
LTL-D*: Incrementally Optimal Replanning for Feasible and Infeasible

Tasks in Linear Temporal Logic Specifications

Jiming Ren, Haris Miller, Karen M. Feigh, Samuel Coogan, and Ye Zhao

Abstract— This paper presents an incremental replanning
algorithm, dubbed LTL-D*, for temporal-logic-based task plan-
ning in a dynamically changing environment. Unexpected
changes in the environment may lead to failures in satisfying a
task specification in the form of a Linear Temporal Logic (LTL).
In this study, the considered failures are categorized into two
classes: (i) the desired LTL specification can be satisfied via
replanning, and (ii) the desired LTL specification is infeasible
to meet strictly and can only be satisfied in a “relaxed” fashion.
To address these failures, the proposed algorithm finds an
optimal replanning solution that minimally violates desired task
specifications. In particular, our approach leverages the D* Lite
algorithm and employs a distance metric within the synthesized
automaton to quantify the degree of the task violation and then
replan incrementally. This ensures plan optimality and reduces
planning time, especially when frequent replanning is required.
Our approach is implemented in a robot navigation simulation
to demonstrate a significant improvement in the computational
efficiency for replanning by two orders of magnitude.

I. INTRODUCTION

As autonomous robots play an increasingly important

role in executing long-horizon missions in complex envi-

ronments, task and motion planning becomes essential for

seamlessly integrating high-level task planning with low-

level motion planning. By logically reasoning about the

temporal ordering of events at the task level, Linear Temporal

Logic (LTL)-based planning provides a correct-by-design

task sequence that builds upon discretized abstractions of

the robot’s workspace [1], [2]. This study aims to leverage

incremental graph search to find optimal navigation plans

in dynamically changing environments (as shown in Fig. 1)

under task specifications given as LTL formulas.

While temporal-logic-based planning offers formal guar-

antees on safety and provable correctness, a long-standing

issue lies in its inefficiency in runtime action revision when

environments and states are subject to frequent, potentially

unpredictable changes. A naive way is to construct a plan

from scratch. However, the complexity of rewiring a feasible

solution grows exponentially as robots’ workspace and states

scale. The works of [3], [4], [5], [6] propose a local path

revision based on previous plans or using behavior trees,

which significantly shortens the time to replan, but they com-

monly lose the guarantee on optimality. Another approach

is to model uncertainties a priori and generate an offline

The authors are with the Institute for Robotics and Intelligent Ma-
chines, Georgia Institute of Technology, Atlanta, GA 30332, USA,
jren313@gatech.edu

This work is sponsored by Lockheed Martin Corporation University
Research program. The work is that of the authors and does not represent
an official position of LMCO.

Infeasible

Feasible

Replanning
is initiated from
the preûx

Replanning
is initiated from
the suûx

The original run

Fig. 1. Top: The trajectory of a drone starting from A and executing the
mission of carrying goods from each room F, B, C, and D to the central
dropoff location E sequentially. The color of the trajectory representing time
transitions from dark blue to orange as time progresses. Multiple replanning
events take place along the way where task specifications remain feasible
to meet. Loading goods at D becomes infeasible because the access to the
room is closed. Therefore, the drone hovers around at its current location
because all other tasks have been finished. Bottom: We show our revision
strategies based on the current phase of the run that the robot is executing.

receding-horizon strategy to react to real-time observations

[7], [8]. While this approach provides an online solution, it

could not offer a globally optimal solution in general.

The aforementioned approaches aim to address realizable

task specifications which may become ineffective when en-

vironmental and state changes cause the tasks infeasible to

achieve, e.g., to access location D in Fig. 1 (Top). A direct

way to resolve the infeasibility is to repair the task speci-

fication or the robot’s skill set [9], [10]. To find a minimal

violation motion plan that is closest to the original goal,

[11] and [12] utilize Markov Decision Process to acquire a

policy that maximizes probabilities of satisfying given LTL

task objectives. The works in [13] and [14] propose hard-

soft constraints and enable partial violation by reclassifying

specific hard constraints as soft constraints. The studies

in [15] and [13] both present minimal violation revision

strategies by relaxing product automata to remain close

to the original specifications. In particular, [15] proposes

systematically partial relaxation to find a modestly relaxed

product automaton with a feasible run while similarly, [13]

proposes a metric to quantify the task violation through

atomic proposition. However, product automaton relaxation

could result in an exceedingly large graph causing off-the-

shelf algorithms to take tremendous time for a solution.

Leveraging graph search algorithms for product automaton

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 15,2025 at 17:15:42 UTC from IEEE Xplore. Restrictions apply.

modification and relaxation offers a promising solution to

address this issue. [16], [17], and [18] investigate efficient

sampling-based approaches like RRT*, while [19] and [20]

attempt to apply heuristic-based search algorithms to solve

for trajectories with guarantee on the optimality.

In this study, we will leverage the metric from [13] and

an incremental heuristic search algorithm D* Lite [21] to

efficiently react to the environmental changes under both

feasible and infeasible task specifications.

The main contributions of this paper are listed as:

" We propose an incrementally optimal replanning algo-

rithm for temporal-logic-based task planning problems

in dynamically changing environments where the task

specification is feasible to be satisfied.

" We propose an optimal replanning approach for the

relaxed synthesized product automaton to achieve the

utmost task specification satisfaction when it is infeasi-

ble to fully meet the original goal.

" Our replanning approach for both feasible and infeasible

tasks demonstrates computational efficiency to find an

optimal solution for a robot navigation problem by

around two orders of magnitude.

