2024 IEEE/RS]J International Conference on Intelligent Robots and Systems (IROS) | USGov | DOI: 10.1109/IROS58592.2024.10802218

2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

October 14-18, 2024. Abu Dhabi, UAE

LTL-D*: Incrementally Optimal Replanning for Feasible and Infeasible
Tasks in Linear Temporal Logic Specifications

Jiming Ren, Haris Miller, Karen M. Feigh, Samuel Coogan, and Ye Zhao

Abstract—This paper presents an incremental replanning
algorithm, dubbed LTL-D#*, for temporal-logic-based task plan-
ning in a dynamically changing environment. Unexpected
changes in the environment may lead to failures in satisfying a
task specification in the form of a Linear Temporal Logic (LTL).
In this study, the considered failures are categorized into two
classes: (i) the desired LTL specification can be satisfied via
replanning, and (ii) the desired LTL specification is infeasible
to meet strictly and can only be satisfied in a “relaxed” fashion.
To address these failures, the proposed algorithm finds an
optimal replanning solution that minimally violates desired task
specifications. In particular, our approach leverages the D* Lite
algorithm and employs a distance metric within the synthesized
automaton to quantify the degree of the task violation and then
replan incrementally. This ensures plan optimality and reduces
planning time, especially when frequent replanning is required.
Our approach is implemented in a robot navigation simulation
to demonstrate a significant improvement in the computational
efficiency for replanning by two orders of magnitude.

I. INTRODUCTION

As autonomous robots play an increasingly important
role in executing long-horizon missions in complex envi-
ronments, task and motion planning becomes essential for
seamlessly integrating high-level task planning with low-
level motion planning. By logically reasoning about the
temporal ordering of events at the task level, Linear Temporal
Logic (LTL)-based planning provides a correct-by-design
task sequence that builds upon discretized abstractions of
the robot’s workspace [1], [2]. This study aims to leverage
incremental graph search to find optimal navigation plans
in dynamically changing environments (as shown in Fig. 1)
under task specifications given as LTL formulas.

While temporal-logic-based planning offers formal guar-
antees on safety and provable correctness, a long-standing
issue lies in its inefficiency in runtime action revision when
environments and states are subject to frequent, potentially
unpredictable changes. A naive way is to construct a plan
from scratch. However, the complexity of rewiring a feasible
solution grows exponentially as robots’ workspace and states
scale. The works of [3], [4], [5], [6] propose a local path
revision based on previous plans or using behavior trees,
which significantly shortens the time to replan, but they com-
monly lose the guarantee on optimality. Another approach
is to model uncertainties a priori and generate an offline

The authors are with the Institute for Robotics and Intelligent Ma-
chines, Georgia Institute of Technology, Atlanta, GA 30332, USA,
jren3l3@gatech.edu

This work is sponsored by Lockheed Martin Corporation University
Research program. The work is that of the authors and does not represent
an official position of LMCO.

. Infeasible

Feasible

Replanning
is initiated from
the suffix

The original run :

Replanning
is initiated from
the prefix

Fig. 1. Top: The trajectory of a drone starting from A and executing the
mission of carrying goods from each room F, B, C, and D to the central
dropoff location E sequentially. The color of the trajectory representing time
transitions from dark blue to orange as time progresses. Multiple replanning
events take place along the way where task specifications remain feasible
to meet. Loading goods at D becomes infeasible because the access to the
room is closed. Therefore, the drone hovers around at its current location
because all other tasks have been finished. Botfom: We show our revision
strategies based on the current phase of the run that the robot is executing.

receding-horizon strategy to react to real-time observations
[7], [8]. While this approach provides an online solution, it
could not offer a globally optimal solution in general.

The aforementioned approaches aim to address realizable
task specifications which may become ineffective when en-
vironmental and state changes cause the tasks infeasible to
achieve, e.g., to access location D in Fig. 1 (Top). A direct
way to resolve the infeasibility is to repair the task speci-
fication or the robot’s skill set [9], [10]. To find a minimal
violation motion plan that is closest to the original goal,
[11] and [12] utilize Markov Decision Process to acquire a
policy that maximizes probabilities of satisfying given LTL
task objectives. The works in [13] and [14] propose hard-
soft constraints and enable partial violation by reclassifying
specific hard constraints as soft constraints. The studies
in [15] and [13] both present minimal violation revision
strategies by relaxing product automata to remain close
to the original specifications. In particular, [15] proposes
systematically partial relaxation to find a modestly relaxed
product automaton with a feasible run while similarly, [13]
proposes a metric to quantify the task violation through
atomic proposition. However, product automaton relaxation
could result in an exceedingly large graph causing off-the-
shelf algorithms to take tremendous time for a solution.
Leveraging graph search algorithms for product automaton

U.S. Government work not protected by 4495

U.S. c

Au%xzrtle%lh%:ensed use limited to: Georgia Institute of Technology. Downloaded on June 15,2025 at 17:15:42 UTC from IEEE Xplore. Restrictions apply.

modification and relaxation offers a promising solution to
address this issue. [16], [17], and [18] investigate efficient
sampling-based approaches like RRT*, while [19] and [20]
attempt to apply heuristic-based search algorithms to solve
for trajectories with guarantee on the optimality.

In this study, we will leverage the metric from [13] and
an incremental heuristic search algorithm D* Lite [21] to
efficiently react to the environmental changes under both
feasible and infeasible task specifications.

