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Abstract. The main result of the paper is that for any closed symplectic man-
ifold the spectral norm of the iterates of a Hamiltonian diffeomorphism is locally
uniformly bounded away from zero C∞-generically.

Contents

1. Introduction 1
2. Preliminaries and notation 4
3. Main results 6
4. Proofs and refinements 8
4.1. Proofs of Theorems 3.1 and 3.3 8
4.2. Sugimoto manifolds and further remarks 11
References 13

1. Introduction

We show that for a Hamiltonian diffeomorphism ϕ of a closed symplectic manifold
M the spectral norm over Q of the iterates ϕk is locally uniformly bounded away
from zero C∞-generically in ϕ, without any additional assumptions on M .

The question of the behavior of the sequence γ
(
ϕk
)
of spectral norms goes back

to the work of Polterovich, [Po02]. Recently, there has been renewed interest in the
problem whether and when this sequence is bounded away from zero. There are
several reasons for this question, amounting roughly speaking to the fact that one
can obtain pretty strong results on the symplectic dynamics of ϕ when the sequence
is not bounded away from zero:

γ(ϕ) := lim inf
k→∞

γ
(
ϕk
)

= 0. (1.1)

Among these are, for instance, Lagrangian Poincaré recurrence, [GG18, JS], and the
variant of the strong closing lemma from [ÇS]. Simultaneously, fairly explicit criteria
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for this sequence to be bounded away from zero have been established, based on the
crossing energy theorem from [GG14, GG18]; see, e.g., [ÇGG22b] and Theorem 3.1.
Let us now provide some more context for the question.

First, note that the condition (1.1) can be interpreted as that ϕ is γ-rigid or, in
other words, a γ-approximate identity.

This notion is a particular case of a much more general concept. Namely, consider
a class of diffeomorphisms ϕ or even homeomorphisms of a manifold M , which we
assume here to be closed. For instance, this can be the class of all diffeomorphisms
or of Hamiltonian diffeomorphisms when M is symplectic, etc. Assume furthermore
that this class is equipped with some norm ‖ · ‖, e.g., the C0- or C1-norm or the γ-
or Hofer-norm in the Hamiltonian case. A map ϕ is said to be ‖ · ‖-rigid if ϕki → id
with respect to ‖ · ‖, i.e.,

∥∥ϕki∥∥ → 0, for some sequence ki → ∞. The term “rigid”
is somewhat overused in dynamics and also frequently confused with structural sta-
bility, and in [GG19] we proposed to call such a map ϕ a ‖ · ‖-approximate identity,
or a ‖ · ‖-a.i. for the sake of brevity. We refer the reader to, e.g., [Br, GG19, ÇS] for
a further discussion of approximate identities, aka rigid maps, in different contexts
and further references. Here we only mention that Cr-a.i. is obviously Cs-a.i. for
any s ≤ r and, when M is aspherical or M = CPn, a C0-a.i. is also a γ-a.i.; see
[BHS, Sh22b].

Zeroing in on γ-a.i.’s we note that there are rather few examples of such maps.
The most dynamically interesting examples are Hamiltonian pseudo-rotations. This
class of maps has been extensively studied in a variety of settings by dynamical
systems methods and more recently from the perspective of symplectic topology and
Floer theory; see, e.g., [AK, A-Z, Br, FK, GG18, JS, LRS] and references therein.

While the official definitions of Hamiltonian pseudo-rotations vary, these are,
roughly speaking, Hamiltonian diffeomorphisms with a finite and minimal possi-
ble number of periodic points (in the sense of Arnold’s conjecture); see [GG18, Sh20,
Sh21]. For instance, when M = CPn this number is n + 1. Most likely, for many
symplectic manifolds this condition can be relaxed. Namely, in all examples of Hamil-
tonian diffeomorphisms ϕ with finitely many periodic points, all periodic points are
fixed points and their number is minimal possible. Thus ϕ is a pseudo-rotation. For
a certain class of manifolds M , including CPn, this has been established rigorously
under a minor non-degeneracy assumption; see [Sh22a] and also [ÇGG22a]. More-
over, in all examples to date of Hamiltonian diffeomorphisms ϕ with finitely many
periodic points, ϕ is non-degenerate.

