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Abstract—This study addresses the challenge of bipedal
navigation in a dynamic human-crowded environment, a re-
search area that remains largely underexplored in the field of
legged navigation. We propose two cascaded zonotope-based
neural networks: a Pedestrian Prediction Network (PPN) for
pedestrians’ future trajectory prediction and an Ego-agent
Social Network (ESN) for ego-agent social path planning.
Representing future paths as zonotopes allows for efficient
reachability-based planning and collision checking. The ESN is
then integrated with a Model Predictive Controller (ESN-MPC)
for footstep planning for our bipedal robot Digit designed by
Agility Robotics. ESN-MPC solves for a collision-free optimal
trajectory by optimizing through the gradients of ESN. ESN-
MPC optimal trajectory is sent to the low-level controller for
full-order simulation of Digit. The overall proposed framework
is validated with extensive simulations on randomly generated
initial settings with varying human crowd densities.

I. INTRODUCTION

Bipedal navigation in complex environments has garnered
substantial attention in the robotics community [1]-[4]. So-
cial navigation is a particularly challenging problem due
to the inherent uncertainty of the environment, unknown
pedestrian dynamics, and implicit social behaviours [5].
Recently, there has been an increasing focus on social
navigation for mobile robots in human environments [6]—
[9]. Nonetheless, the exploration of social navigation for
bipedal robots remains largely underexplored. This can be
attributed to the intricate hybrid, nonlinear, and high degrees-
of-freedom dynamics associated with bipedal locomotion.

In this study, we present an integrated framework for pre-
diction and motion planning for socially acceptable bipedal
navigation in human-crowded environments as shown in
Fig. 1. We propose a navigation framework composed of two
cascaded neural networks: a Pedestrian Prediction Network
(PPN) for pedestrians’ future trajectory prediction and an
Ego-agent Social Network (ESN) for ego-agent social path
planning. The ego-agent is aware solely of the neighbor-
ing pedestrians within a radius as shown in Fig. 1. Our
neural networks output reachable sets for pedestrians and
the ego-agent represented as zonotopes, a convex symmetric
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Fig. 1: Snapshot of the simulation environment with superimposed zono-
topes for the proposed reachability-based social navigation framework. The
environment is a 14 m X 14 m open space with 20 pedestrians.

polytope. Zonotopes provide a balance between geometric
complexity and computational efficiency. We specifically
take advantage of two facts: (1) the Minkowski sum of two
zonotopes is again a zonotope, allowing us to easily augment
the zonotopes output by a neural network; and (2) collision
checking a pair of zonotopes can be differentiated for use
in gradient-based motion planning methods [10]-[13]. In
this study, we use zonotopes to detect and avoid collisions
by checking for intersections between the zonotopes corre-
sponding to the ego-agent and pedestrians.

Our framework integrates ESN in a model predictive con-
troller (MPC) as shown in Fig. 2. The ESN-MPC optimizes
over the output of the neural network, with reachability and
collision avoidance constraints. It incorporates a reduced-
order model (ROM) for the bipedal locomotion process and
then sends optimal commands, i.e., center of mass (CoM)
velocity and heading change, to the low-level controller on
Digit for full-body joint trajectory design and control.

The main contributions of this study are as follows:

e A zonotope-based prediction and planning framework

for bipedal navigation in a social environment.

« Novel loss functions to shape zonotopes that represent
the future social trajectory of the ego-agent.

o A framework for hierarchically integrating the neural
networks with an MPC and a low-level passivity con-
troller for full-body joint control of Digit.