The main contributions of this paper are listed as:

« We propose an incrementally optimal replanning algo-
rithm for temporal-logic-based task planning problems
in dynamically changing environments where the task
specification is feasible to be satisfied.

e We propose an optimal replanning approach for the
relaxed synthesized product automaton to achieve the
utmost task specification satisfaction when it is infeasi-
ble to fully meet the original goal.

¢ Our replanning approach for both feasible and infeasible
tasks demonstrates computational efficiency to find an
optimal solution for a robot navigation problem by
around two orders of magnitude.

II. PRELIMINARIES
A. Linear Temporal Logic

Linear Temporal Logic (LTL) is composed of atomic
propositions ap € AP and the Boolean and temporal connec-
tors of the syntax ¢ := T|ap | "¢ | oAV | Q¢ | U,
where the Boolean operators denote “negation” (—), “con-
junction” (A), and the temporal modalities denote ‘“next”
(O) and “until” (Uf). Other extended temporal connecters
including “eventually” (O = T U) and “always” (Lp =
=0-p) will also be used in this paper.

There exists a non-deterministic Biichi automaton (NBA)
A, that can be constructed to satisfy an LTL formula ¢. An
NBA is defined as a tuple A = (Q,Qo, 27,5, F) where
Q = {qli = 0,--- ,n} is a finite set of states, Qy C Q
is a set of initial states, 247 is a set of input alphabets,
§: Q x 24P — 29 is a transition function, and F C Q
is a set of accepting states. The accepted language L£(A) of
an NBA is an w-language, and consists of all infinite words
3* that have a run ¢ in which an accepting state is visited
infinitely often. A run of such has a prefix-suffix structure:

o=qq2(qrqf+1° " qrn)”

where ¢1 € Qo, g5 € F. The prefix of a run is executed
only once, while the suffix repeats itself infinitely.

B. Product Automaton

The robot’s operating states and collision-free workspace
are each modeled as a weighted transition system (WTS).
A WTS is a tuple T = (I, [Ty, —, AP, L, d) where II =
{m; :i=0,---,m} is a finite set of states, IT;,; C Il is a set
of initial states, —C II x II is a transition relation in which
m; — 7; is used to express controlled transition from 7; to
7;, AP is a finite set of atomic propositions, L : IT — 24F
is a labeling function to evaluate ap to be true or false, and

Task
Specification

i| Operating I Modification _
States ’i

'I

Accepting Product
. States O states operation
Fig. 2. An illustration of the framework for synthesizing product automaton
given the Weighted Transition System (WTS) and non-deterministic Biichi
automaton (NBA).

Suffix

d :—— RT is a positive weight assignment map for each
transition, which in our study represents time consumed to
relocate from one state to its successor state. More complex
weight parameters can be designed for specific situations.
The traces of a WTS Trace(T) register the valid atomic
propositions of each state visited along different executions.
By encoding a robot’s task planning problem as an LTL
task specification ¢ and by synthesizing the robot’s transition
systems, we aim to generate a feasible plan on 7 that is
at the same time accepted by A, given that the alphabet
of A, consists of sets of atomic propositions in 7. That
said, we aim to find at least one trace of WTS to be
synchronously an element in Trace(7T) and in the accepted
language L£(A,). Therefore, checking that the intersection
Trace(T) N L(Ay) is not empty is sufficient to conclude
that there is an acceptable run in the product of 7 ® A,.
The process of the product operation is shown in Fig. 2.
The product 7 ® A, named product automaton (PA), is
also defined as a tuple A, = (S, Sy, &', F',d’), where S =
OxQ={s=(mq|Vrecl,Vge @}, :5—2%isa
transition in the condition that (7}, ¢,) € ¢’ ((7;, ¢m,)) if only
if <7Ti77rj> €— and g, € 6((]maL(7Tj))s So = it ¥ QO is
the set of initial states, 7' = IT x F is the set of accepting
states, and d’ : &/ — RT is a cost function in the condition

that d' ({7, gm), (75, qn)) = d(mi, 7;).

C. Relaxation for Product Automaton

There are situations when a feasible run does not exist
in A, if Trace(T) N L(A,) = @. To resolve this failure,
one can insert a transition (7, d,) € & ({m;,qm)) in A,
where (7;,7;) €= and G, € 6(gm,247\L(m;)), to relax
the initial specification ¢. The work of [13] proposes an
evaluation function that assesses the extent to which the
original specification is violated from a relaxation. To quan-
tify the violation penalty, [13] first designs a binary function
¢: APx24P — {0,1} and a function ¢ : 247 — {0, 1}147!

assuming AP = {apy,--- ,ap, }:
1 ifap; €1

i7l =))= i’l "

&(ap;, 1) {0 ifap: ¢ 1 C(l) = [¢(ap;, 1)]

4496

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 15,2025 at 17:15:42 UTC from IEEE Xplore. Restrictions apply.

