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Abstract— This study addresses the challenge of bipedal
navigation in a dynamic human-crowded environment, a re-
search area that remains largely underexplored in the field of
legged navigation. We propose two cascaded zonotope-based
neural networks: a Pedestrian Prediction Network (PPN) for
pedestrians’ future trajectory prediction and an Ego-agent
Social Network (ESN) for ego-agent social path planning.
Representing future paths as zonotopes allows for efficient
reachability-based planning and collision checking. The ESN is
then integrated with a Model Predictive Controller (ESN-MPC)
for footstep planning for our bipedal robot Digit designed by
Agility Robotics. ESN-MPC solves for a collision-free optimal
trajectory by optimizing through the gradients of ESN. ESN-
MPC optimal trajectory is sent to the low-level controller for
full-order simulation of Digit. The overall proposed framework
is validated with extensive simulations on randomly generated
initial settings with varying human crowd densities.

I. INTRODUCTION

Bipedal navigation in complex environments has garnered

substantial attention in the robotics community [1]–[4]. So-

cial navigation is a particularly challenging problem due

to the inherent uncertainty of the environment, unknown

pedestrian dynamics, and implicit social behaviours [5].

Recently, there has been an increasing focus on social

navigation for mobile robots in human environments [6]–

[9]. Nonetheless, the exploration of social navigation for

bipedal robots remains largely underexplored. This can be

attributed to the intricate hybrid, nonlinear, and high degrees-

of-freedom dynamics associated with bipedal locomotion.

In this study, we present an integrated framework for pre-

diction and motion planning for socially acceptable bipedal

navigation in human-crowded environments as shown in

Fig. 1. We propose a navigation framework composed of two

cascaded neural networks: a Pedestrian Prediction Network

(PPN) for pedestrians’ future trajectory prediction and an

Ego-agent Social Network (ESN) for ego-agent social path

planning. The ego-agent is aware solely of the neighbor-

ing pedestrians within a radius as shown in Fig. 1. Our

neural networks output reachable sets for pedestrians and

the ego-agent represented as zonotopes, a convex symmetric
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Fig. 1: Snapshot of the simulation environment with superimposed zono-
topes for the proposed reachability-based social navigation framework. The
environment is a 14 m × 14 m open space with 20 pedestrians.

polytope. Zonotopes provide a balance between geometric

complexity and computational efficiency. We specifically

take advantage of two facts: (1) the Minkowski sum of two

zonotopes is again a zonotope, allowing us to easily augment

the zonotopes output by a neural network; and (2) collision

checking a pair of zonotopes can be differentiated for use

in gradient-based motion planning methods [10]–[13]. In

this study, we use zonotopes to detect and avoid collisions

by checking for intersections between the zonotopes corre-

sponding to the ego-agent and pedestrians.

Our framework integrates ESN in a model predictive con-

troller (MPC) as shown in Fig. 2. The ESN-MPC optimizes

over the output of the neural network, with reachability and

collision avoidance constraints. It incorporates a reduced-

order model (ROM) for the bipedal locomotion process and

then sends optimal commands, i.e., center of mass (CoM)

velocity and heading change, to the low-level controller on

Digit for full-body joint trajectory design and control.

The main contributions of this study are as follows:

• A zonotope-based prediction and planning framework

for bipedal navigation in a social environment.

• Novel loss functions to shape zonotopes that represent

the future social trajectory of the ego-agent.

• A framework for hierarchically integrating the neural

networks with an MPC and a low-level passivity con-

troller for full-body joint control of Digit.

This article is outlined as follows. Sec. II is a literature

review of related work. Sec. III introduces the problem
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Fig. 2: Block diagram of the proposed framework. The framework is composed of two sub-networks: the Pedestrian Prediction Network (PPN) and the
Ego-agent Social Network (ESN) shown in green and cyan, respectively (Sec. V). Given an environment with observed pedestrians and a goal location,
PPN predicts the future pedestrians’ reachable set. ESN-MPC optimizes through ESN to generate collision-free trajectories for Digit (Sec. VI). The optimal
trajectory is then sent to the ALIP controller [14] to generate the desired foot placement for reduced-order optimal trajectory tracking. An ankle-actuated-
passivity-based controller [15], [16] is implemented on Digit for full-body trajectory tracking.

we are seeking to solve. Then, the environment setup and

zonotope preliminaries are in Sec. IV. Sec. V presents

the neural network architecture and loss functions. Sec. VI

formulates the problem as an MPC. Implementation details

and results are in Sec. VII and conclusion is in Sec. VIII.