In general, the relation between pseudo-rotations and γ-a.i.’s is not obvious. All
known Hamiltonian pseudo-rotations are γ-a.i.’s and for M = CPn this is proved in
[GG18] by using the results from [GG09a]. The converse is not true: for instance any
element ϕ of a Hamiltonian torus action is a γ-a.i., although ϕ need not have isolated
fixed points. (It is conceivable that for a strongly non-degenerate γ-a.i., the periodic
points are necessarily the fixed points: in the obvious notation, Per(ϕ) = Fix(ϕ).
However, a map ϕ with the latter property need not be a γ-a.i. For instance, γ

(
ϕk
)

can grow linearly for such a map; see Remark 4.10.)



GENERIC BEHAVIOR OF THE SPECTRAL NORM 3

Most closed symplectic manifolds (M,ω) admit no pseudo-rotations, i.e., every
Hamiltonian diffeomorphism of M has infinitely many periodic points. This state-
ment (for a specific manifold M) is usually referred to as the Conley conjecture. To
date, the Conley conjecture has been shown to hold unless there exists A ∈ π2(M)
such that 〈[ω], A〉 > 0 and 〈c1(TM), A〉 > 0; see [Çi18, GG15, GG17] and references
therein. In particular, the Conley conjecture holds when M is symplectically as-
pherical or negative monotone. Furthermore, for a broad class of closed symplectic
manifolds, ϕ has infinitely many periodic points C∞-generically; see [GG09b, Su21]
and Section 4.2.

Although the classes of Hamiltonian pseudo-rotations and γ-a.i.’s are certainly
different, there is a clear parallel between these two classes and their existence con-
ditions on M .

Conjecture. Let M be closed symplectic manifold.
(i) The manifold M admits no γ-a.i.’s unless there exists A ∈ π2(M) such that
〈[ω], A〉 > 0 and 〈c1(TM), A〉 > 0.

(ii) A Hamiltonian diffeomorphism ϕ : CPn → CPn is a γ-a.i. if and only if all
iterates ϕk are Morse–Bott non-degenerate and dim H∗

(
Fix(ϕk);F

)
= n+ 1

for all k ∈ N and any ground field F.

This conjecture is supported by some evidence. For instance, M does not admit
periodic Hamiltonian diffeomorphisms ϕ (i.e., ϕN = id for some N > 1) when M
satisfies the conditions of (i); see [AS, Po02]. In addition, Fix(ϕk) is Morse–Bott non-
degenerate whenever ϕ is periodic. This is a consequence of the equivariant Darboux
lemma; see, e.g., [GS, Thm. 22.2]. Moreover, aspherical or negative monotone sym-
plectic manifolds do not admit C1-a.i.’s; see [Po02] and [Su23]. Further results and
references along these lines can be found in [AS]. In [ÇGG22b] both assertions are
proved in dimension two for strongly non-degenerate Hamiltonian diffeomorphisms;
see Corollary 3.4. Moreover, in the setting of (i) the sequence of the spectral norms
γ
(
ϕp
)
over Z/pZ, where p ranges through all primes, is separated away from zero,

[Sh23]. As we have already mentioned the “if” part of (ii) is established in [GG18]
without any non-degeneracy assumption when |Per(ϕ)| = n+ 1. With this in mind,
Part (ii) of the conjecture asserts, in particular, that every pseudo-rotation of CPn
is strongly non-degenerate.

Remark 1.1. While Part (ii) of the conjecture might extend to some other ambient
symplectic manifolds M , some restriction on M is necessary. For instance, the
torus T2n equipped with an irrational symplectic structure admits a Hamiltonian
diffeomorphism ϕ such that the conditions of (ii) are satisfied but γ

(
ϕk
)
→ ∞; see

[Ze] and also [Çi23] for further constructions of this type with complicated dynamics.

In a similar vein, the main result of this paper can be thought of as the γ-a.i.
analogue of the aforementioned theorem on the C∞-generic Conley conjecture, al-
though at this moment the proof of the latter requires some additional conditional
conditions on the underlying manifold; see Section 4.2.
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Remark 1.2. Overall, rather little is known about the behavior of the γ-norm under
iterations. For a certain class of manifolds, including CPn, the spectral norm is a
priori bounded from above, [EP, KS]. However, such manifolds appear to be rare;
see Remark 4.10. Also, the sequence γ

(
ϕk
)
is bounded from above when suppϕ is

displaceable in M , but not much beyond these facts and the results of this paper
is known about the behavior of this sequence. For instance, when M is a surface
of positive genus, it is not known if γ

(
ϕk
)
necessarily grows linearly or can be

bounded from above when ϕ is strongly non-degenerate or, as the opposite extreme,
autonomous and suppϕ is not displaceable.