II. PRELIMINARIES

A. Linear Temporal Logic

Linear Temporal Logic (LTL) is composed of atomic

propositions ap * AP and the Boolean and temporal connec-

tors of the syntax ϕ := ¦| ap | ¬ϕ | ϕ ' ψ | ý ϕ | ϕ U ψ,

where the Boolean operators denote “negation” (¬), “con-

junction” ('), and the temporal modalities denote “next”

(ý) and “until” (U). Other extended temporal connecters

including “eventually” (fϕ = ¦ U ϕ) and “always” (¥ϕ =
¬f¬ϕ) will also be used in this paper.

There exists a non-deterministic Büchi automaton (NBA)

Aϕ that can be constructed to satisfy an LTL formula ϕ. An

NBA is defined as a tuple A = (Q,Q0, 2
AP , δ,F) where

Q = {qi|i = 0, · · · , n} is a finite set of states, Q0 ¦ Q
is a set of initial states, 2AP is a set of input alphabets,

δ : Q × 2AP ³ 2Q is a transition function, and F ¦ Q
is a set of accepting states. The accepted language L(A) of

an NBA is an ω-language, and consists of all infinite words

Σ7 that have a run σ in which an accepting state is visited

infinitely often. A run of such has a prefix-suffix structure:

σ = q1q2 · · · (qfqf+1 · · · qf+n)
ω

where q1 * Q0, qf * F . The prefix of a run is executed

only once, while the suffix repeats itself infinitely.

B. Product Automaton

The robot’s operating states and collision-free workspace

are each modeled as a weighted transition system (WTS).

A WTS is a tuple T = (Π,Πinit,³, AP, L, d) where Π =
{πi : i = 0, · · · ,m} is a finite set of states, Πinit ¢ Π is a set

of initial states, ³¦ Π×Π is a transition relation in which

πi ³ πj is used to express controlled transition from πi to

πj , AP is a finite set of atomic propositions, L : Π ³ 2AP

is a labeling function to evaluate ap to be true or false, and

Product

Automaton

Task

 Speciûcation
NBA

Topological

Map

Topological

Map
Topological

Map
Operating

States

WTS

Modiûcation

 Suûx Preûx
Accepting

states
 States

Product

operation

Fig. 2. An illustration of the framework for synthesizing product automaton
given the Weighted Transition System (WTS) and non-deterministic Büchi
automaton (NBA).

d :³³ R
+ is a positive weight assignment map for each

transition, which in our study represents time consumed to

relocate from one state to its successor state. More complex

weight parameters can be designed for specific situations.

The traces of a WTS Trace(T) register the valid atomic

propositions of each state visited along different executions.

By encoding a robot’s task planning problem as an LTL

task specification ϕ and by synthesizing the robot’s transition

systems, we aim to generate a feasible plan on T that is

at the same time accepted by Aϕ, given that the alphabet

of Aϕ consists of sets of atomic propositions in T . That

said, we aim to find at least one trace of WTS to be

synchronously an element in Trace(T) and in the accepted

language L(Aϕ). Therefore, checking that the intersection

Trace(T) + L(Aϕ) is not empty is sufficient to conclude

that there is an acceptable run in the product of T ¹ Aϕ.

The process of the product operation is shown in Fig. 2.

The product T ¹ Aϕ, named product automaton (PA), is

also defined as a tuple Ãϕ = (S, S0, δ
2,F 2, d2), where S =

Π × Q = {s = ïπ, qð| "π * Π, "q * Q}, δ2 : S ³ 2S is a

transition in the condition that ïπj , qnð * δ2(ïπi, qmð) if only

if ïπi, πjð *³ and qn * δ(qm, L(πj)), S0 = Πinit × Q0 is

the set of initial states, F 2 = Π× F is the set of accepting

states, and d2 : δ2 ³ R
+ is a cost function in the condition

that d2(ïπi, qmð, ïπj , qnð) = d(πi, πj).

C. Relaxation for Product Automaton

There are situations when a feasible run does not exist

in Ãϕ if Trace(T) + L(Aϕ) = ∅. To resolve this failure,

one can insert a transition ïπj , q̂nð * δ2(ïπi, qmð) in Ãϕ,

where (πi, πj) *³ and q̂n * δ(qm, 2
AP \L(πi)), to relax

the initial specification ϕ. The work of [13] proposes an

evaluation function that assesses the extent to which the

original specification is violated from a relaxation. To quan-

tify the violation penalty, [13] first designs a binary function

ξ : AP×2AP ³ {0, 1} and a function ζ : 2AP ³ {0, 1}|AP |

assuming AP = {ap1, · · · , apr}:

ξ(api, l) =

{

1 if api * l

0 if api /* l
, ζ(l) = [ξ(api, l)]

r

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 15,2025 at 17:15:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. A conceptual illustration of feasible and infeasible tasks in our
study. Assume the robot’s mission is to eventually always reach the flag.
In the beginning, the robot is not aware of the existence of any obstacles
represented by red blocks, so it plans a direct path to the flag in (a). At
runtime, it notices the obstacle in the front, so it rewires its path to the
flag by a U-turn as shown in (b). This case is considered a feasible task
where the task can still be fulfilled with a modified action. (c) represents a
replanning in an infeasible scenario where the task is impossible to meet.
When the robot reaches the bottom-right cell, it detects another obstacle,
obstructing its next move. Now the robot’s new plan would be to stay in
the closest cell to the flag cell and maintain a minimal task violation, as it
has the minimum cost in terms of traversal distance.