[m] L]
m| L]
g L - (g |~
. 00T
- B
)
1 2)
Fig. 3. A conceptual illustration of feasible and infeasible tasks in our

study. Assume the robot’s mission is to eventually always reach the flag.
In the beginning, the robot is not aware of the existence of any obstacles
represented by red blocks, so it plans a direct path to the flag in (a). At
runtime, it notices the obstacle in the front, so it rewires its path to the
flag by a U-turn as shown in (b). This case is considered a feasible task
where the task can still be fulfilled with a modified action. (c) represents a
replanning in an infeasible scenario where the task is impossible to meet.
When the robot reaches the bottom-right cell, it detects another obstacle,
obstructing its next move. Now the robot’s new plan would be to stay in
the closest cell to the flag cell and maintain a minimal task violation, as it
has the minimum cost in terms of traversal distance.

where i = 1,2,--- ,7 and [€ 247 The function ¢ outputs a
vector of binary values denoting whether each element of AP
is within a subset of AP. A metric p : 247 x 24P — 7+
is then introduced to assess the “difference” between two
subsets of AP:

p(,1) = [¢(1) = <)l = Z € (api, 1)
where 1,1’ € 247 and || - ||; is the I; norm. We thereby
extend the definition of the “difference” between two subsets
to the “distance” between two states, s, = (m;,¢n) and
Sn = (mj,qn), in a PA, as the quantifier of violation of
transition from s,,, to s,:

(ap“l)‘

0 if I € X(gm> qn)

DIST(S1m, Sn) = .
() p(1,1") otherwise

MINY €x (g ,qn)

where | = L(m;) is the label of 7; and x(¢m,qn) = {l €
24Pq,, € 6(qm,1)} is a set containing all the subsets of AP
that enable the transition from ¢, to q,.

D. Incremental Graph Search

Incremental graph search finds optimal solutions itera-
tively and is significantly faster than solving a search task
from scratch. It applies to planning problems on known finite
graphs whose structure evolves over time. In our study, we
apply incremental search to a directed and weighted graph
representing .Asp, denoted as G(A,) = (S, E) where S is
defined in A, and £ = S x S is a finite set of edges
connecting a pair of states (s,s’) given that s,s’ € S and
s’ € §'(s). COST(s,s) returns a finite value as the weight
of the edge (s,s’) € E, which equals to d’(s, s').

Our algorithm is based on D* Lite [21] which determines
the shortest path from a given start state Sgar¢ to a given goal
state Sgoa1 in G (.,Zlga). Similar to A* search, D* Lite algorithm
keeps track of a priority queue U and the estimates, including
g(s), or g-value, to denote the overall cost of the shortest
path from s € S t0 sg40a1, and a heuristic h(s), or h-value, to
estimate cost from Sgiart to S. The heuristic function needs
to be consistent to guarantee the optimality of the solution.

The next state to expand in U

g(s
km h(smlhsstart h(ssta.rtys)¢ /’——_—5(\)
- r~
Cost (s,s -3
Ny / *(. _____ @< -4
Sinit Sstart S s’ s goal

&
Optimal route
alreay executed

Optimal route
to be found

Fig. 4. States in D* Lite are expanded in a reversed order from sgoa1 to
Sstart Where k,, is considered as the heuristic from the initial state sjn;t, to
the current robot state Sstart, and rhs-value of a state s is updated through
summation of g-value of its successor s’ and the edge weight of (s, s’).

Beyond A*, it keeps an additional estimate rhs(s), or rhs-
value, as a one-step lookahead value for each state defined
as:

0 if s € Sg0al

rhs(s) =
() ming csyec(s)(9(s") + COST(s, s)) otherwise

where Succ(s) C S gives the set of successors of s.
A state is called “consistent” if its g-value equals to rhs-
value, “overconsistent” if its g-value is greater than the rhs-
value, and “underconsistent” if otherwise. Moreover, a duo-
component key k(s) = [min(g(s),rhs(s)) + h(Sstart,s) +
km; min(g(s), rhs(s))] replaces f-value in A* to help decide
which state to select from U for the next expansion. During
expansion of a state, its g-value is updated to the rhs-value
if overconsistent, or set to infinity if underconsistent. k,, is
a heuristic modifier variable to retain the order of states in
U if the robot sets off from its initial state sj,;; to its new
state sgar¢ before a replanning is triggered, as shown in Fig.
4. We will slightly modify the design of the key k(s) in our
study to better suit a special construction of costs in Sec. IV.

III. OPTIMAL REPLANNING FOR FEASIBLE TASKS

In this section, we propose an on-the-fly revising algorithm
that addresses unexpected environmental changes and state
disturbances while the task remains feasible to achieve. We
define task feasibility based on the assumption that there
exists a feasible run in A, without the need for any task
specification relaxation. In the terminology of graph theory,
task feasibility is equivalent to the capacity to find a path
from sgiart tO an accepting state which has a self-referential
cycle in G(AW). A conceptual example of replanning for
feasible tasks can be seen in Fig. 3 (b).

The scenario considered in this section presupposes that
the encoded task specifications remain consistent, with
changes occurring only within the WTS. These changes in
transition relations between states in 7 can be accordingly
mapped into addition, deletion, and cost changes on edges in
G (/Lp). The mapping operations can be defined as: assuming
a transition (m;, 7;) €— is added, deleted, or d(m;,7;) is
changed in 7, we can apply the same type of modifications
between (7, ¢,) and (mj,q,) in G(A,) for any gm,qn
under the condition that g, € 0(gm, L(7;)).

Similar to an NBA, a PA is also characterized by w-
language, and an infinite run of it consists of a prefix opre
followed by an iterative suffix oy, as illustrated in Fig. 2.

4497

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 15,2025 at 17:15:42 UTC from IEEE Xplore. Restrictions apply.

