q× s0, F
′), where

• Q×S = {(q, s)|(q, s) ∈ Qi×Si} for some i ∈ 1, · · · , n,

• A = {α|α ∈ Ai} for some i ∈ 1, · · · , n,

• Ť ′, T̂ ′, Q×s0, F
′ follow from Definition 4 given Q×S

and A.

Thus, the union of PIMDPs can be thought of as a PIMDP

which contains the union of the states and actions of the

individual PIMDPs. Similarly, we can define the intersection

of PIMDPs as a PIMDP which contains the intersections of

the states and actions of the individual PIMDPs.

Definition 8 (Intersection of PIMDPs): Let P =
{P0, · · · ,Pn} be a set of PIMDPs, where each PIMDP

Pi has a set of states Qi × Si and a set of actions

Ai. Then, the intersection
⋂
P is a PIMDP with tuple

(Q× S,A, Ť ′, T̂ ′, Q× s0, F
′), where

• Q× S = {(q, s)|(q, s) ∈ Qi × Si} for all i ∈ 1, · · · , n,

• A = {α|α ∈ Ai} for all i ∈ 1, · · · , n,

• Ť ′, T̂ ′, Q×s0, F
′ follow from Definition 4 given Q×S

and A.

Finally, given PIMDPs P∗ and P ′ which are subsets of

a global PIMDP Pglobal = ((Q × S)g, Ag, Ť
′
g, T̂

′
g, (Q ×

s0)g, F
′
g), we define P∗ and P ′ to be neighbors if there exists

a state in P∗ which has a corresponding action in Pglobal

with nonzero upper bound probability of transitioning to a

state in P ′ and vice versa.

We define a Local-Global extension of Pglobal as follows.

Definition 9 (Local-Global PIMDP): A Local-Global

PIMDP (LG-PIMDP) extension of a PIMDP Pglobal is a

tuple P = (Psub,N), where

• Psub is a set of PIMDPs such that
⋃
Psub = Pglobal

and
⋂
{P ′,P∗} = ∅ ∀P ′,P∗ ∈ Psub, P ′ ̸= P∗ ,

• N ¦ Psub × Psub is a set of neighbor PIMDPs such

that (P ′,P∗) ∈ N =⇒ (P∗,P ′) ∈ N , i.e. the edges

are undirected.

Figure 1(b) shows an example of a LG-PIMDP.

B. Local Control Policy Synthesis

Given a LG-PIMDP P, we now detail a local control

policy synthesis methodology for PIMDPs in its set of

regions Psub. Following the exposition in [18], [19], we

consider two control policy objectives. Initially, the given

LTL specification φ may be infeasible due to the high level

of motion uncertainties throughout the environment. Thus,

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 15,2025 at 17:35:40 UTC from IEEE Xplore. Restrictions apply.

0 1

0.616 0.781

0 1

0.563 0.75

(a) Global VI (b) Local VI

Fig. 2. Toy example comparing local and global control policy synthesis
strategies. The blue state is the start, the brown state is a hazard, and the
green state is the goal. Numbers on states indicate the final calculated
satisfaction probability. (a): The global value iteration (VI) evaluates the
satisfaction probabilities of all states simultaneously through VI with a 4x4
matrix of transition probabilities. (b): The local VI evaluates the satisfaction
of the states sequentially beginning from the goal state and proceeding
recursively through the neighbor states.

the robot must first traverse the environment using a control

policy πsamp without violating φ. Once the robot has learned

its motion uncertainties sufficient to make φ feasible, a

satisfying control policy πsat must be synthesized.

For each local region Pi ∈ Psub with tuple ((Q ×
S)i, Ai, Ť

′
i , T̂

′
i , (Q × s0)i, F

′
i), we synthesize a local safe

sampling control policy πsamp,i, i.e., one which avoids states

which are guaranteed to violate φ, as follows. We first define

an augmented PIMDP P ′
i which has states

(Q× S)′i ={(q, s)|(q, s) ∈ (Q× S)i}
⋃

(3)

{(q′, s′)|Ť ′
g((q

∗, s∗), α, (q′, s′)) > 0}

for some (q∗, s∗) ∈ (Q× S)i, α ∈ Ai.