II. RELATED WORK

Navigating an environment with humans in a socially

compliant manner requires a proactive approach to motion

planning [6]–[8]. In [8], the authors use opinion dynamics

to proactively design motion plans for a mobile robot,

without the need for human prediction models. It relies

only on the observation of the approaching human position

and orientation to form an opinion that alters the neutral

path and avoids collisions with pedestrians. Gradient-based

trajectory optimization is introduced in [7] to minimize

the difference between the humans’ future path prediction

conditioned on the robot’s plan and the nominal prediction.

The studies of [6], [7] both assume that a minimally-invasive

robot trajectory, with minimal effect on surrounding humans’

nominal trajectory, is socially acceptable. In contrast, our

work aims to learn the socially acceptable trajectory from

human crowd datasets to minimize any heuristic biases on

what a socially acceptable trajectory is.

Our framework is inspired by the human trajectory predic-

tion community [17]–[20], where we aim to design a socially

acceptable trajectory for the ego-agent that mimics the path

learned from human crowd datasets. The work in [21]

proposes an obstacle avoidance learning method that uses

a Conditional Variational Autoencoder (CVAE) framework

to learn a temporary target distribution to avoid pedestrians

actively. However, during the learning phase, the temporary

targets are selected heuristically. In contrast, we aim to learn

such temporary waypoints from human crowd datasets to

capture a heuristic-free socially acceptable path. In [17], the

authors develop a simple yet, accurate CVAE architecture

based on Multi-Layer Perceptrons (MLP) networks to predict

crowd trajectories conditioned on past observations and in-

Fig. 3: Illustration of the Linear Inverted Pendulum model for two consecu-
tive walking steps, with discrete states pq and pq+1 at the contact switching
time. The shaded yellow regions indicate the kinematics constraint on the
control input u detailed in Sec. VI-A.

termediate endpoints. Our ESN follows a similar MLP-based

CVAE architecture, where the ego-agent path is conditioned

on the final goal location, surrounding pedestrians’ future

trajectories, and immediate change in the ego-agent state.

Utilizing a non-complex network architecture is pivotal for

enabling real-time planning and prediction when integrated

into gradient-based motion planning for the ego-agent.

The authors in [10] present a Zonotope Alignment of

Prediction and Planning (ZAPP) that relies on zonotopes

to enable continuous-time reasoning for planning. They

use trajectron++ [18] to predict obstacle trajectories as a

Gaussian distribution. They construct a zonotope over these

distributions, which leads to an overapproximation of the un-

certainties. We propose learning these distributions directly

as zonotopes, bypassing the initial step of predicting Gaus-

sian distributions for pedestrian motion. This approach is

computationally efficient and facilitates real-time integration

with an MPC.

III. PROBLEM FORMULATION

A. Robot Model

Consider a bipedal ego-agent with discrete step-by-step

dynamics xq+1 = Φ(xq,uq), where xq and uq are the state
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and control input respectively at the contact switching time

of the qth walking step. The robot’s state x = (p, vloc, ¹),
where p = (x, y) is the 2-D location in the global coordinate,

vloc is the local sagittal velocity, and ¹ the heading. The

control input is uq = (uf
q u∆θ

q ), where uf
q is the local

sagittal foot position relative to the CoM, and u∆θ
q is the

heading angle change as shown in Fig. 3.