(a) Replanning at Prefix Phase
(Ours)

f+1 f+1
! 1 ¥
”v "®: -0
f+n ¥
(b) Replanning at Suffix Phase
(Ours)

(Local Revision [3])

f

f+n"
@Accepting . States in the New states in the States to trigger
states original run replanned run replanning

Prefix of the original run

f+1
S

1 f-1
f+n

Prefix after replanning

Suffix of the original run Suffix after replanning

Fig. 5. An illustration for replanning strategies when modification is
performed in the prefix or suffix phase of a run. The robot is at the state
marked by a circle with a cross when it senses that its adjacent states have
been added, deleted, or their transition costs have changed. These changes
within the WTS update the PA and undermine the optimality of the original
run. Note that, f and f’ denote the index of the accepting states, and n, n’
and n// denote the index of the last element of the suffixes.

Even though the suffix of a run occurs infinitely often, it is
impractical to ignore the cost incurred from the prefix before
entering the periodic suffix loop. Additionally, it is unrealistic
for a robot to run infinitely in a real-world deployment.
Therefore, we design a finite parameter 5 € R to represent
a weighting parameter of the cost associated with the suffix,
and the total cost is given as cost, . + Bcost,

suf *

A. Revision for Prefix and Suffix

In this subsection, we propose two distinct replanning
strategies when a robot is progressing through different
phases: (i) if the robot is currently in the prefix phase (as
shown in Fig. 5 (a)), we simply find a new accepting state
that gives the minimal total cost of the trace guiding the
robot from the current state to the new accepting state and
then repeat the minimal-cost loop of the new accepting state;
(ii) if the robot is currently in the suffix phase (as illustrated
in Fig. 5 (b)), the optimal solution will first maintain the
preceding trajectory ahead of the current state as part of the
new prefix, and then find a new accepting state that renders
the minimal total cost, similar to that in case (i).

We show that our replanning strategies outperform the
local revision method [3] in term of a lower cost of the
solution. The local revision algorithm identifies the shortest
detour upon its prior plan and ultimately guides it back to
the original route. This replanning strategy independently
rewires the prefix and suffix segments of a feasible path.

To argue that our strategy gives a lower cost, we assign
a substantially large value to [to emphasize the major

Algorithm 1 SUFFIXINITIALIZE

Input: A graph G(A,), index k
Output: The optimal suffix Ji?uf,
INITIALIZE() with superscript & on all variables.
Construct sf5,.

for s’ € PRED(sk

)
acc
Insert (s, s{5,.)

gk

and its cost cost[sX..]

do
with the weight COST(s’, s¥_.).

b T

wn

COMPUTESHORTESTPATH(sX ., s

acc? img)

6: Retrieve Ué‘uf and the intergal loop cost cost[sk

acc] N

Algorithm 2 SUFFIXREPLAN
Input: A set of modified edges mod, index k
Output: The optimal suffix oX ., and its cost cost|

suf>
1: for (u,v) € mod do

S};LCC]

2: if v = sX_. then

3: Update the weight COST(u, s%‘mg)
4: Update the weight COST(u, v)

5: UPDATEVERTEX (1)

6: COMPUTESHORTESTPATH (55, $i%,,)

7: Retrieve 0¥ . and the intergal loop cost cost[sk.].

contribution of the suffix due to its repetitive occurrence in
a run. For the local revision method shown in Fig. 5(b), the
overall cost cost, is:

f—1 f+n”
costyr = Z CosST(s;, 8i+1) + 5 z COST(8;.8;+1)
i=1 i=f

where f is the index of the original accepting state, and n”’
is the index of the last element in the suffix. Note that, we
define sy, 41 = sy. Similarly, the overall cost cost, using
our strategy to find a new accepting state and its minimal-
cost suffix loop is:

f-1 =1
cost, = ZCOST(si,sHl) + Z COST(S;, 8i+1)
i=1 P! i=f
+0 Z CoST(s;, Si+1)
i=f
where f’ is the index of the new accepting state, and
n' is the index of the new last element in the suffix.
We again define syry,r41 = sy. It is intuitive to show
that ﬁ(if:-i}n” COST(Si.Si_H) — Efl—;’,n/ COST(Si7 Si+1)) >
Zf;}l COST(s;, 8;+1) when /3 is substantially large, indicat-
ing cost,s > cost,, which concludes that our strategy gives
a lower cost.

Regardless of the current phase (i.e., either prefix or
suffix) that the robot stays at, replanning using our strategy
needs to construct both new prefix and suffix segments as
observed in Fig. 5 (a) and (b). This process is outlined in
Algorithm 3 and the pseudocode implementation is based

4498

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 15,2025 at 17:15:42 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 LTL-D*

1: Construct G(A,) and INITIALIZE().

2: Construct Simg-

3: for sk, € F' do

4: 08, cost[sX..] = SUFFIXINITIALIZE(G(A,), k)
5: Insert (s.., Simg) With the weight cost[sk_.].

6: COMPUTESHORTESTPATH(Sgtart, Simg)

7: Retrieve opre and ogys.

8: while True do

9 Move to the next state Spext. Let Sstart = Snext-
10: Scan graph for a set mod containing changed edges.
11: if mod then

12: for sk.. € 7' do

13: ok ¢, cost[sX,.] = SUFFIXREPLAN(mod, k)
14: if cost[sk..] is updated then

15: UPDATEVERTEX(sX,.)

16: Update k,, if in oy, else INITIALIZE()

17: for (u,v) € mod do

18: Update the weight with COST(u, v).