where i = 1, 2, · · · , r and l * 2AP . The function ζ outputs a

vector of binary values denoting whether each element of AP
is within a subset of AP . A metric ρ : 2AP × 2AP ³ Z

+

is then introduced to assess the “difference” between two

subsets of AP :

ρ(l, l2) = 'ζ(l)2 ζ(l2)'1 =

r∑

i=1

|ξ(api, l)2 ξ(api, l
2)|

where l, l2 * 2AP and ' · '1 is the l1 norm. We thereby

extend the definition of the “difference” between two subsets

to the “distance” between two states, sm = ïπi, qmð and

sn = ïπj , qnð, in a PA, as the quantifier of violation of

transition from sm to sn:

DIST(sm, sn) =

{

0 if l * χ(qm, qn)

minl2*χ(qm,qn) ρ(l, l
2) otherwise

where l = L(πj) is the label of πj and χ(qm, qn) = {l *
2AP |qn * δ(qm, l)} is a set containing all the subsets of AP
that enable the transition from qm to qn.

D. Incremental Graph Search

Incremental graph search finds optimal solutions itera-

tively and is significantly faster than solving a search task

from scratch. It applies to planning problems on known finite

graphs whose structure evolves over time. In our study, we

apply incremental search to a directed and weighted graph

representing Ãϕ, denoted as G(Ãϕ) = (S,E) where S is

defined in Ãϕ and E = S × S is a finite set of edges

connecting a pair of states ïs, s2ð given that s, s2 * S and

s2 * δ2(s). COST(s, s2) returns a finite value as the weight

of the edge ïs, s2ð * E, which equals to d2(s, s2).
Our algorithm is based on D* Lite [21] which determines

the shortest path from a given start state sstart to a given goal

state sgoal in G(Ãϕ). Similar to A* search, D* Lite algorithm

keeps track of a priority queue U and the estimates, including

g(s), or g-value, to denote the overall cost of the shortest

path from s * S to sgoal, and a heuristic h(s), or h-value, to

estimate cost from sstart to s. The heuristic function needs

to be consistent to guarantee the optimality of the solution.

The next state to expand in

Optimal route

to be found

Optimal route

alreay executed

Fig. 4. States in D* Lite are expanded in a reversed order from sgoal to
sstart where km is considered as the heuristic from the initial state sinit to
the current robot state sstart, and rhs-value of a state s is updated through
summation of g-value of its successor s2 and the edge weight of ïs, s2ð.

Beyond A*, it keeps an additional estimate rhs(s), or rhs-

value, as a one-step lookahead value for each state defined

as:

rhs(s) =

{

0 if s * sgoal

mins2*SUCC(s)(g(s
2) + COST(s, s2)) otherwise

where SUCC(s) ¦ S gives the set of successors of s.
A state is called “consistent” if its g-value equals to rhs-

value, “overconsistent” if its g-value is greater than the rhs-

value, and “underconsistent” if otherwise. Moreover, a duo-

component key k(s) = [min(g(s), rhs(s)) + h(sstart, s) +
km; min(g(s), rhs(s))] replaces f-value in A* to help decide

which state to select from U for the next expansion. During

expansion of a state, its g-value is updated to the rhs-value

if overconsistent, or set to infinity if underconsistent. km is

a heuristic modifier variable to retain the order of states in

U if the robot sets off from its initial state sinit to its new

state sstart before a replanning is triggered, as shown in Fig.

4. We will slightly modify the design of the key k(s) in our

study to better suit a special construction of costs in Sec. IV.

III. OPTIMAL REPLANNING FOR FEASIBLE TASKS

In this section, we propose an on-the-fly revising algorithm

that addresses unexpected environmental changes and state

disturbances while the task remains feasible to achieve. We

define task feasibility based on the assumption that there

exists a feasible run in Ãϕ without the need for any task

specification relaxation. In the terminology of graph theory,

task feasibility is equivalent to the capacity to find a path

from sstart to an accepting state which has a self-referential

cycle in G(Ãϕ). A conceptual example of replanning for

feasible tasks can be seen in Fig. 3 (b).

The scenario considered in this section presupposes that

the encoded task specifications remain consistent, with

changes occurring only within the WTS. These changes in

transition relations between states in T can be accordingly

mapped into addition, deletion, and cost changes on edges in

G(Ãϕ). The mapping operations can be defined as: assuming

a transition ïπi, πjð *³ is added, deleted, or d(πi, πj) is

changed in T , we can apply the same type of modifications

between ïπi, qmð and ïπj , qnð in G(Ãϕ) for any qm, qn
under the condition that qn * δ

(
qm, L(πj)

)
.

Similar to an NBA, a PA is also characterized by ω-

language, and an infinite run of it consists of a prefix σpre
followed by an iterative suffix σsuf , as illustrated in Fig. 2.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 15,2025 at 17:15:42 UTC from IEEE Xplore. Restrictions apply.

 Preûx after replanning

 Sufûx of the original run

 Preûx of the original run

 Suûx after replanning

. . .
. . .

. . .
. . .

Replanning at Preûx Phase

(Ours)

(Ours)

(Local Revision [3])

.

Replanning at Suûx Phase

. . .

. . .

. . .

. . .