The reduced-order model (ROM) used to design the walk-

ing motion of Digit is the Linear Inverted Pendulum (LIP)

model [22]. For the LIP model, we assume that each step has

a fixed duration T 1 [2], [23]. Then we build our model on

the discrete local sagittal dynamics (∆xloc
q , vlocq ) 2 , where

∆xloc = xloc
q+1 − xloc

q and vlocq is the sagittal velocity at the

local coordinate for the qth walking step (see Fig. 3):

∆xloc(uf
q ) =

(

vlocq

sinh(ÉT )

É
+ (1− cosh(ÉT ))uf

q

)

(1)

vlocq+1(u
f
q ) = cosh(ÉT )vlocq − É sinh(ÉT )uf

q (2)

where É =
√

g/H , where g is the gravitational constant

and H is the CoM height. Based on the local sagittal

dynamics (1) and (2), we add heading angle ¹q to control the

LIP dynamics in 2-D Euclidean space. The heading angle

change is governed by ¹q+1 = ¹q + u∆θ
q across walking

steps. Therefore the full LIP dynamics in 2-D Euclidean

space become:

xq+1 = xq +∆xloc(uf
q ) cos(¹q) (3a)

yq+1 = yq +∆xloc(uf
q ) sin(¹q) (3b)

vlocq+1 = cosh(ÉT )vlocq − É sinh(ÉT )uf
q (3c)

¹q+1 = ¹q + u∆θ
q (3d)

For notation simplicity, hereafter, we refer to (3) as:

xq+1 = Φ(xq,uq) (4)

B. Environment Setup and Problem Statement

The ego-agent is tasked to navigate to a known goal

location G in an open environment with m ∈ N observed

pedestrians treated as dynamic obstacles. The pedestrian state

T pk

[tp,t]
is the 2-D trajectory of pedestrian k observed over

the discrete time interval [tp, t]. The environment is partially

observable as only the pedestrians in a pre-specified sensory

radius of the ego-agent are observed. The path the ego-agent

takes should ensure navigation safety, and promote social

acceptability.

Definition III.1 (Navigation safety). Navigation safety is

defined as maneuvering in human crowded environments

while avoiding collisions with pedestrians, i.e., ∥pt−T pk

t ∥ >
d, ∀t, k, where d represent the minimum allowable distance

between the ego-agent and the pedestrians.

1set to be equal to the timestep between frames in the dataset (0.4 s)
2the lateral dynamics are only considered in the ALIP model at the low

level since they are periodic with a constant desired lateral foot placement

Definition III.2 (Socially acceptable path for bipedal sys-

tems). A path that a bipedal ego-agent takes in a human-

crowded environment is deemed socially acceptable if it has

an Average Displacement Error (ADE) < ϵ 3 when compared

to ground truth data in the same environment.

Based on the aforementioned definitions and environment

setup the problem we aim to solve is as follows:

Problem III.1. Given the discrete dynamics of the bipedal

robot xq+1 = Φ(xq,uq) and an environment state E =
(T pk

[tp,t]
,G), find a motion plan that promotes social accept-

ability for the bipedal ego-agent in a partially observable

environment containing pedestrians while ensuring naviga-

tion safety.

IV. PRELIMINARIES

To solve the social navigation problem defined above, we

propose a learning framework to learn socially acceptable

reachable sets parameterized as zonotopes (Sec. V-A). Prob-

lem.III.1 is then reformulated as a step-by-step MPC problem

with navigation safety constraints and implemented in real

time on our Digit humanoid robot [24] (Sec. VI-D). This

section begins by introducing the learning and environment

assumptions, and zonotope preliminaries.

1) Environment Assumptions and Observations: In this

work, we hypothesize that in a social setting, the information

accessible by the ego-agent that is used to determine its

future path T ego
[t,tf ]

= {xego
q , yegoq }

tf
q=t

4 are three fold: (i)

its final destination G = (xdest, ydest) (ego-agent intent),

(ii) the surrounding pedestrians’ past trajectory T pk

[tp,t]
=

{xpk
q , ypk

q }tq=tp
for the kth pedestrian, and (iii) the ego-

agent’s social experience, i.e., its assumptions on how to

navigate the environment in a socially-acceptable manner.