19: UPDATEVERTEX ()
20: COMPUTESHORTESTPATH (Sstart; Simg)
21: Retreive opre and ogys.

on the original D* Lite algorithm.! The algorithm is divided
into two steps: First, we find the minimal-cost loop O'é(uf in
G(A,) starting and ending at each accepting state sX.. €
F' where the index k = 1,2,--- ,w and w is the total
number of accepting states. This is achieved by calling
functions SUFFIXINITIALIZE and SUFFIXREPLAN at Line 4
and Line 13 in Algorithm 3, and a detailed explanation will
be provided in Sec. III-B. Following that, we find the shortest
path from the current state to the accepting state that renders
the minimal total cost, given the knowledge of the smallest
suffix cost cost[sk,.] each accepting state possesses. This is
realized by the rest of the steps in Algorithm 3, and more
details for this step will be given in Sec. III-C.

B. Searching for Optimal Suffix Loops

This subsection focuses on ﬁndrng an optimal suffix apre
in G(A,) starting and ending at sX_.. An illustration of this
process is shown in Fig. 6 (a). Particularly, we leverage
the concept of an imaginary goal as a technique to serve
as a single virtual target node for finding the minimal-cost
closed loop. First, we add an additional node to G(A,)
to construct an imaginary goal slmg (Algorithm 1 Line 2)
and connect all predecessors of sX.. to slmg (Alogorithm 2
Lines 3-4). Suppose that a cyclic path that originates and
returns to sX.. exists (otherwise we simply set cost[s..]
), by computlng the shortest path from s to s and

img
generating a course of sX__---35 s as the output, where
5 € PRED(s

acc img

k..) are the predecessors, we can project the

TAlgorithm 3 calls a series of functions COMPUTESHORTESTPATH,
UPDATEVERTEX, INITIALIZE from the original D* Lite algorithm [21],
as well as SUFFIXINITIALIZE and SUFFIXREPLAN in Algorithms 1 and 2.

(a) @

k
S) k
acc 3 () Accepting state s
Suffix k pHng ace
Predecessors to .sacc
5 > Edges connecting predecessors

of 55 to Simg

Optimal suffix loops

<
Y ¥
k
Simg
() SuFFix1
b
acc Suf[lx 2
acc
Simg
Sstart .\v\g
acc
Suffix 3
4 O Q >
Sacc
© Suffix 4

A

Edges connecting

OAcceptlng states —- accepting states to Simg

Optimal suffix loops

In (a), we find an optimal suffix loop starting and ending at the

Fig. 6.
accepting state sX... We introduce s%‘m and connect all predecessors of

acc to s g In (b), we find the shortest path from sgstart to the accepting
state W1th the minimal total cost. We introduce an imaginary goal sj;,g and
connect all accepting states t0 Sjmg. We assume w = 4 in this illustration.

course to sX..--- 35X, and consider it the optimal suffix of

sKe (Algorzthm I Lines 5-6). Whenever the operations (i.e.,
addition, deletion or cost changes) are apphed to the edges
connecting a predecessor of sX.. to sX.., we also map the
operatrons onto the edge leading from the same predecessor
to slmg that mirrors the accepting state (Algorithm 2 Lines
2-3).

C. Searching for Optimal Total Path

After iterating through all accepting states and identifying
the smallest suffix cost for each, we next determine the
shortest path from the current state to the accepting state
with the minimal total cost. However, a run to any accepting
state that has a suffix cost not equal to infinity could form
a valid run. Therefore, similar to the approach in Sec. III-
B, we append an imaginary goal Siyg to G(fl@), and
build edges connecting all accepting states t0 Sjyng With
the associated cost cost[sX..] depending on the accepting
state index (Algorithm 3 Lines 3-5), as shown in Fig. 6 (b).
We then compute the shortest route from the current state
t0 Simg, in the sequence of Sgtart - --s;CC Simg, Where the
accepting state s} .. renders the minimal total cost (Algorithm
3 Line 4) This path in G (A) corresponds to the optimal run
Sstart *** {Shee * - J¥in Asw where {s . - - -} is the minimal-
cost loop starting from s .. found in Sec. III-B (Algorithm
3 Line 5). Every time a set of edges, denoted as mod, in
G(/La), undergoes changes (Algorithm 3, Line 11), we first
call SUFFIXREPLAN to retrieve new suffix costs (Algorithm
3, Lines 12-13). If cost[sX.] is updated after replanning, we
count (sX.., Simg) as a modified edge and update the rhs-
value and key of s¥._ through UPDATEVERTEX (Algorithm

acc

4499

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 15,2025 at 17:15:42 UTC from IEEE Xplore. Restrictions apply.

3, Lines 14-15).

IV. OPTIMAL REPLANNING FOR INFEASIBLE TASKS

The revision algorithm discussed in the preceding section
only addresses replanning scenarios when any modification
to the weighted transition system 7 can generate a feasible
run in Aw- Nevertheless, there exist cases in which environ-
mental changes or state disturbances may induce an infeasi-
ble run, e.g., the example shown in Fig. 3 (c¢). In such cases,
any potential run whose projection onto the WTS 7 violates
the original task specification to a certain degree. To address
this challenge, we further optimize the proposed algorithm
in Sec. III by leveraging the distance metric introduced in
Sec. II-C. Our approach aims to identify an optimal run that
minimally deviates from the original task specification while
incurring the lowest cost, thereby guaranteeing optimality.
Despite this new priority for minimal task violation, we
will demonstrate that our method still maintains the same
efficiency as the algorithm in Sec. III.