 Accepting

 states

 States in the

 original run

 New states in the

replanned run

 States to trigger

replanning

Fig. 5. An illustration for replanning strategies when modification is
performed in the prefix or suffix phase of a run. The robot is at the state
marked by a circle with a cross when it senses that its adjacent states have
been added, deleted, or their transition costs have changed. These changes
within the WTS update the PA and undermine the optimality of the original
run. Note that, f and f 2 denote the index of the accepting states, and n, n2

and n22 denote the index of the last element of the suffixes.

Even though the suffix of a run occurs infinitely often, it is

impractical to ignore the cost incurred from the prefix before

entering the periodic suffix loop. Additionally, it is unrealistic

for a robot to run infinitely in a real-world deployment.

Therefore, we design a finite parameter β * R to represent

a weighting parameter of the cost associated with the suffix,

and the total cost is given as costσpre
+ βcostσsuf

.

A. Revision for Prefix and Suffix

In this subsection, we propose two distinct replanning

strategies when a robot is progressing through different

phases: (i) if the robot is currently in the prefix phase (as

shown in Fig. 5 (a)), we simply find a new accepting state

that gives the minimal total cost of the trace guiding the

robot from the current state to the new accepting state and

then repeat the minimal-cost loop of the new accepting state;

(ii) if the robot is currently in the suffix phase (as illustrated

in Fig. 5 (b)), the optimal solution will first maintain the

preceding trajectory ahead of the current state as part of the

new prefix, and then find a new accepting state that renders

the minimal total cost, similar to that in case (i).

We show that our replanning strategies outperform the

local revision method [3] in term of a lower cost of the

solution. The local revision algorithm identifies the shortest

detour upon its prior plan and ultimately guides it back to

the original route. This replanning strategy independently

rewires the prefix and suffix segments of a feasible path.

To argue that our strategy gives a lower cost, we assign

a substantially large value to β to emphasize the major

Algorithm 1 SUFFIXINITIALIZE

Input: A graph G(Ãϕ), index k
Output: The optimal suffix σk

suf , and its cost cost[skacc]

1: INITIALIZE() with superscript k on all variables.

2: Construct skimg.

3: for s2 * PRED(skacc) do

4: Insert ïs2, skimgð with the weight COST(s2, skacc).

5: COMPUTESHORTESTPATH(skacc, s
k
img)

6: Retrieve σk
suf and the intergal loop cost cost[skacc].

Algorithm 2 SUFFIXREPLAN

Input: A set of modified edges mod, index k
Output: The optimal suffix σk

suf , and its cost cost[skacc]

1: for ïu, vð * mod do

2: if v = skacc then

3: Update the weight COST(u, skimg)

4: Update the weight COST(u, v)
5: UPDATEVERTEX(u)

6: COMPUTESHORTESTPATH(skacc, s
k
img)

7: Retrieve σk
suf and the intergal loop cost cost[skacc].

contribution of the suffix due to its repetitive occurrence in

a run. For the local revision method shown in Fig. 5(b), the

overall cost costσ2 is:

costσ2 =

f21
∑

i=1

COST(si, si+1) + β

f+n22

∑

i=f

COST(si.si+1)

where f is the index of the original accepting state, and n22

is the index of the last element in the suffix. Note that, we

define sf+n22+1 = sf . Similarly, the overall cost costσ using

our strategy to find a new accepting state and its minimal-

cost suffix loop is:

costσ =

f21
∑

i=1

COST(si, si+1) +

f 221
∑

i=f

COST(si, si+1)

+β

f 2+n2

∑

i=f 2

COST(si, si+1)

where f 2 is the index of the new accepting state, and

n2 is the index of the new last element in the suffix.

We again define sf 2+n2+1 = sf 2 . It is intuitive to show

that β
(∑f+n22

i=f COST(si.si+1)2
∑f 2+n2

i=f 2 COST(si, si+1)
)
>

∑f 221
i=f COST(si, si+1) when β is substantially large, indicat-

ing costσ2 > costσ , which concludes that our strategy gives

a lower cost.

Regardless of the current phase (i.e., either prefix or

suffix) that the robot stays at, replanning using our strategy

needs to construct both new prefix and suffix segments as

observed in Fig. 5 (a) and (b). This process is outlined in

Algorithm 3 and the pseudocode implementation is based

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 15,2025 at 17:15:42 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 LTL-D*

1: Construct G(Ãϕ) and INITIALIZE().
2: Construct simg.

3: for skacc * F 2 do

4: σk
suf , cost[s

k
acc] = SUFFIXINITIALIZE(G(Ãϕ), k)

5: Insert ïskacc, simgð with the weight cost[skacc].

6: COMPUTESHORTESTPATH(sstart, simg)
7: Retrieve σpre and σsuf .
8: while True do

9: Move to the next state snext. Let sstart = snext.
10: Scan graph for a set mod containing changed edges.

11: if mod then

12: for skacc * F 2 do

13: σk
suf , cost[s

k
acc] = SUFFIXREPLAN(mod, k)

14: if cost[skacc] is updated then

15: UPDATEVERTEX(skacc)

16: Update km if in σpre else INITIALIZE()
17: for ïu, vð * mod do

18: Update the weight with COST(u, v).
19: UPDATEVERTEX(u)

20: COMPUTESHORTESTPATH(sstart, simg)
21: Retreive σpre and σsuf .

on the original D* Lite algorithm.1 The algorithm is divided

into two steps: First, we find the minimal-cost loop σk
suf in

G(Ãϕ) starting and ending at each accepting state skacc *
F 2 where the index k = 1, 2, · · · , w and w is the total

number of accepting states. This is achieved by calling

functions SUFFIXINITIALIZE and SUFFIXREPLAN at Line 4

and Line 13 in Algorithm 3, and a detailed explanation will

be provided in Sec. III-B. Following that, we find the shortest

path from the current state to the accepting state that renders

the minimal total cost, given the knowledge of the smallest

suffix cost cost[skacc] each accepting state possesses. This is

realized by the rest of the steps in Algorithm 3, and more

details for this step will be given in Sec. III-C.