Intuitively, P ′
i augments Pi with states it can potentially

transition to in one step given the set of corresponding actions

in Pglobal. The external states are set to self-transition with

probability 1, i.e., they are sink states.

Then, the sampling policy πsamp,i can be obtained by

first running value iteration with a maximizing adversary

on P ′
i and identifying violating states (q, s)viol with sat-

isfaction probability P
φ
sat = 0. Next, we iteratively prune

any state-action pairs ((q, s), α) ∈ ((Q × S)i, Ai)) with

T̂ ′((q, s), α, (q, s)viol) > 0 until none remain. The remaining

actions at each state (q, s) ∈ (Q×S)i are safe and the union

of all such actions is πsamp,i. The maximizing adversary

allows the robot to target states which may have P
φ
sat = 0

under other adversaries, a design choice allowing the robot

to maximize information gain by exploring uncertain states.

For the local control policy πsat,i in region Pi to satisfy

the LTL specification, we can perform a similar operation,

forming the augmented PIMDP P ′
i and performing value

iteration on the augmented PIMDP using a minimizing

adversary. The control policy for each state (q, s) ∈ (Q×S)i
selects the optimal action

α∗ = arg max
α∈Ai

P
φ
sat((q, s), α), (4)

where P
φ
sat((q, s), α) is the probability of satisfying φ from

state (q, s) after taking action α. Here, the minimizing

adversary ensures that P
φ
sat((q, s), α

∗) is a lower bound on

the true P
φ
sat at each state.

For each PIMDP, the transition probability intervals are

generated according to the uncertainty from a GP as in

Theorem 1, [18]. In particular, we use local sparse GPs

trained on data collected within their respective PIMDP

regions. This differs from the approach in [18], [19] where

a single global GP was used to learn uncertainties.

Theorem 1 provides behavior guarantees on the local

control policy synthesis algorithms detailed in this section,

solving Subproblem 1.1.

Theorem 1 (Local Behavior Guarantees): A robot with

LTL specification φ and executing control policy πsamp,i

generated by the algorithms in Section IV-B traverses only

nonviolating states while in the local region P ′
i . When exe-

cuting the policy πsat,i, the robot maximizes its probability

of satisfying φ from states in P ′
i .

Proof: We first examine πsamp,i. The algorithm first initial-

izes the probability of satisfaction for states in Pi to be 0

unless the state is contained in the accepting region F ′
i , in

which case the probability of satisfaction is fixed at 1. Then,

the algorithm identifies an augmented PIMDP P ′
i . Assume

that the external states {(q′, s′)|Ť ′
i ((q

∗, s∗), α, (q′, s′)) >

0} \ (Q× S)i have valid probabilities of satisfaction:

max
α∈Ai

P
φ
sat((q

′, s′), α) f P
φ
opt(q

′, s′), (5)

where P
φ
opt(q

′, s′) is the true probability of satisfaction. This

assumption is addressed in Section V. Let P̂
φ
sat,k be the

probability of satisfaction calculated for an arbitrary state in

P ′
i at the kth step of value iteration given this assumption,

and let P̂
φ
opt,k correspond to the case when the external states

are initialized at the optimal values

max
α∈Ai

P
φ
sat((q

′, s′), α) = P
φ
opt(q

′, s′), (6)

Then, consider the value iteration algorithm as described in

[20]. Initially (for step k = 0) it holds trivially that P̂
φ
sat,0 f

P̂
φ
opt,0 for all states in P ′

i . If at the kth step P̂
φ
sat,k f P̂

φ
opt,k,

it holds that P̂
φ
sat,k+1

f P̂
φ
opt,k+1

at the next step since the

value iteration operations are monotone with respect to the

current state values. By induction, at any step of the value

iteration it holds for all states (q, s) ∈ P ′
i that

max
α∈Ai

P
φ
sat((q, s), α) f P

φ
opt(q, s), (7)

i.e. the calculated probabilities of satisfaction are underap-

proximations of the true values. It follows that this algorithm

identifies all the true violating states (q, s)viol with P
φ
opt = 0.