We treat the social experience as latent information that is

not readily available in human crowd datasets. Therefore we

make the following assumption.

Assumption IV.1. Learning the future trajectory of an ego-

agent T ego
[t,tf ]

based on its final goal G and surrounding

pedestrians’ past trajectories T pk

[tp,t]
, will learn the ego-

agent’s social experience.

2) Zonotopes Preliminaries: A zonotope Z ∈ R
n is a

convex, symmetrical polytope paramterized by a center c ∈
R

n and a generator matrix G ∈ R
n×nG (see Fig. 5).

Z = Z(c, G) = {c+G´ | ∥´∥∞ f 1} (5)

The Minkowski sum of Z1 = Z(c1, G1) and Z2 =
Z(c2, G2) is Z1 · Z2 = Z (c1 + c2, [G1 G2]). To Check

collisions between two zonotopes, [25, Lemma 5.1] is used:

Proposition IV.2. ( [25, Lemma 5.1]) Z1 ∩Z2 = ∅ iff c1 /∈
Z(c2, [G1 G2]).

3ϵ represents the allowable deviation from the socially acceptable path.
The Average Displacement Error denotes the average error between the
planned path and the ground-truth path.

4the subscripts tp, t, and tf represent a discrete time indices denoting
the past, current and future trajectories, respectively, where tp < t < tf .
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Fig. 4: (a) shows the pedestrian prediction network, conditioned on the pedestrian endpoints and the immediate change in the ego-agent’s state. (b) shows
the ego-agent social network conditioned on the pedestrians’ future prediction, the immediate change in the ego-agent’s state, and the ego-agent’s goal
location. Dashed connections are used during training only.

When n = 2 zonotopes can be represented as polytopes

using the half-space representation P = {x | Ax f b},

where x ∈ P ⇐⇒ max(Ax − b) f 0 and x /∈
P ⇐⇒ max(Ax − b) > 0. To convert a 2-D zonotope

from the center-generator representation to the half-space

representation, we use the following proposition:

Proposition IV.3. ( [13, Theorem 2.1]) Let C =
[

−G[2, :] G[1, :]]
]

and lG[i] = ∥G[:, i]∥2 the half-space

representation of a 2-D zonotope:

A[i, :] =
1

lG[i]
·

[

C
−C

]

∈ R
2nG×2 (6)

b = A · c+ |AG| 1m×1 ∈ R
2nG (7)

In this work, zonotopes are used to describe the social

reachable set for the ego-agent. We seek to learn a sequence

of social zonotopes Zego
q , each of which contains two con-

secutive waypoints of the ego-agent’s future social trajectory

T ego
[t,tf ]

.

Definition IV.1 (Social Zonotope Zego
q ). A social zonotope

for the ego-agent’s qth walking step is Zego
q = L (cq, Gq),

such that T ego
[t,tf ]

∈
tf−1
⋃

q=t

Zego
q .

V. SOCIAL ZONOTOPE NETWORK

A. Learning Architecture

We set up a conditional variational autoencoder (CVAE)

architecture to learn the ego-agent’s future trajectory condi-

tioned on the final destination goal, the immediate change in

the ego-agent’s state, and the surrounding pedestrians’ past

trajectories. The proposed architecture incorporates Multi-

Layer Perceptrons (MLP) with ReLU non-linearity for all

the sub-networks.

1) Pedestrian Prediction Network (PPN): The pedestrian

prediction network (shown in Fig. 4(a)) is inspired by

PECNet [17], where the endpoint of the pedestrian trajec-

tory T pk

tf
is learned first, and then the future trajectory is

predicted. Our proposed network deviates from PECNet in

three ways. First, the pedestrian future trajectory is also

conditioned on the immediate change in the ego-agent’s

state T ego
t+1 (shown in red in Fig. 4(a)). This coupling of

the pedestrian prediction and ego-agent planning networks

is intended to capture the effect of the robot’s control on

the future trajectories of the surrounding pedestrians [5],

[7], and enable bidirectional influence for the entire ego-

agent-pedestrian team. Second, the output of the network

is the pedestrian’s future reachable set parameterized as

zonotopes Zpk

[t,tf ]
rather than trajectories for robust collision

checking and uncertainty parameterization [10]–[12]. Third,

we replace the social pooling module with a simple ego-agent

sensory radius threshold for computational efficiency.