Given the updated priority, we assign the weight to the
relaxed edge (s,s’) as a combination of the transition
cost COST(s, s’) and the violation penalty DIST(s, s’). To
integrate this combinatory cost to our incremental search
algorithm, we introduce two auxiliary estimates, gaux(s) and
rhSaux(s), alongside the original g-value and rhs-value in D*
Lite. These auxiliary estimates respectively serve as a real
estimate and one-step lookahead to the accumulation of the
task violation penalty given by DIST and both are initialized
infinity. Since there are two metrics to consider, we therefore
revise the original duo-component key in the priority queue
as:
s),rhs(s
s),rhs(s

), rhs(

k(s) = { min @(
min (g(

)) + h(sstart; 5) + km,
)}

We define g(s) and rhs(s) as the combinations of violation
penalties and other costs, given by

5(8) = g(sl) + 'Ygaux(s)a

rhs(s) = g(s') + CosT(s, s') +7 (gaux(s’) + DIST(s, s"))
rhs(s)

rhsaux ()

where s’ is among the successors of s:
/

s’ = argmin (g(s) + CoST(s, u)
SEPRED(u)
+ 7(gaux(s) + DIST(s, v)))

and we assume a constant v 3> g(s) so that all auxiliary

estimates are dominant in determining the weight of each
component in the key during ranking, i.e., if gaux(s1) >
Gaux(s2), then we have g(s;) > g(s2). Since keys are
compared according to lexicographic ordering in U, this
modified design prioritizes the minimal violation over other
costs.

We contend that our approach to revising the key design
coheres with [21] regarding how a state is expanded and how
a shortest path is retrieved through backtracking. Specifically,
we argue that the following propositions stand true:

o State consistency infers consistency of both the violation
penalty and the total cost: Recall that in Sec.II-D we
define state consistency as g(s) = rhs(s). If state
s is consistent, we can derive that g(s) = rhs(s)
and gaux(S) = 7ThSaux(s). This can be shown by
contradiction.?

o Consistency of the heuristic function still holds:
This is proved by arguing that we use the
same admissible heuristic function for costs,
and after the violation penalty being added, we
have h(Sstart,) < h(Sstart,s’) + COST(s',s) <
h(Sstart, 8') + COST(s', 8) + yDIST(s, s")). Therefore,
consistency of the heuristic function is preserved.

o The shortest path has the least violation of task specifi-
cation and the lowest traveling time: A shortest path
is backtracked by always moving forward from the
current state s to any successor s that minimizes
g(s")+CoST(s, s')+yDIST(s, ') until sg0a1 is reached.
This will ensure that the state for the next move is the
state with the lowest g,,x among all successors of s,
and if multiple states own the same g,,x value, then
the state with the lowest g value will be chosen.

In fact, with all the propositions stated above, the correctness
and optimality of our algorithm can be proved in a similar
way as the lemmas and theorems proved in [21]. The rigorous
proofs have to be omitted due to limited space. Moreover,
modeling the key in this way provides efficiency in finding
an optimal path when the robot lacks prior knowledge of
the task’s feasibility. If there exists a non-violating run,
states that are not affected by LTL specification relaxation
will be expanded first and their keys will turn consistent
before any state impacted by relaxation is expanded. This
is because those states not affected by relaxation have
min(gaux, "hSaux) = 0, which leads to their keys ranking
higher in the priority queue than those affected by relaxation.

V. RESULTS
A. Benchmarking Environment and Task Specifications

To demonstrate the efficiency and optimality of our pro-
posed algorithm, we test on the benchmark maps where the
robot only has partial observation on its local environment
shown in Fig. 7 (a) and (b). The robot’s task is to repetitively
visit locations A, B, C, D sequentially, expressed in LTL
formula as follows:

Yy = D(A — O((—'A A =D A —C)LI 901)

where o1 = BAQ((mB A=A A=D) U ps), p2 =
CAO((~CA-BA-A) Ups), and o3 = DAQO((~DA-CA
-B)U A). The map is configured as an N-by-N gridworld,
which has four adjacent sub-regions comprising A, B, C, and
D locations respectively. This map includes static obstacles
and walls that impede the robot’s movement, as well as static
bumps that cause delays in travel time. Weighted transition
system weights are assigned based on traversal time between

4500

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 15,2025 at 17:15:42 UTC from IEEE Xplore. Restrictions apply.

........... T
10 _
ABD -
T = 1
5 10%]
v
E -
- F
ek~ |1 — 2
S =
o
(a) = - =
OO O 10! e
- g f
e
o T
A B O 10° i =
+— i b
o= -
o
10x10 20x20 50%50 100x100
() No Pass ©)
— Walls @ Local revision O LTL-D* (Ours)
Bumps Navigationin(a){ @ LTL-D* (Ours) Navigation in(b) . .
. . [5) Iterative planning
amm Obstacles @ lterative planning on relaxed PA

Fig. 7. The comparison of the computational time for replanning every
time the robot encounters new obstacles and bumps between the baseline
algorithms and our approach in benchmark map (a) where ¢y is feasible to
realize and in benchmark map (b) where ¢y, is infeasible to realize because
red obstacles block the passage to reach location C. The computational time
that exceeds the y-axis limit is positioned on the frame of (c). The local
revision method does not guarantee the optimality of the revised solution
(shown in Fig. 8) even though it employs local adjustments more efficiently.

TABLE I
NUMBER OF STATES AND TRANSITIONS IN THE NBA, WTS, PA, AND
RELAXED-PA FOR DIFFERENT SIZES OF MAPS.