Then, by pruning actions transitioning to the violating states,

the set of allowable actions Aq,s ¦ πsamp,i at any state

(q, s) ∈ P ′
i has the property

T̂ ′((q, s), α, (q, s)viol) = 0 ∀α ∈ Aq,s (8)

Therefore, when executing πsamp,i in P ′
i , the robot is guar-

anteed to remain in nonviolating states.

The proof of the guarantees for πsat,i follows similarly.

Assume the external states {(q′, s′)|Ť ′
i ((q

∗, s∗), α, (q′, s′)) >
0} \ (Q× S)i in the augmented PIMDP P ′

i satisfy

max
α∈Ai

P
φ
sat((q

′, s′), α) f P
φ
opt(q

′, s′). (9)

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 15,2025 at 17:35:40 UTC from IEEE Xplore. Restrictions apply.

Then, at any step of value iteration with a minimizing

adversary, the relation

max
α∈Ai

P
φ
sat((q, s), α) f P

φ
opt(q, s). (10)

holds for all states (q, s) ∈ P ′
i . Therefore, the computed P

φ
sat

for any state in P ′
i is valid, and by construction πsat,i selects

the probability-maximizing action at each state.

We now present a toy example to illustrate our algorithms:

Example 1 (Simple Grid World): Consider the system

shown in Figure 2, which has four states: the blue start

state, the brown hazard state, the green goal state, and

an unlabeled state. The LTL specification φ is to reach

the goal state while avoiding the hazard state. Each state

has two actions, each of which targets one of its two

border states. Each action has a lower bound and upper

bound probability [0.75, 1] of reaching its target state,

and probability [0, 0.2] of reaching each one of the other

three states. In Figure 2(a), global value iteration (as in

[18], [19]) is used which involves repeated matrix-vector

multiplication of dimension 4. The P
φ
sat for each state is

taken as the final computed satisfaction probability for the

state when the value iteration converges. In Figure 2(b),

local value iteration as proposed in this work is used with

each state as its own region for control policy synthesis.

For each local region, a P
φ
sat is computed by selecting the

probability-maximizing action and taking its corresponding

satisfaction probability, an operation which requires only a

single matrix-vector multiplication.

V. GLOBAL CONTROL POLICY SYNTHESIS

Given the LG-PIMDP P and local control policy synthesis

algorithms established in Section IV, it remains to develop

an algorithm to combine local control policies to provide

global guarantees of task satisfaction.

We first detail a global control policy synthesis algorithm

πsamp to safely traverse the state space while learning

uncertainties. The key idea is to order the local partition

calculations in such a way as to guarantee the correctness

of the set of nonviolating states identified. Our algorithm

is as follows. We begin with the regions Pi which contain

accepting states of the LG-PIMDP, i.e. F ′
i ̸= ∅. We then

form the augmented PIMDP πsamp,i and perform value

iteration as in Section IV, initializing the neighbor states

{(q′, s′)|Ť ′
i ((q

∗, s∗), α, (q′, s′)) > 0} \ (Q × S)i with prob-

ability P
φ
sat = 0. Then, we identify the neighbor set

{Pj |(Pi,Pj) ∈ N} (11)

and add these neighboring regions to a first-in-first-out queue

R. For each region Pj in the queue, we repeat the local

control policy synthesis algorithm and add its neighbors

which have not been processed already to the end of the

queue R. We continue this sequeunce until R = ∅, at which

point the entire LG-PIMDP has been processed. The final

control policy is synthesized as

πsamp =
⋃

{i|Pi∈Psub}

πsamp,i (12)