Remark 1.3. It is worth keeping in mind that in contrast with some other dynamics
concepts, in most if not all settings a.i.’s are sensitive to reparametrization. To be
more specific, let an a.i. ϕ be the time-one map of the flow of a vector field X and
let ψ be the time-one map of fX for some function f > 0. Then, in general, ψ need
not be an a.i. For instance, assume that X is a solid rotation vector field on M = S2

and f 6= const. Then one can show that ψ is not a C0-a.i., and hence not a Cr-a.i.
for any r ≥ 0. Apparently, the same is true for the γ-norm, but this fact is yet to
be proved rigorously; cf. item (ii) of the Conjecture.

Acknowledgements. Parts of this work were carried out while the second and
third authors were visiting the IMJ-PRG, Paris, France, in May 2023 and also during
the Summer 2023 events Symplectic Dynamics Workshop at INdAM, Rome, Italy,
and From Smooth to C0 Symplectic Geometry: Topological Aspects and Dynamical
Implications Conference at CIRM, Luminy, France. The authors would like to thank
these institutes for their warm hospitality and support.

2. Preliminaries and notation

In this section we very briefly set our notation and conventions which are quite
standard and spelled out in more detail in, e.g., [ÇS]. The reader may find it conve-
nient to jump to Section 3 and consult this section only as needed.

Throughout the paper, all manifolds, functions and maps are assumed to be C∞-
smooth unless specifically stated otherwise.

Let (M2n, ω) be a closed symplectic manifold. A Hamiltonian diffeomorphism ϕ =
ϕH = ϕ1

H is the time-one map of the time-dependent flow ϕt = ϕtH of a 1-periodic
in time Hamiltonian H : S1 ×M → R, where S1 = R/Z. We set Ht = H(t, ·). The
Hamiltonian vector field XH of H is defined by iXH

ω = −dH. We say that ϕ is non-
degenerate if all fixed points of ϕ are non-degenerate, and strongly non-degenerate
if all periodic points of ϕ are non-degenerate. We will denote by Ham(M,ω) the
group of Hamiltonian diffeomorphisms of (M,ω).

Recall that the spectral norm, also known as the γ-norm, of ϕ is defined as

γ(ϕ) = inf
H

{
c(H) + c

(
H inv

)
| ϕ = ϕH

}
,

where H inv(x) = −Ht

(
ϕtH(x)

)
is the Hamiltonian generating the flow

(
ϕtH
)−1 and

c = c[M ] is the spectral invariant associated with the fundamental class [M ] ∈
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H2n(M). (Here we can take as H inv any Hamiltonian generating this flow with the
same time/space average as H.) The infimum is taken over all 1-periodic in time
Hamiltonians H generating ϕ, i.e., ϕ = ϕH . The Hofer norm of ϕ is defined as

‖ϕ‖H = inf
H

∫
S1

(
max
M

Ht −min
M

Ht

)
dt,

where the infimum is again taken over all 1-periodic in time Hamiltonians H gener-
ating ϕ. Then

γ(ϕ) ≤ ‖ϕ‖H .
We refer the reader to, e.g., [Oh05a, Oh05b, Sc, Vi] and also, e.g., [ÇS, EP, GG09a,
KS, Po01, Us08, Us11], for the original treatment and a detailed discussion of spectral
invariants and these norms, and for further references.

Here we are interested in the behavior of γ
(
ϕk
)
, k ∈ N, and in particular in the

question when this sequence is bounded away from zero. As in the introduction, set

γ(ϕ) = lim inf
k→∞

γ
(
ϕk
)
∈ [0, ∞].

These definitions implicitly depend on the construction of the filtered Floer ho-
mology HFa(H) for the action window (−∞, a). In this paper we do not in general
assume that the class [ω] is rational or that ϕ is non-degenerate. Hence, we feel, a
word is due on the specifics of the definitions.

Assume first that H is non-degenerate. Then we utilize Pardon’s VFC package,
[Pa], to define the filtered Floer homology HFa(H) over Q and spectral invariants;
see, e.g., [ÇS, Us08]. To be more specific, HFa(H) is the homology of the subcomplex
CFa(H) of the Floer complex CF(H) generated by Floer chains with action below
a. Virtually any choice of the Novikov field can be used here. We take the standard
Novikov field

Λ =
{∑
A∈Γ

bAA
∣∣ bA ∈ Q and #{bA 6= 0, ω(A) > c} <∞ ∀ c ∈ R

}
,

where Γ = π2(M)/
(

ker[ω] ∩ ker c1(TM)
)
. Alternatively, we could have used the

universal Novikov field. Then, for any α ∈ H∗(M)⊗Λ, the spectral invariant cα(H)
is defined as

cα(H) = inf{a ∈ R | α ∈ im ιa}, (2.1)
where

ιa : HFa(H)→ HF(H) ∼= H∗(M)⊗ Λ (2.2)
is the natural inclusion-induced map and the identification on the right is the PSS-
isomorphism. We note that all spectral invariants necessarily belong to the action
spectrum S(H) of H when H is non-degenerate, [Us08].