The pedestrians’ past trajectories T pk

[tp,t]
are encoded in

Eped as seen by the purple arrow in Fig. 4(a), while the

incremental change in the ego-agent state representing the

ego-agent control is encoded in Enext as seen by the red

arrow in Fig. 4(a). This allows us to condition the prediction

of the pedestrians’ trajectory on the ego-agent’s control.

The resultant latent features Eped(T
pk

[tp,t]
) and Enext(T

ego
t+1 )

are then concatenated and used as the condition features

Fcond. The pedestrian’s endpoint locations are encoded in

Eend as seen by the orange arrows in Fig. 4(a). The resul-

tant latent features Eend(T
pk

tf
) are then concatenated with

Fcond as global features Fglobal and encoded in the latent

encoder Elatent. We randomly sample features from a normal

distribution N (µ,σ) generated by the Elatent module, and

concatenate them with Fcond. This concatenated information

is then passed into the latent decoder Dlatent. Then Dlatent

outputs the predicted endpoint that is passed again through

Eend. The output is concatenated again with Fcond and

passed to Pfuture to output the predicted zonotopes of the

pedestrians Zpk

[t,tf ]
.

2) Ego-agent Social Network (ESN): ESN architecture

is shown in Fig. 4(b). The surrounding pedestrians’ future

zonotope centers c
pk

[t,tf ]
are aggregated through summation

to take into account the collective effect of surrounding

pedestrians while keeping a fixed architecture5 [18]. The

summed pedestrian features are then encoded in Efuture as

seen by the green arrows in Fig. 4(b). The goal location

for the ego-agent is encoded in Egoal, while the incremental

change in the ego-agent state is encoded in Enext as seen

5Other human trajectory learning modules include a social module to
take into account the surrounding pedestrians effect such as social non-local
pooling mask [17], max-pooling [19], and sorting [20].
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Fig. 5: Our zonotope shaping loss functions. The loss aims to learn
interconnected zonotopes that engulf the ground truth path.

by the orange and red arrows respectively in Fig. 4(b). The

resultant latent features Efuture(
∑m

k=1 c
pk

[t,tf ]
), Egoal(G) and

Enext(T
ego
t+1 ) are then concatenated and used as the condition

features F
ego
cond for the CVAE. The ground truth of the ego-

agent’s future trajectory T ego
[t,tf ]

is encoded in Etraj as shown

by the cyan arrows in Fig. 4(b). The resultant latent features

Etraj(T
ego
[t,tf ]

) are then concatenated with F
ego
cond as global

features F
ego
global and encoded in the latent encoder Elatent.

Similarly, we randomly sample features from a normal

distribution N (µ,σ) generated by the Elatent module, and

concatenate them with F
ego
cond. This concatenated information

is then passed into the latent decoder Dlatent, resulting in

our prediction of the ego-agent’s future reachable set Zego
[t,tf ]

.

Remark 1. Including Enext in both neural networks facil-

itates seamless integration with a step-by-step MPC, as the

MPC’s decision variables (∆pego) will be used as inputs to

Enext as detailed in Sec. VI.

B. Zonotope Shaping Loss Functions

The zonotope shaping loss functions are used for both

PPN and ESN, where both outputs are parameterized as

zonotopes. The goal of these loss functions is three folds:

(i) penalize deviation of the centers of the zonotopes from

the ground truth future trajectory; (ii) generate intersecting

zonotopes for consecutive walking steps; and (iii) reduce the

size of the zonotopes to avoid unnecessary, excessively large

zonotopes. Based on these goals, the following is a list of

loss functions to shape the zonotopes (Fig. 5):

1) Average displacement error between the predicted cen-

ters and midpoint of the ground truth trajectory Tmid,i:

LADE =

∑tf−1
i=1 ∥Tmid,i − ci∥

tf − 1

2) Final displacement error between the last predicted

center and the final midpoint of the ground truth

trajectory:

LFDE = ∥Tmid,tf−1 − ctf−1∥

3) The midpoint between the current center and previous

center c
p
mid,i is contained in the current zonotope:

Lprev =

tf−1
∑

i=0

ReLU(Ai · c
p
mid,i − bi)

4) The midpoint between the current center and the next

center cnmid,i is contained in the current zonotope:

Lnxt =

tf−1
∑

i=0

ReLU(Ai · c
n
mid,i − bi)

5) Regulating the size of the zonotope, by penalizing the

norm of the generators such the neural network does

not produce excessively large zonotopes that contain

the ground truth trajectory:

LG = ∥lG[1]− d1∥+ ∥lG[1 :]− d2∥

where d1 and d2 are the desired lengths for the generators.

We sum the zonotope shaping losses listed above in a single

term LZ . Similar to PECNet [17], we use Kullback–Leibler

divergence to train the output of the latent encoder, aiming

to regulate the divergence between the encoded distribution

N (µ,σ)and the standard normal distribution N (0, I):

LKL = DKL

(

N (µ,σ)∥N (0, I)
)

The network is trained end to end using the following loss

function: L = LKL + LZ .

VI. SOCIAL MPC

To enable safe navigation in the human-crowded envi-

ronment, we propose to solve the following optimization

problem:

min
X,U

N−1
∑

q=0

J(x,u) (8a)

s.t. xq+1 = Φ(xq,uq) (8b)

x0 = xinit, (xq,uq) ∈ XUq (8c)

xq+1 ∈ Zego
q+1(∆pego

q , Eq) (8d)

Zego
q+1(∆pego

q , Eq)
⋂

Z
pkq

q+1 = ∅, ∀ kq (8e)

where the cost (8a) is designed to reach the goal and promote

social acceptability, subject to the ROM dynamics (8b)

(Sec. III-A). Constraint (8d) requires the ego-agent at the

next (q+1)th walking step to stay within the reachable set,

while constraint (8e) requires the ego-agent to avoid collision

with the pedestrians. Next, we introduce the kinematics,

reachability, and navigation constraints (Sec. VI-A-VI-B),

and finally reformulate the MPC in (8) with a detailed version

for implementation (Sec. VI-D).

A. Kinematics Constraints

To prevent the LIP dynamics from taking a step that is

kinematically infeasible by the Digit robot the following

constraint is implemented

XUq = {(xq,uq) | xlb f xq f xub and ulb f uq f uub}
(9)
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where xlb and xub are the lower and upper bounds of xq

respectively, and ulb and uub are the bounds for uq (See

yellow shaded region in Fig. 3). The detailed parameters in

our implementation are specified in Table II.

B. Reachability and Navigation Safety Constraints

To enforce navigation safety (i.e., collision avoidance), we

require that Digit remains in the social zonotope Zego and

outside of the surrounding pedestrians reachable set Ẑpk .

1) Reachability constrains: For the robot’s CoM to re-

main inside the desired zonotope for the next walking step

Zego
q+1, we represent the zonotope using half-space represen-

tation as shown in Prop. IV.3. The constraint is reformulated:

max(Aegopego − bego) f 0 (10)

2) Navigation safety constraint: For pedestrian collision

avoidance, we require that the reachable set of the ego-

agent does not intersect with that of the pedestrians for the

corresponding step. Therefore, we create a new zonotope for

the ego-agent as Minkowski sum of the ego-agent’s zonotope

and the pedestrian’s zonotope centered around the ego-agent

Zmink = Z (cego, [Gego Gpk ]) to check for collision with the

pedestrians zonotope following Prop. IV.2. We then represent

Zmink using half-space representation and require that the

pedestrian is outside the combined set:

max(Aminkpk − bmink) > 0 (11)

C. Cost Function

The MPC cost function is designed to drive the ROM state

to a goal location G. The terminal cost penalizes the distance

between the current ROM state and the global goal state G.