Algorithm 1: Safe Control Policy Synthesis

Input: LG-PIMDP P, Accepting PIMDP set G

Output: Global control policy πsamp

1 Initialize Processing Queue R, Completed Set U;

2 for PIMDP P ∈ G do

3 Synthesize local control policy πsamp,P as in

Section IV-B with external augmented states

fixed with satisfaction probability 0;

4 Add unprocessed neighbor set

{P ′|(P,P ′) ∈ N} \U to the end of queue R;

5 Add P to completed set U;

6 end

7 while R ̸= ∅ do

8 Remove first PIMDP P from R;

9 Synthesize local control policy πsamp,P for P
with current information from external

augmented states;

10 Add unprocessed neighbor set

{P ′|(P,P ′) ∈ N} \U to the end of queue R;

11 Add P to completed set U;

12 end

13 return πsamp =
⋃

{i|Pi∈Psub}
πsamp,i

Algorithm 1 details the methodology.

The global control policy synthesis algorithm to satisfy φ

follows a similar structure. We again begin with the accepting

regions {Pi|F
′
i ̸= ∅}, performing local value iteration and

control policy synthesis to obtain πsat,i as in Section IV-B.

We then add the neighbor set {Pj |(Pi,Pj) ∈ N} to the end

of the queue R to be processed and continue performing

local control policy synthesis until R = ∅, at which point

we generate

πsat =
⋃

{i|Pi∈Psub}

πsat,i. (13)

Theorem 2 proves that the global control policy synthesis

algorithms presented in this section give global guarantees

on LTL task satisfiability, solving Subproblem 1.2.

Theorem 2 (Global Behavior Guarantees): Executing

πsamp generated by Algorithm 1 ensures that the robot does

not violate the LTL specification φ anywhere in the state

space if a nonviolating policy exists. Likewise, executing

πsat guarantees that the robot maximizes its probability of

satisfying φ globally.

Proof: The proof follows generally from the proof of

correctness of the local control policy synthesis algorithms

established in Theorem 1. We first examine the safe control

policy πsamp generated by Algorithm 1. We initially run

the local control policy synthesis algorithm on the accepting

regions {Pi|F
′
i ̸= ∅}. Since we assume that accepting states

(q∗, s∗) are absorbing and thus

max
α∈Ai

P
φ
sat((q

∗, s∗), α) = 1, (14)

it follows that

P
φ
sat(q

∗, s∗) f P
φ
opt(q

∗, s∗) (15)

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 15,2025 at 17:35:40 UTC from IEEE Xplore. Restrictions apply.

since probabilities are bounded above by 1. All other states

are initialized with probability 0, so Equation (15) holds

for all states in Pi and by Theorem 1 we know that the

local value iteration in Pi produces valid values for all P
φ
sat.

Once the initial regions have been processed, we proceed

to perform local control policy synthesis on the neighbors

{Pj |(Pi,Pj) ∈ N}. By definition, these neighbors transition

to states in the initial set {Pi|F
′
i ̸= ∅}, so local value

iteration on the Pj satisfies the assumption (5) in Theorem 1

and the local value iterations are valid. Thus, by recursively

performing local control policy synthesis on neighbor sets as

in Algorithm 1, we guarantee the safety of each local control

policy πsamp,i by using guarantees from the previously

computed regions. Since πsamp,i is valid for all i, it follows

that πsamp =
⋃

{i|Pi∈Psub}
πsamp,i is also valid. A similar

argument holds for the validity of πsat.

Example 2 (Simple Grid World Continued): We continue

illustrating our methodology using the same setup as in

Example 1. We compare the global control policy synthesis

algorithms to generate πsat shown in Figure 2. In Figure 2(a),

global value iteration is used which takes eight iterations to

converge to the values shown in the figure. In Figure 2(b),

local value iteration is used which starts at the goal state and

then proceeds sequentially to neighbor regions as depicted

by the arrows. In this case, only four total computations

are needed, two of which are trivial (the goal and hazard

states). The final P
φ
sat values in the local VI case are more

conservative than in the global VI case, illustrating a tradeoff

between computational complexity and accuracy.