When H is not necessarily non-degenerate, we set

cα(H) := inf
H̃≥H

cα(H̃) = sup
H̃≤H

cα(H̃) = lim
H̃→H

cα(H̃),

where H̃ is non-degenerate and the convergence H̃ → H is taken to be C0. The
second and third equalities and the existence of the limit follow from that cα is
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monotone and cα(H̃ + const) = cα(H̃) + const. Alternatively, we could have set

HFa(H) = lim−→
H̃≥H

HFa(H̃),

and then used (2.1) and (2.2) to get the same result.
Defined in this way, spectral invariants cα can be easily shown to have all the

standard properties: cα(H) is monotone and Lipschitz continuous in H with Lips-
chitz constant one; cα(H + const) = cα(H) + const; etc. (We refer the reader to,
e.g., [ÇS] for more details.) The exception is that cα(H) has been proven to be
spectral, i.e., an element of S(H), only when [ω] is rational or H is non-degenerate;
see [EP, Oh05b, Us08].

3. Main results

The key to bounding γ from below is the following fact connecting the behavior
of γ

(
ϕk
)
with the dynamics of ϕ and, in particular, its hyperbolic points.

Theorem 3.1. Let ϕ : M → M be a Hamiltonian diffeomorphism of a closed sym-
plectic manifold M with more than dim H∗(M) hyperbolic periodic points. Then
γ(ϕ) > 0. Moreover, γ is locally uniformly bounded away from zero near ϕ, i.e.,
there exists δ > 0, possibly depending on ϕ, and a sufficiently C∞-small neighbor-
hood U of ϕ such that

γ(ψ) > δ for all ψ ∈ U .
Without the moreover part, this theorem was originally proved in [ÇGG22b]. We

give a complete proof in Section 4. Let us emphasize that in Theorem 3.1 we impose
no non-degeneracy requirements on ϕ, and also that the property of ϕ to have
more than dim H∗(M) hyperbolic periodic points, or more than any fixed number of
hyperbolic periodic points, is open in C1-topology.

Example 3.2. Assume that M is a closed surface and htop(ϕ) > 0. Then ϕ has
infinitely many hyperbolic periodic points, [Ka]. Hence, γ(ϕ) > 0. Moreover, γ(ψ) >
δ for some δ > 0 and all ψ which are C∞-close to ϕ. Also note in connection with
Theorem 3.3 and Corollary 3.4 below that htop > 0 is a C∞-generic condition in
dimension two, [LCS].

The requirement of the theorem that the number of hyperbolic points is greater
dim H∗(M) can be further relaxed by looking only at the odd/even-degree homology
of M , depending on whether n = dimM/2 is odd or even; see Remark 4.2.

The main result of the paper is the following theorem relying on Theorem 3.1 and
the strong closing lemma from [ÇS].

Theorem 3.3. Let M be a closed symplectic manifold. The function γ is locally
uniformly bounded away from zero on a C∞-open and dense set of Hamiltonian
diffeomorphisms ϕ : M →M , i.e., for every ϕ in this set there exists δ > 0, possibly
depending on ϕ but not on ψ, such that

γ(ψ) > δ

whenever ψ is sufficiently C∞-close to ϕ.
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We note that we do not assert here that in general the set of Hamiltonian diffeo-
morphisms ϕ with γ(ϕ) > 0 is itself C∞-open, but rather that this set contains a set
which is C∞-open and dense. Nor do we impose any restrictions on the (symplectic)
topology of M or require any of the iterates ϕk to be non-degenerate. The proof of
Theorem 3.3 given in Section 4.1 is based on a variant of the Birkhoff–Lewis–Moser
theorem. The key new ingredient of the proof is the strong closing lemma from
[ÇS]. It is also worth pointing out that if we replaced the statement that the set is
C∞-dense by that it is C1-dense, the theorem would turn into an easy consequence
of already known facts; see Remark 4.5.

In several situations, Theorem 3.3 can be made slightly more precise. For instance,
we have the following result, also originally proved in [ÇGG22b] without the moreover
part.