This article is outlined as follows. Sec. II is a literature

review of related work. Sec. IIl introduces the problem
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Fig. 2: Block diagram of the proposed framework. The framework is composed of two sub-networks: the Pedestrian Prediction Network (PPN) and the
Ego-agent Social Network (ESN) shown in green and cyan, respectively (Sec. V). Given an environment with observed pedestrians and a goal location,
PPN predicts the future pedestrians’ reachable set. ESN-MPC optimizes through ESN to generate collision-free trajectories for Digit (Sec. VI). The optimal
trajectory is then sent to the ALIP controller [14] to generate the desired foot placement for reduced-order optimal trajectory tracking. An ankle-actuated-
passivity-based controller [15], [16] is implemented on Digit for full-body trajectory tracking.

we are seeking to solve. Then, the environment setup and
zonotope preliminaries are in Sec. IV. Sec. V presents
the neural network architecture and loss functions. Sec. VI
formulates the problem as an MPC. Implementation details
and results are in Sec. VII and conclusion is in Sec. VIIL

II. RELATED WORK

Navigating an environment with humans in a socially
compliant manner requires a proactive approach to motion
planning [6]-[8]. In [8], the authors use opinion dynamics
to proactively design motion plans for a mobile robot,
without the need for human prediction models. It relies
only on the observation of the approaching human position
and orientation to form an opinion that alters the neutral
path and avoids collisions with pedestrians. Gradient-based
trajectory optimization is introduced in [7] to minimize
the difference between the humans’ future path prediction
conditioned on the robot’s plan and the nominal prediction.
The studies of [6], [7] both assume that a minimally-invasive
robot trajectory, with minimal effect on surrounding humans’
nominal trajectory, is socially acceptable. In contrast, our
work aims to learn the socially acceptable trajectory from
human crowd datasets to minimize any heuristic biases on
what a socially acceptable trajectory is.

Our framework is inspired by the human trajectory predic-
tion community [17]-[20], where we aim to design a socially
acceptable trajectory for the ego-agent that mimics the path
learned from human crowd datasets. The work in [21]
proposes an obstacle avoidance learning method that uses
a Conditional Variational Autoencoder (CVAE) framework
to learn a temporary target distribution to avoid pedestrians
actively. However, during the learning phase, the temporary
targets are selected heuristically. In contrast, we aim to learn
such temporary waypoints from human crowd datasets to
capture a heuristic-free socially acceptable path. In [17], the
authors develop a simple yet, accurate CVAE architecture
based on Multi-Layer Perceptrons (MLP) networks to predict
crowd trajectories conditioned on past observations and in-

Fig. 3: Illustration of the Linear Inverted Pendulum model for two consecu-
tive walking steps, with discrete states pg and p,y1 at the contact switching
time. The shaded yellow regions indicate the kinematics constraint on the
control input w detailed in Sec. VI-A.

termediate endpoints. Our ESN follows a similar MLP-based
CVAE architecture, where the ego-agent path is conditioned
on the final goal location, surrounding pedestrians’ future
trajectories, and immediate change in the ego-agent state.
Utilizing a non-complex network architecture is pivotal for
enabling real-time planning and prediction when integrated
into gradient-based motion planning for the ego-agent.

The authors in [10] present a Zonotope Alignment of
Prediction and Planning (ZAPP) that relies on zonotopes
to enable continuous-time reasoning for planning. They
use trajectron++ [18] to predict obstacle trajectories as a
Gaussian distribution. They construct a zonotope over these
distributions, which leads to an overapproximation of the un-
certainties. We propose learning these distributions directly
as zonotopes, bypassing the initial step of predicting Gaus-
sian distributions for pedestrian motion. This approach is
computationally efficient and facilitates real-time integration
with an MPC.

III. PROBLEM FORMULATION

A. Robot Model

Consider a bipedal ego-agent with discrete step-by-step
dynamics x,11 = ®(x4, u,), where x, and u, are the state
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and control input respectively at the contact switching time
of the ¢*" walking step. The robot’s state = (p, v'°¢,0),
where p = (x,y) is the 2-D location in the global coordinate,
v!1°¢ is the local sagittal velocity, and 6 the heading. The
control input is u, = (ug que), where u{; is the local
sagittal foot position relative to the CoM, and quo is the
heading angle change as shown in Fig. 3.