A. Complete Control Policy Synthesis Framework

We can now present the complete methodology to solve

Problem 1. We start by constructing a LG-PIMDP P of the

system (1), environment, and a given LTL specification φ.

The true motion perturbation is initially unknown but is

estimated with local GPs based on conservative estimates

known a priori. The size of the regions corresponding to

local GPs is selected to balance computational tractability

and task feasibility. Smaller local regions are more computa-

tionally efficient, but result in more conservative satisfaction

probabilities as compared to larger local regions.

Next, we perform global control policy synthesis on P to

maximize the probability of satisfying φ. If the probability

from the initial state is below a desired threshold P
φ
des,

we then synthesize a safe sampling control policy πsamp

using Algorithm 1. We execute this control policy (randomly

selecting actions if multiple are valid at a given state) for a

predetermined number of steps, allowing the robot to traverse

through the environment and collect actual motion perturba-

tion data. We then update the GPs corresponding to traversed

regions with the newly collected data and recalculate P
φ
sat

globally. We continue sampling the state space and retraining

GPs until maxα∈A P
φ
sat(q, s, α) > P

φ
des at the current state

(q, s), or a maximum number of iterations has been reached.

This bound on the iteration count ensures termination in the

case that a satisfying control policy cannot be synthesized

for the given scenario. If φ can be satisfied, we execute the

0 5 10 15 20 25
0

5

10

15

20

25

Batch #
1
2
3
4
5
6

Fig. 3. Sample trajectory for one run of the case study simulation. Green,
yellow, and red regions correspond to areas with low, medium, and high
uncertainty, respectively. The initial state is in blue in the bottom left, the
target state is green in the top right, and the hazard regions are brown. There
are intermediate “A1” and “A2” states in purple, “A2” in the top left and
“A1” in the bottom right, and the “B” state is orange in the top middle.
The robot initially samples close to its start region until it learns the motion
perturbations sufficiently well to traverse to the top left area. Once there,
the robot traverses across to reach the “A2”, “B”, and goal states.

control policy πsat until the robot reaches an accepting state.

VI. CASE STUDY

Consider a mobile robot in a state space depicted in

Figure 3 with bounds x ∈ X := [0, 25]2 ¢ R
2. At each

discrete state, the robot has actions corresponding to moving

{up, down, left, right} one state. We assume that terrain

uncertainty in the environment creates motion perturbations,

and we choose to directly learn the state-dependent motion

perturbations with GPs. For implementation purposes, the

true motion perturbation for regions with low, medium,

and high uncertainty (green, yellow, and red regions in

Figure 3, respectively) is created by sampling pregenerated

local GPs with variance 0.01, 0.03, and 0.05, and length

hyperparameter 7, 5, and 3, respectively. Intuitively, regions

with higher variance and lower length hyperparameter have

greater variation in perturbation values and thus require more

sampling to characterize. Additionally, there exists stochastic

motion perturbation ν sampled from a truncated Gaussian

distribution N(0, 0.01) bounded at ±2σ. The objective of the

robot is to reach the goal state “G” while avoiding hazard

“H” states. Additionally, before it reaches the goal, it must

traverse either the “A1” or “A2” states and then the “B” state.

This gives the LTL specification

φ = ¬H U G ' ¬G U B ' ¬B U (A1 (A2) (16)

Given these parameters, under our proposed methodology the

robot initially has a probability of 0.19 to satisfy the spec-

ification. The robot then executes the algorithm, collecting

batches of trajectory data and retraining its GP estimations

of the motion perturbation in between each batch before

continuing from its current position. In earlier batches, the

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 15,2025 at 17:35:40 UTC from IEEE Xplore. Restrictions apply.