Map Size 15510 20x20 50x50 100x 100
Tuple
NBA 32 states, 92 transitions
WTS states 100 400 2500 10000
transitions 428 1848 12108 49008
PA states 3200 12800 80000 320000
transitions 20058 88218 580698 2361498
relaxed- states 3200 12800 80000 320000
PA transitions 39376 170016 1113936 4527136

cells, with a default cost of 10 for regular movements and
an increased cost of 50 for traversing bumps. Initially, the
robot possesses only partial knowledge of the map, being
informed solely about the map size and the positions of
walls. No information is provided regarding the locations of
obstacles and bumps until the robot enters cells adjacent to
these objects, i.e., one-cell horizon for the robot. The robot
needs to dynamically respond to obstacles blocking its path
and bumps slowing down its speed, and find an alternative
optimal path as needed.

B. Baseline Benchmarking

In replanning scenarios where the tasks are feasible, we
compare two baseline algorithms: the local revision method
introduced in Sec. III-A and iterative planning. The iterative
planning algorithm simply replans from the current state
using Dijkstra’s algorithm whenever its next planned action
is blocked or impeded by an object. We assign § = 10 as
the relative weighting when calculating the integral cost. Our
LTL-D* method uses Manhattan distance as the heuristic
function to guide the search and § is also assigned as 10
to align with the relative weighting between costs of prefix

Cost(s)
e e a s a e Taa a s a s s = 0 5000 10000 15000 20000
oa
gﬂjgnﬁ ﬁ 10x10
D 20%20
g
mﬁjﬁm o g B 50x50
B
B R A
emerrrrrerslererrn | 100%100
— Walls oo Obstacles LTL-D* (Ours)
Bumps oo Scattered obstacles Local revision

Fig. 8. The average total cost to finish one loop to and from A out of three
trials for each map size using the local revision method and our method.
The map is scattered with obstacles and the locations of A, B, C, D are
picked randomly in the four quadrants where they belong.

and suffix as the same as that in the iterative planning.

For fair comparisons, we implement all algorithms in
Python and run on a computer with a 13th Gen Intel Core
i9-13900K CPU. We also avoid the usage of any pre-
implemented algorithms from off-the-shelf packages. The
algorithms are tested on the benchmarking map with the
gridworld size of N = 10, 20, 50, 100.

Tab. I shows the number of states and transitions in NBA,
WTS, and PA for each map size in Fig. 7(a) and (b), and Fig.
7(c) shows the lower bound, upper bound, median, and first
quartile to the third quartile of computational time data when-
ever a replanning is triggered, i.e., encountering unknown
obstacles or bumps in its next move. In a similar environment
setting in Fig 8 with scattered obstacles in the blue region
at the density of 40%, we calculate the total time for the
agent to finish a round trip through A, B, C, D and returns
to A. Our algorithm showcases a remarkable reduction in
computational time compared to iterative planning, achieving
speeds two orders of magnitude faster. While it still lags
behind local revision in computational time by a factor of
ten, our algorithm increasingly outperforms local revision in
total cost to finish one run as the map size scales, as shown
in Fig. 8.

For replanning for infeasible tasks, we modify our bench-
mark map in Fig. 7 (b) by blocking the only passage that
existed at the bottom right corner to access point C. Now
whatever action the robot takes, the task specification ¢y
cannot be satisfied, and the robot needs to go around to D
directly after reaching B. We again employ iterative replan-
ning as a baseline algorithm but this time to wire a route in a
fully relaxed product automaton which is constructed a priori
under the relaxation condition in Sec. II-C. We demonstrate a
more than two-order of magnitude increase in speed to find
an optimal run with the least violation and the associated
minimal cost of our method compared to iterative planning
in the fully relaxed PA.

C. Simulation Results

We demonstrate the feasibility of our proposed algorithm
by a drone navigation problem in a more realistic environ-
ment built in NVIDIA Isaac Sim. A maze-like environment is
constructed as shown in Fig. 9 with a charging station A, four
rooms with cargo B, C, D, F, and a central drop-off location

4501

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 15,2025 at 17:15:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. The simulation environment is encapsulated by a set of waypoints
connecting the different rooms. Blue connections describe a normal pathway,
yellow connections describe a connection that passes through a bump, and
red connections describe a block that prevents passage. Connections do not
exist through walls as these are always impassable.

E. We designate the bumps as foliage in the environment
that the drone can traverse with a greater cost, and blocks as
closed doors that the drone cannot traverse through. A 6-by-
6 grid is overlayed in the environment to provide the robot
with a set of waypoints that encompass the key locations
and possible paths. For the task specifications, we require
the drone to start at charging room A. It is then instructed to
load boxes from one of the rooms B, C, D, F, and bring the
loaded boxes one at a time to the central drop-off location E.
The drone will then go to another room to load and unload
boxes until all boxes have been delivered from each room to
E. In this scenario, only the locations of walls for each room
are known in advance while all other blocks and bumps are
unknown until the robot encounters them. We can express
the LTL specification for this problem as:

v1 =(A — OB) AO(B — O(loadedA

(=C A =D A =F)U(E N unloaded)))
(A — 0C) ANO(C = O(loadedN

(=B A =D A =F)U(E A unloaded)))
(A— OD)ANO(D — O(loadedN
(
(

—BA-C A=F)U(E Aunloaded)))
A— OF) AO(F — O(loaded
(=B A —=C A —=D)U(E A unloaded)))

©2
®3
2

where each specification describes the robot going to a room,
picking up its load, and delivering it to the drop-off location.
The overall task specification can be expressed as:

Ys =1 N2 A ps N\ py

Fig. 1 (Top) shows the drone’s trajectory to complete the
given task specification. The yellow markers denote locations
where ¢, remains feasible after encountering an unexpected
object in the environment. An infeasible task replanning,
denoted by a red marker, is triggered when the robot is trying
to load a box from D which is obstructed by a closed door.
The robot remains at its position thereafter as no further
actions are instructed.