Corollary 3.4. Assume that M is a surface and ϕ is strongly non-degenerate. Then
γ(ϕ) > 0 when M has positive genus. When M is the two-sphere, γ(ϕ) = 0 if and
only if ϕ is a pseudo-rotation. Moreover, γ is locally uniformly bounded from 0 on
the set of all strongly non-degenerate Hamiltonian diffeomorphisms ϕ when M has
positive genus and on the set of such ϕ with at least three fixed points when M = S2.

Proof. When M has positive genus, a Conley conjecture type argument guarantees
that ϕ has infinitely many hyperbolic periodic points; see [FH, GG15, SZ] or [LCS].
Thus, in this case, the statement follows directly from Theorem 3.1.

Concentrating on M = S2, first note that for all, not necessarily non-degenerate,
pseudo-rotations of CPn, the sequence γ

(
ϕk
)
contains a subsequence converging to

zero, and hence γ(ϕ) = 0; see [GG18]. In the opposite direction, when M = S2,
the existence of one positive hyperbolic periodic point is enough to ensure that
γ(ϕ) > 0 and, moreover, γ is locally uniformly bounded away from zero; see Remark
4.2. Hence, more generally, without any non-degeneracy assumption, if γ(ϕ) = 0,
then all periodic points of ϕ are elliptic. For strongly non-degenerate Hamiltonian
diffeomorphisms ϕ, this forces ϕ to be a pseudo-rotation. �

Since the Hofer norm is bounded from below by the spectral norm, we have the
following.

Corollary 3.5. In all results from this section, we can replace the spectral norm by
the Hofer norm.

We refer the reader to the next section for further refinements of Theorems 3.1
and 3.3.

Remark 3.6. Throughout the paper all homology groups are taken over Q. This
choice of the background coefficient field is necessitated by the use of Floer theory
for an arbitrary closed symplectic manifold M . WhenM is weakly monotone, Q can
be replaced by any coefficient field.
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4. Proofs and refinements

In section 4.1, we prove Theorems 3.1 and 3.3. In Section 4.2, we refine the latter
result under certain additional assumptions on M and further comment on the class
of γ-a.i.’s.

4.1. Proofs of Theorems 3.1 and 3.3.

Proof of Theorem 3.1. By the conditions of the theorem, for some N ∈ N, the Hamil-
tonian diffeomorphism ϕ has more than dim H∗(M) hyperbolic N -periodic points.
We denote the set of these points by K. Thus |K| > dim H∗(M) and clearly K is a
locally maximal hyperbolic set. Furthermore, every point in K is also `N -periodic
for all ` ∈ N. For ε > 0, denote by bε(ϕ) the number of bars in the barcode of ϕ
of length greater than ε including infinite bars; see, e.g., [ÇGG21]. Then, we claim
that for a sufficiently small ε > 0 and any ` ∈ N,

bε
(
ϕ`N

)
≥ dim H∗(M) + d(|K| − dim H∗(M))/2e > dim H∗(M). (4.1)

In particular, ϕ`N has at least one finite bar of length greater than ε > 0.
This inequality is essentially a consequence of [ÇGG21, Prop. 3.8 and 6.2]. To

prove (4.1), first note that the number of infinite bars in the barcode of any Hamil-
tonian diffeomorphism is equal to dim H∗(M). Secondly, it follows from [ÇGG21,
Prop. 6.2] and the proof of [ÇGG21, Prop. 3.8] that every periodic point in K ap-
pears as an “end point” of a bar of length greater than ε > 0. Combining these two
facts, we conclude that ϕ`N has at least d(|K| − dim H∗(M))/2e finite bars of length
greater than ε > 0, and (4.1) follows.

Furthermore, since the crossing energy lower bound in [ÇGG21, Thm. 6.1] is stable
under C∞-small perturbations of the Hamiltonian, for every positive η < ε the same
is true for any Hamiltonian diffeomorphism Ψ which is C∞-close to ϕN . Namely,

bη
(
Ψ`
)
> dim H∗(M),

and hence the barcode of Ψ` has a finite bar of length greater than η.
Also, recall that as is proved in [KS, Thm. A], for any ϕ,

βmax(ϕ) ≤ γ(ϕ),

where the left-hand side is the boundary depth, i.e., the longest finite bar in the
barcode of ϕ. Thus, for a sufficiently small η > 0,

η < βmax

(
Ψ`
)
≤ γ

(
Ψ`
)
. (4.2)

Next, set δ = η/2 and arguing by contradiction, assume that there exist ψ suffi-
ciently C∞-close to ϕ and a sequence ki →∞ such that

γ
(
ψki
)
< δ.