B. Searching for Optimal Suffix Loops

This subsection focuses on finding an optimal suffix σk
pre

in G(Ãϕ) starting and ending at skacc. An illustration of this

process is shown in Fig. 6 (a). Particularly, we leverage

the concept of an imaginary goal as a technique to serve

as a single virtual target node for finding the minimal-cost

closed loop. First, we add an additional node to G(Ãϕ)
to construct an imaginary goal skimg (Algorithm 1 Line 2)

and connect all predecessors of skacc to skimg (Alogorithm 2

Lines 3-4). Suppose that a cyclic path that originates and

returns to skacc exists (otherwise we simply set cost[skacc] =
>), by computing the shortest path from skacc to skimg and

generating a course of skacc · · · s̃ s
k
img as the output, where

s̃ * PRED(skacc) are the predecessors, we can project the

1Algorithm 3 calls a series of functions COMPUTESHORTESTPATH,
UPDATEVERTEX, INITIALIZE from the original D* Lite algorithm [21],
as well as SUFFIXINITIALIZE and SUFFIXREPLAN in Algorithms 1 and 2.

. . .

Suûx 4

Suûx 3

Suûx 2

Suûx 1

Suûx
Predecessors to

Optimal suûx loops

Accepting state

Accepting states Optimal suûx loops
Edges connecting

accepting states to

Edges connecting predecessors

of to

Fig. 6. In (a), we find an optimal suffix loop starting and ending at the
accepting state skacc. We introduce skimg and connect all predecessors of

skacc to skimg. In (b), we find the shortest path from sstart to the accepting

state with the minimal total cost. We introduce an imaginary goal simg and
connect all accepting states to simg. We assume w = 4 in this illustration.

course to skacc · · · s̃ s
k
acc and consider it the optimal suffix of

skacc (Algorithm 1 Lines 5-6). Whenever the operations (i.e.,

addition, deletion or cost changes) are applied to the edges

connecting a predecessor of skacc to skacc, we also map the

operations onto the edge leading from the same predecessor

to skimg that mirrors the accepting state (Algorithm 2 Lines

2-3).

C. Searching for Optimal Total Path

After iterating through all accepting states and identifying

the smallest suffix cost for each, we next determine the

shortest path from the current state to the accepting state

with the minimal total cost. However, a run to any accepting

state that has a suffix cost not equal to infinity could form

a valid run. Therefore, similar to the approach in Sec. III-

B, we append an imaginary goal simg to G(Ãϕ), and

build edges connecting all accepting states to simg with

the associated cost cost[skacc] depending on the accepting

state index (Algorithm 3 Lines 3-5), as shown in Fig. 6 (b).

We then compute the shortest route from the current state

to simg, in the sequence of sstart · · · s
i
acc simg, where the

accepting state siacc renders the minimal total cost (Algorithm

3 Line 4). This path in G(Ãϕ) corresponds to the optimal run

sstart · · · {s
i
acc · · · }

ω in Ãϕ, where {siacc · · · } is the minimal-

cost loop starting from siacc found in Sec. III-B (Algorithm

3 Line 5). Every time a set of edges, denoted as mod, in

G(Ãϕ), undergoes changes (Algorithm 3, Line 11), we first

call SUFFIXREPLAN to retrieve new suffix costs (Algorithm

3, Lines 12-13). If cost[skacc] is updated after replanning, we

count ïskacc, simgð as a modified edge and update the rhs-

value and key of skacc through UPDATEVERTEX (Algorithm

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 15,2025 at 17:15:42 UTC from IEEE Xplore. Restrictions apply.

3, Lines 14-15).

IV. OPTIMAL REPLANNING FOR INFEASIBLE TASKS

The revision algorithm discussed in the preceding section

only addresses replanning scenarios when any modification

to the weighted transition system T can generate a feasible

run in Ãϕ. Nevertheless, there exist cases in which environ-

mental changes or state disturbances may induce an infeasi-

ble run, e.g., the example shown in Fig. 3 (c). In such cases,

any potential run whose projection onto the WTS T violates

the original task specification to a certain degree. To address

this challenge, we further optimize the proposed algorithm

in Sec. III by leveraging the distance metric introduced in

Sec. II-C. Our approach aims to identify an optimal run that

minimally deviates from the original task specification while

incurring the lowest cost, thereby guaranteeing optimality.

Despite this new priority for minimal task violation, we

will demonstrate that our method still maintains the same

efficiency as the algorithm in Sec. III.