The reduced-order model (ROM) used to design the walk-
ing motion of Digit is the Linear Inverted Pendulum (LIP)
model [22]. For the LIP model, we assume that each step has
a fixed duration T'! [2], [23]. Then we build our model on
the discrete local sagittal dynamics (Ax}loc,v};’c) 2, where
Agloc = zlof, — zl°° and v}°° is the sagittal velocity at the
local coordinate for the ¢'" walking step (see Fig. 3):

sinh(wT)

q q w

Azoc(uf) = <U10C +(1— cosh(wT))ug) (D

vé‘fl (ug) = cosh((,uT)v};’C —w sinh(wT)ug 2)
where w = +/g/H, where ¢ is the gravitational constant
and H is the CoM height. Based on the local sagittal
dynamics (1) and (2), we add heading angle 6, to control the
LIP dynamics in 2-D Euclidean space. The heading angle
change is governed by 0,11 = 0, + uﬁ‘e across walking
steps. Therefore the full LIP dynamics in 2-D Euclidean
space become:

Tgi1 = Tq + Axloc(ug) cos(bq) (3a)
Yg+1 =Yg + Axloc(ug) sin(6,) (3b)
v}ﬁfl = Cosh(wT)v};’C —w sinh(wT)u{; (3c)
Og+1 = 0g + u? (3d)
For notation simplicity, hereafter, we refer to (3) as:
Tgr1 = P(xy,uy) €]

B. Environment Setup and Problem Statement

The ego-agent is tasked to navigate to a known goal
location G in an open environment with m € N observed
pedestrians treated as dynamic obstacles. The pedestrian state
’7';: 4 is the 2-D trajectory of pedestrian k observed over
the discrete time interval [¢,, t]. The environment is partially
observable as only the pedestrians in a pre-specified sensory
radius of the ego-agent are observed. The path the ego-agent
takes should ensure navigation safety, and promote social

acceptability.

Definition III.1 (Navigation safety). Navigation safety is
defined as maneuvering in human crowded environments
while avoiding collisions with pedestrians, i.e., |p;—TF*|| >
d, Vt, k, where d represent the minimum allowable distance
between the ego-agent and the pedestrians.

Iset to be equal to the timestep between frames in the dataset (0.4 s)
2the lateral dynamics are only considered in the ALIP model at the low
level since they are periodic with a constant desired lateral foot placement

Definition IIL.2 (Socially acceptable path for bipedal sys-
tems). A path that a bipedal ego-agent takes in a human-
crowded environment is deemed socially acceptable if it has
an Average Displacement Error (ADE) < € 3 when compared
to ground truth data in the same environment.

Based on the aforementioned definitions and environment
setup the problem we aim to solve is as follows:

Problem IIL.1. Given the discrete dynamics of the bipedal
robot xqy1 = ®(xq,uy) and an environment state £ =
(T[f’“’ t],g), find a motion plan that promotes social accept-
abiﬁ'ty for the bipedal ego-agent in a partially observable
environment containing pedestrians while ensuring naviga-
tion safety.

I'V. PRELIMINARIES

To solve the social navigation problem defined above, we
propose a learning framework to learn socially acceptable
reachable sets parameterized as zonotopes (Sec. V-A). Prob-
lem.II.1 is then reformulated as a step-by-step MPC problem
with navigation safety constraints and implemented in real
time on our Digit humanoid robot [24] (Sec. VI-D). This
section begins by introducing the learning and environment
assumptions, and zonotope preliminaries.

1) Environment Assumptions and Observations: In this
work, we hypothesize that in a social setting, the information
accessible by the ego-agent that is used to determine its
future path T[tegt‘;] = {xggo,yggo}zf:t“ are three fold: (i)
its final destination G = (29t yd*) (ego-agent intent),
(ii) the surrounding pedestrians’ past trajectory T[f:’t] =
{x’q’k,yé’k f]:tp for the k' pedestrian, and (iii) the ego-
agent’s social experience, i.e., its assumptions on how to
navigate the environment in a socially-acceptable manner.
We treat the social experience as latent information that is
not readily available in human crowd datasets. Therefore we
make the following assumption.