JN (xN ) = ∥xN − xG∥
2
W1

+ ∥¹N − ¹G∥
2
W2

(12)

where xG = (G, vterminal), and ¹G is the angle between the

ego-agent’s current position and the final goal location.

D. MPC Reformulation with Ego-agent Social Network

According to the aforementioned costs and constraints

for implementation, we reformulate our Ego-agent Social

Network MPC (ESN-MPC) shown in (8) as follows:

min
X,U

N−1
∑

q=0

JN (xN ) (13a)

s.t. xq+1 = Φ(xq,uq) (13b)

x0 = xinit, (xq,uq) ∈ XUq (13c)

max(Aego
q+1p

ego
q+1 − begoq+1) f 0 (13d)

max(Amink
q+1 pkq+1

− bmink
q+1 ) > 0, ∀ kq (13e)

VII. IMPLEMENTATION AND RESULTS

A. Training

The social path planner module introduced in Sec. V was

trained on the UCY [26] and ETH [27] crowd datasets with

the common leave-one-out approach, reminiscent of prior

studies [17]–[19]. The models were trained on a data set

that excludes UNIV from the training examples. We employ

TABLE I: Network architecture parameters

Pedestrian Prediction Network

Eped 16 → 32 → 16

Eend 2 → 8 → 16

Enxt 2 → 32 → 16

Pfuture 50 → 32 → 16 → 32 → 70

Elatent 48 → 8 → 16 → 32

Dlatent 48 → 32 → 16 → 32 → 2

Ego-agent Social Network

Egoal 2 → 8 → 16 → 2

Efuture 16 → 64 → 32 → 16

Enxt 2 → 64 → 32 → 2

Etraj 16 → 64 → 32 → 16

Elatent 36 → 8 → 50 → 16

Dlatent 36 → 128 → 64 → 128 → 70

a historical trajectory observation T pk

[−8,0] and a prediction

horizon T̂ ego
[0,8], each spanning 8 timesteps (3.2 s) and only

consider neighboring pedestrians that are within a radius of

4 m. The network architecture details are shown in Table I.

B. Pedestrian Simulation

We use SGAN (Social Generative Adversarial Network),

a state-of-the-art human trajectory model, for simulating

pedestrians [19]. SGAN is specifically designed to grasp

social interactions and dependencies among pedestrians. It

considers social context, including how people influence each

other and move in groups. This is important for creating real-

istic simulations of pedestrian motion. Employing a different

prediction model ensures a fair evaluation by eliminating any

inherent advantages of our proposed method [7].

In our simulation framework, SGAN incorporates both

the historical trajectories of pedestrians and the trajectory

of the ego agent. This approach enhances the realism of the

simulation by accounting for the interaction between the ego-

agent and pedestrians within the environment.

C. Testing Environment Setup

The environment for all the following tests is an open

space of 14 × 14 m2 as shown in Fig. 1 and Fig. 8, with

randomly generated pedestrians’ initial trajectory. We test

with 5, 15, and 30 pedestrians in the environment. The

goal location is G = (10, 10) m, and the ego-agent starting

position is uniformly sampled along the y-axis as such

x0 = (0,U[0,13], 0) with ¹0 = 0. The MPC is solved with a

planning horizon of N = 4, and ESN-MPC parameters are

included in Table. II. Simulations and training are conducted

using a 16-core Intel Xeon W-2245 CPU and an RTX-

5000 GPU with 64 GB of memory. The ESN-MPC is

implemented using the do-mpc Python libraray [28]. Digit is

simulated using the MuJoCo simulator provided by Agility

Robotics [24] and visualized using Nvidia Isaac Gym [29]

for a realistic human crowded environment set-up.