Given the updated priority, we assign the weight to the

relaxed edge ïs, s2ð as a combination of the transition

cost COST(s, s2) and the violation penalty DIST(s, s2). To

integrate this combinatory cost to our incremental search

algorithm, we introduce two auxiliary estimates, gaux(s) and

rhsaux(s), alongside the original g-value and rhs-value in D*

Lite. These auxiliary estimates respectively serve as a real

estimate and one-step lookahead to the accumulation of the

task violation penalty given by DIST and both are initialized

infinity. Since there are two metrics to consider, we therefore

revise the original duo-component key in the priority queue

as:

k(s) = {min
(
g(s), rhs(s)

)
+ h(sstart, s) + km;

min
(
g(s), rhs(s)

)
}

We define g(s) and rhs(s) as the combinations of violation

penalties and other costs, given by

g(s) = g(s) + γgaux(s),

rhs(s) = g(s2) + COST(s, s2)
︸ ︷︷ ︸

rhs(s)

+γ
(
gaux(s

2) + DIST(s, s2)
)

︸ ︷︷ ︸

rhsaux(s)

where s2 is among the successors of s:

s2 = argmin
s*PRED(u)

(

g(s) + COST(s, u)

+ γ
(
gaux(s) + DIST(s, v)

))

and we assume a constant γ k g(s) so that all auxiliary

estimates are dominant in determining the weight of each

component in the key during ranking, i.e., if gaux(s1) >
gaux(s2), then we have g(s1) > g(s2). Since keys are

compared according to lexicographic ordering in U , this

modified design prioritizes the minimal violation over other

costs.

We contend that our approach to revising the key design

coheres with [21] regarding how a state is expanded and how

a shortest path is retrieved through backtracking. Specifically,

we argue that the following propositions stand true:

" State consistency infers consistency of both the violation

penalty and the total cost: Recall that in Sec.II-D we

define state consistency as g(s) = rhs(s). If state

s is consistent, we can derive that g(s) = rhs(s)
and gaux(s) = rhsaux(s). This can be shown by

contradiction.2

" Consistency of the heuristic function still holds:

This is proved by arguing that we use the

same admissible heuristic function for costs,

and after the violation penalty being added, we

have h(sstart, s) � h(sstart, s
2) + COST(s2, s) �

h(sstart, s
2) + COST(s2, s) + γDIST(s, s2)). Therefore,

consistency of the heuristic function is preserved.

" The shortest path has the least violation of task specifi-

cation and the lowest traveling time: A shortest path

is backtracked by always moving forward from the

current state s to any successor s2 that minimizes

g(s2)+COST(s, s2)+γDIST(s, s2) until sgoal is reached.

This will ensure that the state for the next move is the

state with the lowest gaux among all successors of s,
and if multiple states own the same gaux value, then

the state with the lowest g value will be chosen.

In fact, with all the propositions stated above, the correctness

and optimality of our algorithm can be proved in a similar

way as the lemmas and theorems proved in [21]. The rigorous

proofs have to be omitted due to limited space. Moreover,

modeling the key in this way provides efficiency in finding

an optimal path when the robot lacks prior knowledge of

the task’s feasibility. If there exists a non-violating run,

states that are not affected by LTL specification relaxation

will be expanded first and their keys will turn consistent

before any state impacted by relaxation is expanded. This

is because those states not affected by relaxation have

min(gaux, rhsaux) = 0, which leads to their keys ranking

higher in the priority queue than those affected by relaxation.

V. RESULTS

A. Benchmarking Environment and Task Specifications

To demonstrate the efficiency and optimality of our pro-

posed algorithm, we test on the benchmark maps where the

robot only has partial observation on its local environment

shown in Fig. 7 (a) and (b). The robot’s task is to repetitively

visit locations A, B, C, D sequentially, expressed in LTL

formula as follows:

ϕb = ¥(A³ ý
(
(¬A ' ¬D ' ¬C) U ϕ1

)

where ϕ1 = B ' ý
(
(¬B ' ¬A ' ¬D) U ϕ2

)
, ϕ2 =

C'ý
(
(¬C'¬B'¬A) Uϕ3

)
, and ϕ3 = D'ý

(
(¬D'¬C'

¬B) U A
)
. The map is configured as an N-by-N gridworld,

which has four adjacent sub-regions comprising A, B, C, and

D locations respectively. This map includes static obstacles

and walls that impede the robot’s movement, as well as static

bumps that cause delays in travel time. Weighted transition

system weights are assigned based on traversal time between

2If gaux(s) ;= rhsaux(s), because of the weighting γ k g(s), g(s) ;=
rhs(s). If gaux(s) = rhsaux(s) but g(s) ;= rhs(s), still g(s) ;= rhs(s).

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 15,2025 at 17:15:42 UTC from IEEE Xplore. Restrictions apply.

N

No Pass

1

A

C

D

B

A

C

D

B

1

C
o

m
p

u
ta

ti
o

n
a

l
T

im
e

 (
s)

104

103

102

101

100

0

10 10 20 20 50 50 100 100

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Local revision Walls

Bumps

Obstacles

LTL-D* (Ours)

Iterative planning

LTL-D* (Ours)

Iterative planning
on relaxed PA

1

2

3

4

5
Navigation in Navigation in

Fig. 7. The comparison of the computational time for replanning every
time the robot encounters new obstacles and bumps between the baseline
algorithms and our approach in benchmark map (a) where ϕb is feasible to
realize and in benchmark map (b) where ϕb is infeasible to realize because
red obstacles block the passage to reach location C. The computational time
that exceeds the y-axis limit is positioned on the frame of (c). The local
revision method does not guarantee the optimality of the revised solution
(shown in Fig. 8) even though it employs local adjustments more efficiently.

TABLE I

NUMBER OF STATES AND TRANSITIONS IN THE NBA, WTS, PA, AND

RELAXED-PA FOR DIFFERENT SIZES OF MAPS.