VI. CONCLUSION

In this paper, we propose an incrementally optimal re-
planning strategy for both feasible and infeasible task spec-
ifications. We demonstrate the efficiency, optimality, and
scalability of our algorithms in benchmark maps and their

application in a realistic scenario. Future work includes
extending our algorithms to efficient and optimal task real-
location and motion replanning in multi-agent coordination.

REFERENCES

[1] H. Kress-Gazit, T. Wongpiromsarn, and U. Topcu, “Correct, reactive,
high-level robot control,” IEEE Robot. Autom. Mag., vol. 18, no. 3,
pp. 65-74, 2011.

[2] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and
G. J. Pappas, “Symbolic planning and control of robot motion [grand
challenges of robotics],” IEEE Robot. Autom. Mag., vol. 14, no. 1, pp.
61-70, 2007.

[3] M. Guo, K. H. Johansson, and D. V. Dimarogonas, “Revising motion
planning under linear temporal logic specifications in partially known
workspaces,” in Proc. IEEE Int. Conf. Robot. Automat., 2013, pp.
5025-5032.

[4] Y. Li, E. M. Shahrivar, and J. Liu, “Safe linear temporal logic motion
planning in dynamic environments,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots. Syst., 2021, pp. 9818-9825.

[5] Z.Zhou, D. J. Lee, Y. Yoshinaga, S. Balakirsky, D. Guo, and Y. Zhao,
“Reactive task allocation and planning for quadrupedal and wheeled
robot teaming,” in Proc. IEEE Int. Conf. Autom. Sci. Eng. IEEE,
2022, pp. 2110-2117.

[6] S.Li, D. Park, Y. Sung, J. A. Shah, and N. Roy, “Reactive task and
motion planning under temporal logic specifications,” in Proc. IEEE
Int. Conf. Robot. Automat., 2021, pp. 12618-12 624.

[71 H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” IEEE Trans. Robot.,
vol. 25, no. 6, pp. 1370-1381, 2009.

[8] A. Pacheck and H. Kress-Gazit, “Physically feasible repair of reactive,
linear temporal logic-based, high-level tasks,” IEEE Trans. Robot.,
2023.

[9] A. Pacheck, S. James, G. Konidaris, and H. Kress-Gazit, “Automatic
encoding and repair of reactive high-level tasks with learned abstract
representations,” Int. J. Robot. Res., vol. 42, no. 4-5, pp. 263-288,
2023.

[10] A. Pacheck, S. Moarref, and H. Kress-Gazit, “Finding missing skills
for high-level behaviors,” in Proc. IEEE Int. Conf. Robot. Automat.,
2020, pp. 10335-10341.

[11] M. Cai, H. Peng, Z. Li, and Z. Kan, “Learning-based probabilistic 1t
motion planning with environment and motion uncertainties,” IEEE
Trans. Autom. Control, vol. 66, no. 5, pp. 2386-2392, 2021.

[12] M. Guo and M. M. Zavlanos, “Probabilistic motion planning under
temporal tasks and soft constraints,” IEEE Trans. Autom. Control,
vol. 63, no. 12, pp. 4051-4066, 2018.

[13] M. Guo and D. V. Dimarogonas, ‘“Multi-agent plan reconfiguration
under local 1t specifications,” Int. J. Robot. Res., vol. 34, no. 2, pp.
218-235, 2015.

[14] M. Lahijanian, M. R. Maly, D. Fried, L. E. Kavraki, H. Kress-
Gazit, and M. Y. Vardi, “Iterative temporal planning in uncertain
environments with partial satisfaction guarantees,” IEEE Trans. Robot.,
vol. 32, no. 3, pp. 583-599, 2016.

[15] K. Kim, G. Fainekos, and S. Sankaranarayanan, “On the minimal
revision problem of specification automata,” Int. J. Robot. Res., vol. 34,
no. 12, pp. 1515-1535, 2015.

[16] Y. Kantaros and M. M. Zavlanos, “Stylus*: A temporal logic optimal
control synthesis algorithm for large-scale multi-robot systems,” Int.
J. Robot. Res., vol. 39, no. 7, pp. 812-836, 2020.

[17] C. 1. Vasile and C. Belta, “Sampling-based temporal logic path
planning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots. Syst., 2013,
pp. 4817-4822.

[18] C. L. Vasile, X. Li, and C. Belta, “Reactive sampling-based path
planning with temporal logic specifications,” Int. J. Robot. Res.,
vol. 39, no. 8, pp. 1002-1028, 2020.

[19] D. Gujarathi and I. Saha, “Mt*: Multi-robot path planning for temporal
logic specifications,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots. Syst.,
2022, pp. 13692-13 699.

[20] D. Khalidi, D. Gujarathi, and I. Saha, “T: A heuristic search based
path planning algorithm for temporal logic specifications,” in Proc.
IEEE Int. Conf. Robot. Automat., 2020, pp. 8476-8482.

[21] S. Koenig and M. Likhachev, “Fast replanning for navigation in
unknown terrain,” /IEEE Trans. Robot., vol. 21, no. 3, pp. 354-363,
2005.

4502

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 15,2025 at 17:15:42 UTC from IEEE Xplore. Restrictions apply.