TABLE I

ABLATION STUDY OF THE PROPOSED ALGORITHM.

Algorithm Total Time (sec) # Steps

Our Method (Local VI, Local GP) 354 2759

Global VI, Local GP 1284 9499

Local VI, Global GP Infeasible Infeasible

Baseline (Global VI, Global GP) Infeasible Infeasible

robot remains within the low perturbation areas close to its

starting position, learning the local dynamics until it moves

towards the “A2” checkpoint in the top left of the state

space. Once the probability of satisfaction crosses the desired

threshold of 0.99, the robot takes the riskier but shorter

direct path across the top of the state space towards the “B”

checkpoint and finally the goal region. The robot is able to

follow this trajectory owing to its efficient learning of motion

perturbations in the top left area of the state space, allowing it

to safely pass through the high-uncertainty regions separating

the “A2” and “B” checkpoints. The entire algorithm takes a

total of 5 minutes 54 seconds to run on a machine with a

Ryzen 7700X CPU, 32 GB of RAM, and a RTX 3090 GPU.

Figure 3 shows the trajectory of the run discussed.

A. Ablation Study

We now perform an ablation study on the same sce-

nario to characterize the benefits of each component of

the proposed algorithm. We compare performance against a

baseline algorithm proposed in our previous works [18], [19]

which uses global value iteration (Global VI) and global GP

learning (Global GP), as well as against modified versions

of the algorithm in this work which remove one component

each (Global VI/Local GP, Local VI/Global GP). Table I

summarizes our findings, comparing total computation time

and the number of steps the robot required to satisfy the

LTL specification. The baseline case and the “Local VI,

Global GP” case are both infeasible due to the high levels of

uncertainty created by using global parameters for the GPs,

resulting in no valid safe sampling trajectory being found.

The “Global VI, Local GP” case finds a successful trajectory,

but requires four times the amount of time and number of

steps. In this case, the initial probability of satisfaction is

0.98, but the robot is less efficient in exploring towards the

goal as the robot tends to explore the space more uniformly

rather than moving along a trajectory of local regions towards

the goal as in the “Local VI, Local GP” case.

VII. CONCLUSION

In this work, we proposed a novel local-global method

to enable computationally efficient IMDP control policy

synthesis for robotic systems with system and environmental

uncertainty. We developed a methodology which performs

local control policy synthesis on sub-regions of the global

state space and then combines local policies to obtain global

guarantees on the probability of satisfying a given LTL

specification. Additionally, we proposed the use of local

GPs to learn uncertainties. Finally, we demonstrated the

effectiveness of our proposed algorithms compared to the

baseline global control policy synthesis algorithms developed

in previous works. Future work will implement these local-

global algorithms on hardware in order to demonstrate the

feasibility of online IMDP-based control policy synthesis.

REFERENCES

[1] K. Sreenath, C. R. Hill, and V. Kumar, “A partially observable
hybrid system model for bipedal locomotion for adapting to terrain
variations,” in Proceedings of the 16th International Conference on

Hybrid Systems: Computation and Control, ser. HSCC ’13. New York,
NY, USA: Association for Computing Machinery, 2013, p. 137–142.

[2] K. Byl and R. Tedrake, “Metastable walking machines,” I. J. Robotic

Res., vol. 28, pp. 1040–1064, 07 2009.
[3] B. Lacerda, D. Parker, and N. Hawes, “Optimal and dynamic planning

for markov decision processes with co-safe ltl specifications,” in 2014

IEEE/RSJ International Conference on Intelligent Robots and Systems,
2014, pp. 1511–1516.

[4] M. Cai, H. Peng, Z. Li, and Z. Kan, “Learning-Based Probabilistic
LTL Motion Planning With Environment and Motion Uncertainties,”
IEEE Transactions on Automatic Control, vol. 66, no. 5, pp. 2386–
2392, 2021.