Tuple
Map Size

10× 10 20× 20 50× 50 100×100

NBA 32 states, 92 transitions

WTS states
transitions

100
428

400
1848

2500
12108

10000
49008

PA states
transitions

3200
20058

12800
88218

80000
580698

320000
2361498

relaxed-
PA

states
transitions

3200
39376

12800
170016

80000
1113936

320000
4527136

cells, with a default cost of 10 for regular movements and

an increased cost of 50 for traversing bumps. Initially, the

robot possesses only partial knowledge of the map, being

informed solely about the map size and the positions of

walls. No information is provided regarding the locations of

obstacles and bumps until the robot enters cells adjacent to

these objects, i.e., one-cell horizon for the robot. The robot

needs to dynamically respond to obstacles blocking its path

and bumps slowing down its speed, and find an alternative

optimal path as needed.

B. Baseline Benchmarking

In replanning scenarios where the tasks are feasible, we

compare two baseline algorithms: the local revision method

introduced in Sec. III-A and iterative planning. The iterative

planning algorithm simply replans from the current state

using Dijkstra’s algorithm whenever its next planned action

is blocked or impeded by an object. We assign β = 10 as

the relative weighting when calculating the integral cost. Our

LTL-D* method uses Manhattan distance as the heuristic

function to guide the search and β is also assigned as 10

to align with the relative weighting between costs of prefix

A

C

D

B

Walls

Bumps

Obstacles

Scattered obstacles Local revision

LTL-D* (Ours)

10 10

20 20

50 50

100 100

Cost(s)

50000 10000 15000 20000

Fig. 8. The average total cost to finish one loop to and from A out of three
trials for each map size using the local revision method and our method.
The map is scattered with obstacles and the locations of A, B, C, D are
picked randomly in the four quadrants where they belong.

and suffix as the same as that in the iterative planning.

For fair comparisons, we implement all algorithms in

Python and run on a computer with a 13th Gen Intel Core

i9-13900K CPU. We also avoid the usage of any pre-

implemented algorithms from off-the-shelf packages. The

algorithms are tested on the benchmarking map with the

gridworld size of N = 10, 20, 50, 100.

Tab. I shows the number of states and transitions in NBA,

WTS, and PA for each map size in Fig. 7(a) and (b), and Fig.

7(c) shows the lower bound, upper bound, median, and first

quartile to the third quartile of computational time data when-

ever a replanning is triggered, i.e., encountering unknown

obstacles or bumps in its next move. In a similar environment

setting in Fig 8 with scattered obstacles in the blue region

at the density of 40%, we calculate the total time for the

agent to finish a round trip through A, B, C, D and returns

to A. Our algorithm showcases a remarkable reduction in

computational time compared to iterative planning, achieving

speeds two orders of magnitude faster. While it still lags

behind local revision in computational time by a factor of

ten, our algorithm increasingly outperforms local revision in

total cost to finish one run as the map size scales, as shown

in Fig. 8.

For replanning for infeasible tasks, we modify our bench-

mark map in Fig. 7 (b) by blocking the only passage that

existed at the bottom right corner to access point C. Now

whatever action the robot takes, the task specification ϕb

cannot be satisfied, and the robot needs to go around to D

directly after reaching B. We again employ iterative replan-

ning as a baseline algorithm but this time to wire a route in a

fully relaxed product automaton which is constructed a priori

under the relaxation condition in Sec. II-C. We demonstrate a

more than two-order of magnitude increase in speed to find

an optimal run with the least violation and the associated

minimal cost of our method compared to iterative planning

in the fully relaxed PA.

C. Simulation Results

We demonstrate the feasibility of our proposed algorithm

by a drone navigation problem in a more realistic environ-

ment built in NVIDIA Isaac Sim. A maze-like environment is

constructed as shown in Fig. 9 with a charging station A, four

rooms with cargo B, C, D, F, and a central drop-off location

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 15,2025 at 17:15:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. The simulation environment is encapsulated by a set of waypoints
connecting the different rooms. Blue connections describe a normal pathway,
yellow connections describe a connection that passes through a bump, and
red connections describe a block that prevents passage. Connections do not
exist through walls as these are always impassable.

E. We designate the bumps as foliage in the environment

that the drone can traverse with a greater cost, and blocks as

closed doors that the drone cannot traverse through. A 6-by-

6 grid is overlayed in the environment to provide the robot

with a set of waypoints that encompass the key locations

and possible paths. For the task specifications, we require

the drone to start at charging room A. It is then instructed to

load boxes from one of the rooms B, C, D, F, and bring the

loaded boxes one at a time to the central drop-off location E.

The drone will then go to another room to load and unload

boxes until all boxes have been delivered from each room to

E. In this scenario, only the locations of walls for each room

are known in advance while all other blocks and bumps are

unknown until the robot encounters them. We can express

the LTL specification for this problem as:

ϕ1 =(A ³ fB) '¥(B ³ ý(loaded'
(¬C ' ¬D ' ¬F)U(E ' unloaded)))

ϕ2 =(A ³ fC) '¥(C ³ ý(loaded'
(¬B ' ¬D ' ¬F)U(E ' unloaded)))

ϕ3 =(A ³ fD) '¥(D ³ ý(loaded'
(¬B ' ¬C ' ¬F)U(E ' unloaded)))

ϕ4 =(A ³ fF) '¥(F ³ ý(loaded'
(¬B ' ¬C ' ¬D)U(E ' unloaded)))

where each specification describes the robot going to a room,

picking up its load, and delivering it to the drop-off location.