Assumption IV.1. Learning the future trajectory of an ego-
agent 'T[f,gt(;] based on its final goal G and surrounding
pedestrians’ past trajectories
agent’s social experience.

[t;t], will learn the ego-

2) Zonotopes Preliminaries: A zonotope Z € R"™ is a
convex, symmetrical polytope paramterized by a center ¢ €
R™ and a generator matrix G € R™"*"¢ (see Fig. 5).

Z=2(c,G) ={c+GB|[fllw <1} ()

The Minkowski sum of Z; = Z{(c¢;,G1) and 25 =
D@p(CQ,GQ) is Zl D ZQ = ff(cl +CQ, [Gl GQ]) To Check
collisions between two zonotopes, [25, Lemma 5.1] is used:

Proposition IV.2. ( [25, Lemma 5.1]) Z1 N2, =0 iff ¢; ¢
e, (G G2).

3¢ represents the allowable deviation from the socially acceptable path.

The Average Displacement Error denotes the average error between the
planned path and the ground-truth path.

4the subscripts tp, t, and ty represent a discrete time indices denoting
the past, current and future trajectories, respectively, where ¢, <t <ty.
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Fig. 4: (a) shows the pedestrian prediction network, conditioned on the pedestrian endpoints and the immediate change in the ego-agent’s state. (b) shows
the ego-agent social network conditioned on the pedestrians’ future prediction, the immediate change in the ego-agent’s state, and the ego-agent’s goal

location. Dashed connections are used during training only.

When n = 2 zonotopes can be represented as polytopes
using the half-space representation P = {x | Az < b},
where x € P <= max(dzx —b) < 0 and = ¢
P <= max(Az —b) > 0. To convert a 2-D zonotope
from the center-generator representation to the half-space
representation, we use the following proposition:

Proposition IV.3. ( [13, Theorem 2.1]) Let C =

[-G[2,:] G[1,:]]] and igli] |G[:,3]||l2 the half-space
representation of a 2-D zonotope:
. 1 C 2nax2
A = . R"ex
i = 72 [_C} S (6)
b=A- c+|AG| 1hx1 € R?C (7

In this work, zonotopes are used to describe the social
reachable set for the ego-agent. We seek to learn a sequence
of social zonotopes Z;g", each of which contains two con-

secutive waypoints of the ego-agent’s future social trajectory
go
[t,te]”
Definition IV.1 (Social Zonotope Z78°). A social zonotope
for the ego-agent’s ¢** walking step is 280 = ZL(cq, Gy),
tp—1
such that T;gt(; € U Zeeo,

V. SOCIAL ZONOTOPE NETWORK
A. Learning Architecture

We set up a conditional variational autoencoder (CVAE)
architecture to learn the ego-agent’s future trajectory condi-
tioned on the final destination goal, the immediate change in
the ego-agent’s state, and the surrounding pedestrians’ past
trajectories. The proposed architecture incorporates Multi-
Layer Perceptrons (MLP) with ReLLU non-linearity for all
the sub-networks.

1) Pedestrian Prediction Network (PPN): The pedestrian
prediction network (shown in Fig. 4(a)) is inspired by
PECNet [17], where the endpoint of the pedestrian trajec-
tory ’7;7;‘ is learned first, and then the future trajectory is
predicted. Our proposed network deviates from PECNet in
three ways. First, the pedestrian future trajectory is also
conditioned on the immediate change in the ego-agent’s
state Te +1 (shown in red in Fig. 4(a)). This coupling of

the pedestrian prediction and ego-agent planning networks
is intended to capture the effect of the robot’s control on
the future trajectories of the surrounding pedestrians [5],
[7], and enable bidirectional influence for the entire ego-
agent-pedestrian team. Second, the output of the network
is the pedestrian’s future reachable set parameterized as
zonotopes Z[’;’jtf] rather than trajectories for robust collision
checking and uncertainty parameterization [10]-[12]. Third,
we replace the social pooling module with a simple ego-agent
sensory radius threshold for computational efficiency.