[5] M. Dutreix, J. Huh, and S. Coogan, “Abstraction-based synthesis for
stochastic systems with omega-regular objectives,” Nonlinear Analy-

sis: Hybrid Systems, vol. 45, p. 101204, 2022.
[6] R. Majumdar, K. Mallik, A.-K. Schmuck, and S. Soudjani, “Symbolic

qualitative control for stochastic systems via finite parity games.”
IFAC-PapersOnLine, vol. 54, no. 5, pp. 127–132, 2021, 7th IFAC
Conference on Analysis and Design of Hybrid Systems ADHS 2021.

[7] A. Lavaei, S. Soudjani, A. Abate, and M. Zamani, “Automated
verification and synthesis of stochastic hybrid systems: A survey,”
Automatica, vol. 146, p. 110617, 2022.

[8] C. K. I. Williams and C. E. Rasmussen, “Gaussian processes for
regression,” in Advances in neural information processing systems 8.
MIT press, 1996, pp. 514–520.

[9] J. Jackson, L. Laurenti, E. Frew, and M. Lahijanian, “Strategy Syn-
thesis for Partially-known Switched Stochastic Systems,” Proceedings

of the 24th International Conference on Hybrid Systems: Computation

and Control, May 2021.
[10] A. H. Chang, C. M. Hubicki, J. J. Aguilar, D. I. Goldman, A. D.

Ames, and P. A. Vela, “Learning terrain dynamics: A gaussian process
modeling and optimal control adaptation framework applied to robotic
jumping,” IEEE Transactions on Control Systems Technology, vol. 29,
no. 4, pp. 1581–1596, 2021.

[11] S. Vasudevan, F. Ramos, E. Nettleton, H. Durrant-Whyte, and A. Blair,
“Gaussian process modeling of large scale terrain,” in 2009 IEEE

International Conference on Robotics and Automation, 2009, pp.
1047–1053.

[12] M. L. Littman, T. L. Dean, and L. P. Kaelbling, “On the complexity
of solving markov decision problems,” in Proceedings of the Eleventh

Conference on Uncertainty in Artificial Intelligence, ser. UAI’95. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1995, p.
394–402.

[13] S. Brechtel, T. Gindele, and R. Dillmann, “Probabilistic mdp-behavior
planning for cars,” in 2011 14th International IEEE Conference on

Intelligent Transportation Systems (ITSC), 2011, pp. 1537–1542.
[14] D. Wingate, Solving large mdps quickly with partitioned value itera-

tion. Brigham Young University, 2004.
[15] M. Hauskrecht, N. Meuleau, L. P. Kaelbling, T. L. Dean, and

C. Boutilier, “Hierarchical solution of markov decision processes using
macro-actions,” arXiv preprint arXiv:1301.7381, 2013.

[16] J. Barry, L. P. Kaelbling, and T. Lozano-Pérez, “Hierarchical solution
of large markov decision processes,” 2010.

[17] C. Belta, B. Yordanov, and E. GÖL, Formal Methods for Discrete-Time

Dynamical Systems, ser. Studies in Systems, Decision and Control.
Springer International Publishing, 2017.

[18] J. Jiang, Y. Zhao, and S. Coogan, “Safe learning for uncertainty-aware
planning via interval MDP abstraction,” IEEE Control Systems Letters,
vol. 6, pp. 2641–2646, 2022.

[19] J. Jiang, S. Coogan, and Y. Zhao, “Abstraction-based planning for
uncertainty-aware legged navigation,” IEEE Open Journal of Control

Systems, vol. 2, pp. 221–234, 2023.
[20] M. Lahijanian, S. B. Andersson, and C. Belta, “Formal Verification and

Synthesis for Discrete-Time Stochastic Systems,” IEEE Transactions

on Automatic Control, vol. 60, no. 8, pp. 2031–2045, Aug. 2015.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 15,2025 at 17:35:40 UTC from IEEE Xplore. Restrictions apply.