Since the sequence ki is infinite and there are only finitely many residues modulo N ,
there exists a pair ki < kj such that

kj − ki = `N

for some ` ∈ N.
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Clearly, Ψ = ψN is C∞ close to ϕN when ψ is sufficiently C∞-close to ϕ, and
hence (4.2) holds. Then by the triangle inequality for γ, we have

η < γ
(
Ψ`
)
≤ γ

(
ψkj
)

+ γ
(
ψ−ki

)
< 2δ = η.

This contradiction concludes the proof of the theorem. �

Remark 4.1. It might be worth a second to examine how the invariants of ϕ involved
in the proof depend on the isotopy ϕtH in Ham(M,ω) generated by H and its lift
to the universal covering of the group. Namely, γ(ϕ) is a priori independent of the
isotopy only on the universal covering. On Ham(M,ω) it is defined by passing to the
infimum over often infinitely many elements. However, the boundary depth βmax is
well-defined on Ham(M,ω). In the proof we bound βmax(ϕ) from below (see, e.g.,
[Us11]) and that bounds γ(ϕ) from below regardless of the lift, [KS].

Remark 4.2. When n = dimM/2 is odd, it is sufficient to require in Theorem 3.1
that the number of hyperbolic periodic points is greater than b = dim Hodd(M).
For instance, this is the case when M is a surface. Indeed, in the proof of the
theorem by taking N even and sufficiently large, we can guarantee that the number
of positive hyperbolic N -periodic points is greater than b. Such points necessarily
have even Conley–Zehnder index, and hence contribute to the odd-degree homology
of M under the isomorphism HF∗(ϕ

N ) ∼= H∗+n(M). Likewise, when n is even,
it suffices to require the number of hyperbolic periodic points to be greater than
dim Heven(M).

Proof of Theorem 3.3. To prove the theorem, it suffices to show that every C∞-open
set U in the group of Hamiltonian diffeomorphisms contains an open subset W such
that γ(ϕ) > δ for all ϕ ∈ W and some δ = δ(W) > 0 independent of ϕ. Indeed,
then fixing W for every U we can take the union of sets W for all U as the desired
open and dense subset.

Let q = dim H∗(M). For any U , there are two alternatives:
(i) there exists ϕ ∈ U with more than q periodic points;
(ii) every ϕ ∈ U has at most q periodic points.
Let us first focus on Case (i). Pick ϕ ∈ U with more than q periodic points and

fix q + 1 of them. Denote these points by x0, . . . , xq, and note that arbitrarily C∞-
close to ϕ there exists a Hamiltonian diffeomorphism ϕ′ ∈ U such that x0, . . . , xq are
non-degenerate periodic points of ϕ′. This is essentially a linear algebra fact and to
construct ϕ′, it suffices to perturb ϕ near these points, changing Dϕ slightly. (Note
that ϕ′ may have many other periodic points, non-degenerate or not. We can ensure
in addition that ϕ′ is strongly non-degenerate, but we do not need this fact.) We
replace ϕ by ϕ′, keeping the notation ϕ.

If all periodic points x0, . . . , xq are hyperbolic, we can take as W any C∞-small
neighborhood of ϕ by Theorem 3.1.

If one of the points x0, . . . , xq is not hyperbolic, we argue by perturbing ϕ again.
Namely, recall that by the Birkhoff–Lewis–Moser theorem (see [Mo]), whenever ϕ
has a non-hyperbolic, non-degenerate periodic point x, there exists an arbitrarily
C∞-small perturbation ϕ′ ∈ U of ϕ with infinitely many periodic points near x.



10 ERMAN ÇİNELİ, VIKTOR GINZBURG, AND BAŞAK GÜREL

Moreover, ϕ′ can be chosen so that infinitely many of these periodic points are
hyperbolic; see [Ar, Prop. 8.2]. (This follows from the proof of the Birkhoff–Lewis–
Moser theorem.) Thus, again by Theorem 3.1, we can take a sufficiently C∞-small
neighborhood of ϕ′ as W .

To deal with Case (ii), we need the following quantitative variant of the strong
closing lemma.

Lemma 4.3 (Strong Closing Lemma, [ÇS]). Let ψ be a Hamiltonian diffeomorphism
of a closed symplectic manifold M . Assume that there is a closed ball V ⊂ M
containing no periodic points of ψ, i.e., V ∩Per(ψ) = ∅. Let G ≥ 0 be a Hamiltonian
supported in V and such that

c(G) > γ(ψ).