The overall task specification can be expressed as:

ϕs = ϕ1 ' ϕ2 ' ϕ3 ' ϕ4

Fig. 1 (Top) shows the drone’s trajectory to complete the

given task specification. The yellow markers denote locations

where ϕs remains feasible after encountering an unexpected

object in the environment. An infeasible task replanning,

denoted by a red marker, is triggered when the robot is trying

to load a box from D which is obstructed by a closed door.

The robot remains at its position thereafter as no further

actions are instructed.

VI. CONCLUSION

In this paper, we propose an incrementally optimal re-

planning strategy for both feasible and infeasible task spec-

ifications. We demonstrate the efficiency, optimality, and

scalability of our algorithms in benchmark maps and their

application in a realistic scenario. Future work includes

extending our algorithms to efficient and optimal task real-

location and motion replanning in multi-agent coordination.

REFERENCES

[1] H. Kress-Gazit, T. Wongpiromsarn, and U. Topcu, “Correct, reactive,
high-level robot control,” IEEE Robot. Autom. Mag., vol. 18, no. 3,
pp. 65–74, 2011.

[2] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and
G. J. Pappas, “Symbolic planning and control of robot motion [grand
challenges of robotics],” IEEE Robot. Autom. Mag., vol. 14, no. 1, pp.
61–70, 2007.

[3] M. Guo, K. H. Johansson, and D. V. Dimarogonas, “Revising motion
planning under linear temporal logic specifications in partially known
workspaces,” in Proc. IEEE Int. Conf. Robot. Automat., 2013, pp.
5025–5032.

[4] Y. Li, E. M. Shahrivar, and J. Liu, “Safe linear temporal logic motion
planning in dynamic environments,” in Proc. IEEE/RSJ Int. Conf.

Intell. Robots. Syst., 2021, pp. 9818–9825.
[5] Z. Zhou, D. J. Lee, Y. Yoshinaga, S. Balakirsky, D. Guo, and Y. Zhao,

“Reactive task allocation and planning for quadrupedal and wheeled
robot teaming,” in Proc. IEEE Int. Conf. Autom. Sci. Eng. IEEE,
2022, pp. 2110–2117.

[6] S. Li, D. Park, Y. Sung, J. A. Shah, and N. Roy, “Reactive task and
motion planning under temporal logic specifications,” in Proc. IEEE

Int. Conf. Robot. Automat., 2021, pp. 12 618–12 624.
[7] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-

based reactive mission and motion planning,” IEEE Trans. Robot.,
vol. 25, no. 6, pp. 1370–1381, 2009.

[8] A. Pacheck and H. Kress-Gazit, “Physically feasible repair of reactive,
linear temporal logic-based, high-level tasks,” IEEE Trans. Robot.,
2023.

[9] A. Pacheck, S. James, G. Konidaris, and H. Kress-Gazit, “Automatic
encoding and repair of reactive high-level tasks with learned abstract
representations,” Int. J. Robot. Res., vol. 42, no. 4-5, pp. 263–288,
2023.

[10] A. Pacheck, S. Moarref, and H. Kress-Gazit, “Finding missing skills
for high-level behaviors,” in Proc. IEEE Int. Conf. Robot. Automat.,
2020, pp. 10 335–10 341.

[11] M. Cai, H. Peng, Z. Li, and Z. Kan, “Learning-based probabilistic ltl
motion planning with environment and motion uncertainties,” IEEE

Trans. Autom. Control, vol. 66, no. 5, pp. 2386–2392, 2021.
[12] M. Guo and M. M. Zavlanos, “Probabilistic motion planning under

temporal tasks and soft constraints,” IEEE Trans. Autom. Control,
vol. 63, no. 12, pp. 4051–4066, 2018.

[13] M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration
under local ltl specifications,” Int. J. Robot. Res., vol. 34, no. 2, pp.
218–235, 2015.

[14] M. Lahijanian, M. R. Maly, D. Fried, L. E. Kavraki, H. Kress-
Gazit, and M. Y. Vardi, “Iterative temporal planning in uncertain
environments with partial satisfaction guarantees,” IEEE Trans. Robot.,
vol. 32, no. 3, pp. 583–599, 2016.

[15] K. Kim, G. Fainekos, and S. Sankaranarayanan, “On the minimal
revision problem of specification automata,” Int. J. Robot. Res., vol. 34,
no. 12, pp. 1515–1535, 2015.

[16] Y. Kantaros and M. M. Zavlanos, “Stylus*: A temporal logic optimal
control synthesis algorithm for large-scale multi-robot systems,” Int.

J. Robot. Res., vol. 39, no. 7, pp. 812–836, 2020.
[17] C. I. Vasile and C. Belta, “Sampling-based temporal logic path

planning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots. Syst., 2013,
pp. 4817–4822.

[18] C. I. Vasile, X. Li, and C. Belta, “Reactive sampling-based path
planning with temporal logic specifications,” Int. J. Robot. Res.,
vol. 39, no. 8, pp. 1002–1028, 2020.

[19] D. Gujarathi and I. Saha, “Mt*: Multi-robot path planning for temporal
logic specifications,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots. Syst.,
2022, pp. 13 692–13 699.

[20] D. Khalidi, D. Gujarathi, and I. Saha, “T: A heuristic search based
path planning algorithm for temporal logic specifications,” in Proc.

IEEE Int. Conf. Robot. Automat., 2020, pp. 8476–8482.
[21] S. Koenig and M. Likhachev, “Fast replanning for navigation in

unknown terrain,” IEEE Trans. Robot., vol. 21, no. 3, pp. 354–363,
2005.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 15,2025 at 17:15:42 UTC from IEEE Xplore. Restrictions apply.