The pedestrians’ past trajectories ﬂkt are encoded in
E,cq as seen by the purple arrow in F1g 4(a), while the
incremental change in the ego-agent state representing the
ego-agent control is encoded in F, .y as seen by the red
arrow in Fig. 4(a). This allows us to condition the prediction
of the pedestrians’ trajectory on the ego-agent’s control.
The resultant latent features Eped(’T[ii t]) and Euext (Tefy)
are then concatenated and used as the condition features
Feond- The pedestrian’s endpoint locations are encoded in
Fenaq as seen by the orange arrows in Fig. 4(a). The resul-
tant latent features Eend(’ﬁﬁ’“‘) are then concatenated with
Feona as global features Fgiona and encoded in the latent
encoder Fytent- We randomly sample features from a normal
distribution N'(u, o) generated by the Ejstent module, and
concatenate them with F.,,q. This concatenated information
is then passed into the latent decoder Diatent. Then Diatent
outputs the predicted endpoint that is passed again through
E.,q. The output is concatenated again with F.,,q and
passed to Ppyure to output the predicted zonotopes of the
pedestrians Z e

2) Ego- agent Soczal Network (ESN): ESN architecture
is shown in Fig. 4(b). The surrounding pedestrians’ future
zonotope centers cﬁ’“t | are aggregated through summation
to take into account the collective effect of surrounding
pedestrians while keeping a fixed architecture® [18]. The
summed pedestrian features are then encoded in Efygure as
seen by the green arrows in Fig. 4(b). The goal location
for the ego-agent is encoded in Ega1, while the incremental
change in the ego-agent state is encoded in Ey as seen

SOther human trajectory learning modules include a social module to
take into account the surrounding pedestrians effect such as social non-local
pooling mask [17], max-pooling [19], and sorting [20].
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Fig. 5: Our zonotope shaping loss functions. The loss aims to learn
interconnected zonotopes that engulf the ground truth path.

by the orange and red arrows respectively in Fig. 4(b). The
resultant latent features Efygure(D_pey cﬁ’ftf]), Eq0a1(G) and
FEpext (T F)) are then concatenated and used as the condition
features F:% | for the CVAE. The ground truth of the ego-
agent’s future trajectory 7?%‘;] is encoded in Fi,,j as shown
by the cyan arrows in Fig. 4(b). The resultant latent features
Eaj(Ty5,,) are then concatenated with FCZ.; as global
features ]F;%sbal and encoded in the latent encoder Ejatent.
Similarly, we randomly sample features from a normal
distribution NV (u, o) generated by the Flatens module, and
concatenate them with F¢% . This concatenated information
is then passed into the latent decoder Djytent, resulting in

our prediction of the ego-agent’s future reachable set Zﬁg:f].

Remark 1. Including FEext in both neural networks facil-
itates seamless integration with a step-by-step MPC, as the

MPC’s decision variables (Ap°e°) will be used as inputs to
FErext as detailed in Sec. VI.

B. Zonotope Shaping Loss Functions

The zonotope shaping loss functions are used for both
PPN and ESN, where both outputs are parameterized as
zonotopes. The goal of these loss functions is three folds:
(i) penalize deviation of the centers of the zonotopes from
the ground truth future trajectory; (ii) generate intersecting
zonotopes for consecutive walking steps; and (iii) reduce the
size of the zonotopes to avoid unnecessary, excessively large
zonotopes. Based on these goals, the following is a list of
loss functions to shape the zonotopes (Fig. 5):

1) Average displacement error between the predicted cen-
ters and midpoint of the ground truth trajectory Tmid,;:

-1
S | i — il
tf —1

Lape =

2) Final displacement error between the last predicted
center and the final midpoint of the ground truth
trajectory:

Lrpe = ||Tmid,t;—1 — Ct;—1]|

3) The midpoint between the current center and previous

center ¢’ is contained in the current zonotope:

mid,s
tf—l

Eprev = Z RGLU(Al . cfnid,i — bz)
=0

4) The midpoint between the current center and the next
center c’., . is contained in the current zonotope:

mid,s
ty—1

Lnxt = Z ReLU(Al . cﬁlid,i — b1)
=0

5) Regulating the size of the zonotope, by penalizing the
norm of the generators such the neural network does
not produce excessively large zonotopes that contain
the ground truth trajectory:

Lo = |lg[l] = di]| + llg[1 :] — da|

where d; and do are the desired lengths for the generators.
We sum the zonotope shaping losses listed above in a single
term L z. Similar to PECNet [17], we use Kullback-Leibler
divergence to train the output of the latent encoder, aiming
to regulate the divergence between the encoded distribution
N (p, o)and the standard normal distribution N(0, I):

Lxkr = Dkr (N(N,O')HN(O,I))

The network is trained end to end using the following loss
function: £L =Lk + L=.

VI. SociaL MPC

To enable safe navigation in the human-crowded envi-
ronment, we propose to solve the following optimization
problem:

N-1
min Z J(x,u) (8a)
q=0
st g1 = P(xg, uq) (8b)
Lo = TLinit, (mqauq) € Xuq (8¢)
xyy1 € 23 (ApeE°, Ey) (8d)
Z (Ape B\ 204 = 0. ¥k, (80)

where the cost (8a) is designed to reach the goal and promote
social acceptability, subject to the ROM dynamics (8b)
(Sec. III-A). Constraint (8d) requires the ego-agent at the
next (¢ + 1)*® walking step to stay within the reachable set,
while constraint (8e) requires the ego-agent to avoid collision
with the pedestrians. Next, we introduce the kinematics,
reachability, and navigation constraints (Sec. VI-A-VI-B),
and finally reformulate the MPC in (8) with a detailed version
for implementation (Sec. VI-D).

A. Kinematics Constraints

To prevent the LIP dynamics from taking a step that is
kinematically infeasible by the Digit robot the following
constraint is implemented

XUy ={(zg,uq) | T, < 2y < @yp and wyp, < ug < Uyp )

©))
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where @y, and x,, are the lower and upper bounds of x,
respectively, and wj, and w,;, are the bounds for u, (See
yellow shaded region in Fig. 3). The detailed parameters in
our implementation are specified in Table II.

B. Reachability and Navigation Safety Constraints

To enforce navigation safety (i.e., collision avoidance), we
require that Digit remains in the social zonotope Z°° and
outside of the surrounding pedestrians reachable set ZPr,

1) Reachability constrains: For the robot’s CoM to re-
main inside the desired zonotope for the next walking step
Z;’iol, we represent the zonotope using half-space represen-
tation as shown in Prop. IV.3. The constraint is reformulated:

max(A®E°p°e° — hE°) < 0 (10)

2) Navigation safety constraint: For pedestrian collision
avoidance, we require that the reachable set of the ego-
agent does not intersect with that of the pedestrians for the
corresponding step. Therefore, we create a new zonotope for
the ego-agent as Minkowski sum of the ego-agent’s zonotope
and the pedestrian’s zonotope centered around the ego-agent
zZmink — %(ce8° [G8° GP*]) to check for collision with the
pedestrians zonotope following Prop. IV.2. We then represent
Zwink ysing half-space representation and require that the
pedestrian is outside the combined set:

maX(Aminkpk _ bmink) >0 (1 1)

C. Cost Function

The MPC cost function is designed to drive the ROM state
to a goal location G. The terminal cost penalizes the distance
between the current ROM state and the global goal state G.