Then the composition ψϕG has a periodic orbit passing through V .

Pick a non-degenerate Hamiltonian diffeomorphism ϕ ∈ U , where U is as in Case
(ii). Such a map exists since U is C∞-open and the set of non-degenerate Hamiltonian
diffeomorphisms is C∞-dense (and open). We will show that there exists δ > 0 such
that γ(ψ) > δ for all ψ ∈ U which are C∞-close to ϕ. Hence, in this case, we can
take a small C∞-neighborhood of ϕ as W .

Lemma 4.4. Let (M,ω) be a closed symplectic manifold. Suppose that there exists a
C∞-open U ⊂ Ham(M,ω) such that all ϕ ∈ U have at most q = dimH∗(M) periodic
points. Then the function γ : U → [0,∞) is locally uniformly bounded away from
zero at every non-degenerate ϕ ∈ U .

Note that the proof of Theorem 3.3 will be completed once we prove Lemma 4.4.
To prove the lemma, arguing by contradiction, fix a non-degenerate ϕ ∈ U and
assume that there exists a sequence ψi → ϕ in U such that

γ(ψi)→ 0.

Here and below convergence of maps is always understood in the C∞-sense.
We claim that when i is large enough, all periodic points of ψi are close to periodic

points of ϕ, and hence there exists a closed ball V ⊂M containing no periodic points
of any of these maps. Indeed, since ϕ is non-degenerate and

|Fix(ϕ)| ≤ |Per(ϕ)| ≤ q = dim H∗(M),

by the Arnold conjecture (see [FO, LT] and also [Pa]),

Per(ϕ) = Fix(ϕ) and |Per(ϕ)| = |Fix(ϕ)| = q.

Furthermore, when i is large enough, ψi ∈ U is also non-degenerate since ψi → ϕ.
Therefore, again by the Arnold conjecture,

Per(ψi) = Fix(ψi) and |Per(ψi)| = |Fix(ψi)| = q.

It follows that Per(ψi) converges to Per(ϕ).
Next, take G ≥ 0 as in Lemma 4.3, which is supported in V and small enough so

that ϕϕG ∈ U . Hence, ψiϕG ∈ U when i is large; for ψi → ϕ and thus ψiϕG → ϕϕG.
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On the other hand, due to the assumption that γ(ψi)→ 0, we have

c(G) > γ(ψi),

when again i is sufficiently large. By the strong closing lemma, the composition
ψiϕG has a periodic orbit passing through V . On the other hand, the fixed points
of ψi (or equivalently the periodic points) are among the fixed points of ψiϕ because
suppG ⊂ V . It follows that

|Per(ψiϕG)| ≥ q + 1

when i is large enough, which is impossible since ψiϕG ∈ U . This contradiction
completes the proof of Lemma 4.4 and hence of Theorem 3.3. �

Remark 4.5. If in Theorem 3.3 we were to find a C1-dense (and open) set of Hamil-
tonian diffeomorphisms rather than C∞-dense, the argument would be considerably
simpler. Namely, in this case it would be enough to first construct a map ϕ with just
one hyperbolic periodic point. Once this is done, we could apply the results from
[Ha, Xi] to create non-trivial transverse homoclinic intersections, and hence a horse-
shoe (see [KH]) by a C1-small perturbation. As a consequence, the perturbed map
ψ would have infinitely many hyperbolic periodic points. For any m ∈ N, having at
least m such points is a C1-open property. Now we can take any m > dim H∗(M).

4.2. Sugimoto manifolds and further remarks. As is shown in [Su21], a strongly
non-degenerate Hamiltonian diffeomorphism ϕ of a closed symplectic manifold M2n

has either a non-hyperbolic periodic point or infinitely many hyperbolic periodic
points when M meets one of the following requirements:

(i) n is odd;
(ii) Hodd(M) 6= 0;
(iii) the minimal Chern number of M is greater than 1.

Below we refer to a closed symplectic manifold meeting at least one of these require-
ments as a Sugimoto manifold. For this class of manifolds Theorem 3.3 has a more
direct proof and can be slightly refined. We do this in two steps.

Denote by Vm, m ∈ N, the set of Hamiltonian diffeomorphisms with at least m
hyperbolic points. Note that we do not require the elements of Vm to be strongly
non-degenerate.

Proposition 4.6. Let M be a Sugimoto manifold. Then for any m ∈ N the set Vm
is C1-open and C∞-dense in the space of all Hamiltonian diffeomorphisms.