D. Low-level Full-Body Control

At the low level we use the Angular momentum LIP

(dubbed as ALIP) planner introduced in [14], and a Digit’s

passivity controller [15] with ankle actuation which we

have previously shown to exhibit desirable ROM tracking
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TABLE II: ESN-MPC Parameters

parameter value parameter value

u∆θ
ub 15

◦ u∆θ
lb −15

◦

u
f
ub 0.4 m u

f
lb −0.1 m

d1 0.1 d2 0.005

vterminal 0 m/s nG 4

W1 3 W2 1

Fig. 6: Quantitative (a) and qualitative (b) results of ESN. (a) Shows the
displacement error between the prediction of ESN c

ego and the ground
truth data T

ego
mid (red dots in (b)). (b) shows a snapshot of ESN output,

where the ego-agent’s predicted zonotopes (cyan) contain the ground truth
ego-agent data (red). ESN is conditioned on the goal position (yellow ⋆)
and surrounding pedestrian future trajectories (green). The data is collected
based on the UNIV dataset with 7831 unique frames. The solid line in (a)
shows the average displacement error at each prediction horizon.

results [16]. The ALIP controller used here is based on ve-

locity rather than angular momentum, though the formulation

remains similar to [14]. In this case, the ALIP model is

equivalent to the LIP model used during planning. Here we

set the desired walking step time and the desired lateral step

width to be fixed at 0.4 s and 0.4 m, respectively.

E. Results and Discussion

In Fig. 6(a) we show that ESN produces an ADE= 0.229
m over the prediction horizon of 7 timesteps6, and a Final

Displacement Error (FDE)= 0.52 m. Fig. 6(b) shows a

snapshot of the ESN social zonotope output Zego (cyan)

compared to the ground truth data T ego
mid shown in red.

Fig. 7 shows the tracking performance of integrating

ESN-MPC with the low-level full-body controller [14]–[16].

We show the global Euclidean position tracking Fig. 7(a),

heading angle tracking in Fig. 7(b), and local sagittal velocity

tracking in Fig. 7(c). Fig. 1 and Fig. 8 show snapshots of

the resultant trajectory at different walking steps.

Snapshots of ESN-MPC results at different walking steps

are shown in Fig. 8. In Fig. 9(a), all three crowd densities

produce relatively similar median velocities. At lower crowd

density the velocity is more consistent. As expected, Fig. 9(b)

shows that in less crowded areas, the ego-agent can reach the

goal in fewer steps. With 30 pedestrians in the environment,

it took more steps on average to reach the goal while

maintaining a relatively similar velocity to the environments

with fewer crowds (see Fig. 9(a)). This indicates that our

framework can predict the future trajectory of the surround-

ing pedestrians, and is not required to come to a sudden stop.

6The prediction horizon timesteps is 7 and not 8, since the displacement
error is calculated based on the middle points T

ego
mid of T

ego
[0,8]

Fig. 7: Full-order simulation results of Digit tracking the desired trajectory
from ESN-MPC. (a) shows Euclidean position tracking, (b) shows heading
tracking, and (c) shows the sagittal velocity tracking in local coordinates.

ESN-MPC produces a consistent and predictable behavior

for the ego-agent. Predictability of the ego-agent behavior

in a social context is desirable by pedestrians as it is

perceived to be less disruptive. With 5 and 15 pedestrians

in the environment our framework produced a 100% success

rate by reaching the goal in 100 walking steps, while it

managed a 90% success rate with 30 pedestrians as shown in

Fig. 9(c). Due to the larger number of constraints, the time

it takes to solve ESN-MPC decreases with increasing the

number of pedestrians (See Fig. 9(d)). However, even with

30 pedestrians, the median of the frequency is higher than

the required minimum for Digit implementation7 as indicated

by the dashed red line in Fig. 9(d). Finally, ESN-MPC can

maintain a safe distance to the pedestrians in all three testing

environments as indicated in Fig. 9(e).

VIII. CONCLUSION

This study introduced a novel framework for bipedal robot

navigation in human environments, addressing a significant

gap in the field of locomotion navigation. The proposed

framework, which comprises the Pedestrian Prediction Net-

work (PPN) and the Ego-agent Social Network (ESN),

leverages zonotopes for efficient reachability-based planning

and collision checking. Integrating ESN with MPC for step

planning for Digit showed promising results for safe naviga-

tion in social environments.
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