In(zy) = [ley — zg|Fy, + 108 — Ogll5y,  (12)

where g = (G, Vterminal), and g is the angle between the
ego-agent’s current position and the final goal location.
D. MPC Reformulation with Ego-agent Social Network

According to the aforementioned costs and constraints
for implementation, we reformulate our Ego-agent Social
Network MPC (ESN-MPC) shown in (8) as follows:

N-1
r}r{n{r} qzo In(xn) (13a)
s.t. xgy1 = D(xg, uq) (13b)
Ty = Tinit, (TqUq) € XU, (13¢)
max(AZ P — b)) <0 (13d)
max (AP pr,., — biT) >0, V kg (13e)

VII. IMPLEMENTATION AND RESULTS
A. Training

The social path planner module introduced in Sec. V was
trained on the UCY [26] and ETH [27] crowd datasets with
the common leave-one-out approach, reminiscent of prior
studies [17]-[19]. The models were trained on a data set
that excludes UNIV from the training examples. We employ

TABLE I: Network architecture parameters

Pedestrian Prediction Network

Epea 16 — 32 — 16

Fena 2—>8—16

Enxt 2—532—16
Pruture 50 - 32— 16 —+ 32 — 70
Flatent 48 -8 — 16 — 32
Diatent 48 -+ 32— 16 -+ 32 — 2

Ego-agent Social Network

Egoal 2—58—>16—2
future 16 — 64 — 32 — 16
Enxt 264322
Elraj 16 — 64 — 32 — 16
latent 36 -8 — 50 — 16

Diatent 36 — 128 — 64 — 128 — 70

a historical trajectory observation 7'[71’“8 0l and a prediction

horizon ’ffggéi, each spanning 8 timesteps (3.2 s) and only
consider neighboring pedestrians that are within a radius of

4 m. The network architecture details are shown in Table 1.

B. Pedestrian Simulation

We use SGAN (Social Generative Adversarial Network),
a state-of-the-art human trajectory model, for simulating
pedestrians [19]. SGAN is specifically designed to grasp
social interactions and dependencies among pedestrians. It
considers social context, including how people influence each
other and move in groups. This is important for creating real-
istic simulations of pedestrian motion. Employing a different
prediction model ensures a fair evaluation by eliminating any
inherent advantages of our proposed method [7].

In our simulation framework, SGAN incorporates both
the historical trajectories of pedestrians and the trajectory
of the ego agent. This approach enhances the realism of the
simulation by accounting for the interaction between the ego-
agent and pedestrians within the environment.

C. Testing Environment Setup

The environment for all the following tests is an open
space of 14 x 14 m? as shown in Fig. 1 and Fig. 8, with
randomly generated pedestrians’ initial trajectory. We test
with 5, 15, and 30 pedestrians in the environment. The
goal location is G = (10, 10) m, and the ego-agent starting
position is uniformly sampled along the y-axis as such
xo = (0,Uo,13),0) with 65 = 0. The MPC is solved with a
planning horizon of N = 4, and ESN-MPC parameters are
included in Table. II. Simulations and training are conducted
using a 16-core Intel Xeon W-2245 CPU and an RTX-
5000 GPU with 64 GB of memory. The ESN-MPC is
implemented using the do-mpc Python libraray [28]. Digit is
simulated using the MuJoCo simulator provided by Agility
Robotics [24] and visualized using Nvidia Isaac Gym [29]
for a realistic human crowded environment set-up.

D. Low-level Full-Body Control

At the low level we use the Angular momentum LIP
(dubbed as ALIP) planner introduced in [14], and a Digit’s
passivity controller [15] with ankle actuation which we
have previously shown to exhibit desirable ROM tracking
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TABLE II: ESN-MPC Parameters

parameter | value | parameter value
A0 o A0Q S
Uy 15 ul? —15
Uiy 0.4 m Uiy, —0.1m
dy 0.1 do 0.005
Uterminal 0 m/s ng 4
Wi 3 Wo 1
T4 @ e ®
_ 12 ADE=0.229m L
£ FDE=0520m — | | Y
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Fig. 6: Quantitative (a) and qualitative (b) results of ESN. (a) Shows the
displacement error between the prediction of ESN ¢®8° and the ground
truth data 757 (red dots in (b)). (b) shows a snapshot of ESN output,
where the ego-agent’s predicted zonotopes (cyan) contain the ground truth
ego-agent data (red). ESN is conditioned on the goal position (yellow %)
and surrounding pedestrian future trajectories (green). The data is collected
based on the UNIV dataset with 7831 unique frames. The solid line in (a)
shows the average displacement error at each prediction horizon.