Proof. The statement that Vm is C1-open is obvious. (It is essential here that m is
finite.) To show that it is C∞-dense we argue as in [Su21] and the proof of Theorem
3.3. Let ϕ be a Hamiltonian diffeomorphism. To prove the proposition, we need
to find ψ ∈ Vm arbitrarily C∞-close to ϕ. Since the set of strongly non-degenerate
Hamiltonian diffeomorphisms is C∞-dense, we can assume that ϕ is in this class.
As shown in [Su21], ϕ has infinitely many hyperbolic periodic points or a (non-
degenerate) non-hyperbolic point. In the former case, ϕ ∈ Vm for all m ∈ N. In the
latter case, by [Ar, Prop. 8.2], for any m ∈ N there exists ψ ∈ Vm arbitrarily close
to ϕ. �
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As an immediate consequence, we obtain a slightly more precise variant of the
main result from [Su21]:

Corollary 4.7. Assume that M is a Sugimoto manifold. Then C∞-generically a
Hamiltonian diffeomorphism ϕ of M has infinitely many hyperbolic periodic points.

The key difference with [Su21] is that the periodic points of ϕ here are specified
to be hyperbolic. The residual set in this corollary is, of course,

V :=
⋂
m∈N
Vm.

We note that this set is not C1- and even C∞-open. However, one can require in
addition ϕ to be strongly non-degenerate. Indeed, the set of such maps is residual
and its intersection with V is still a residual set.

Closer to the immediate subject of the paper we have the following refinement of
Theorem 3.3 and Corollary 3.4:

Corollary 4.8. Assume that M is a Sugimoto manifold. Then γ is locally uniformly
bounded away from zero on a C1-open and C∞-dense set of Hamiltonian diffeomor-
phisms of M .

Here we can take any Vm with m > dim H∗(M) as a C1-open and C∞-dense set,
where γ is locally uniformly bounded away from zero. Note also that in this corollary
we can again replace the spectral norm by the Hofer norm.

Remark 4.9. In contrast with Theorem 3.3, C∞-generic existence of infinitely many
periodic points is not known to hold without some additional assumptions on M .
The class of Sugimoto manifolds is the broadest to date for which such existence
has been proved, [Su21]. (See also [GG09b] for the original result and a different
approach.)

Remark 4.10. Continuing the discussion from the introduction and Remark 1.2, we
give here some “textbook” examples where γ

(
ϕk
)
grows linearly, and hence γ(ϕ) =

∞, and at the same time all periodic points of ϕ are fixed points: Per(ϕ) = Fix(ϕ).
Namely, let H : M → R be a non-constant autonomous Hamiltonian such that H has
only finitely many critical values and all non-constant periodic orbits of the flow of H
are non-contractible. Set ϕ = ϕH . Then, as is easy to see, γ

(
ϕk
)
grows linearly and

the only periodic points of ϕ are the critical points of H. For instance, we can take
H = sin(2πθ), where θ is the first angular coordinate θ on T2 = R2/Z2. Alternatively,
let (T4, ω) be a Zehnder’s torus, i.e., a torus equipped with a sufficiently irrational
translation invariant symplectic structure ω (see [Ze]), and again let θ : T4 → R/Z
be a fixed angular coordinate. Then the flow of H given by the same formula has
no periodic orbits at all, contractible or not, other than the critical points of H:
the 3-dimensional tori θ = 1/2 and θ = 3/2. In both cases, γ

(
ϕk
)

= 2k. More
surprisingly, there exists a Hamiltonian diffeomorphism ϕ : S2 × S2 → S2 × S2 such
that γ

(
ϕk
)
grows linearly; see [Sh22a, Rmk. 8] and [PR, Thm. 6.2.6], although the

argument is quite indirect.
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In all these examples, dim H∗(Fix(ϕ)) = dim H∗(M) over any field, in addition to
the condition that Per(ϕ) = Fix(ϕ). Loosely following [AS], we call such a map ϕ a
generalized pseudo-rotation. Generalized pseudo-rotations from the above examples
have simple dynamics. However, this is not necessarily so in general. For instance, in
dimension six and higher Morse-Bott non-degenerate, generalized pseudo-rotations
ϕ with positive topological entropy have been recently constructed in [Çi23]. Such a
generalized pseudo-rotation can be neither a C0-a.i. since htop(ϕ) > 0 (see [A-Z]) nor
a γ-a.i. In fact, γ

(
ϕk
)
also grows linearly since M is aspherical and Per(ϕ) = Fix(ϕ)

has finitely many connected components.
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