results [16]. The ALIP controller used here is based on ve-
locity rather than angular momentum, though the formulation
remains similar to [14]. In this case, the ALIP model is
equivalent to the LIP model used during planning. Here we
set the desired walking step time and the desired lateral step
width to be fixed at 0.4 s and 0.4 m, respectively.

E. Results and Discussion

In Fig. 6(a) we show that ESN produces an ADE= 0.229
m over the prediction horizon of 7 timesteps®, and a Final
Displacement Error (FDE)= 0.52 m. Fig. 6(b) shows a
snapshot of the ESN social zonotope output Z°&° (cyan)
compared to the ground truth data 7.5; shown in red.

Fig. 7 shows the tracking performance of integrating
ESN-MPC with the low-level full-body controller [14]-[16].
We show the global Euclidean position tracking Fig. 7(a),
heading angle tracking in Fig. 7(b), and local sagittal velocity
tracking in Fig. 7(c). Fig. 1 and Fig. 8 show snapshots of
the resultant trajectory at different walking steps.

Snapshots of ESN-MPC results at different walking steps
are shown in Fig. 8. In Fig. 9(a), all three crowd densities
produce relatively similar median velocities. At lower crowd
density the velocity is more consistent. As expected, Fig. 9(b)
shows that in less crowded areas, the ego-agent can reach the
goal in fewer steps. With 30 pedestrians in the environment,
it took more steps on average to reach the goal while
maintaining a relatively similar velocity to the environments
with fewer crowds (see Fig. 9(a)). This indicates that our
framework can predict the future trajectory of the surround-
ing pedestrians, and is not required to come to a sudden stop.

The prediction horizon timesteps is 7 and not 8, since the displacement

error is calculated based on the middle points 7257 of ’7'[8:55]

(a) Global position (b) Heading

15

© Desired position — Desired heading
— Digit's position || o5 — Digit's heading

4 6 8 10 10 20 _30 40 50
x [m] Time [s]
(c) Sagittal velocity

Velocity [m/s]
2 14
S b

— Desired velocity
— Digit's velocity
31 2 3 34 35 36 37

Time [s]

Fig. 7: Full-order simulation results of Digit tracking the desired trajectory
from ESN-MPC. (a) shows Euclidean position tracking, (b) shows heading
tracking, and (c) shows the sagittal velocity tracking in local coordinates.

ESN-MPC produces a consistent and predictable behavior
for the ego-agent. Predictability of the ego-agent behavior
in a social context is desirable by pedestrians as it is
perceived to be less disruptive. With 5 and 15 pedestrians
in the environment our framework produced a 100% success
rate by reaching the goal in 100 walking steps, while it
managed a 90% success rate with 30 pedestrians as shown in
Fig. 9(c). Due to the larger number of constraints, the time
it takes to solve ESN-MPC decreases with increasing the
number of pedestrians (See Fig. 9(d)). However, even with
30 pedestrians, the median of the frequency is higher than
the required minimum for Digit implementation’ as indicated
by the dashed red line in Fig. 9(d). Finally, ESN-MPC can
maintain a safe distance to the pedestrians in all three testing
environments as indicated in Fig. 9(e).

VIII. CONCLUSION

This study introduced a novel framework for bipedal robot
navigation in human environments, addressing a significant
gap in the field of locomotion navigation. The proposed
framework, which comprises the Pedestrian Prediction Net-
work (PPN) and the Ego-agent Social Network (ESN),
leverages zonotopes for efficient reachability-based planning
and collision checking. Integrating ESN with MPC for step
planning for Digit showed promising results for safe naviga-
tion in social environments.
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